Science.gov

Sample records for anhydroecgonine methyl ester

  1. Neurotoxicity of anhydroecgonine methyl ester, a crack cocaine pyrolysis product.

    PubMed

    Garcia, Raphael Caio Tamborelli; Dati, Livia Mendonça Munhoz; Fukuda, Suelen; Torres, Larissa Helena Lobo; Moura, Sidnei; de Carvalho, Nathalia Delazeri; Carrettiero, Daniel Carneiro; Camarini, Rosana; Levada-Pires, Adriana Cristina; Yonamine, Mauricio; Negrini-Neto, Osvaldo; Abdalla, Fernando Maurício Francis; Sandoval, Maria Regina Lopes; Afeche, Solange Castro; Marcourakis, Tania

    2012-07-01

    Smoking crack cocaine involves the inhalation of cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). Although there is evidence that cocaine is neurotoxic, the neurotoxicity of AEME has never been evaluated. AEME seems to have cholinergic agonist properties in the cardiovascular system; however, there are no reports on its effects in the central nervous system. The aim of this study was to investigate the neurotoxicity of AEME and its possible cholinergic effects in rat primary hippocampal cell cultures that were exposed to different concentrations of AEME, cocaine, and a cocaine-AEME combination. We also evaluated the involvement of muscarinic cholinergic receptors in the neuronal death induced by these treatments using concomitant incubation of the cells with atropine. Neuronal injury was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. The results of the viability assays showed that AEME is a neurotoxic agent that has greater neurotoxic potential than cocaine after 24 and 48 h of exposure. We also showed that incubation for 48 h with a combination of both compounds in equipotent concentrations had an additive neurotoxic effect. Although both substances decreased cell viability in the MTT assay, only cocaine increased LDH release. Caspase-3 activity was increased after 3 and 6 h of incubation with 1mM cocaine and after 6 h of 0.1 and 1.0mM AEME exposure. Atropine prevented the AEME-induced neurotoxicity, which suggests that muscarinic cholinergic receptors are involved in AEME's effects. In addition, binding experiments confirmed that AEME has an affinity for muscarinic cholinergic receptors. Nevertheless, atropine was not able to prevent the neurotoxicity produced by cocaine and the cocaine-AEME combination, suggesting that these treatments activated other neuronal death pathways. Our results suggest a higher risk for neurotoxicity after smoking crack cocaine than after

  2. Anhydroecgonine methyl ester, a cocaine pyrolysis product, may contribute to cocaine behavioral sensitization.

    PubMed

    Garcia, Raphael Caio Tamborelli; Torres, Larissa Helena; Balestrin, Natália Trigo; Andrioli, Tatiana Costa; Flório, Jorge Camilo; de Oliveira, Carolina Dizioli Rodrigues; da Costa, José Luiz; Yonamine, Mauricio; Sandoval, Maria Regina Lopes; Camarini, Rosana; Marcourakis, Tania

    2017-02-01

    Crack cocaine has a high potential to induce cocaine addiction and its smoke contains cocaine's pyrolysis product anhydroecgonine methyl ester (AEME), a partial agonist at M1- and M3-muscarinic acetylcholine receptor and an antagonist at the remaining subtypes. No reports have assessed AEME's role in addiction. Adult male Wistar rats were intraperitoneally administered with saline, 3mg/kg AEME, 15mg/kg cocaine, or a cocaine-AEME combination on every other day during a period of 9 days. After a 7-days withdrawal period, a challenge injection of the respective drugs was performed on the 17th day. The locomotor activity was evaluated on days 1, 3, 5, 7, 9 and 17, as well as dopamine levels (9th day) and dopaminergic receptors proteins (D1R and D2R on the 17th day) in the caudate-putamen (CPu) and nucleus accumbens (NAc). AEME was not able to induce the expression of behavioral sensitization, but it substantially potentiates cocaine-effects, with cocaine-AEME combination presenting higher expression than cocaine alone. An increase in the dopamine levels in the CPu in all non-saline groups was observed, with the highest levels in the cocaine-AEME group. There was a decrease in D1R protein level in this brain region only for cocaine and cocaine-AEME groups. In the NAc, an increase in the dopamine levels was only observed for cocaine and cocaine-AEME groups, with no changes in both D1R and D2R protein levels. These behavioral and neurochemical data indicate that AEME alone does not elicit behavioral sensitization but it significantly potentiates cocaine effects when co-administered, resulting in dopamine increase in CPu and NAc, brain regions where dopamine release is mediated by cholinergic activity.

  3. Anhydroecgonine Methyl Ester (AEME), a Product of Cocaine Pyrolysis, Impairs Spatial Working Memory and Induces Striatal Oxidative Stress in Rats.

    PubMed

    Gomes, Elisa Fraga; Lipaus, Ingryd Fortes Souza; Martins, Cleciane Waldetário; Araújo, Andrezza Menezes; Mendonça, Josidéia Barreto; Pelição, Fabrício Souza; Lebarch, Evandro Carlos; de Melo Rodrigues, Lívia Carla; Nakamura-Palacios, Ester Miyuki

    2017-09-15

    When burning crack cocaine, the pyrolysis of cocaine generates anhydroecgonine methyl ester (AEME). AEME has been shown to be highly neurotoxic but its effects on cognitive function and oxidative stress are still unknown. Thus, this study investigated the effects of AEME on spatial working memory and on parameters of oxidative stress in the prefrontal cortex, hippocampus, and striatum. First, 18 well-trained rats in 8-arm radial maze (8-RM) procedures received acute intracerebroventricular (icv) administration of AEME at doses of 10, 32, or 100 μg or saline (SAL) in a counterbalanced order and were tested 5 min later in 1-h delayed tasks in the 8-RM. Secondly, separated animals received acute icv administration of AEME at doses of 10 (n = 5), 32 (n = 5), or 100 μg (n = 5) or SAL (n = 5) for analysis of advanced oxidation protein products, thiobarbituric acid, catalase, glutathione peroxidase, and superoxide dismutase. A higher number of errors were seen in the 1-h post-delay performance after AEME 32 μg and AEME 100 μg when compared to SAL. In the striatum, animals receiving AEME 100 μg icv showed increased advanced oxidation protein products levels when compared to 10 μg, and also showed increased activity of glutathione peroxidase enzyme when compared to SAL but also comparing to AEME 32 μg and AEME 10 μg. These results showed that AEME impairs long-term spatial working memory and also induces greater protein oxidation and increased levels of antioxidant enzymes in the striatum.

  4. M1 and M3 muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product

    PubMed Central

    Garcia, Raphael Caio Tamborelli; Dati, Livia Mendonça Munhoz; Torres, Larissa Helena; da Silva, Mariana Aguilera Alencar; Udo, Mariana Sayuri Berto; Abdalla, Fernando Maurício Francis; da Costa, José Luiz; Gorjão, Renata; Afeche, Solange Castro; Yonamine, Mauricio; Niswender, Colleen M.; Conn, P. Jeffrey; Camarini, Rosana; Sandoval, Maria Regina Lopes; Marcourakis, Tania

    2015-01-01

    The smoke of crack cocaine contains cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). AEME possesses greater neurotoxic potential than cocaine and an additive effect when they are combined. Since atropine prevented AEME-induced neurotoxicity, it has been suggested that its toxic effects may involve the muscarinic cholinergic receptors (mAChRs). Our aim is to understand the interaction between AEME and mAChRs and how it can lead to neuronal death. Using a rat primary hippocampal cell culture, AEME was shown to cause a concentration-dependent increase on both total [3H]inositol phosphate and intracellular calcium, and to induce DNA fragmentation after 24 hours of exposure, in line with the activation of caspase-3 previously shown. Additionally, we assessed AEME activity at rat mAChR subtypes 1–5 heterologously expressed in Chinese Hamster Ovary cells. l-[N-methyl-3H]scopolamine competition binding showed a preference of AEME for the M2 subtype; calcium mobilization tests revealed partial agonist effects at M1 and M3 and antagonist activity at the remaining subtypes. The selective M1 and M3 antagonists and the phospholipase C inhibitor, were able to prevent AEME-induced neurotoxicity, suggesting that the toxicity is due to the partial agonist effect at M1 and M3 mAChRs, leading to DNA fragmentation and neuronal death by apoptosis. PMID:26626425

  5. M1 and M3 muscarinic receptors may play a role in the neurotoxicity of anhydroecgonine methyl ester, a cocaine pyrolysis product.

    PubMed

    Garcia, Raphael Caio Tamborelli; Dati, Livia Mendonça Munhoz; Torres, Larissa Helena; da Silva, Mariana Aguilera Alencar; Udo, Mariana Sayuri Berto; Abdalla, Fernando Maurício Francis; da Costa, José Luiz; Gorjão, Renata; Afeche, Solange Castro; Yonamine, Mauricio; Niswender, Colleen M; Conn, P Jeffrey; Camarini, Rosana; Sandoval, Maria Regina Lopes; Marcourakis, Tania

    2015-12-02

    The smoke of crack cocaine contains cocaine and its pyrolysis product, anhydroecgonine methyl ester (AEME). AEME possesses greater neurotoxic potential than cocaine and an additive effect when they are combined. Since atropine prevented AEME-induced neurotoxicity, it has been suggested that its toxic effects may involve the muscarinic cholinergic receptors (mAChRs). Our aim is to understand the interaction between AEME and mAChRs and how it can lead to neuronal death. Using a rat primary hippocampal cell culture, AEME was shown to cause a concentration-dependent increase on both total [(3)H]inositol phosphate and intracellular calcium, and to induce DNA fragmentation after 24 hours of exposure, in line with the activation of caspase-3 previously shown. Additionally, we assessed AEME activity at rat mAChR subtypes 1-5 heterologously expressed in Chinese Hamster Ovary cells. l-[N-methyl-(3)H]scopolamine competition binding showed a preference of AEME for the M2 subtype; calcium mobilization tests revealed partial agonist effects at M1 and M3 and antagonist activity at the remaining subtypes. The selective M1 and M3 antagonists and the phospholipase C inhibitor, were able to prevent AEME-induced neurotoxicity, suggesting that the toxicity is due to the partial agonist effect at M1 and M3 mAChRs, leading to DNA fragmentation and neuronal death by apoptosis.

  6. Identification of anhydroecgonine ethyl ester in the urine of a drug overdose victim.

    PubMed

    Myers, Alan L; Williams, Heather E; Kraner, James C; Callery, Patrick S

    2005-11-01

    Toxicological evaluation of postmortem urine collected from a 41-year-old deceased white male detected anhydroecgonine ethyl ester (ethylecgonidine, AEEE), a transesterification product of smoked cocaine co-abused with ethanol. A solid phase extraction (SPE) method was used to extract cocaine, AEEE, and related metabolites from urine. SPE on a 1 mL urine sample from the decedent followed by GC-MS detected AEEE. Other metabolites identified by GC-MS included cocaine, cocaethylene, and anhydroecgonine methyl ester (AEME). To determine whether some or all of the AEEE was artifactually produced in the heated GC injector port, an alternative LC-MS method was developed. LC/MS following SPE found at least 50 ng/mL of AEEE in the extract. The mass fragmentation (MS/MS and MS3) of AEEE detected in the urine was compared to spectra of authentic, synthesized compound. AEEE is a potential additional forensic marker for the co-abuse of smoked cocaine and ethanol.

  7. Kapok oil methyl esters

    USDA-ARS?s Scientific Manuscript database

    The increased need for biodiesel feedstocks has caused various vegetable oils to be examined for this purpose. In the present work, the methyl esters of kapok (Ceiba pentandra) oil were prepared. The essential fuel properties were comprehensively determined and evaluated in comparison to specificati...

  8. Kenaf methyl esters

    USDA-ARS?s Scientific Manuscript database

    Additional or alternative feedstocks are one of the major areas of interest regarding biodiesel. In this paper, for the first time, the fuel properties of kenaf (Hibiscus cannabinus L.) seed oil methyl esters are comprehensively reported. This biodiesel is also relatively unique by containing small ...

  9. Sunflower oil methyl ester as diesel fuel

    SciTech Connect

    Hassett, D.J.; Hasan, R.A.

    1982-01-01

    Methyl ester formation represents one approach to overcome the problems associated with the relatively high viscosity of sunflower oil when used as a diesel fuel replacement. Sunflower oil methyl ester is being prepared at the University of North Dakota Engieering Experiment Station. Physical and chemical properties of this material at varying levels of refinement and purity will be used to define fuel properties. Engine testing is being carried out to determine if the fouling characteristics of methyl ester are significantly less than those of sunflower oil. 1 figure, 1 table.

  10. Methyl esters from vegetable oils with hydroxy fatty acids: Comparison of lesquerella and castor methyl esters

    USDA-ARS?s Scientific Manuscript database

    The search for alternative feedstocks for biodiesel as partial replacement for petrodiesel has recently extended to castor oil. In this work, the castor oil methyl esters were prepared and their properties determined in comparison to the methyl esters of lesquerella oil, which in turn is seen as alt...

  11. Bis(o-trifluoromethylphenyl)dithiophosphinic Methyl Ester

    SciTech Connect

    John R. Klaehn; Dean R. Peterman; Mason K. Harrup; Thomas A. Luther; Lee M. Daniels

    2011-05-01

    When bis(o-trifluoromethylphenyl)dithiophosphinic acid (1) was dissolved in methanol, crystals of bis(o-trifluoromethylphenyl)dithiophosphinic methyl ester (2) were isolated. The structure of dithiophosphinic methyl ester (2) has been identified via single-crystal X-ray diffraction and multinuclear NMR studies. Compound 2 is remarkable in that the dithiophosphinic (PS2) core is preserved during this transformation. Many dithiophosphinic acids degrade to other compounds over time which results in formation of dithiophosphinic dimers, like the bis(dithiophosphinic) anhydride. The transformation to 2 suggests that the o-trifluoromethylphenyl groups on phosphorus assist in retaining the PS2 core, possibly by steric hindrance.

  12. Lipid encapsulated docosahexaenoic acid methyl ester

    USDA-ARS?s Scientific Manuscript database

    Encapsulation of structurally sensitive compounds within a solid lipid matrix provides a barrier to prooxidant compounds and effectively limits the extent of oxidative degradation. Encapsulated docosahexaenoic acid (DHA) methyl ester was examined as a model compound for functional foods and feeds. S...

  13. Total synthesis of zincophorin methyl ester.

    PubMed

    Defosseux, Magali; Blanchard, Nicolas; Meyer, Christophe; Cossy, Janine

    2003-10-30

    [reaction: see text]. A convergent total synthesis of the methyl ester of zincophorin, an ionophore antibiotic, has been realized relying on a diastereoselective titanium-mediated aldol coupling between the C1-C12 and C13-C25 subunits. The latter fragment was prepared by using a Carroll-Claisen rearrangement.

  14. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl ester...

  15. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl ester...

  16. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl...

  17. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl...

  18. 40 CFR 721.8660 - Propionic acid methyl ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Propionic acid methyl ester (generic... Substances § 721.8660 Propionic acid methyl ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a propionic acid methyl...

  19. Effects of high-melting methyl esters on crystallization properties of fatty acid methyl ester mixtures

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is a renewable alternative diesel fuel made from vegetable oils and animal fats. The most common form of biodiesel in the United States are fatty acid methyl esters (FAME) from soybean, canola, and used cooking oils, waste greases, and tallow. Cold flow properties of biodiesel depend on th...

  20. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 172.816... § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the methyl glucoside-coconut oil ester...

  1. Antiviral Effects of Amphotericin B Methyl Ester

    PubMed Central

    Jordan, George W.; Seet, Elizabeth C.

    1978-01-01

    The methyl ester of amphotericin B (AME) is water soluble, retains antifungal activity, and is significantly less toxic in mammals than amphotericin B. In contrast to amphotericin B, which is not water soluble, AME exhibits antiviral effects against vesicular stomatitis virus, herpes simplex virus types 1 and 2, Sindbis virus, and vaccinia virus in a plaque reduction assay. No antiviral effects could be demonstrated against the unenveloped adenovirus type 4 or echovirus type 11. The extent of virus inactivation was found to be dependent upon the AME concentration, contact time, and temperature. No consistent effect of the virus concentration on the probability of plaque-forming unit inactivation could be determined. The antiviral effects of AME were partially antagonized by the presence of serum. Binding of AME to vesicular stomatitis virus was demonstrated by the comigration of drug and virus in linear sucrose gradients. AME represents a new class of antiviral agents with activity at concentrations relevant to therapeutics. Sterol components of the host cell membrane that become incorporated into the viral envelope are postulated as the site of reaction with AME. PMID:206201

  2. 40 CFR 721.10448 - Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, reaction products with substituted alkylamine (generic). 721.10448 Section 721.10448 Protection... Acetic acid, hydroxy- methoxy-, methyl ester, reaction products with substituted alkylamine (generic). (a... generically as acetic acid, hydroxymethoxy-, methyl ester, reaction products with substituted alkylamine...

  3. Sunflower methyl esters for direct injected diesel engines

    SciTech Connect

    Kaufman, K.R.; Ziejewski, M.

    1984-11-01

    A methyl ester of sunflower oil was durability tested in direct injected, turbocharged and intercooled diesel engine. A test cycle recommended by the Alternate Fuels Committee of the Engine Manufacturer's Assocation was used. The results are compared to a baseline test using diesel fuel. Based on the results, the methyl ester fuel successfully completed the 200-hour durability test. Field tests and engine manufacturers evaluations are needed to further quantify the long term effect of the fuel on engine durability. 14 references.

  4. Rape oil methyl ester (RME) and used cooking oil methyl ester (UOME) as alternative fuels

    SciTech Connect

    Hohl, G.H.

    1995-12-31

    The author presents a review about the fleet tests carried out by the Austrian Armed Forces concerning the practical application of a vegetable oil, i.e Rape Oil Methyl Ester (RME) and Used Cooking Oil Methyl Ester (UOME) as alternative fuels for vehicles under military conditions, and reviews other research results carried out in Austria. As a result of over-production in Western European agriculture, the increase in crop yields has led to tremendous surpluses. Alternative agricultural products have been sought. One alternative can be seen in biological fuel production for tractors, whereby the farmer is able to produce his own fuel supply as was the case when he previously provided self-made feed for his horses. For the market introduction different activities were necessary. A considerable number of institutes and organizations including the Austrian Armed Forces have investigated, tested and developed these alternative fuels. The increasing disposal problems of used cooking oil have initiated considerations for its use. The recycling of this otherwise waste product, and its preparation for use as an alternative fuel to diesel oil, seems to be most promising.

  5. Effect of temperature stress on protein methyl esters

    SciTech Connect

    Welch, W.; Kracaw, K.

    1986-05-01

    Protein methyl esters have been implicated in a number of physiological processes. They have measured the effect of temperature stress on the levels of protein methyl esters in the mesophilic fungus Penicillium chrysogenum (PCPS) and the thermophilic fungus P. duponti (PD). PD and PCPS were incubated with (methyl-/sup 3/H)methionine. The mycelia were collected by filtration, frozen in liquid nitrogen and ground to a fine powder. The nitrogen powder was extracted with either phosphate buffer or with SDS, glycerol, phosphate, 2-mercaptoethanol. Insoluble material was removed by centrifugation. The supernatants were assayed for protein methyl esters. The released (/sup 3/H)methanol was extracted into toluene:isoamyl alcohol (3:2) and quantitated by liquid scintillation. The production of volatile methanol was confirmed by use of Conway diffusion cells. Soluble proteins accounted for about one-fourth of the total protein methyl ester extracted by SDS. In PCPS, the SDS extracted proteins have about three times the level of esterification of the soluble proteins whereas in PD there is little difference between soluble and SDS extracted protein. The level of protein esterification in PD is about one-tenth that observed in PCPS. Temperature stress caused large changes in the level of protein esterification. The data suggest protein methyl esters may contribute to the adaptation to environmental stress.

  6. 40 CFR 721.1576 - 1,3-Benzenedicarboxylic acid, bis[[4-[(ethenyloxy)methyl] cyclohexyl] methyl] ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cyclohexyl] methyl] ester. 721.1576 Section 721.1576 Protection of Environment ENVIRONMENTAL PROTECTION...] methyl] ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1,3-benzenedicarboxylic acid, bis cyclohexyl] methyl] ester (PMN P-98-1162; CAS No...

  7. 40 CFR 721.1578 - 1,4-Benzenedicarboxylic acid, bis[[4-[(ethenyloxy)methyl] cyclohexyl] methyl] ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cyclohexyl] methyl] ester. 721.1578 Section 721.1578 Protection of Environment ENVIRONMENTAL PROTECTION...] methyl] ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 1,4-benzenedicarboxylic acid, bis cyclohexyl] methyl] ester (PMN P-98-1164; CAS No...

  8. Sunflower oil methyl ester as a diesel fuel

    SciTech Connect

    Hassett, D.J.; Hasan, A.R.

    1983-06-01

    The University of North Dakota Engineering Experiment Station is currently engaged in research to investigate the chemistry, fuel performance, and economics of chemically modified sunflower oil for use as an emergency replacement diesel fuel Physical and chemical properties of this fuel at varying levels of refinement are being used to determine fuel properties. Engine testing carried out to date indicates that unrefined methyl ester, defined as at least 90 percent methyl ester with unreacted or partially reacted sunflower oil as the remainder, has about the same tendency to foul engines as Number 2 diesel fuel.

  9. Transferable force field for carboxylate esters: application to fatty acid methylic ester phase equilibria prediction.

    PubMed

    Ferrando, Nicolas; Lachet, Véronique; Boutin, Anne

    2012-03-15

    In this work, a new transferable united-atoms force field for carboxylate esters is proposed. All Lennard-Jones parameters are reused from previous parametrizations of the AUA4 force field, and only a unique set of partial electrostatic charges is introduced for the ester chemical function. Various short alkyl-chain esters (methyl acetate, ethyl acetate, methyl propionate, ethyl propionate) and two fatty acid methylic esters (methyl oleate and methyl palmitate) are studied. Using this new force field in Monte Carlo simulations, we show that various pure compound properties are accurately predicted: saturated liquid densities, vapor pressures, vaporization enthalpies, critical properties, liquid-vapor surface tensions. Furthermore, a good accuracy is also obtained in the prediction of binary mixture pressure-composition diagrams, without introducing empirical binary interaction parameters. This highlights the transferability of the proposed force field and gives the opportunity to simulate mixtures of industrial interest: a demonstration is performed through the simulation of the methyl oleate + methanol mixture involved in the purification sections of biodiesel production processes.

  10. Avocado and olive oil methyl esters

    USDA-ARS?s Scientific Manuscript database

    Biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing materials and an alternative to conventional petroleum-based diesel fuel, has been derived from a variety of feedstocks. Numerous feedstocks have been investigated as potential biodiesel sources, incl...

  11. History of methyl phosphoric esters: Hall, Weger, and Lossen.

    PubMed

    Petroianu, G A

    2009-12-01

    Williamson serendipitously discovered (1851) a new and efficient way to produce ethers using ethyl iodide and potassium salts and in doing so elucidated the molecular mechanism behind ether formation. Before Williamson, the direct reaction between alcohol and acids was the only method of generating the elusive "ethers". This tedious and low yield approach eventually led to Voegeli's synthesis of the first organophosphate ever, triethyl phosphate (TEP) in 1848. Based on the landmark work of Williamson, however, over the next thirty years or so numerous chemists managed to produce TEP and tetraethyl pyrophosphate (TEPP) using synthetic pathways of increasingly higher yield. With the "wood spirit" (methyl-alcohol) easily available attempts were also made during the same period to synthesize methyl ester analogues (TMP and TMPP). The synthesis of TMP was reported 1887 by Hall in a paper dealing with vanadium esters; he acknowledges his inability to synthesize methyl vanadate and states that "methyl phosphate had not been described" and goes on to briefly mention the synthesis of methyl phosphate by the Wiliamson method. Hall was however mistaken; the synthesis of TMP had previously been reported by Weger in 1883 and achieved even earlier by Lossen. Tetramethyl pyrophosphate (TMPP) was only recently (1949) synthesized by Toy. This report attempts to identify the pharmacists and chemists involved in the quest for phosphoric and pyrophosphoric acid methyl esters.

  12. Fragrance material review on carbonic acid, methyl phenylmethyl ester.

    PubMed

    McGinty, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of carbonic acid, methyl phenylmethyl ester when used as a fragrance ingredient is presented. Carbonic acid, methyl phenylmethyl ester is a member of the fragrance structural group Aryl Alkyl Alcohol Simple Acid Esters (AAASAE). The AAASAE fragrance ingredients are prepared by reacting an aryl alkyl alcohol with a simple carboxylic acid (a chain of 1-4 carbons) to generate formate, acetate, propionate, butyrate, isobutyrate and carbonate esters. This review contains a detailed summary of all available toxicology and dermatology papers that are related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for carbonic acid, methyl phenylmethyl ester were evaluated, then summarized, and includes: physical properties, acute toxicity, skin irritation, and skin sensitization data. A safety assessment of the entire AAASAE will be published simultaneously with this document. Please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all AAASAE in fragrances. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2... 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2'-(1,2-diazenediyl)bis - and 2,2'-(1,2...

  14. Methyl esters (biodiesel) from Pachyrhizus erosus seed oil

    USDA-ARS?s Scientific Manuscript database

    The search for additional or alternative feedstocks is one of the major areas of interest regarding biodiesel. In this paper, the fuel properties of Pachyrhizus erosus (commonly known as yam bean or Mexican potato or jicama) seed oil methyl esters were investigated by methods prescribed in biodiesel...

  15. New bis(alkythio) fatty acid methyl esters

    USDA-ARS?s Scientific Manuscript database

    The addition reaction of dimethyl disulfide (DMDS) to mono-unsaturated fatty acid methyl esters is well-known for analytical purposes to determine the position of double bonds by mass spectrometry. In this work, the classical iodine-catalyzed reaction is expanded to other dialkyl disulfides (RSSR), ...

  16. 40 CFR 721.2078 - 1-Piperidinecarboxylic acid, 2-[(dichloro-hydroxy-carbomonocycle)hydrazono]-, methyl ester...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...- -, methyl ester (generic). 721.2078 Section 721.2078 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2078 1-Piperidinecarboxylic acid, 2- -, methyl ester... generically identified as 1-piperidinecarboxylic acid, 2- -, methyl ester (PMN P-96-756) is subject to...

  17. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a...

  18. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methyl glucoside-coconut oil ester. 172.816 Section... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is...

  19. 40 CFR 721.2078 - 1-Piperidinecarboxylic acid, 2-[(dichloro-hydroxy-carbomonocycle)hydrazono]-, methyl ester...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...- -, methyl ester (generic). 721.2078 Section 721.2078 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2078 1-Piperidinecarboxylic acid, 2- -, methyl ester... generically identified as 1-piperidinecarboxylic acid, 2- -, methyl ester (PMN P-96-756) is subject to...

  20. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  1. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 178.3600 Section 178.3600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified...

  2. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  3. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  4. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  5. 21 CFR 172.816 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 172.816... HUMAN CONSUMPTION Multipurpose Additives § 172.816 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester may be safely used in food in accordance with the following conditions: (a) It is the...

  6. 21 CFR 178.3600 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 178.3600... SANITIZERS Certain Adjuvants and Production Aids § 178.3600 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil ester identified in § 172.816(a) of this chapter may be safely used as a processing...

  7. 40 CFR 721.2078 - 1-Piperidinecarboxylic acid, 2-[(dichloro-hydroxy-carbomonocycle)hydrazono]-, methyl ester...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...- -, methyl ester (generic). 721.2078 Section 721.2078 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2078 1-Piperidinecarboxylic acid, 2- -, methyl ester... generically identified as 1-piperidinecarboxylic acid, 2- -, methyl ester (PMN P-96-756) is subject...

  8. Methyl rotational barriers in the E-forms of methyl esters

    NASA Astrophysics Data System (ADS)

    Wiberg, K. B.; Bohn, R. K.; Jimenez-Vazquez, H.

    1999-08-01

    Methyl nitrite has a normal 2.09 kcal/mol methyl rotation barrier in the Z-conformer, but only a small 0.03-0.06 kcal/mol barrier in the E-conformer as determined from microwave spectra (Turner et al., J. Phys. Chem., 83 (1979) 1473). Using dependable calculational methods, we show that this is a general result which carries over to another E-methyl ester, E-methyl formate, which does not have a sterically large substituent on the acid group, and is not specific to methyl nitrite alone. The small methyl barriers in E-methyl nitrite and E-methyl formate result from the absence of large steric interactions. Replacing H in the formyl group by sterically larger F, results in a normal O-methyl torsional barrier calculated to be 1.8 kcal/mol in the E-methyl fluoroformate.

  9. Hydrogen bond docking site competition in methyl esters

    NASA Astrophysics Data System (ADS)

    Zhao, Hailiang; Tang, Shanshan; Du, Lin

    2017-06-01

    The Osbnd H ⋯ O hydrogen bonds in the 2,2,2-trifluoroethanol (TFE)-methyl ester complexes in the gas phase have been investigated by FTIR spectroscopy and DFT calculations. Methyl formate (MF), methyl acetate (MA), and methyl trifluoroacetate (MTFA) were chosen as the hydrogen bond acceptors. A dominant inter-molecular hydrogen bond was formed between the OH group of TFE and different docking sites in the methyl esters (carbonyl oxygen or ester oxygen). The competition of the two docking sites decides the structure and spectral properties of the complexes. On the basis of the observed red shifts of the OH-stretching transition with respect to the TFE monomer, the order of the hydrogen bond strength can be sorted as TFE-MA (119 cm- 1) > TFE-MF (93 cm- 1) > TFE-MTFA (44 cm- 1). Combining the experimental infrared spectra with the DFT calculations, the Gibbs free energies of formation were determined to be 1.5, 4.5 and 8.6 kJ mol- 1 for TFE-MA, TFE-MF and TFE-MTFA, respectively. The hydrogen bonding in the MTFA complex is much weaker than those of the TFE-MA and TFE-MF complexes due to the effect of the CF3 substitution on MTFA, while the replacement of an H atom with a CH3 group in methyl ester only slightly increases the hydrogen bond strength. Topological analysis and localized molecular orbital energy decomposition analysis was also applied to compare the interactions in the complexes.

  10. Hydrogen bond docking site competition in methyl esters.

    PubMed

    Zhao, Hailiang; Tang, Shanshan; Du, Lin

    2017-06-15

    The OH⋯O hydrogen bonds in the 2,2,2-trifluoroethanol (TFE)-methyl ester complexes in the gas phase have been investigated by FTIR spectroscopy and DFT calculations. Methyl formate (MF), methyl acetate (MA), and methyl trifluoroacetate (MTFA) were chosen as the hydrogen bond acceptors. A dominant inter-molecular hydrogen bond was formed between the OH group of TFE and different docking sites in the methyl esters (carbonyl oxygen or ester oxygen). The competition of the two docking sites decides the structure and spectral properties of the complexes. On the basis of the observed red shifts of the OH-stretching transition with respect to the TFE monomer, the order of the hydrogen bond strength can be sorted as TFE-MA (119cm(-1))>TFE-MF (93cm(-1))>TFE-MTFA (44cm(-1)). Combining the experimental infrared spectra with the DFT calculations, the Gibbs free energies of formation were determined to be 1.5, 4.5 and 8.6kJmol(-1) for TFE-MA, TFE-MF and TFE-MTFA, respectively. The hydrogen bonding in the MTFA complex is much weaker than those of the TFE-MA and TFE-MF complexes due to the effect of the CF3 substitution on MTFA, while the replacement of an H atom with a CH3 group in methyl ester only slightly increases the hydrogen bond strength. Topological analysis and localized molecular orbital energy decomposition analysis was also applied to compare the interactions in the complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Cinnamyl alcohols and methyl esters of fatty acids from Wedelia prostrata callus cultures.

    PubMed

    El-Mawla, Ahmed M A Abd; Farag, Salwa F; Beuerle, Till

    2011-01-01

    Two methyl esters of fatty acids, namely octadecanoic acid methyl ester (methyl stearate) and hexadecanoic acid methyl ester (methyl palmitate), in addition to four cinnamyl alcohol derivatives, sinapyl alcohol, coniferyl alcohol, p-coumaryl alcohol and coniferyl alcohol 4-O-glucoside (coniferin), were isolated from callus cultures of Wedelia prostrata. The structure of coniferin was established by spectroscopic and chemical methods, while the other compounds were identified by gas chromatography-mass spectrometry and thin layer chromatography in comparison with standards.

  12. Novel fatty acid methyl esters from the actinomycete Micromonospora aurantiaca

    PubMed Central

    Bruns, Hilke; Riclea, Ramona

    2011-01-01

    Summary The volatiles released by Micromonospora aurantiaca were collected by means of a closed-loop stripping apparatus (CLSA) and analysed by GC–MS. The headspace extracts contained more than 90 compounds from different classes. Fatty acid methyl esters (FAMEs) comprised the major compound class including saturated unbranched, monomethyl and dimethyl branched FAMEs in diverse structural variants: Unbranched, α-branched, γ-branched, (ω−1)-branched, (ω−2)-branched, α- and (ω−1)-branched, γ- and (ω−1)-branched, γ- and (ω−2)-branched, and γ- and (ω−3)-branched FAMEs. FAMEs of the last three types have not been described from natural sources before. The structures for all FAMEs have been suggested based on their mass spectra and on a retention index increment system and verified by the synthesis of key reference compounds. In addition, the structures of two FAMEs, methyl 4,8-dimethyldodecanoate and the ethyl-branched compound methyl 8-ethyl-4-methyldodecanoate were deduced from their mass spectra. Feeding experiments with isotopically labelled [2H10]leucine, [2H10]isoleucine, [2H8]valine, [2H5]sodium propionate, and [methyl-2H3]methionine demonstrated that the responsible fatty acid synthase (FAS) can use different branched and unbranched starter units and is able to incorporate methylmalonyl-CoA elongation units for internal methyl branches in various chain positions, while the methyl ester function is derived from S-adenosyl methionine (SAM). PMID:22238549

  13. Hydroxycinnamoylmalic acids and their methyl esters from pear (Pyrus pyrifolia Nakai) fruit peel.

    PubMed

    Lee, Ki Hoon; Cho, Jeong-Yong; Lee, Hyoung Jae; Ma, Young-Kyu; Kwon, Joseph; Park, Seong Hwa; Lee, Sang-Hyun; Cho, Jeong An; Kim, Wol-Soo; Park, Keun-Hyung; Moon, Jae-Hak

    2011-09-28

    Two novel caffeoylmalic acid methyl esters, 2-O-(trans-caffeoyl)malic acid 1-methyl ester (6) and 2-O-(trans-caffeoyl)malic acid 4-methyl ester (7), were isolated from pear (Pyrus pyrifolia Nakai cv. Chuhwangbae) fruit peels. In addition, 5 known hydroxycinnamoylmalic acids and their methyl esters were identified: 2-O-(trans-coumaroyl)malic acid (1), 2-O-(cis-coumaroyl)malic acid (2), 2-O-(cis-coumaroyl)malic acid 1-methyl ester (3), 2-O-(trans-coumaroyl)malic acid 1-methyl ester (4), and 2-O-(trans-caffeoyl)malic acid (phaselic acid, 5). The chemical structures of these compounds were determined by spectroscopic data from ESI MS and NMR. Of all the isolated compounds, five hydroxycinnamoylmalic acids and their methyl esters (2-4, 6, 7) were identified in the pear for the first time.

  14. Electron driven processes in chlorodifluoroacetic acid methyl ester

    NASA Astrophysics Data System (ADS)

    Kopyra, Janina

    2014-07-01

    Dissociative electron attachment to gas phase 2-chloro-2,2-difluoroacetic acid methyl ester (CClF2COOCH3) is studied by means of a crossed beams apparatus. Effective cleavage of the C-Cl bond is observed within a broad resonance in the energy range 0-1 eV and visible via the appearance of the light fragment Cl-. In chlorodifluoroacetic acid cleavage of the C-Cl bond was observed not only via the Cl- anion formation but predominantly via expulsion of the neutral chlorine atom leading to the formation of the (M-Cl)- anion. Similar to the previously studied esters CF3COOCH3 and CF3COOC2H5[I. Martin, J. Langer, E. Illenberger, Z. Phys. Chem. 222, 1185 (2008)], we observe reaction due to the cleavage of the ester bond resulting in the formation of the closed shell (M-CH3)- anion.

  15. 40 CFR 721.10133 - 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl ester, homopolymer. 721.10133 Section 721.10133 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10133 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester... identified as 2-propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer (PMN P-07-401; CAS No. 25249-16-5...

  16. 40 CFR 721.10133 - 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl ester, homopolymer. 721.10133 Section 721.10133 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10133 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester... identified as 2-propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer (PMN P-07-401; CAS No. 25249-16-5...

  17. 40 CFR 721.10133 - 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl ester, homopolymer. 721.10133 Section 721.10133 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10133 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester... identified as 2-propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer (PMN P-07-401; CAS No....

  18. 40 CFR 721.10365 - Butanoic acid, 3-mercapto-2-methyl-, ethyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-, ethyl ester. 721.10365 Section 721.10365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10365 Butanoic acid, 3-mercapto-2-methyl-, ethyl ester. (a) Chemical... acid, 3-mercapto-2-methyl-, ethyl ester (PMN P-10-56; CAS No. 888021-82-7) is subject to...

  19. 40 CFR 721.10133 - 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl ester, homopolymer. 721.10133 Section 721.10133 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10133 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester... identified as 2-propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer (PMN P-07-401; CAS No....

  20. 40 CFR 721.10365 - Butanoic acid, 3-mercapto-2-methyl-, ethyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-, ethyl ester. 721.10365 Section 721.10365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10365 Butanoic acid, 3-mercapto-2-methyl-, ethyl ester. (a) Chemical... acid, 3-mercapto-2-methyl-, ethyl ester (PMN P-10-56; CAS No. 888021-82-7) is subject to...

  1. 40 CFR 721.10133 - 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxyethyl ester, homopolymer. 721.10133 Section 721.10133 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10133 2-Propenoic acid, 2-methyl, 2-hydroxyethyl ester... identified as 2-propenoic acid, 2-methyl, 2-hydroxyethyl ester, homopolymer (PMN P-07-401; CAS No....

  2. 40 CFR 721.10365 - Butanoic acid, 3-mercapto-2-methyl-, ethyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-, ethyl ester. 721.10365 Section 721.10365 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10365 Butanoic acid, 3-mercapto-2-methyl-, ethyl ester. (a) Chemical... acid, 3-mercapto-2-methyl-, ethyl ester (PMN P-10-56; CAS No. 888021-82-7) is subject to...

  3. Acid esterification-alkaline transesterification process for methyl ester production from crude rubber seed oil.

    PubMed

    Thaiyasuit, Prachasanti; Pianthong, Kulachate; Worapun, Ittipon

    2012-01-01

    This study aims to examine methods and the most suitable conditions for producing methyl ester from crude rubber seed oil. An acid esterification-alkaline transesterification process is proposed. In the experiment, the 20% FFA of crude rubber seed oil could be reduced to 3% FFA by acid esterification. The product after esterified was then tranesterified by alkaline transesterification process. By this method, the maximum yield of methyl ester was 90% by mass. The overall consumption of methanol was 10.5:1 by molar ratio. The yielded methyl ester was tested for its fuel properties and met required standards. The major fatty acid methyl ester compositions were analyzed and constituted of methyl linoleate 41.57%, methyl oleate 24.87%, and methyl lonolenate 15.16%. Therefore, the cetane number of methyl ester could be estimated as 47.85, while the tested result of motor cetane number was 51.20.

  4. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  5. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  6. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  7. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.660 Methyl glucoside-coconut oil ester. Methyl glucoside-coconut oil... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl glucoside-coconut oil ester. 573.660...

  8. 21 CFR 573.640 - Methyl esters of higher fatty acids.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl esters of higher fatty acids. 573.640... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.640 Methyl esters of higher fatty acids. The food additive methyl...

  9. Fatty acid methyl ester profiles of bat wing surface lipids.

    PubMed

    Pannkuk, Evan L; Fuller, Nathan W; Moore, Patrick R; Gilmore, David F; Savary, Brett J; Risch, Thomas S

    2014-11-01

    Sebocytes are specialized epithelial cells that rupture to secrete sebaceous lipids (sebum) across the mammalian integument. Sebum protects the integument from UV radiation, and maintains host microbial communities among other functions. Native glandular sebum is composed primarily of triacylglycerides (TAG) and wax esters (WE). Upon secretion (mature sebum), these lipids combine with minor cellular membrane components comprising total surface lipids. TAG and WE are further cleaved to smaller molecules through oxidation or host enzymatic digestion, resulting in a complex mixture of glycerolipids (e.g., TAG), sterols, unesterified fatty acids (FFA), WE, cholesteryl esters, and squalene comprising surface lipid. We are interested if fatty acid methyl ester (FAME) profiling of bat surface lipid could predict species specificity to the cutaneous fungal disease, white nose syndrome (WNS). We collected sebaceous secretions from 13 bat spp. using Sebutape(®) and converted them to FAME with an acid catalyzed transesterification. We found that Sebutape(®) adhesive patches removed ~6× more total lipid than Sebutape(®) indicator strips. Juvenile eastern red bats (Lasiurus borealis) had significantly higher 18:1 than adults, but 14:0, 16:1, and 20:0 were higher in adults. FAME profiles among several bat species were similar. We concluded that bat surface lipid FAME profiling does not provide a robust model predicting species susceptibility to WNS. However, these results provide baseline data that can be used for lipid roles in future ecological studies, such as life history, diet, or migration.

  10. Microwave-assisted pyrolysis of methyl ricinoleate for continuous production of undecylenic acid methyl ester (UAME).

    PubMed

    Nie, Yong; Duan, Ying; Gong, Ruchao; Yu, Shangzhi; Lu, Meizhen; Yu, Fengwen; Ji, Jianbing

    2015-06-01

    Undecylenic acid methyl ester (UAME) was continuously produced from methyl ricinoleate using a microwave-assisted pyrolysis system with atomization feeding. The UAME yield of 77 wt.% was obtained at 500°C using SiC as the microwave absorbent and heating medium. The methyl ricinoleate conversion and UAME yield from microwave-assisted pyrolysis process were higher than those from conventional pyrolysis. The effect of temperature on the pyrolysis process was also investigated. The methyl ricinoleate conversion increased but the cracking liquid yield decreased when the temperature increased from 460°C to 560°C. The maximum UAME yield was obtained at the temperature of 500°C.

  11. Anaerobic biodegradation of methyl esters by Acetobacterium woodii and Eubacterium limosum

    USGS Publications Warehouse

    Liu, Shi; Suflita, Joseph M.

    1994-01-01

    The ability ofAcetobacterium woodii andEubacterium limosum to degrade methyl esters of acetate, propionate, butyrate, and isobutyrate was examined under growing and resting-cell conditions. Both bacteria hydrolyzed the esters to the corresponding carboxylates and methanol under either condition. Methanol was further oxidized to formate under growing but not resting conditions. Unlike the metabolism of phenylmethylethers, no H2 requirement was evident for ester biotransformation. The hydrolysis of methyl carboxylates is thermodynamically favorable under standard conditions and the mixotrophic metabolism of ester/CO2 allowed for bacterial growth. These results suggest that the degradation of methyl carboxylates may be a heretofore unrecognized nutritional option for acetogenic bacteria.

  12. Laboratory endurance test of sunflower methyl esters for direct injected diesel engine fuel

    SciTech Connect

    Kaufman, K.; Ziejewski, M.

    1983-12-01

    A methyl ester of sunflower oil was durability tested using the test cycle recommended by the Alternate Fuels Committee of the Engine Manufacturer's Association. The results are compared to a baseline test using diesel fuel. Based on the results, the methyl ester fuel successfully completed the 200-hour durability test.

  13. Production of Sunflower Oil Methyl Esters by Optimized Alkali-Catalyzed Methanolysis

    USDA-ARS?s Scientific Manuscript database

    In the present study, biodiesel was prepared from sunflower oil by transesterification of crude oil with methanol using a variety of reaction conditions. The objectives of this work were to optimize sunflower oil methyl ester (SOME) production and to evaluate the resultant optimized methyl esters a...

  14. A study on emission performance of a diesel engine fueled with five typical methyl ester biodiesels

    NASA Astrophysics Data System (ADS)

    Wu, Fujia; Wang, Jianxin; Chen, Wenmiao; Shuai, Shijin

    As an alternative and renewable fuel, biodiesel can effectively reduce diesel engine emissions, especially particulate matter and dry soot. However, the biodiesel effects on emissions may vary as the source fuel changes. In this paper, the performance of five methyl esters with different sources was studied: cottonseed methyl ester (CME), soybean methyl ester (SME), rapeseed methyl ester (RME), palm oil methyl ester (PME) and waste cooking oil methyl ester (WME). Total particulate matter (PM), dry soot (DS), non-soot fraction (NSF), nitrogen oxide (NO x), unburned hydrocarbon (HC), and carbon monoxide (CO) were investigated on a Cummins ISBe6 Euro III diesel engine and compared with a baseline diesel fuel. Results show that using different methyl esters results in large PM reductions ranging from 53% to 69%, which include the DS reduction ranging from 79% to 83%. Both oxygen content and viscosity could influence the DS emission. Higher oxygen content leads to less DS at high load while lower viscosity results in less DS at low load. NSF decreases consistently as cetane number increases except for PME. The cetane number could be responsible for the large NSF difference between different methyl esters.

  15. Absorption and Translocation of Aminocyclopyrachlor and Aminocyclopyrachlor Methyl Ester in Canada Thistle (Cirsium arvense)

    USDA-ARS?s Scientific Manuscript database

    Laboratory studies were conducted using radiolabeled aminocyclopyrachlor (DPX-MAT28) and its methyl ester (DPX-KJM44) to determine the 1) importance of surfactants for herbicide absorption 2) translocation patterns of the two formulations and 3) rate that aminocyclopyrachlor methyl ester was metabol...

  16. Regioselective Nitration of Nα,N1-Bis(trifluoroacetyl)-L-Tryptophan Methyl Ester: Efficient Synthesis of 2-Nitro and 6-Nitro-N-Trifluoroacetyl-L-Tryptophan Methyl Ester

    PubMed Central

    Osborne, Andrew S.; Som, Phanneth; Metcalf, Jessica L.

    2014-01-01

    Nitration of Nα,N1-bis(trifluoroacetyl)-L-tryptophan methyl ester with HNO3 in acetic anhydride at 0° C provides Nα-trifluoroacetyl-2-nitro-L-tryptophan methyl ester in 67% yield, whereas nitration in trifluoroacetic acid at 0° C gives Nα-trifluoroacetyl-6-nitro-L-tryptophan methyl ester in 69% yield. PMID:18851915

  17. Interaction of slow electrons with methyl phosphate esters

    NASA Astrophysics Data System (ADS)

    Winstead, Carl; McKoy, Vincent

    2008-11-01

    We report computed cross sections for low-energy elastic collisions of electrons with the methyl esters of phosphoric acid, monomethyl, dimethyl, and trimethyl phosphate, and with phosphoric acid itself. For phosporic acid and monomethyl phosphate, polarization effects are included in the calculation, while the two larger molecules are treated in the static-exchange approximation, that is, with polarization neglected. The integral elastic cross sections exhibit broad shape resonances above 5 eV that give rise to strong variations in the differential cross section with energy. However, no shape resonances are evident below 5 eV. We compare our results to previous calculations and measurements and discuss their relevance to electron-induced damage to the DNA backbone.

  18. The study of palm oil methyl ester and its corrosiveness

    NASA Astrophysics Data System (ADS)

    Sani, W. B. Wan; Samo, K. B.; Da, T. H.; Zulkifli, M. F. R.

    2012-06-01

    The present aim of this study is to determine the corrosion effect of palm oil methyl ester (POME) on aluminium alloy 5083 (AA5083). The static immersion test was carried out at 60°C for 68 days according to ASTM G-31-72. The corrosion analysis was done by using weight loss method and electrochemical test. The POME was analyzed by using Fourier Transform Infrared (FTIR) to determine its functional group. The result from weight loss method shows the decreasing in weight loss of AA5083 which signifies the ability of POME to reduce corrosion rate. The electrochemical test shows the decreasing in polarization resistance, Rp while the corrosion current densities, icorr increase. The corrosion rate reduces from 2.250mpy to 0.1946mpy. The low concentration of fatty acid C18:2 and high anti oxidant element contributes to the reduction of corrosion rate of AA5083 in POME.

  19. 40 CFR 721.4097 - 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, methyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., methyl ester. 721.4097 Section 721.4097 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4097 7-Oxabicyclo heptane-3-carboxylic acid, methyl ester. (a) Chemical...-oxabicyclo heptane-3-carboxylic acid, methyl ester (PMN P-98-101) is subject to reporting under this section...

  20. 76 FR 32332 - BASF Corp.; Filing of Food Additive Petition (Animal Use); Methyl Esters of Conjugated Linoleic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-06

    ... (Animal Use); Methyl Esters of Conjugated Linoleic Acid; Silicon Dioxide AGENCY: Food and Drug... for the safe use of methyl esters of conjugated linoleic acid (CLA) as a source of fatty acids in... part 573) to provide for the safe use of methyl esters of conjugated linoleic acid (cis-9, trans-11 and...

  1. 40 CFR 721.4097 - 7-Oxabicyclo[4.1.0]heptane-3-carboxylic acid, methyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., methyl ester. 721.4097 Section 721.4097 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4097 7-Oxabicyclo heptane-3-carboxylic acid, methyl ester. (a) Chemical...-oxabicyclo heptane-3-carboxylic acid, methyl ester (PMN P-98-101) is subject to reporting under this section...

  2. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    PubMed

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  3. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    NASA Astrophysics Data System (ADS)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and

  4. Modeling of the oxidation of methyl esters - Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor

    SciTech Connect

    Glaude, Pierre Alexandre; Herbinet, Olivier; Bax, Sarah; Biet, Joffrey; Warth, Valerie; Battin-Leclerc, Frederique

    2010-11-15

    The modeling of the oxidation of methyl esters was investigated and the specific chemistry, which is due to the presence of the ester group in this class of molecules, is described. New reactions and rate parameters were defined and included in the software EXGAS for the automatic generation of kinetic mechanisms. Models generated with EXGAS were successfully validated against data from the literature (oxidation of methyl hexanoate and methyl heptanoate in a jet-stirred reactor) and a new set of experimental results for methyl decanoate. The oxidation of this last species was investigated in a jet-stirred reactor at temperatures from 500 to 1100 K, including the negative temperature coefficient region, under stoichiometric conditions, at a pressure of 1.06 bar and for a residence time of 1.5 s: more than 30 reaction products, including olefins, unsaturated esters, and cyclic ethers, were quantified and successfully simulated. Flow rate analysis showed that reactions pathways for the oxidation of methyl esters in the low-temperature range are similar to that of alkanes. (author)

  5. Pharmacokinetic evaluation of formulated levodopa methyl ester nasal delivery systems.

    PubMed

    Lee, Yeon Hong; Kim, Kyung Hee; Yoon, In Kyung; Lee, Kyung Eun; Chun, In Koo; Rhie, Jeong Yeon; Gwak, Hye Sun

    2014-12-01

    The objective of this study was to investigate the pharmacokinetic characteristics of levodopa (L-dopa) from nasal powder formulations using highly water-soluble levodopa methyl ester hydrochloride (LDME). In vivo pharmacokinetic studies were carried out with formulated LDME nasal powders. After oral and intravenous administration of L-dopa and carbidopa and intranasal administration LDME to the rat, L-dopa concentrations were determined in plasma and the brain using high-performance liquid chromatography. The absolute bioavailabilities of nasal preparations with and without Carbopol were 82.4 and 66.7 %, respectively, which were much higher than that of oral delivery (16.2 %). The drug-targeting efficiencies [area under the curve (AUC) in brain/AUC in plasma] of L-dopa in the nasal formulations (0.98-1.08) were much higher than that of oral preparation (0.69). These results suggest that LDME nasal powder formulations would be useful delivery systems of L-dopa to the brain.

  6. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2...-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2′-(1,2-diazenediyl)bis - and 2,2... butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2...

  7. 40 CFR 721.10326 - 2-Propenoic acid, 2-methyl-, methyl ester, polymer with butyl 2-propenoate, ethyl 2-propenoate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ester, polymer with butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2...-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2,2′-(1,2-diazenediyl)bis - and 2,2... butyl 2-propenoate, ethyl 2-propenoate, zinc 2-methyl-2-propenoate (1:2) and zinc 2-propenoate (1:2), 2...

  8. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  9. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN P...

  10. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to...

  11. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN P...

  12. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  13. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  14. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... Methyl and ethyl esters of fatty acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the...

  15. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  16. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  17. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  18. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl)melamine (generic). 721.10136 Section 721.10136... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction...

  19. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  20. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  1. 40 CFR 721.304 - Acetic acid, [(5-chloro-8-quinolinyl)oxy-], 1-methyl hexyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acetic acid, , 1-methyl hexyl ester... Substances § 721.304 Acetic acid, , 1-methyl hexyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as acetic acid, -, 1-methylhexyl ester (PMN...

  2. Accurate bond energies of biodiesel methyl esters from multireference averaged coupled-pair functional calculations.

    PubMed

    Oyeyemi, Victor B; Keith, John A; Carter, Emily A

    2014-09-04

    Accurate bond dissociation energies (BDEs) are important for characterizing combustion chemistry, particularly the initial stages of pyrolysis. Here we contribute to evaluating the thermochemistry of biodiesel methyl ester molecules using ab initio BDEs derived from a multireference averaged coupled-pair functional (MRACPF2)-based scheme. Having previously validated this approach for hydrocarbons and a variety of oxygenates, herein we provide further validation for bonds within carboxylic acids and methyl esters, finding our scheme predicts BDEs within chemical accuracy (i.e., within 1 kcal/mol) for these molecules. Insights into BDE trends with ester size are then analyzed for methyl formate through methyl crotonate. We find that the carbonyl group in the ester moiety has only a local effect on BDEs. C═C double bonds in ester alkyl chains are found to increase the strengths of bonds adjacent to the double bond. An important exception are bonds beta to C═C or C═O bonds, which produce allylic-like radicals upon dissociation. The observed trends arise from different degrees of geometric relaxation and resonance stabilization in the radicals produced. We also compute BDEs in various small alkanes and alkenes as models for the long hydrocarbon chain of actual biodiesel methyl esters. We again show that allylic bonds in the alkenes are much weaker than those in the small methyl esters, indicating that hydrogen abstractions are more likely at the allylic site and even more likely at bis-allylic sites of alkyl chains due to more electrons involved in π-resonance in the latter. Lastly, we use the BDEs in small surrogates to estimate heretofore unknown BDEs in large methyl esters of biodiesel fuels.

  3. Thermochemistry of C-O, (CO)-O, and (CO)-C bond breaking in fatty acid methyl esters

    SciTech Connect

    Osmont, Antoine; Yahyaoui, Mohammed; Catoire, Laurent; Goekalp, Iskender; Swihart, Mark T.

    2008-10-15

    Density functional theory quantum chemical calculations corrected with empirical atomic increments have been used to examine C-O, (CO)-O, and (CO)-C bond scission enthalpies in gas-phase fatty acid methyl esters (FAMEs) present in biodiesel derived from rapeseed oil methyl ester and soybean oil methyl ester. Mechanistic information, currently not available elsewhere for these large species, is obtained based on thermochemical considerations and compared to thermochemical considerations reported for methyl butanoate, a small methyl ester sometimes used as a model for FAMEs. These results are compared to previously reported C-C and C-H bond scissions in these FAMEs, derived using this same protocol. (author)

  4. Eye irritation potential: palm-based methyl ester sulphonates.

    PubMed

    Yusof, Nor Zuliana; Azizul Hasan, Zafarizal Aldrin; Abd Maurad, Zulina; Idris, Zainab

    2017-07-31

    To evaluate eye irritation potential of palm-based methyl ester sulphonates (MES) of different chain lengths; C12, C14, C16, C16:18. The Bovine Corneal Opacity and Permeability test method (BCOP), OECD Test Guideline 437, was used as an initial step to study the inducing effect of palm-based MES on irreversible eye damage. The second assessment involved the use of reconstructed human corneal-like epithelium test method, OECD Test Guideline 492 using SkinEthic™ Human Corneal Epithelium to study the potential effect of palm-based MES on eye irritancy. The palm-based MES were prepared in 10% solution (w/v) in deionized water and tested as a liquid and surfactant test substances whereby both test conducted according to the liquid/surfactant treatment protocol. The preliminary BCOP results showed that palm-based MES; C12, C14, C16, C16:18 were not classified as severe eye irritants test substances with in vitro irritancy score between 3 and the threshold level of 55. The second evaluation using SkinEthic™ HCE model showed that palm-based MES; C12, C14, C16, C16:18 and three commercial samples were potentially irritants to the eyes with mean tissue viability ? 60% and classified as Category 2 according to United Nations Globally Harmonized System of Classification and Labelling of Chemicals. However, there are some limitations of the proposed ocular irritation classification of palm-based MES due to insolubility of long chain MES in 10% solution (w/v) in deionized water. Therefore, future studies to clarify the eye irritation potential of the palm-based MES will be needed, and could include; methods to improve the test substance solubility, use of test protocol for solids, and/or inclusion of a benchmark anionic surfactant, such as sodium dodecyl sulphate within the study design.

  5. Spectroscopic and quantum chemical analysis of Isonicotinic acid methyl ester

    NASA Astrophysics Data System (ADS)

    Shoba, D.; Periandy, S.; Govindarajan, M.; Gayathri, P.

    2015-02-01

    In this present study, an organic compound Isonicotinic acid methyl ester (INAME) was structurally characterized by FTIR, FT-Raman, and NMR and UV spectroscopy. The optimized geometrical parameters and energies of all different and possible conformers of INAME are obtained from Density Functional Theory (DFT) by B3LYP/6-311++G(d,p) method. There are three conformers (SI, SII-1, and SII-2) for this molecule (ground state). The most stable conformer of INAME is SI conformer. The molecular geometry and vibrational frequencies of INAME in the ground state have been calculated by using HF and density functional method (B3LYP) 6-311++G (d,p) basis set. Detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The computed vibrational frequencies were compared with the experimental frequencies, which yield good agreement between observed and calculated frequencies. A study on the electronic properties, such as HOMO and LUMO energies were performed by time independent DFT approach. Besides, molecular electrostatic potential (MEP) and thermodynamic properties were performed. The electric dipole moment (μ) and first hyper polarizability (β) values of the investigated molecule were computed using ab initio quantum mechanical calculations. The calculated results show that the INAME molecule may have microscopic nonlinear optical (NLO) behavior with non zero values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by gauge independent atomic orbital (GIAO) method.

  6. Chemically modified fatty acid methyl esters: their potential for use as lubrication fluids and surfactants

    USDA-ARS?s Scientific Manuscript database

    A review of recent developments in the synthesis and characterization of lubrication fluids and surfactants from methyl oleate. The synthesis of materials made using an epoxidation route is the focus. This versatile method of chemical modification of fatty acid methyl esters improves their oxidati...

  7. Total synthesis of (±)-epithuriferic acid methyl ester via Diels-Alder reaction.

    PubMed

    Koprowski, Marek; Bałczewski, Piotr; Owsianik, Krzysztof; Różycka-Sokołowska, Ewa; Marciniak, Bernard

    2016-02-07

    In this paper, we have described the first total synthesis of (±)-epithuriferic acid methyl ester from non-natural sources, in four steps (20% overall yield). The key step involves the Diels-Alder reaction of isobenzofuran with methyl 3-(dimethoxyphosphoryl)acrylate which is controlled by "ortho" regio- and endo stereoselectivities due to the COOMe group.

  8. 40 CFR 721.10136 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Propenoic acid, 2-methyl-, 2... 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products with hexakis(alkoxyalkyl... substance identified generically as 2-propenoic acid, 2-methyl-, 2-hydroxyethyl ester, reaction products...

  9. Direct Generation of Triketide Stereopolyads via Merged Redox-Construction Events: Total Synthesis of (+)-Zincophorin Methyl Ester

    PubMed Central

    Kasun, Zachary A.; Gao, Xin; Lipinski, Radoslaw M.; Krische, Michael J.

    2015-01-01

    (+)-Zincophorin methyl ester is prepared in 13 steps (longest linear sequence). A bidirectional redox-triggered double anti-crotylation of 2-methyl-1,3-propane diol directly assembles the triketide stereopolyad spanning C4-C12, significantly enhancing step-economy and enabling construction of (+)-zincophorin methyl ester in nearly half the steps previously required. PMID:26167950

  10. Direct Generation of Triketide Stereopolyads via Merged Redox-Construction Events: Total Synthesis of (+)-Zincophorin Methyl Ester.

    PubMed

    Kasun, Zachary A; Gao, Xin; Lipinski, Radoslaw M; Krische, Michael J

    2015-07-22

    (+)-Zincophorin methyl ester is prepared in 13 steps (longest linear sequence). A bidirectional redox-triggered double anti-crotylation of 2-methyl-1,3-propane diol directly assembles the triketide stereopolyad spanning C4-C12, significantly enhancing step economy and enabling construction of (+)-zincophorin methyl ester in nearly half the steps previously required.

  11. A simple and sensitive fluorescent sensor for methyl parathion based on L-tyrosine methyl ester functionalized carbon dots.

    PubMed

    Hou, Juying; Dong, Jing; Zhu, Haishuang; Teng, Xue; Ai, Shiyun; Mang, Minglin

    2015-06-15

    In this paper, a simple and sensitive fluorescent sensor for methyl parathion is developed based on L-tyrosine methyl ester functionalized carbon dots (Tyr-CDs) and tyrosinase system. The carbon dots are obtained by simple hydrothermal reaction using citric acid as carbon resource and L-tyrosine methyl ester as modification reagent. The carbon dots are characterized by transmission electron microscope, high resolution transmission electron microscopy, X-ray diffraction spectrum, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The carbon dots show strong and stable photoluminescence with a quantum yield of 3.8%. Tyrosinase can catalyze the oxidation of tyrosine methyl ester on the surface of carbon dots to corresponding quinone products, which can quench the fluorescence of carbon dots. When organophosphorus pesticides (OPs) are introduced in system, they can decrease the enzyme activity, thus decrease the fluorescence quenching rate. Methyl parathion, as a model of OPs, was detected. Experimental results show that the enzyme inhibition rate is proportional to the logarithm of the methyl parathion concentration in the range 1.0×10(-10)-1.0×10(-4) M with the detection limit (S/N=3) of 4.8×10(-11) M. This determination method shows a low detection limit, wide linear range, good selectivity and high reproducibility. This sensing system has been successfully used for the analysis of cabbage, milk and fruit juice samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A Comparison Study: The New Extended Shelf Life Isopropyl Ester PMR Technology versus The Traditional Methyl Ester PMR Approach

    NASA Technical Reports Server (NTRS)

    Alston, William B.; Scheiman, Daniel A.; Sivko, Gloria S.

    2005-01-01

    Polymerization of Monomeric Reactants (PMR) monomer solutions and carbon cloth prepregs of PMR II-50 and VCAP-75 were prepared using both the traditional limited shelf life methanol based PMR approach and a novel extended shelf life isopropanol based PMR approach. The methyl ester and isopropyl ester based PMR monomer solutions and PMR prepregs were aged for up to four years at freezer and room temperatures. The aging products formed were monitored using high pressure liquid chromatography (HPLC). The composite processing flow characteristics and volatile contents of the aged prepregs were also correlated versus room temperature storage time. Composite processing cycles were developed and six ply cloth laminates were fabricated with prepregs after various extended room temperature storage times. The composites were then evaluated for glass transition temperature (Tg), thermal decomposition temperature (Td), initial flexural strength (FS) and modulus (FM), long term (1000 hours at 316 C) thermal oxidative stability (TOS), and retention of FS and FM after 1000 hours aging at 316 C. The results for each ester system were comparable. Freezer storage was found to prevent the formation of aging products for both ester systems. Room temperature storage of the novel isopropyl ester system increased PMR monomer solution and PMR prepreg shelf life by at least an order of magnitude while maintaining composite properties.

  13. 40 CFR 721.1576 - 1,3-Benzenedicarboxylic acid, bis[[4-[(ethenyloxy)methyl] cyclohexyl] methyl] ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1,3-Benzenedicarboxylic acid, bis... New Uses for Specific Chemical Substances § 721.1576 1,3-Benzenedicarboxylic acid, bis cyclohexyl... substance identified as 1,3-benzenedicarboxylic acid, bis cyclohexyl] methyl] ester (PMN P-98-1162; CAS No...

  14. 40 CFR 721.1578 - 1,4-Benzenedicarboxylic acid, bis[[4-[(ethenyloxy)methyl] cyclohexyl] methyl] ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 1,4-Benzenedicarboxylic acid, bis... New Uses for Specific Chemical Substances § 721.1578 1,4-Benzenedicarboxylic acid, bis cyclohexyl... substance identified as 1,4-benzenedicarboxylic acid, bis cyclohexyl] methyl] ester (PMN P-98-1164; CAS No...

  15. 40 CFR 721.1578 - 1,4-Benzenedicarboxylic acid, bis[[4-[(ethenyloxy)methyl] cyclohexyl] methyl] ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1,4-Benzenedicarboxylic acid, bis... New Uses for Specific Chemical Substances § 721.1578 1,4-Benzenedicarboxylic acid, bis cyclohexyl... substance identified as 1,4-benzenedicarboxylic acid, bis cyclohexyl] methyl] ester (PMN P-98-1164; CAS No...

  16. 40 CFR 721.1578 - 1,4-Benzenedicarboxylic acid, bis[[4-[(ethenyloxy)methyl] cyclohexyl] methyl] ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1,4-Benzenedicarboxylic acid, bis... New Uses for Specific Chemical Substances § 721.1578 1,4-Benzenedicarboxylic acid, bis cyclohexyl... substance identified as 1,4-benzenedicarboxylic acid, bis cyclohexyl] methyl] ester (PMN P-98-1164; CAS No...

  17. 40 CFR 721.1576 - 1,3-Benzenedicarboxylic acid, bis[[4-[(ethenyloxy)methyl] cyclohexyl] methyl] ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 1,3-Benzenedicarboxylic acid, bis... New Uses for Specific Chemical Substances § 721.1576 1,3-Benzenedicarboxylic acid, bis cyclohexyl... substance identified as 1,3-benzenedicarboxylic acid, bis cyclohexyl] methyl] ester (PMN P-98-1162; CAS No...

  18. 40 CFR 721.1576 - 1,3-Benzenedicarboxylic acid, bis[[4-[(ethenyloxy)methyl] cyclohexyl] methyl] ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 1,3-Benzenedicarboxylic acid, bis... New Uses for Specific Chemical Substances § 721.1576 1,3-Benzenedicarboxylic acid, bis cyclohexyl... substance identified as 1,3-benzenedicarboxylic acid, bis cyclohexyl] methyl] ester (PMN P-98-1162; CAS No...

  19. Development of an environmentally benign process for the production of fatty acid methyl esters.

    PubMed

    Jordan, V; Gutsche, B

    2001-04-01

    The production of fatty acid methyl esters (FAME) is an important intermediate step in oleochemistry. The oleochemical production route starts with the renewable raw materials fat and oil and ends at fatty alcohols and different special products. Fatty acid methyl esters can be formed at mild reaction temperatures by transesterification of natural triglycerides (fats and oils). This contribution will show the development of a continuous process which is considering the main principles of production integrated environmental protection. The main advantages of this process are low energy consumption and minimal waste production. The process alternatives are shown and a scope on future problems which have to be solved to reach a real additional improvement of the fatty acid methyl esters production is given.

  20. Processing Of Neem And Jatropha Methyl Esters -Alternative Fuels From Vegetable Oil

    NASA Astrophysics Data System (ADS)

    Ramasubramanian, S.; Manavalan, S.; Gnanavel, C.; Balakrishnan, G.

    2017-03-01

    Biodiesel is an alternative fuel for diesel engine. The methyl esters of vegetable oils, known as biodiesel are becoming increasingly popular because of their low environmental impact and potential as a green alternative fuel for diesel engine. This paper deals with the manufacturing process of Biodiesel from jatropha and neem oil. Biodiesel was prepared from neem oil and jatropha oil, the transestrified having kinematic viscosity of 3 & 2.6 centistokes, methanol ratio is 6:1 & 5.1respectively. The secondary solution is preheated at 65 C & 60 C and reaction temperature is maintained at 60C & 55 C and reaction time is 60 minutes approximately with NaOH catalyst and low viscosity oil is allowed to settle 24 hours. The average yield of neem and jatropha methyl esters was about 85%. These methyl esters shows excellent alternative under optimum condition for fossil fuels.

  1. Oxidative stability and ignition quality of algae derived methyl esters containing varying levels of methyl eicosapentaenoate and methyl docosahexaenoate

    NASA Astrophysics Data System (ADS)

    Bucy, Harrison

    Microalgae is currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gallons/acre/year) in comparison to current terrestrial feedstocks. Additionally, microalgae also do not compete with food and can be cultivated with wastewater on non-arable land. Microalgae lipids can be converted into a variety of biofuels including fatty acid methyl esters (e.g. FAME biodiesel), renewable diesel, renewable gasoline, or jet fuel. For microalgae derived FAME, the fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chainpolyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. For example, it is known that oxidative stability and cetane number decrease with increasing levels of LC-PUFA. However, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability and ignition quality of algae-based FAME with varying levels of EPA and DHA removal. Oxidative stability tests were conducted at a temperature of 110°C and airflow of 10 L/h using a Metrohm 743 Rancimat with automatic induction period determination following the EN 14112 Method from the ASTM D6751 and EN 14214

  2. Theoretical study of cocaine and ecgonine methyl ester in gas phase and in aqueous solution

    NASA Astrophysics Data System (ADS)

    Rincón, David A.; Cordeiro, M. Natália D. S.; Mosquera, Ricardo A.; Borges, Fernanda

    2009-01-01

    The conformational preferences of cocaine and ecgonine methyl ester were determined through ab initio and density functional theory calculations. They share the same preferred orientation of the acetate group with a hydrogen bond between the amine and carbonyl groups, and s- cis conformation for the methoxyl group. The benzoyloxy group of cocaine defines a specific accessible conformational region. In solution the most stable conformers are stabilized by internal hydrogen bonds in contrast to the lesser stables, which are stabilized by solute/solvent interactions. Overall, these conformational features explain why ecgonine methyl ester is the principal metabolite of cocaine in a human environment.

  3. Synthesis of (S)-ricinoleic acid and its methyl ester with the participation of ionic liquid.

    PubMed

    Kula, Józef; Bonikowski, Radoslaw; Szewczyk, Malgorzata; Ciolak, Kornelia

    2014-10-01

    (R)-ricinoleic acid methyl ester obtained from commercial castor oil was transformed in a three-step procedure into its S-enantiomer in overall 36% yield using ionic liquid (1-butyl-3-methylimidazolium acetate) in the key step process. The developed procedure provides easy access to (S)-ricinoleic acid and its methyl ester of over 95% enantiomeric excess. Optical rotations of the newly obtained compounds as well as their chromatographic and spectral characteristics are provided and discussed in the context of enantiopurity both of the substrate material and the final products.

  4. 40 CFR 721.8500 - 2-Propenoic acid, 2-methyl-, 7-oxabicyclo [4.1.0]hept-3-ylmethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-oxabicyclo hept-3-ylmethyl ester. 721.8500 Section 721.8500 Protection of Environment ENVIRONMENTAL... hept-3-ylmethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance 2-propenoic acid, 2-methyl-, 7-oxabicyclo hept-3-ylmethyl ester (PMN P-89-30) is subject...

  5. 40 CFR 721.4792 - 2-propenoic acid, 2-methyl-, C11-14-isoalkyl esters, C13-rich.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-isoalkyl esters, C13-rich. 721.4792 Section 721.4792 Protection of Environment ENVIRONMENTAL PROTECTION... esters, C13-rich. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as 2-propenoic acid, 2-methyl-, C11-14-isoalkyl esters, C13-rich (PMN P-99-1189; CAS No...

  6. 40 CFR 721.8500 - 2-Propenoic acid, 2-methyl-, 7-oxabicyclo [4.1.0]hept-3-ylmethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-oxabicyclo hept-3-ylmethyl ester. 721.8500 Section 721.8500 Protection of Environment ENVIRONMENTAL... hept-3-ylmethyl ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance 2-propenoic acid, 2-methyl-, 7-oxabicyclo hept-3-ylmethyl ester (PMN P-89-30) is...

  7. Vapor movement of the synthetic auxin herbicides, aminocyclopyrachlor and its methyl ester under laboratory and enclosed chamber environments

    USDA-ARS?s Scientific Manuscript database

    Aminocyclopyrachlor (DPX MAT28) a newly discovered synthetic auxin herbicide and its methyl ester (DPX KJM44) appear to control a number of perennial broadleaf weeds. The potential volatility of this new herbicide and its methyl ester were determined under laboratory conditions and were also compar...

  8. Efficient microwave combinatorial parallel and nonparallel synthesis of N-alkylated glycine methyl esters as peptide building blocks.

    PubMed

    Santagada, Vincenzo; Frecentese, Francesco; Perissutti, Elisa; Fiorino, Ferdinando; Severino, Beatrice; Cirillo, Donatella; Terracciano, Sara; Caliendo, Giuseppe

    2005-01-01

    An easy and convenient microwave-assisted synthesis of N-alkylated glycine methyl esters is described. Parallel and nonparallel combinatorial methods are described and compared. The described reactions are reductive alkylations of several aldehydes and glycine methyl ester in the presence of NaBH3CN. Good yields and short reaction times are the main aspects of these procedures.

  9. Characterization of electrospray ionization mass spectrometry for N-diisopropyloxyphosphoryl dipeptide methyl esters.

    PubMed

    Luo, Shi-Zhong; Li, Yan-Mei; Niu, Yan-Ling; Chen, Yi; Jiang, Yu-Yang; Chen, Jing; Zhao, Yu-Fen

    2005-01-01

    A systematic study of the fragmentation pattern of N-diisopropyloxyphosphoryl (DIPP) dipeptide methyl esters in an electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was presented. A combination of accurate mass measurement and tandem mass spectrometry had been used to characterize the major fragment ions observed in the ESI mass spectrum. It was found that the alkali metal ions acted as a fixed charge site and expelled the DIPP group after transferring a proton to the amide nitrogen. For all the N-phosphoryl dipeptide methyl esters, under the activation of a metal ion, the rearrangement product ion at m/z 163 was observed and confirmed to be the sodium adduct of phosphoric acid mono-isopropyl esters (PAIE), via a specific five-membered penta-co-ordinated phosphorus intermediate. However, no rearrangement ion was observed when a beta-amino acid was at the N-terminal. This could be used to develop a novel method for differentiating isomeric compounds when either alpha- or beta-amino acid are at the N-terminus of peptides. From the [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters (DIPP Xaa1 Xaa2 OMe), the peaks corresponding to the [M+Na Xaa1 C3H6]+ were observed and explained. The [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters with Phe located in the C-terminal, such as DIPPValPheOMe, DIPPLeuPheOMe, DIPPIlePheOMe, DIPPAlaPheOMe and DIPPPhePheOMe, had characteristic fragmentation. Two unusual gas-phase intramolecular rearrangement mechanisms were first proposed for this fragmentation. These rearrangements were not observed in dipeptide methyl ester analogs which did not contain the DIPP at the N-terminal, suggesting that this moiety was critical for the rearrangement.

  10. Evaluation of eye irritation by S-(-)-10,11-dihydroxyfarnesic acid methyl ester secreted by Beauveria bassiana CS1029.

    PubMed

    Son, Hyeong-U; Lee, Sang-Han

    2013-10-01

    The aim of this study was to investigate whether S-(-)-10,11-dihydroxyfarnesic acid methyl ester produced by cell subtype Beauveria bassiana CS1029 causes acute toxicity when used for cosmetic purposes by performing an eye irritation test. New Zealand white (NZW) rabbits were treated with a 100 mg/dose of S-(-)-10,11-dihydroxyfarnesic acid methyl ester according to standard procedure guidelines. No significant changes in terms of ocular lesions of the cornea, turbidity of the cornea, swelling of the eyelid or ocular discharge were observed in the methyl ester-treated groups, while sodium dioctyl sulfosuccinate, a positive control, caused severe toxicity. The anatomical and pathological observations indicate that the methyl ester produced by Beauveria bassiana CS1029 did not induce eye irritation in the lenses of the rabbits. The data suggest that the methyl ester evaluated in this study has promising potential as a cosmetic ingredient that does not irritate the eye.

  11. Evaluation of eye irritation by S-(-)-10,11-dihydroxyfarnesic acid methyl ester secreted by Beauveria bassiana CS1029

    PubMed Central

    SON, HYEONG-U; LEE, SANG-HAN

    2013-01-01

    The aim of this study was to investigate whether S-(-)-10,11-dihydroxyfarnesic acid methyl ester produced by cell subtype Beauveria bassiana CS1029 causes acute toxicity when used for cosmetic purposes by performing an eye irritation test. New Zealand white (NZW) rabbits were treated with a 100 mg/dose of S-(-)-10,11-dihydroxyfarnesic acid methyl ester according to standard procedure guidelines. No significant changes in terms of ocular lesions of the cornea, turbidity of the cornea, swelling of the eyelid or ocular discharge were observed in the methyl ester-treated groups, while sodium dioctyl sulfosuccinate, a positive control, caused severe toxicity. The anatomical and pathological observations indicate that the methyl ester produced by Beauveria bassiana CS1029 did not induce eye irritation in the lenses of the rabbits. The data suggest that the methyl ester evaluated in this study has promising potential as a cosmetic ingredient that does not irritate the eye. PMID:24137288

  12. Chemically Modified Fatty Acid Methyl Esters: Potential as Lubricant and Surfactant

    USDA-ARS?s Scientific Manuscript database

    Renewable raw materials are going to play a noteworthy role in the development of sustainable green chemistry because of their eco-friendly and non-toxic nature. A novel process was developed for the production of biodegradable lubricant base stocks from epoxidized fatty acid methyl esters and comm...

  13. 21 CFR 573.660 - Methyl glucoside-coconut oil ester.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl glucoside-coconut oil ester. 573.660 Section 573.660 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF...

  14. Esterification and Transesterification of greases to fatty acid methyl esters with highly active diphenylamine salts

    USDA-ARS?s Scientific Manuscript database

    Diphenylamine sulfate (DPAS) and diphenylamine hydrochloride (DPACl) salts were found to be highly active catalysts for esterification and transesterification of inexpensive greases to fatty acid methyl esters (FAME). In the presence of catalytic amounts of DPAS or DPACl and excess methanol, the fr...

  15. Esterification and transesterification of greases to fatty acid methyl esters with highly active diphanylammonium salts

    USDA-ARS?s Scientific Manuscript database

    We have conducted an investigation designed to identify alternate catalysts for the production of fatty acid methyl esters (FAME) to be used as biodiesel. Diphenylammonium sulfate (DPAS) and diphenylammonium chloride (DPA-HCl) salts were found to be highly active homogeneous catalysts for the simu...

  16. Preparation of fatty acid methyl esters from Osage orange (Maclura pomifera) oil and evaluation as biodiesel

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl esters were prepared in high yield by transesterification of Osage orange (Maclura pomifera) oil. Extracted using supercritical CO2, the crude oil was initially treated with mineral acid and methanol to lower its content of free fatty acids, thus rendering it amenable to homogeneou...

  17. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 2-(3-phenylbutylidene...

  18. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 2-(3-phenylbutylidene...

  19. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 2-(3-phenylbutylidene...

  20. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 2-(3-phenylbutylidene...

  1. 40 CFR 721.1728 - Benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... New Uses for Specific Chemical Substances § 721.1728 Benzoic acid, 2-(3-phenylbutylidene)amino... substance identified as benzoic acid, 2-(3-phenylbutylidene)amino-, methyl ester (PMN P-85-1211) is subject... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 2-(3-phenylbutylidene...

  2. Prediction of preweaning ADG in beef calves from milk fatty acid methyl esters

    USDA-ARS?s Scientific Manuscript database

    Research has shown milk yield (MWT) has an important influence on calf preweaning ADG (PRWADG), but MWT accounts for only a moderate amount of variation in PRWADG. The objective of this study was to determine if milk fatty acid methyl esters (FAME), alone and in combination with MWT, could improve a...

  3. Chemical modification of nanocellulose with canola oil fatty acid methyl ester

    Treesearch

    Liqing Wei; Umesh P. Agarwal; Kolby C. Hirth; Laurent M. Matuana; Ronald C. Sabo; Nicole M. Stark

    2017-01-01

    Cellulose nanocrystals (CNCs), produced from dissolving wood pulp, were chemically functionalized by transesterification with canola oil fatty acid methyl ester (CME). CME performs as both the reaction reagent and solvent. Transesterified CNC (CNCFE) was characterized for their chemical structure, morphology, crystalline structure, thermal stability, and hydrophobicity...

  4. Efficacy of Myricetin as an Antioxidant in Methyl Esters of Soybean Oil

    USDA-ARS?s Scientific Manuscript database

    The antioxidant activity of myricetin, a natural flavonol found in fruits and vegetables, was determined in soybean oil methyl esters (SME) and compared with alpha-tocopherol and tert-butylhydroquinone (TBHQ) over a 90 day period employing EN 14112, acid value, and kinematic viscosity methods. Myri...

  5. Influence of Blending Canola, Palm, Soybean, and Sunflower Oil Methyl Esters on Fuel Properties of Bioiesel

    USDA-ARS?s Scientific Manuscript database

    Single, binary, ternary, and quaternary mixtures of canola (low erucic acid rapeseed), palm, soybean, and sunflower (high oleic acid) oil methyl esters (CME, PME, SME, and SFME, respectively) were prepared and important fuel properties measured, such as oil stability index (OSI), cold filter pluggin...

  6. Low-temperature phase behavior of fatty acid methyl esters by differential scanning calorimetry (DSC)

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl ester (FAME) mixtures have many uses including biodiesel, lubricants, metal-working fluids, surfactants, polymers, coatings, green solvents and phase-change materials. The physical properties of a FAME mixture depends on the fatty acid concentration (FAC) profile. Some products hav...

  7. Methyl esters (biodiesel) from and fatty acid profile of Gliricidia sepium seed oil

    USDA-ARS?s Scientific Manuscript database

    Increasing the supply of biodiesel by defining and developing additional feedstocks is important to overcome the still limited amounts available of this alternative fuel. In this connection, the methyl esters of the seed oil of Gliricidia sepium were synthesized and the significant fuel-related prop...

  8. Cold flow properties of fatty acid methyl esters: Additives versus diluents

    USDA-ARS?s Scientific Manuscript database

    Biodiesel is typically composed of fatty acid methyl esters (FAME) converted from agricultural lipids. Common feedstocks include soybean oil, canola oil, rapeseed oil, sunflower oil, and palm oil. Recent debate on the conversion of edible oils into non-food products has created opportunities to deve...

  9. Toward more "ideal" polyketide natural product synthesis: a step-economical synthesis of zincophorin methyl ester.

    PubMed

    Harrison, Tyler J; Ho, Stephen; Leighton, James L

    2011-05-18

    A highly efficient and step-economical synthesis of zincophorin methyl ester has been achieved. The unprecedented step economy of this zincophorin synthesis is principally due to an application of the tandem silylformylation-crotylsilylation/Tamao oxidation-diastereoselective tautomerization reaction, which achieves in a single step what would typically require a significant multistep sequence.

  10. Effects of Blending Alcohols with Poultry Fat Methyl Esters on Cold Flow Properties

    USDA-ARS?s Scientific Manuscript database

    The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol in a linear fashion with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols t...

  11. Coriander Seed Oil Methyl Esters as Biodiesel Fuel: Unique Fatty Acid Composition and Excellent Oxidative Stability

    USDA-ARS?s Scientific Manuscript database

    Coriander (Coriandrum sativum L.) seed oil methyl esters were prepared and evaluated as an alternative biodiesel fuel and contained an unusual fatty acid (FA) hitherto unreported as the principle component in biodiesel fuels: petroselinic (6Z-octadecenoic; 68.5 wt %) acid. Most of the remaining FA...

  12. Catalytic synthesis of fatty acid methyl esters from extremely low quality greases

    USDA-ARS?s Scientific Manuscript database

    Biodiesel (BD) is a renewable fuel for compression ignition engines that is composed of the simple alkyl esters, usually methyl-, of fatty acids (FAME). It is typically produced via base-catalyzed transesterification between refined vegetable oil or animal fat (e.g., soybean oil, tallow) and an alc...

  13. Multivariate near infrared spectroscopy models for predicting the methyl esters content in biodiesel.

    PubMed

    Baptista, Patrícia; Felizardo, Pedro; Menezes, José C; Correia, M Joana Neiva

    2008-01-28

    Biodiesel is the main alternative to fossil diesel. The key advantages of its use are the fact that it is a non-toxic renewable resource, which leads to lower emissions of polluting gases. European governments are targeting the incorporation of 20% of biofuels in the general fuels until 2020. Chemically, biodiesel is a mixture of fatty acid methyl esters, derived from vegetable oils or animal fats, which is usually produced by a transesterification reaction, where the oils/fats react with an alcohol, in the presence of a catalyst. The European Standard (EN 14214) establishes 25 parameters that have to be analysed to certify biodiesel quality and the analytical methods that should be used to determine those properties. This work reports the use of near infrared (NIR) spectroscopy to determine the esters content in biodiesel as well as the content in linolenic acid methyl esters (C18:3) in industrial and laboratory-scale biodiesel samples. Furthermore, calibration models for myristic (C14:0), palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2) acid methyl esters were also obtained. Principal component analysis was used for the qualitative analysis of the spectra, while partial least squares regression was used to develop the calibration models between analytical and spectral data. The results confirm that NIR spectroscopy, in combination with multivariate calibration, is a promising technique to assess the biodiesel quality control in both laboratory-scale and industrial scale samples.

  14. 77 FR 20314 - 2-Propenoic Acid, 2-Methyl-, 2-Ethylhexyl Ester, Telomer With 1-Dodecanethiol, Ethenylbenzene and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ..., Ethenylbenzene and 2-Methyloxirane Polymer With Oxirane Monoether With 1,2-Propanediol Mono(2-Methyl-2-Propenoate...-methyl-, 2- ethylhexyl ester, telomer with 1-dodecanethiol, ethenylbenzene and 2- methyloxirane polymer...-methyloxirane polymer with oxirane monoether with 1,2-propanediol mono(2-methyl-2-propenoate), hydrogen...

  15. Molecular weight determination of methyl esters of mycolic acids using thermospray mass spectrometry.

    PubMed

    Ioneda, T; Beaman, B L

    1992-11-01

    Methyl esters of normal fatty acids, corynomycolate and corynomycolenate were used as model compounds for thermospray mass spectrometric procedures for molecular weight determination of the related nocardial mycolic acids. By using ammonium acetate at the positive ion generator, in both cases, a family of ions was produced. The following members were found and corresponded to the adducts: (1) M + H; M + NH4 and M + H + NH4 for methyl esters of normal fatty acids, whereas M + H, M + 2H and M + H + NH4 were the adducts most frequently observed with methyl corynomycolates. The methyl esters of C40-C48 mycolic acids from Rhodococcus rhodochrous exhibited prominent peaks corresponding to adducts M + H + NH4 whereas those corresponding to M + 2H showed slightly lower intensities. The structure M + H had no significant representatives with this subclass of mycolic acids. A similar pattern was observed with methyl esters of C50-C54 mycolic acids from Nocardia asteroides GUH-2. Ion peaks C50-C54 representing adducts M + 2H and M + H + NH4 prevailed in the mass spectrum. In this case, the intensities of peaks corresponding to M + 2H were slightly higher than those of the M + H + NH4. Essentially three main species of nocardomycolic acids were detected: (1) monounsaturated C50:1, C52:1 and C54:1; (2) diunsaturated C50:2, C52:2 and C54:2 and (3) triunsaturated C52:3 and C54:3 mycolic acids. The most abundant mycolic acid was C52:2 followed in decreasing abundance by C52:1, C54:2, C50:2, C52:3 and C54:3 mycolic acids.

  16. Crystal structure of azilsartan methyl ester ethyl acetate hemisolvate.

    PubMed

    Li, Zhengyi; Liu, Rong; Zhu, Meilan; Chen, Liang; Sun, Xiaoqiang

    2015-02-01

    The title compound, C26H22N4O5 (systematic name: methyl 2-eth-oxy-1-{4-[2-(5-oxo-4,5-di-hydro-1,2,4-oxa-diazol-3-yl)phenyl]benz-yl}-1H-1,3-benzo-diazole-7-carboxyl-ate ethyl acetate hemisolvate), was obtained via cyclization of methyl (Z)-2-eth-oxy-1-{(2'-(N'-hy-droxy-carbamimido-yl)-[1,1'-biphen-yl]-4-yl)meth-yl}-1H-benzo[d]imidazole-7-carboxyl-ate with diphen-yl carbonate. There are two independent mol-ecules (A and B) with different conformations and an ethyl acetate solvent mol-ecule in the asymmetric unit. In mol-ecule A, the dihedral angle between the benzene ring and its attached oxa-diazole ring is 59.36 (17); the dihedral angle between the benzene rings is 43.89 (15) and that between the benzene ring and its attached imidazole ring system is 80.06 (11)°. The corres-ponding dihedral angles in mol-ecule B are 58.45 (18), 50.73 (16) and 85.37 (10)°, respectively. The C-O-C-Cm (m = meth-yl) torsion angles for the eth-oxy side chains attached to the imidazole rings in mol-ecules A and B are 93.9 (3) and -174.6 (3)°, respectively. In the crystal, the components are linked by N-H⋯N and C-H⋯O hydrogen bonds, generating a three-dimensional network. Aromatic π-π stacking inter-actions [shortest centroid-centroid separation = 3.536 (3)Å] are also observed.

  17. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    NASA Astrophysics Data System (ADS)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non

  18. Efficient production of the Nylon 12 monomer ω-aminododecanoic acid methyl ester from renewable dodecanoic acid methyl ester with engineered Escherichia coli.

    PubMed

    Ladkau, Nadine; Assmann, Miriam; Schrewe, Manfred; Julsing, Mattijs K; Schmid, Andreas; Bühler, Bruno

    2016-07-01

    The expansion of microbial substrate and product scopes will be an important brick promoting future bioeconomy. In this study, an orthogonal pathway running in parallel to native metabolism and converting renewable dodecanoic acid methyl ester (DAME) via terminal alcohol and aldehyde to 12-aminododecanoic acid methyl ester (ADAME), a building block for the high-performance polymer Nylon 12, was engineered in Escherichia coli and optimized regarding substrate uptake, substrate requirements, host strain choice, flux, and product yield. Efficient DAME uptake was achieved by means of the hydrophobic outer membrane porin AlkL increasing maximum oxygenation and transamination activities 8.3 and 7.6-fold, respectively. An optimized coupling to the pyruvate node via a heterologous alanine dehydrogenase enabled efficient intracellular L-alanine supply, a prerequisite for self-sufficient whole-cell transaminase catalysis. Finally, the introduction of a respiratory chain-linked alcohol dehydrogenase enabled an increase in pathway flux, the minimization of undesired overoxidation to the respective carboxylic acid, and thus the efficient formation of ADAME as main product. The completely synthetic orthogonal pathway presented in this study sets the stage for Nylon 12 production from renewables. Its effective operation achieved via fine tuning the connectivity to native cell functionalities emphasizes the potential of this concept to expand microbial substrate and product scopes.

  19. Synthesis of methyl esters from waste cooking oil using construction waste material as solid base catalyst.

    PubMed

    Balakrishnan, K; Olutoye, M A; Hameed, B H

    2013-01-01

    The current research investigates synthesis of methyl esters by transesterification of waste cooking oil in a heterogeneous system, using barium meliorated construction site waste marble as solid base catalyst. The pretreated catalyst was calcined at 830 °C for 4h prior to its activity test to obtained solid oxide characterized by scanning electron microscopy/energy dispersive spectroscopy, BET surface area and pore size measurement. It was found that the as prepared catalyst has large pores which contributed to its high activity in transesterification reaction. The methyl ester yield of 88% was obtained when the methanol/oil molar ratio was 9:1, reaction temperature at 65 °C, reaction time 3h and catalyst/oil mass ratio of 3.0 wt.%. The catalyst can be reused over three cycles, offer low operating conditions, reduce energy consumption and waste generation in the production of biodiesel.

  20. Adsorption and wettability study of methyl ester sulphonate on precipitated asphaltene

    NASA Astrophysics Data System (ADS)

    Okafor, H. E.; Sukirman, Y.; Gholami, R.

    2016-03-01

    Asphaltene precipitation from crude oil and its subsequent aggregation forms solid, which preferentially deposit on rock surfaces causing formation damage and wettability changes leading to loss of crude oil production. To resolve this problem, asphaltene inhibitor has been injected into the formation to prevent the precipitation of asphaltene. Asphaltene inhibitors that are usually employed are generally toxic and non-biodegradable. This paper presents a new environmentally friendly asphaltene inhibitor (methyl ester sulphonate), an anionic surfactant, which has excellent sorption on formation rock surfaces. Result from adsorption study validated by Langmuir and Freundlich models indicate a favourable adsorption. At low volumes injected, methyl ester sulphonate is capable of reverting oil-wet sandstone surface to water-wet surface. Biodegradability test profile shows that for concentrations of 100-5000ppm it is biodegradable by 65-80%.

  1. Production of methyl ester from two microalgae by two-step transesterification and direct transesterification.

    PubMed

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2017-02-01

    The efficiency of oil extraction from Chlorella sp. and Scenedesmus sp. using different cell disruption and solvent system was investigated. The ultrasound cell disruption method showed the maximum oil extraction in both algae. Oil extraction with hexane resulted in maximum oil yield for both algae. The kinetic parameters were studied and the extraction followed the first-order kinetics. The activation energy and thermodynamic activation parameters were calculated for both microalgae and the results suggested that the extraction was endothermic, irreversible and spontaneous. The methyl ester yields by two-step transesterification and direct transesterification were 95 and 96% for Scenedesmus sp. and 89 and 92% for Chlorella sp. respectively. Both methods had similar net energy consumption suitable for industrial application. The methyl ester properties were analysed in comparison with those of American Society for Testing and Materials (ASTM) D6751 standards.

  2. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  3. Thermally reversible gels based on acryloyl- L-proline methyl ester as drug delivery systems

    NASA Astrophysics Data System (ADS)

    Martellini, Flavia; Higa, Olga Z.; Takacs, Erzsebet; Safranj, Agneza; Yoshida, Masaru; Katakai, Ryoichi; Carenza, Mario

    1999-06-01

    Thermally reversible hydrogels were synthesized by radiation-induced copolymerization of acryloyl- L-proline methyl ester with hydrophilic or hydrophobic monomers. The swelling behaviour was found to be affected by a proper balance of the latter. In particular, the transition temperature of the different hydrogels shifted to higher or lower values depending on the presence of hydrophilic or hydrophobic moieties in the polymer chain, respectively. Acetaminophen, an analgesic and antipyretic drug, was entrapped into some hydrogels and a wide range of release rates was obtained according to the nature of the comonomers. A novel thermoresponsive hydrogel was also prepared by radiation polymerization of acryloyl- L-proline methyl ester in the presence of 4-acryloyloxy acetanilide, an acrylic derivative of acetaminophen. Again, the swelling curves showed an inverse function of temperature. It was shown that with this hydrogel bearing the drug covalently attached to the polymer backbone, the hydrolysis process was the rate-determining process of the drug release.

  4. Complexes of polyadenylic acid and the methyl esters of amino acids

    NASA Technical Reports Server (NTRS)

    Khaled, M. A.; Mulins, D. W., Jr.; Swindle, M.; Lacey, J. C., Jr.

    1983-01-01

    A study of amino acid methyl esters binding to polyadenylic acid supports the theory that the genetic code originated through weak but selective affinities between amino acids and nucleotides. NMR, insoluble complex analysis, and ultraviolet spectroscopy are used to illustrate a correlation between the hydrophybicities of A amino acids and their binding constants, which, beginning with the largest, are in the order of Phe (having nominally a hydrophobic AAA anticodon), Ile, Leu, Val and Gly (having a hydrophilic anticodon with no A). In general, the binding constants are twice the values by Reuben and Polk (1980) for monomeric AMP, which suggests that polymer amino acids are interacting with only one base. No real differences are found betwen poly A binding for free Phe, Phe methyl ester or Phe amide, except that the amide value is slightly lower.

  5. Preparation of acetonides from soybean oil, methyl soyate, and fatty esters.

    PubMed

    Biswas, Atanu; Sharma, Brajendra K; Vermillion, Karl; Willett, J L; Cheng, H N

    2011-04-13

    This paper describes the preparation of a new type of branched vegetable oil and its methyl ester that involves the formation of acetonides. A facile and environmentally friendly synthesis has been found to produce acetonides that entails the use of ferric chloride as a catalyst and is conducted at room temperature. The products have been fully characterized with the help of model compounds, including elemental analysis, infrared (IR) spectroscopy, nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS).

  6. Presolvated Low Energy Electron Attachment to Peptide Methyl esters in Aqueous Solution: C-O Bond Cleavage at 77K

    PubMed Central

    Kheir, Jeanette; Chomicz, Lidia; Engle, Alyson; Rak, Janusz; Sevilla, Michael D.

    2013-01-01

    In this study, the reactions of presolvated electrons with glycine methyl ester and N-acetylalanylalanine methyl ester (N-aAAMe) are investigated by electron spin resonance (ESR) spectroscopy and DFT calculations. Electrons were produced by gamma irradiation in neutral 7.5 M LiCl-D2O aqueous glasses at low temperatures. For glycine methyl ester electron addition at 77K results in both N-terminal deamination to form a glycyl radical and C-O ester bond cleavage to form methyl radicals. For samples of N-acetylalanylalanine methyl ester electrons are found to add to the peptide bonds at 77K and cleave the carboxyl ester groups to produce methyl radicals. On annealing to 160K electron adducts at the peptide links undergo chain scission to produce alanyl radicals and further annealing to 170K α-carbon peptide backbone radicals are produced by hydrogen abstraction. DFT calculations for electron addition to the methyl ester portion of N-aAAMe show the cleavage reaction is highly favorable (free energy equals to −30.7 kcal/mol) with the kinetic barrier of only 9.9 kcal/mol. A substantial electron affinity of the ester link (38.0 kcal/mol) provides more than sufficient energy to overcome this small barrier. Protonated peptide bond electron adducts, also show favorable N-C chain cleavage reactions of −12.7 to −15.5 kcal/mol with a barrier from 7.4 to 10.0 kcal/mol. The substantial adiabatic electron affinity (AEA) of the peptide bond and ester groups provides sufficient energy for the bond dissociation. PMID:23406302

  7. Presolvated low energy electron attachment to peptide methyl esters in aqueous solution: C-O bond cleavage at 77 K.

    PubMed

    Kheir, Jeanette; Chomicz, Lidia; Engle, Alyson; Rak, Janusz; Sevilla, Michael D

    2013-03-14

    In this study, the reactions of presolvated electrons with glycine methyl ester and N-acetylalanylalanine methyl ester (N-aAAMe) are investigated by electron spin resonance (ESR) spectroscopy and DFT calculations. Electrons were produced by γ-irradiation in neutral 7.5 M LiCl-D2O aqueous glasses at low temperatures. For glycine methyl ester, electron addition at 77 K results in both N-terminal deamination to form a glycyl radical and C-O ester bond cleavage to form methyl radicals. For samples of N-acetylalanylalanine methyl ester, electrons are found to add to the peptide bonds at 77 K and cleave the carboxyl ester groups to produce methyl radicals. On annealing to 160 K, electron adducts at the peptide links undergo chain scission to produce alanyl radicals and on further annealing to 170 K α-carbon peptide backbone radicals are produced by hydrogen abstraction. DFT calculations for electron addition to the methyl ester portion of N-aAAMe show the cleavage reaction is highly favorable (free energy equals to -30.7 kcal/mol) with the kinetic barrier of only 9.9 kcal/mol. A substantial electron affinity of the ester link (38.0 kcal/mol) provides more than sufficient energy to overcome this small barrier. Protonated peptide bond electron adducts also show favorable N-C chain cleavage reactions of -12.7 to -15.5 kcal/mol with a barrier from 7.4 to 10.0 kcal/mol. The substantial adiabatic electron affinity (AEA) of the peptide bond and ester groups provides sufficient energy for the bond dissociation.

  8. Gas chromatography-vacuum ultraviolet spectroscopy for analysis of fatty acid methyl esters.

    PubMed

    Fan, Hui; Smuts, Jonathan; Bai, Ling; Walsh, Phillip; Armstrong, Daniel W; Schug, Kevin A

    2016-03-01

    A new vacuum ultraviolet (VUV) detector for gas chromatography was recently developed and applied to fatty acid methyl ester (FAME) analysis. VUV detection features full spectral acquisition in a wavelength range of 115-240nm, where virtually all chemical species absorb. VUV absorption spectra of 37 FAMEs, including saturated, monounsaturated, and polyunsaturated types were recorded. Unsaturated FAMEs show significantly different gas phase absorption profiles than saturated ones, and these classes can be easily distinguished with the VUV detector. Another advantage includes differentiating cis/trans-isomeric FAMEs (e.g. oleic acid methyl ester and linoleic acid methyl ester isomers) and the ability to use VUV data analysis software for deconvolution of co-eluting signals. As a universal detector, VUV also provides high specificity, sensitivity, and a fast data acquisition rate, making it a powerful tool for fatty acid screening when combined with gas chromatography. The fatty acid profile of several food oil samples (olive, canola, vegetable, corn, sunflower and peanut oils) were analyzed in this study to demonstrate applicability to real world samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Methyl Ester Production via Heterogeneous Acid-Catalyzed Simultaneous Transesterification and Esterification Reactions

    NASA Astrophysics Data System (ADS)

    Indrayanah, S.; Erwin; Marsih, I. N.; Suprapto; Murwani, I. K.

    2017-05-01

    The heterogeneous acid catalysts (MgF2 and ZnF2) have been used to catalyze the simultaneous transesterification and esterification reactions of crude palm oil (CPO) with methanol. Catalysts were synthesized by sol-gel method (combination of fluorolysis and hydrolysis). The physicochemical, structural, textural, thermal stability of the prepared catalysts was investigated by N2 adsorption-desorption, XRD, FT-IR, SEM and TG/DTG. Both MgF2 and ZnF2 have rutile structures with a different phase. The surface area of ZnF2 is smaller than that of MgF2, but the pore size and volume of ZnF2 are larger than those of MgF2. However, these materials are thermally stable. The performance of the catalysts is determined from the yield of catalysts toward the formation of methyl ester determined based on the product of methyl ester obtained from the reaction. The catalytic activity of ZnF2 is higher than MgF2 amounted to 85.21% and 26.82% with the optimum condition. The high activity of ZnF2 could be attributed to its pore diameter and pore volume but was not correlated with its surface area. The yield of methyl ester decreased along with the increase in molar ratio of methanol/CPO from 85.21 to 80.99 for ZnF2, respectively.

  10. 21 CFR 172.225 - Methyl and ethyl esters of fatty acids produced from edible fats and oils.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... from edible fats and oils. 172.225 Section 172.225 Food and Drugs FOOD AND DRUG ADMINISTRATION... acids produced from edible fats and oils. Methyl esters and ethyl esters of fatty acids produced from edible fats and oils may be safely used in food, subject to the following prescribed conditions: (a)...

  11. Formation of pi, tau-dimethylhistidine on alkylation of trypsin with active-site-directed sulfonic acid methyl esters.

    PubMed

    Schubert, C; Fiedler, F

    1994-01-01

    The possibility of synthesizing stable alkyl analogues of acyl trypsins by introducing the alkyl residue by means of active-site-directed sulfonic acid esters was studied. Nine amidino- or guanidino-substituted sulfonic acids of different geometries and their methyl esters were prepared. The time-dependent inhibition of bovine trypsin by these esters, indicating modification at the active site of the enzyme, was followed. With the exception of p-guanidinobenzenesulfonic acid methyl ester, all the esters acted as irreversible inhibitors. The site of methylation, Ser-195 or His-57 (chymotrypsinogen numbering), was determine by analyzing for O-methylserine and methylhistidines. With four of the esters indications of a possible formation of, at most, 0.1 residue of O-methylserine per inactivated trypsin molecule were obtained. tau-Methylhistidine (but no pi-methylhistidine) was, however, always observed as the main product of the modification reaction. A further product, hitherto not yet described in active site methylations of serine proteinases, was pi, tau-dimethylhistidine (1,3-dimethylhistidine). The failure of an attempted synthesis of the N-acetyl-ethanolamine ester of p-toluene-sulfonic acid reported in the literature is shown to be due to the high instability of this ester.

  12. 40 CFR 721.10363 - Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4′ -methylenebis...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-oxiranylmethyl ester, reaction products with 4,4â² -methylenebis (cyclohexanamine) (generic). 721.10363 Section... Substances § 721.10363 Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4..., reaction products with 4,4′ -methylenebis (cyclohexanamine) (PMN P-10-47) is subject to reporting...

  13. 40 CFR 721.10363 - Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4′ -methylenebis...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-oxiranylmethyl ester, reaction products with 4,4â² -methylenebis (cyclohexanamine) (generic). 721.10363 Section... Substances § 721.10363 Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4..., reaction products with 4,4′ -methylenebis (cyclohexanamine) (PMN P-10-47) is subject to reporting...

  14. 40 CFR 721.10363 - Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4′ -methylenebis...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-oxiranylmethyl ester, reaction products with 4,4â² -methylenebis (cyclohexanamine) (generic). 721.10363 Section... Substances § 721.10363 Alkenoic acid, 2-methyl-, 2-oxiranylmethyl ester, reaction products with 4,4..., reaction products with 4,4′ -methylenebis (cyclohexanamine) (PMN P-10-47) is subject to reporting...

  15. Preparation and Evaluation of Jojoba Oil Methyl Ester as Biodiesel and as Blend Components in Ultra Low Sulfur Diesel Fuel

    USDA-ARS?s Scientific Manuscript database

    The jojoba plant (Simmondsia chinensis L.) produces seeds that contain around 50 to 60 weight percent of inedible long-chain wax esters that are suitable as a potential feedstock for biodiesel production. A Jojoba oil methyl ester (JME) was prepared in effort to evaluate an important fuel propertie...

  16. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.8450 2-Propenoic acid, 2-methyl-, 2- ethyl ester. (a) Chemical substance... acid, 2-methyl-, 2- ethyl ester, (PMN P-90-333) is subject to reporting under this section for the...

  17. 40 CFR 721.8450 - 2-Propenoic acid, 2-methyl-, 2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl]ethyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ester. 721.8450 Section 721.8450 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.8450 2-Propenoic acid, 2-methyl-, 2- ethyl ester. (a) Chemical substance... acid, 2-methyl-, 2- ethyl ester, (PMN P-90-333) is subject to reporting under this section for the...

  18. Chloromethane, a Novel Methyl Donor for Biosynthesis of Esters and Anisoles in Phellinus pomaceus.

    PubMed

    Harper, David B; Hamilton, John T G; Kennedy, James T; McNally, Kieran J

    1989-08-01

    Chloromethane (CH(3)Cl), a gaseous natural product released as a secondary metabolite by many woodrotting fungi of the family Hymenochaetaceae, has been shown to act as a methyl donor for biosynthesis of methyl esters of benzoic and furoic acid in the primary metabolism of Phellinus pomaceus. The broad-specificity methylating system could esterify a wide range of aromatic and aliphatic acids. In addition to CH(3)Cl, both bromo- and iodomethanes acted as methyl donors. Methylation did not appear to proceed via methanol or a coenzyme A intermediate. The initial growth-related accumulation of methyl benzoate during culture of P. pomaceus was paralleled by an increase in activity of the methylating system in the mycelium. Changes in percent incorporation of CH(3) from exogenous CH(3)Cl during growth indicated that although utilization of CH(3)Cl was initially closely coupled to biosynthesis of the compound, the system became less tightly channeled later in growth. This phase coincided with release of gaseous CH(3)Cl by the fungus. A biochemically distinct CH(3)Cl-utilizing system capable of methylating phenols and thiophenol was also identified in the fungus, but in contrast with the carboxylic acid-methylating system, it attained maximum activity in the idiophase. Preliminary investigations of a non-CH(3)Cl-releasing fungus, Fomitopsis pinicola, have shown the presence of a CH(3)Cl-utilizing system capable of methylating benzoic acid, suggesting that CH(3)Cl biosynthesis may occur in non-hymenochaetaceous fungi. Halogenated compounds hitherto found in nature are mainly stable end products of metabolism. The participation of CH(3)Cl in primary fungal metabolism demonstrates that some halometabolites may have a previously unrecognized role as intermediates in the biosynthesis of nonhalogenated natural products.

  19. Chloromethane, a Novel Methyl Donor for Biosynthesis of Esters and Anisoles in Phellinus pomaceus

    PubMed Central

    Harper, David B.; Hamilton, John T. G.; Kennedy, James T.; McNally, Kieran J.

    1989-01-01

    Chloromethane (CH3Cl), a gaseous natural product released as a secondary metabolite by many woodrotting fungi of the family Hymenochaetaceae, has been shown to act as a methyl donor for biosynthesis of methyl esters of benzoic and furoic acid in the primary metabolism of Phellinus pomaceus. The broad-specificity methylating system could esterify a wide range of aromatic and aliphatic acids. In addition to CH3Cl, both bromo- and iodomethanes acted as methyl donors. Methylation did not appear to proceed via methanol or a coenzyme A intermediate. The initial growth-related accumulation of methyl benzoate during culture of P. pomaceus was paralleled by an increase in activity of the methylating system in the mycelium. Changes in percent incorporation of C2H3 from exogenous C2H3Cl during growth indicated that although utilization of CH3Cl was initially closely coupled to biosynthesis of the compound, the system became less tightly channeled later in growth. This phase coincided with release of gaseous CH3Cl by the fungus. A biochemically distinct CH3Cl-utilizing system capable of methylating phenols and thiophenol was also identified in the fungus, but in contrast with the carboxylic acid-methylating system, it attained maximum activity in the idiophase. Preliminary investigations of a non-CH3Cl-releasing fungus, Fomitopsis pinicola, have shown the presence of a CH3Cl-utilizing system capable of methylating benzoic acid, suggesting that CH3Cl biosynthesis may occur in non-hymenochaetaceous fungi. Halogenated compounds hitherto found in nature are mainly stable end products of metabolism. The participation of CH3Cl in primary fungal metabolism demonstrates that some halometabolites may have a previously unrecognized role as intermediates in the biosynthesis of nonhalogenated natural products. PMID:16347989

  20. 40 CFR 721.10665 - 2-Propenoic acid, (2-ethyl-2-methyl-1,3-dioxolan-4-yl)methyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10665 2-Propenoic acid, (2-ethyl-2-methyl-1,3-dioxolan-4-yl)methyl ester. (a) Chemical substance and significant new uses subject to reporting. (1)...

  1. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F.; He, K.; Ma, Y.; Rahn, K. A.; Zhang, Q.

    2015-03-01

    We have developed an enhanced analytical procedure to measure organic acids and methyl esters in fine aerosol with much greater specificity and sensitivity than previously available. This capability is important because of these species and their low concentrations, even in highly polluted atmospheres like Beijing, China. The procedure first separates the acids and esters from the other organic compounds with anion-exchange solid- phase extraction (SPE), then, quantifies them by gas chromatography coupled with mass spectrometry. This allows us to accurately quantify the C4-C11 dicarboxylic and the C8-C30 monocarboxylic acids. Then the acids are separated from the esters on an aminopropyl SPE cartridge, whose weak retention isolates and enriches the acids from esters prevents the fatty acids and dimethyl phthalate from being overestimated. The resulting correlations between the aliphatic acids and fatty acid methyl esters (FAMEs) suggest that FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. In all, 17 aromatic acids were identified and quantified using this procedure coupled with gas chromatography-tandem mass spectrometry, including the five polycyclic aromatic hydrocarbon (PAH) acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH-acids and the dicarboxylic and aromatic acids indicated that the first three acids and 1,8-naphthalic anhydride were mainly secondary, the last two mainly primary.

  2. Treatment with a single vaginal suppository containing 15-methyl PGF2 alpha methyl ester at expected time of menstruation.

    PubMed

    Kinoshita, K; Eneroth, P; Bygdeman, M

    1979-03-01

    Termination of early pregnancy, by vaginal administration of prostaglandin analogues, one to three weeks after the first missed menstrual period, has advantages and disadvantages in comparison with vacuum aspiration. Some of these may be reduced if the patient is treated earlier. In the present study the effect and safety of one vaginal administration of 2.5 to 3 mg 15-methyl-PGF2 alpha methyl ester around the expected time of menstruation was evaluated in 16 women exposed to the risk of pregnancy. The overall number of treatment cycles was 35 and pregnancy was confirmed by plasma beta-HCG in eight. The treatment resulted in bleeding in all the pregnant cycles while in the nonpregnant ones it only provoked spotting and bleeding did not begin until the expected time of menstruation. Treatment with 2.5 mg 15-methyl-PGF2 alpha methyl ester resulted in complete abortion in one of three women. If the dose was increased to 3 mg all five treated women aborted. In nonpregnant patients no changes in the levels of estradiol-17 beta or progesterone at any time during the 24-hour observation period were found. Serum cortisol and prolactin but not TSH levels started to increase two hours after the start of treatment and reached a maximum after five hours. The increase coincided with the onset of uterine pain. Ovulatory cycles as judged from basal body temperature occurred in the first menstrual cycle following treatment in all nonpregnant patients. Although possible to use as a "once a month treatment" it seems preferable since the dose is the same, to postpone treatment until menstruation is delayed for a week or more.

  3. Novel Strategy of Using Methyl Esters as Slow Release Methanol Source during Lipase Expression by mut+ Pichia pastoris X33

    PubMed Central

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression. PMID:25170843

  4. Novel strategy of using methyl esters as slow release methanol source during lipase expression by mut+ Pichia pastoris X33.

    PubMed

    Kumari, Arti; Gupta, Rani

    2014-01-01

    One of the major issues with heterologous production of proteins in Pichia pastoris X33 under AOX1 promoter is repeated methanol induction. To obviate repeated methanol induction, methyl esters were used as a slow release source of methanol in lipase expressing mut+ recombinant. Experimental design was based on the strategy that in presence of lipase, methyl esters can be hydrolysed to release their products as methanol and fatty acid. Hence, upon break down of methyl esters by lipase, first methanol will be used as a carbon source and inducer. Then P. pastoris can switch over to fatty acid as a carbon source for multiplication and biomass maintenance till further induction by methyl esters. We validated this strategy using recombinant P. pastoris expressing Lip A, Lip C from Trichosporon asahii and Lip11 from Yarrowia lipolytica. We found that the optimum lipase yield under repeated methanol induction after 120 h was 32866 U/L, 28271 U/L and 21978 U/L for Lip C, Lip A and Lip 11 respectively. In addition, we found that a single dose of methyl ester supported higher production than repeated methanol induction. Among various methyl esters tested, methyl oleate (0.5%) caused 1.2 fold higher yield for LipA and LipC and 1.4 fold for Lip11 after 120 h of induction. Sequential utilization of methanol and oleic acid by P. pastoris was observed and was supported by differential peroxisome proliferation studies by transmission electron microscopy. Our study identifies a novel strategy of using methyl esters as slow release methanol source during lipase expression.

  5. Lewis acid catalysed methylation of N-(9H-fluoren-9-yl)methanesulfonyl (Fms) protected lipophilic α-amino acid methyl esters.

    PubMed

    Leggio, Antonella; Alò, Danila; Belsito, Emilia Lucia; Di Gioia, Maria Luisa; Romio, Emanuela; Siciliano, Carlo; Liguori, Angelo

    2015-08-01

    This work reports an efficient Lewis acid catalysed N-methylation procedure of lipophilic α-amino acid methyl esters in solution phase. The developed methodology involves the use of the reagent system AlCl3/diazomethane as methylating agent and α-amino acid methyl esters protected on the amino function with the (9H-fluoren-9-yl)methanesulfonyl (Fms) group. The removal of Fms protecting group is achieved under the same conditions to those used for Fmoc removal. Thus the Fms group can be interchangeable with the Fmoc group in the synthesis of N-methylated peptides using standard Fmoc-based strategies. Finally, the absence of racemization during the methylation reaction and the removal of Fms group were demonstrated by synthesising a pair of diastereomeric dipeptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  6. Stability studies on methyl and ethyl fatty acid esters of sunflower seed oil

    SciTech Connect

    Du Plessis, L.M.; De Villiers, J.B.M.; Van der Walt, W.H.

    1985-04-01

    Fatty acid esters, high in linoleic acid, were prepared and stored for long-term engine tests. Storage tests were undertaken to obtain data on optimal storage requirements and general stability characteristics. Samples were kept at three temperature levels (20 C, 30C and fluctuating around 50 C) for a 90-day period and were removed at regular intervals for chemical and physical analysis. The influence of air, temperature, light, TBHQ and contact with mild steel was evaluated by comparing the free fatty acid, peroxide, anisidine, ultraviolet absorption, viscosity and inducation periods. A statistical model was used to evaluate the data and to reduce the data points to comparable curves. Storage of esters in contact with air, especially at a temperature above 30 C, resulted in significant increases in peroxide, ultraviolet absorption, free fatty acid, viscosity and anisidine values. Exclusion of air retarded oxidation at all temperature levels. A direct relationship between viscosity increases and oxidation parameters was evident. Exposure to light caused a small increase in the oxidation parameters of esters stored at the highest temperature level. Addition of TBHQ prevented oxidation of samples stored under moderate conditions. Under unfavorable storage conditions the anti-oxidant was no longer effective. Mild steel had very little effect on the oxidation parameters. The anisidine values of samples stored at the highest temperature level were slightly increased. Methyl esters performed slightly better than ethyl esters during the storage test. The recommended guidelines for storage of fatty acid ester fuels are: (1) airtight containers should be used, (2) the storage temperature should be less than 30 C, (3) mild steel (rust free) containers may be used, and (4) TBHQ has a beneficial effect on oxidation stability. 13 references.

  7. Modeling Study of the Low-Temperature Oxidation of Large Methyl Esters from C11 to C19

    PubMed Central

    Herbinet, Olivier; Biet, Joffrey; Hakka, Mohammed Hichem; Warth, Valérie; Glaude, Pierre Alexandre; Nicolle, André; Battin-Leclerc, Frédérique

    2013-01-01

    The modeling of the low temperature oxidation of large saturated methyl esters really representative of those found in biodiesel fuels has been investigated. Models have been developed for these species and then detailed kinetic mechanisms have been automatically generated using a new extended version of software EXGAS, which includes reactions specific to the chemistry of esters. A model generated for a binary mixture of n-decane and methyl palmitate was used to simulate experimental results obtained in a jet-stirred reactor for this fuel. This model predicts very well the reactivity of the fuel and the mole fraction profiles of most reaction products. This work also shows that a model for a middle size methyl ester such as methyl decanoate predicts fairly well the reactivity and the mole fractions of most species with a substantial decrease in computational time. Large n-alkanes such as n-hexadecane are also good surrogates for reproducing the reactivity of methyl esters, with an important gain in computational time, but they cannot account for the formation of specific products such as unsaturated esters or cyclic ethers with an ester function. PMID:23814504

  8. A kinetic study of the photodynamic effect on tryptophan methyl ester and tryptophan octyl ester in DOPC vesicles.

    PubMed

    Posadaz, Ariana; Correa, N Mariano; Biasutti, M Alicia; García, Norman A

    2010-01-01

    The photodynamic effect on tryptophan methyl ester (trpME) and tryptophan octyl ester (trpOE), using the O(2)((1)Delta(g))-photosensitizers Rose Bengal (RB) and Perinaphthenone (PN) has been studied in large unilamellar vesicles (LUVs) of the phospholipid 1,2-di-oleoyl-sn-glycero-3-phosphatidylcholine (DOPC) by stationary photolysis and time-resolved methods. This work reports on the influence of both the site (O(2)((1)Delta(g))) generation and the location of the tryptophan derivatives (trpD), on the photo-oxidation process in a compartmentalized system. The apparent rate constant values for chemical quenching of O(2)((1)Delta(g)) by trpOE (k(r,app)), was higher in vesicles than in water. Also, the ratio between apparent reactive and overall rate constant values for the deactivation of O(2)((1)Delta(g)) (k(r,app)/k(t,app)), increases in vesicles as compared with water, when the oxidative species is generated in the lipidic region or at the interface. Nevertheless, this quotient is lower than the corresponding value in water when O(2)((1)Delta(g)) is generated in the aqueous pseudophase. For trpME, the k(r,app)/k(t,app)values in vesicles and in water are quite similar, confirming the fact that trpME is located in the water pseudophase. Results are discussed in terms of relative protection against O(2)((1)Delta(g)) attack in a microheterogeneous medium as compared with water.

  9. Synthesis of Thienamycin methyl ester from 2-deoxy-D-ribose via Kinugasa reaction.

    PubMed

    Soluch, Magdalena; Grzeszczyk, Barbara; Staszewska-Krajewska, Olga; Chmielewski, Marek; Furman, Bartłomiej

    2016-03-01

    A novel synthesis of thienamycin is described. The crucial step of the synthesis is based on Cu(I)-mediated Kinugasa cycloaddition/rearrangement cascade reaction between terminal acetylene derived from D-lactic acid and suitable, partially protected, five-membered cyclic nitrone obtained from 2-deoxy-D-ribose. The reaction was performed in the presence of tetramethylguanidine as a base to provide 5,6-trans substituted carbapenam as the main product. Thus obtained carbapenam 11 with (5R,6S) configuration at the azetidinone ring was subsequently subjected to oxidation/deprotection/oxidation reaction sequence to afford the β-keto ester 20, which was directly transformed into N,O-protected methyl ester of thienamycin.

  10. 40 CFR 721.4792 - 2-propenoic acid, 2-methyl-, C11-14-isoalkyl esters, C13-rich.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-propenoic acid, 2-methyl-, C11-14... New Uses for Specific Chemical Substances § 721.4792 2-propenoic acid, 2-methyl-, C11-14-isoalkyl... substance identified as 2-propenoic acid, 2-methyl-, C11-14-isoalkyl esters, C13-rich (PMN P-99-1189; CAS No...

  11. 40 CFR 721.4792 - 2-propenoic acid, 2-methyl-, C11-14-isoalkyl esters, C13-rich.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-propenoic acid, 2-methyl-, C11-14... New Uses for Specific Chemical Substances § 721.4792 2-propenoic acid, 2-methyl-, C11-14-isoalkyl... substance identified as 2-propenoic acid, 2-methyl-, C11-14-isoalkyl esters, C13-rich (PMN P-99-1189; CAS No...

  12. 40 CFR 721.4792 - 2-propenoic acid, 2-methyl-, C11-14-isoalkyl esters, C13-rich.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false 2-propenoic acid, 2-methyl-, C11-14... New Uses for Specific Chemical Substances § 721.4792 2-propenoic acid, 2-methyl-, C11-14-isoalkyl... substance identified as 2-propenoic acid, 2-methyl-, C11-14-isoalkyl esters, C13-rich (PMN P-99-1189; CAS No...

  13. Antimicrobial activity of fatty acid methyl esters of some members of Chenopodiaceae.

    PubMed

    Chandrasekaran, Manivachagam; Kannathasan, Krishnan; Venkatesalu, Venugopalan

    2008-01-01

    Fatty acid methyl ester (FAME) extracts of four halophytic plants, viz. Arthrocnemum indicum, Salicornia brachiata, Suaeda maritima and Suaeda monoica belonging to the family Chenopodiaceae, were prepared and their composition was analyzed by GC-MS. The FAME extracts were also screened for antibacterial and antifungal activities. The GC-MS analysis revealed the presence of more saturated fatty acids than unsaturated fatty acids. Among the fatty acids analyzed, the relative percentage of lauric acid was high in S. brachiata (61.85%). The FAME extract of S. brachiata showed the highest antibacterial and antifungal activities among the extracts tested. The other three extracts showed potent antibacterial and moderate anticandidal activities.

  14. Metastable McLafferty rearrangement reaction in the electron impact ionization of stearic acid methyl ester

    NASA Astrophysics Data System (ADS)

    Takayama, Mitsuo

    1995-06-01

    The metastable peaks for the McLafferty rearrangement and double hydrogen rearrangement reactions have been observed in the stearic acid methyl ester system under electron impact ionization. The metastable ion spectrum of the M+. ion gave peaks corresponding to the ions at m/z 74, 75, 87 and 88, whereas the collision-induced dissociation spectrum showed low intensity ions at m/z 75 and 88 which come from double hydrogen rearrangement reactions of M+. ions. The kinetics for the change of the molecular ions to different structures before fragmentation have been discussed.

  15. Nuclear magnetic resonance spectroscopic analysis of homoallylic and bis homoallylic substituted methyl fatty ester derivatives.

    PubMed

    Jie, M S; Cheng, K L

    1995-02-01

    Using a combination of selective irradiation 1H nuclear magnetic resonance experiments and two-dimensional 1H-13C correlation spectroscopy spectral analysis of homoallylic and bis homoallylic substituted (azido, acetoxy, chloro and oxo) fatty ester derivatives, the carbon shifts of the ethylenic carbon atoms were determined. In the case of methyl 12-azido-9Z-octadecenoate (homoallylic), the carbon chemical shifts of the ethylenic C-9 and C-10 carbon nuclei are 133.092 and 124.596 ppm, respectively. In methyl 9-azido-12Z-octadecenoate (bis homoallylic), the carbon chemical shift of the ethylenic C-12 and C-13 carbon nuclei are 128.118 and 131.243 ppm, respectively.

  16. Soybean biodiesel methyl esters, free glycerin and acid number quantification by 1H nuclear magnetic resonance spectroscopy.

    PubMed

    Coral, Natasha; Rodrigues, Elizabeth; Rumjanek, Victor; Zamian, José Roberto; da Rocha Filho, Geraldo Narciso; da Costa, Carlos Emmerson Ferreira

    2013-02-01

    Production of alternative fuels, such as biodiesel, from transesterification of vegetable oil driven by heterogeneous catalysts is a promising alternative to fossil diesel. However, achieving a successful substitution for a new renewable fuel depends on several quality parameters. (1)H NMR spectroscopy was used to determine the amount of methyl esters, free glycerin and acid number in the transesterification of soybean oil with methanol in the presence of hydrotalcite-type catalyst to produce biodiesel. Reaction parameters, such as temperature and time, were used to evaluate soybean oil methyl esters rate conversion. Temperatures of 100 to 180 °C and times of 20 to 240 min were tested on a 1 : 12 molar ratio soybean oil/methanol reaction. At 180 °C/240 min conditions, a rate of 94.5 wt% of methyl esters was obtained, where free glycerin and free fatty acids were not detected.

  17. Isolation and characterization of fatty acid methyl ester (FAME)-producing Streptomyces sp. S161 from sheep (Ovis aries) faeces.

    PubMed

    Lu, Y; Wang, J; Deng, Z; Wu, H; Deng, Q; Tan, H; Cao, L

    2013-09-01

    An actinomycete producing oil-like mixtures was isolated and characterized. The strain was isolated from sheep faeces and identified as Streptomyces sp. S161 based on 16S rRNA gene sequence analysis. The strain showed cellulase and xylanase activities. The (1) H nuclear magnetic resonance (NMR) spectra of the mixtures showed that the mixtures were composed of fatty acid methyl esters (52·5), triglycerides (13·7) and monoglycerides (9·1) (mol.%). Based on the gas chromatography-mass spectrometry (GC-MS) analysis, the fatty acid methyl esters were mainly composed of C14-C16 long-chain fatty acids. The results indicated that Streptomyces sp. S161 could produce fatty acid methyl esters (FAME) directly from starch. To our knowledge, this is the first isolated strain that can produce biodiesel (FAME) directly from starch. © 2013 The Society for Applied Microbiology.

  18. Performance of Surfactant Methyl Ester Sulphonate solution for Oil Well Stimulation in reservoir sandstone TJ Field

    NASA Astrophysics Data System (ADS)

    Eris, F. R.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-05-01

    Asphaltene, paraffin, wax and sludge deposition, emulsion and water blocking are kinds ofprocess that results in a reduction of the fluid flow from the reservoir into formation which causes a decrease of oil wells productivity. Oil well Stimulation can be used as an alternative to solve oil well problems. Oil well stimulation technique requires applying of surfactant. Sodium Methyl Ester Sulphonate (SMES) of palm oil is an anionic surfactant derived from renewable natural resource that environmental friendly is one of potential surfactant types that can be used in oil well stimulation. This study was aimed at formulation SMES as well stimulation agent that can identify phase transitions to phase behavior in a brine-surfactant-oil system and altered the wettability of rock sandstone and limestone. Performance of SMES solution tested by thermal stability test, phase behavioral examination and rocks wettability test. The results showed that SMES solution (SMES 5% + xylene 5% in the diesel with addition of 1% NaCl at TJformation water and SMES 5% + xylene 5% in methyl ester with the addition of NaCl 1% in the TJ formation water) are surfactant that can maintain thermal stability, can mostly altered the wettability toward water-wet in sandstone reservoir, TJ Field.

  19. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters.

    PubMed

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M J

    2012-02-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel.

  20. A monolithic lipase reactor for biodiesel production by transesterification of triacylglycerides into fatty acid methyl esters

    PubMed Central

    Urban, Jiri; Svec, Frantisek; Fréchet, Jean M.J.

    2011-01-01

    An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel. PMID:21915852

  1. Synthesis, molecular modeling studies and anticonvulsant activity of certain (1-(benzyl (aryl) amino) cyclohexyl) methyl esters.

    PubMed

    Abd-Allah, Walaa Hamada; Aboutabl, Mona Elsayed; Aboul-Enein, Mohamed Nabil; El-Azzouny, Aida Abdel Sattar

    2017-04-01

    A series of (1-(benzyl (aryl) amino) cyclohexyl) methyl esters 7a-n were prepared and screened for their anticonvulsant profile. Screening of these esters 7a-n and their starting alcohols 6a and 6b revealed that compound 7k was the most potent one in the scPTZ screening test with an ED50 value of 0.0056mmol/kg being about 10- and 164-fold more potent than phenobarbital (ED50=0.056mmol/kg) and ethosuximide (ED50=0.92mmol/kg) as reference drugs, respectively. Meanwhile, in the MES test, compounds 7b and 7k at doses 0.0821mmol/kg and 0.0334mmol/kg, exerted 66% and 50% protection of the tested mice, respectively, compared with diphenylhydantoin, which exerted 100% protection at dose 0.16mmol/kg. In the neurotoxicity screen test, almost all esters 7a-n did not show any minimal motor impairment at the maximum administrated dose. The anticonvulsant effectiveness of esters 7a-n was higher than their corresponding alcohols 6a and 6b. Compounds 7b and 7k exhibited pronounced anticonvulsant activity devoid of neurotoxicity in minimal motor impairment test and hepatotoxicity in the serum enzyme activity assay. 3D pharmacophore model using Discovery Studio 2.5 programs showed high fit value. The obtained experimental results of sc-PTZ activity of compounds 7a-n was consistent with the molecular modeling study. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Conversion of beet molasses and cheese whey into fatty acid methyl esters by the yeast Cryptococcus curvatus.

    PubMed

    Takakuwa, Naoya; Saito, Katsuichi

    2010-01-01

    Eighty-one yeast isolates from raw milk were surveyed for the production of fatty acid methyl esters (FAME). Only one species, identified as Cryptococcus curvatus, produced FAME at a detectable level. Cr. curvatus TYC-19 produced more FAME from beet molasses and cheese whey medium than other strains of the same species. In both media, the major FAME produced were linoleic and oleic acid methyl esters. Sequence analysis of the internal transcribed spacer region of ribosomal DNA indicated that TYC-19 diverged from the same species.

  3. 4-Hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as potent anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-01-19

    Based on the structure of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which exhibits selective cytotoxicity against a tumorigenic cell line, (2,4-dimethoxyphenyl)-(4-hydroxy-3-methyl-6-phenylbenzofuran-2-yl)-methanone (18m) was designed and synthesized as a biologically stable derivative containing no ester group. Although the potency of 18m was almost the same as our initial hit compound 1, 18m is expected to last longer in the human body as an anticancer agent.

  4. 40 CFR 721.9530 - Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester of cycloalkyl spir-o-ke-tal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) ester of cycloalkyl spir-o-ke-tal. 721.9530 Section 721.9530 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.9530 Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester...) The chemical substance identified generically as bis(2,2,6,6-tetramethyl pi-per-idin-yl) ester of cy...

  5. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  6. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric...

  7. Complementary blending of meadowfoam seed oil methyl esters with biodiesel prepared from soybean and waste cooking oils to enhance fuel properties

    USDA-ARS?s Scientific Manuscript database

    The complementary blending of meadowfoam seed oil methyl esters (MFME) with soybean and waste cooking oil methyl esters (SME and WCME) was investigated. MFME prepared from cold-pressed meadowfoam oil exhibited an exceptionally high induction period (IP) of 66.2 h whereas SME and WCME yielded conside...

  8. Alkali metal ion binding to amino acids versus their methyl esters: affinity trends and structural changes in the gas phase.

    PubMed

    Talley, Jody M; Cerda, Blas A; Ohanessian, Gilles; Wesdemiotis, Chrys

    2002-03-15

    The relative alkali metal ion (M(+)) affinities (binding energies) between seventeen different amino acids (AA) and the corresponding methyl esters (AAOMe) were determined in the gas phase by the kinetic method based on the dissociation of AA-M(+)-AAOMe heterodimers (M=Li, Na, K, Cs). With the exception of proline, the Li(+), Na(+), and K(+) affinities of the other aliphatic amino acids increase in the order AAAAOMe is already observed for K(+). Proline binds more strongly than its methyl ester to all M(+) except Li(+). Ab initio calculations on the M(+) complexes of alanine, beta-aminoisobutyric acid, proline, glycine methyl ester, alanine methyl ester, and proline methyl ester show that their energetically most favorable complexes result from charge solvation, except for proline which forms salt bridges. The most stable mode of charge solvation depends on the ligand (AA or AAOMe) and, for AA, it gradually changes with metal ion size. Esters chelate all M(+) ions through the amine and carbonyl groups. Amino acids coordinate Li(+) and Na(+) ions through the amine and carbonyl groups as well, but K(+) and Cs(+) ions are coordinated by the O atoms of the carboxyl group. Upon consideration of these differences in favored binding geometries, the theoretically derived relative M(+) affinities between aliphatic AA and AAOMe are in good overall agreement with the above given experimental trends. The majority of side chain functionalized amino acids studied show experimentally the affinity order AAAAOMe. The latter ranking is attributed to salt bridge formation.

  9. The role of hydrogen bonding in the selectivity of L-cysteine methyl ester (CYSM) and L-cysteine ethyl ester (CYSE) for chloride ion

    NASA Astrophysics Data System (ADS)

    Mosier-Boss, P. A.; Lieberman, S. H.

    2005-03-01

    The interaction of cysteamine (CY), L-cysteine methyl ester (CYSM), and L-cysteine ethyl ester (CYSE) with nitrate, sulfate, perchlorate, dihydrogen phosphate, and chloride ions was investigated using surface enhanced Raman spectroscopy (SERS). CYSM and CYSE are chemical derivatives of CY. These thiols have a quaternary ammonium group to attract the anions to the SERS surface. Dihydrogen phosphate did not interact with these cationic thiols. The CY interaction with perchlorate, nitrate, and sulfate is stronger than the interaction with chloride. However, replacing a hydrogen on the carbon adjacent to the quaternary ammonium group with either a methyl or ethyl ester group results in stronger complexation with chloride ion than with either sulfate or nitrate ion. In the case of CYSM, the chloride interaction is five times stronger than the interaction with perchlorate. Molecular modeling indicates that the high selectivity of CYSM/CYSE for chloride is due to hydrogen bonding between the chloride ion and the hydrogen of the CH 3 moeities of adjacent ester groups.

  10. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...

  11. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...

  12. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...

  13. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...

  14. 40 CFR 721.1725 - Benzoic acid, 3,3′-methyl-enebis [6 amino-, di-2-propenyl ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Significant New Uses for Specific Chemical Substances § 721.1725 Benzoic acid, 3,3′-methyl-enebis [6 amino..., Benzoic acid, 3,3′-methylenebis [6 amino-, di-2-propenyl ester. (2) The significant new uses are: (i) Any... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Benzoic acid, 3,3â²-methyl-enebis [6...

  15. Production of Fatty Acid Methyl Esters via the In Situ Transesterification of Soybean Oil in Carbon Dioxide-Expanded Methanol

    USDA-ARS?s Scientific Manuscript database

    The production of fatty acid methyl esters (FAME) by direct alkali- and acid-catalyzed in situ transesterification of soybean flakes in CO2-expanded methanol was examined at various temperatures and pressures. Attempts to synthesize FAME from soy flakes via alkaline catalysis, using sodium methoxid...

  16. Evaluation of peanut fatty acid methyl ester sprays, combustion, and emissions, for use in an indirect injection diesel engine

    USDA-ARS?s Scientific Manuscript database

    The paper provides an analysis of 100% peanut fatty acid methyl esters (FAMEs) and peanut FAME/ULSD#2 blends (P20, P35, and P50) in an indirect injection (IDI) diesel engine (for auxiliary power unit applications) in comparison to ultralow sulfur diesel no. 2 (ULSD#2) at various speeds and 100% load...

  17. Toward More “Ideal” Polyketide Natural Product Synthesis: A Step-Economical Synthesis of Zincophorin Methyl Ester

    PubMed Central

    Harrison, Tyler; Ho, Stephen; Leighton, James L.

    2011-01-01

    A highly efficient and step-economical synthesis of zincophorin methyl ester has been achieved. The unprecedented step-economy of this zincophorin synthesis is principally due to an application of the tandem silylformylation-crotylsilylation/Tamao oxidation-diastereoselective tautomerization reaction that achieves in a single step what would typically require a significant multi-step sequence. PMID:21524078

  18. Quantification of primary fatty acid amides in commercial tallow and tallow fatty acid methyl esters by HPLC-APCI-MS.

    PubMed

    Madl, Tobias; Mittelbach, Martin

    2005-04-01

    Primary fatty acid amides are a group of biologically highly active compounds which were already identified in nature. Here, these substances were determined in tallow and tallow fatty acid methyl esters for the first time. As tallow is growing in importance as an oleochemical feedstock for the soap manufacturing, the surfactant as well as the biodiesel industry, the amounts of primary fatty acid amides have to be considered. As these compounds are insoluble in tallow as well as in the corresponding product e.g. tallow fatty acid methyl esters, filter plugging can occur. For the quantification in these matrices a purification step and a LC-APCI-MS method were developed. Although quantification of these compounds can be performed by GC-MS, the presented approach omitted any derivatization and increased the sensitivity by two orders of magnitude. Internal standard calibration using heptadecanoic acid amide and validation of the method yielded a limit of detection of 18.5 fmol and recoveries for the tallow and fatty acid methyl ester matrices of 93% and 95%, respectively. A group of commercially available samples were investigated for their content of fatty acid amides resulting in an amount of up to 0.54%m/m (g per 100 g) in tallow and up to 0.16%m/m (g per 100 g) in fatty acid methyl esters.

  19. Preparation of fatty acid methyl esters from hazelnut, high-oleic peanut and walnut oils and evaluation as biodiesel

    USDA-ARS?s Scientific Manuscript database

    Hazelnut, walnut and high-oleic peanut oils were converted into fatty acid methyl esters using catalytic sodium methoxide and evaluated as potential biodiesel fuels. These feedstocks were of interest due to their adaptability to marginal lands and their lipid production potentials (780-1780 L ha-1 y...

  20. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP)

    SciTech Connect

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure is based on a whole biomass transesterification of lipids to fatty acid methyl esters to represent an accurate reflection of the potential of microalgal biofuels. Lipids are present in many forms and play various roles within an algal cell, from cell membrane phospholipids to energy stored as triacylglycerols.

  1. Influence of extended storage on fuel properties of methyl esters prepared from canola, palm, soybean, and sunflower oils

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl esters prepared from canola, palm, soybean, and sunflower oils by homogenous base-catalyzed methanolysis were stored for 12 months at three constant temperatures (-15, 22, and 40 deg C) and properties such as oxidative stability, acid value, kinematic viscosity, low temperature ope...

  2. New efficient near-IR photosensitizer based on bacteriochlorin p N-methoxycycloimide oxyme methyl ester

    NASA Astrophysics Data System (ADS)

    Meerovich, Igor G.; Grin, Mikhail A.; Tsyprovskiy, Alexander G.; Meerovich, Gennady A.; Oborotova, Natalia A.; Loschenov, Victor B., II; Baryshnikov, Anatoly Yu.; Mironov, Andrey F.

    2008-06-01

    This work is devoted to investigation of new photosensitizer Bacteriochlorin p N-methoxycycloimide oxyme methyl ester (BchlpOx-NOMe). Investigations of photosensitizer in vivo and experimental PDT were performed on animals bearing intramuscularly inoculated Erlich tumor and B16 melanoma. Characteristic absorption maximum of BchlpOx-NOMe around 795 nm is within the range of minimum intrinsic absorption of biological tissue. Dynamics and selectivity of sensitizer accumulation in tumor and normal tissue were estimated from spectra of absorption of sensitized tissue in vivo. The investigation has shown that the optimum time range to start PDT irradiation of tumor is 10-30 min after administration. Photosensitizer has shown high photodynamic efficiency of relatively large tumors, including high PDT efficiency in preliminary experiments with BDF1 mice bearing B16 melanoma, causing tumor growth inhibition more than 90% and prolongation of lifespan of tumor-bearing animals more than 60%.

  3. Photoinduced N-demethylation of rufloxacin and its methyl ester under aerobic conditions.

    PubMed

    Belvedere, Alessandra; Boscá, Francisco; Cuquerella, M Consuelo; de Guidi, Guido; Miranda, Miguel A

    2002-09-01

    Irradiation of rufloxacin (RF) under aerobic conditions gives rise to N-demethylation of the piperazinyl ring, which is enhanced in aerated D2O. Two primary processes seem to be involved in RF N-demethylation: photoionization from 1RF and singlet oxygen generation from 3RF. Both processes may lead to the same key intermediates, namely, RF*+ and superoxide radical anion; coupling of these intermediates explains N-demethylation of RF via an iminium cation. Formation of the hydrated electron by a monophotonic process (with a quantum yield of 0.09) is detected along with 3RF (with a intersystem-crossing quantum yield phiISC = 0.36) by laser flash photolysis. Studies performed on RF methyl ester give qualitatively similar results.

  4. (Nitrooxyacyloxy)methyl esters of aspirin as novel nitric oxide releasing aspirins.

    PubMed

    Lazzarato, Loretta; Donnola, Monica; Rolando, Barbara; Chegaev, Konstantin; Marini, Elisabetta; Cena, Clara; Di Stilo, Antonella; Fruttero, Roberta; Biondi, Stefano; Ongini, Ennio; Gasco, Alberto

    2009-08-27

    A series of (nitrooxyacyloxy)methyl esters of aspirin were synthesized and evaluated as new NO-donor aspirins. Different amounts of aspirin were released in serum from these products according to the nature of nitrooxyacyloxy moiety present. In the aromatic series, there is a rather good linear correlation between the amount of aspirin released and the potencies of the products in inhibiting platelet aggregation induced by collagen. Both the native compounds and the related nitrooxy-substituted acid metabolites were able to relax rat aorta strips precontracted with phenylephrine, in keeping with a NO-induced activation of the sGC as a mechanism that underlies the vasodilator effect. The products here described are new improved examples of NO-donor aspirins containing nitrooxy groups. They could represent an alternative to the use of aspirin in a variety of clinical applications.

  5. Growth and characterization of large single crystals of L-serine methyl ester hydrochloride

    NASA Astrophysics Data System (ADS)

    Parthasarathy, M.; Anantharaja, M.; Gopalakrishnan, R.

    2012-02-01

    Single crystal of L-serine methyl ester hydrochloride (LSMEHCl), was grown using slow evaporation solution growth technique. The grown crystal was confirmed by single crystal X-ray diffraction and the presence of functional groups were identified by FT-IR analysis. From the Optical transmission spectra of the grown crystal the optical energy band gap is found to be 5 eV and the refractive indices ( nx, ny and nz) were found using Brewster's angle method. The melting point of the material obtained using melting point apparatus is 168 °C. The thermal stability of the crystal was investigated. The second harmonic generation was tested with different particle sizes of powdered LSMEHCl by Kurtz-Perry powder method using Nd:YAG laser, which established the existence of phase matching.

  6. N-( p-Ethynylbenzoyl) derivatives of amino acid and dipeptide methyl esters - Synthesis and structural study

    NASA Astrophysics Data System (ADS)

    Eißmann, Frank; Weber, Edwin

    2011-11-01

    A series of N-( p-ethynylbenzoyl) derivatives ( 1-4) of the amino acids glycine and L-alanine as well as the dipeptides glycylglycine and L-alanylglycine has been synthesized via a two-step reaction sequence including the reaction of an appropriate N-( p-bromobenzoyl) precursor with trimethylsilylacetylene followed by deprotection of the trimethylsilyl protecting group, respectively. X-ray crystal structures of the amino acid and dipeptide methyl esters 1-4 are reported. The amide and peptide bonds within each molecular structure are planar and adopt the trans-configuration. The packing structures are governed by N sbnd H⋯O interactions leading to the formation of characteristic strand motifs. Further stabilization results from weaker C sbnd H⋯O and C sbnd H⋯π contacts.

  7. Chemical composition and antimicrobial activity of fatty acid methyl ester of Quercus leucotrichophora fruits.

    PubMed

    Sati, Ankita; Sati, Sushil Chandra; Sati, Nitin; Sati, O P

    2017-03-01

    Natural fats and dietary oils are chief source of fatty acids and are well known to have antimicrobial activities against various microbes. The chemical composition and antimicrobial activities of fatty acids from fruits of white Oak (Quercus leucotrichophora) are yet unexplored and therefore the present study for the first time determines the fatty acid composition, and the antibacterial and antifungal activities of fatty acid methyl esters (FAME) of the white Oak plant found along the Himalayan region of Uttarakhand, India. The GCMS analysis revealed the presence of higher amount of saturated fatty acids than unsaturated fatty acids. FAME extract of fruits of Q. leucotrichophora demonstrated better antibacterial activity against Gram-positive bacteria than the Gram-negative bacteria. The present studies clearly establish the potential of the fruits of Q. leucotrichophora for use in soap, cosmetics and pharmaceutical industries.

  8. Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity.

    PubMed

    Goodrum, John W; Geller, Daniel P

    2005-05-01

    Current and future regulations on the sulfur content of diesel fuel have led to a decrease in lubricity of these fuels. This decreased lubricity poses a significant problem as it may lead to wear and damage of diesel engines, primarily fuel injection systems. Vegetable oil based diesel fuel substitutes (biodiesel) have been shown to be clean and effective and may increase overall lubricity when added to diesel fuel at nominally low levels. Previous studies on castor oil suggest that its uniquely high level of the hydroxy fatty acid ricinoleic acid may impart increased lubricity to the oil and its derivatives as compared to other vegetable oils. Likewise, the developing oilseed Lesquerella may also increase diesel lubricity through its unique hydroxy fatty acid composition. This study examines the effect of castor and Lesquerella oil esters on the lubricity of diesel fuel using the High-Frequency Reciprocating Rig (HFRR) test and compares these results to those for the commercial vegetable oil derivatives soybean and rapeseed methyl esters.

  9. Methyl ester of [Maclura pomifera (Rafin.) Schneider] seed oil: biodiesel production and characterization.

    PubMed

    Saloua, Fatnassi; Saber, Chatti; Hedi, Zarrouk

    2010-05-01

    Oil extracted from seeds of Maclura pomifera fruits grown in Tunisia was investigated as an alternative feedstock for the production of biodiesel fuel. Biodiesel was prepared by transesterification of the crude oil with methanol in the presence of NaOH as catalyst. Maximum oil to ester conversion was 90%. The viscosity of the biodiesel oil (4.66 cSt) is similar to that of petroleum diesel (2.5-3.5 cSt). The density (0.889 g/cm(3)), kinematic viscosity (4.66 cSt), flash point (180 degrees Celsius), iodine number (125 degrees Celsius), neutralization number (0.4), pour point (-9 degrees Celsius), cloud point (-5 degrees Celsius), cetane number (48) are very similar to the values set forth by the ASTM and EN biodiesel standards for petroleum diesel (No. 2). The comparison shows that the methyl esters of M. pomifera oil could be possible diesel fuel replacements. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Comparative Studies on Performance Characteristics of CI Engine Fuelled with Neem Methyl Ester and Mahua Methyl Ester and Its Respective Blends with Diesel Fuel.

    PubMed

    Ragit, S S; Mohapatra, S K; Kundu, K

    2014-01-01

    In the present investigation, neem and mahua methyl ester were prepared by transesterification using potassium hydroxide as a catalyst and tested in 4-stroke single cylinder water cooled diesel engine. Tests were carried out at constant speed of 1500 rev/min at different brake mean effective pressures. A series of tests were conducted which worked at different brake mean effective pressures, OkPa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa and 6.5kPa. The performance and exhaust emission characteristics of the diesel engine were analyzed and compared with diesel fuel. Results showed that BTE of NME was comparable with diesel and it was noted that the BTE of N0100 is 63.11% higher than that of diesel at part load whereas it reduces 11.2% with diesel fuel at full load. In case of full load, NME showed decreasing trend with diesel fuel. BTE of diesel was 15.37% and 36.89% at part load and full load respectively. The observation indicated that BTE for MME 100 was slightly higher than diesel at part loads. The specific fuel consumption (SFC) was more for almost all blends at all loads, compared to diesel. At part load, the EGT of MME and its blends were showing similar trend to diesel fuel and at full load, the exhaust gas temperature of MME and blends were higher than diesel. Based on this study, NME could be a substitute for diesel fuel in diesel engine.

  11. An enhanced procedure for measuring organic acids and methyl esters in PM2.5

    NASA Astrophysics Data System (ADS)

    Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.

    2015-11-01

    A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.

  12. A microfluidic device for the automated derivatization of free fatty acids to fatty acid methyl esters.

    PubMed

    Duong, Cindy T; Roper, Michael G

    2012-02-21

    Free fatty acid (FFA) compositions are examined in feedstock for biodiesel production, as source-specific markers in soil, and because of their role in cellular signaling. However, sample preparation of FFAs for gas chromatography-mass spectrometry (GC-MS) analysis can be time and labor intensive. Therefore, to increase sample preparation throughput, a glass microfluidic device was developed to automate derivatization of FFAs to fatty acid methyl esters (FAMEs). FFAs were delivered to one input of the device and methanolic-HCl was delivered to a second input. FAME products were produced as the reagents traversed a 29 μL reaction channel held at 55 °C. A Design of Experiment protocol was used to determine the combination of derivatization time (T(der)) and ratio of methanolic-HCl:FFA (R(der)) that maximized the derivatization efficiencies of tridecanoic acid and stearic acid to their methyl ester forms. The combination of T(der) = 0.8 min and R(der) = 4.9 that produced optimal derivatization conditions for both FFAs within a 5 min total sample preparation time was determined. This combination of T(der) and R(der) was used to derivatize 12 FFAs with a range of derivatization efficiencies from 18% to 93% with efficiencies of 61% for tridecanoic acid and 84% for stearic acid. As compared to a conventional macroscale derivatization of FFA to FAME, the microfluidic device decreased the volume of methanolic-HCl and FFA by 20- and 1300-fold, respectively. The developed microfluidic device can be used for automated preparation of FAMEs to analyze the FFA compositions of volume-limited samples.

  13. Supported phosphate and carbonate salts for heterogeneous catalysis of triglycerides to fatty acid methyl esters

    NASA Astrophysics Data System (ADS)

    Britton, Stephanie Lynne

    Fatty acid methyl esters made from vegetable oil, or biodiesel, have been identified as a substitute for diesel derived from crude oil. Biodiesel is currently made using a homogeneous base catalyst to perform the transesterification of triglycerides with methanol to generate fatty acid methyl esters (FAME). The use of a homogeneous catalyst necessitates additional purification of the product and byproducts before sale, and the catalyst is consumed and discarded. The development of a heterogeneous basic catalyst for the production of FAME is desirable. Tribasic phosphate salts and dibasic carbonate salts are active for the production of FAME but generally operate as homogeneous catalysts. Supporting these phosphate and carbonate salts on mesoporous MCM-41, microporous silica gel, and nonporous a-alumina proved successful to greater or lesser degrees depending on the identity of the support and pretreatment of the support. Although these salts were supported and were active for the production of FAME from canola oil, they proved to be operating as homogeneous catalysts due to leaching of the active species off the surface of the support. Further investigation of the active species present in the tribasic phosphate catalysts identified the active support as orthophosphate, and NMR studies revealed the phosphorus to be present as orthophosphate and diphosphate in varying proportions in each catalyst. Evaluation of the acid-washing support pretreatment process revealed that the exposure of the support to acid plays a large role in the development of activity on the surface of the catalyst, but manipulation of these parameters did not prevent leaching of the active site off the surface of the catalyst. Alternate methods of support pretreatment were no more effective in preventing leaching. Tribasic phosphate supported on silica gel is not effective as a heterogeneous catalyst for FAME production from triglycerides because of the lack of stability of the phosphate on the

  14. Evolution of an Efficient and Scalable Nine-Step (LLS) Synthesis of Zincophorin Methyl Ester.

    PubMed

    Chen, Liang-An; Ashley, Melissa A; Leighton, James L

    2017-03-07

    Due both to their synthetically challenging and stereochemically complex structures and their wide range of often clinically relevant biological activities, non-aromatic polyketide natural products have for decades attracted an enormous amount of attention from synthetic chemists and played an important role in the development of modern asymmetric synthesis. Often, such compounds are not available in quantity from natural sources, rendering analog synthesis and drug development efforts extremely resource-intensive and time-consuming. In this arena, the quest for ever more step-economical and efficient methods and strategies - useful and important goals in their own right - takes on added importance and the most useful syntheses will combine high levels of step-economy with efficiency and scalability. The non-aromatic polyketide natural product zincophorin methyl ester has attracted significant attention from synthetic chemists due primarily to the historically synthetically challenging C(8)-C(12) all-anti stere-opentad. While great progress has been made in the development of new methodologies to more directly address this problem and as a result in the development of more highly step-economical syntheses, a synthesis that combines high levels of step economy with high levels of efficiency and scalability has remained elusive. To address this problem, we have devised a new synthesis of zincophorin methyl ester that proceeds in just nine steps in the longest linear sequence and proceeds in 10% overall yield. Addition-ally, the scalability and practicability of the route have been demonstrated by performing all of the steps on a meaningful scale. This synthesis thus represents by a significant margin the most step-economical, efficient, and practicable synthesis of this stereochemi-cally complex natural product reported to date, and is well suited to facilitate the synthesis of analogs and medicinal chemistry de-velopment efforts in a time- and resource

  15. Linear and Nonlinear Optical Properties of 2-Cyano-3-(2-Methoxyphenyl)-2-Propenoic Acid Methyl Ester

    NASA Astrophysics Data System (ADS)

    Nakatani, Hiroyuki; Hayashi, Hideki; Hidaka, Takahiro

    1992-06-01

    Single crystals of a new nonlinear optical organic material, 2-cyano-3-(2-methoxyphenyl)-2-propenoic acid methyl ester (CMP-methyl) were grown, and the linear and nonlinear optical properties were investigated in detail. CMP-methyl crystals belong to space group P21, and the lattice parameters are a{=}4.020 Å, b{=}9.984 Å, c{=}13.757 Å, β{=}92.25° and Z{=}2. The largest second-order nonlinear optical coefficient was measured to be d22{=}29 pm/V. Crystals were of fairly good optical quality.

  16. Enzymatic methylation of 23-29-kDa bovine retinal rod outer segment membrane proteins. Evidence for methyl ester formation at carboxyl-terminal cysteinyl residues.

    PubMed

    Ota, I M; Clarke, S

    1989-08-05

    A group of 23-29-kDa polypeptides in the membranes of bovine rod outer segments are substrates for S-adenosylmethionine-dependent methylation reactions. The bulk of the methyl group incorporation is in base-labile ester-like linkages, and does not appear to be due to the widespread D-aspartyl/L-isoaspartyl methyltransferase (EC 2.1.1.77). To determine the site(s) of methylation, 3H-methylated proteins separated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate were eluted and digested with papain, leucine aminopeptidase-M, and prolidase. After performic acid oxidation of the digest, a base-labile radioactive material was recovered that coeluted with a synthetic standard of cysteic acid methyl ester upon cation exchange and G-15 gel filtration chromatography, as well as in two thin-layer electrophoresis and two thin-layer chromatography systems. These results provide direct evidence for the methylation of the alpha-carboxyl group of a carboxyl-terminal cysteinyl residue, a modification that has been proposed for the 21-kDa Ha-ras product and other cellular proteins (Clarke, S., Vogel, J. P., Deschenes, R. J., and Stock, J. (1988) Proc. Natl. Acad. Sci. U. S. A. 85, 4643-4647).

  17. Ultrasound in fatty acid chemistry: synthesis of a 1-pyrroline fatty acid ester isomer from methyl ricinoleate.

    PubMed

    Lie Ken Jie, M S; Syed-Rahmatullah, M S; Lam, C K; Kalluri, P

    1994-12-01

    A novel 1-pyrroline fatty acid ester isomer (viz. 8-5-hexyl-1-pyrrolin-2-yl) octanoate) has been synthesized from methyl ricinoleate by two routes with an overall yield of 42 and 30%, respectively. Most of the reactions are carried out under concomitant ultrasonic irradiation (20 KHz, ca. 53 watts/cm2). Under such a reaction condition, the reaction time is considerably shortened, and product yields are high. Dehydrobromination under concomitant ultrasonic irradiation of methyl 9, 10-dibromo-12-hydroxyoctadecanoate with KOH in EtOH furnishes methyl 12-hydroxy-9-octadecynoate (66%) within 15 min. Hydration of the latter under ultrasound with mercury(II)acetate in aqueous tetrahydrofuran yields exclusively methyl 12-hydroxy-9-oxo-octadecanoate (95%) in 30 min. The hydroxy group in the latter compound is transformed to the azido function via the mesylate, and treatment of the azido-oxo intermediate (methyl 12-azido-9-oxooctadecanoate) with Ph3P under ultrasonic irradiation furnishes the requisite 1-pyrroline fatty acid ester (77%). The same azido-oxo intermediate has also been obtained by the oxidation of methyl 12-azido-9-cis-octadecenoate using benzoquinone and a catalytic amount of Pd(II)chloride in aqueous tetrahydrofuran under concomitant ultrasonic irradiation (90 min) to give the product in 45% yield. The latter reaction does not take place even under prolonged silent stirring of the reaction mixture.

  18. Enzymatic synthesis of γ-glutamylmethylamide from glutamic acid γ-methyl ester and methylamine catalyzed by Escherichia coli having γ-glutamyltranspeptidase activity.

    PubMed

    Xu, Lisheng; Gao, Guizhen; Wengen, Cao; Xu, Jigui; Zhao, Liang; Shi, Hongwei; Zhang, Xingtao

    2014-06-01

    A new method for the synthesis of γ-glutamylmethylamide is presented. Glutamic acid γ-methyl ester was used as substrate for γ-glutamylmethylamide synthesis catalyzed by Escherichia coli with γ-glutamyltranspeptidase activity. Reaction conditions were optimized by using 300 mM glutamic acid γ-methyl ester and 3,000 mM methylamine at pH 10 and 40 °C. Bioconversion rate of γ-glutamylmethylamide reached 87 % after 10 h. γ-Glutamyltranspeptidase was reversibly inhibited only when glutamic acid γ-methyl ester was above 300 mM.

  19. Interference of rheumatoid factor activity by aspartame, a dipeptide methyl ester.

    PubMed

    Ramsland, P A; Movafagh, B F; Reichlin, M; Edmundson, A B

    1999-01-01

    Circulating autoimmune complexes of IgM rheumatoid factors (RF) bound to the Fc portions of normal, polyclonal IgG antibodies are frequently present in humans with rheumatoid arthritis (RA). The sweet tasting methyl ester of L-Asp-L-Phe (aspartame or APM) was found to relieve pain and improve joint mobility in subjects with osteo- and mixed osteo/rheumatoid arthritis [Edmundson, A. B. and Manion, C. V. (1998). Clin. Pharmac. Ther. 63, 580-593]. These clinical observations prompted the testing of the inhibition by APM of the binding interactions of human IgM RFs with IgG Fc regions. The propensity of APM to inhibit IgM RF binding was assessed by competitive enzyme immunoassays with solid-phase human IgG. Ten RA serum samples and three purified monoclonal cryoglobulins, all of which had RF activity, were tested in this system. We found that the presence of APM significantly reduced the binding of IgM RFs. The inhibitory propensity of APM with monoclonal RF cryoglobulins was increased by the addition of CaCl(2) to the binding buffer. Similar inhibition of the binding of RA derived RFs to IgG was observed for Asp-Phe and its amidated derivative, indicating that the methyl ester is not required for APM's interaction with IgM antibodies. A human (Mez) IgM known to bind octameric peptides derived from the Fc portion of a human IgG(1) antibody was tested for binding of dipeptides by the Pepscan method of combinatorial chemistry. The relative binding constants of Asp-Phe and Phe-Asp were ranked among the highest values for 400 possible combinations of the 20 most common amino acids. Possible blocking interactions of APM were explored by computer-assisted docking studies with the model of a complex of an RF Fab with the Fc of a human IgG(4) antibody. Modeling of ternary immune complexes revealed a few key residues, which could act as molecular recognition sites for APM. A structural hypothesis is presented to explain the observed interference with RF reactivity by APM

  20. An efficient preparation of N-methyl-alpha-amino acids from N-nosyl-alpha-amino acid phenacyl esters.

    PubMed

    Leggio, Antonella; Belsito, Emilia Lucia; De Marco, Rosaria; Liguori, Angelo; Perri, Francesca; Viscomi, Maria Caterina

    2010-03-05

    In this paper we describe a simple and efficient solution-phase synthesis of N-methyl-N-nosyl-alpha-amino acids and N-Fmoc-N-methyl-alpha-amino acids. This represents a very important application in peptide synthesis to obtain N-methylated peptides in both solution and solid phase. The developed methodology involves the use of N-nosyl-alpha-amino acids with the carboxyl function protected as a phenacyl ester and the methylating reagent diazomethane. An important aspect of this synthetic strategy is the possibility to selectively deprotect the carboxyl function or alternatively both amino and carboxyl moieties by using the same reagent with a different molar excess and under mild conditions. Furthermore, the adopted procedure keeps unchanged the acid-sensitive side chain protecting groups used in Fmoc-based synthetic strategies.

  1. Purification and characterization of solvent tolerant lipase from Bacillus sp. for methyl ester production from algal oil.

    PubMed

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2016-05-01

    Lipase from Bacillus sp. isolated from the oil contaminated soil was purified by ammonium sulphate precipitation and ion-exchange chromatography with a 5.1-fold purification and 10.5% yield. SDS-PAGE analysis of the enzyme revealed the molecular mass of 24 kDa. The optimum pH and temperature for lipase activity were 6.5 and 37°C, respectively. The isolated lipase was stimulated by pretreatment with methanol and ethanol as well as by divalent metal ions Ca(2+), Mg(2+) and Mn(2+). The enzyme showed high activity towards oleic rich oils. The enzyme immobilized on celite could retain 90% lipase activity after eight cycles. Transesterification of Botryococcus sp. oil using the immobilized enzyme for 40 h resulted in 80% yield of fatty acid methyl esters which had good properties for use as biodiesel. Overall results suggested that the solvent tolerant Bacillus lipase can be a potential biocatalyst for methyl ester production.

  2. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst.

    PubMed

    Olutoye, M A; Hameed, B H

    2011-06-01

    The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182°C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.

  3. Emission profile of rapeseed methyl ester and its blend in a diesel engine.

    PubMed

    Jeong, Gwi-Taek; Oh, Young-Taig; Park-, Don-Hee

    2006-01-01

    Fatty acid methyl esters, also known as biodiesel, have been shown to have a great deal of potential as petro-diesel substitutes. Biodiesel comprise a renewable alternative energy source, the development of which would clearly reduce global dependence on petroleum, and would also help to reduce air pollution. This paper analyzes the fuel properties of rapeseed biodiesel and its blend with petro-diesel, as well as the emission profiles of a diesel engine on these fuels. Fuels performance studies were conducted in order to acquire comparative data regarding specific fuel consumption and exhaust emissions, including levels of carbon monoxide (CO), carbon dioxide (CO2), smoke density, and NO(x), in an effort to assess the performance of these biodiesel and blend. The fuel consumption amount of oil operations at high loads was similar or greater than that observed during petro-diesel operation. The use of biodiesel is associated with lower smoke density than would be seen with petro-diesel. However, biodiesel and its blend increased the emission of CO, CO2, and nitrogen oxides, to a greater degree than was seen with petro-diesel. The above results indicate that rapeseed biodiesel can be partially substituted for petro-diesel under most operating conditions, regarding both performance parameters and exhaust, without any modifications having to be made to the engine.

  4. Determination of physiochemical properties of palm oil methyl ester catalyzed by waste cockle shells

    NASA Astrophysics Data System (ADS)

    Nasir, Nurul Fitriah; Latif, Noradila Abdul; Bakar, Sharifah Adzila Syed Abu; Rahman, Mohd Nasrull Abdul; Selamat, Siti Norhidayah; Nasharudin, Nurul Nadirah

    2017-04-01

    Waste cockle shell can be used as a source of calcium oxide (CaO) in catalyzing a transesterification reaction to produce biodiesel or fatty acid methyl ester (FAME). This aim of this paper is to determine the physicochemical properties of (FAME) which utilize waste cockle shells in the transesterification reaction process. In this study, the catalyst was prepared using high temperature furnace (700°C) for 4 h. The molar ratio of methanol to oil was fixed at 9:1 and the reaction temperature and catalyst concentration were varied from 65 -70 °C, and 10-30 wt. %, respectively for transesterification reaction. The reaction time was also fixed at 3 h. The analyzed physicochemical properties were density, viscosity, flash point and net heat of combustion. The results obtained from the analysis found that reaction temperature 65°C with 30% of catalyst concentration has produced the physical properties of FAME that comply the biodiesel standards. The results suggest that reaction temperature and catalyst concentration have influence on the value of physicochemical properties of FAME produced.

  5. Integrated multidimensional and comprehensive 2D GC analysis of fatty acid methyl esters.

    PubMed

    Zeng, Annie Xu; Chin, Sung-Tong; Marriott, Philip J

    2013-03-01

    Fatty acid methyl ester (FAME) profiling in complex fish oil and milk fat samples was studied using integrated comprehensive 2D GC (GC × GC) and multidimensional GC (MDGC). Using GC × GC, FAME compounds--cis- and trans-isomers, and essential fatty acid isomers--ranging from C18 to C22 in fish oil and C18 in milk fat were clearly displayed in contour plot format according to structural properties and patterns, further identified based on authentic standards. Incompletely resolved regions were subjected to MDGC, with Cn (n = 18, 20) zones transferred to a (2)D column. Elution behavior of C18 FAME on various (2)D column phases (ionic liquids IL111, IL100, IL76, and modified PEG) was evaluated. Individual isolated Cn zones demonstrated about four-fold increased peak capacities. The IL100 provided superior separation, good peak shape, and utilization of elution space. For milk fat-derived FAME, the (2)D chromatogram revealed at least three peaks corresponding to C18:1, more than six peaks for cis/trans-C18:2 isomers, and two peaks for C18:3. More than 17 peaks were obtained for the C20 region of fish oil-derived FAMEs using MDGC, compared with ten peaks using GC × GC. The MDGC strategy is useful for improved FAME isomer separation and confirmation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Fluctuating parkinsonism: a pilot study of single afternoon dose of levodopa methyl ester.

    PubMed

    Stocchi, F; Barbato, L; Bramante, L; Nordera, G; Vacca, L; Ruggieri, S

    1996-05-01

    Thirty-four patients with idiopathic fluctuating Parkinson's disease and early afternoon "delayed on" or severely resistant "off" periods, in spite of long-term antiparkinsonian therapy, were studied. The first afternoon levodopa administration was substituted with an equimolar dosage of the liquid formulation levodopa methyl ester (LDME). The major end-points for efficacy were latency to "on" and duration of "on" periods. The patients were divided into five subgroups according to their baseline treatment and they were evaluated monthly for 6 months using the Unified Parkinson's Disease Rating Scale. The patients completed weekly self-evaluation using an "on-off" chart. LDME was well tolerated by all the patients. A statistically significant reduction in latency to "on" was observed in all patients. The clinical effect of LDME remained stable during the treatment period (repeat measures ANOVA). The more rapid clinical effect of LDME and its stable and predictable antiparkinsonian activity represents a new and useful approach for treating patients with complicated Parkinson's disease.

  7. The stereocontrolled total synthesis of spirastrellolide A methyl ester. Expedient construction of the key fragments.

    PubMed

    Paterson, Ian; Anderson, Edward A; Dalby, Stephen M; Lim, Jong Ho; Maltas, Philip; Loiseleur, Olivier; Genovino, Julien; Moessner, Christian

    2012-08-14

    Due to a combination of their promising anticancer properties, limited supply from the marine sponge source and their unprecedented molecular architecture, spirastrellolides represent attractive and challenging synthetic targets. A modular strategy for the synthesis of spirastrellolide A methyl ester, which allowed for the initial stereochemical uncertainties in the assigned structure was adopted, based on the envisaged sequential coupling of a series of suitably functionalised fragments; in this first paper, full details of the synthesis of these fragments are described. The pivotal C26-C40 DEF bis-spiroacetal was assembled by a double Sharpless asymmetric dihydroxylation/acetalisation cascade process on a linear diene intermediate, configuring the C31 and C35 acetal centres under suitably mild acidic conditions. A C1-C16 alkyne fragment was constructed by application of an oxy-Michael reaction to introduce the A-ring tetrahydropyran, a Sakurai allylation to install the C9 hydroxyl, and a 1,4-syn boron aldol/directed reduction sequence to establish the C11 and C13 stereocentres. Two different coupling strategies were investigated to elaborate the C26-C40 DEF fragment, involving either a C17-C25 sulfone or a C17-C24 vinyl iodide, each of which was prepared using an Evans glycolate aldol reaction. The remaining C43-C47 vinyl stannane fragment required for introduction of the unsaturated side chain was prepared from (R)-malic acid.

  8. 3-Hydroxybutyrate methyl ester as a potential drug against Alzheimer's disease via mitochondria protection mechanism.

    PubMed

    Zhang, Junyu; Cao, Qian; Li, Shaowu; Lu, Xiaoyun; Zhao, Yongxi; Guan, Ji-Song; Chen, Jin-Chun; Wu, Qiong; Chen, Guo-Qiang

    2013-10-01

    Alzheimer's disease (AD) is induced by many reasons, including decreased cellular utilization of glucose and brain cell mitochondrial damages. Degradation product of microbially synthesized polyhydroxybutyrate (PHB), namely, 3-hydroxybutyrate (3HB), can be an alternative to glucose during sustained hypoglycemia. In this study, the derivative of 3HB, 3-hydroxybutyrate methyl ester (HBME), was used by cells as an alternative to glucose. HBME inhibited cell apoptosis under glucose deprivation, rescued activities of mitochondrial respiratory chain complexes that were impaired in AD patients and decreased the generation of ROS. Meanwhile, HBME stabilized the mitochondrial membrane potential. In vivo studies showed that HBME crossed the blood brain barrier easier compared with charged 3HB, resulting in a better bioavailability. AD mice treated with HBME performed significantly better (p < 0.05) in the Morris water maze compared with other groups, demonstrating that HBME has a positive in vivo pharmaceutical effect to improve the spatial learning and working memory of mice. A reduced amyloid-β deposition in mouse brains after intragastric administration of HBME was also observed. Combined with the in vitro and in vivo results, HBME was proposed to be a drug candidate against AD, its working mechanism appeared to be mediated by various effects of protecting mitochondrial damages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Electron Affinity of Phenyl-C61-Butyric Acid Methyl Ester (PCBM)

    SciTech Connect

    Larson, Bryon W.; Whitaker, James B.; Wang, Xue B.; Popov, Alexey A.; Rumbles, Garry; Kopidakis, Nikos; Strauss, Steven H.; Boltalina, Olga V.

    2013-07-25

    The gas-phase electron affinity (EA) of phenyl-C61-butyric acid methyl ester (PCBM), one of the best-performing electron acceptors in organic photovoltaic devices, is measured by lowtemperature photoelectron spectroscopy for the first time. The obtained value of 2.63(1) eV is only ca. 0.05 eV lower than that of C60 (2.68(1) eV), compared to a 0.09 V difference in their E1/2 values measured in this work by cyclic voltammetry. Literature E(LUMO) values for PCBM that are typically estimated from cyclic voltammetry, and commonly used as a quantitative measure of acceptor properties, are dispersed over a wide range between -4.3 and -3.62 eV; the reasons for such a huge discrepancy are analyzed here, and the protocol for reliable and consistent estimations of relative fullerene-based acceptor strength in solution is proposed.

  10. Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing.

    PubMed

    Kadisch, Marvin; Schmid, Andreas; Bühler, Bruno

    2017-03-01

    Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U g CDW(-1) ) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.

  11. Ultrasound assisted enzymatic conversion of non edible oil to methyl esters.

    PubMed

    Jadhav, Sanket H; Gogate, Parag R

    2014-07-01

    Conventional and ultrasound-assisted hydrolysis and subsequent esterification of Nagchampa oil under mild operating conditions have been investigated with an objective of intensification of methyl esters production using a sustainable approach. The effect of ratio of reactants, temperature, enzyme loading, pretreatment of enzyme (using ultrasonic irradiations) on the hydrolysis and esterification reaction has been studied. Optimum conditions for hydrolysis were observed to be 1:1 weight ratio of oil: water for Lip Z and 1:3 for Lip 2 enzymes, enzyme loading of 400 units for Lip Z and 800 mg for Lip 2 enzymes and reaction time of 6h. In the case of esterification reaction, optimum conditions obtained were oil to methanol molar ratio of 1:2, enzyme loading of 1000 mg and reaction time of 20 h. Use of pretreated enzyme (using ultrasonic irradiations) was found to increase the extent of esterification reaction from 75% to 92.5%. It was observed that use of ultrasound in the reaction significantly intensified the esterification reaction with time requirement reducing from 20 h for conventional stirring based approach to only about 7.5 h in the presence of ultrasound. The extent of esterification obtained with sonicated enzyme also increased to 96% from 75% with unsonicated enzyme. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. 40 CFR 721.8485 - 2-Propenoic acid, 2-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. 721.8485 Section 721.8485 Protection of...-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. (a) Chemical substance and...-, (octahydro-4,7-methano- 1H- indene-5-diyl)bis(methylene) ester (PMN P-99-1075; CAS No. 43048-08-4) is subject...

  13. 40 CFR 721.8485 - 2-Propenoic acid, 2-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. 721.8485 Section 721.8485 Protection of...-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester. (a) Chemical substance and...-, (octahydro-4,7-methano- 1H- indene-5-diyl)bis(methylene) ester (PMN P-99-1075; CAS No. 43048-08-4) is subject...

  14. Simulation and pre-feasibility analysis of the production process of alpha-methyl ester sulfonates (alpha-MES).

    PubMed

    Martínez, Daniel; Orozco, Gustavo; Rincón, Sandra; Gil, Iván

    2010-11-01

    alpha-Methyl esters sulfonates (alpha-MES) are anionic surfactants that are derived from biorenewable resources, offering interesting environmental and chemical properties for application in the detergent industry. A simulation of their production process was conducted using a commercial production process currently used for palm oil. Results, prices of raw materials were submitted to economic analysis, and final MES price was compared with available data for linear alkyl benzene sulfonates (LAS) prices. The results for substances properties and product streams obtained from simulation were reliable in agreement to real values. It was found that increasing methyl ester national price by 20%, 50% and the equivalent to linear alkyl benzene price, the final price of alpha-methyl ester sulfonates was lower than the current price of linear alkyl benzene sulfonates. The capital cost and payout period for a production capacity of 49,000tons of surfactant per year were obtained. Results indicate that the process is economically feasible and can be applied to palm oil-based industries in Colombia.

  15. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    NASA Astrophysics Data System (ADS)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  16. 40 CFR 721.9530 - Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester of cycloalkyl spir-o-ke-tal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester of cycloalkyl spir-o-ke-tal. 721.9530 Section 721.9530 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.9530 Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester...

  17. Esterification Reaction of Glycerol and Palm Oil Oleic Acid Using Methyl Ester Sulfonate Acid Catalyst as Drilling Fluid Formulation

    NASA Astrophysics Data System (ADS)

    Sari, V. I.; Hambali, E.; Suryani, A.; Permadi, P.

    2017-02-01

    Esterification reaction between glycerol with palm oil oleic acid to produce glycerol ester and one of the utilization of glycerol esters is as ingredients of drilling fluids formula for oil drilling needs. The purpose of this research is to get the best conditions of the esterification process. The esterification reaction does with the reactants is glycerol with purity of 97.6%, palm oil oleic acid with the molar ratio is 1:1, Methyl Ester Sulfonate Acid (MESA) catalyst 0.5%, and stirring speed 400 rpm. The temperature range of 180°C to 240°C and the processing time between 120 to 180 minutes. The results showed that the best conditions of the esterification reaction at the temperature 240°C and time process are 180 minute. The increasing temperature resulted that the acid number decreases and causing the conversion increased. The maximum conversion is 99.24%, density 0.93 g/cm3, flash point 241°C, pour point -3°C, the boiling point of 244 °C, the acid value of 1.90 mg KOH/g sample, kinematic viscosity 31.51 cSt (40°C), surface tension 37.0526 dyne/cm and GCMS identification, glycerol ester at 22,256 retention time (minutes) and wide area 73.75 (%). From the research results obtained glycerol ester with characteristics suitable for drilling fluid formulations.

  18. Fatty acid methyl ester from Neurospora intermedia N-1 isolated from Indonesian red peanut cake (oncom merah).

    PubMed

    Priatni, S; Hartati, S; Dewi, P; Kardono, L B S; Singgih, M; Gusdinar, T

    2010-08-01

    The objective of this study was to identify the Fatty Acid Methyl Ester (FAME) from Neurospora intermedia N-1 that isolated from Indonesian red peanut cake (oncom). FAME profiles have been used as biochemical characters to study many different groups of organisms, such as bacteria and yeasts. FAME from N. intermedia N-1 was obtained by some stages of extraction the orange spores and fractination using a chromatotron. The pure compound (1) was characterized by 500 mHz NMR (1H and 13C), FTIR and LC-MS. Summarized data's of 1H and 13C NMR spectra of compound 1 contained 19 Carbon, 34 Hydrogen and 2 Oxygen (C19H34O2). The position of the double bonds at carbon number 8 and 12 were indicated in the HMBC spectrum (2D-NMR). LC-MS spectrum indicates molecular weight of the compound 1 as 294 which is visible by the presence of protonated molecular ion [M+H] at m/z 295. Methyl esters of long chain fatty acids was presented by a 3 band pattern of IR spectrum with bands near 1249, 1199 and 1172 cm(-1). We suggested that the structure of the pure compound 1 is methyl octadeca-8,12-dienoate. The presence methyl octadeca-8,12-dienoate in N. intermedia is the first report.

  19. Low Temperature Chlorine-Initiated Oxidation of Small-Chain Methyl Esters: Quantification of Chain-Terminating HO2-Elimination Channels.

    PubMed

    Muller, Giel; Scheer, Adam; Osborn, David L; Taatjes, Craig A; Meloni, Giovanni

    2016-03-17

    Cl-initiated oxidation reactions of three small-chain methyl esters, methyl propanoate (CH3CH2COOCH3; MP), methyl butanoate (CH3CH2CH2COOCH3; MB), and methyl valerate (CH3CH2CH2CH2COOCH3; MV), are studied at 1 or 8 Torr and 550 and 650 K. Products are monitored as a function of mass, time, and photoionization energy using multiplexed photoionization mass spectrometry coupled to tunable synchrotron photoionization radiation. Pulsed photolysis of molecular chlorine is the source of Cl radicals, which remove an H atom from the ester, forming a free radical. In each case, after addition of O2 to the initial radicals, chain-terminating HO2-elimination reactions are observed to be important. Branching ratios among competing HO2-elimination channels are determined via absolute photoionization spectra of the unsaturated methyl ester coproducts. At 550 K, HO2-elimination is observed to be selective, resulting in nearly exclusive production of the conjugated methyl ester coproducts, methyl propenoate, methyl-2-butenoate, and methyl-2-pentenoate, respectively. However, in MV, upon raising the temperature to 650 K, other HO2-elimination pathways are observed that yield methyl-3-pentenoate and methyl-4-pentenoate. In each methyl ester oxidation reaction, a peak is observed at a mass consistent with cyclic ether formation, indicating chain-propagating OH loss/ring formation pathways via QOOH intermediates. Evidence is observed for the participation of resonance-stabilized QOOH in the most prominent cyclic ether pathways. Stationary point energies for HO2-elimination pathways and select cyclic ether formation channels are calculated at the CBS-QB3 level of theory and assist in the assignment of reaction pathways and final products.

  20. Rapeseed oil methyl ester pyrolysis: on-line product analysis using comprehensive two-dimensional gas chromatography.

    PubMed

    Pyl, Steven P; Schietekat, Carl M; Van Geem, Kevin M; Reyniers, Marie-Françoise; Vercammen, Joeri; Beens, Jan; Marin, Guy B

    2011-05-27

    Thermochemical conversion processes play a crucial role in all routes from fossil and renewable resources to base chemicals, fuels and energy. Hence, a fundamental understanding of these chemical processes can help to resolve the upcoming challenges of our society. A bench scale pyrolysis set-up has been used to study the thermochemical conversion of rapeseed oil methyl ester (RME), i.e. a mixture of fatty acid methyl esters. A GC×GC, equipped with both a flame ionization detector (FID) and a time-of-flight mass spectrometer (TOF-MS), allows quantitative and qualitative characterization of the reactor feed and product. Analysis of the latter is accomplished using a dedicated high temperature on-line sampling system. Temperature programmed analysis, starting at -40°C, permits effluent characterization from methane up to lignoceric acid methyl ester (C(25)H(50)O(2)), in a single run of the GC×GC. The latter combines a 100% dimethylpolysiloxane primary column with a 50% phenyl polysilphenylene-siloxane secondary column. Modulation is started when the oven temperature reaches 40°C, thus dividing the chromatogram in a conventional 1D and a comprehensive 2D part. The proposed quantification approach allows to combine the quantitative GC×GC analysis with 2 other on-line 1D GC analyses, resulting in a complete and detailed product composition including the measurement of CO, CO(2), formaldehyde and water. The GC×GC reveals that the product stream contains a huge variety of valuable products, such as linear alpha olefins, unsaturated esters and aromatics, that could not have been identified and quantified accurately with conventional 1D GC because of peak overlap.

  1. Study of liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (biodiesel).

    PubMed

    Berman, Paula; Meiri, Nitzan; Colnago, Luiz Alberto; Moraes, Tiago Bueno; Linder, Charles; Levi, Ofer; Parmet, Yisrael; Saunders, Michael; Wiesman, Zeev

    2015-01-01

    (1)H low field nuclear magnetic resonance (LF-NMR) relaxometry has been suggested as a tool to distinguish between different molecular ensembles in complex systems with differential segmental or whole molecular motion and/or different morphologies. In biodiesel applications the molecular structure versus liquid-phase packing morphologies of fatty acid methyl esters (FAMEs) influences physico-chemical characteristics of the fuel, including flow properties, operability during cold weather, blending, and more. Still, their liquid morphological structures have scarcely been studied. It was therefore the objective of this work to explore the potential of this technology for characterizing the molecular organization of FAMEs in the liquid phase. This was accomplished by using a combination of supporting advanced technologies. We show that pure oleic acid (OA) and methyl oleate (MO) standards exhibited both similarities and differences in the (1)H LF-NMR relaxation times (T2s) and peak areas, for a range of temperatures. Based on X-ray measurements, both molecules were found to possess a liquid crystal-like order, although a larger fluidity was found for MO, because as the temperature is increased, MO molecules separate both longitudinally and transversely from one another. In addition, both molecules exhibited a preferred direction of diffusion based on the apparent hydrodynamic radius. The close molecular packing arrangement and interactions were found to affect the translational and segmental motions of the molecules, as a result of dimerization of the head group in OA as opposed to weaker polar interactions in MO. A comprehensive model for the liquid crystal-like arrangement of FAMEs in the liquid phase is suggested. The differences in translational and segmental motions of the molecules were rationalized by the differences in the (1)H LF-NMR T2 distributions of OA and MO, which was further supported by (13)C high field (HF)-NMR spectra and (1)H HF-NMR relaxation. The

  2. Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities

    USGS Publications Warehouse

    Kidd, Haack S.; Garchow, H.; Odelson, D.A.; Forney, L.J.; Klug, M.J.

    1994-01-01

    We determined the accuracy and reproducibility of whole-community fatty acid methyl ester (FAME) analysis with two model bacterial communities differing in composition by using the Microbial ID, Inc. (MIDI), system. The biomass, taxonomic structure, and expected MIDI-FAME profiles under a variety of environmental conditions were known for these model communities a priori. Not all members of each community could be detected in the composite profile because of lack of fatty acid 'signatures' in some isolates or because of variations (approximately fivefold) in fatty acid yield across taxa. MIDI- FAME profiles of replicate subsamples of a given community were similar in terms of fatty acid yield per unit of community dry weight and relative proportions of specific fatty acids. Principal-components analysis (PCA) of MIDI-FAME profiles resulted in a clear separation of the two different communities and a clustering of replicates of each community from two separate experiments on the first PCA axis. The first PCA axis accounted for 57.1% of the variance in the data and was correlated with fatty acids that varied significantly between communities and reflected the underlying community taxonomic structure. On the basis of our data, community fatty acid profiles can be used to assess the relative similarities and differences of microbial communities that differ in taxonomic composition. However, detailed interpretation of community fatty acid profiles in terms of biomass or community taxonomic composition must be viewed with caution until our knowledge of the quantitative and qualitative distribution of fatty acids over a wide variety of taxa and the effects of growth conditions on fatty acid profiles is more extensive.

  3. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation.

    PubMed

    Cuadrado, Irene; Cidre, Florencia; Herranz, Sandra; Estevez-Braun, Ana; de las Heras, Beatriz; Hortelano, Sonsoles

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE(2) production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE(2) in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Separation of fatty acid methyl esters by GC-online hydrogenation × GC.

    PubMed

    Delmonte, Pierluigi; Fardin-Kia, Ali Reza; Rader, Jeanne I

    2013-02-05

    The separation of fatty acid methyl esters (FAME) provided by a 200 m × 0.25 mm SLB-IL111 capillary column is enhanced by adding a second dimension of separation ((2)D) in a GC × GC design. Rather than employing two GC columns of different polarities or using different elution temperatures, the separation in the two-dimensional space is achieved by altering the chemical structure of selected analytes between the two dimensions of separation. A capillary tube coated with palladium is added between the first dimension of separation ((1)D) column and the cryogenic modulator, providing the reduction of unsaturated FAMEs to their fully saturated forms. The (2)D separation is achieved using a 2.5 m × 0.10 mm SLB-IL111 capillary column and separates FAMEs based solely on their carbon skeleton. The two-dimensional separation can be easily interpreted based on the principle that all the saturated FAMEs lie on a straight diagonal line bisecting the separation plane, while the FAMEs with the same carbon skeleton but differing in the number, geometric configuration or position of double bonds lie on lines parallel to the (1)D time axis. This technique allows the separation of trans fatty acids (FAs) and polyunsaturated FAs (PUFAs) in a single experiment and eliminates the overlap between PUFAs with different chain lengths. To our knowledge, this the first example of GC × GC in which a chemical change is instituted between the two dimensions to alter the relative retentions of components and identify unsaturated FAMEs.

  5. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Accuracy, Reproducibility, and Interpretation of Fatty Acid Methyl Ester Profiles of Model Bacterial Communities †

    PubMed Central

    Haack, Sheridan Kidd; Garchow, Helen; Odelson, David A.; Forney, Larry J.; Klug, Michael J.

    1994-01-01

    We determined the accuracy and reproducibility of whole-community fatty acid methyl ester (FAME) analysis with two model bacterial communities differing in composition by using the Microbial ID, Inc. (MIDI), system. The biomass, taxonomic structure, and expected MIDI-FAME profiles under a variety of environmental conditions were known for these model communities a priori. Not all members of each community could be detected in the composite profile because of lack of fatty acid “signatures” in some isolates or because of variations (approximately fivefold) in fatty acid yield across taxa. MIDI-FAME profiles of replicate subsamples of a given community were similar in terms of fatty acid yield per unit of community dry weight and relative proportions of specific fatty acids. Principal-components analysis (PCA) of MIDI-FAME profiles resulted in a clear separation of the two different communities and a clustering of replicates of each community from two separate experiments on the first PCA axis. The first PCA axis accounted for 57.1% of the variance in the data and was correlated with fatty acids that varied significantly between communities and reflected the underlying community taxonomic structure. On the basis of our data, community fatty acid profiles can be used to assess the relative similarities and differences of microbial communities that differ in taxonomic composition. However, detailed interpretation of community fatty acid profiles in terms of biomass or community taxonomic composition must be viewed with caution until our knowledge of the quantitative and qualitative distribution of fatty acids over a wide variety of taxa and the effects of growth conditions on fatty acid profiles is more extensive. PMID:16349327

  7. Structural characterization of saturated branched chain fatty acid methyl esters by collisional dissociation of molecular ions generated by electron ionization.

    PubMed

    Ran-Ressler, Rinat R; Lawrence, Peter; Brenna, J Thomas

    2012-01-01

    Saturated branched chain fatty acids (BCFA) are present as complex mixtures in numerous biological samples. The traditional method for structure elucidation, electron ionization (EI) mass spectrometry, sometimes does not unambiguously enable assignment of branching in isomeric BCFA. Zirrolli and Murphy (Zirrolli , J. A. , and R. A. Murphy. 1993. Low-energy tandem mass spectrometry of the molecular ion derived from fatty acid methyl esters: a novel method for analysis of branched-chain fatty acids. J. Am. Soc. Mass Spectrom. 4: 223-229.) showed that the molecular ions of four BCFA methyl ester (BCFAME) yield highly characteristic fragments upon collisional dissociation using a triple quadrupole instrument. Here, we confirm and extend these results by analysis using a tabletop 3-D ion trap for activated molecular ion EI-MS/MS to 30 BCFAME. iso-BCFAME produces a prominent ion (30-100% of base peak) for [M-43] (M-C₃H₇), corresponding to the terminal isopropyl moiety in the original iso-BCFAME. Anteiso-FAME yield prominent ions (20-100% of base peak) corresponding to losses on both side of the methyl branch, [M-29] and [M-57], and tend to produce more prominent m/z 115 peaks corresponding to a cyclization product around the ester. Dimethyl and tetramethyl FAME, with branches separated by at least one methylene group, yield fragment on both sides of the sites of methyl branches that are more than 6 C away from the carboxyl carbon. EI-MS/MS yields uniquely specific ions that enable highly confident structural identification and quantification of BCFAME.

  8. Separation and quantitation of free fatty acids and fatty acid methyl esters by reverse phase high pressure liquid chromatography.

    PubMed

    Aveldano, M I; VanRollins, M; Horrocks, L A

    1983-01-01

    Reverse phase high pressure liquid chromatography (HPLC) on octadecylsilyl columns separates mixtures of either free fatty acids or fatty acid methyl esters prepared from mammalian tissue phospholipids. Acetonitrile-water mixtures are used for the elution of esters. Aqueous phosphoric acid is substituted for water for the separation of the free acids. Unsaturated compounds are detected and quantitated by their absorption at 192 nm. Saturates are detected better at 205 nm. The order of elution of fatty acids in complex mixtures varies as a function of acetonitrile concentration. At any given concentration, some compounds overlap. However, by varying the solvent strength, any fatty acid of interest can be resolved including many geometrical and positional isomers. Methyl esters prefractionated according to unsaturation by argentation thin-layer chromatography (TLC) are rapidly and completely separated by elution with CH3CN alone. Argentation TLC-reverse phase HPLC can be used as an analytical as well as a preparative procedure. Octylsilyl columns are used for rapid resolution and improved detection of minor or low ultraviolet-absorbing components in the fractions. For example, monoenoic fatty acids with up to 32 carbons have been detected in bovine brain glycerophospholipids. Specific radioactivities of 3H- and 14C-labeled fatty acids and the distribution of radioactivity among acyl groups from complex lipids are measured. The method is not recommended for complete compositional analysis, but is useful for determinations of specific radioactivities during studies on turnover and metabolic conversions of labeled fatty acids.

  9. Efficient and Scalable Synthesis of 4-Carboxy-Pennsylvania Green Methyl Ester: A Hydrophobic Building Block for Fluorescent Molecular Probes.

    PubMed

    Woydziak, Zachary R; Fu, Liqiang; Peterson, Blake R

    2014-01-01

    Fluorinated fluorophores are valuable tools for studies of biological systems. However, amine-reactive single-isomer derivatives of these compounds are often very expensive. To provide an inexpensive alternative, we report a practical synthesis of 4-carboxy-Pennsylvania Green methyl ester. Derivatives of this hydrophobic fluorinated fluorophore, a hybrid of the dyes Oregon Green and Tokyo Green, are often cell permeable, enabling labeling of intracellular targets and components. Moreover, the low pKa of Pennsylvania Green (4.8) confers bright fluorescence in acidic cellular compartments such as endosomes, enhancing its utility for chemical biology investigations. To improve access to the key intermediate 2,7-difluoro-3,6-dihydroxyxanthen-9-one, we subjected bis-(2,4,5-trifluorophenyl)methanone to iterative nucleophilic aromatic substitution by hydroxide on scales of > 40 g. This intermediate was used to prepare over 15 grams of pure 4-carboxy-Pennsylvania Green methyl ester in 28% overall yield without requiring chromatography. This compound can be converted into the amine reactive N-hydroxysuccinimidyl ester in essentially quantitative yield for the synthesis of a wide variety of fluorescent molecular probes.

  10. A critical comparison of methyl and ethyl esters production from soybean and rice bran oil in the presence of microwaves.

    PubMed

    Kanitkar, Akanksha; Balasubramanian, Sundar; Lima, Marybeth; Boldor, Dorin

    2011-09-01

    Transesterification of vegetable oils (from soybeans and rice bran) into methyl and ethyl esters using a batch microwave system was investigated in this study. A critical comparison between the two alcohols was performed in terms of yields, quality, and reaction kinetics. Parameters tested were temperature (60, 70 and 80°C) and time (5, 10, 15 and 20 min). At all tested conditions, more than 96% conversion rates were obtained for both ethanol and methanol. Use of microwave technology to assist the transesterification process resulted in faster reaction times and reduced catalyst requirement (about ten-fold decrease). Methanol required lower alcohol:oil ratios than normally used in conventional heating, whereas ethanol required higher molar ratios. All esters produced using this method met ASTM biodiesel quality specifications. Methanol performed better in terms of performance and costs, while ethanol may have some environmental and safety benefits.

  11. Esterification of oil adsorbed on palm decanter cake into methyl ester using sulfonated rice husk ash as heterogeneous acid catalyst

    NASA Astrophysics Data System (ADS)

    Hindryawati, Noor; Erwin, Maniam, Gaanty Pragas

    2017-02-01

    Palm Decanter cake (PDC) which is categorized as the waste from palm oil mill has been found to contain residual crude palm oil. The oil adsorbed on the PDC (PDC-oil) can be extracted and potentially used as feedstock for biodiesel production. Feedstock from waste like PDC-oil is burdened with high free fatty acids (FFAs) which make the feedstock difficult to be converted into biodiesel using basic catalyst. Therefore, in this study, a solid acid, RHA-SO3H catalyst was synthesized by sulfonating rice husk ash (RHA) with concentrated sulfuric acid. The RHA-SO3H prepared was characterized with TGA, FTIR, BET, XRD, FE-SEM, and Hammett indicators (methyl red, bromophenol blue, and crystal violet). PDC was found to have about 11.3 wt. % oil recovered after 1 hour extraction using ultrasound method. The presence of sulfonate group was observed in IR spectrum, and the surface area of RHA-SO3H was reduced to 37 m2.g-1 after impregnation of sulfonate group. The RHA-SO3H catalyst showed that it can work for both esterification of free fatty acid which is present in PDC-oil, and transesterification of triglycerides into methyl ester. The results showed highest methyl ester content of 70.2 wt.% at optimal conditions, which was 6 wt.% catalyst amount, methanol to oil molar ratio of 17:1 for 5 hours at 120 °C.

  12. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  13. Studies of the acidic components of the Colorado Green River formation oil shale-Mass spectrometric identification of the methyl esters of extractable acids.

    NASA Technical Reports Server (NTRS)

    Haug, P.; Schnoes, H. K.; Burlingame, A. L.

    1971-01-01

    Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.

  14. Construction of combustion models for rapeseed methyl ester bio-diesel fuel for internal combustion engine applications.

    PubMed

    Golovitchev, Valeri I; Yang, Junfeng

    2009-01-01

    Bio-diesel fuels are non-petroleum-based diesel fuels consisting of long chain alkyl esters produced by the transesterification of vegetable oils, that are intended for use (neat or blended with conventional fuels) in unmodified diesel engines. There have been few reports of studies proposing theoretical models for bio-diesel combustion simulations. In this study, we developed combustion models based on ones developed previously. We compiled the liquid fuel properties, and the existing detailed mechanism of methyl butanoate ester (MB, C(5)H(10)O(2)) oxidation was supplemented by sub-mechanisms for two proposed fuel constituent components, C(7)H(16) and C(7)H(8)O (and then, by mp2d, C(4)H(6)O(2) and propyne, C(3)H(4)) to represent the combustion model for rapeseed methyl ester described by the chemical formula, C(19)H(34)O(2) (or C(19)H(36)O(2)). The main fuel vapor thermal properties were taken as those of methyl palmitate C(19)H(36)O(2) in the NASA polynomial form of the Burcat database. The special global reaction was introduced to "crack" the main fuel into its constituent components. This general reaction included 309 species and 1472 reactions, including soot and NO(x) formation processes. The detailed combustion mechanism was validated using shock-tube ignition-delay data under diesel engine conditions. For constant volume and diesel engine (Volvo D12C) combustion modeling, this mechanism could be reduced to 88 species participating in 363 reactions.

  15. Mass spectra of methyl esters of brominated fatty acids and their presence in soft drinks and cocktail syrups.

    PubMed

    Bendig, Paul; Maier, Lisa; Lehnert, Katja; Knapp, Holger; Vetter, Walter

    2013-05-15

    Brominated vegetable oil (BVO) is frequently used as a solubility transmitter in soft drinks. Being banned in Europe and Japan but permitted in the United States and Canada, there is a need for analytical methods suitable for use in food control. Brominated fatty acids in BVO are usually determined by gas chromatography (GC) after their conversion into the corresponding methyl esters. GC with mass spectrometry (MS) was used to record the electron ionization (EI) and negative ion chemical ionization (NICI) mass spectra of relevant brominated fatty acid methyl esters synthesized for this purpose. Brominated fatty acids obtained from transesterified BVO from soft drink and syrup samples were also analyzed. GC/NICI-MS was the most sensitive method for the detection of brominated fatty acids but GC/EI-MS was found to be more suited for quantification due to the formation of more selective fragment ions in the higher mass range. Suitable ions were selected for determination of the methyl esters of brominated fatty acids in the selected ion monitoring (SIM) mode. Artifacts produced by the transesterification of BVO with boron trifluoride were observed and discussed. BVO was also quantified in three syrup samples commercially produced for use in cocktails/long drinks. In one of the syrup samples that tested positive, BVO was not labelled in the ingredient list. Bromination experiments produced evidence that one or more Br2 -18:0 isomers identified as a shoulder peak of threo-9,10-dibromooctadecanoic acid in several soft drink and syrup samples originated from the bromination of partly hydrogenated plant oil. BVO was determined for the first time in syrup samples. Attention should be paid to the problem of BVO occurring unlabeled in soft drinks and cocktail syrups imported from North America. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Electronic properties of electron-doped [6,6]-phenyl-C61-butyric acid methyl ester and silylmethylfullerene

    NASA Astrophysics Data System (ADS)

    Furutani, Sho; Okada, Susumu

    2017-06-01

    Electronic properties of electron-doped chemically decorated C60 fullerenes, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and silylmethylfullerene (SIMEF), by a planar electrode were studied using density functional theory combined with the effective screening medium method to simulate the heterointerface between the chemically decorated C60 and cationic counter materials. We find that the distribution of accumulated electrons and induced electric field depend on the molecular arrangement with respect to the external electric field of the electrode. We also show that the quantum capacitance of the molecule is sensitive to molecular arrangement owing to the asymmetric distribution of the accumulated electrons.

  17. Chemical constituents of Malagasy liverworts, part II: mastigophoric acid methyl ester of biogenetic interest from Mastigophora diclados (Lepicoleaceae Subf. Mastigophoroideae).

    PubMed

    Harinantenaina, Liva; Asakawa, Yoshinori

    2004-11-01

    In the course of our chemotaxonomic study of the liverworts growing in Madagascar, mastigophoric acid methyl ester, along with eleven known compounds were isolated from Mastigophora diclados. Isolated metabolites showed that the Malagasy Mastigophora is more related to the samples from Borneo and Japan than to the Taiwanese or Malaysian ones. The biosynthesis of the herbertane type sesquiterpenoids from Mastigophora diclados is suggested to be similar to those found in the genus Herbertus. The herbertane-type sesquiterpenoids were screened for Staphylococcus aureus strain inhibition.

  18. Labdanolic acid methyl ester (LAME) exerts anti-inflammatory effects through inhibition of TAK-1 activation

    SciTech Connect

    Cuadrado, Irene; Estevez-Braun, Ana; Heras, Beatriz de las

    2012-01-01

    Labdane derivatives obtained from the diterpenoid labdanediol suppressed NO and PGE{sub 2} production in LPS-stimulated RAW 264.7 macrophages. However, mechanisms involved in these inhibitory effects are not elucidated. In this study, we investigated the signaling pathways involved in the anti-inflammatory effects of labdanolic acid methyl ester (LAME) in peritoneal macrophages and examined its therapeutic effect in a mouse endotoxic shock model. LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. This effect involved the inhibition of NOS-2 and COX-2 gene expression, acting at the transcription level. Examination of the effects of the diterpene on NF-κB signaling showed that LAME inhibits the phosphorylation of IκBα and IκBβ, preventing their degradation and the nuclear translocation of the NF-κB p65 subunit. Moreover, inhibition of MAPK signaling was also observed. A further experiment revealed that LAME inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Inflammatory cytokines such as IL-6, TNF-α and IP-10 were downregulated in the presence of this compound after stimulation with LPS. Additionally, LAME also improved survival in a mouse model of endotoxemia and reduced the circulatory levels of cytokines (IL-6, TNF-α). In conclusion, these results indicate that labdane diterpene LAME significantly attenuates the pro-inflammatory response induced by LPS both in vivo and in vitro. Highlights: ► LAME reduced the production of NO and PGE{sub 2} in LPS-activated macrophages. ► IL-6, TNF-α and IP-10 were also inhibited by LAME. ► Inhibition of TAK-1 activation is the mechanism involved in this process. ► LAME improved survival in a mouse model of endotoxemia. ► LAME reduced the circulatory levels of cytokines (IL-6, TNF-α).

  19. Systematic evaluation of methyl ester bioisosteres in the context of developing alkenyldiarylmethanes (ADAMs) as non-nucleoside reverse transcriptase inhibitors (NNRTIs) for anti-HIV-1 chemotherapy.

    PubMed

    Hoshi, Ayako; Sakamoto, Takeshi; Takayama, Jun; Xuan, Meiyan; Okazaki, Mari; Hartman, Tracy L; Buckheit, Robert W; Pannecouque, Christophe; Cushman, Mark

    2016-07-01

    The alkenyldiarylmethanes (ADAMs) are a class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) targeting HIV-1. Four chemically and metabolically stabilized ADAMs incorporating N-methoxyimidoyl halide replacements of the methyl esters of the lead compound were previously reported. In this study, twenty-five new ADAMs were synthesized in order to investigate the biological consequences of installing nine different methyl ester bioisosteres at three different locations. Attempts to define a universal rank order of methyl ester bioisosteres and discover the 'best' one in terms of inhibitory activity versus HIV-1 reverse transcriptase (RT) led to the realization that the potencies are critically dependent on the surrounding structure at each location, and therefore the definition of universal rank order is impossible. This investigation produced several new non-nucleoside reverse transcriptase inhibitors in which all three of the three methyl esters of the lead compound were replaced by methyl ester bioisosteres, resulting in compounds that are more potent as HIV-1 RT inhibitors and antiviral agents than the lead compound itself and are expected to also be more metabolically stable than the lead compound. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Produce of Methyl Ester from Crude Palm Oil (CPO) Using Heterogene Catalyst Ash of Chicken Bone (CaO) using Ethanol as Solvent

    NASA Astrophysics Data System (ADS)

    Sinaga, M. S.; Fauzi, R.; Turnip, J. R.

    2017-03-01

    Methyl Ester (methyl ester) is generally made by trans esterification using heterogeneous base catalyst. To simplify the separation, the heterogeneous catalyst is used, such as CaO, which in this case was isolated from chicken bones made by softening chicken bones and do calcination process. Some other important variables other than the selection of the catalyst is the catalyst dosage, molar ratio of ethanol to the CPO and the reaction temperature. The best result from this observe is at the molar ratio of ethanol to the CPO is 17: 1, the reaction temperature is 70 ° C and 7% catalyst (w.t) with reaction time for 7 hours at 500 rpm as a constant variable, got 90,052 % purity, so that this result does not get the standard requirements of biodiesel, because of the purity of the biodiesel standard temporary must be achieve > 96.5 %. This study aims to produce methyl ester yield with the influence of the reaction temperature, percent of catalyst and molar ratio of ethanol and CPO. The most influential variable is the temperature of the reaction that gives a significant yield difference of methyl ester produced. It’s been proven by the increasing temperature used will also significantly increase the yield of methyl ester.

  1. Solvent free hydroxylation of the methyl esters of Blighia unijugata seed oil in the presence of cetyltrimethylammonium permanganate

    PubMed Central

    2011-01-01

    Extraction of oil from the seed of Blighia unijugata gave a yield of 50.82 ± 1.20% using hexane in a soxhlet extractor. The iodine and saponification values were 67.60 ± 0.80 g iodine/100 g and 239.20 ± 1.00 mg KOH/g respectively with C18:1 being the dominant fatty acid. Unsaturated methyl esters of Blighia unijugata which had been previously subjected to urea adduct complexation was used to synthesize methyl 9, 10-dihydroxyoctadecanoate via hydroxylation in the presence of cetyltrimethylammonium permanganate (CTAP). The reaction was monitored and confirmed using FTIR and GC-MS. This study has revealed that oxidation reaction of mono unsaturated bonds using CTAP could be achieved under solvent free condition. PMID:22145711

  2. Mechanisms of Decreased Moisture Uptake in ortho- Methylated Di(Cyanate Esters)

    DTIC Science & Technology

    2014-10-01

    and Researcher (STAR) program for sponsorship of a Distribution A: Approved for public release; distribution is unlimited. 31 research internship ...at the Air Force Research Laboratory, under which a portion of this work was completed. REFERENCES 1. Chemistry and Technology of Cyanate Ester...Groshens, T. J.; Reams, J. T.; Mabry, J. M. J. Polym. Sci,. Part A: Polym. Chem. 2012, 50, 4127-4136. 23. Chemistry and Technology of Cyanate Ester

  3. Replacement of the metabolically labile methyl esters in the alkenyldiarylmethane series of non-nucleoside reverse transcriptase inhibitors with isoxazolone, isoxazole, oxazolone, or cyano substituents.

    PubMed

    Deng, Bo-Liang; Hartman, Tracy L; Buckheit, Robert W; Pannecouque, Christophe; De Clercq, Erik; Cushman, Mark

    2006-08-24

    The alkenyldiarylmethanes (ADAMs) are a unique class of non-nucleoside reverse transcriptase inhibitors that have potential value in the treatment of HIV/AIDS. However, the potential usefulness of the ADAMs is limited by the presence of metabolically labile methyl ester moieties. A series of novel ADAMs were therefore designed and synthesized in order to replace the metabolically labile methyl ester moieties of the existing ADAM lead compounds with hydrolytically stable, fused isoxazolone, isoxazole, oxazolone, or cyano substituents on the aromatic rings. The methyl ester and methoxy substituents on both of the aromatic rings in the parent compound 1 were successfully replaced with metabolically stable moieties with retention of anti-HIV activity and a general decrease in cytotoxicity.

  4. Gas chromatography/mass spectrometric analysis of methyl esters of N,N-dialkylaminoethane-2-sulfonic acids for verification of the Chemical Weapons Convention.

    PubMed

    Pardasani, Deepak; Gupta, Arvinda K; Palit, Meehir; Shakya, Purushottam; Kanaujia, Pankaj K; Sekhar, K; Dubey, Devendra K

    2005-01-01

    This paper describes the synthesis and gas chromatography/electron ionization mass spectrometric (GC/EI-MS) analysis of methyl esters of N,N-dialkylaminoethane-2-sulfonic acids (DAESAs). These sulfonic acids are important environmental signatures of nerve agent VX and its toxic analogues, hence GC/EI-MS analysis of their methyl esters is of paramount importance for verification of the Chemical Weapons Convention. DAESAs were prepared by condensation of 2-bromoethane sulfonic acid with dialkylamines, and by condensation of dialkylaminoethyl chloride with sodium bisulfite. GC/EI-MS analysis of methyl esters of DAESAs yielded mass spectra; based on these spectra, generalized fragmentation routes are proposed that rationalize most of the characteristic ions.

  5. Antinociceptive activity of Paederosidic Acid Methyl Ester (PAME) from the n-butanol fraction of Paederia scandens in mice.

    PubMed

    Chen, Yu-Feng; Huang, Ying; Tang, Wei-Zhong; Qin, Lu-Ping; Zheng, Han-chen

    2009-08-01

    Antinociceptive activity of Paederosidic Acid Methyl Ester (PAME), a chemical compound isolated from the n-butanol fraction of Paederia scandens, was evaluated in mice using chemical and thermal models of nociception. PAME given by intraperitoneal injection at doses of 20, 40 and 60 mg/kg produced significant inhibitions on chemical nociception induced by intraperitoneal acetic acid, subplantar formalin or capsaicin injections and on thermal nociception in the tail-flick test and the hot plate test. In the pentobarbital sodium-induced sleep time test and the open-field test, PAME neither significantly enhanced the pentobarbital sodium-induced sleep time nor impaired the motor performance, indicating that the observed antinociceptive activity of PAME was unlikely due to sedation or motor abnormality. Core body temperature measurement showed that PAME did not affect temperature within a 2-h period. Moreover, PAME-induced antinociception in the hot plate test was insensitive to naloxone or nimodipine but significantly antagonized by L-NAME (N (G)-nitro-L-arginine methyl ester), methylene blue and glibenclamide. These results suggested that PAME-produced antinociception was possibly related to the pathway of NO-cGMP-ATP sensitive K(+) channels, which merited further studies regarding the precise site and mechanisms of action.

  6. Friedel-crafts alkylation of benzene by normal omega-chloroalkanoic acids and their methyl esters and nitriles

    SciTech Connect

    Zakharkin, L.I.; Anikina, E.V.

    1987-08-20

    In the Friedel-Crafts alkylation of benzene by normal 1-haloalkanes with three or more carbon atoms a mixture of phenylalkanes forms, due to isomerization of the alkyl chain and migration of a hydrogen atoms. Under analogous conditions the alkylation of benzene by omega-chloroalkanoic acids, Cl(CH/sub 2/)/sub n/COOH, and omega-bromoalkanonitriles proceeds with isomerization of the alkyl chain, but beginning only with 6-chlorohexanoic acid and 6-bromohexanonitrile. Such a difference in the behavior of these halogen derivatives has not received a convincing explanation, although the mechanism of Friedel-Crafts alkylation of benzene should be the same in the two cases. For a better understanding of this difference, this work presents a systematic study of benzene alkylation by 4-chlorobutyric, 5-chlorovaleric, 6-chlorohexanoic, and 7-chloroheptanoic acids and their methyl esters and nitriles, and by ..gamma..-butyro- and delta-valerolactones. The catalyst was crystalline AlCl/sub 3/ twice sublimed from Mg. For comparison, alkylation with the respective 1-chloroalkanes was carried out. In the alkylation of benzene by omega-chloroalkanoic acids Cl(CH/sub 2/)/sub n/COOH (where n = 3-6) and their methyl esters and nitriles, in the presence of AlCl/sub 3/, the degree of isomerization of the alkyl chain is less than with the corresponding 1-chloroalkanes, depending on the increase in electron acceptor activity in the sequence HOOC- > CH/sub 3/OCO- > CN-.

  7. A database of chromatographic properties and mass spectra of fatty acid methyl esters from omega-3 products.

    PubMed

    Wasta, Ziar; Mjøs, Svein A

    2013-07-19

    Fatty acids in products claimed to contain oils with the omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were analyzed as fatty acid methyl esters by gas chromatography-mass spectrometry using electron impact ionization. To cover the variation in products on the market, the 20 products that were studied in detail were selected from a larger sample set by statistical methodology. The samples were analyzed on two different stationary phases (polyethylene glycol and cyanopropyl) and the fatty acid methyl esters were identified by methodology that combines the mass spectra and retention indices into a single score value. More that 100 fatty acids had a chromatographic area above 0.1% of the total, in at least one product. Retention indices are reported as equivalent chain lengths, and overlap patterns on the two columns are discussed. Both columns were found suitable for analysis of major and nutritionally important fatty acids, but the large number of minor compounds that may act as interferents will be problematic if low limits of quantification are required in analyses of similar sample types. A database of mass spectral libraries and equivalent chain lengths of the detected compounds has been compiled and is available online. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effects of bis homoallylic and homoallylic hydroxyl substitution on the olefinic 13C resonance shifts in fatty acid methyl esters.

    PubMed

    Pfeffer, P E; Sonnet, P E; Schwartz, D P; Osman, S F; Weisleder, D

    1992-04-01

    Substitution of a hydroxyl group at the bis homoallylic position (OH group located three carbons away from the olefinic carbon) in C18 unsaturated fatty acid esters (FAE) induces a 0.73 +/- 0.05 ppm upfield and a 0.73 +/- 0.06 ppm downfield shift on the delta and epsilon olefinic 13C resonances relative to the unsubstituted FAE, respectively. If the hydroxyl group is located on the carboxyl side of the double bond of the bis homoallylic hydroxy fatty acid esters (BHAHFA), the olefinic resonances are uniformly shifted apart by [formula: see text] where delta delta dbu represents the absolute value of the double bond resonance separation in the unsubstituted FAE and 1.46 ppm is the sum of the absolute values of the delta and epsilon shift parameters. With hydroxyl substitution on the terminal methyl side of the double bond, the olefinic shift separation is equal to [formula: see text] In homoallylic (OH group located two carbons away from the olefinic carbon) substituted FAE the gamma and delta induced hydroxyl shifts for the cis double bond resonances are +3.08 and -4.63 ppm, respectively while the trans double bond parameters are +4.06 and -4.18 ppm, respectively. The double bond resonance separation in homoallylic hydroxy fatty acid esters (HAHFA) can be calculated from the formula [formula: see text] for cis and [formula: see text] for the trans case when the OH substitution is on the carboxyl side of the double bond. Conversely, when the OH resides on the terminal methyl side, the double bond shift separations for cis and trans isomers are [formula: see text] and [formula: see text] respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Preparation of stable sup 125 I cyclic GMP tyrosine methyl ester suitable for 3',5' cyclic GMP radioimmunoassay by HPLC

    SciTech Connect

    Thompson, M.R.; Luttrell, M.; Giannella, R.A. )

    1990-01-01

    Determination of the concentration of cyclic guanosine monophosphate (cGMP) by radioimmunoassay (RIA) depends upon the availability of suitable radiolabeled tracers and antibody to detect the product. Reverse phase chromatographic techniques can easily separate the reaction products of chloramine-T iodination of succinyl cGMP tyrosine methyl ester. The binding characteristics of the iodination reaction products to anti-cGMP antibody have been determined. Purified succinyl cyclic nucleotide 125I-tyrosine methyl ester binds to cGMP antisera identically as commercially available tracer. The tracer is stable for greater than three months.

  10. Isolation of betulinic acid, its methyl ester and guaiane sesquiterpenoids with protein tyrosine phosphatase 1B inhibitory activity from the roots of Saussurea lappa C.B.Clarke.

    PubMed

    Choi, Ji Young; Na, Minkyun; Hyun Hwang, In; Ho Lee, Seung; Young Bae, Eun; Yeon Kim, Bo; Seog Ahn, Jong

    2009-01-08

    Activity-guided fractionation of a MeOH extract of the roots of Saussurea lappa C.B.Clarke (Compositae), using an in vitro protein tyrosine phosphatase 1B (PTP1B) inhibition assay, led to the isolation of four active constituents: betulinic acid (1), betulinic acid methyl ester (2), mokko lactone (3) and dehydrocostuslactone (4), along with nine inactive compounds. Our findings indicate that betulinic acid (1) and its methyl ester 2, as well as the two guaiane sesquiterpenoids 3 and 4 are potential lead moieties for the development of new PTP1B inhibitors.

  11. Fatty acid methyl esters with two vicinal alkylthio side chains and their NMR characterization

    USDA-ARS?s Scientific Manuscript database

    The addition reaction of dimethyl disulfide (DMDS) to double bonds in alkenes and monounsaturated fatty acid esters in the presence of iodine or other catalysts to give bis(methylthio) derivatives has largely served analytical purposes in mass spectrometry with scattered reports on the addition of o...

  12. A comprehensive evaluation of the cetane numbers of fatty acid methyl esters

    USDA-ARS?s Scientific Manuscript database

    The cetane number (CN) is a prime indicator of the quality of diesel fuels, including those derived from renewable resources such as biodiesel. While many effects of compound structure are known or have been postulated, experimental data have not always been available for the various ester component...

  13. Effect of chronic NG-nitro-L-arginine methyl ester (L-NAME) on blood pressure and renal function in conscious uninephrectomized spontaneously hypertensive rats.

    PubMed

    Reverte, M; Flores, O; Gallego, B; Lestón, A; López-Novoa, J M

    1998-01-01

    We have studied during 30 days the effect of a low dose of NG-nitro-L-arginine methyl ester (1 mg.kg-1.day-1 in drinking water) in the presence of D- or L-arginine (1 mg.kg-1.day-1 in drinking water) in comparison with D- or L-arginine alone on blood pressure and renal function in conscious uninephrectomized female spontaneously hypertensive rats. At the end of the study, there was a significant increase in systolic blood pressure in the NG-nitro-L-arginine methyl ester + D-arginine group (307 +/- 6 mmHg (1 mmHg = 133.3 Pa), n = 14, p < 0.05) in comparison with NG-nitro-L-arginine methyl ester + L-arginine (281 +/- 6 mmHg, n = 14), L-arginine (262 +/- 5 mmHg, n = 13), and D-arginine (258 +/- 7 mmHg, n = 12) groups. There were no changes in diuresis, proteinuria, or sodium and potassium excretion between differently treated animals during this study. These results suggest that in uninephrectomized female spontaneously hypertensive rats, after 1 month blockade of NO synthesis with a low dose of NG-nitro-L-arginine methyl ester, vasculature is under tonic control by NO and it is not correlated with renal dysfunction.

  14. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic acids). 573.637 Section 573.637 Food and Drugs FOOD AND... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...

  15. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic acids). 573.637 Section 573.637 Food and Drugs FOOD AND... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...

  16. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic acids). 573.637 Section 573.637 Food and Drugs FOOD AND... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...

  17. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic acids). 573.637 Section 573.637 Food and Drugs FOOD AND... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...

  18. 21 CFR 573.637 - Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Methyl esters of conjugated linoleic acid (cis-9, trans-11 and trans-10, cis-12-octadecadienoic acids). 573.637 Section 573.637 Food and Drugs FOOD AND... RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing...

  19. Enzymatic synthesis of theanine from glutamic acid γ-methyl ester and ethylamine by immobilized Escherichia coli cells with γ-glutamyltranspeptidase activity.

    PubMed

    Zhang, Fei; Zheng, Qing-Zhong; Jiao, Qing-Cai; Liu, Jun-Zhong; Zhao, Gen-Hai

    2010-11-01

    Theanine (γ-glutamylethylamide) is the main amino acid component in green tea. The demand for theanine in the food and pharmaceutical industries continues to increase because of its special flavour and multiple physiological effects. In this research, an improved method for enzymatic theanine synthesis is reported. An economical substrate, glutamic acid γ-methyl ester, was used in the synthesis catalyzed by immobilized Escherichia coli cells with γ-glutamyltranspeptidase (GGT) activity. The results show that GGT activity with glutamic acid γ-methyl ester as substrate was about 1.2-folds higher than that with glutamine as substrate. Reaction conditions were optimized by using 300 mmol/l glutamic acid γ-methyl ester, 3,000 mmol/l ethylamine, and 0.1 g/ml of immobilized GGT cells at pH 10 and 50°C. Under these conditions, the immobilized cells were continuously used ten times, yielding an average glutamic acid γ-methyl ester to theanine conversion rate of 69.3%. Bead activity did not change significantly the first six times they were used, and the average conversion rate during the first six instances was 87.2%. The immobilized cells exhibited favourable operational stability.

  20. Four new acylated glycosidic acid methyl esters isolated from the convolvulin fraction of seeds of Quamoclit pennata after treatment with indium(III) chloride in methanol.

    PubMed

    Ono, Masateru; Akiyama, Kousuke; Yamamoto, Kazutaka; Mineno, Tomoko; Okawa, Masafumi; Kinjo, Junei; Miyashita, Hiroyuki; Yoshimitsu, Hitoshi; Nohara, Toshihiro

    2014-01-01

    Four new acylated glycosidic acid methyl esters were isolated after treatment of the crude ether-insoluble resin glycoside (convolvulin) fraction obtained from the seeds of Quamoclit pennata BOJER (Convolvulaceae) with indium(III) chloride in methanol. Their structures were elucidated on the basis of spectroscopic data and chemical conversions.

  1. Hepatitis B surface antibody purification with hepatitis B surface antibody imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tyrosine methyl ester) particles.

    PubMed

    Uzun, Lokman; Say, Ridvon; Unal, Serhat; Denizli, Adil

    2009-01-15

    Hepatitis B surface antibody imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tyrosine methyl ester) particles were prepared for the purification of hepatitis B surface antibody from human plasma. N-methacryloyl-L-tyrosine methyl ester was chosen as a complexing agent for hepatitis B surface antibodies. Hepatitis B surface antibody imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tyrosine methyl ester) particles were characterized by surface area measurements, swelling test, scanning electron microscopy, elemental analysis, and Fourier transform infrared spectroscopy. Ethylene glycol (1.0M) was used as desorption agent. Adsorption studies were performed from hepatitis B surface antibody and anti-hepatitis A antibody positive human plasma. Effects of antibody concentration, contact time, N-methacryloyl-L-tyrosine methyl ester content and temperature on the adsorption capacity were investigated. The amount of hepatitis B surface antibody adsorbed per unit mass increased with increasing hepatitis B surface antibody concentration, then reached saturation. Maximum hepatitis B surface antibody adsorption amount was 21.4 mIU/mg. Adsorption process reached the equilibrium in 60 min. Competitive adsorption of hepatitis B surface antibody, total anti-hepatitis A antibody and total immunoglobulin E was investigated for showing the selectivity. Hepatitis B surface antibody-imprinted particles could adsorb hepatitis B surface antibody 18.3 times more than anti-hepatitis A antibody and 2.2 times more than immunoglobulin E. It can be concluded that hepatitis B surface antibody-imprinted particles have significant selectivity for hepatitis B surface antibody.

  2. Biocatalytic Resolution of Rac-α-Ethyl-2-Oxo-Pyrrolidineacetic Acid Methyl Ester by Immobilized Recombinant Bacillus cereus Esterase.

    PubMed

    Zheng, Jian-Yong; Liu, Yin-Yan; Luo, Wei-Feng; Zheng, Ren-Chao; Ying, Xiang-Xian; Wang, Zhao

    2016-04-01

    A new esterase-producing strain (Bacillus cereus WZZ001) which exhibiting high hydrolytic activity and excellent enantioselectivity on rac-α-ethyl-2-oxo-pyrrolidineacetic acid methyl ester (R, S-1) has been isolated from soil sample by our laboratory. In this study, the stereoselective hydrolysis of (R, S-1) was performed using the recombinant Bacillus cereus esterase which expressed in Escherichia coli BL21 (DE3). Under the optimized conditions of pH 8.0, 35 °C, and concentration of substrate 400 mM, a successful enzymatic resolution was achieved with an e.e. s of 99.5 % and conversion of 49 %. Immobilization considerably increased the reusability of the recombinant esterase; the immobilized enzyme showed excellent reusability during 6 cycles of repeated 2 h reactions at 35 °C. Thereby, it makes the recombinant B. cereus esterase a usable biocatalyst for industrial application.

  3. Benzoyl-L-arginine methyl ester (BAME)-esterase activity in human plasma during the gravidic-puerperal cycle.

    PubMed

    Salles Meirelles, R

    1977-01-01

    Benzoyl-L-arginine methyl ester (BAME)-esterase activity of plasma was measured in women going through the gravidic-puerperal cycle and compared with plasma of non-pregnant women. Plasma from women in the 36th to 40th week of pregnancy hydrolyzes BAME two times more rapidly than that from non-pregnant women. During pregnancy, BAME-esterase activity in plasma increases progressively up to the 40th week, decreases during labor, and after delivery reaches the same level as in non-pregnant women. The BAME-esterase activity of plasma was affected by the storage temperature, with differences demonstrable between -20 and -4 C and between pregnant and non-pregnant women.

  4. Peak alignment and robust principal component analysis of gas chromatograms of fatty acid methyl esters and volatiles.

    PubMed

    Møller, Stina Frosch; Jørgensen, Bo M

    2007-04-01

    Gas chromatograms of fatty acid methyl esters and of volatile lipid oxidation products from fish lipid extracts are analyzed by multivariate data analysis [principal component analysis (PCA)]. Peak alignment is necessary in order to include all sampled points of the chromatograms in the data set. The ability of robust algorithms to deal with outlier problems, including both sample-wise and element-wise outliers, and the advantages and drawbacks of two robust PCA methods, robust PCA (ROBPCA) and robust singular value decomposition when analysing these GC data were investigated. The results show that the usage of ROPCA is advantageous, compared with traditional PCA, when analysing the entire profile of chromatographic data in cases of sub-optimally aligned data. It also demonstrates how choosing the most robust PCA (sample or element-wise) depends on the type of outliers present in the data set.

  5. Interaction of surfactants with poly(acryloyl- L-proline methyl ester) gel and its statistical moment analysis

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaru; Safranj, Agneza; Omichi, Hideki; Miyajima, Masaharu; Katakai, Ryoichi

    1995-08-01

    The swelling behavior of acryloyl- L-proline methyl ester (A-ProOMe) gel with a reversible and stepwise volume change was studied in aqueous solutions containing sodium dodecyl sulfate (SDS) and lithium dodecyl sulfate (LDS). The transition temperature was evaluated from both the midpoint of the slope under the swelling vs temperature curve (VPTT) and the statistical moment analysis using an area under the curve (ISTT). With the addition of surfactants, the VPTT and ISTT increased and, as a result, it was found that no changes in transition temperature are influenced by the difference between the counterions of the two surfactants. A plot of VPTT and ISTT gave a straight line with a reasonable correlation, suggesting that the transition temperature of the gel, which is affected by surfactant concentration, can be evaluated from ISTT.

  6. Synthesis of methyl esters from palm (Elaeis guineensis) oil using cobalt doped MgO as solid oxide catalyst.

    PubMed

    Rahman, Nur Ashikin Ab; Olutoye, M A; Hameed, B H

    2011-10-01

    The potential of Mg(x)Co(2-)(x)O(2) as heterogeneous reusable catalyst in transesterification of palm oil to methyl ester was investigated. The catalyst was prepared via co-precipitation of the metal hydroxides at different Mg-Co ratios. Mg(1.7)Co(0.3)O(2) catalyst was more active than Mg(0.3)Co(1.7)O(2) in the transesterification of palm oil with methanol. The catalysts calcined at temperature 300 °C for 4 h resulted in highly active oxides and the highest transesterification of 90% was achieved at methanol/oil molar ratio of 9:1, catalyst loading of 5.00 wt.%, reaction temperature of 150 °C and reaction time of 2 h. The catalyst could easily be removed from reaction mixture, but showed 50% decrease in activity when reused due to leaching of active sites. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Apoptosis triggered by pyropheophorbide-α methyl ester-mediated photodynamic therapy in a giant cell tumor in bone

    NASA Astrophysics Data System (ADS)

    Li, K.-T.; Zhang, J.; Duan, Q.-Q.; Bi, Y.; Bai, D.-Q.; Ou, Y.-S.

    2014-06-01

    A giant cell tumor in bone is the common primary bone tumor with aggressive features, occurring mainly in young adults. Photodynamic therapy is a new therapeutic technique for tumors. In this study, we investigated the effects of Pyropheophorbide-α methyl ester (MPPa)-mediated photodynamic therapy on the proliferation of giant cell tumor cells and its mechanism of action. Cell proliferation was evaluated using an MTT assay. Cellular apoptosis was detected by Hoechst nuclear staining, and flow cytometric assay. Mitochondrial membrane potential changes and cytochrome c, caspase-9, caspase-3, and Bcl-2 expression was assessed. Finally, we found that MPPa-mediated photodynamic therapy could effectively suppress the proliferation of human giant cell tumor cells and induce apoptosis. The mitochondrial pathway was involved in the MPPa-photodynamic therapy-induced apoptosis.

  8. Environmental effect of antioxidant additives on exhaust emission reduction in compression ignition engine fuelled with Annona methyl ester.

    PubMed

    Senthil, R; Silambarasan, R

    2015-01-01

    The aim of the present study is to analyse the effect of antioxidant l-ascorbic acid on engine performance and emissions of a diesel engine fuelled with methyl ester of Annona oil (MEAO). The antioxidant is mixed in various concentrations (100-400 mg) with MEAO. Result shows that the antioxidant additive mixture (MEAO+LA200) is effective in control of nitrogen oxides (NOx) and hydrocarbon (HC) emission of MEAO-fuelled engine without doing any engine modification. In this study by using MEAO, the NOx emission is reduced by about 23.38% at full load while compared with neat diesel fuel. Likewise there is a reduction in carbon monoxide, smoke, and HC by about 48%, 28.57% and 29.71% at full load condition compared with neat diesel fuel.

  9. Mathematical method for the prediction of retention times of fatty acid methyl esters in temperature-programmed capillary gas chromatography.

    PubMed

    Torres, Alexandre G; Trugo, Nádia M F; Trugo, Luiz C

    2002-07-17

    An accurate method for identification of fatty acids in complex mixtures analyzed by temperature-programmed capillary gas chromatography is described. The method is based on a mathematical approach using regression curves obtained by plotting the relative retention times of fatty acid methyl esters (FAMEs) analyzed in isothermal and gradient temperature conditions. The method was applied to a complex biological sample (human milk), and it was possible to identify 64 fatty acids, including branched-chain and other fatty acids for which reference standards were not readily available. The identities of the majority of the peaks were confirmed by mass spectrometry. The relative residuals and the relative differences between estimated and measured relative retention times of individual FAMEs varied from 0.03 to 3.15% and from 0.0 to 2.9%, respectively. The method is useful for identification of fatty acids in routine analysis.

  10. The interaction of alpha-N-(p-toluenesulphonyl)-p-guanidino-L-phenylalanine methyl ester with thrombin and trypsin.

    PubMed Central

    Klausner, Y S; Rigbi, M; Ticho, T; De Jong, P J; Neginsky, E J; Rinott, Y

    1978-01-01

    The syntheses are described of p-guanidino-L-phenylalanine and some of its derivatives. alpha-N-(p-Toluenesulphonyl)-p-guanidino-L-phenylalanine methyl ester is an excellent substrate of bovine trypsin (EC 3.4.21.4) (Km 57 micron; kcat. 320s-1 at pH 7.4-8.0) and a very poor substrate of human thrombin (EC 3.4.21.5) (Km 190 micron, kcat. 0.2s-1) and bovine chymotrypsin (EC 3.4.21.1). The ester inhibits thrombin clotting activity. It also inhibits the amidase and esterase activities of human thrombin, this inhibition being of the mixed type. The inhibition constant, K1, of the order of 1 micron, increases with increasing inhibitor concentration. This suggests that the enzyme binds the inhibitor at multiple sites. The importance of the residue at the P1 position [notation of Berger & Schechter (1970) Philos. Trans. R. Soc. London Ser. B 257, 249-264] in determining the selectivity of a substrate or quasi-substrate among trypsin-like enzymes is borne out. p-Guanidino-L-phenylalanine may have a use in the synthesis of selective peptide inhibitors of thrombin. Images PLATE 1 PMID:629742

  11. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    SciTech Connect

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.; Das, Chittaranjan

    2010-07-06

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

  12. Combustion of hydrotreated vegetable oil and jatropha methyl ester in a heavy duty engine: emissions and bacterial mutagenicity.

    PubMed

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Rosenkranz, Nina; Schröder, Olaf; Schaak, Jens; Pabst, Christoph; Brüning, Thomas; Bünger, Jürgen

    2013-06-04

    Research on renewable fuels has to assess possible adverse health and ecological risks as well as conflicts with global food supply. This investigation compares the two newly developed biogenic diesel fuels hydrotreated vegetable oil (HVO) and jatropha methyl ester (JME) with fossil diesel fuel (DF) and rapeseed methyl ester (RME) for their emissions and bacterial mutagenic effects. Samples of exhaust constituents were compared after combustion in a Euro III heavy duty diesel engine. Regulated emissions were analyzed as well as particle size and number distributions, carbonyls, polycyclic aromatic hydrocarbons (PAHs), and bacterial mutagenicity of the exhausts. Combustion of RME and JME resulted in lower particulate matter (PM) compared to DF and HVO. Particle numbers were about 1 order of magnitude lower for RME and JME. However, nitrogen oxides (NOX) of RME and JME exceeded the Euro III limit value of 5.0 g/kWh, while HVO combustion produced the smallest amount of NOX. RME produced the lowest emissions of hydrocarbons (HC) and carbon monoxide (CO) followed by JME. Formaldehyde, acetaldehyde, acrolein, and several other carbonyls were found in the emissions of all investigated fuels. PAH emissions and mutagenicity of the exhausts were generally low, with HVO revealing the smallest number of mutations and lowest PAH emissions. Each fuel showed certain advantages or disadvantages. As proven before, both biodiesel fuels produced increased NOX emissions compared to DF. HVO showed significant toxicological advantages over all other fuels. Since jatropha oil is nonedible and grows in arid regions, JME may help to avoid conflicts with the food supply worldwide. Hydrogenated jatropha oil should now be investigated if it combines the benefits of both new fuels.

  13. [The effect of bacterial lipopolysaccharide on the gastric emptying of rats: a pretreatment evaluation using Nw-nitro-L-arginine methyl ester (L-NAME)].

    PubMed

    Collares, Edgard Ferro; Vinagre, Adriana Mendes

    2006-01-01

    There is evidence that nitric oxide plays a role in the decrease in gastric emptying induced by bacterial lipopolysaccharide. To evaluate the effect of pretreatment with Nw-nitro-L-arginine methyl to ester, one competitive inhibitor of the nitric oxide synthases, on the gastric emptying delay induced by lipopolysaccharide. Male Wistar rats, SPF, were used after 24 h fast and 1 h-water withdrawn. The pretreatment was done intravenously with vehicle (saline) or N(w)-nitro-L-arginine methyl to ester in the doses of 0.5, 1, 2.5 e 5 mg/kg. After 10 min, the animals were treated iv with lipopolysaccharide (50 microg/kg) or received vehicle (saline). The gastric emptying was evaluated 1 h after the lipopolysaccharide administration. A saline solution containing phenol red was used as the test meal. The gastric emptying was indirectly assessed by the determination of percent gastric retention of the test meal 10 min after orogastric administration. The animals pretreated with vehicle and treatment with lipopolysaccharide have significant rise of the gastric retention (average = 57%) in comparison with the controls receiving only vehicle (38.1%). The pretreatment with the different doses of N(w)-nitro-L-arginine methyl to ester did not modify per se the gastric retention in comparison with the animals pretreated with vehicle. Pretreatment with N(w)-nitro-L-arginine methyl to ester with the dose of 1 mg/kg determined a discrete but significant reduction in the gastric retention (52%) of animals treated with lipopolysaccharide in comparison with vehicle-pretreated rats. Paradoxically, animals pretreated with 2.5 or 5 mg of N(w)-nitro-L-arginine methyl to ester/kg followed by treatment with lipopolysaccharide displayed a significantly higher gastric retention (74.7% and 80.5%, respectively) as compared to their controls, pretreated with the same doses of the inhibitor and treated with vehicle (40.5% and 38.7%, respectively) and to those pretreated with vehicle and treated with

  14. Pyrogenic transformation of Nannochloropsis oceanica into fatty acid methyl esters without oil extraction for estimating total lipid content.

    PubMed

    Kim, Jieun; Jung, Jong-Min; Lee, Jechan; Kim, Ki-Hyun; Choi, Tae O; Kim, Jae-Kon; Jeon, Young Jae; Kwon, Eilhann E

    2016-07-01

    This study fundamentally investigated the pseudo-catalytic transesterification of dried Nannochloropsis oceanica into fatty acid methyl esters (FAMEs) without oil extraction, which was achieved in less than 5min via a thermo-chemical pathway. This study presented that the pseudo-catalytic transesterification reaction was achieved in the presence of silica and that its main driving force was identified as temperature: pores in silica provided the numerous reaction space like a micro-reactor, where the heterogeneous reaction was developed. The introduced FAME derivatization showed an extraordinarily high tolerance of impurities (i.e., pyrolytic products and various extractives). This study also explored the thermal cracking of FAMEs derived from N. oceanica: the thermal cracking of saturated FAMEs was invulnerable at temperatures lower than 400°C. Lastly, this study reported that N. oceanica contained 14.4wt.% of dried N. oceanica and that the introduced methylation technique could be applicable to many research fields sharing the transesterification platform. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Kinematic viscosity of fatty acid methyl esters: Prediction, calculated viscosity contribution of esters with unavailable data, and carbon-oxygen equivalents

    USDA-ARS?s Scientific Manuscript database

    Many properties of biodiesel, the mono-alkyl esters of vegetable oils, animal fats or other triacylglycerol-containing feedstocks, are largely determined by its major components, the fatty acid alkyl esters. Therefore, information on the properties of individual components and their interaction is ...

  16. [Comparative assessment of Cladophora, Spirogyra and Oedogonium biomass for the production of fatty acid methyl esters].

    PubMed

    Haq, I; Muhammad, A; Hameed, U

    2014-01-01

    The use of alternative fuels for the mitigation of ecological impacts by use of diesel has been focus of intensive research. In the present work, algal oils extracted from cultivated biomass of Cladophora sp., Spirogyra sp. and Oedogonium sp. were evaluated for the lipase-mediated synthesis of fatty acid monoalkyl esters (FAME, biodiesel). To optimize the transesterification of these oils, different parameters such as the alkyl group donor, reaction temperature, stirring time and oil to alcohol ratio were investigated. Four different alcohols i.e. methanol, ethanol, n-propanol and n-butanol were tested as alkyl group donor for the biosynthesis FAME and methanol was found to be the best. Similarly, temperature 50 C and stirring time of 6 h were optimized for the transesterification of oils with methanol. The maximum biodiesel conversions from Cladophora (75.0%), Spirogyra (87.5%) and Oedogonium (92.0%) were obtained when oil to alcohol ratio was 1 : 8.

  17. Fatty Acid Methyl Ester (FAME) Succession in Different Substrates as Affected by the Co-Application of Three Pesticides

    PubMed Central

    Cardinali, Alessandra; Pizzeghello, Diego; Zanin, Giuseppe

    2015-01-01

    Introduction In intensive agriculture areas the use of pesticides can alter soil properties and microbial community structure with the risk of reducing soil quality. Materials and Methods In this study the fatty acid methyl esters (FAMEs) evolution has been studied in a factorial lab experiment combining five substrates (a soil, two aged composts and their mixtures) treated with a co-application of three pesticides (azoxystrobin, chlorotoluron and epoxiconazole), with two extraction methods, and two incubation times (0 and 58 days). FAMEs extraction followed the microbial identification system (MIDI) and ester-linked method (EL). Results and Discussion The pesticides showed high persistence, as revealed by half-life (t1/2) values ranging from 168 to 298 days, which confirms their recalcitrance to degradation. However, t1/2 values were affected by substrate and compost age down to 8 days for chlorotoluron in S and up to 453 days for epoxiconazole in 12M. Fifty-six FAMEs were detected. Analysis of variance (ANOVA) showed that the EL method detected a higher number of FAMEs and unique FAMEs than the MIDI one, whereas principal component analysis (PCA) highlighted that the monosaturated 18:1ω9c and cyclopropane 19:0ω10c/19ω6 were the most significant FAMEs grouping by extraction method. The cyclopropyl to monoenoic acids ratio evidenced higher stress conditions when pesticides were applied to compost and compost+soil than solely soil, as well as with final time. Conclusion Overall, FAMEs profiles showed the importance of the extraction method for both substrate and incubation time, the t1/2 values highlighted the effectiveness of solely soil and the less mature compost in reducing the persistence of pesticides. PMID:26694029

  18. Double bond localization in minor homoallylic fatty acid methyl esters using acetonitrile chemical ionization tandem mass spectrometry.

    PubMed

    Michaud, Anthony L; Diau, Guan-Yeu; Abril, Reuben; Brenna, J Thomas

    2002-08-15

    Double bond position in natural fatty acids is critical to biochemical properties, however, common instrument-based methods cannot locate double bonds in fatty acid methyl esters (FAME), the predominant analysis form of fatty acids. A recently described mass spectrometry (MS) method for locating double bonds in FAME is reported here for the analysis of minor (<1%) components of real FAME mixtures derived from three natural sources; golden algae (Schizochytrium sp.), primate brain white matter, and transgenic mouse liver. Acetonitrile chemical ionization tandem MS was used to determine double bond positions in 39 FAME, most at concentrations well below 1% of all fatty acid methyl esters. FAME identified in golden algae are 14:1n-6, 14:3n-3, 16:1n-7, 16:2n-6, 16:3n-6, 16:3n-3, 16:4n-3, 18:2n-7, 18:3n-7, 18:3n-8, 18:4n-3, 18:4n-5, 20:3n-7, 20:4n-3, 20:4n-5, 20:4n-7, 20:5n-3, and 22:4n-9. Additional FAME identified in primate brain white matter are 20:1n-7, 20:1n-9, 20:2n-7, 20:2n-9, 22:1n-7, 22:1n-9, 22:1n-13, 22:2n-6, 22:2n-7, 22:2n-9, 22:3n-6, 22:3n-7, 22:3n-9, 22:4n-6, 24:1n-7, 24:1n-9, and 24:4n-6. Additional FAME identified in mouse liver are 26:5n-6, 26:6n-3, 28:5n-6, and 28:6n-3. The primate brain 22:3n-7 and algae 18:4n-5 are novel fatty acids. These results demonstrate the usefulness of the technique for analysis of real samples. Tables are presented to aid in interpretation of acetonitrile CIMS/MS spectra.

  19. The stereocontrolled total synthesis of spirastrellolide A methyl ester. Fragment coupling studies and completion of the synthesis.

    PubMed

    Paterson, Ian; Anderson, Edward A; Dalby, Stephen M; Lim, Jong Ho; Maltas, Philip

    2012-08-14

    The spirastrellolides are a novel family of structurally unprecedented marine macrolides which show promising anticancer properties due to their potent inhibition of protein phosphatase 2A. In the preceding paper, a modular strategy for the synthesis of spirastellolide A methyl ester which allowed for the initial stereochemical uncertainties was outlined, together with the synthesis of a series of suitably functionalised fragments. In this paper, the realisation of this synthesis is described. Two alternative coupling strategies were explored for elaborating the C26-C40 DEF bis-spiroacetal fragment: a modified Julia olefination of a C26 aldehyde with a C17-C25 sulfone, and a Suzuki coupling of a C25 trialkylborane with a C17-C24 vinyl iodide, which also required the development of a double hydroboration reaction to install the C23/C24 stereocentres. The latter proved a significantly superior strategy, and was fully optimised to provide a C17 aldehyde which was coupled with a C1-C16 alkyne fragment to afford the C1-C40 carbon framework. The BC spiroacetal was then installed within this advanced intermediate by oxidative cleavage of two PMB ethers with spontaneous spiroacetalisation, which also led to unanticipated deprotection of the C23 TES ether. The ensuing truncated seco-acid was cyclised in high yield to construct the 38-membered macrolactone under Yamaguchi macrolactonisation conditions, suggesting favourable conformational pre-organisation. Exhaustive desilylation provided a crystalline macrocyclic pentaol, revealing much about the likely conformation of the macrolactone in solution. Attachment of the remainder of the side chain proved challenging, potentially due to steric hindrance by this macrocycle; an olefin cross-metathesis to install an electrophilic allylic carbonate and subsequent π-allyl Stille coupling with a C43-C47 stannane achieved this goal. Global deprotection completed the first total synthesis of (+)-spirastrellolide A methyl ester which

  20. Synthesis, biological evaluation, and 3D QSAR study of 2-methyl-4-oxo-3-oxetanylcarbamic acid esters as N-acylethanolamine acid amidase (NAAA) inhibitors.

    PubMed

    Ponzano, Stefano; Berteotti, Anna; Petracca, Rita; Vitale, Romina; Mengatto, Luisa; Bandiera, Tiziano; Cavalli, Andrea; Piomelli, Daniele; Bertozzi, Fabio; Bottegoni, Giovanni

    2014-12-11

    N-(2-Oxo-3-oxetanyl)carbamic acid esters have recently been reported to be noncompetitive inhibitors of the N-acylethanolamine acid amidase (NAAA) potentially useful for the treatment of pain and inflammation. In the present study, we further explored the structure-activity relationships of the carbamic acid ester side chain of 2-methyl-4-oxo-3-oxetanylcarbamic acid ester derivatives. Additional favorable features in the design of potent NAAA inhibitors have been found together with the identification of a single digit nanomolar inhibitor. In addition, we devised a 3D QSAR using the atomic property field method. The model turned out to be able to account for the structural variability and was prospectively validated by designing, synthesizing, and testing novel inhibitors. The fairly good agreement between predictions and experimental potency values points to this 3D QSAR model as the first example of quantitative structure-activity relationships in the field of NAAA inhibitors.

  1. Kinetics and thermodynamics of oxidation mediated reaction in L-cysteine and its methyl and ethyl esters in dimethyl sulfoxide-d6 by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, Ryan J.; Singh, Jaideep; Krishnan, V. V.

    2017-03-01

    L-Cysteine (L-Cys), L-Cysteine methyl ester (L-CysME) or L-Cysteine ethyl ester (L-CysEE), when dissolved in dimethyl sulfoxide, undergoes an oxidation process. This process is slow enough and leads to nuclear magnetic resonance (NMR) spectral changes that could be monitored in real time. The oxidation mediated transition is modeled as a pseudo-first order kinetics and the thermodynamic parameters are estimated using the Eyring's formulation. L-Cysteine and their esters are often used as biological models due to the remarkable thiol group that can be found in different oxidation states. This oxidation mediated transition is due to the combination of thiol oxidation to a disulfide followed by solvent-induced effects may be relevant in designing cysteine-based molecular models.

  2. Thermo-Mechanical Properties of Semi-Degradable Poly(β-amino ester)-co-Methyl Methacrylate Networks under Simulated Physiological Conditions

    PubMed Central

    Safranski, David L.; Crabtree, Jacob C.; Huq, Yameen R.; Gall, Ken

    2011-01-01

    Poly(β-amino ester) networks are being explored for biomedical applications, but they may lack the mechanical properties necessary for long term implantation. The objective of this study is to evaluate the effect of adding methyl methacrylate on networks' mechanical properties under simulated physiological conditions. The networks were synthesized in two parts: (1) a biodegradable crosslinker was formed from a diacrylate and amine, (2) and then varying concentrations of methyl methacrylate were added prior to photopolymerizing the network. Degradation rate, mechanical properties, and glass transition temperature were studied as a function of methyl methacrylate composition. The crosslinking density played a limited role on mechanical properties for these networks, but increasing methyl methacrylate concentration improved the toughness by several orders of magnitude. Under simulated physiological conditions, networks showed increasing toughness or sustained toughness as degradation occurred. This work establishes a method of creating degradable networks with tailorable toughness while undergoing partial degradation. PMID:21966028

  3. Structure revision and cytotoxic activity of marinamide and its methyl ester, novel alkaloids produced by co-cultures of two marine-derived mangrove endophytic fungi.

    PubMed

    Zhu, Feng; Chen, Guangying; Wu, Jingshu; Pan, Jiahui

    2013-01-01

    Marinamide (1) and its methyl ester (2) have been previously reported as pyrrolyl 1-isoquinolone alkaloids, which were produced by co-cultures of two marine-derived mangrove endophytic fungi from the South China Sea coast. Recrystallisation of methyl marinamide (2) from pyridine forms the known pesticide, quinolactacide (3). Treatment of 3 with methyl iodide to afford N-methyl quinolactacide (4) was identified by X-ray crystallography. Thus, the structures of 1 and 2 were revised from the previously reported pyrrolyl 1-isoquinolone structures to pyrrolyl 4-quinolone analogues. In the MTT assays, both 1 and 2 exhibited potent cytotoxic activity against HepG2, 95-D, MGC832 and HeLa tumour cell lines.

  4. Gas chromatography with tandem differential mobility spectrometry of fatty acid alkyl esters and the selective detection of methyl linolenate in biodiesels by dual-stage ion filtering.

    PubMed

    Pasupuleti, D; Pierce, K; Eiceman, G A

    2015-11-20

    Alkyl esters of fatty acids (FAAEs) with carbon numbers from 8 to 20 formed protonated monomers and proton bound dimers through atmospheric pressure chemical ionization reactions and these gas ions were characterized for their field dependent mobility coefficients using differential mobility spectrometry (DMS). Separation of ion peaks with a vapor modifier was achieved for ions with masses of 317-1033 Da though the differences in these coefficients and the resolution of ion peaks decreased proportionally with increased ion mass. Differences in dispersion curves were sufficient to isolate ions from specific FAAEs in the effluent of a gas chromatograph by dual stage ion filtering using a tandem DMS detector. Methyl linolenate was isolated from nearby eluting methyl oleate, methyl stearate and methyl linoleate within analysis times of 10s without measureable complications from charge suppression in the ion source or leakage in filtering of ions with close proximity of dispersion behavior.

  5. Chemistry of oxalyl derivatives of methyl ketones. XLVI. Reaction of. beta. -bromoaroylpyruvic esters with urea

    SciTech Connect

    Andreichikov, Yu.S.; Plakhina, G.D.

    1987-09-20

    The substitution of the bromine atom in methyl ..beta..-bromoaroylpyruvates by urea is accompanied by cyclization of the substitution product. Depending on the reaction conditions, this leads either to 6-aroyl-5-hydroxyuracils or to 5-aryl-4-methoxycarbonyl-2,3-dihydro-2-imidazolones. The UV spectra were recorded on a Specord UV-Vis spectrometer in ethanol with the substances at concentrations of 10/sup -4/-10/sup -5/ M. The IR spectra were recorded in Vaseline oil on a UR-20 spectrometer. The PMR spectra were recorded in deuteroacetone on an RS-60 spectrometer with HMDS as internal standard. The mass spectra were recorded on a Varian Mat-311 spectrometer at 70 eV.

  6. Identification of jasmonic acid and its methyl ester as gum-inducing factors in tulips.

    PubMed

    Skrzypek, Edyta; Miyamoto, Kensuke; Saniewski, Marian; Ueda, Junichi

    2005-02-01

    The purpose of this study was to identify endogenous factors that induce gummosis and to show their role in gummosis in tulip (Tulipa gesneriana L. cv. Apeldoorn) stems. Using procedures to detect endogenous factors that induce gum in the stem of tulips, jasmonic acid (JA) and methyl jasmonate (JA-Me) were successfully identified using gas-liquid chromatography-mass spectrometry. Total amounts of JA and JA-Me designated as jasmonates in tulip stems were also estimated at about 70-80 ng/g fresh weight, using deuterium-labeled jasmonates as internal standards. The application of JA and JA-Me as lanolin pastes substantially induced gums in tulip stems with ethylene production. The application of ethephon, an ethylene-generating compound, however, induced no gummosis although it slightly affected jasmonate content in tulip stems. These results strongly suggest that JA and JA-Me are endogenous factors that induce gummosis in tulip stems.

  7. Presence of tetrahydro-beta-carboline-3-carboxylic acids in foods by gas chromatography-mass spectrometry as their N-methoxycarbonyl methyl ester derivatives.

    PubMed

    Herraiz, T; Sanchez, F

    1997-03-28

    Various tetrahydro-beta-carboline-3-carboxylic acids (TH beta C-3-COOH) are identified in commercial foods and drinks by GC-MS. Positive identification of 1-methyl-1,2,3,4-tetrahydro-beta-carboline-3-carboxylic acid (MTCA) is demonstrated in soy and tabasco sauces, wine, beer, wine vinegar, cider, orange juice, toasted bread, blue cheese and yoghurt. 1,2,3,4-Tetrahydro-beta-carboline-3-carboxylic acid (THCA) occurs in toasted bread, beer, cider, wine vinegar, soy and tabasco sauce, orange juice and blue cheese. MTCA and THCA are reported for the first time in several of these products. MTCA appears as a mixture of two diastereoisomers with the same mass spectra. MTCA is the major TH beta C-3-COOH in foodstuffs except for toasted bread that contains more THCA. GC-MS analysis of N-methoxycarbonyl methyl ester derivatives of TH beta C-3-COOHs was used for chemical identification. Those derivatives were synthesized in a qualitatively using methyl chloroformate or methyl chloroformate and diazomethane reagents. Electron impact mass spectra of N-methoxycarbonyl-TH beta C-3-COOH methyl esters are reported and fragmentation assigned and discussed. These results prove the presence of TH beta C-3-COOHs in commercial foodstuffs suggesting their uptake during the daily consumption of foods.

  8. A library synthesis of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester derivatives as anti-tumor agents.

    PubMed

    Hayakawa, Ichiro; Shioya, Rieko; Agatsuma, Toshinori; Furukawa, Hidehiko; Naruto, Shunji; Sugano, Yuichi

    2004-09-06

    As a result of a hit-to-lead program using a technique of solution-phase parallel synthesis, a highly potent (2,4-dimethoxyphenyl)-[6-(3-fluorophenyl)-4-hydroxy-3-methylbenzofuran-2-yl]methanone (15b) was synthesized as an optimized derivative of 4-hydroxy-3-methyl-6-phenylbenzofuran-2-carboxylic acid ethyl ester (1), which was discovered as a screening hit from small-molecule libraries and exhibited selective cytotoxicity against a tumorigenic cell line.

  9. Synthesis of theanine from glutamic acid gamma-methyl ester and ethylamine catalyzed by Escherichia coli having gamma-glutamyltranspeptidase activity.

    PubMed

    Zhang, Fei; Zheng, Qing-Zhong; Jiao, Qing-Cai; Liu, Jun-Zhong; Zhao, Gen-Hai

    2010-08-01

    Glutamic acid gamma-methyl ester (GAME) was used as substrate for theanine synthesis catalyzed by Escherichia coli cells possessing gamma-glutamyltranspeptidase activity. The yield was about 1.2-fold higher than with glutamine as substrate. The reaction was optimal at pH 10 and 45 degrees C, and the optimal substrate ratio of GAME to ethylamine was 1:10 (mol/mol). With GAME at 100 mmol, 95 mmol theanine was obtained after 8 h.

  10. A 2-D metal-organic framework of the iron-based 18-metallacrown-6 with N-(methyl-maleamic ester) terminal ligand

    NASA Astrophysics Data System (ADS)

    Chen, Yuting; Dou, Jianmin; Zhang, Daopeng; Li, Dacheng

    2010-04-01

    An 18-membered complex, [Fe(MMSHZ)(DMF)]6 ( 1) [MMSHZ = N-(methyl-maleamic ester)acylsalicylhydrazine] was synthesized and structurally characterized. There are not only particular geometry configurations of N-terminal groups which result in the unique shape of the centric cavity, but also inter- and intra-molecular interactions assembling adjacent molecules into 2-D framework in complex 1. Temperature-dependent magnetic susceptibility measurements indicate that this complex exhibits significantly antiferromagnetic coupling among the metal centers.

  11. 40 CFR 721.9530 - Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester of cycloalkyl spir-o-ke-tal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester of cycloalkyl spir-o-ke-tal. 721.9530 Section 721.9530 Protection of Environment ENVIRONMENTAL...)(2)(ii), (g)(2)(iii), (g)(2)(iv), (g)(3)(ii), (g)(4)(iii), and (g)(5). The following additional human...

  12. 40 CFR 721.9530 - Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester of cycloalkyl spir-o-ke-tal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Bis(2,2,6,6-tetra-methyl-piper-idinyl) ester of cycloalkyl spir-o-ke-tal. 721.9530 Section 721.9530 Protection of Environment ENVIRONMENTAL...)(2)(ii), (g)(2)(iii), (g)(2)(iv), (g)(3)(ii), (g)(4)(iii), and (g)(5). The following additional human...

  13. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    NASA Astrophysics Data System (ADS)

    Karthickeyan, V.; Balamurugan, P.

    2017-05-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  14. Hyperargininemia and renal oxidative stress: Prevention by antioxidants and N(G) -nitro-l-arginine methyl ester.

    PubMed

    Delwing-de Lima, Daniela; Delwing-Dal Magro, Débora; Vieira, Cindy Laís Pett; Grola, Gislaine Maria Marestoni; Fischer, Débora Adriana; de Souza Wyse, Angela Terezinha

    2017-01-01

    We investigated the in vitro and in vivo effects of arginine (Arg) on thiobarbituric acid-reactive substances (TBA-RS) and on the activities of catalase (CAT), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) in renal tissues of rats. We also studied the influence of antioxidants (α-tocopherol plus ascorbic acid) and nitric oxide synthase inhibitor N(G) -nitro-l-arginine methyl ester (l-NAME) on the effects elicited by Arg. Results showed that Arg in vitro (1.5 mM) decreased SOD activity and increased the levels of TBA-RS in the renal medulla. Acute administration of Arg [0.8 g/kg, intraperitoneal injection] decreased CAT activity, increased SOD activity and TBA-RS levels in the renal medulla, and decreased CAT activity in the renal cortex of rats. Most results were prevented by antioxidants and/or l-NAME. Data indicate that Arg causes an oxidative imbalance in the renal tissues studied; however, in the presence of antioxidants and l-NAME, some of these alterations in oxidative stress were prevented.

  15. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    NASA Astrophysics Data System (ADS)

    Karthickeyan, V.; Balamurugan, P.

    2017-10-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  16. Fatty acid methyl ester (FAME) technology for monitoring biological foaming in activated sludge: full scale plant verification.

    PubMed

    Lee, J W; Cha, D K; Kim, I; Son, A; Ahn, K H

    2008-02-01

    Fatty acid methyl ester (FAME) technology was evaluated as a monitoring tool for quantification of Gordonia amarae in activated sludge systems. The fatty acid, 19:1 alcohol, which was identified as a unique fatty acid in G. amarae was not only confirmed to be present in foaming plant samples, but the quantity of the signature peak correlated closely with the degree of foaming. Foaming potential experiment provided a range of critical foaming levels that corresponded to G. amarae population. This range of critical Gordonia levels was correlated to the threshold signature FAME amount. Six full-scale wastewater treatment plants were selected based on a survey to participate in our full-scale study to evaluate the potential application of the FAME technique as the Gordonia monitoring tool. Greater amounts of signature FAME were extracted from the mixed liquor samples obtained from treatment plants experiencing Gordonia foaming problems. The amounts of signature FAME correlated well with the conventional filamentous counting technique. These results demonstrated that the relative abundance of the signature FAMEs can be used to quantitatively monitor the abundance of foam-causing microorganism in activated sludge.

  17. Efficient production of fatty acid methyl ester from waste activated bleaching earth using diesel oil as organic solvent.

    PubMed

    Kojima, Seiji; Du, Dongning; Sato, Masayasu; Park, Enoch Y

    2004-01-01

    Fatty acid methyl ester (FAME) production from waste activated bleaching earth (ABE) discarded by the crude oil refining industry was investigated using fossil fuel as a solvent in the esterification of triglycerides. Lipase from Candida cylindracea showed the highest stability in diesel oil. Using diesel oil as a solvent, 3 h was sufficient to obtain a yield of approximately 100% of FAME in the presence of 10% lipase from waste ABE. Kerosene was also a good solvent in the esterification of triglycerides embedded in the waste ABE. Fuel analysis showed that the FAME produced using diesel oil as a solvent complied with the Japanese diesel standard and the 10% residual carbon amount was lower than that of FAME produced using other solvents. Use of diesel oil as solvent in the FAME production from the waste ABE simplified the process, because there was no need to separate the organic solvent from the FAME-solvent mixture. These results demonstrate a promising reutilization method for the production of FAME, for use as a biodiesel, from industrial waste resources containing waste vegetable oils.

  18. Effects of Turbulence on the Combustion Properties of Partially Premixed Flames of Canola Methyl Ester and Diesel Blends

    DOE PAGES

    Dhamale, N.; Parthasarathy, R. N.; Gollahalli, S. R.

    2011-01-01

    Canola methyl ester (CME) is a biofuel that is a renewable alternative energy resource and is produced by the transesterification of canola oil. The objective of this study was to document the effects of turbulence on the combustion characteristics of blends of CME and No 2 diesel fuel in a partially-premixed flame environment. The experiments were conducted with mixtures of pre-vaporized fuel and air at an initial equivalence ratio of 7 and three burner exit Reynolds numbers, 2700, 3600, and 4500. Three blends with 25, 50, and 75% volume concentration of CME were studied. The soot volume fraction was highestmore » for the pure diesel flames and did not change significantly with Reynolds number due to the mutually compensating effects of increased carbon input rate and increased air entrainment as the Reynolds number was increased. The global NOx emission index was highest and the CO emission index was the lowest for the pure CME flame, and varied non-monotonically with biofuel content in the blend The mean temperature and the NOx concentration at three-quarter flame height were generally correlated, indicating that the thermal mechanism of NOx formation was dominant in the turbulent biofuel flames also.« less

  19. An experimental study of gaseous exhaust emissions of diesel engine using blend of natural fatty acid methyl ester

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Samo, Khalid; Faturachman, Danny

    2012-09-01

    Vegetable oil form in Natural Fatty Acid Methyl Ester (FAME) has their own advantages: first of all they are available everywhere in the world. Secondly, they are renewable as the vegetables which produce oil seeds can be planted year after year. Thirdly, they are friendly with our environment, as they seldom contain sulphur element in them. This makes vegetable fuel studies become current among the various popular investigations. This study is attempt to optimization of using blend FAME on diesel engine by experimental laboratory. The investigation experimental project is comparison between using blend FAME and base diesel fuel. The engine experiment is conducted with YANMAR TF120M single cylinder four stroke diesel engine set-up at variable engine speed with constant load. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at difference engine speed conditions have generally indicated lower in emission NOx, but slightly higher on CO2 emission. The result also shown that the blends FAME are good in fuel consumption and potentially good substitute fuels for diesel engine

  20. Photodynamic inactivation of Klebsiella pneumoniae biofilms and planktonic cells by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester.

    PubMed

    Liu, Chengcheng; Zhou, Yingli; Wang, Li; Han, Lei; Lei, Jin'e; Ishaq, Hafiz Muhammad; Nair, Sean P; Xu, Jiru

    2016-04-01

    The treatment of Klebsiella pneumoniae, particularly extended-spectrum β-lactamase (ESBL)-producing K. pneumoniae, is currently a great challenge. Photodynamic antimicrobial chemotherapy is a promising approach for killing antibiotic-resistant bacteria. The aim of this study was to evaluate the capacity of 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL) in the presence of white light to cause photodynamic inactivation (PDI) of K. pneumoniae planktonic and biofilm cells. In the presence of white light, 5-ALA and MAL inactivated planktonic cells in a concentration-dependent manner. Biofilms were also sensitive to 5-ALA and MAL-mediated PDI. The mechanisms by which 5-ALA and MAL caused PDI of ESBL-producing K. pneumonia were also investigated. Exposure of K. pneumonia to light in the presence of either 5-ALA or MAL induced cleavage of genomic DNA and the rapid release of intracellular biopolymers. Intensely denatured cytoplasmic contents and aggregated ribosomes were also detected by transmission electron microscopy. Scanning electron microscopy showed that PDI of biofilms caused aggregated bacteria to detach and that the bacterial cell envelope was damaged. This study provides insights into 5-ALA and MAL-mediated PDI of ESBL-producing K. pneumoniae.

  1. Effects of Temperature and Humidity History on Brittleness of α-Sulfonated Fatty Acid Methyl Ester Salt Crystals.

    PubMed

    Watanabe, Hideaki; Morigaki, Atsunori; Kaneko, Yukihiro; Tobori, Norio; Aramaki, Kenji

    2016-01-01

    α-Sulfonated fatty acid methyl ester salts (MES), which were made from vegetable sources, are attractive candidates for eco-friendly washing detergents because they have various special features like excellent detergency, favorable biodegradability, and high stability against enzymes. To overcome some disadvantages of powder-type detergents like caking, sorting, and dusting, we studied how temperature and humidity history, as a model for long-term storage conditions, can affect crystalline structures and reduce the brittleness of MES powder. We characterized the crystalline structure of MES grains using small-angle X-ray scattering, wide-angle X-ray scattering, differential scanning calorimetry, and Fourier transform infrared spectroscopy measurements and determined the yield values, which measure the brittleness of MES grains, in shear stress using dynamic viscoelasticity measurements. This study confirmed that MES crystals form three pseudo-polymorphs via thermal or humidity conditioning: metastable crystals (αsubcell), anhydrous crystals (β subcell), and dihydrate crystals (β' subcell). Further, we found that the yield value increases upon phase transition from the β subcell to the β' subcell and from the β' subcell to the αsubcell. Therefore, controlling the thermal and humidity conditioning of MES grains is an effective way to decrease the brittleness of MES powders and can be used to overcome the above mentioned disadvantages of powder-type detergents in the absence of co-surfactants.

  2. Development of Apparatus for Microgravity Experiments on Evaporation and Combustion of Palm Methyl Ester Droplet in High-Pressure Environments

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Nomura, Hiroshi; Hashimoto, Nozomu

    New apparatus for microgravity experiments was developed in order to obtain fundamental data of single droplet evaporation and combustion of palm methyl ester (PME) for understanding PME spray combustion in internal combustion engines. n-hexadecane droplet combustion and evaporation experiments were also performed to obtain single-component fuel data. Combustion experiments were performed at atmospheric pressure and room temperature. For droplet evaporation experiments, ambient temperature and pressure were varied from 473 to 873 K and 0.10 to 4.0 MPa, respectively. Microgravity conditions were employed for evaporation experiments to prevent natural convection. Droplet diameter history of a burning PME droplet is similar to that of n-hexadecane. Droplet diameter history of an evaporating PME droplet is different from that of n-hexadecane at low ambient temperatures. In the latest stage of PME droplet evaporation, temporal evaporation constant decreases remarkably. At ambient temperatures sufficiently above the boiling temperature of PME components, droplet diameter history of PME and n-hexadecane are similar to each other. Corrected evaporation lifetime τ of PME at 873 K as a function of ambient pressure was obtained at normal and microgravity. At normal gravity, τ monotonically decreases with ambient pressure. On the other hand, at microgravity, τ increases with ambient pressure, and then decreases.

  3. [Effects of N omega-nitro-L-arginine methyl ester on pulmonary artery of rats during simulated weightlessness].

    PubMed

    Liu, Chang-ting; Hao, Cong-jun; Wang, Jun-feng; Wang, De-sheng; Yuan, Ming

    2006-12-01

    To investigate the effects of the N omega-nitro-L-arginine methyl ester (L-NAME) on pulmonary artery of rats during 14 days simulated weightlessness. Sixteen male Wistar rats were randomly divided into control group and tail-suspension (TP) group (each n=8). Vascular bathing technique was used to measure the contractile responses of rats pulmonary artery rings to phenylephrine (PE), dilatory responses to acetylcholine (Ach) and contractile response to PE in presence of L-NAME. Nitric oxide (NO) content in pulmonary tissues was determined using nitrate enzyme reduction method. After simulated weightlessness for 14 days,the contractile response of rat pulmonary artery to PE (1x10(-5)-1x10(-7) mol/L) decreased significantly (all P<0.01); the dilatory response to Ach (1x10(-6)-1x10(-8) mol/L) increased significantly (all P<0.05). L-NAME abolished the differential responses to PE in TS and control groups, had no significant differences compared with control group, and NO content was also significantly increased. There were significant differences between the two groups (P<0.05). Larger amount of NO is released in vascular endothelium after 14 days TS, which might partly explain the decrease in the contractile responses of pulmonary artery.

  4. N(G)-nitro-L-arginine methyl ester, but not methylene blue, attenuates anaphylactic hypotension in anesthetized mice.

    PubMed

    Takano, Hiromichi; Liu, Wei; Zhao, Zhansheng; Cui, Sen; Zhang, Wei; Shibamoto, Toshishige

    2007-07-01

    To clarify the role of NO in mouse anaphylactic hypotension, effects of a nitric oxide (NO) synthase inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), on antigen-induced hypotension and portal hypertension were determined in anesthetized BALB/c mice. Systemic arterial pressure (Psa), central venous pressure (Pcv), and portal venous pressure (Ppv) were directly and simultaneously measured. Mice were first sensitized with ovalbumin, and then the injection of antigen was used to decrease Psa and increase Ppv. Pretreatment with L-NAME (1 mg/kg) attenuated this antigen-induced systemic hypotension, but not the increase in Ppv. The effect of inhibitors of soluble guanylate cyclase on anaphylactic hypotension were studied with either methylene blue (3.0 mg/kg) or 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (10 mg/kg). Neither modulated any antigen-induced changes. Furthermore, methylene blue did not improve systemic hypotension induced by Compound 48/80 (4.5 mg/kg), a mast cell degranulator, which can produce non-immunological anaphylactoid reactions. These data show in anesthetized BALB/c mice that L-NAME attenuated anaphylactic hypotension without affecting portal hypertension. This beneficial effect of L-NAME appears not to depend on the soluble guanylate cyclase pathway.

  5. Mechanism of falcipain-2 inhibition by α,β-unsaturated benzo[1,4]diazepin-2-one methyl ester

    NASA Astrophysics Data System (ADS)

    Grazioso, Giovanni; Legnani, Laura; Toma, Lucio; Ettari, Roberta; Micale, Nicola; De Micheli, Carlo

    2012-09-01

    Falcipain-2 (FP-2) is a papain-family cysteine protease of Plasmodium falciparum whose primary function is to degrade the host red cell hemoglobin, within the food vacuole, in order to provide free amino acids for parasite protein synthesis. Additionally it promotes host cell rupture by cleaving the skeletal proteins of the erythrocyte membrane. Therefore, the inhibition of FP-2 represents a promising target in the search of novel anti-malarial drugs. A potent FP-2 inhibitor, characterized by the presence in its structure of the 1,4-benzodiazepine scaffold and an α,β-unsaturated methyl ester moiety capable to react with the Cys42 thiol group located in the active site of FP-2, has been recently reported in literature. In order to study in depth the inhibition mechanism triggered by this interesting compound, we carried out, through ONIOM hybrid calculations, a computational investigation of the processes occurring when the inhibitor targets the enzyme and eventually leads to an irreversible covalent Michael adduct. Each step of the reaction mechanism has been accurately characterized and a detailed description of each possible intermediate and transition state along the pathway has been reported.

  6. Anti-Diabetic and Hepato-Renal Protective Effects of Ziyuglycoside II Methyl Ester in Type 2 Diabetic Mice

    PubMed Central

    Son, Dong Ju; Hwang, Seock Yeon; Kim, Myung-Hyun; Park, Un Kyu; Kim, Byoung Soo

    2015-01-01

    Type 2 diabetes is a metabolic disorder caused by abnormal carbohydrate metabolism, and closely associated with abnormal lipid metabolism and hepato-renal dysfunction. This study investigated the anti-diabetic and hepato-renal protective properties of ziyuglycoside I (ZG01) derivative on type 2 diabetes. ZG01 was isolated from roots of Sanguisorba officinalis and chemically modified by deglycosylation and esterification to obtained ziyuglycoside II methyl ester (ZG02-ME). Here, we showed that ZG02-ME has stronger anti-diabetic activity than the original compound (ZG01) through decreasing blood glucose, glycated hemoglobin (HbA1c), and insulin levels in a mouse model of type 2 diabetes (db/db mice). We further found that ZG02-ME treatment effectively ameliorated serum insulin, leptin and C-peptide levels, which are key metabolic hormones, in db/db mice. In addition, we showed that elevated basal blood lipid levels were decreased by ZG02-ME treatment in db/db mice. Furthermore, treatment of ZG02-ME significantly decreased serum AST, ALT, BUN, creatinine, and liver lipid peroxidation in db/db mice. These results demonstrated that compared to ZG01, chemically modified ZG02-ME possess improved anti-diabetic properties, and has hepato-renal protective activities in type 2 diabetes. PMID:26198246

  7. Dietary aspartyl-phenylalanine-1-methyl ester delays osteoarthritis and prevents associated bone loss in STR/ORT mice

    PubMed Central

    Manion, Carl V.; Hochgeschwender, Ute; Edmundson, Allen B.; Hugli, Tony E.

    2011-01-01

    Objective. STR/ORT mice provide a well-known model for murine idiopathic OA, with histological joint lesions resembling those of human OA. This model was used to investigate protective effects of the dipeptide aspartyl-phenylalanine-1-methyl ester (Asp-Phe-OMe or aspartame) via the oral route vs a regular diet. Methods. STR/ORT mice were housed individually and fed diets with or without Asp-Phe-OMe (4 mg/kg), after weaning at the age of 3 weeks, until 15 months of age (average of 20 animals per group). The study groups were kept blinded to the investigators, who measured food consumption and body weight and performed gait mobility tests. Radiographic scans were also performed at regular time intervals to evaluate differential radiographic anomalies associated with progress of OA in response to oral Asp-Phe-OMe therapy. Results. The Asp-Phe-OMe-fed animals presented a pattern of significantly delayed disease onset. In addition, their muscle and bone mass were highly preserved, even at later time points after OA was established. Moreover, control animals presented a higher variability in gait motility in comparison with the Asp-Phe-OMe-fed animals, suggesting a protective effect from movement limitations associated with advanced OA. Conclusion. Asp-Phe-OMe, given orally, delays OA in the spontaneous STR/ORT model, improves bone cortical density and muscle mass, and may contribute to a better quality of life for these diseased animals. PMID:21372000

  8. Enantioseparation of aromatic amino acids using CEC monolith with novel chiral selector, N-methacryloyl-L-histidine methyl ester.

    PubMed

    Aydoğan, Cemil; Yılmaz, Fatma; Cimen, Duygu; Uzun, Lokman; Denizli, Adil

    2013-07-01

    A new type of polymethacrylate-based monolithic column with chiral stationary phase was prepared for the enantioseparation of aromatic amino acids, namely D,L-phenylalanine, D,L-tyrosine, and D,L-tryptophan by CEC. The monolithic column was prepared by in situ polymerization of butyl methacrylate (BMA), N-methacryloyl-L-histidine methyl ester (MAH), and ethylene dimethacrylate (EDMA) in the presence of porogens. The porogen mixture included DMF and phosphate buffer. MAH was used as a chiral selector. FTIR spectrum of the polymethacrylate-based monolith showed that MAH was incorporated into the polymeric structure via in situ polymerization. Some experimental parameters including pH, concentration of the mobile phase, and MAH concentration with regard to the chiral CEC separation were investigated. Single enantiomers and enantiomer mixtures of the amino acids were separately injected into the monolithic column. It was observed that L-enantiomers of aromatic amino acids migrated before D-enantiomers. The reversal enantiomer migration order for tryptophan was observed upon changing of pH. Using the chiral monolithic column (100 μm id and 375 μm od), the best chiral separation was performed in 35:65% ACN/phosphate buffer (pH 8.0, 10 mM) with an applied voltage of 12 kV in CEC. SEM images showed that the chiral monolithic column has a continuous polymeric skeleton and large through-pore structure.

  9. Simultaneous determination of shanzhiside methyl ester, 8-O-acetylshan- zhiside methyl ester and luteolin-7-O-β-D-glucopyranoside in rat plasma by ultra performance liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study after oral administration of Lamiophlomis rotata Pill.

    PubMed

    Chen, Jing; Wang, Yang; Liang, Xinlei; Sun, Tingting; Luo, Jinghan; Guo, Xingjie; Zhao, Longshan

    2016-05-01

    A rapid, sensitive and specific ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantification of shanzhiside methyl ester, 8-O-acetylshanzhiside methyl ester and luteolin-7-O-β-D-glucopyranoside of Lamiophlomis rotata Pill in rat plasma was developed and validated. After liquid-liquid extraction with n-butyl alcohol/ethyl acetate (70:30, v/v), analytes and paeoniflorin (internal standard, IS) were separated on an Acquity BEH UPLC C18 column (100 × 2.1 mm, 1.7 μm) with gradient elution at a flow rate of 0.2 mL/min. All calibration curves had good linearity (r>0.9929) over the concentration ranges of 1-1000 ng/mL for shanzhiside methyl ester and 8-O-acetylshanzhiside methyl ester, 0.3-150 ng/mL for luteolin-7-O-β-D-glucopyranoside. The intra- and inter-day precisions were all within 11.1% and the accuracy (relative error, RE%) all ranged from -13.6% to 5.3%. The method also guaranteed an acceptable selectivity, recovery and stability, which was successfully applied to a pharmacokinetic study of the three analytes in rats after oral administration of Lamiophlomis rotata Pill. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effects of Alumina Nano Metal Oxide Blended Palm Stearin Methyl Ester Bio-Diesel on Direct Injection Diesel Engine Performance and Emissions

    NASA Astrophysics Data System (ADS)

    Krishna, K.; Kumar, B. Sudheer Prem; Reddy, K. Vijaya Kumar; Charan Kumar, S.; Kumar, K. Ravi

    2017-08-01

    The Present Investigation was carried out to study the effect of Alumina Metal Oxide (Al2O3) Nano Particles as additive for Palm Stearin Methyl Ester Biodiesel (B 100) and their blends as an alternate fuel in four stroke single cylinder water cooled, direct injection diesel engine. Alumina Nano Particles has high calorific value and relatively high thermal conductivity (30‑1 W m K‑1) compare to diesel, which helps to promote more combustion in engines due to their higher thermal efficiency. In the experimentation Al2O3 were doped in various proportions with the Palm Stearin Methyl Ester Biodiesel (B-100) using an ultrasonicator and a homogenizer with cetyl trimethyl ammonium bromide (CTAB) as the cationic surfactant. The test were performed on a Kirsloskar DI diesel engine at constant speed of 1500 rpm using different Nano Biodiesel Fuel blends (psme+50 ppm, psme+150 ppm, and psme+200 ppm) and results were compared with those of neat conventional diesel and Palm Stearin Methyl Ester Bio diesel. It was observed that for Nano Biodiesel Fuel blend (psme+50ppm) there is an significant reduction in carbon monoxide (CO) emissions and Nox emissions compared to diesel and the brake thermal efficiency for (psme+50ppm) was almost same as diesel.

  11. Biperiden enhances L-DOPA methyl ester and dopamine D(l) receptor agonist SKF-82958 but antagonizes D(2)/D(3) receptor agonist rotigotine antihemiparkinsonian actions.

    PubMed

    Domino, Edward F; Ni, Lisong

    2008-12-03

    The effects of biperiden (0, 100, and 320 microg/kg), a selective muscarinic M(1)/M(4) receptor cholinergic antagonist, were studied alone and in combination with those of L-DOPA methyl ester (16.7 mg/kg), a selective dopamine D(1) receptor agonist SKF-82958 (74.8 microg/kg), or a selective D(2)/D(3) receptor agonist rotigotine (32 microg/kg) on circling behavior in MPTP induced hemiparkinsonian monkeys. The doses selected were given i.m. in approximately equieffective doses to produce contraversive circling. Biperiden alone with 5% dextrose vehicle produced a slight increase in contraversive circling in a dose related manner. When combined with L-DOPA methyl ester, it enhanced contraversive circling and decreased ipsiversive circling. When biperiden was combined with SKF-82958, contraversive circling also was enhanced and ipsiversive circling decreased. Exactly the opposite was observed with the combination of biperiden and rotigotine. The results indicate a dramatic difference in effects of a prototypic muscarinic M(1)/M(4) receptor cholinergic antagonist in combination with prototypic full dopamine D(1) or D(2)/D(3) receptor agonists. Biperiden interactions with L-DOPA methyl ester were more predominantly D(l) than D(2)/D(3) receptor-like in this animal model of hemiparkinsonism.

  12. Changes in the aggregation patterns of Z-2,3-diphenylpropenoic acid and its methyl ester on substituting the olefinic hydrogen with CF 3 group—an FT-IR study

    NASA Astrophysics Data System (ADS)

    Kiss, J. T.; Felföldi, K.; Pálinkó, I.

    2005-06-01

    While in the unsubstituted Z-2,3-diphenylpropenoic acid and its methyl ester the olefinic protons rarely were part of any hydrogen bonding interaction, upon substitution by CF 3 group, the possibility of (aromatic)C-H⋯F intermolecular hydrogen bond appeared and indeed realised for the molecules ( E-2,3-diphenyl-3-CF 3-propenoic acid and its methyl ester) in the solid state. This type of close contact was indicated experimentally by FT-IR spectroscopy.

  13. PET imaging and optical imaging with D-luciferin [11C]methyl ester and D-luciferin [11C]methyl ether of luciferase gene expression in tumor xenografts of living mice.

    PubMed

    Wang, Ji-Quan; Pollok, Karen E; Cai, Shanbao; Stantz, Keith M; Hutchins, Gary D; Zheng, Qi-Huang

    2006-01-15

    New carbon-11 labeled D-luciferin analogs D-luciferin [(11)C]methyl ester ([(11)C]LMEster, [(11)C]1) and D-luciferin [(11)C]methyl ether ([(11)C]LMEther, [(11)C]2) were synthesized in 25-55% radiochemical yield. PET studies with [(11)C]LMEster and [(11)C]LMEther demonstrate a lower retention of the C-11 label at 45 min post-injection in luciferase expression tumor. Optical imaging with unlabeled substrate D-luciferin and radiotracers [(11)C]LMEster and [(11)C]LMEther gave tumor luciferase images within a few minutes of photon counting.

  14. Three acylated glycosidic acid methyl esters and two acylated methyl glycosides generated from the convolvulin fraction of seeds of Quamoclit pennata by treatment with indium(III) chloride in methanol.

    PubMed

    Akiyama, Kousuke; Mineno, Tomoko; Okawa, Masafumi; Kinjo, Junei; Miyashita, Hiroyuki; Yoshimitsu, Hitoshi; Nohara, Toshihiro; Ono, Masateru

    2013-01-01

    Treatment of the ether-insoluble resin glycoside (convolvulin) fraction from seeds of Quamoclit pennata (Convolvulaceae) with indium(III) chloride in methanol provided three oligoglycosides of hydroxy fatty acid (glycosidic acid) methyl esters and two methyl glycosides, which were partially acylated by a glycosidic acid, 7S-hydroxydecanoic acid 7-O-β-D-quinovopyranoside (quamoclinic acid B) and/or two organic acids, (E)-2-methylbut-2-enoic (tiglic) acid and/or 3R-hydroxy-2R-methylbutyric (nilic) acid. Their structures were elucidated on the basis of spectroscopic data and chemical conversions.

  15. Separation of the fatty acids in menhaden oil as methyl esters with a highly polar ionic liquid gas chromatographic column and identification by time of flight mass spectrometry.

    PubMed

    Fardin-Kia, Ali Reza; Delmonte, Pierluigi; Kramer, John K G; Jahreis, Gerhard; Kuhnt, Katrin; Santercole, Viviana; Rader, Jeanne I

    2013-12-01

    The fatty acids contained in marine oils or products are traditionally analyzed by gas chromatography using capillary columns coated with polyethylene glycol phases. Recent reports indicate that 100 % cyanopropyl siloxane phases should also be used when the analyzed samples contain trans fatty acids. We investigated the separation of the fatty acid methyl esters prepared from menhaden oil using the more polar SLB-IL111 (200 m × 0.25 mm) ionic liquid capillary column and the chromatographic conditions previously optimized for the separation of the complex mixture of fatty acid methyl esters prepared from milk fat. Identifications of fatty acids were achieved by applying Ag(+)-HPLC fractionation and GC-TOF/MS analysis in CI(+) mode with isobutane as the ionization reagent. Calculation of equivalent chain lengths confirmed the assignment of double bond positions. This methodology allowed the identification of 125 fatty acids in menhaden oil, including isoprenoid and furanoid fatty acids, and the novel 7-methyl-6-hexadecenoic and 7-methyl-6-octadecenoic fatty acids. The chromatographic conditions applied in this study showed the potential of separating in a single 90-min analysis, among others, the short chain and trans fatty acids contained in dairy products, and the polyunsaturated fatty acids contained in marine products.

  16. Negative polarity of phenyl-C{sub 61} butyric acid methyl ester adjacent to donor macromolecule domains

    SciTech Connect

    Alley, Olivia J.; Dawidczyk, Thomas J.; Hardigree, Josué F. Martínez; Katz, Howard E.; Wu, Meng-Yin; Johns, Gary L.; Markovic, Nina; Arnold, Michael S.

    2015-01-19

    Interfacial fields within organic photovoltaics influence the movement of free charge carriers, including exciton dissociation and recombination. Open circuit voltage (V{sub oc}) can also be dependent on the interfacial fields, in the event that they modulate the energy gap between donor HOMO and acceptor LUMO. A rise in the vacuum level of the acceptor will increase the gap and the V{sub oc}, which can be beneficial for device efficiency. Here, we measure the interfacial potential differences at donor-acceptor junctions using Scanning Kelvin Probe Microscopy, and quantify how much of the potential difference originates from physical contact between the donor and acceptor. We see a statistically significant and pervasive negative polarity on the phenyl-C{sub 61} butyric acid methyl ester (PCBM) side of PCBM/donor junctions, which should also be present at the complex interfaces in bulk heterojunctions. This potential difference may originate from molecular dipoles, interfacial interactions with donor materials, and/or equilibrium charge transfer due to the higher work function and electron affinity of PCBM. We show that the contact between PCBM and poly(3-hexylthiophene) doubles the interfacial potential difference, a statistically significant difference. Control experiments determined that this potential difference was not due to charges trapped in the underlying substrate. The direction of the observed potential difference would lead to increased V{sub oc}, but would also pose a barrier to electrons being injected into the PCBM and make recombination more favorable. Our method may allow unique information to be obtained in new donor-acceptor junctions.

  17. Photophysics and morphology of poly (3-dodecylthienylenevinylene)-[6,6]-phenyl-C{sub 61}-butyric acid methyl ester composite

    SciTech Connect

    Lafalce, E.; Toglia, P.; Jiang, X.; Zhang, C.

    2012-05-21

    A series of low band gap poly(3-dodecylthienylenevinylene) (PTV) with controlled morphological order have been synthesized and blended with the electron acceptor [6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) for organic photovoltaic devices. Two polymers with the most and least side chain regioregularity were chosen in this work, namely the PTV010 and PTV55, respectively. Using photoluminescence, photo-induced absorption spectroscopy, and atomic force microscopy, we find no direct evidence of photoinduced charge transfer between the two constituents, independent of the bulk-heterojunction morphology of the film, although the possibility of formation of P{sup +}/C{sub 60}{sup -} charge transfer complex was not completely ruled out. The large exciton binding energy (E{sub b} = 0.6 eV) in PTV inhibits the photoinduced electron transfer from PTV to PCBM. In addition, excitons formed on polymer chains suffer ultrafast (

  18. Microwave Energy Increases Fatty Acid Methyl Ester Yield in Human Whole Blood Due to Increased Sphingomyelin Transesterification.

    PubMed

    Metherel, Adam H; Aristizabal Henao, Juan J; Ciobanu, Flaviu; Taha, Ameer Y; Stark, Ken D

    2015-09-01

    Dried blood spots (DBS) by fingertip prick collection for fatty acid profiling are becoming increasingly popular due to ease of collection, minimal invasiveness and its amenability to high-throughput analyses. Herein, we assess a microwave-assisted direct transesterification method for the production of fatty acid methyl esters (FAME) from DBS. Technical replicates of human whole blood were collected and 25-μL aliquots were applied to chromatography strips prior to analysis by a standard 3-h transesterification method or microwave-assisted direct transesterification method under various power (variable vs constant), time (1-5 min) and reagent (1-10% H2SO4 in methanol) conditions. In addition, a standard method was compared to a 5-min, 30-W power microwave in 1% H2SO4 method for FAME yield from whole blood sphingomyelin, and sphingomyelin standards alone and spiked in whole blood. Microwave-assisted direct transesterification yielded no significant differences in both quantitative (nmol/100 µL) and qualitative (mol%) fatty acid assessments after as little as 1.5- and 1-min reaction times, respectively, using the variable power method and 5% H2SO4 in methanol. However, 30-W power for 5 min increased total FAME yield of the technical replicates by 14%. This increase appears largely due to higher sphingomyelin-derived FAME yield of up to 109 and 399% compared to the standard method when determined from whole blood or pure standards, respectively. In conclusion, microwave-assisted direct transesterification of DBS achieved in as little as 1-min, and 5-min reaction times increase total fatty acids primarily by significantly improving sphingomyelin-derived fatty acid yield.

  19. Use of Fatty Acid Methyl Ester Profiles for Discrimination of Bacillus cereus T-Strain Spores Grown on Different Media▿

    PubMed Central

    Ehrhardt, Christopher J.; Chu, Vivian; Brown, TeeCie; Simmons, Terrie L.; Swan, Brandon K.; Bannan, Jason; Robertson, James M.

    2010-01-01

    The goal of this study was to determine if cellular fatty acid methyl ester (FAME) profiling could be used to distinguish among spore samples from a single species (Bacillus cereus T strain) that were prepared on 10 different medium formulations. To analyze profile differences and identify FAME biomarkers diagnostic for the chemical constituents in each sporulation medium, a variety of statistical techniques were used, including nonmetric multidimensional scaling (nMDS), analysis of similarities (ANOSIM), and discriminant function analysis (DFA). The results showed that one FAME biomarker, oleic acid (18:1 ω9c), was exclusively associated with spores grown on Columbia agar supplemented with sheep blood and was indicative of blood supplements that were present in the sporulation medium. For spores grown in other formulations, multivariate comparisons across several FAME biomarkers were required to discern profile differences. Clustering patterns in nMDS plots and R values from ANOSIM revealed that dissimilarities among FAME profiles were most pronounced when spores grown with disparate sources of complex additives or protein supplements were compared (R > 0.8), although other factors also contributed to FAME differences. DFA indicated that differentiation could be maximized with a targeted subset of FAME variables, and the relative contributions of branched FAME biomarkers to group dissimilarities changed when different media were compared. When taken together, these analyses indicate that B. cereus spore samples grown in different media can be resolved with FAME profiling and that this may be a useful technique for providing intelligence about the production methods of Bacillus organisms in a forensic investigation. PMID:20097814

  20. L-dopa methyl ester attenuates amblyopia-induced neuronal injury in visual cortex of amblyopic cat.

    PubMed

    Li, Rong; Liang, Tao; Chen, Zhaoni; Zhang, Shijun; Lin, Xing; Huang, Renbin

    2013-09-15

    In the present study, we aimed to assess the potential anti-amblyopic effects of L-dopa methyl ester (LDME) on visual cortex area 17 in an amblyopic feline model induced by monocular vision deprivation. After LDME administration, pathophysiologic and ultrastructural observations were utilized to examine the morphological changes of nerve cells in visual cortex area 17. Dopamine (DA) and its metabolite contents in visual cortex area 17 were investigated through HPLC analysis. Apoptotic cells in visual cortex area 17 were evaluated by TUNEL assay. Additionally, the c-fos expression both at gene and protein levels was assessed using RT-PCR and immunohistochemistry analyses, respectively. The contents of DA and its metabolites were elevated in visual cortex area 17. Neuronal rejuvenation which occurred in visual cortex area 17 was observed through anatomical and physiological assessments. Similarly, TUNEL results showed that neuronal apoptosis was inhibited in the visual cortex of amblyopic cats by both L-dopa and LDME therapies. Meanwhile, the c-fos expression was notably up-regulated at both the mRNA and protein levels by the treatments. These findings suggested that LDME treatment could effectively increase DA and its metabolite contents, and restrain the apoptotic process, as well as elevate the c-fos expression in nerve cells of visual cortex area 17. Taken together, LDME might ameliorate the functional cytoarchitecture in visual cortex area 17 through mechanisms that elevate DA content and increase endogenous c-fos expression, as well as inhibit neuronal lesion in visual cortex tissue.

  1. Performance of Palm-Based C16/18 Methyl Ester Sulphonate (MES) in Liquid Detergent Formulation.

    PubMed

    Maurad, Zulina Abd; Idris, Zainab; Ghazali, Razmah

    2017-07-01

    Liquid detergents are more convenient than powdered detergents as they dissolve readily in water, generate less dust and dosing is easy. However, the stability of liquid detergents is an issue of concern. Therefore, the objective of this research is to study the formulation requirement to produce heavy-duty liquid detergents based on palm-based methyl esters sulphonate (MES) with desirable properties and performance. MES is produced from renewable and sustainable feedstock suitable to replace the conventional fossil-based surfactant, linear alkyl benzene sulphonates (LAS). Five palm-based liquid detergents (PBLDs) were formulated using C16/18 MES as the primary surfactant. The physical properties, washing performance, stability and biodegradability of PBLDs were evaluated. Performance of the PBLDs was evaluated against two commercial liquid detergents which use LAS and alcohol glucoside as surfactant (benchmark product) and it was found that the PBLDs exhibited excellent performance. PBLDs can be formulated with or without phosphates and still demonstrate good detergency. The stability study of PBLDs indicated that no appreciable hydrolysis occurred. PBLDs exhibited better biodegradability profiles compared to commercial detergent containing LAS. PBLDs passed the 60% biodegradability level within 3 to 8 d, while commercial detergent took 24 d. It was shown that palm-based C16/18 MES could be potentially formulated into liquid detergents and gave better performance than LAS based liquid detergent. Attributes of C16/18 MES should not be overlooked, which include an abundant and naturally derived palm stearin as raw material and environmental safety profiles that are superior to most synthetic surfactants.

  2. Accurate and Reliable Quantification of Total Microalgal Fuel Potential as Fatty Acid Methyl Esters by in situ Transesterfication

    SciTech Connect

    Laurens, L. M. L.; Quinn, M.; Van Wychen, S.; Templeton, D. W.; Wolfrum, E. J.

    2012-04-01

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process.

  3. Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-strain spores grown on different media.

    PubMed

    Ehrhardt, Christopher J; Chu, Vivian; Brown, TeeCie; Simmons, Terrie L; Swan, Brandon K; Bannan, Jason; Robertson, James M

    2010-03-01

    The goal of this study was to determine if cellular fatty acid methyl ester (FAME) profiling could be used to distinguish among spore samples from a single species (Bacillus cereus T strain) that were prepared on 10 different medium formulations. To analyze profile differences and identify FAME biomarkers diagnostic for the chemical constituents in each sporulation medium, a variety of statistical techniques were used, including nonmetric multidimensional scaling (nMDS), analysis of similarities (ANOSIM), and discriminant function analysis (DFA). The results showed that one FAME biomarker, oleic acid (18:1 omega9c), was exclusively associated with spores grown on Columbia agar supplemented with sheep blood and was indicative of blood supplements that were present in the sporulation medium. For spores grown in other formulations, multivariate comparisons across several FAME biomarkers were required to discern profile differences. Clustering patterns in nMDS plots and R values from ANOSIM revealed that dissimilarities among FAME profiles were most pronounced when spores grown with disparate sources of complex additives or protein supplements were compared (R > 0.8), although other factors also contributed to FAME differences. DFA indicated that differentiation could be maximized with a targeted subset of FAME variables, and the relative contributions of branched FAME biomarkers to group dissimilarities changed when different media were compared. When taken together, these analyses indicate that B. cereus spore samples grown in different media can be resolved with FAME profiling and that this may be a useful technique for providing intelligence about the production methods of Bacillus organisms in a forensic investigation.

  4. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification.

    PubMed

    Laurens, Lieve M L; Quinn, Matthew; Van Wychen, Stefanie; Templeton, David W; Wolfrum, Edward J

    2012-04-01

    In the context of algal biofuels, lipids, or better aliphatic chains of the fatty acids, are perhaps the most important constituents of algal biomass. Accurate quantification of lipids and their respective fuel yield is crucial for comparison of algal strains and growth conditions and for process monitoring. As an alternative to traditional solvent-based lipid extraction procedures, we have developed a robust whole-biomass in situ transesterification procedure for quantification of algal lipids (as fatty acid methyl esters, FAMEs) that (a) can be carried out on a small scale (using 4-7 mg of biomass), (b) is applicable to a range of different species, (c) consists of a single-step reaction, (d) is robust over a range of different temperature and time combinations, and (e) tolerant to at least 50% water in the biomass. Unlike gravimetric lipid quantification, which can over- or underestimate the lipid content, whole biomass transesterification reflects the true potential fuel yield of algal biomass. We report here on the comparison of the yield of FAMEs by using different catalysts and catalyst combinations, with the acid catalyst HCl providing a consistently high level of conversion of fatty acids with a precision of 1.9% relative standard deviation. We investigate the influence of reaction time, temperature, and biomass water content on the measured FAME content and profile for 4 different samples of algae (replete and deplete Chlorella vulgaris, replete Phaeodactylum tricornutum, and replete Nannochloropsis sp.). We conclude by demonstrating a full mass balance closure of all fatty acids around a traditional lipid extraction process.

  5. Preliminary studies on LED-activated pyropheophorbide-α methyl ester killing cisplatin-resistant ovarian carcinoma cells

    NASA Astrophysics Data System (ADS)

    Tan, Yong; Xu, Chuan Shan; Xia, Xin Shu; Yu, He Ping; Bai, Ding Qun; He, Yong; Xu, Jing; Wang, Ping; Wang, Xin Na; Leung, Albert Wing Nang

    2009-05-01

    In the present study, a novel LED source was applied for activating pyropheophorbids-a methyl ester (MPPa) in cisplatin-resistant ovarian cell line COC1/DDP cells. MPPa concentration was 2 μM and light energy from 0.125-8 J/cm2. Cytotoxicity was investigated 24 h using MTT reduction assay and light microscopy after treatment. Cellular ultrastructure was observed using transmission electron microscopy (TEM) and nuclear chromatin by fluorescent microscope with Hoechst33258 staining. MTT reduction assay showed that the cytotoxicity of LED-activated MPPa in the COC1/DDP cells increased along with the light dose of LED source and LED-activated MPPa resulted in light-dependent cytotoxicity. The observations from light microscopy reinforced the above results. TEM showed that necrotic cells with the disruption of karyotheca, karyorrhexis, and karyolysis of nucleus and apoptotic cells, especially the apoptotic body, can be seen post LED-activated MPPa. Hoechst33258 staining showed that condensation of chromatin and nuclear fragmentations could be found in many treated cells and some of them formed the structure of apoptotic bodies when COC1/DDP cells were exposed to 2 μM MPPa for 20 h and then 1 J/cm2 irradiation of LED source. The findings demonstrated that the novel LED source could efficiently activated MPPa and LED-activated MPPa could significantly kill cisplatin-resistant ovarian cell line COC1/DDP cells through two major pathways including necrosis and apoptosis, suggesting that LED is a novel and efficient light source and LED-activated MPPa might be potential therapeutic modality for treating cisplatin-resistant ovarian carcinoma.

  6. The antifungal activity of the cuticular and internal fatty acid methyl esters and alcohols in Calliphora vomitoria.

    PubMed

    Gołębiowski, Marek; Cerkowniak, Magdalena; Dawgul, Małgorzata; Kamysz, Wojciech; Boguś, Mieczysława I; Stepnowski, Piotr

    2013-07-01

    SUMMARY The composition of the fatty acid methyl ester (FAME) and alcohol fractions of the cuticular and internal lipids of Calliphora vomitoria larvae, pupae and male/female adults was obtained by separating these two fractions by HPLC-LLSD and analysing them quantitatively using GC-MS. Analysis of the cuticular lipids of the worldwide, medically important ectoparasite C. vomitoria revealed 6 FAMEs with odd-numbered carbon chains from C15:0 to C19:0 in the larvae, while internal lipids contained 9 FAMEs ranging from C15:1 to C19:0. Seven FAMEs from C15:0 to C19:0 were identified in the cuticular lipids of the pupae, whereas the internal lipids of the pupae contained 10 FAMEs from C13:0 to C19:0. The cuticular lipids of males and females and also the internal lipids of males contained 5, 7 and 6 FAMEs from C15:0 to C19:0 respectively. Seven FAMEs from C13:0 to C19:0 were identified in the internal lipids of females, and 7, 6, 5 and 3 alcohols were found in the cuticular lipids of larvae, pupae, males and females respectively. Only saturated alcohols with even-numbered carbon chains were present in these lipids. Only 1 alcohol (C22:0) was detected in the internal lipids of C. vomitoria larvae, while just 4 alcohols from - C18:0 to C24:0 - were identified in the internal lipids of pupae, and males and females. We also identified glycerol and cholesterol in the larvae, pupae, males and females of C. vomitoria. The individual alcohols and FAMEs, as well as their mixtures isolated from the cuticular and internal lipids of larvae, pupae, males and females of C. vomitoria, demonstrated antimicrobial activity against entomopathogenic fungi.

  7. Chronic administration of modafinil induces hyperalgesia in mice: reversal by L-NG-nitro-arginine methyl ester and 7-nitroindazole.

    PubMed

    Gupta, Rachna; Gupta, Lalit Kumar; Bhattacharya, Swapan K

    2014-08-05

    Modafinil [2-((diphenylmethyl) sulfinyl) acetamide] is a central nervous system stimulant. It has received considerable attention as a potential psychotropic agent in several psychiatric disorders. The current study was carried out to investigate the effect of modafinil after acute administration on animal models of pain in mice. Also, this study evaluated the effect of L-NG-nitroarginine methyl ester (L-NAME), 7-nitroindazole (7-NI) and naloxone following chronic administration of modafinil. Modafinil was administered in the doses of 50, 100 or 200 mg/kg once in acute study and it showed significantly increased tail-flick latency (tfl) and paw-licking latency. In formalin test modafinil (100 mg/kg) significantly reduced licking/biting time in both early and late phases in comparison to control. In chronic study, modafinil 100 mg/kg administered for 10 days, produced a progressive decrease in the reaction time (i.e., tfl/paw-licking latency) in comparison to day 1 values which started building up from day 4 and fully established at day 6, indicating hyperalgesic response. Prior administration of 7-NI (on day 7) and L-NAME (on day 10) prevented the hyperalgesic response while naloxone on day 10 did not have a significant effect on modafinil-induced hyperalgesia. These results demonstrate that modafinil has a potential role in pain as it exhibited antinociceptive effect after acute administration in a dose-dependent manner and on chronic administration it caused hyperalgesia. This hyperalgesia is reversed by nitric oxide synthase inhibitors, suggesting the possibility of involvement of nitric oxide pathway. Further studies are required to evaluate the role of modafinil in clinical pain.

  8. Acylated glycosides of hydroxy fatty acid methyl esters generated from the crude resin glycoside (pharbitin) of seeds of Pharbitis nil by treatment with indium(III) chloride in methanol.

    PubMed

    Ono, Masateru; Takigawa, Ayako; Mineno, Tomoko; Yoshimitsu, Hitoshi; Nohara, Toshihiro; Ikeda, Tsuyoshi; Fukuda-Teramachi, Emiko; Noda, Naoki; Miyahara, Kazumoto

    2010-11-29

    Treatment of the crude ether-insoluble resin glycoside (convolvulin) from seeds of Pharbitis nil (Pharbitis Semen), called pharbitin, with indium(III) chloride in methanol provided seven oligoglycosides of hydroxy fatty acid methyl esters partially acylated by 2-methyl-3-hydroxybutyric (nilic) and 2S-methylbutyric acids. Their structures were elucidated on the basis of NMR and MS data and chemical conversions.

  9. Very-long-chain 3-hydroxy fatty acids, 3-hydroxy fatty acid methyl esters and 2-alkanols from cuticular waxes of Aloe arborescens leaves.

    PubMed

    Racovita, Radu C; Peng, Chen; Awakawa, Takayoshi; Abe, Ikuro; Jetter, Reinhard

    2015-05-01

    The present work aimed at a comprehensive chemical characterization of the cuticular wax mixtures covering leaves of the monocot species Aloe arborescens. The wax mixtures were found to contain typical aliphatic compound classes in characteristic chain length distributions, including alkanes (predominantly C31), primary alcohols (predominantly C28), aldehydes (predominantly C32), fatty acid methyl esters (predominantly C28) and fatty acids (bimodal distribution around C32 and C28). Alkyl esters ranging from C42 to C52 were identified, and found to mainly contain C28 alcohol linked to C16-C20 acids. Three other homologous series were identified as 3-hydroxy fatty acids (predominantly C28), their methyl esters (predominantly C28), and 2-alkanols (predominantly C31). Based on structural similarities and homolog distributions, the biosynthetic pathways leading to these novel wax constituents can be hypothesized. Further detailed analyses showed that the A. arborescens leaf was covered with 15 μg/cm(2) wax on its adaxial side and 36 μg/cm(2) on the abaxial side, with 3:2 and 1:1 ratios between epicuticular and intracuticular wax layers on each side, respectively. Terpenoids were found mainly in the intracuticular waxes, whereas very-long-chain alkanes and fatty acids accumulated to relatively high concentrations in the epicuticular wax, hence near the true surface of the leaf.

  10. Metabolism of fatty acid in yeast: characterisation of beta-oxidation and ultrastructural changes in the genus Sporidiobolus sp. cultivated on ricinoleic acid methyl ester.

    PubMed

    Feron, Gilles; Blin-Perrin, Caroline; Krasniewski, Isabelle; Mauvais, Geneviève; Lherminier, Jeannine

    2005-09-01

    Cell structure modifications and beta-oxidation induction were monitored in two strains of Sporidiobolus, Sp. Ruinenii and Sp. pararoseus after cultivation on ricinoleic acid methyl ester. Ultrastructural observations of the yeast before and after cultivation on fatty acid esters did not reveal major modifications in Sp. ruinenii. Unexpectedly, in Sp. pararoseus a proliferation of the mitochondrion was observed. After induction, Sp. ruinenii principally exhibited an increase in the activities of acyl-CoA oxidase (ACO), hydroxyacyl-CoA deshydrogenase (HAD), thiolase and catalase. In contrast, Sp. pararoseus lacked ACO and catalase activities, but an increase in acyl-CoA deshydrogenase (ACDH) and enoyl-CoA hydratase (ECH) activity was observed. These data suggest that in Sp. ruinenii, beta-oxidation is preferentially localized in the microbody, whereas in Sp. pararoseus it might be localized in the mitochondria.

  11. Synthesis, structural and conformational study of some esters derived from 3-methyl-3-azabicyclo[3.2.1]octan-8(α and β)-ols

    NASA Astrophysics Data System (ADS)

    Iriepa, I.; Bellanato, J.

    2014-09-01

    A series of α and β-esters bearing a 3-methyl-3-azabicyclo[3.2.1]octane moiety as well as methyl and aryl substituents were synthesized and studied by 1H and 13C NMR spectroscopies. In CDCl3 solution, at room temperature, a chair-envelope conformation for the bicycle moiety with the N-CH3 group in equatorial position with respect to the chair ring is proposed for both, α and β-esters. The chair conformation of the piperidine ring is puckered at C8 in the α-epimers and it is flattened at N3, in the β-epimers. Free rotation of the acyloxy group around the C8sbnd O bond has also been deduced. Analgesic activity of four of these substances was studied. 8β-Benzoyloxy-3-methyl-3-azabicyclo[3.2.1]octane demonstrated significant analgesic activity in the hot plate test compared to morphine. By measuring the rectal temperature in mice, results also showed a significant antipyretic activity of this compound.

  12. Analysis of quinclorac and quinclorac methyl ester in canola from the 2015 harvest using QuEChERS with liquid chromatography polarity-switching tandem mass spectrometry.

    PubMed

    Tittlemier, Sheryl A; Trelka, Robert; Roscoe, Mike; Tran, Michael; Gaba, Don; Barthet, Veronique; Siemens, Bert

    2016-06-01

    A method using QuEChERS sample preparation with liquid chromatography polarity-switching tandem mass spectrometry was developed and validated for the analysis of quinclorac and its degradation product quinclorac methyl ester in canola seed. The method was used to analyse canola treated with quinclorac, harvest sample composites and samples of canola shipments. Quinclorac residues were present in all samples of canola treated with a quinclorac-containing herbicide that were analysed. Quinclorac was found in 93% of samples, with an average of 0.018 mg kg(-1). All samples contained quinclorac methyl ester, with an average of 0.061 mg kg(-1). The average concentration of total residues (as quinclorac equivalents) on treated canola was 0.075 mg kg(-1), with a range of 0.016-0.124 mg kg(-1). The observed residues were all at least 10 times lower than the Canadian maximum residue limit of 1.5 mg kg(-1). Quinclorac and quinclorac methyl ester were not found in any harvest and export composite samples, which represented the majority of canola grown in western Canada in 2015 and canola exported in late 2015. Even though usage of quinclorac-containing herbicide on canola can result in the presence of low concentrations of residues, the absence of quinclorac residues in harvest and shipment samples suggests that use of quinclorac-containing herbicide was not widespread, and that any residues present were diluted as canola was combined along the grain-handling chain into shipment lots, or segregated and prevented from entering shipment lots.

  13. Controlled study of 16,16-dimethyl-trans-delta 2 prostaglandin E1 methyl ester vaginal pessaries prior to suction termination of first trimester pregnancies.

    PubMed

    Fisher, P R; Taylor, J H

    1984-11-01

    A pessary containing the prostaglandin analogue, 16,16-dimethyl-trans-delta 2 prostaglandin E1 methyl ester (Cervagem) was inserted into the vagina of primigravid women 2 h before suction termination of pregnancy. The cervix was softer, easier to dilate and more widely dilated at the start of the procedure than in a control group of women who received placebo pessaries containing the vehicle alone. Intra-operative blood loss was diminished. The incidence of pre- and post-operative abdominal cramps was increased in the Cervagem-treated group. No gastrointestinal side-effects were noted.

  14. Synthesis of Peptides Containing C-Terminal Methyl Esters Using Trityl Side-Chain Anchoring: Application to the Synthesis of a-Factor and a-Factor Analogs

    PubMed Central

    Diaz-Rodriguez, Veronica; Mullen, Daniel G.; Ganusova, Elena; Becker, Jeffrey M.; Distefano, Mark D.

    2012-01-01

    A new cysteine anchoring method was developed for the synthesis of peptides containing C-terminal cysteine methyl esters. This method consists of attachment of Fmoc-Cys-OCH3 to either 2-ClTrt-Cl or Trt-Cl resins (via the side-chain thiol) followed by preparation of the desired peptide using Fmoc-based SPPS. We applied this method to the synthesis of the mating pheromone a-factor and a 5-FAM labeled a-factor analog. The peptides were obtained with high yield and purity and were shown to be bioactive in a growth arrest assay. PMID:23121562

  15. Synthesis of peptides containing C-terminal methyl esters using trityl side-chain anchoring: application to the synthesis of a-factor and a-factor analogs.

    PubMed

    Diaz-Rodriguez, Veronica; Mullen, Daniel G; Ganusova, Elena; Becker, Jeffrey M; Distefano, Mark D

    2012-11-16

    A new cysteine anchoring method was developed for the synthesis of peptides containing C-terminal cysteine methyl esters. This method consists of attachment of Fmoc-Cys-OCH(3) to either 2-ClTrt-Cl or Trt-Cl resins (via the side-chain thiol) followed by preparation of the desired peptide using Fmoc-based SPPS. We applied this method to the synthesis of the mating pheromone a-factor and a 5-FAM labeled a-factor analog. The peptides were obtained with high yield and purity and were shown to be bioactive in a growth arrest assay.

  16. Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester.

    PubMed

    Pojjanapornpun, Siriluck; Aryusuk, Kornkanok; Lilitchan, Supathra; Krisnangkura, Kanit

    2017-02-06

    The Gibbs energy additivity method was used to correlate the retention time (t R) of common fatty acid methyl esters (FAMEs) to their chemical structures. The t R of 20 standard FAMEs eluted from three capillary columns of different polarities (ZB-WAXplus, BPX70, and SLB-IL111) under both isothermal gas chromatography and temperature-programmed gas chromatography (TPGC) conditions were accurately predicted. Also, the predicted t R of FAMEs prepared from flowering pak choi seed oil obtained by multistep TPGC with the BPX70 column were within 1.0% of the experimental t R. The predicted t R or mathematical t R (t R(math)) values could possibly be used as references in identification of common FAMEs. Hence, FAMEs prepared from horse mussel and fish oil capsules were chromatographed on the BPX70 and ZB-WAXplus columns in single-step and multistep TPGC. Identification was done by comparison of t R with the t R of standard FAMEs and with t R(math). Both showed correct identifications. The proposed model has six numeric constants. Five of six could be directly transferred to other columns of the same stationary phase. The first numeric constant (a), which contained the column phase ratio, could also be transferred with the adjustment of the column phase ratio to the actual phase ratio of the transferred column. Additionally, the numeric constants could be transferred across laboratories, with similar correction of the first numeric constant. The TPGC t R predicted with the transferred column constants were in good agreement with the reported experimental t R of FAMEs. Moreover, hexane was used in place of the conventional t M marker in the calculation. Hence, the experimental methods were much simplified and practically feasible. The proposed method for using t R(math) as the references would provide an alternative to the uses of real FAMEs as the references. It is simple and rapid and with good accuracy compared with the use of experimental t R as references.

  17. Structural, conformational and pharmacological study of some esters derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9β-ol

    NASA Astrophysics Data System (ADS)

    Iriepa, I.; Gil-Alberdi, B.; Gálvez, E.; Sanz-Aparicio, J.; Fonseca, I.; Orjales, A.; Berisa, A.; Labeaga, C.

    1995-06-01

    A series of some esters derived from 3-methyl-2,4-diphenyl-3-azabicyclo[3.3.1]nonan-9β-ol were synthesized and studied by 1H and 13C NMR spectroscopy, and the crystal structure of 3-methyl-2,4-diphenyl-9β(3,5-dimethyl-benzoyloxy)-3-azabicyclo[3.3.1]nonane ( II) has been determined by X-ray diffraction. The compounds studied display, in deuterochloroform, a flattened chair-chair conformation with the cyclohexane ring more flattened than the piperidine moiety and the NCH 3 groups in equatorial position. Pharmacological assays on mices were drawn to evaluate drug-induced behavioral alteration, peripheral or central acute toxicity analgesic and neuroleptic activity.

  18. Antileukemic and cytogenetic effects of modified and non-modified esteric steroidal derivatives of 4-methyl-3-bis(2-chloroethyl)amino benzoic acid (4-Me-CABA).

    PubMed

    Fousteris, Manolis A; Koutsourea, Anna I; Arsenou, Evagelia S; Papageorgiou, Athanasios; Mourelato, Dionisis; Nikolaropoulos, Sotiris S

    2002-01-01

    The increase of the damaging effects on specific DNA sequences and the reduction of the subsequent toxicity of nitrogen mustards has been achieved by their chemical conjugation with modified steroids through an esteric bond. In an attempt to study the structure-activity relationships of these compounds, we synthesized eight steroidal esters of 4-methyl-3-bis(2-chloroethyl)aminobenzoic acid (4-Me-CABA). The anti-leukemic and cytogenetic effects of the parent alkylating agent were compared with those produced by the steroidal compounds, in vivo against leukemias P388 and L1210 and in vitro for induction of Sister Chromatid Exchanges (SCE) and on proliferation rate indices (PRI). The results demonstrate that the existence of the NH-CO group, either as an endocyclic lactamic or as an out of the ring amidic one but at axial conformation, at the steroid-carrier moiety is necessary for the expression of the antileukemic activity. The synthetic route for the preparation of the steroidal esters and their physicochemical data are also reported.

  19. Rhodotorula glutinis Phenylalanine/Tyrosine Ammonia Lyase Enzyme Catalyzed Synthesis of the Methyl Ester of para-Hydroxycinnamic Acid and its Potential Antibacterial Activity

    PubMed Central

    MacDonald, Marybeth C.; Arivalagan, Pugazhendhi; Barre, Douglas E.; MacInnis, Judith A.; D’Cunha, Godwin B.

    2016-01-01

    Biotransformation of L-tyrosine methyl ester (L-TM) to the methyl ester of para- hydroxycinnamic acid (p-HCAM) using Rhodotorula glutinis yeast phenylalanine/tyrosine ammonia lyase (PTAL; EC 4.3.1.26) enzyme was successfully demonstrated for the first time; progress of the reaction was followed by spectrophotometric determination at 315 nm. The following conditions were optimized for maximal formation of p-HCAM: pH (8.5), temperature (37°C), speed of agitation (50 rpm), enzyme concentration (0.080 μM), and substrate concentration (0.50 mM). Under these conditions, the yield of the reaction was ∼15% in 1 h incubation period and ∼63% after an overnight (∼18 h) incubation period. The product (p-HCAM) of the reaction of PTAL with L-TM was confirmed using Nuclear Magnetic Resonance spectroscopy (NMR). Fourier Transform Infra-Red spectroscopy (FTIR) was carried out to rule out potential hydrolysis of p-HCAM during overnight incubation. Potential antibacterial activity of p-HCAM was tested against several strains of Gram-positive and Gram-negative bacteria. This study describes a synthetically useful transformation, and could have future clinical and industrial applications. PMID:27014206

  20. Purification of urease from jack bean (Canavalia ensiformis) with copper (II) chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methyl ester) cryogels.

    PubMed

    Tekiner, Pınar; Perçin, Işik; Ergün, Bahar; Yavuz, Handan; Aksöz, Erol

    2012-11-01

    Jack bean (Canavalia ensiformis) is the source of interesting proteins that contribute to modern biochemistry, and urease is the primary of these proteins. Owing to its role and occurrence in nature, urease has become a part of extensive studies. In this study, jack bean urease (JBU) was purified by immobilized metal affinity chromatography using Cu(2+) chelated poly(hydroxyethyl methacrylate-N-methacryloyl-(L)-histidine methyl ester) [PHEMAH-Cu(2+)]-based cryogels. PHEMAH-Cu(2+) cryogel was synthesized and characterized for swelling degree, morphology (by SEM), N-methacryloyl-(L)-histidine methyl ester and Cu(2+) incorporation (by elemental analysis and atomic absorption spectrophotometry). The binding of JBU to PHEMAH-Cu(2+) cryogel was optimized by examining the effect of pH, flow rate and JBU concentration on binding. The maximal binding of JBU was 23.2 mg/dry gram of adsorbent. The maximal binding of JBU extracted from jack bean meal was 67.8 mg/dry gram of adsorbent. The elution of JBU from cryogel column was accomplished by 1.0 M NaCl in 20 mM phosphate buffer (pH 8.0). Molecular weight and purity of JBU from jack bean meal was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was observed that JBU could be repeatedly bound and eluted from (PHEMAH)-Cu(2+) cryogel with less than 10% loss in column capacity.

  1. Comparison of in vitro and in vivo phototoxicity tests with S-(-)-10,11-dihydroxyfarnesic acid methyl ester produced by Beauveria bassiana KACC46831.

    PubMed

    Kim, Min-A; Son, Hyeong-U; Yoon, Cheol-Sik; Nam, Sung-Hee; Choi, Young-Cheol; Lee, Sang-Han

    2014-09-01

    Beauveria bassiana is a fungi that is well-known for demonstrating a resistance to environmental change. To confirm whether S-(-)-10,11-dihydroxyfarnesic acid methyl ester (DHFAME) produced by Beauveria bassiana KACC46831 causes phototoxicity when used for cosmetic purposes due to its anti-tyrosinase activity, we conducted in vitro and in vivo phototoxicity tests. There were no significant changes or damage observed in the compound-treated group with regards to skin phototoxicity, while 8-methoxypsoralen, which served as a positive control, induced toxic effects. The in vitro 3T3 neutral red uptake assay, an alternative assessment, was used for further confirmation of the phototoxicity. The results showed that DHFAME did not exhibit phototoxicity at the designated concentrations, with or without UV irradiation in the 3T3 cells. These results indicated that the methyl ester produced by Beauveria bassiana KACC46831 does not induce phototoxicity in the skin. Therefore, the results of the present study indicate that DHFAME shows potential for use as a cosmetic ingredient that does not cause skin phototoxicity.

  2. N-acylated alanine methyl esters (NAMEs) from Roseovarius tolerans, structural analogs of quorum-sensing autoinducers, N-acylhomoserine lactones.

    PubMed

    Bruns, Hilke; Thiel, Verena; Voget, Sonja; Patzelt, Diana; Daniel, Rolf; Wagner-Döbler, Irene; Schulz, Stefan

    2013-09-01

    The Roseobacter clade is one of the most important bacteria group living in the ocean. Liquid cultures of Roseovarius tolerans EL 164 were investigated for the production of autoinducers such as N-acylhomoserine lactones (AHLs) and other secondary metabolites. The XAD extracts were analyzed by GC/MS. Two AHLs, Z7-C14 : 1-homoserine lactone (HSL) and C15 : 1-HSL, were identified. Additionally, the extract contained five compounds with molecular-ion peaks at m/z 104, 145, and 158, thus exhibiting mass spectra similar to those of AHLs with corresponding peaks at m/z 102, 143, and 156. Isolation of the main compound by column chromatography, NMR analysis, dimethyl disulfide derivatization for the determination of the location of the CC bond and finally synthesis of the compound with the proposed structure confirmed the compound to be (Z)-N-(hexadec-9-enoyl)alanine methyl ester. Four additional minor compounds were identified as C14 : 0-, C15 : 0-, C16 : 0-, and C17 : 1-N-acylated alanine methyl esters (NAMEs). All NAMEs have not been described from natural sources before. A BLASTp search showed the presence of AHL-producing luxI genes, but no homologous genes potentially responsible for the structurally closely related NAMEs were found. The involvement of the NAMEs in chemical communication processes of the bacteria is discussed.

  3. Effect of palm methyl ester-diesel blends performance and emission of a single-cylinder direct-injection diesel engine

    NASA Astrophysics Data System (ADS)

    Said, Mazlan; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad

    2012-06-01

    The purpose of this study is to investigate engine performance and exhaust emission when using several blends of neat palm oil methyl ester (POME) with conventional diesel (D2) in a small direct injection diesel engine, and to compare the outcomes to that of the D2 fuel. Engine performances, exhaust emissions, and some other important parameters were observed as a function of engine load and speed. In addition, the effect of modifying compression ratio was also carried out in this study. From the engine experimental work, neat and blended fuels behaved comparably to diesel (D2) in terms of fuel consumption, thermal efficiency and rate of heat released. Smoke density showed better results than that emitted by D2, operating under similar conditions due to the presence of inherited oxygen and lower sulphur content in the biofuel and its blends. The emissions of CO, CO2, and HC were also lower using blended mixtures and in its neat form. However, NOx concentrations were found to be slight higher for POME and its blends and this was largely due to higher viscosity of POME and possibly the presence of nitrogen in the palm methyl ester. General observation indicates that biofuel blends can be use without many difficulties in this type of engine but for optimized operation minor modifications to the engine and its auxiliaries are required.

  4. Monogalactopyranosides of fluorescein and fluorescein methyl ester: synthesis, enzymatic hydrolysis by biotnylated β-galactosidase, and determination of translational diffusion coefficient.

    PubMed

    Mandal, Prasun K; Cattiaux, Laurent; Bensimon, David; Mallet, Jean-Maurice

    2012-09-01

    Fluorescein monoglycosides (D-galactopyranoside (FMG) and D-glucopyranoside) and their methyl ester (MFMG) have been prepared from acetobromoglucose/galactose and fluorescein methyl ester in good yields. Enzymatic hydrolysis experiments (using biotinylated β-galactosidase) of the galacto derivatives have been performed and kinetic parameters were calculated. A 15-20 times increase of the fluorescence intensity has been observed during the hydrolysis. A linear increase of fluorescence has been noted at short time and low concentration of substrate, making these compounds useful and sensitive probes for galactosidases. The magnitude of the Michaelis-Menten constant (K(m)) value for MFMG is higher than that of FMG suggesting a possible conformational change of the fluorogenic substrate. K(m) value for biotinylated β-Gal with FMG is lower than that for the native enzyme. This observation indicates higher substrate affinity of the biotinylated enzyme in comparison to the native enzyme. Translational diffusion coefficients have been measured, for both fluorogenic substrates and both the products, employing fluorescence correlation spectroscopy. Translational diffusion coefficients for fluorogenic substrates and the enzymatic hydrolysis products have been measured to be similar, in the range of 3.5-4.5×10(-10) m(2) s(-1). Thus an enhancement or retardation of the enzymatic kinetics due to difference in translational mobility of substrate and product is not that apparent. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Standard Thermodynamic Functions of Tripeptides N-Formyl-l-methionyl-l-leucyl-l-phenylalaninol and N-Formyl-l-methionyl-l-leucyl-l-phenylalanine Methyl Ester

    PubMed Central

    2015-01-01

    The heat capacities of tripeptides N-formyl-l-methionyl-l-leucyl-l-phenylalaninol (N-f-MLF-OH) and N-formyl-l-methionyl-l-leucyl-l-phenylalanine methyl ester (N-f-MLF-OMe) were measured by precision adiabatic vacuum calorimetry over the temperature range from T = (6 to 350) K. The tripeptides were stable over this temperature range, and no phase change, transformation, association, or thermal decomposition was observed. The standard thermodynamic functions: molar heat capacity Cp,m, enthalpy H(T) – H(0), entropy S(T), and Gibbs energy G(T) – H(0) of peptides were calculated over the range from T = (0 to 350) K. The low-temperature (T ≤ 50 K) heat capacities dependencies were analyzed using the Debye’s and the multifractal theories. The standard entropies of formation of peptides at T = 298.15 K were calculated. PMID:24803685

  6. Palladium(II) Complexes Containing Mixed Nitrogen-Sulphur Donor Ligands: Interaction of [Pd(Methionine Methyl Ester)(H2O)2]2+ with Biorelevant Ligands

    PubMed Central

    Shoukry, Mohamed M.; Ezzat, Sameya M. T.

    2014-01-01

    Pd(MME)Cl2 complex (MME = methionine methyl ester) was synthesised and characterized by physicochemical measurements. The reaction of [Pd(MME)(H2O)2]2+ with amino acids, peptides, or dicarboxylic acids was investigated at 25°C and 0.1 M ionic strength. Amino acids and dicarboxylic acids form 1 : 1 complexes. Peptides form both 1 : 1 complexes and the corresponding deprotonated amide species. The stability of the complexes formed was determined and the binding centres of the ligands were assigned. Effect of solvent on the stability constant of Pd(MME)-CBDCA complex, taken as a representative example, shows that the complex is more favoured in a medium of low dielectric constant. The concentration distribution diagrams of the complexes were evaluated. PMID:25214826

  7. In vitro release control of ketoprofen from pH-sensitive gels consisting of poly(acryloyl- L-proline methyl ester) and saturated fatty acid sodium salts

    NASA Astrophysics Data System (ADS)

    Negishi, M.; Hiroki, A.; Miyajima, M.; Yoshida, M.; Asano, M.; Katakai, R.

    1999-06-01

    The effect of saturated fatty acid sodium salts (C n), sodium laurate (C 12), sodium myristate (C 14), sodium palmitate (C 16), and sodium stearate (C 18), on the swelling of poly(acryloyl- L-proline methyl ester) (A-ProOMe) gel was investigated in different pH solutions. The C n-loaded gels collapsed in a buffer solution with pH 3.0, while they expanded in a buffer solution with pH 6.5. This effect was strongly influenced by the number of methylene units in C n, as the threshold for causing this sensitivity existed between C 12 and C 14. On the other hand, a pulsatile release of ketoprofen occurred when the gel was cycled in buffer solutions between pH 3.0 and pH 6.5. This behavior may be attributable to the surface-regulated mechanism.

  8. FTIR measurements of mid-IR absorption spectra of gaseous fatty acid methyl esters at T=25-500 °C

    NASA Astrophysics Data System (ADS)

    Campbell, M. F.; Freeman, K. G.; Davidson, D. F.; Hanson, R. K.

    2014-09-01

    Gas-phase mid-infrared (IR) absorption spectra (2500-3400 cm-1) for eleven fatty acid methyl esters (FAMEs) have been quantitatively measured at temperatures between 25 and 500 °C using an FTIR spectrometer with a resolution of 1 cm-1. Using these spectra, the absorption cross section at 3.39 μm, corresponding to the monochromatic output of a helium-neon laser, is reported for each of these fuels as a function of temperature. The data indicate that the 3.39 μm cross section values of saturated FAMEs vary linearly with the logarithm of the number of Csbnd H bonds in the molecule.

  9. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells.

    PubMed

    Lee, Kyung-Mi; Yun, Ji Ho; Lee, Dong Hwa; Park, Young Gyun; Son, Kun Ho; Nho, Chu Won; Kim, Yeong Shik

    2015-04-17

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Crystal structure and physicochemical characterization of 3β-hydroxyolea-12-en-28-oic acid-3,5,6-trimethylpyrazin-2-methyl ester

    NASA Astrophysics Data System (ADS)

    Fu, Jing; Dong, Xiaoxv; Yin, Xinbing; Cao, Sali; Yang, Chunjing; He, Huyiligeqi; Ni, Jian

    2017-02-01

    3β-hydroxyolea-12-en-28-oic acid-3,5,6-trimethylpyrazin-2-methyl ester (T-OA) is a newly discovered potential antitumor compound. However, the poor solubility of T-OA leads to poor dissolution and limited clinical application. So as to enhance the dissolution and bioavailability of T-OA, an investigation of the polymorphism of T-OA was successfully undertaken. A new solvate and an amorphous form of T-OA were discovered through a comprehensive polymorph screening experiments. Their structures were elucidated by single-crystal structure analysis and extensively characterized by PXRD, DSC and SEM. The powder dissolution rates were compared with those of the previously known polymorph. Thermodynamic stability and phase transformation are also discussed in detail.

  11. Effect of jasmonic acid-methyl ester on the composition of carbohydrates and germination of yellow lupine (Lupinus luteus L.) seeds.

    PubMed

    Zalewski, Kazimierz; Nitkiewicz, Bartosz; Lahuta, Lesław B; Głowacka, Katarzyna; Socha, Aleksander; Amarowicz, Ryszard

    2010-08-15

    Mature seeds of yellow lupine contained sucrose, raffinose family oligosaccharides (RFOs), and galactosyl cyclitols as major soluble carbohydrates. The study showed that RFOs dominated in lupine seeds (16% DW). The disappearance of both types of alpha-d-galactosides in germinating lupine seeds was strongly inhibited by the presence of jasmonic acid-methyl ester (JA-Me) at a concentration of 10(-3)M in the incubation medium. JA-Me inhibited the activity of alpha-D-galactosidase (fraction I) during seed germination. Anatomical studies of lupine roots have shown certain cell structure differences between control and JA-Me-treated seedlings. The cross-sections of plant roots treated with JA-Me showed a characteristic folding of the cell walls in all root tissues, starting from the rhyzodermis, cortex and vascular cylinder. In water-treated (control) plants, the cell walls were rounded with no folding.

  12. Structures, spectroscopic analysis, herbicidal activities and enamine-aminone tautomerism of new β-diketone derivatives modified with glycylglycine methyl ester

    NASA Astrophysics Data System (ADS)

    Zhu, Hualing; Shi, Jun; Huang, Zhiqiang; Lv, Lijuan; Duan, Jiawei

    2015-06-01

    New β-diketone derivatives modified with glycylglycine methyl ester have been synthesized and characterized by IR, UV, 1H NMR, 13C NMR, Elemental analysis and single-crystal X-ray diffraction, the analytical results show that compound 1 and compound 2a exist in enamine form while compound 2b exists in aminone form. The optimized geometries and theoretical vibrational frequencies of the compounds calculated by using DFT/B3LYP with 6-31g (d, p) basis set in the ground state can well reproduce the experimental data. The results of herbicidal activity tests indicate that all the tested compounds own higher inhibition ability to monocotyledon than to dicotyledon, especially to green-bristlegrass with the inhibitory rates about 100%. Theoretical enamine-aminone tautomerism study at DFT/B3LYP/6-31g (d, p) shows that tautomerism between compound 2a and 2b is mainly caused by the proton transfer.

  13. Noncatalytic transformation of the crude lipid of ChlorellaI vulgaris into fatty acid methyl ester (FAME) with charcoal via a thermo-chemical process.

    PubMed

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2013-02-01

    The noncatalytic transformation of the crude lipid of Chlorella vulgaris (C. vulgaris) into fatty acid methyl ester (FAME) via a thermo-chemical process was mainly investigated in this work. The crude lipid of C. vulgaris was recovered by means of solvent extraction from C. vulgaris cultivated in a raceway pond. The conventional catalyzed transesterification of crude lipid of C. vulgaris is notably inhibited by the impurities contained in the crude lipid of C. vulgaris. These impurities are inevitably derived from the solvent extraction process for C. vulgaris. However, this work presents the noncatalytic transesterification of microalgal lipid into FAME, which could be an alternative option. For example, the noncatalytic transformation of microalgal lipid into FAME provides evidence that the esterification of free fatty acids (FFAs) and the transesterification of triglycerides can be combined into a single step less susceptible to the impurities and with a high conversion efficiency (∼97%).

  14. Broadband gain in poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester photodetectors enabled by a semicontinuous gold interlayer

    SciTech Connect

    Melancon, Justin M.; Živanović, Sandra R.

    2014-10-20

    Substantial broadband photoconductive gain has been realized for organic, thin-film photodetectors with a poly(3-hexylthiophene):phenyl-C{sub 61}-butyric-acid-methyl-ester (P3HT:PCBM) active layer at low bias voltages. External quantum efficiencies upwards of 1500% were achieved when a semicontinuous gold layer was introduced at the anode interface. Significant gain was also observed in the sub-band gap, near infrared region where the external quantum efficiency approached 100% despite the lack of a sensitizer. The gain response was highly dependent on the thickness of the active layer of the photodetector with the best results achieved with the thinnest devices. The gain is the result of the injection of secondary electrons due to hole charge trapping at the semicontinuous gold layer.

  15. Organic Nano-Floating-Gate Memory with Polymer:[6,6]-Phenyl-C61 Butyric Acid Methyl Ester Composite Films

    NASA Astrophysics Data System (ADS)

    Kang-Jun Baeg,; Dongyoon Khim,; Dong-Yu Kim,; Soon-Won Jung,; Jae Bon Koo,; Yong-Young Noh,

    2010-05-01

    Here, we report on a pentacene-based, nonvolatile transistor memory device with poly(4-vinyl phenol) (PVP):[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) nano-composite films as the charge storage site. Incorporation of PCBM molecules into PVP dielectric materials as charge storage sites for electrons resulted in a reversible shift in the threshold voltage (VTh) and reliable memory characteristics. The characteristics of the pentacene memory device were as follows: a relatively high field-effect mobility (μFET) (0.2-0.3 cm2 V-1 s-1) with a large memory window (ca. 20 V), a high on/off ratio (˜104) during writing and erasing with application of an operating gate voltage of 60 V for a short duration time (˜1 ms), and a retention time of about 40 h.

  16. Organic Nano-Floating-Gate Memory with Polymer:[6,6]-Phenyl-C61 Butyric Acid Methyl Ester Composite Films

    NASA Astrophysics Data System (ADS)

    Baeg, Kang-Jun; Khim, Dongyoon; Kim, Dong-Yu; Jung, Soon-Won; Bon Koo, Jae; Noh, Yong-Young

    2010-05-01

    Here, we report on a pentacene-based, nonvolatile transistor memory device with poly(4-vinyl phenol) (PVP):[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) nano-composite films as the charge storage site. Incorporation of PCBM molecules into PVP dielectric materials as charge storage sites for electrons resulted in a reversible shift in the threshold voltage (VTh) and reliable memory characteristics. The characteristics of the pentacene memory device were as follows: a relatively high field-effect mobility (µFET) (0.2-0.3 cm2 V-1 s-1) with a large memory window (ca. 20 V), a high on/off ratio (˜104) during writing and erasing with application of an operating gate voltage of 60 V for a short duration time (˜1 ms), and a retention time of about 40 h.

  17. Synthesis and structure activity relationship studies of 3-biaryl-8-oxa-bicyclo[3.2.1]octane-2-carboxylic acid methyl esters

    PubMed Central

    Torun, Lokman; Madras, Bertha K.; Meltzer, Peter C.

    2012-01-01

    Stille cross coupling protocols were utilized for the synthesis of 3-(biaryl)-8-oxabicyclo[3.2.1]oct-2-ene-2-carboxylic acid methyl esters, which furnished products in high yields where in some cases Suzuki coupling under the conditions utilized provided complex reaction mixture. Samarium iodide reduction of the resulting coupling products produced both of the 2β-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers and the 2α-carbomethoxy-3-biaryl-8-oxabicyclo[3.2.1]octane diastereomers. Among the series synthesized, the benzothiophene substituted compounds demonstrated significant binding profiles of inhibition of WIN 35,438 with 177 fold selectivity for DAT vs. SERT. PMID:22398259

  18. Synthesis of fatty acid methyl ester from palm oil (Elaeis guineensis) with Ky(MgCa)2xO3 as heterogeneous catalyst.

    PubMed

    Olutoye, M A; Lee, S C; Hameed, B H

    2011-12-01

    Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production.

  19. On the Inapplicability of Electron-Hopping Models for the Organic Semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM).

    PubMed

    Gajdos, Fruzsina; Oberhofer, Harald; Dupuis, Michel; Blumberger, Jochen

    2013-03-21

    Phenyl-C61-butyric acid methyl ester (PCBM) is one of the most popular semiconductors in organic photovoltaic cells, but the electron-transport mechanism in the microcrystalline domains of this material as well as its preferred packing structure remain unclear. Here we use density functional theory to calculate electronic-coupling matrix elements, reorganization energies, and activation energies for available experimental and model crystal structures. We find that the picture of an excess electron hopping from one fullerene to another does not apply for any of the crystalline phases, rendering traditional rate equations inappropriate. We also find that the cohesive energy increases in the order body-centered-cubic < hexagonal < simple cubic < monoclinic < triclinic, independently of the type of dispersion correction used. Our results indicate that the coupled electron-ion dynamics needs to be solved explicitly to obtain a realistic description of charge transfer in this material.

  20. Inhibitory effects in the side reactions occurring during the enzymic synthesis of amoxicillin: p-hydroxyphenylglycine methyl ester and amoxicillin hydrolysis.

    PubMed

    Gonçalves, Luciana R B; Fernandez-Lafuente, Roberto; Guisan, Jose M; Giordano, Raquel L C; Giordano, Roberto C

    2003-08-01

    Penicillin G acylase immobilized on glyoxyl-agarose is used to catalyse the reaction between p -hydroxyphenylglycine methyl ester (POHPGME) and 6-aminopenicillanic acid (6-APA). Inhibitory effects affecting the side reactions that occur during the synthesis of amoxicillin have been reported and need to be considered when proposing a kinetic model for the enzymic synthesis. In this work, we present a semi-empirical kinetic model that successively includes different inhibitory effects in the rate equations. The model performance was always compared with experimental data on amoxicillin synthesis. Enzyme load and stirring rate were chosen to prevent diffusional effects. Our results indicate that POHPGME and amoxicillin were competitive inhibitors of the hydrolysis of amoxicillin and POHPGME, respectively. 6-APA was a competitive inhibitor of the hydrolysis of amoxicillin. POHPG was a competitive inhibitor and methanol a non-competitive inhibitor of the hydrolysis of both ester and antibiotic, but the action of methanol was only noticeable at very high concentrations. Adding inhibitory effects to the kinetic model led to a significant increase in the accuracy of the simulations of the overall process of synthesis.

  1. [Preparation of poly(methyl acrylate) microfluidic chips surface-modified by hyperbranched polyamide ester and their application in the separation of biomolecules].

    PubMed

    Liu, Bing; Lin, Donge; Xu, Lin; Lei, Yanhui; Bo, Qianglong; Shou, Chongqi

    2012-05-01

    The surface of poly (methyl acrylate) (PMMA) microfluidic chips were modified using hyperbranched polyamide ester via chemical bonding. The contact angles of the modified chips were measured. The surface morphology was observed by scanning electron microscope (SEM) and stereo microscope. The results showed that the surface of the modified chips was coated by a dense, uniform, continuous, hydrophilic layer of hyperbranched polyamide ester. The hydrophilic of the chip surface was markedly improved. The contact angle of the chips modified decreased from 89.9 degrees to 29.5 degrees. The electro osmotic flow (EOF) in the modified microchannel was lower than that in the unmodified microchannel. Adenosine and L-lysine were detected and separated via the modified PMMA microfluidic chips. Compared with unmodified chips, the modified chips successfully separated the two biomolecules. The detection peaks were clear and sharp. The separation efficiencies of adenosine and L-lysine were 8.44 x 10(4) plates/m and 9.82 x 10(4) plates/m respectively, and the resolutions (Rs) was 5.31. The column efficiencies and resolutions of the modified chips were much higher than those of the unmodified chips. It was also observed that the modified chips possessed good reproducibility of migration time. This research may provide a new and effective method to improve the hydrophilicity of the PMMA surface and the application of PMMA microfluidic chips in the determination of trace biomolecules.

  2. Angiotensin-(1-7) blockade attenuates captopril- or hydralazine-induced cardiovascular protection in spontaneously hypertensive rats treated with NG-nitro-L-arginine methyl ester.

    PubMed

    Benter, Ibrahim F; Yousif, Mariam H M; Al-Saleh, Fatemah M; Raghupathy, Raj; Chappell, Mark C; Diz, Debra I

    2011-05-01

    We assessed the contribution of angiotensin-(1-7) [Ang-(1-7)] to captopril-induced cardiovascular protection in spontaneously hypertensive rats (SHRs) chronically treated with the nitric oxide synthesis inhibitor NG-nitro-L-arginine methyl ester (SHR-l). NG-nitro-L-arginine methyl ester (80 mg/L) administration for 3 weeks increased mean arterial pressure (MAP) from 196 ± 6 to 229 ± 3 mm Hg (P < 0.05). Treatment of SHR-l with Ang-(1-7) antagonist [d-Ala7]-Ang-(1-7) (A779; 744 μg·kg(-1)·d(-1) ip) further elevated MAP to 253 ± 6 mm Hg (P < 0.05 vs SHR-l or SHR). Moreover, A779 treatment attenuated the reduction in MAP and proteinuria by either captopril (300 mg/L in drinking water) or hydralazine (1.5 mg·kg(-1)·d(-1) ip). In isolated perfused hearts, the recovery of left ventricular function from global ischemia was enhanced by captopril or hydralazine treatment and was exacerbated with A779. The Ang-(1-7) antagonist attenuated the beneficial effects of captopril and hydralazine on cardiac function. Recovery from global ischemia was also improved in isolated SHR-l hearts acutely perfused with captopril during both the perfusion and reperfusion periods. The acute administration of A779 reduced the beneficial actions of captopril to improve recovery after ischemia. We conclude that during periods of reduced nitric oxide availability, endogenous Ang-(1-7) plays a protective role in effectively buffering the increase in blood pressure and renal injury and the recovery from cardiac ischemia. Moreover, Ang-(1-7) contributes to the blood pressure lowering and tissue protective actions of captopril and hydralazine in a model of severe hypertension and end-organ damage.

  3. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters.

    PubMed

    Premnath, S; Devaradjane, G

    2015-11-01

    The emissions from the Compression ignition (CI) engines introduce toxicity to the atmosphere. The undesirable carbon deposits from these engines are realized in the nearby static or dynamic systems such as vehicles, inhabitants, etc. The objective of this research work is to improve the performance and emission characteristics of a diesel engine in the modified re-entrant combustion chamber using a diesel and Jatropha methyl ester blend (J20) at three different injection pressures. From the literature, it is revealed that the shape of the combustion chamber and the fuel injection pressure have an impact on the performance and emission parameters of the CI engine. In this work, a re-entrant combustion chamber with three different fuel injection pressures (200, 220 and 240bars) has been used in the place of the conventional hemispherical combustion chamber for diesel and J20. From the experimental results, it is found that the re-entrant chamber improves the brake thermal efficiency of diesel and J20 in all the tested conditions. It is also found that the 20% blend of Jatropha methyl ester showed 4% improvement in the brake thermal efficiency in the re-entrant chamber at the maximum injection pressure. Environmental safety directly relates to the reduction in the undesirable effects on both living and non-living things. Currently environmental pollution is of major concern. Even with the stringent emission norms new methods are required to reduce the harmful effects from automobiles. The toxicity of carbon monoxide (CO) is well known. In the re-entrant combustion chamber, the amount of CO emission is reduced by 26% when compared with the conventional fuel operation of the engine. Moreover, the amount of smoke is reduced by 24% and hydrocarbons (HC) emission by 24%. Thus, the modified re-entrant combustion chamber reduces harmful pollutants such as unburned HC and CO as well as toxic smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Towards Solvation of a Chiral Alpha-Hydroxy Ester: Broadband Chirp and Narrow Band Cavity Fouirier Transform Microwave Spectroscopy of Methyl Lactate-Water Clusters

    NASA Astrophysics Data System (ADS)

    Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie

    2013-06-01

    Methyl lactate (ML), a chiral alpha-hydroxy ester, has attracted much attention as a prototype system in studies of chirality transfer,[1] solvation effects on chiroptical signatures,[2] and chirality recognition.[3] It has multiple functional groups which can serve both as a hydrogen donor and acceptor. By applying rotational spectroscopy and high level ab initio calculations, we examine the delicate competition between inter- and intramolecular hydrogen-bonding in the ML-water clusters. Broadband rotational spectra obtained with a chirp Fourier transform microwave (FTMW) spectrometer, reveal that the insertion conformations are the most favourable ones in the binary and ternary solvated complexes. In the insertion conformations, the water molecule(s) inserts itself (themselves) into the existing intramolecular hydrogen-bonded ring formed between the alcoholic hydroxyl group and the oxygen of the carbonyl group of ML. The final frequency measurements have been carried out using a cavity based FTMW instrument where internal rotation splittings due to the ester methyl group have also been detected. A number of insertion conformers with subtle structural differences for both the binary and ternary complexes have been identified theoretically. The interconversion dynamics of these conformers and the identification of the most favorable conformers will be discussed. 1. C. Merten, Y. Xu, Angew. Chem. Int. Ed., 2013, 52, 2073 -2076. 2. M. Losada, Y. Xu, Phys. Chem. Chem. Phys., 2007, 9, 3127-3135; Y. Liu, G. Yang, M. Losada, Y. Xu, J. Chem. Phys., 2010, 132, 234513/1-11. 3. A. Zehnacker, M. Suhm, Angew. Chem. Int. Ed. 2008, 47, 6970 - 6992.

  5. Preparative separation of cis- and trans-isomers of unsaturated fatty acid methyl esters contained in edible oils by reversed-phase high-performance liquid chromatography.

    PubMed

    Tsuzuki, Wakako; Ushida, Kaori

    2009-04-01

    In order to measure exactly the trans-fatty acids content in food materials, a preparative group separation of cis- and trans-isomers of unsaturated fatty acid methyl esters (FAMEs) was achieved by an isocratic reversed-phase HPLC (RP-HPLC) method. The trans-isomers of 16:1, 18:1, 18:2, 18:3, 20:1 and 22:1 FAMEs were readily separated from the corresponding cis-isomers by a COSMOSIL Cholester C18 column (4.6 mm I.D. x 250 mm, Nacalai Tesque) or a TSKgel ODS-100Z column (4.6 mm I.D. x 250 mm, TOSOH), using acetonitrile as the mobile phase. This method was applied for determining the trans-18:1 fatty acid content in partially hydrogenated rapeseed oil. The methyl esters of cis- and trans-18:1 isomers of the oil were collected as two separate fractions by the developed RP-HPLC method. Each fraction was analyzed by gas chromatography (GC) for both qualitative and quantitative information on its positional isomers. By a combination of RP-HPLC and GC methods, a nearly complete separation of cis- and trans-18:1 positional isomers was achieved and the trans-18:1 fatty acid content was able to be evaluated more precisely than is possible by the direct GC method. The reproducibility of cis- and trans-18:1 isomers fractionated by the RP-HPLC method was better than 98%. These results suggested that the preparative RP-HPLC method developed in this study could be a powerful tool for trans-fatty acid analysis in edible oils and food products as an alternative to silver-ion chromatography.

  6. Determining the fatty acid composition in plasma and tissues as fatty acid methyl esters using gas chromatography – a comparison of different derivatization and extraction procedures.

    PubMed

    Ostermann, Annika I; Müller, Maike; Willenberg, Ina; Schebb, Nils Helge

    2014-12-01

    Analysis of the fatty acid (FA) composition in biological samples is commonly carried out using gas liquid chromatography (GC) after transesterification to volatile FA methyl esters (FAME). We compared the efficacy of six frequently used protocols for derivatization of different lipid classes as well as for plasma and tissue samples. Transesterification with trimethylsulfonium hydroxide (TMSH) led to insufficient derivatization efficacies for polyunsaturated FAs (PUFA, <50%). Derivatization in presence of potassium hydroxide (KOH) failed at derivatizing free FAs (FFAs). Boron trifluoride (BF3) 7% in hexane/MeOH (1:1) was insufficient for the transesterification of cholesterol ester (CE) as well as triacylglycerols (TGs). In contrast, methanolic hydrochloric acid (HCl) as well as a combination of BF3 with methanolic sodium hydroxide (NaOH+BF3) were suitable for the derivatization of FFAs, polar lipids, TGs, and CEs (derivatization rate >80% for all tested lipids). Regarding plasma samples, all methods led to an overall similar relative FA pattern. However, significant differences were observed, for example, for the relative amount of EPA+DHA (n3-index). Absolute FA plasma concentrations differed considerably among the methods, with low yields for KOH and BF3. We also demonstrate that lipid extraction with tert-butyl methyl ether/methanol (MTBE/MeOH) is as efficient as the classical method according to Bligh and Dyer, making it possible to replace (environmentally) toxic chloroform.We conclude that HCl-catalyzed derivatization in combination with MeOH/MTBE extraction is the most appropriate among the methods tested for the analysis of FA concentrations and FA pattern in small biological samples. A detailed protocol for the analysis of plasma and tissues is included in this article.

  7. FTIR gas-phase kinetic study on the reactions of OH radicals and Cl atoms with unsaturated esters: Methyl-3,3-dimethyl acrylate, (E)-ethyl tiglate and methyl-3-butenoate

    NASA Astrophysics Data System (ADS)

    Colomer, Juan P.; Blanco, María B.; Peñéñory, Alicia B.; Barnes, Ian; Wiesen, Peter; Teruel, Mariano A.

    2013-11-01

    The relative-rate technique has been used to obtain rates coefficients for the reactions of the unsaturated esters methyl-3,3-dimethyl acrylate, (E)-ethyl tiglate and methyl-3-butenoate with OH radicals and chlorine atoms at (298 ± 2) K in synthetic air at a total pressure of (760 ± 10) Torr. The experiments were performed in an environmental chamber using in situ FTIR detection to monitor the decay of the esters relative to different reference compounds. The following room temperature rate coefficients (in units of cm3 molecule-1 s-1) were obtained: k1(OH + (CH3)2Cdbnd CHC(O)OCH3) = (4.46 ± 1.05) × 10-11, k2(Cl + (CH3)2Cdbnd CHC(O)OCH3) = (2.78 ± 0.46) × 10-10, k3(OH + CH3CHdbnd C(CH3)C(O)OCH2CH3) = (8.32 ± 1.93) × 10-11, k4(Cl + CH3CHdbnd C(CH3)C(O)OCH2CH3) = (2.53 ± 0.35) × 10-10, k5(OH + CH2dbnd CHCH2C(O)OCH3) = (3.16 ± 0.57) × 10-11, k4(Cl + CH2dbnd CHCH2C(O)OCH3) = (2.10 ± 0.35) × 10-10. With the exception of the reaction of Cl with methyl-3,3-dimethyl acrylate (k2), for which one determination exists in the literature, this study is the first kinetic study for these reactions under atmospheric pressure. Reactivity trends are discussed in terms of the effect of the alkyl and ester groups attached to the double bond on the overall rate coefficients towards OH radicals. The atmospheric implications of the reactions were assessed by the estimation of the tropospheric lifetimes of the title reactions.

  8. Nanoconjugate Platforms Development Based in Poly(β,L-Malic Acid) Methyl Esters for Tumor Drug Delivery

    PubMed Central

    Portilla-Arias, José; Patil, Rameshwar; Hu, Jinwei; Ding, Hui; Black, Keith L.; García-Alvarez, Montserrat; Muñoz-Guerra, Sebastián; Ljubimova, Julia Y.; Holler, Eggehard

    2010-01-01

    New copolyesters derived from poly(β,L-malic acid) have been designed to serve as nanoconjugate platforms in drug delivery. 25% and 50% methylated derivatives (coPMLA-Me25H75 and coPMLA-Me50H50) with absolute molecular weights of 32 600 Da and 33 100 Da, hydrodynamic diameters of 3.0 nm and 5.2 nm and zeta potential of −15mV and −8.25mV, respectively, were found to destabilize membranes of liposomes at pH 5.0 and pH 7.5 at concentrations above 0.05mg/mL. The copolymers were soluble in PBS (half life of 40 hours) and in human plasma (half life of 15 hours) but they showed tendency to aggregate at high levels of methylation. Fluorescence-labeled copolymers were internalized into MDA-MB-231 breast cancer cells with increased efficiency for the higher methylated copolymer. Viability of cultured brain and breast cancer cell lines indicated moderate toxicity that increased with methylation. The conclusion of the present work is that partially methylated poly(β,L-malic acid) copolyesters are suitable as nanoconjugate platforms for drug delivery. PMID:23024655

  9. Methyl syringate, a low-molecular-weight phenolic ester, as an activator of the chemosensory ion channel TRPA1.

    PubMed

    Son, Hee Jin; Kim, Min Jung; Park, Jae-Ho; Ishii, Sho; Misaka, Takumi; Rhyu, Mee-Ra

    2012-12-01

    Transient receptor potential channel ankryn 1 (TRPA1) and transient receptor potential channel vanilloid 1 (TRPV1) are members of the TRP superfamily of structurally related, nonselective cation channels and are often coexpressed in sensory neurons. Extracts of the first leaves of Kalopanax pictus Nakai (Araliaceae) have been shown to activate hTRPA1 and hTRPV1. Therefore, the effects of six commercially available chemicals (methyl syringate, coniferyl alcohol, protocatechuic acid, hederacoside C, α-hederin, and eleutheroside B) found in K. pictus were investigated on cultured cells expressing hTRPA1 and hTRPV1. Of the six compounds, methyl syringate selectively activated hTRPA1 (EC(50) = 507.4 μM), but not hTRPV1. Although methyl syringate had a higher EC(50) compared with allyl isothiocyanate (EC(50) = 7.4 μM) and cinnamaldehyde (EC(50) = 22.2 μM), the present study provides evidence that methyl syringate from K. pictus is a specific and selective activator of hTRPA1.

  10. Experimental and theoretical studies of the molecular structure of 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester

    NASA Astrophysics Data System (ADS)

    Acar, Betül; Yilmaz, Ibrahim; Çalışkan, Nezihe; Cukurovali, Alaaddin

    2017-07-01

    In this work, the title molecule, 7-Methyl-3-[(3-methyl-3-mesityl-cyclobutyl]-5-phenyl-5H-thiazolo[3,2-α]pyrimidine-6-carboxylic acid ethyl ester (C30H34N2O2S1), was synthesized and characterized by FT-IR spectroscopy and single crystal X-ray diffraction. The compound crystallizes in the triclinic space group P21/c. with Z = 4, a = 14.1988(6), b = 19.0893(5), c = 10.1325(4) Å, V = 2674.56(17) A3. The optimized structure parameters of the studied molecule was determined theoretically using HF/6-31G(d) and B3LYP/6-31G(d) methods for ground state, and compared with previously reported experimental findings. The calculated harmonic vibrational frequencies are scaled and they are compared with experimental frequencies obtained by FT-IR spectra. The electronic properties, such as HOMO and LUMO energies, and molecular electrostatic potential (MEP) are also performed.

  11. Insights into the novel hydrolytic mechanism of a diethyl 2-phenyl-2-(2-arylacetoxy)methyl malonate ester-based microsomal triglyceride transfer protein (MTP) inhibitor.

    PubMed

    Ryder, Tim; Walker, Gregory S; Goosen, Theunis C; Ruggeri, Roger B; Conn, Edward L; Rocke, Benjamin N; Lapham, Kimberly; Steppan, Claire M; Hepworth, David; Kalgutkar, Amit S

    2012-10-15

    Inhibition of intestinal and hepatic microsomal triglyceride transfer protein (MTP) is a potential strategy for the treatment of dyslipidemia and related metabolic disorders. Inhibition of hepatic MTP, however, results in elevated liver transaminases and increased hepatic fat deposition consistent with hepatic steatosis. Diethyl 2-((2-(3-(dimethylcarbamoyl)-4-(4'-(trifluoromethyl)-[1,1'-biphenyl]-2-ylcarboxamido)phenyl)acetoxy)methyl)-2-phenylmalonate (JTT-130) is an intestine-specific inhibitor of MTP and does not cause increases in transaminases in short-term clinical trials in patients with dyslipidemia. Selective inhibition of intestinal MTP is achieved via rapid hydrolysis of its ester linkage by liver-specific carboxylesterase(s), resulting in the formation of an inactive carboxylic acid metabolite 1. In the course of discovery efforts around tissue-specific inhibitors of MTP, the mechanism of JTT-130 hydrolysis was examined in detail. Lack of ¹⁸O incorporation in 1 following the incubation of JTT-130 in human liver microsomes in the presence of H₂¹⁸O suggested that hydrolysis did not occur via a simple cleavage of the ester linkage. The characterization of atropic acid (2-phenylacrylic acid) as a metabolite was consistent with a hydrolytic pathway involving initial hydrolysis of one of the pendant malonate ethyl ester groups followed by decarboxylative fragmentation to 1 and the concomitant liberation of the potentially electrophilic acrylate species. Glutathione conjugates of atropic acid and its ethyl ester were also observed in microsomal incubations of JTT-130 that were supplemented with the thiol nucleophile. Additional support for the hydrolysis mechanism was obtained from analogous studies on diethyl 2-(2-(2-(3-(dimethylcarbamoyl)-4-(4'-trifluoromethyl)-[1,1'-biphenyl]-2-ylcarboxamido)phenyl)acetoxy)ethyl)-2-phenylmalonate (3), which cannot participate in hydrolysis via the fragmentation pathway because of the additional methylene group

  12. Investigation on the emission quality, performance and combustion characteristics of the compression ignition engine fueled with environmental friendly corn oil methyl ester - Diesel blends.

    PubMed

    Nagaraja, S; Soorya Prakash, K; Sudhakaran, R; Sathish Kumar, M

    2016-12-01

    This paper deals with emission quality of diesel engine based on eco toxicological studies with different methods of environmental standard toxicity tests satisfy the Bharath and European emission norms. Based on the emission norms, Corn Oil Methyl Ester (COME) with diesel is tested in a compression ignition engine and the performance and combustion characteristics are discussed. The corn oil was esterified and the property of corn oil methyl ester was within the limits specified in ASTM D 6751-03. The COME was blended together with diesel in different proportion percentages along with B20, B40, B60, B80, and B100. The emission and performance tests for various blends of COME was carried out using single cylinder, four stroke diesel engine, and compared with the performance obtained with 100% diesel (D100). The results give clear information that COME has low exhaust emissions and increase in performance compared to D100 without any modifications. It gives better performance, which is nearer to the obtained results of D100. Specific Fuel Consumption (SFC) of B100 at the full load condition is found to be 4% lower than that of (D100). The maximum Brake Thermal Efficiency (BTE) of B100 is found to be 8.5% higher than that of the D100 at full load. Also, the maximum BTE of part load for different blends is varied from 5.9% to 7.45% which is higher than D100. The exhaust gas emissions like Carbon Monoxide (CO), Carbon Dioxide (CO2), Hydro Carbon (HC) and Nitrogen Oxide (NOx) are found to be 2.3 to 18.8% lower compared to D100 for part as well as full load. The heat release rate of biodiesel and it blends are found to 16% to 35% lower as compared to D100 for part load, where as for full load it is 21% lower than D100. The results showed that the test of emissions norms are well within the limits of Bharath VI and European VI and it leads to less pollution, less effect on green eco system and potential substitute to fossil fuels.

  13. Rosmarinic Acid and Its Methyl Ester as Antimicrobial Components of the Hydromethanolic Extract of Hyptis atrorubens Poit. (Lamiaceae).

    PubMed

    Abedini, Amin; Roumy, Vincent; Mahieux, Séverine; Biabiany, Murielle; Standaert-Vitse, Annie; Rivière, Céline; Sahpaz, Sevser; Bailleul, François; Neut, Christel; Hennebelle, Thierry

    2013-01-01

    Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae), a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL). Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically.

  14. Methyl and p-Bromobenzyl Esters of Hydrogenated Kaurenoic Acid for Controlling Anthracnose in Common Bean Plants.

    PubMed

    Mota, Suellen F; Oliveira, Denilson F; Heleno, Vladimir C G; Soares, Ana Carolina F; Midiwo, Jacob O; Souza, Elaine A

    2017-03-01

    Kaurenoic acid derivatives were prepared and submitted to in vitro assays with the fungus Colletotrichum lindemuthianum, which causes anthracnose disease in the common bean. The most active substances were found to be methyl and p-bromobenzylesters, 7 and 9, respectively, of the hydrogenated kaurenoic acid, which presented a minimum inhibitory concentration (MIC) of 0.097 and 0.131 mM, respectively, while the commercial fungicide methyl thiophanate (MT) presented a MIC of 0.143 mM. Substances 7 (1.401 mM) and 9 (1.886 mM) reduced the severity of anthracnose in common bean to values statistically comparable to MT (2.044 mM). According to an in silico study, both compounds 7 and 9 are inhibitors of the ketosteroid isomerase (KSI) enzyme produced by other organisms, the amino acid sequence of which could be detected in fungal genomes. These substances appeared to act against C. lindemuthianum by inhibiting its KSI. Therefore, substances 7 and 9 are promising for the development of new fungicides.

  15. Rosmarinic Acid and Its Methyl Ester as Antimicrobial Components of the Hydromethanolic Extract of Hyptis atrorubens Poit. (Lamiaceae)

    PubMed Central

    Abedini, Amin; Roumy, Vincent; Mahieux, Séverine; Biabiany, Murielle; Standaert-Vitse, Annie; Rivière, Céline; Sahpaz, Sevser; Bailleul, François

    2013-01-01

    Primary biological examination of four extracts of the leaves and stems of Hyptis atrorubens Poit. (Lamiaceae), a plant species used as an antimicrobial agent in Guadeloupe, allowed us to select the hydromethanolic extract of the stems for further studies. It was tested against 46 microorganisms in vitro. It was active against 29 microorganisms. The best antibacterial activity was found against bacteria, mostly Gram-positive ones. Bioautography enabled the isolation and identification of four antibacterial compounds from this plant: rosmarinic acid, methyl rosmarinate, isoquercetin, and hyperoside. The MIC and MBC values of these compounds and their combinations were determined against eight pathogenic bacteria. The best inhibitory and bactericidal activity was found for methyl rosmarinate (0.3 mg/mL). Nevertheless, the bactericidal power of rosmarinic acid was much faster in the time kill study. Synergistic effects were found when combining the active compounds. Finally, the inhibitory effects of the compounds were evaluated on the bacterial growth phases at two different temperatures. Our study demonstrated for the first time antimicrobial activity of Hyptis atrorubens with identification of the active compounds. It supports its traditional use in French West Indies. Although its active compounds need to be further evaluated in vivo, this work emphasizes plants as potent sources of new antimicrobial agents when resistance to antibiotics increases dramatically. PMID:24348709

  16. Probing the active center of benzaldehyde lyase with substitutions and the pseudosubstrate analogue benzoylphosphonic acid methyl ester.

    PubMed

    Brandt, Gabriel S; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J; Yep, Alejandra; Kenyon, George L; Petsko, Gregory A; Jordan, Frank; Ringe, Dagmar

    2008-07-22

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of ( R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg (2+) as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 A (Protein Data Bank entry 3D7K ) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  17. Probing the Active Center of Benzaldehyde Lyase with Substitutions and the Pseudosubstrate Analogue Benzoylphosphonic Acid Methyl Ester

    SciTech Connect

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2008-07-28

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg{sup 2+} as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 {angstrom} (Protein Data Bank entry 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  18. Probing the active center of benzaldehyde lyase with substitutions and the pseudo-substrate analog benzoylphosphonic acid methyl ester

    PubMed Central

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar

    2009-01-01

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg2+ as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these type of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analog of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 Å (PDB ID: 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase. PMID:18570438

  19. Analysis of the physicochemical properties of post-manufacturing waste derived from production of methyl esters from rapeseed oil

    NASA Astrophysics Data System (ADS)

    Kachel-Jakubowska, Magdalena; Matwijczuk, Arkadiusz; Gagoś, Mariusz

    2017-04-01

    The technology of transesterification of biodiesel obtained from many agricultural products, which are often referred to as renewable resources, yields substantial amounts of by-products. They exhibit various properties that prompt scientific research into potential application thereof. Various spectroscopic methods, e.g. Fourier transform infrared spectroscopy, are being increasingly used in the research. In this paper, we present the results of Fourier transform infrared spectroscopy spectroscopy analyses of technical glycerine, distilled glycerine, and matter organic non glycerol, i.e. by-products of biodiesel production. To facilitate the spectroscopic analysis, a number of parameters were determined for all the materials, e.g. the calorific value, water content, sulphated ash content, methanol content, acidity, as well as the contents of esters, heavy metals, aldehydes, nitrogen, and phosphorus. The results indicate that the analysed products are characterised by a comparable calorific value in the range from 11.35 to 16.05 MJ kg-1 in the case of matter organic non glycerol and technical glycerine. Observation of changes in the position of selected peaks in the range of 3700-650 cm-1 in the Fourier transform infrared spectroscopy method facilitates determination of the level of degradation of the analysed material. Changes in the wavelength ranges can be used for monitoring the formation of secondary oxidation products containing carbonyl groups.

  20. The methyl ester of okadaic acid is more potent than okadaic acid in disrupting the actin cytoskeleton and metabolism of primary cultured hepatocytes

    PubMed Central

    Espiña, Begoña; Louzao, MCarmen; Cagide, Eva; Alfonso, Amparo; Vieytes, Mercedes R; Yasumoto, Takeshi; Botana, Luis M

    2010-01-01

    Background and purpose: Okadaic acid (OA) and microcystins (MCs) are structurally different toxins with the same mechanism of action, inhibition of serine/threonine protein phosphatases (PPs). Methyl okadaate (MeOk), a methyl ester derivative of OA, was considered almost inactive due to its weak inhibition of PP1 and PP2A. Here, we have investigated the activity and potency of MeOk in hepatic cells in comparison with that of OA and MCs. Experimental approach: We tested the effects of MeOK, OA and microcystin-leucine and arginine (MC-LR) on the metabolic rate, the actin cytoskeleton and glucose uptake in a rat hepatocyte cell line (Clone 9) and in primary cultured rat hepatocytes. PP2A was assayed to compare OA and MeOk activity. Key results: MeOk disrupted the actin cytoskeleton and depressed the metabolic rate of both types of rat hepatocytes, being six-fold less potent than OA in Clone 9 cells but nearly six-fold more potent in primary cultured hepatocytes. However, unlike OA, MeOk did not change glucose uptake in these cells, suggesting a weak inhibition of PP2A, as confirmed in direct assays of PP2A activity. Conclusions and implications: Although MeOk was originally described as a weakly bioactive molecule, it clearly depressed the metabolic rate and disrupted the cytoskeleton in primary and immortalized rat hepatocytes. Furthermore, MeOk affected primary hepatocytes at much lower concentrations than those affecting immortalized cells. These effects were unrelated to PP2A inhibition. Our results suggest the risk to public health from MeOk in foodstuffs should be re-evaluated. PMID:20015092

  1. Ultrasound assisted production of fatty acid methyl esters from transesterification of triglycerides with methanol in the presence of KOH catalyst: optimization, mechanism and kinetics.

    PubMed

    Thanh, Le Tu; Okitsu, Kenji; Maeda, Yasuaki; Bandow, Hiroshi

    2014-03-01

    Ultrasound assisted transesterification of triglycerides (TG) with methanol in the presence of KOH catalyst was investigated, where the changes in the reactants and products (diglycerides (DG), monoglycerides (MG), fatty acid methyl esters (FAME) and glycerin (GL)) concentrations were discussed to understand the reaction mechanism and kinetics under ultrasound irradiation. The optimum reaction condition for the FAME production was the concentration of KOH 1.0 wt.%, molar ratio of TG to methanol of 1:6, and irradiation time of 25 min. The rate constants during the TG transesterification with methanol into GL and FAME were estimated by a curve fitting method with simulated curves to the obtained experimental results. The rate constants of [Formula: see text] were estimated to be 0.21, 0.008, 0.23, 0.005, 0.14 and 0.001 L mol(-1)min(-1), respectively. The rate determining step for the TG transesterification with methanol into GL and FAME was the reaction of MG with methanol into GL and FAME.

  2. Emissions characteristics of ethyl and methyl ester of rapeseed oil compared with low sulfur diesel control fuel in a chassis dynamometer test of a pickup truck

    SciTech Connect

    Peterson, C.; Reece, D.

    1996-05-01

    Comprehensive tests were performed on an on-road vehicle in cooperation with the Los Angeles County Metropolitan Transit Authority emissions test facility. All tests were with a transient chassis dynamometer. Tests included both a double arterial cycle of 768 s duration and an EPA heavy duty vehicle cycle of 1,060 s duration. The test vehicle was a 1994 pickup truck with a 5.9-L turbocharged and intercooled, direct injection diesel engine. Rapeseed methyl (RME) and ethyl esters (REE) and blends were compared with low sulfur diesel control fuel. Emissions data include all regulated emissions: hydrocarbons (HC), carbon monoxide (CO), carbon dioxide (CO{sub 2}), oxides of nitrogen (NO{sub x}), and particulate matter (PM). In these tests the average of 100% RME and 100% REE reduced HC (52.4%), CO (47.6%), NO{sub x} (10.0%), and increases in CO{sub 2} (0.9%) and PM (9.9%) compared to the diesel control fuel. Also, 100% REE reduced HC (8.7%), CO (4.3%), and NO{sub x} (3.4%) compared to 100% RME. 33 refs., 1 figs., 8 tabs.

  3. Evaluation of antifungal activity of free fatty acids methyl esters fraction isolated from Algerian Linum usitatissimum L. seeds against toxigenic Aspergillus

    PubMed Central

    Abdelillah, Amrouche; Houcine, Benmehdi; Halima, Dalile; Meriem, Chabane sari; Imane, Zaaboub; Eddine, Smahi Djamal; Abdallah, Moussaoui; Daoudi, Chabane sari

    2013-01-01

    Objective The aim of this study was to evaluate the antifungal activity of the major fraction of fatty acids methyl esters (FAMEs) isolated from Linum usitatissimum L. seeds oil collected from Bechar department (Algeria). Methods The assessment of antifungal activity was carried out in terms of percentage of radial growth on solid medium (potatoes dextrose agar PDA) and biomass growth inhibition on liquid medium (potatoes dextrose broth PDB) against two fungi. Results The FAMEs was found to be effective in inhibiting the radial mycelial growth of Aspergillus flavus more than Aspergillus ochraceus on all tested concentrations. The highest antifungal index was found to be (54.19%) compared to Aspergillus ochraceus (40.48%). The results of the antifungal activity of the FAMEs inhibition of biomass on liquid medium gave no discounted results, but this does not exclude the antifungal activity. Conclusions We can assume that the observed antifungal potency may be due to the abundance of linoleic and α-linolenic acids in linseed oil which appears to be promising to treat fungal infections, storage fungi and food spoilage in food industry field. PMID:23730556

  4. A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability

    NASA Astrophysics Data System (ADS)

    Vasaturo, Michele; Fiengo, Lorenzo; de Tommasi, Nunziatina; Sabatino, Lina; Ziccardi, Pamela; Colantuoni, Vittorio; Bruno, Maurizio; Cerchia, Carmen; Novellino, Ettore; Lupo, Angelo; Lavecchia, Antonio; Piaz, Fabrizio Dal

    2017-01-01

    Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects.

  5. A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability

    PubMed Central

    Vasaturo, Michele; Fiengo, Lorenzo; De Tommasi, Nunziatina; Sabatino, Lina; Ziccardi, Pamela; Colantuoni, Vittorio; Bruno, Maurizio; Cerchia, Carmen; Novellino, Ettore; Lupo, Angelo; Lavecchia, Antonio; Piaz, Fabrizio Dal

    2017-01-01

    Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects. PMID:28117438

  6. On the inapplicability of electron-hopping models for the organic semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM)

    SciTech Connect

    Gajdos, Fruzsina; Oberhofer, Harald; Dupuis, Michel; Blumberger, Jochen

    2013-03-21

    Phenyl-C61-butyric Acid Methyl Ester (PCBM) is one of the most popular semiconductors in organic photovoltaic cells, but the electron transport mechanism in the microcrystalline domains of this material as well as its preferred packing structure remains unclear. Here we use density functional theory to calculate electronic coupling matrix elements, reorganization energies and activation energies for available experimental and model crystal structures. We find that the picture of an excess electron hopping from one fullerene to another does not apply for any of the crystalline phases, rendering traditional rate equations inappropriate. We also find that the cohesive energy increases in the order body-centred-cubic < hexagonal < simple cubic < monoclinic < triclinic, independently on the type of dispersion correction used. Our results indicate that the electron-ion dynamics needs to be solved explicitly in order to obtain a realistic description of charge transfer in this material. M.D. was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle.

  7. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-11-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  8. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester.

    PubMed Central

    Charley, M; Thiele, D L; Bennett, M; Lipsky, P E

    1986-01-01

    Graft vs. host disease (GVHD) remains one of the main problems associated with bone marrow transplantation. The current studies were undertaken to determine whether treatment of the donor inoculum with the anticytotoxic cell compound L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) would alter the development of GVHD in a murine model. Irradiated recipient mice transplanted with a mixture of control bone marrow and spleen cells from naive semiallogeneic donors died rapidly from GVHD, whereas the recipients of cells incubated with 250 microM Leu-Leu-OMe all survived. In addition, Leu-Leu-OMe treatment of cells obtained from donors immunized against host alloantigens resulted in significantly prolonged survival. Phenotypic characterization of spleen cells from the various groups of mice that had received Leu-Leu-OMe-treated cells and survived consistently revealed the donor phenotype. Treatment of marrow cells with 250 microM Leu-Leu-OMe appeared to have no adverse effects on stem cell function. Erythropoiesis was undiminished, as assayed by splenic 5-iodo-2'-deoxyuridine-125I uptake. Moreover, granulocytic and megakaryocytic regeneration were histologically equivalent in the spleens of recipients of control or Leu-Leu-OMe-treated cells. Treatment of the donor inoculum with Leu-Leu-OMe thus prevents GVHD in this murine strain combination with no apparent stem cell toxicity. Images PMID:3534002

  9. Oxidative stress, genotoxicity, and vascular cell adhesion molecule expression in cells exposed to particulate matter from combustion of conventional diesel and methyl ester biodiesel blends.

    PubMed

    Hemmingsen, Jette Gjerke; Møller, Peter; Nøjgaard, Jakob Klenø; Roursgaard, Martin; Loft, Steffen

    2011-10-01

    Our aim was to compare hazards of particles from combustion of biodiesel blends and conventional diesel (D(100)) in old and improved engines. We determined DNA damage in A549 cells, mRNA levels of CCL2 and IL8 in THP-1 cells, and expression of ICAM-1 and VCAM-1 in human umbilical cord endothelial cells (HUVECs). Viability and production of reactive oxygen species (ROS) were investigated in all cell types. We collected particles from combustion of D(100) and 20% (w/w) blends of animal fat or rapeseed oil methyl esters in light-duty vehicle engines complying with Euro2 or Euro4 standards. Particles emitted from the Euro4 engine were smaller in size and more potent than particles emitted from the Euro2 engine with respect to ROS production and DNA damage, but similarly potent concerning cytokine mRNA expression. Particles emitted from combustion of biodiesel blends were larger in size, and less or equally potent than particles emitted from combustion of D(100) concerning ROS production, DNA damage and mRNA of CCL2 and IL8. ICAM-1 and VCAM-1 expression in HUVECs was only increased by D(100) particles from the Euro4 engine. This suggests that particle emissions from biodiesel in equal mass concentration are less toxic than conventional diesel.

  10. Fast comprehensive two-dimensional gas chromatography method for fatty acid methyl ester separation and quantification using dual ionic liquid columns.

    PubMed

    Nosheen, Asia; Mitrevski, Blagoj; Bano, Asghari; Marriott, Philip J

    2013-10-18

    Safflower oil is a complex mixture of C18 saturated and unsaturated fatty acids amongst other fatty acids, and achieving separation between these similar structure components using one dimensional gas chromatography (GC) may be difficult. This investigation aims to obtain improved separation of fatty acid methyl esters in safflower oil, and their quantification using comprehensive two-dimensional GC (GC×GC). Here, GC×GC separation is accomplished by the coupling of two ionic liquid (IL) column phases: the combination of SLB-IL111 with IL59 column phases was finally selected since it provided excellent separation of a FAME standard mixture, as well as fatty acids in safflower and linseed oil, compared to other tested column sets. Safflower oil FAME were well separated in a short run of 16min. FAME validation was demonstrated by method reproducibility, linearity over a range up to 500mgL(-1), and limits of detection which ranged from 1.9mgL(-1) to 5.2mgL(-1) at a split ratio of 20:1. Quantification was carried out using two dilution levels of 200-fold for major components and 20-fold for trace components. The fatty acids C15:0 and C17:0 were not reported previously in safflower oil. The SLB-IL111/IL59 column set proved to be an effective and novel configuration for separation and quantification of vegetable and animal oil fatty acids.

  11. Effects of aminoguanidine and L-arginine methyl ester resuscitation following induction of fluid-percussion injury and severe controlled hemorrhagic shock in the rat brain.

    PubMed

    Atan, Md Shirhan; Moochhala, Shabbir M; Ng, Kian Chye; Low, Kerwin; Teo, Ai Ling; Lu, Jia

    2004-07-01

    In this study the authors compared the effects of both a selective inducible nitric oxide synthase (iNOS) inhibitor and a nonselective inhibitor on posttraumatic recovery and neuron survival by using a combined model of lateral fluid-percussion injury (FPI) and hemorrhagic shock (HS). Male Sprague-Dawley rats weighing 300 to 350 g underwent FPI to the brain (3.5 atm) and hemorrhage to a mean arterial blood pressure (MABP) of 40 mm Hg for 1 hour. Rats were then resuscitated during 1 hour with bolus infusions of aminoguanidine (AG) or nitro-L-arginine methyl ester (L-NAME). Neuronal apoptosis was determined by performing Nissl staining and in situ terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling technique. Rats infused with AG showed a significant increase in mean survival time and cerebral tissue perfusion, although the MABP and nitrate/nitrite levels did not significantly change compared with those in L-NAME-treated rats even though both animal groups had been subjected to combined FPI and HS, FPI alone, or HS alone. Furthermore, infusion of AG also significantly decreased the number of apoptotic neurons when compared with the number in rats treated with L-NAME. The authors asserted that treatment with AG, which causes the inhibition of iNOS, might contribute to improved physiological parameters and neuronal cell survival following FPI and HS.

  12. Inhibitory effect of N(G)-nitro-L-arginine methyl ester on the anti-adrenergic response elicited by ayanin in the pithed rat.

    PubMed

    Guerrero, M F; Puebla, P; Martín, M L; Carrón, R; San Román, L; Reguero, M T; Arteaga, L

    2002-04-01

    In this study we evaluated the anti-adrenergic response elicited by ayanin, a flavonoid compound isolated from Croton schiedeanus Schlecht, in the pithed rat, and the inhibitory effect of NO synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), and its acute toxicity profile in mice. In pithed rats ayanin (5 - 50 mg/kg i. v.) caused a dose-dependent decrease in the pressor and chronotropic responses induced by intravenous noradrenaline administration (0.25 microg/kg). This anti-adrenergic response was completely abolished by prior treatment with L-NAME (10 mg/kg i.v ) and the inhibitory effect of L-NAME was reversed after intravenous administration of L-arginine (100 mg/kg, i. v.). No lethal or major toxic effects were observed in mice receiving i. p. administration of ayanin up to a dose of 500 mg/kg. Our findings confirm that ayanin exerts protective cardiovascular effects against the increase in blood pressure and heart rate mainly through a mechanism that depends on the NO/cyclic guanosine monophosphate (cGMP) pathway without acute toxic effects. These results suggest that extracts of Croton schiedeanus, the native south American plant from which ayanin was isolated, might be beneficial in cardiovascular disease.

  13. L-leucyl-l-leucine methyl ester treatment of canine marrow and peripheral blood cells: Inhibition of proliferative responses with maintenance of the capacity for autologous marrow engraftment

    SciTech Connect

    Raff, R.F.; Severns, E.; Storb, R.; Martin, P.; Graham, T.

    1988-11-01

    The success of allogeneic marrow transplantation as treatment for malignant and nonmalignant hematopoietic diseases has been restricted by the serious complications of graft-versus-host disease. Experiments in a variety of mammalian marrow transplant models have shown that removal of mature T cells from donor marrow permits engraftment without the development of GVHD. Incubation of canine marrow and peripheral blood mononuclear cells with L-leucyl-L-leucine methyl ester resulted in the inhibition of mitogen-and alloantigen induced blastogenesis, the elimination of allosensitized Cytotoxic T Lymphocyte and Natural Killer activity, and prevented the development of CTL from pCTL. The effects of these incubations were similar to those described in mice and humans. Additionally, in vitro CFU-GM growth from treated canine marrow was reduced, but could be regained when the Leu-Leu-OMe-treated marrow was cocultured with either untreated autologous peripheral blood mononuclear cells or monocyte-enriched PBMC but not with untreated monocyte-depleted PBMC. Six of seven dogs conditioned with 920 cGy total-body irradiation engrafted successfully after receiving autologous marrow that was incubated with Leu-Leu-OMe prior to infusion. These cumulative results indicate that incubation with Leu-Leu-OMe is a feasible method to deplete canine marrows of alloreactive and cytotoxic T cells prior to transplantation.

  14. Characterization of bacteria degrading 3-hydroxy palmitic acid methyl ester (3OH-PAME), a quorum sensing molecule of Ralstonia solanacearum.

    PubMed

    Achari, G A; Ramesh, R

    2015-05-01

    Bacterial wilt pathogen Ralstonia solanacearum causes severe crop loss of eggplant, which is of economic importance in India. 3-hydroxy palmitic acid methyl ester (3OH-PAME) is the main quorum sensing molecule governing the expression of virulence factors in R. solanacearum. Ability of 164 bacterial isolates from the xylem of eggplant (Solanum melongena L.), chilli pepper (Capsicum annuum L.) and wild eggplant (Solanum torvum Sw.) to degrade 3OH-PAME was tested by disc diffusion assay. Enzymatic degradation of 3OH-PAME by five bacteria was confirmed by High-Performance Liquid Chromatography-Mass Spectrometry analysis. 3OH-PAME degrading bacteria were identified as Stenotrophomonas maltophilia, Pseudomonas aeruginosa and Rhodococcus corynebacterioides. 3OH-PAME degrading bacteria reduced the expression of virulence factors (exopolysaccharides and endoglucanase) of R. solanacearum in vitro and reduced wilt incidence in eggplant seedlings under greenhouse conditions. Isolates with quorum quenching activity successfully re-colonized eggplant seedlings. Quorum quenching bacteria produced antagonistic compounds, which may act synergistically with quorum quenching in reducing bacterial wilt in eggplant. This is the first report on endophytic bacteria of class Gammaproteobacteria and phylum Actinobacteria having 3OH-PAME degrading activity. This study demonstrates the potential use of endophytic bacteria as quorum quenching biocontrol agents for management of bacterial wilt in eggplant. © 2015 The Society for Applied Microbiology.

  15. Supramolecular synthons in designing low molecular mass gelling agents: L-amino acid methyl ester cinnamate salts and their anti-solvent-induced instant gelation.

    PubMed

    Sahoo, Pathik; Kumar, D Krishna; Raghavan, Srinivasa R; Dastidar, Parthasarathi

    2011-04-04

    Easy access to a class of chiral gelators has been achieved by exploiting primary ammonium monocarboxylate (PAM), a supramolecular synthon. A combinatorial library comprising of 16 salts, derived from 5 L-amino acid methyl esters and 4 cinnamic acid derivatives, has been prepared and scanned for gelation. Remarkably, 14 out of 16 salts prepared (87.5 % of the salts) show moderate to good gelation abilities with various solvents, including commercial fuels, such as petrol. Anti-solvent induced instant gelation at room temperature has been achieved in all the gelator salts, indicating that the gelation process is indeed an aborted crystallization phenomenon. Rheology, optical and scanning electron microscopy, small angle neutron scattering, and X-ray powder diffraction have been used to characterize the gels. A structure-property correlation has been attempted, based on these data, in addition to the single-crystal structures of 5 gelator salts. Analysis of the FT-IR and (1)H NMR spectroscopy data reveals that some of these salts can be used as supramolecular containers for the slow release of certain pest sex pheromones. The present study clearly demonstrates the merit of crystal engineering and the supramolecular synthon approach in designing new materials with multiple properties.

  16. L-leucyl-L-leucine methyl ester does not release cysteine cathepsins to the cytosol but inactivates them in transiently permeabilized lysosomes.

    PubMed

    Repnik, Urska; Borg Distefano, Marita; Speth, Martin Tobias; Ng, Matthew Yoke Wui; Progida, Cinzia; Hoflack, Bernard; Gruenberg, Jean; Griffiths, Gareth

    2017-09-15

    L-leucyl-L-leucine methyl ester (LLOMe) induces apoptosis, which is thought to be mediated by release of lysosomal cysteine cathepsins from permeabilized lysosomes into the cytosol. Here, we demonstrated in HeLa cells that apoptotic as well as sub-apoptotic concentrations of LLOMe caused rapid and complete lysosomal membrane permeabilization (LMP), as evidenced by loss of the proton gradient and release into the cytosol of internalized lysosomal markers below a relative molecular mass of 10,000. However, there was no evidence for the release of cysteine cathepsins B and L into the cytosol; rather they remained within lysosomes, where they were rapidly inactivated and degraded. LLOMe-induced adverse effects, including LMP, loss of cysteine cathepsin activity, caspase activation and cell death could be reduced by inhibition of cathepsin C, but not by inhibiting cathepsins B and L. When incubated with sub-apoptotic LLOMe concentrations, lysosomes transiently lost protons but annealed and re-acidified within hours. Full lysosomal function required new protein synthesis of cysteine cathepsins and other hydrolyses. Our data argue against the release of lysosomal enzymes into the cytosol and their proposed proteolytic signaling during LLOMe-induced apoptosis. © 2017. Published by The Company of Biologists Ltd.

  17. Fast assembly of cyanine dyes into aggregates onto [6,6]-phenyl C61-butyric acid methyl ester surfaces from organic solvents.

    PubMed

    Heier, Jakob; Steiger, Rolf; Nüesch, Frank; Hany, Roland

    2010-03-16

    Supramolecular agglomerates of organic colorants based on noncovalent interactions are promising candidates for the development of sensors, optoelectronics, lighting, or photovoltaics. However, their fast and defect-free fabrication on large scales using low-cost technologies has proven elusive so far. Here, we introduce a so far unreported mechanism to induce molecular order in cyanine dyes within minutes from organic solvents by self-assembly. Spin coating blends of a cyanine dye and a soluble fullerene derivative ([6,6]-phenyl C(61)-butyric acid methyl ester (PCBM)) from apolar, aprotic solvents leads to phase-separated structures on the micrometer scale. With this superordinated phase structure, adjustment of dye aggregation is possible, leading to novel optical properties of the film emerging from dye self-assembly on the nanometer scale. In the primary process, semiporous PCBM domains act as nucleation sites for H-aggregates. H-aggregates can then be reconstructed into J-aggregates by dissolving PCBM from the film. Unexpectedly, the method even works for sterically hindered cyanine dyes that are known for their reduced tendency to aggregate. Additionally, selective removal of H-aggregates leaves a template of PCBM nanocrystals, onto which cyanine dye monomers readsorb from solution, forming H-aggregates of similar quality.

  18. Solvated crystals based on [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) with the hexagonal structure and their phase transformation.

    PubMed

    Zheng, Lidong; Han, Yanchun

    2012-02-09

    This work focuses on the structural exploration of micro-sized crystals based on a well-known methanofullerene, [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). We have succeeded in producing PCBM crystals with the hexagonal symmetry through the liquid-liquid interfacial precipitation (LLIP) method. We found that smaller but more regular PCBM crystals tend to form in the oversaturated PCBM solutions with solvents of lower solubility for PCBM, such as tetrahydrofuran (THF) and 1,4-dioxane. The structure of the produced crystals also shows a dependence on the solvents, which can be attributed to the incorporation of different solvent molecules into PCBM crystals. Under thermal annealing, for the first time, we have observed a crystalline to crystalline phase transformation of these hexagonal PCBM crystals. Along with the phase transformation, the morphology of the crystals has also been transformed from the hexagon to long needles. In addition, the needlelike crystals arrange themselves with a relative angle of 60° to each other, which implies an intrinsic structural correlation between needlelike and hexagonal crystals. © 2012 American Chemical Society

  19. Antioxidant (A-tocopherol acetate) effect on oxidation stability and NOx emission reduction in methyl ester of Annona oil operated diesel engine

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-05-01

    There is a major drawback while using biodiesel as a alternate fuel for compression ignition diesel engine due to lower heating value, higher viscosity, higher density and higher oxides of nitrogen emission. To minimize these drawbacks, fuel additives can contribute towards engine performance and exhaust emission reduction either directly or indirectly. In this current work, the test was conducted to investigate the effect of antioxidant additive (A-tocopherol acetate) on oxidation stability and NOx emission in a of Annona methyl ester oil (MEAO) fueled diesel engine. The A-tocopherol acetate is mixed in different concentrations such as 0.01, 0.02, 0.03 and 0.04% with 100% by vol MEAO. It is concluded that the antioxidant additive very effective in increasing the oxidation stability and in controlling the NOx emission. Further, the addition of antioxidant additive is slight increase the HC, CO and smoke emissions. Hence, A-tocopherol acetate is very effective in controlling the NOx emission with MEAO operated diesel engine without any major modification.

  20. Dissociation of castor oil-induced diarrhoea and intestinal mucosal injury in rat: effect of NG-nitro-L-arginine methyl ester.

    PubMed Central

    Capasso, F; Mascolo, N; Izzo, A A; Gaginella, T S

    1994-01-01

    1. Castor oil (2 ml orally) produced diarrhoea in rats 1-7 h after challenge, which was associated with gross damage to the duodenal and jejunal mucosa. 2. The injury was accompanied by release of acid phosphatase into the gut lumen, indicating cellular injury. 3. Intraperitoneal injection of the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME, 2.5-50 mg kg-1 twice), prevented the diarrhoea. The dose of L-NAME (50 mg kg-1) completely blocked the diarrhoea but increased the release of acid phosphatase and worsened the gross damage. 4. The NO donating compound, isosorbide-5-mononitrate (IMN, 150 mg kg-1 twice) reversed the effects of L-NAME (50 mg kg-1) on castor oil-induced diarrhoea, gross damage and acid phosphatase release. 5. The apparent dissociation of the diarrhoeal and intestinal mucosal damaging effects of castor oil suggest that NO has a protective effect on the rat duodenal and jejunal mucosa, but that NO mediates, in part, the diarrhoea effect of this laxative. PMID:7889264

  1. Poly-N-acryloyl-(l-phenylalanine methyl ester) hollow core nanocapsules facilitate sustained delivery of immunomodulatory drugs and exhibit adjuvant properties.

    PubMed

    Yamala, Anil Kumar; Nadella, Vinod; Mastai, Yitzhak; Prakash, Hridayesh; Paik, Pradip

    2017-09-11

    Polymeric hollow nanocapsules have attracted significant research attention as novel drug carriers and their preparation is of particular concern owing to the feasibility to encapsulate a broad range of drug molecules. This work presents for the first time the synthesis and development of novel poly-N-acryloyl l-phenylalanine methyl ester hollow core nanocapsules (NAPA-HPNs) of avg. size ca. 100-150 nm by the mini-emulsion technique. NAPA-HPNs are biocompatible and capable of encapsulating sodium nitroprusside (SNP) at a rate of ∼1.3 μM per mg of capsules. These NAPA-HPNs + SNP nano-formulations maintained homeostasis of macrophages which carry and facilitate the action of various drug molecules used against various diseases. These NAPA-HPNs also facilitate the prolonged release of a low level of nitric oxide (NO) and enhance the metabolic activities of pro-inflammatory macrophages, which are important for the action of various drugs in body fluids. NAPA-HPN mediated skewing of naïve macrophages toward the M1 phenotype potentially demonstrates its adjuvant action on the innate immune system. These results potentially suggested that NAPA-HPNs can serve both as a carrier of drugs as well as an adjuvant for the immune system. Thus, these nanocapsules could be used for the effective management of various infectious or tumor diseases where immune-stimulation is paramount for treatment.

  2. Noncovalent functionalization of graphene attaching [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and application as electron extraction layer of polymer solar cells.

    PubMed

    Qu, Shuxuan; Li, Minghua; Xie, Lixin; Huang, Xiao; Yang, Jinguo; Wang, Nan; Yang, Shangfeng

    2013-05-28

    A new graphene-fullerene composite (rGO-pyrene-PCBM), in which [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) was attached onto reduced graphene oxide (rGO) via the noncovalent functionalization approach, was reported. The pyrene-PCBM moiety was synthesized via a facile esterification reaction, and pyrene was used as an anchoring bridge to link rGO and PCBM components. FTIR, UV-vis, and XPS spectroscopic characterizations were carried out to confirm the hybrid structure of rGO-pyrene-PCBM, and the composite formation is found to improve greatly the dispersity of rGO in DMF. The geometric configuration of rGO-pyrene-PCBM was studied by Raman, SEM, and AFM analyses, suggesting that the C60 moiety is far from the graphene sheet and is bridged with the graphene sheet via the pyrene anchor. Finally rGO-pyrene-PCBM was successfully applied as electron extraction layer for P3HT:PCBM bulk heterojunction polymer solar cell (BHJ-PSC) devices, affording a PCE of 3.89%, which is enhanced by ca. 15% compared to that of the reference device without electron extraction layer (3.39%). Contrarily, the comparative devices incorporating the rGO or pyrene-PCBM component as electron extraction layer showed dramatically decreased PCE, indicating the importance of composite formation between rGO and pyrene-PCBM components for its electron extraction property.

  3. Prevention of lethal murine graft versus host disease by treatment of donor cells with L-leucyl-L-leucine methyl ester

    SciTech Connect

    Charley, M.; Thiele, D.L.; Bennett, M.; Lipsky, P.E.

    1986-11-01

    Graft vs. host disease (GVHD) remains one of the main problems associated with bone marrow transplantation. The current studies were undertaken to determine whether treatment of the donor inoculum with the anticytotoxic cell compound L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) would alter the development of GVHD in a murine model. Irradiated recipient mice transplanted with a mixture of control bone marrow and spleen cells from naive semiallogeneic donors died rapidly from GVHD, whereas the recipients of cells incubated with 250 microM Leu-Leu-OMe all survived. In addition, Leu-Leu-OMe treatment of cells obtained from donors immunized against host alloantigens resulted in significantly prolonged survival. Phenotypic characterization of spleen cells from the various groups of mice that had received Leu-Leu-OMe-treated cells and survived consistently revealed the donor phenotype. Treatment of marrow cells with 250 microM Leu-Leu-OMe appeared to have no adverse effects on stem cell function. Erythropoiesis was undiminished, as assayed by splenic 5-iodo-2'-deoxyuridine-/sup 125/I uptake. Moreover, granulocytic and megakaryocytic regeneration were histologically equivalent in the spleens of recipients of control or Leu-Leu-OMe-treated cells. Treatment of the donor inoculum with Leu-Leu-OMe thus prevents GVHD in this murine strain combination with no apparent stem cell toxicity.

  4. Physical and chemical properties of pyropheophorbide-a methyl ester in ethanol, phosphate buffer and aqueous dispersion of small unilamellar dimyristoyl-L-alpha-phosphatidylcholine vesicles.

    PubMed

    Delanaye, Lisiane; Bahri, Mohamed Ali; Tfibel, Francis; Fontaine-Aupart, Marie-Pierre; Mouithys-Mickalad, Ange; Heine, Bélinda; Piette, Jacques; Hoebeke, Maryse

    2006-03-01

    The aggregation process of pyropheophorbide-a methyl ester (PPME), a second-generation photosensitizer, was investigated in various solvents. Absorption and fluorescence spectra showed that the photosensitizer was under a monomeric form in ethanol as well as in dimyristoyl-L-alpha-phosphatidylcholine liposomes while it was strongly aggregated in phosphate buffer. A quantitative determination of reactive oxygen species production by PPME in these solvents has been undertaken by electron spin resonance associated with spin trapping technique and absorption spectroscopy. In phosphate buffer, both electron spin resonance and absorption measurements led to the conclusion that singlet oxygen production was not detectable while hydroxyl radical production was very weak. In liposomes and ethanol, singlet oxygen and hydroxyl radical production increased highly; the singlet oxygen quantum yield was determined to be 0.2 in ethanol and 0.13 in liposomes. The hydroxyl radical production origin was also investigated. Singlet oxygen was formed from PPME triplet state deactivation in the presence of oxygen. Indeed, the triplet state formation quantum yield of PPME was found to be about 0.23 in ethanol, 0.15 in liposomes (too small to be measured in PBS).

  5. The herbal medicines Saireito and Boiogito improve the hypertension of pre-eclamptic rats induced by Nomega-Nitro-L-arginine methyl ester.

    PubMed

    Takei, Hisato; Nakai, Yoichiro; Hattori, Naoko; Yamamoto, Masahiro; Takeda, Shuichi; Yamamoto, Masako; Arishima, Kazuyoshi

    2007-09-01

    The chronic inhibition of nitric oxide (NO) synthesis with N(omega)-Nitro-L-arginine methyl ester (L-NAME) induces a pre-eclampsia-like syndrome including hypertension in pregnant rats. We tested the traditional herbal medicines Saireito (SR) and Boiogito (BO), which have been used clinically for the treatment of pre-eclampsia, in this model. L-NAME was infused subcutaneously into pregnant rats from gestational day 14 (G14). SR and BO (both at 1, 2g/kg) were administered by gavage from G14 to G20. Systolic blood pressure was measured on G19. SR and BO (both at 1, 2g/kg) inhibited L-NAME-induced hypertension. SR was effective in both pregnant and non-pregnant rats while BO was effective only in pregnant rats. BO increased blood levels of CGRP and decreased levels of endothelin-1; both are known to play important roles in regulation of blood pressure in pre-eclampsia. SR and BO may be beneficial for the treatment and prevention of hypertension in pre-eclampsia.

  6. Experimental and artificial neural network based prediction of performance and emission characteristics of DI diesel engine using Calophyllum inophyllum methyl ester at different nozzle opening pressure

    NASA Astrophysics Data System (ADS)

    Vairamuthu, G.; Thangagiri, B.; Sundarapandian, S.

    2017-07-01

    The present work investigates the effect of varying Nozzle Opening Pressures (NOP) from 220 bar to 250 bar on performance, emissions and combustion characteristics of Calophyllum inophyllum Methyl Ester (CIME) in a constant speed, Direct Injection (DI) diesel engine using Artificial Neural Network (ANN) approach. An ANN model has been developed to predict a correlation between specific fuel consumption (SFC), brake thermal efficiency (BTE), exhaust gas temperature (EGT), Unburnt hydrocarbon (UBHC), CO, CO2, NOx and smoke density using load, blend (B0 and B100) and NOP as input data. A standard Back-Propagation Algorithm (BPA) for the engine is used in this model. A Multi Layer Perceptron network (MLP) is used for nonlinear mapping between the input and the output parameters. An ANN model can predict the performance of diesel engine and the exhaust emissions with correlation coefficient (R2) in the range of 0.98-1. Mean Relative Errors (MRE) values are in the range of 0.46-5.8%, while the Mean Square Errors (MSE) are found to be very low. It is evident that the ANN models are reliable tools for the prediction of DI diesel engine performance and emissions. The test results show that the optimum NOP is 250 bar with B100.

  7. Chikusetsusaponin IVa methyl ester induces cell cycle arrest by the inhibition of nuclear translocation of β-catenin in HCT116 cells

    SciTech Connect

    Lee, Kyung-Mi; Yun, Ji Ho; Lee, Dong Hwa; Park, Young Gyun; Son, Kun Ho; Nho, Chu Won; Kim, Yeong Shik

    2015-04-17

    We demonstrate that chikusetsusaponin IVa methyl ester (CME), a triterpenoid saponin from the root of Achyranthes japonica, has an anticancer activity. We investigate its molecular mechanism in depth in HCT116 cells. CME reduces the amount of β-catenin in nucleus and inhibits the binding of β-catenin to specific DNA sequences (TCF binding elements, TBE) in target gene promoters. Thus, CME appears to decrease the expression of cell cycle regulatory proteins such as Cyclin D1, as a representative target for β-catenin, as well as CDK2 and CDK4. As a result of the decrease of the cell cycle regulatory proteins, CME inhibits cell proliferation by arresting the cell cycle at the G0/G1 phase. Therefore, we suggest that CME as a novel Wnt/β-catenin inhibitor can be a putative agent for the treatment of colorectal cancers. - Highlights: • CME inhibits cell proliferation in HCT116 cells. • CME increases cell cycle arrest at G0/G1 phase and apoptosis. • CME attenuates cyclin D1 and regulates cell cycle regulatory proteins. • CME inhibits β-catenin translocation to nucleus.

  8. Structural, vibrational spectroscopic studies and quantum chemical calculations of n-(2,4-dinitrophenyl)-L-alanine methyl ester by density functional theory

    NASA Astrophysics Data System (ADS)

    Govindarasu, K.; Kavitha, E.

    2015-05-01

    In this paper, the vibrational wavenumbers of N-(2,4-dinitrophenyl)-L-alanine methyl ester (abbreviated as Dnp-ala-ome) were obtained from ab initio studies based on the density functional theory approach with B3LYP and M06-2X/6-31G(d,p) level of theories. The optimized geometry and structural features of the most potential nonlinear optical crystal Dnp-ala-ome and the vibrational spectral investigations have been thoroughly described with the FT-Raman and FT-IR spectra supported by the DFT computations. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-50 cm-1) in the solid phase and the UV-Vis spectra that dissolved in ethanol were recorded in the range of 200-800 nm. The Natural population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer, intramolecular and hyperconjugative interactions on the geometries. The effects of frontier orbitals, HOMO and LUMO, transition of electron density transfer have also been discussed. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of Dnp-ala-ome were calculated. In addition, molecular electrostatic potential (MEP) was investigated using theoretical calculations. The chemical reactivity and thermodynamic properties (heat capacity, entropy and enthalpy) of at different temperature are calculated.

  9. A compound-based proteomic approach discloses 15-ketoatractyligenin methyl ester as a new PPARγ partial agonist with anti-proliferative ability.

    PubMed

    Vasaturo, Michele; Fiengo, Lorenzo; De Tommasi, Nunziatina; Sabatino, Lina; Ziccardi, Pamela; Colantuoni, Vittorio; Bruno, Maurizio; Cerchia, Carmen; Novellino, Ettore; Lupo, Angelo; Lavecchia, Antonio; Piaz, Fabrizio Dal

    2017-01-24

    Proteomics based approaches are emerging as useful tools to identify the targets of bioactive compounds and elucidate their molecular mechanisms of action. Here, we applied a chemical proteomic strategy to identify the peroxisome proliferator-activated receptor γ (PPARγ) as a molecular target of the pro-apoptotic agent 15-ketoatractyligenin methyl ester (compound 1). We demonstrated that compound 1 interacts with PPARγ, forms a covalent bond with the thiol group of C285 and occupies the sub-pocket between helix H3 and the β-sheet of the ligand-binding domain (LBD) of the receptor by Surface Plasmon Resonance (SPR), mass spectrometry-based studies and docking experiments. 1 displayed partial agonism of PPARγ in cell-based transactivation assays and was found to inhibit the AKT pathway, as well as its downstream targets. Consistently, a selective PPARγ antagonist (GW9662) greatly reduced the anti-proliferative and pro-apoptotic effects of 1, providing the molecular basis of its action. Collectively, we identified 1 as a novel PPARγ partial agonist and elucidated its mode of action, paving the way for therapeutic strategies aimed at tailoring novel PPARγ ligands with reduced undesired harmful side effects.

  10. Detrimental effects of N(omega) nitro-L-arginine methyl ester (L-NAME)in experimental Escherichia coli sepsis in the newborn piglet.

    PubMed Central

    Kim, Sung Shin; Hwang, Jong Hee; Choi, Chang Won; Shim, Jae Won; Chang, Yun Sil; Park, Won Soon; Oh, Chang Kyu

    2003-01-01

    The role of nitric oxide during neonatal sepsis is complex. We tested the hypothesis that nonselective inhibition of nitric oxide synthase with N(omega) -nitro-L-arginine methyl ester (L-NAME) is detrimental during the early phase of experimental sepsis in the newborn piglet. Newborn piglets were divided into four groups: 6 in the control group, 6 in the L-NAME control group, 12 in the sepsis group (SG), and 11 in the sepsis with L-NAME group (NS). Sepsis was induced by intravenous injection of 10(8) colony forming units of Escherichia coli. L-NAME 10 mg/kg was given intravenously 60 min before the induction of sepsis. The survival rate of piglets after 4 hr was 27% in NS, while it was 100% in other groups. Systemic hypotension, observed in both SG and NS, were more profound in NS. Leukopenia was observed in both SG and NS. Thrombocytopenia, prolongation of prothrombin time and activated partial thromboplastin time, and increase in thrombin-antithrombin complexes were observed only in NS. Decreased PaO2 /FiO2 ratio, arterial pH and base excess, and increased blood lactate levels observed in both SG and NS, but were more profound in NS. These findings suggest that nonselective inhibition of nitric oxide synthase with L-NAME is detrimental during the early phase of experimental neonatal sepsis. PMID:14555813

  11. Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C{sub 61}-butyric acid methyl ester

    SciTech Connect

    Lazzerini, Giovanni Mattia; Yacoot, Andrew; Paternò, Giuseppe Maria; Tregnago, Giulia; Cacialli, Franco; Treat, Neil; Stingelin, Natalie

    2016-02-01

    We report high-resolution, traceable atomic force microscopy measurements of high-quality, solvent-free single crystals of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). These were grown by drop-casting PCBM solutions onto the spectrosil substrates and by removing the residual solvent in a vacuum. A home-built atomic force microscope featuring a plane mirror differential optical interferometer, fiber-fed from a frequency-stabilized laser (emitting at 632.8 nm), was used to measure the crystals' height. The optical interferometer together with the stabilized laser provides traceability (via the laser wavelength) of the vertical measurements made with the atomic force microscope. We find that the crystals can conform to the surface topography, thanks to their height being significantly smaller compared to their lateral dimensions (namely, heights between about 50 nm and 140 nm, for the crystals analysed, vs. several tens of microns lateral dimensions). The vast majority of the crystals are flat, but an isolated, non-flat crystal provides insights into the growth mechanism and allows identification of “molecular terraces” whose height corresponds to one of the lattice constants of the single PCBM crystal (1.4 nm) as measured with X-ray diffraction.

  12. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal N(G)-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring.

    PubMed

    Tain, You-Lin; Lee, Chien-Te; Chan, Julie Y H; Hsu, Chien-Ning

    2016-11-01

    Pregnancy is a critical time for fetal programming of hypertension. Nitric oxide deficiency during pregnancy causes hypertension in adult offspring. We examined whether maternal melatonin or N-acetylcysteine therapy can prevent N(G)-nitro-L-arginine-methyl ester-induced fetal programming of hypertension in adult offspring. Next, we aimed to identify potential gatekeeper pathways that contribute to N(G)-nitro-L-arginine-methyl ester -induced programmed hypertension using the next generation RNA sequencing technology. Pregnant Sprague-Dawley rats were assigned to 4 groups: control, N(G)-nitro-L-arginine-methyl ester, N(G)-nitro-L-arginine-methyl ester +melatonin, and N(G)-nitro-L-arginine-methyl ester+N-acetylcysteine. Pregnant rats received N(G)-nitro-L-arginine-methyl ester administration at 60 mg/kg/d subcutaneously during pregnancy alone, with additional 0.01% melatonin in drinking water, or with additional 1% N-acetylcysteine in drinking water during the entire pregnancy and lactation. Male offspring (n=8/group) were killed at 12 weeks of age. N(G)-nitro-L-arginine-methyl ester exposure during pregnancy induced programmed hypertension in adult male offspring, which was prevented by maternal melatonin or N-acetylcysteine therapy. Protective effects of melatonin and N-acetylcysteine against N(G)-nitro-L-arginine-methyl ester-induced programmed hypertension were associated with an increase in hydrogen sulfide-generating enzymes and hydrogen sulfide synthesis in the kidneys. Nitric oxide inhibition by N(G)-nitro-L-arginine-methyl ester in pregnancy caused >2000 renal transcripts to be modified during nephrogenesis stage in 1-day-old offspring kidney. Among them, genes belong to the renin-angiotensin system, and arachidonic acid metabolism pathways were potentially involved in the N(G)-nitro-L-arginine-methyl ester-induced programmed hypertension. However, melatonin and N-acetylcysteine reprogrammed the renin-angiotensin system and arachidonic acid pathway

  13. Determination of fatty acid methyl esters derived from algae Scenedesmus dimorphus biomass by GC-MS with one-step esterification of free fatty acids and transesterification of glycerolipids.

    PubMed

    Avula, Satya Girish Chandra; Belovich, Joanne M; Xu, Yan

    2017-05-01

    Algae can synthesize, accumulate and store large amounts of lipids in its cells, which holds immense potential as a renewable source of biodiesel. In this work, we have developed and validated a GC-MS method for quantitation of fatty acids and glycerolipids in forms of fatty acid methyl esters derived from algae biomass. Algae Scenedesmus dimorphus dry mass was pulverized by mortar and pestle, then extracted by the modified Folch method and fractionated into free fatty acids and glycerolipids on aminopropyl solid-phase extraction cartridges. Fatty acid methyl esters were produced by an optimized one-step esterification of fatty acids and transesterification of glycerolipids with boron trichloride/methanol. The matrix effect, recoveries and stability of fatty acids and glycerolipids in algal matrix were first evaluated by spiking stable isotopes of pentadecanoic-2,2-d2 acid and glyceryl tri(hexadecanoate-2,2-d2 ) as surrogate analytes and tridecanoic-2,2-d2 acid as internal standard into algal matrix prior to sample extraction. Later, the method was validated in terms of lower limits of quantitation, linear calibration ranges, intra- and inter-assay precision and accuracy using tridecanoic-2,2-d2 acid as internal standard. The method developed has been applied to the quantitation of fatty acid methyl esters from free fatty acid and glycerolipid fractions of algae Scenedesmus dimorphus. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Inactive methyl indole-3-acetic acid ester can be hydrolyzed and activated by several esterases belonging to the AtMES esterase family of Arabidopsis.

    PubMed

    Yang, Yue; Xu, Richard; Ma, Choong-Je; Vlot, A Corina; Klessig, Daniel F; Pichersky, Eran

    2008-07-01

    The plant hormone auxin (indole-3-acetic acid [IAA]) is found both free and conjugated to a variety of carbohydrates, amino acids, and peptides. We have recently shown that IAA could be converted to its methyl ester (MeIAA) by the Arabidopsis (Arabidopsis thaliana) enzyme IAA carboxyl methyltransferase 1. However, the presence and function of MeIAA in vivo remains unclear. Recently, it has been shown that the tobacco (Nicotiana tabacum) protein SABP2 (salicylic acid binding protein 2) hydrolyzes methyl salicylate to salicylic acid. There are 20 homologs of SABP2 in the genome of Arabidopsis, which we have named AtMES (for methyl esterases). We tested 15 of the proteins encoded by these genes in biochemical assays with various substrates and identified several candidate MeIAA esterases that could hydrolyze MeIAA. MeIAA, like IAA, exerts inhibitory activity on the growth of wild-type roots when applied exogenously. However, the roots of Arabidopsis plants carrying T-DNA insertions in the putative MeIAA esterase gene AtMES17 (At3g10870) displayed significantly decreased sensitivity to MeIAA compared with wild-type roots while remaining as sensitive to free IAA as wild-type roots. Incubating seedlings in the presence of [(14)C]MeIAA for 30 min revealed that mes17 mutants hydrolyzed only 40% of the [(14)C]MeIAA taken up by plants, whereas wild-type plants hydrolyzed 100% of absorbed [(14)C]MeIAA. Roots of Arabidopsis plants overexpressing AtMES17 showed increased sensitivity to MeIAA but not to IAA. Additionally, mes17 plants have longer hypocotyls and display increased expression of the auxin-responsive DR5:beta-glucuronidase reporter gene, suggesting a perturbation in IAA homeostasis and/or transport. mes17-1/axr1-3 double mutant plants have the same phenotype as axr1-3, suggesting MES17 acts upstream of AXR1. The protein encoded by AtMES17 had a K(m) value of 13 microm and a K(cat) value of 0.18 s(-1) for MeIAA. AtMES17 was expressed at the highest levels in shoot

  15. Therapeutic effects of C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me; bardoxolone methyl) on radiation-induced lung inflammation and fibrosis in mice.

    PubMed

    Wang, Yan-Yang; Zhang, Cui-Ying; Ma, Ya-Qiong; He, Zhi-Xu; Zhe, Hong; Zhou, Shu-Feng

    2015-01-01

    The C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me), one of the synthetic triterpenoids, has been found to have potent anti-inflammatory and anticancer properties in vitro and in vivo. However, its usefulness in mitigating radiation-induced lung injury (RILI), including radiation-induced lung inflammation and fibrosis, has not been tested. The aim of this study was to explore the therapeutic effect of CDDO-Me on RILI in mice and the underlying mechanisms. Herein, we found that administration of CDDO-Me improved the histopathological score, reduced the number of inflammatory cells and concentrations of total protein in bronchoalveolar lavage fluid, suppressed secretion and expression of proinflammatory cytokines, including transforming growth factor-β and interleukin-6, elevated expression of the anti-inflammatory cytokine interleukin-10, and downregulated the mRNA level of profibrotic genes, including for fibronectin, α-smooth muscle actin, and collagen I. CDDO-Me attenuated radiation-induced lung inflammation. CDDO-Me also decreased the Masson's trichrome stain score, hydroxyproline content, and mRNA level of profibrotic genes, and blocked radiation-induced collagen accumulation and fibrosis. Collectively, these findings suggest that CDDO-Me ameliorates radiation-induced lung inflammation and fibrosis, and this synthetic triterpenoid is a promising novel therapeutic agent for RILI. Further mechanistic, efficacy, and safety studies are warranted to elucidate the role of CDDO-Me in the management of RILI.

  16. Therapeutic effects of C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me; bardoxolone methyl) on radiation-induced lung inflammation and fibrosis in mice

    PubMed Central

    Wang, Yan-Yang; Zhang, Cui-Ying; Ma, Ya-Qiong; He, Zhi-Xu; Zhe, Hong; Zhou, Shu-Feng

    2015-01-01

    The C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO-Me), one of the synthetic triterpenoids, has been found to have potent anti-inflammatory and anticancer properties in vitro and in vivo. However, its usefulness in mitigating radiation-induced lung injury (RILI), including radiation-induced lung inflammation and fibrosis, has not been tested. The aim of this study was to explore the therapeutic effect of CDDO-Me on RILI in mice and the underlying mechanisms. Herein, we found that administration of CDDO-Me improved the histopathological score, reduced the number of inflammatory cells and concentrations of total protein in bronchoalveolar lavage fluid, suppressed secretion and expression of proinflammatory cytokines, including transforming growth factor-β and interleukin-6, elevated expression of the anti-inflammatory cytokine interleukin-10, and downregulated the mRNA level of profibrotic genes, including for fibronectin, α-smooth muscle actin, and collagen I. CDDO-Me attenuated radiation-induced lung inflammation. CDDO-Me also decreased the Masson’s trichrome stain score, hydroxyproline content, and mRNA level of profibrotic genes, and blocked radiation-induced collagen accumulation and fibrosis. Collectively, these findings suggest that CDDO-Me ameliorates radiation-induced lung inflammation and fibrosis, and this synthetic triterpenoid is a promising novel therapeutic agent for RILI. Further mechanistic, efficacy, and safety studies are warranted to elucidate the role of CDDO-Me in the management of RILI. PMID:26124639

  17. Liquid-phase characterization of molecular interactions in polyunsaturated and n-fatty acid methyl esters by (1)H low-field nuclear magnetic resonance.

    PubMed

    Meiri, Nitzan; Berman, Paula; Colnago, Luiz Alberto; Moraes, Tiago Bueno; Linder, Charles; Wiesman, Zeev

    2015-01-01

    To identify and develop the best renewable and low carbon footprint biodiesel substitutes for petroleum diesel, the properties of different biodiesel candidates should be studied and characterized with respect to molecular structures versus biodiesel liquid property relationships. In our previous paper, (1)H low-field nuclear magnetic resonance (LF-NMR) relaxometry was investigated as a tool for studying the liquid-phase molecular packing interactions and morphology of fatty acid methyl esters (FAMEs). The technological potential was demonstrated with oleic acid and methyl oleate standards having similar alkyl chains but different head groups. In the present work, molecular organization versus segmental and translational movements of FAMEs in their pure liquid phase, with different alkyl chain lengths (10-20 carbons) and degrees of unsaturation (0-3 double bonds), were studied with (1)H LF-NMR relaxometry and X-ray, (1)H LF-NMR diffusiometry, and (13)C high-field NMR. Based on density values and X-ray measurements, it was proposed that FAMEs possess a liquid crystal-like order above their melting point, consisting of random liquid crystal aggregates with void spaces between them, whose morphological properties depend on chain length and degree of unsaturation. FAMEs were also found to exhibit different degrees of rotational and translational motions, which were rationalized by chain organization within the clusters, and the degree and type of molecular interactions and temperature effects. At equivalent fixed temperature differences from melting point, saturated FAME molecules were found to have similar translational motion regardless of chain length, expressed by viscosity, self-diffusion coefficients, and spin-spin (T 2) (1)H LF-NMR. T 2 distributions suggest increased alkyl chain rigidity, and reduced temperature response of the peaks' relative contribution with increasing unsaturation is a direct result of the alkyl chain's morphological packing and molecular

  18. Direct angiotensin II type 2 receptor stimulation in Nω-nitro-L-arginine-methyl ester-induced hypertension: the effect on pulse wave velocity and aortic remodeling.

    PubMed

    Paulis, Ludovit; Becker, Sophie T R; Lucht, Kristin; Schwengel, Katja; Slavic, Svetlana; Kaschina, Elena; Thöne-Reineke, Christa; Dahlöf, Björn; Baulmann, Johannes; Unger, Thomas; Steckelings, U Muscha

    2012-02-01

    Pulse wave velocity (PWV), a direct marker of arterial stiffness, is an independent cardiovascular risk factor. Although the angiotensin II type 1 receptor blockade belongs to major antihypertensive and cardioprotective therapies, less is known about the effects of long-term stimulation of the angiotensin II type 2 receptor. Previously, compound 21, a selective nonpeptide angiotensin II type 2 receptor agonist improved the outcome of myocardial infarction in rats along with anti-inflammatory properties. We investigated whether compound 21 alone or in combination with angiotensin II type 1 receptor blockade by olmesartan medoxomil could prevent PWV increase and aortic remodeling in N(ω)-nitro-L-arginine-methyl ester (L-NAME)-induced hypertension. Male adult Wistar rats (n=65) were randomly assigned to control, L-NAME, L-NAME+compound-21, L-NAME+olmesartan, and L-NAME+olmesartan+compound-21 groups and treated for 6 weeks. We observed that L-NAME hypertension was accompanied by enhanced PWV, increased wall thickness, and stiffness of the aorta, along with elevated hydroxyproline concentration. Olmesartan completely prevented hypertension, PWV and wall thickness increase, and the increase of aortic stiffness and partly prevented hydroxyproline accumulation. Compound 21 partly prevented all of these alterations, yet without concomitant prevention of blood pressure rise. Although the combination therapy with olmesartan and compound 21 led to blood pressure levels, PWV, and wall thickness comparable to olmesartan-alone-treated rats, only in the combination group was complete prevention of increased hydroxyproline deposition achieved, resulting in even more pronounced stiffness reduction. We conclude that chronic angiotensin II type 2 receptor stimulation prevented aortic stiffening and collagen accumulation without preventing hypertension in rats with inhibited NO synthase. These effects were additive to angiotensin II type 1 receptor blockade, yet without additional

  19. Mechanistic aspects of the photodynamic inactivation of vancomycin-resistant Enterococci mediated by 5-aminolevulinic acid and 5-aminolevulinic acid methyl ester.

    PubMed

    Liu, Chengcheng; Zhou, Yingli; Wang, Li; Han, Lei; Lei, Jin'e; Ishaq, Hafiz Muhammad; Xu, Jiru

    2015-04-01

    Vancomycin-resistant Enterococci (VRE) is a serious concern for public health. Serious infections with VRE have very limited effective antimicrobial therapy, and alternative treatment approaches are highly desirable. One promising approach might be the photodynamic antimicrobial chemotherapy. In the present study, we investigated the photodynamic inactivation (PDI) of two VRE strains mediated by 5-aminolevulinic acid (5-ALA) and its derivative 5-ALA methyl ester (MAL). The photodynamic damages to bacteria on the level of genomic DNA, the leakage of cell components, and the changes of membrane structure were investigated. After treated with 10 mM 5-ALA and irradiated by the 633 ± 10 nm LED for 60 min, 5.37 and 5.22 log10 reductions in bacterial survival were achieved for the clinical isolate of VRE and E. faecalis (ATCC 51299), respectively. After treated with 10 mM MAL and irradiated by the LED for 60 min, 5.02 and 4.91 log10 reductions in bacterial survival were observed for the two VRE strains, respectively. In addition, the photocleavage on genomic DNA and the rapid release of intracellular biopolymers were detected in PDI-treated bacteria. The intensely denatured cytoplasm and the aggregated ribosomes were also found in PDI-treated bacteria by transmission electron microscopy. Although 5-ALA and MAL-mediated PDI could induce the photocleavage on genomic DNA, the PDI of the two VRE strains might be predominantly attributed to the envelope injury, the intracellular biopolymers leakage, and the cytoplasm denature.

  20. Differential effects of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride on the recognition and catalysis in ATP hydrolysis.

    PubMed

    Ma, Yanqing; Lu, Gongxuan

    2008-02-28

    The supramolecular interactions of Mg(ii) and N(alpha)-4-tosyl-l-arginine methyl ester hydrochloride (TAME) with ATP have been investigated using (1)H and (31)P NMR spectra. Furthermore, the hydrolysis of ATP catalyzed by Mg(ii) and TAME has been studied at 60 degrees C and pH 7 using (31)P NMR spectra. In the Mg(ii)-ATP-TAME ternary system, the binding interaction of Mg(2+) with ATP involves not only N1 and N7 in the adenine ring but also beta- and gamma-phosphate of ATP. The binding forces are mainly electrostatic interaction and cation (Mg(2+))-pi interaction. The guanidinium group and the aromatic ring of TAME interacts with ATP by beta and gamma phosphate and the adenine ring of ATP. The binding forces are mainly electrostatic interactions and pi-pi stacking. A significant difference between the binary and the ternary system indicates that TAME is essential to the stablization of the intermediate. Kinetic studies show that the hydrolysis rate constant of ATP is 2.16 x 10(-2) h(-1) at pH 7 in the Mg(ii)-TAME-ATP ternary system. The Mg(ii) ion and TAME can accelerate the ATP hydrolysis process. A possible mechanism has been proposed that the hydrolysis occurs through an addition-elimination, in which the phosphoramidate intermediate was observed at 3.21 ppm in the (31)P NMR of the ternary system. These results provide further information concerning the effect of the key amino acid residue and metal ions as cofactors of ATPase on ATP synthesis/hydrolysis at the molecular level.

  1. Neuroprotective Role of L-NG-Nitroarginine Methyl Ester (L-NAME) against Chronic Hypobaric Hypoxia with Crowding Stress (CHC) Induced Depression-Like Behaviour

    PubMed Central

    Deep, Satya Narayan; Baitharu, Iswar; Sharma, Apurva; Gurjar, Anoop Kishor Singh; Prasad, Dipti; Singh, Shashi Bala

    2016-01-01

    Improper neuroimmune responses following chronic stress exposure have been reported to cause neuronal dysfunctions leading to memory impairment, anxiety and depression like behaviours. Though several factors affecting microglial activation and consequent alteration in neuro-inflammatory responses have been well studied, role of NO and its association with microglia in stress induced depression model is yet to be explored. In the present study, we validated combination of chronic hypobaric hypoxia and crowding (CHC) as a stress model for depression and investigated the role of chronic stress induced elevated nitric oxide (NO) level in microglia activation and its effect on neuro-inflammatory responses in brain. Further, we evaluated the ameliorative effect of L-NG-Nitroarginine Methyl Ester (L-NAME) to reverse the stress induced depressive mood state. Four groups of male Sprague Dawley rat were taken and divided into control and CHC stress exposed group with and without treatment of L-NAME. Depression like behaviour and anhedonia in rats were assessed by Forced Swim Test (FST) and Sucrose Preference Test (SPT). Microglial activation was evaluated using Iba-1 immunohistochemistry and proinflammatory cytokines were assessed in the hippocampal region. Our result showed that exposure to CHC stress increased the number of active microglia with corresponding increase in inflammatory cytokines and altered behavioural responses. The inhibition of NO synthesis by L-NAME during CHC exposure decreased the number of active microglia in hippocampus as evident from decreased Iba-1 positive cells. Further, L-NAME administration decreased pro-inflammatory cytokines in hippocampus and improved behaviour of rats. Our study demonstrate that stress induced elevation of NO plays pivotal role in altered microglial activation and consequent neurodegenerative processes leading to depression like behaviour in rat. PMID:27082990

  2. Detergency stability and particle characterization of phosphate-free spray dried detergent powders incorporated with palm C16 methyl ester sulfonate (C16MES).

    PubMed

    Siwayanan, Parthiban; Aziz, Ramlan; Bakar, Nooh Abu; Ya, Hamdan; Jokiman, Ropien; Chelliapan, Shreeshivadasan

    2014-01-01

    Phosphate-free spray dried detergent powders (SDDP) comprising binary anionic surfactants of palm C16 methyl ester sulfonate (C16MES) and linear alkyl benzene sulfonic acid (LABSA) were produced using a 5 kg/h-capacity co-current pilot spray dryer (CSD). Six phosphate-free detergent (PFD) formulations comprising C16MES/LABSA in various ratios under pH 7-8 were studied. Three PFD formulations having C16MES/LABSA in respective ratios of 0:100 (control), 20:80 and 40:60 ratios were selected for further evaluation based on their optimum detergent slurry concentrations. The resulting SDDP from these formulations were analysed for its detergency stability (over nine months of storage period) and particle characteristics. C16MES/LABSA of 40:60 ratio was selected as the ideal PFD formulation since its resulting SDDP has consistent detergency stability (variation of 2.3% in detergency/active over nine months storage period), excellent bulk density (0.37 kg/L), fine particle size at 50% cumulative volume percentage (D50 of 60.48 μm), high coefficient of particle size uniformity (D60/D10 of 3.86) and large spread of equivalent particle diameters. In terms of surface morphology, the SDDP of the ideal formulation were found to have regular hollow particles with smooth spherical surfaces. Although SDDP of the ideal formulation have excellent characteristics, but in terms of flowability, these powders were classified as slightly less free flowing (Hausner ratio of 1.27 and Carr's index of 21.3).

  3. The Nitric Oxide Synthase Inhibitor NG-Nitro-L-Arginine Methyl Ester Diminishes the Immunomodulatory Effects of Parental Arginine in Rats with Subacute Peritonitis

    PubMed Central

    Lo, Hui-Chen; Hung, Ching-Yi; Huang, Fu-Huan; Su, Tzu-Cheng; Lee, Chien-Hsing

    2016-01-01

    The combined treatment of parenteral arginine and the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) have been shown to improve liver function and systemic inflammation in subacute peritonitic rats. Here, we investigated the effects of single and combined parenteral arginine and L-NAME treatments on leukocyte and splenocyte immunity. Male Wistar rats were subjected to cecal punctures and were intravenously given total parenteral nutrition solutions with or without arginine and/or L-NAME supplementations for 7 days. Non-surgical and sham-operated rats with no cecal puncture were given a chow diet and parenteral nutrition, respectively. Parenteral feeding elevated the white blood cell numbers and subacute peritonitis augmented the parenteral nutrition-induced alterations in the loss of body weight gain, splenomegaly, and splenocyte decreases. Parenteral arginine significantly increased the B-leukocyte level, decreased the natural killer T (NKT)-leukocyte and splenocyte levels, alleviated the loss in body weight gain and total and cytotoxic T-splenocyte levels, and attenuated the increases in plasma nitrate/nitrite and interferon-gamma production by T-splenocytes. L-NAME infusion significantly decreased NKT-leukocyte level, tumor-necrosis factor (TNF)-alpha production by T-splenocytes and macrophages, and interferon-gamma production by T-leukocytes, monocytes, and T-splenocytes, as well as increased interleukin-6 production by T-leukocytes and monocytes and nitrate/nitrite production by T-leukocytes. Combined treatment significantly decreased plasma nitrate/nitrite, the NKT-leukocyte level, and TNF-alpha production by T-splenocytes. Parenteral arginine may attenuate immune impairment and L-NAME infusion may augment leukocyte proinflammatory response, eliminate splenocyte proinflammatory and T-helper 1 responses, and diminish arginine-induced immunomodulation in combined treatment in subacute peritonitic rats. PMID:27007815

  4. The effects of endothelin-1 and NG-nitro-L-arginine methyl ester on regional haemodynamics in conscious rats with streptozotocin-induced diabetes mellitus.

    PubMed Central

    Kiff, R. J.; Gardiner, S. M.; Compton, A. M.; Bennett, T.

    1991-01-01

    1. Resting haemodynamic status and responses to endothelin-1 (0.0004, 0.04, 0.4 nmol kg-1) and NG-nitro-L-arginine methyl ester (L-NAME, 10 mg kg-1) were assessed in conscious, Wistar rats treated with streptozotocin (STZ) to induce diabetes mellitus, and in control animals treated with saline. 2. In the resting state, STZ-treated rats had a bradycardia relative to control animals (291 +/- 13 and 337 +/- 10 beats min-1, respectively), but mean arterial blood pressures were the same in the two groups (STZ-treated 109 +/- 3; control 114 +/- 4 mmHg). However, the STZ-treated rats had raised renal (105 +/- 9 units) and mesenteric (114 +/- 16 units) vascular conductances and reduced hindquarters vascular conductance (26 +/- 4 units) relative to control rats (renal, 80 +/- 6; mesenteric, 75 +/- 7; hindquarters, 37 +/- 3 units). 3. Increasing doses of endothelin-1 caused similar, early falls and subsequent rises in mean arterial blood pressures in both groups of rats. Although there were initial hindquarters vasodilatations with endothelin-1 that were not different in STZ-treated and control rats, there were subsequent renal and mesenteric vasoconstrictions that were greater in the former. Hence, the similar rises in mean arterial blood pressures must have been accompanied by a greater reduction in cardiac output in the STZ-treated rats. 4. L-NAME caused similar renal and mesenteric vasoconstrictions in control and STZ-treated rats, but there was a smaller pressor effect and an attenuated hindquarters vasoconstrictor response to L-NAME in STZ-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1884094

  5. Neuroprotective Role of L-NG-Nitroarginine Methyl Ester (L-NAME) against Chronic Hypobaric Hypoxia with Crowding Stress (CHC) Induced Depression-Like Behaviour.

    PubMed

    Deep, Satya Narayan; Baitharu, Iswar; Sharma, Apurva; Gurjar, Anoop Kishor Singh; Prasad, Dipti; Singh, Shashi Bala

    2016-01-01

    Improper neuroimmune responses following chronic stress exposure have been reported to cause neuronal dysfunctions leading to memory impairment, anxiety and depression like behaviours. Though several factors affecting microglial activation and consequent alteration in neuro-inflammatory responses have been well studied, role of NO and its association with microglia in stress induced depression model is yet to be explored. In the present study, we validated combination of chronic hypobaric hypoxia and crowding (CHC) as a stress model for depression and investigated the role of chronic stress induced elevated nitric oxide (NO) level in microglia activation and its effect on neuro-inflammatory responses in brain. Further, we evaluated the ameliorative effect of L-NG-Nitroarginine Methyl Ester (L-NAME) to reverse the stress induced depressive mood state. Four groups of male Sprague Dawley rat were taken and divided into control and CHC stress exposed group with and without treatment of L-NAME. Depression like behaviour and anhedonia in rats were assessed by Forced Swim Test (FST) and Sucrose Preference Test (SPT). Microglial activation was evaluated using Iba-1 immunohistochemistry and proinflammatory cytokines were assessed in the hippocampal region. Our result showed that exposure to CHC stress increased the number of active microglia with corresponding increase in inflammatory cytokines and altered behavioural responses. The inhibition of NO synthesis by L-NAME during CHC exposure decreased the number of active microglia in hippocampus as evident from decreased Iba-1 positive cells. Further, L-NAME administration decreased pro-inflammatory cytokines in hippocampus and improved behaviour of rats. Our study demonstrate that stress induced elevation of NO plays pivotal role in altered microglial activation and consequent neurodegenerative processes leading to depression like behaviour in rat.

  6. Vascular and antioxidant effects of an aqueous Mentha cordifolia extract in experimental N(G)-nitro-L-arginine methyl ester-induced hypertension.

    PubMed

    Pakdeechote, Poungrat; Prachaney, Parichat; Berkban, Warinee; Kukongviriyapan, Upa; Kukongviriyapan, Veerapol; Khrisanapant, Wilaiwan; Phirawatthakul, Yada

    2014-01-01

    The effect of an aqueous Mentha cordifolia (MC) extract on the haemodynamic status, vascular remodeling, function, and oxidative status in NG-nitro-L-arginine methyl ester (L-NAME)-induced hypertension was investigated. Male Sprague-Dawley rats were given L-NAME [50 mg/(kg body weight (BW) d)] in their drinking water for 5 weeks and were treated by intragastric administration with the MC extract [200 mg/(kgBWd)] for 2 consecutive weeks. Quercetin [25 mg/(kg BW d)] was used as a positive control. The effects of the MC extract on the haemodynamic status, thoracic aortic wall thickness, and oxidative stress markers were determined, and the vasorelaxant activity of the MC extract was tested in isolated mesenteric vascular beds in rats. Significant increases in the mean arterial pressure (MAP), heart rate (HR), hind limb vascular resistance (HVR), wall thickness, and cross-sectional area of the thoracic aorta, as well as oxidative stress markers were found in the L-NAME-treated group compared to the control (P < 0.05). MAP, HVR, wall thickness, cross-sectional area of the thoracic aorta, plasma malondialdehyde (MDA), and vascular superoxide anion production were significantly reduced in L-NAME hypersensitive rats treated with the MC extract or quercetin. Furthermore, the MC extract induced vasorelaxation in the pre-constricted mesenteric vascular bed with intact and denuded endothelium of normotensive and hypertensive rats. Our results suggest that the MC extract exhibits an antihypertensive effect via its antioxidant capacity, vasodilator property, and reduced vascular remodeling.

  7. Physiologically based pharmacokinetic (PBPK) models for nasal tissue dosimetry of organic esters: assessing the state-of-knowledge and risk assessment applications with methyl methacrylate and vinyl acetate.

    PubMed

    Andersen, Melvin E; Green, Trevor; Frederick, Clay B; Bogdanffy, Matthew S

    2002-12-01

    Mathematical models have been developed to describe nasal epithelial tissue dosimetry with two compounds, vinyl acetate (VA) and methyl methacrylate (MMA), that cause toxicity in these tissues These models couple computational fluid dynamics (CFD) calculations that map airflow patterns within the nose with physiologically based pharmacokinetic (PBPK) models that integrate diffusion, metabolism, and tissue interactions of these compounds. Dose metrics estimated in these models for MMA and VA, respectively, were rates of MMA metabolism per volume of tissue and alterations in pH in target tissues associated with VA hydrolysis and metabolism. In this article, four scientists who have contributed significantly to development of these models describe the many similarities and relatively few differences between the MMA and VA models. Some differences arise naturally because of differences in target tissues, in the calculated measures of tissue dose, and in the modes of action for highly extracted vapors (VA) compared with poorly extracted vapors (MMA). A difference in the approach used to estimate metabolic parameters from human tissues provides insights into interindividual extrapolation and identifies opportunities for studies with human nasal tissues to enhance current risk assessments. In general, the differences in model structure for these two esters were essential for describing the biology of the observed responses and in accounting for the different measures of target tissue dose. This article is intended to serve as a guide for understanding issues of optimum model structure and optimal data sources for these nasal tissue dosimetry models. We also hope that it leads to greater international acceptance of these hybrid CFD/PBPK modeling approaches for improving risk assessment for many nasal toxicants. In general, these models predict either equivalent (VA) or lower (MMA) nasal tissue doses in humans compared with tissue doses at equivalent exposure concentrations

  8. Separation characteristics of fatty acid methyl esters using SLB-IL111, a new ionic liquid coated capillary gas chromatographic column.

    PubMed

    Delmonte, Pierluigi; Fardin Kia, Ali-Reza; Kramer, John K G; Mossoba, Magdi M; Sidisky, Len; Rader, Jeanne I

    2011-01-21

    The ionic liquid SLB-IL111 column, available from Supelco Inc., is a novel fused capillary gas chromatography (GC) column capable of providing enhanced separations of fatty acid methyl esters (FAMEs) compared to the highly polar cyanopropyl siloxane columns currently recommended for the separation of cis- and trans isomers of fatty acids (FAs), and marketed as SP-2560 and CP-Sil 88. The SLB-IL111 column was operated isothermal at 168°C, with hydrogen as carrier gas at 1.0 mL/min, and the elution profile was characterized using authentic GC standards and synthetic mono-unsaturated fatty acids (MUFAs) and conjugated linoleic acid (CLA) isomers as test mixtures. The SLB-IL111 column provided an improved separation of cis- and trans-18:1 and cis/trans CLA isomers. This is the first direct GC separation of c9,t11- from t7,c9-CLA, and t15-18:1 from c9-18:1, both of which previously required complimentary techniques for their analysis using cyanopropyl siloxane columns. The SLB-IL111 column also provided partial resolution of t13/t14-18:1, c8- from c6/c7-18:1, and for several t,t-CLA isomer pairs. This column also provided elution profiles of the geometric and positional isomers of the 16:1, 20:1 and 18:3 FAMEs that were complementary to those obtained using the cyanopropyl siloxane columns. However, on the SLB-IL111 column the saturated FAs eluted between the cis- and trans MUFAs unlike cyanopropyl siloxane columns that gave a clear separation of most saturated FAs. These differences in elution pattern can be exploited to obtain a more complete analysis of complex lipid mixtures present in ruminant fats. Published by Elsevier B.V.

  9. Chronic N(G)-nitro-L-arginine methyl ester-induced hypertension : novel molecular adaptation to systolic load in absence of hypertrophy

    NASA Technical Reports Server (NTRS)

    Bartunek, J.; Weinberg, E. O.; Tajima, M.; Rohrbach, S.; Katz, S. E.; Douglas, P. S.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    BACKGROUND: Chronic N(G)-nitro-L-arginine methyl ester (L-NAME), which inhibits nitric oxide synthesis, causes hypertension and would therefore be expected to induce robust cardiac hypertrophy. However, L-NAME has negative metabolic effects on protein synthesis that suppress the increase in left ventricular (LV) mass in response to sustained pressure overload. In the present study, we used L-NAME-induced hypertension to test the hypothesis that adaptation to pressure overload occurs even when hypertrophy is suppressed. METHODS AND RESULTS: Male rats received L-NAME (50 mg. kg(-1). d(-1)) or no drug for 6 weeks. Rats with L-NAME-induced hypertension had levels of systolic wall stress similar to those of rats with aortic stenosis (85+/-19 versus 92+/-16 kdyne/cm). Rats with aortic stenosis developed a nearly 2-fold increase in LV mass compared with controls. In contrast, in the L-NAME rats, no increase in LV mass (1. 00+/-0.03 versus 1.04+/-0.04 g) or hypertrophy of isolated myocytes occurred (3586+/-129 versus 3756+/-135 microm(2)) compared with controls. Nevertheless, chronic pressure overload was not accompanied by the development of heart failure. LV systolic performance was maintained by mechanisms of concentric remodeling (decrease of in vivo LV chamber dimension relative to wall thickness) and augmented myocardial calcium-dependent contractile reserve associated with preserved expression of alpha- and beta-myosin heavy chain isoforms and sarcoplasmic reticulum Ca(2+) ATPase (SERCA-2). CONCLUSIONS: When the expected compensatory hypertrophic response is suppressed during L-NAME-induced hypertension, severe chronic pressure overload is associated with a successful adaptation to maintain systolic performance; this adaptation depends on both LV remodeling and enhanced contractility in response to calcium.

  10. Topical aminolaevulinic acid- and aminolaevulinic acid methyl ester-based photodynamic therapy with red and violet light: influence of wavelength on pain and erythema.

    PubMed

    Mikolajewska, P; Iani, V; Juzeniene, A; Moan, J

    2009-11-01

    Photodynamic therapy (PDT) is based on the combination of an exogenously administered precursor of photosensitizer [protoporphyrin IX (PpIX)] synthesis and exposure to light. Choosing the optimal wavelength is important. Red light penetrates deeper into tissue, while violet light is more efficient in activating PpIX but does not penetrate so deeply. We studied PpIX formation and the PDT effect after application to human skin of creams containing aminolaevulinic acid (ALA) and aminolaevulinic acid methyl ester (MAL). The aim of the study was to investigate whether the wavelength of the light used has an influence on pain sensations during topical PDT with the different prodrugs. ALA cream (10%) and MAL cream (10%) were topically applied on the skin of 10 healthy volunteers. After 24 h the application site was exposed to 8 mW cm(-2) violet laser or to 100 mW cm(-2) red laser light. The erythema index was monitored up to 24 h after light exposure. For the first time the pain during topical ALA- and MAL-PDT was assessed by measuring the time taken for pain to occur. Also, for the first time, the intensities of the light sources were calibrated so as to have the same relative quantum efficiency. Results The pain sensation during ALA-PDT with red light came 22 s sooner than during ALA-PDT with violet light, which is statistically significant (P < 0.05). Moreover, ALA-PDT with red light gave stronger and more persistent erythema than ALA-PDT with violet light. ALA induced about three times more PpIX than MAL. No statistically significant differences were found for erythema, or for the time for pain to occur, in the case of MAL-PDT with red vs. violet light. Topical ALA-PDT with violet light allows longer exposure times before pain is induced and gives less erythema as compared with topical ALA-PDT with red light.

  11. Chronic N(G)-nitro-L-arginine methyl ester-induced hypertension : novel molecular adaptation to systolic load in absence of hypertrophy

    NASA Technical Reports Server (NTRS)

    Bartunek, J.; Weinberg, E. O.; Tajima, M.; Rohrbach, S.; Katz, S. E.; Douglas, P. S.; Lorell, B. H.; Schneider, M. (Principal Investigator)

    2000-01-01

    BACKGROUND: Chronic N(G)-nitro-L-arginine methyl ester (L-NAME), which inhibits nitric oxide synthesis, causes hypertension and would therefore be expected to induce robust cardiac hypertrophy. However, L-NAME has negative metabolic effects on protein synthesis that suppress the increase in left ventricular (LV) mass in response to sustained pressure overload. In the present study, we used L-NAME-induced hypertension to test the hypothesis that adaptation to pressure overload occurs even when hypertrophy is suppressed. METHODS AND RESULTS: Male rats received L-NAME (50 mg. kg(-1). d(-1)) or no drug for 6 weeks. Rats with L-NAME-induced hypertension had levels of systolic wall stress similar to those of rats with aortic stenosis (85+/-19 versus 92+/-16 kdyne/cm). Rats with aortic stenosis developed a nearly 2-fold increase in LV mass compared with controls. In contrast, in the L-NAME rats, no increase in LV mass (1. 00+/-0.03 versus 1.04+/-0.04 g) or hypertrophy of isolated myocytes occurred (3586+/-129 versus 3756+/-135 microm(2)) compared with controls. Nevertheless, chronic pressure overload was not accompanied by the development of heart failure. LV systolic performance was maintained by mechanisms of concentric remodeling (decrease of in vivo LV chamber dimension relative to wall thickness) and augmented myocardial calcium-dependent contractile reserve associated with preserved expression of alpha- and beta-myosin heavy chain isoforms and sarcoplasmic reticulum Ca(2+) ATPase (SERCA-2). CONCLUSIONS: When the expected compensatory hypertrophic response is suppressed during L-NAME-induced hypertension, severe chronic pressure overload is associated with a successful adaptation to maintain systolic performance; this adaptation depends on both LV remodeling and enhanced contractility in response to calcium.

  12. Discriminative power of fatty acid methyl ester (FAME) analysis using the microbial identification system (MIS) for Candida (Torulopsis) glabrata and Saccharomyces cerevisiae.

    PubMed

    Peltroche-Llacsahuanga, H; Schmidt, S; Lütticken, R; Haase, G

    2000-12-01

    Candida (Torulopsis) glabrata is frequently isolated in cases of fungal infection and commonly shows acquired or innate fluconazole resistance. Saccharomyces cerevisiae, an emerging opportunistic yeast pathogen, causes serious systemic infections in immunocompromised, and vaginitis and superficial infections in immunocompetent patients. For both species reliable identification in the routine laboratory is mandatory, but species identification of strains, e.g. trehalose-negative C. glabrata, may be difficult. Therefore, gas-liquid chromatography (GLC) of whole cell fatty acid methyl ester (FAME) profiles, that is independent of assimilation profiles of strains and suitable for reliable and rapid identification of clinically important yeasts, was applied. However, frequent misidentification of C. glabrata as S. cerevisiae has been reported when using the Yeast Clinical Database of MIS. Accuracy of MIS identification may be strongly influenced by the amounts of cell mass analyzed. Therefore, the present study compared the MIS results of these two yeasts achieved with different cell masses. Primarily we optimized, especially with respect to cost-effectiveness, the recommended streaking technique yielding a maximal recovery of 90-130 mg of cell mass from one plate, enabling testing of poor growing strains of C. glabrata. For all C. glabrata strains tested (n = 10) the highest identification scores (SI [Similarity Index] range 0.525-0.963, median 0.832) were achieved with 30 to 45 mg of cell mass. Only 5 of 10 S. cerevisiae strains revealed good library comparisons (SI > or = 0.5) when using 30 mg of cell mass, whereas with 45 mg all strains but two revealed this SI-level. For S. cerevisiae a higher amount of cell mass processed (up to 90 mg) was correlated with better identification scores (SI range using 90 mg: 0.464-0.870, median, 0.737). Several passages prior to FAME analysis of C. glabrata strains on recommended media revealed narrowing of SI ranges, but

  13. Unique Honey Bee (Apis mellifera) Hive Component-Based Communities as Detected by a Hybrid of Phospholipid Fatty-Acid and Fatty-Acid Methyl Ester Analyses

    PubMed Central

    2015-01-01

    Microbial communities (microbiomes) are associated with almost all metazoans, including the honey bee Apis mellifera. Honey bees are social insects, maintaining complex hive systems composed of a variety of integral components including bees, comb, propolis, honey, and stored pollen. Given that the different components within hives can be physically separated and are nutritionally variable, we hypothesize that unique microbial communities may occur within the different microenvironments of honey bee colonies. To explore this hypothesis and to provide further insights into the microbiome of honey bees, we use a hybrid of fatty acid methyl ester (FAME) and phospholipid-derived fatty acid (PLFA) analysis to produce broad, lipid-based microbial community profiles of stored pollen, adults, pupae, honey, empty comb, and propolis for 11 honey bee hives. Averaging component lipid profiles by hive, we show that, in decreasing order, lipid markers representing fungi, Gram-negative bacteria, and Gram-positive bacteria have the highest relative abundances within honey bee colonies. Our lipid profiles reveal the presence of viable microbial communities in each of the six hive components sampled, with overall microbial community richness varying from lowest to highest in honey, comb, pupae, pollen, adults and propolis, respectively. Finally, microbial community lipid profiles were more similar when compared by component than by hive, location, or sampling year. Specifically, we found that individual hive components typically exhibited several dominant lipids and that these dominant lipids differ between components. Principal component and two-way clustering analyses both support significant grouping of lipids by hive component. Our findings indicate that in addition to the microbial communities present in individual workers, honey bee hives have resident microbial communities associated with different colony components. PMID:25849080

  14. Effect of aliskiren, telmisartan and torsemide on cardiac dysfunction in l-nitro arginine methyl ester (l-NAME) induced hypertension in rats

    PubMed Central

    Sadek, Sawsan A.; Rashed, Laila A.; Bassam, Amira M.; Said, Eman S.

    2014-01-01

    Comparative study of cardio protective effect of aliskiren, telmisartan, and torsemide was carried out on l-nitro arginine methyl ester (l-NAME) induced hypertension in rats. The three drugs were given daily for 8 weeks simultaneously with l-NAME, with a control group for each drug and l-NAME. The degree of protection was assessed by measurement of systolic blood pressure and heart rate of animals every two weeks. At the end of the experimental period blood sampling was carried out for estimation of the level of NO2−/NO3−. After which animals were sacrificed for heart dissection to detect collagen types I and III gene expression. Histopathological study was done to evaluate the extension of collagen deposits. The study revealed that the three drugs decreased blood pressure significantly compared to l-NAME. There was no significant difference between aliskiren and telmisartan in all measurements, but there was significant decrease in measurements of both aliskiren and telmisartan treated groups compared to torsemide starting from 4th week. There were insignificant changes in pulse rate values between the three l-NAME treated groups through the experiment. The three drugs significantly increased NO compared to l-NAME. Collagen I and III gene expression was significantly decreased by the three drugs but the highest percentage of inhibition was with telmisartan compared to l-NAME. Comparing the percentage inhibition of cardiac fibrosis, there was insignificant difference between telmisartan and torsemide treated groups while both were superior to aliskiren. In conclusion, further experimental studies are required to elucidate the potential cardioprotective mechanisms of aliskiren, telmisartan and torsemide, and assess their efficacy in treatment of heart failure. PMID:26644935

  15. Effect of ivabradine, captopril and melatonin on the behaviour of rats in L-nitro-arginine methyl ester-induced hypertension.

    PubMed

    Aziriova, S; Repova, K; Krajcirovicova, K; Baka, T; Zorad, S; Mojto, V; Slavkovsky, P; Hodosy, J; Adamcova, M; Paulis, L; Simko, F

    2016-12-01

    Cardiovascular diseases including hypertension are often associated with behavioural alterations. The aim of this study was to show, whether ivabradine, the blocker of If-channel in sinoatrial node, is able to modify the behaviour of rats in L-nitro-arginine methyl ester (L-NAME)-induced hypertension and to compare the effect of ivabradine with captopril and melatonin. 12-week-old male Wistar rats were divided into the following groups: controls, ivabradine (10 mg/kg/24 h), L-NAME (40 mg/kg/24 h), L-NAME + ivabradine, L-NAME + captopril (100 mg/kg/24 h), L-NAME + melatonin (10 mg/kg/24 h). Systolic blood pressure (SBP) and heart rate (HR) were measured by tail-cuff method once a week. The behaviour of rats was investigated during 23-hours in the phenotyper after four weeks of the treatment. Chronic administration of L-NAME induced hypertension without a change in HR. All tested substances partly prevented the increase of SBP, while ivabradine and melatonin also reduced HR. Ivabradine, captopril and melatonin reduced daily food intake, slightly decreased daily water intake and attenuated body weight gain. In L-NAME group, locomotor activity was enhanced by ivabradine, whereas exploratory behaviour was increased by melatonin and captopril. In conclusion, ivabradine, besides its potentially protective hemodynamic actions, does not seem to exert any disturbing effects on behaviour in L-NAME-induced hypertension in rats, while some of its effects were similar to captopril or melatonin. It is suggested that ivabradine used in cardiovascular indications is harmless regarding the effect on behaviour.

  16. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1... acid (H3BO3) (PMN P-97-637; CAS No. 106008-94-0) is subject to reporting under this section for the...

  17. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1... acid (H3BO3) (PMN P-97-637; CAS No. 106008-94-0) is subject to reporting under this section for the...

  18. 40 CFR 721.1731 - Poly(oxy-1,2-ethanediyl), α-methyl-ω-hydroxy, ester with boric acid (H3BO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-hydroxy, ester with boric acid (H3BO3). 721.1731 Section 721.1731 Protection of Environment ENVIRONMENTAL..., ester with boric acid (H3BO3). (a) Chemical substance and significant new uses subject to reporting. (1... acid (H3BO3) (PMN P-97-637; CAS No. 106008-94-0) is subject to reporting under this section for the...

  19. Investigation of 60Co γ-irradiated L-(-) malic acid, N-methyl- DL-valine and L-glutamic acid γ-ethyl ester by electron paramagnetic resonance technique

    NASA Astrophysics Data System (ADS)

    Başkan, M. Halim; Aydın, Murat; Osmanoğlu, Şemsettin

    The electron paramagnetic resonance spectra of γ-irradiated L-(-) malic acid, N-methyl- DL-valine and L-glutamic acid γ-ethyl ester powders have been investigation at room temperature. Radiation damage centres are attributed to HOOCCH 2ĊHCOOH, (CH 3) 2ĊCH(NHCH 3)COOH and C 2H 5OCOCH 2CH 2Ċ(NH 2)COOH radicals, respectively. The spectra have been computer simulated. The EPR parameters of the observed radicals have been determined and discussed.

  20. Nanofibrillar self-organization of regioregular poly(3-hexylthiophene) and [6,6]-phenyl C(61)-butyric acid methyl ester by dip-coating: a simple method to obtain efficient bulk heterojunction solar cells.

    PubMed

    Valentini, L; Bagnis, D; Kenny, J M

    2009-03-04

    In this paper the dip-coating technique has been investigated as a method for the production of regioregular poly(3-hexylthiophene) (RR-P3HT):[6,6]-phenyl C(61)-butyric acid methyl ester (PCBM)-based solar cells. We found that the utilization of the dip-coating technique for the RR-P3HT:PCBM system can facilitate its self-assembly into a nanofibrillar lamellar structure after evaporation of the solvent. The condition for the formation of the nanofibrillar structures leads to a power conversion efficiency of 3.6% by using only this approach without thermal treatment.

  1. Leucyl-leucine methyl ester treatment of donor cells permits establishment of immunocompetent parent----F1 chimeras that are selectively tolerant of host alloantigens

    SciTech Connect

    Thiele, D.L.; Calomeni, J.A.; Lipsky, P.E.

    1987-10-01

    Treatment of murine lymphocytes with L-leucyl-L-leucine methyl ester (Leu-Leu-OMe) selectively removes natural killer cells, cytotoxic T lymphocyte precursors, and the capacity to cause lethal graft-vs-host disease, whereas bone marrow stem cell function and alloantigen-induced L3T4+ T helper function remains intact. The present studies assess the immunocompetence of allogeneic bone marrow chimeras established by reconstituting irradiated (C57BL/6 X DBA/2)F1 (B6D2F1) mice with Leu-Leu-OMe-treated C57BL/6 (B6) bone marrow and spleen cells. Spleen cells from such chimeras were found to have normal B and T cell mitogenic responses. Furthermore, levels of natural-killer cell function were comparable to those observed in B6----B6 syngeneic radiation chimeras established without Leu-Leu-OMe treatment of donor cells. Spleen cells from B6----B6D2F1 mice were identical with B6----B6 or B6 mice in allostimulatory capacity and thus contained no discernible cells of non-H-2b phenotype. Whereas B6----B6D2F1 spleen cells demonstrated alloproliferative and allocytotoxic responses toward H-2k bearing spleen cells, no H-2d specific proliferative or cytotoxic responses could be elicited. B6----B6D2F1 spleen cells did not suppress the generation of anti-H-2d or anti-H-2k proliferative or cytotoxic responses from control B6 spleen cells. Furthermore, addition of rat concanavalin A supernatants did not reconstitute anti-H-2d responses of B6----B6D2F1 chimeric spleen cells. Thus, Leu-Leu-OMe treatment of B6 donor cells not only prevents lethal graft-vs-host disease, but also permits establishment of long-lived parent----F1 chimeras that are selectively tolerant of host H-2 disparate alloantigens, but fully immunocompetent with respect to natural killer cell function, B and T cell mitogenesis, and anti-third party alloresponsiveness.

  2. Hierarchical autoinduction in Ralstonia solanacearum: control of acyl-homoserine lactone production by a novel autoregulatory system responsive to 3-hydroxypalmitic acid methyl ester.

    PubMed

    Flavier, A B; Ganova-Raeva, L M; Schell, M A; Denny, T P

    1997-11-01

    solR and solI exhibited a cell density-associated pattern of expression similar to other PhcA-regulated genes. The acyl-HSL-dependent autoinduction system in R. solanacearum is part of a more complex autoregulatory hierarchy, since the transcriptional activity of PhcA is itself controlled by a novel autoregulatory system that responds to 3-hydroxypalmitic acid methyl ester.

  3. Chikusetsusaponin IVa methyl ester induces G1 cell cycle arrest, triggers apoptosis and inhibits migration and invasion in ovarian cancer cells.

    PubMed

    Chen, Xin; Wu, Qiu-Shuang; Meng, Fan-Cheng; Tang, Zheng-Hai; Chen, Xiuping; Lin, Li-Gen; Chen, Ping; Qiang, Wen-An; Wang, Yi-Tao; Zhang, Qing-Wen; Lu, Jin-Jian

    2016-12-01

    Panacis Japonici Rhizoma (PJR) is one of the most famous Chinese medical herbs that is known for exhibiting potential anti-cancer effects. This study aims to isolate and investigate the anti-cancer potential of saponins from PJR in ovarian cancer cells. The compounds were separated by comprehensive chromatographic methods. By comparison of the 1H- and 13C NMR data, as well as the HR-ESI-MS data, with the corresponding references, the structures of compounds were determined. MTT assay was performed to evaluate cell viability, along with flow cytometry for cell cycle analysis. JC-1 staining, Annexin V-PI double staining as well as Hoechst 33; 342 staining were used for detecting cell apoptosis. Western blot analysis was conducted to determine the relative protein level. Transwell assays were performed to investigate the effect of the saponin on cell migration and invasion and zymography experiments were used to detect the enzymatic activities. Eleven saponins were isolated from PJR and their anti-proliferative effects were evaluated in human ovarian cancer cells. Chikusetsusaponin IVa methyl ester (1) exhibited the highest anti-proliferative potential among these isolates with the IC50 values at less than 10 µM in both ovarian cancer A2780 and HEY cell lines. Compound 1 induced G1 cell cycle arrest accompanied with an S phase decrease, and down-regulated the expression of cyclin D1, CDK2, and CDK6. Further study showed that compound 1 effectively decreased the cell mitochondrial membrane potential, increased the annexin V positive cells and nuclear chromatin condensation, as well as enhanced the expression of cleaved PARP, Bax and cleaved-caspase 3 while decreasing that of Bcl-2. Moreover, compound 1 suppressed the migration and invasion of HEY and A2780 cells, down-regulated the expression of Cdc42, Rac, RohA, MMP2 and MMP9, and decreased the enzymatic activities of MMP2 and MMP9. These results provide a comprehensive evaluation of compound 1 as a potential agent

  4. Milk fat depression and energy balance in stall-fed dairy goats supplemented with increasing doses of conjugated linoleic acid methyl esters.

    PubMed

    Fernandes, D; Gama, M A S; Ribeiro, C V D M; Lopes, F C F; De Oliveira, D E

    2014-04-01

    Feeding dietary supplements containing trans-10, cis-12-conjugated linoleic acid (t10,c12-CLA) has been shown to induce milk fat depression in cows, ewes and goats. However, the magnitude of the response is apparently less pronounced in lactating goats. The objective of this study was to evaluate the effects of increasing doses of CLA methyl esters (CLA-ME) on milk production, composition and fatty-acid profile of dairy goats. Eight Toggenburg goats were separated in two groups (four primiparous and four multiparous) and received the following dietary treatments in a 4×4 Latin Square design: CLA0: 45 g/day of calcium salts of fatty acids (CSFA); CLA15; 30 g/day of CSFA+15 g/day of CLA-ME; CLA30: 15 g/day of CSFA+30 g/day of CLA-ME; and CLA45: 45 g/day of CLA-ME. The CLA-ME supplement (Luta-CLA 60) contained 29.9% of t10,c12-CLA; therefore, the dietary treatments provided 0, 4.48, 8.97 and 13.45 g/day of t10,c12-CLA, respectively. Feed intake, milk production, concentration and secretion of milk protein and lactose, body condition score and body weight were unaffected by the dietary treatments. Milk fat secretion was reduced by 14.9%, 30.8% and 40.5%, whereas milk fat concentration was decreased by 17.2%, 33.1% and 40.7% in response to CLA15, CLA30 and CLA45, respectively. Secretions of both de novo synthesized and preformed fatty acids were progressively reduced as the CLA dose increased, but the magnitude of the inhibition was greater for the former. There was a linear reduction in most milk fat desaturase indexes (14:1/14:0, 16:1/16:0, 17:1/17:0 and 18:1/18:0). Milk fat t10,c12-CLA concentration and secretion increased with the CLA dose, and its apparent transfer efficiency from diet to milk was 1.18%, 1.17% and 1.21% for CLA15, CLA30 and CLA45 treatments, respectively. The estimated energy balance was linearly improved in goats fed CLA.

  5. Antinociceptive effect of geranylgeraniol and 6α,7β-dihydroxyvouacapan-17β-oate methyl ester isolated from Pterodon pubescens Benth

    PubMed Central

    2010-01-01

    Background Pterodon pubescens Benth seeds are commercially available in the Brazilian medicinal plant street market. The crude alcoholic extracts of this plant are used in folk medicine as anti-inflammatory, analgesic, and anti-rheumatic preparations. The aim of this study was to evaluate the contribution of geranylgeraniol (C1) and 6α, 7β-dihydroxyvouacapan-17β-oate methyl ester (C2) isolated from Pterodon pubescens Benth. to the antinociceptive activity of the crude extract. Results Compounds C1 and C2 demonstrated activity against writhing with intraperitoneal (i.p.) and oral (p.o.) routes, capsaicin (i.p. and p.o.), glutamate (i.p.), and in the hot-plate (p.o.) tests, demonstrating their contribution to the antinociceptive activity of crude Pterodon pubescens Benth extracts. The observed activity of compounds C1 and C2 may be related to vanilloid receptors VR1, and/or glutamate peripheral receptors. In hot-plate model, the antinociceptive activity was maintained when naloxone chloride (opioid antagonist) was administered prior to treatment with compounds suggesting that C1 and C2 (p.o.) do not exert their antinociceptive effects in the hot-plate test via opioid receptors. The findings presented herein also suggest that compounds within the crude Pterodon pubescens Benth. extract may exert a synergistic interactive effect, since the crude extract (300 mg.kg-1) containing lower concentrations of compounds C1 (11.5%- 34.6 mg. kg-1) and C2 (1.5% - 4.7 mg.kg-1) gave statistically the same effect to the pure compounds when tested separately (C1 = C2 = 300 mg.kg-1) in writhing experimental model with p.o. administration. Further studies will be undertaken to establish more specifically the mechanisms of action for compounds C1 and C2. Possible synergistic interactions will be evaluated employing the Isobole method. Conclusion These results allowed us to establish a relationship between the popular use of Pterodon pubescens seeds for pain relief and the activity of

  6. Influence of NG-nitro-L-arginine methyl ester on clinical and biochemical effects of methylene blue in pentylenetetrazole-evoked convulsions.

    PubMed

    Jelenković, Ankica; Jovanović, Marina D; Bokonjić, Dubravko; Maksimović, Milan; Bosković, Bogdan

    2012-06-01

    Despite years of research in a number of experimental models the question whether nitric oxide (NO) and methylene blue (MB) have pro- or anticonvulsant effects remains to be fully resolved. Methods. In adult Wistar rats the influence of a nonselective inhibitor of nitric oxide synthase NG-nitro-L-arginine methyl ester (L-NAME, 10 microg) on clinical and biochemical effects of MB (10 microg) given before the intraperitoneally administered chemical convulsant pentylenetetrazole (PTZ, 80 mg/kg) was examined. MB and L-NAME were applied intracerebroventricularly. PTZ application was followed by a 4-minute observation time, after which rats were sacrificed and elements of oxido-reductive balance were measured in a crude mitochondrial fraction of forebrain cortex, hippocampus and striatum. Convulsive responses (forelimb dystonia--FLD, generalised clonic- and clonic-tonic convulsions--GCC and GCTC respectively) were observed in all rats received PTZ, together with significantly decreased lipid peroxidation in the forebrain cortex and striatum and increased superoxide dismutase activity in the hippocampus, in comparison to controls (saline treated). It was registered anticonvulsant effects of L-NAME pretreatment. However, these effects were insignificant. In the hippocampus of these animals there was decreased lipid peroxidation (p < 0.01, p < 0.05 vs saline-treated and PTZ-treated rats, respectively) and reverted PTZ-induced increase of superoxide dismutase activity. But MB individually pretreatment significantly decreased the incidence of CTCs and GCCs (FLD: p = 0.0513), prolonged the convulsive latent time for FLD, GCTCs and GCCs, in all the examined brain regions increased lipid peroxidation and decreased the level of superoxide anion. Administration of L-NAME 10 minutes before MB reverted all MB-evoked clinical and biochemical effects. Methylene blue applied individually before PTZ has strong anticonvulsant effects that were eliminated by L-NAME pretreatment. These

  7. Quantitative profiling of 4'-geranyloxyferulic acid and its conjugate with l-nitroarginine methyl ester in mononuclear cells by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Taddeo, Vito Alessandro; Genovese, Salvatore; Carlucci, Giuseppe; Ferrone, Vincenzo; Patruno, Antonia; Ferrone, Alessio; de Medina, Philippe; Fiorito, Serena; Epifano, Francesco

    2017-01-30

    Oxyprenylated natural products were shown to exert in vitro and in vivo remarkable anti-cancer and anti-inflammatory effects. This paper describes a rapid, selective, and sensitive HPLC method with fluorescence detection for determination of 4'-geranyloxyferulic acid (GOFA) and its conjugate with l-nitroarginine methyl ester (GOFA-L-NAME) in mononuclear cells. Analytes were extracted from cells using methanol and eluted on a GraceSmart RP18 analytical column (250×4.6mm i.d., 5μm particle size) kept at 25°C. A mixture of formic acid 1% in water (A) and methanol (B) were used as mobile phase, at a flow-rate of 1.2mL/min in gradient elution. A fluorescence detector (excitation/emission wavelength of 319/398nm for GOFA and GOFA-L-NAME), was used for the two analytes. Calibration curves of GOFA and GOFA-L-NAME were linear over the concentration range of 1.0-50μg/mL, with correlation coefficients (r(2))≥0.9995. Intra- and inter-assay precision do not exceed 6.8%. The accuracy was from 94% to 105% for quality control samples (2.0, 25.0 and 40μg/mL). The mean (RSD%) extraction recoveries (n=5) for GOFA and GOFA-L-NAME from spiked cells at 2.0, 25.0 and 40.0μg/mL were 92.4±1.5%, 94.7±0.9% and 93.8±1.1%, for GOFA and 95.3±1.2%, 94.8±1.0% and 93.9±1.3%, for GOFA-L-NAME. The limits of detection and quantification were 0.3μg/mL and 1.0μg/mL for GOFA and GOFA-L-NAME. This method was successfully applied to measure GOFA and GOFA-L-NAME concentrations in a mononuclear cells.

  8. The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester

    PubMed Central

    Wharton, Christopher W.

    1974-01-01

    1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis. PMID:4462742

  9. 40 CFR 721.8485 - 2-Propenoic acid, 2-methyl-, (octahydro-4,7-methano-1H- indene-5-diyl)bis(methylene) ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false 2-Propenoic acid, 2-methyl... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8485 2-Propenoic acid, 2... significant new uses subject to reporting. (1) The chemical substance identified as 2-propenoic acid, 2-methyl...

  10. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: Evidence of cyclodextrins cavity dependent complex stoichiometry

    NASA Astrophysics Data System (ADS)

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-01

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions.

  11. Reduction of vanadium(V) to vanadium(IV) by NADPH, and vanadium(IV) to vanadium(III) by cysteine methyl ester in the presence of biologically relevant ligands.

    PubMed

    Islam, Mohammad K; Tsuboya, Chieko; Kusaka, Hiroko; Aizawa, Sen-ichi; Ueki, Tatsuya; Michibata, Hitoshi; Kanamori, Kan

    2007-08-01

    To better understand the mechanism of vanadium reduction in ascidians, we examined the reduction of vanadium(V) to vanadium(IV) by NADPH and the reduction of vanadium(IV) to vanadium(III) by L-cysteine methyl ester (CysME). UV-vis and electron paramagnetic resonance spectroscopic studies indicated that in the presence of several biologically relevant ligands vanadium(V) and vanadium(IV) were reduced by NADPH and CysME, respectively. Specifically, NADPH directly reduced vanadium(V) to vanadium(IV) with the assistance of ligands that have a formation constant with vanadium(IV) of greater than 7. Also, glycylhistidine and glycylaspartic acid were found to assist the reduction of vanadium(IV) to vanadium(III) by CysME.

  12. High yielding synthesis of 3a-hydroxypyrrolo[2,3-b]indoline dipeptide methyl esters: synthons for expedient introduction of the hydroxypyrroloindoline moiety into larger peptide-based natural products and for the creation of tryptathionine bridges.

    PubMed

    May, Jonathan P; Fournier, Pierre; Pellicelli, Jonathan; Patrick, Brian O; Perrin, David M

    2005-10-14

    This work describes a rapid and high yielding oxidation of 14 tryptophanylated amino acid methyl esters to the corresponding 3a-hydroxypyrrolo[2,3-b]indoline (Hpi) amino acids with generally facile separation of syn-cis and anti-cis diastereomers. Structural X-ray diffraction data are presented for both diastereomers of Tr-Hpi-Gly-OMe, which allow for a putative assignment of the other 13 pairs of diastereomers reported herein, based on correlations with 1H NMR chemical shifts. Selective and high yielding deprotection at either the N or C terminus is described, allowing the Hpi motif to be introduced efficiently into potential targets with minimal protecting group manipulation. Two tripeptides containing Hpi and cysteine were prepared and treated with acid in the Savige-Fontana reaction to produce a cyclic tryptathionine linkage, characteristic of both amatoxins and phallotoxins.

  13. Enhancing the photocurrent in poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction solar cells by using poly(3-hexylthiophene) as a buffer layer

    NASA Astrophysics Data System (ADS)

    Liang, Chin-Wei; Su, Wei-Fang; Wang, Leeyih

    2009-09-01

    This work presents an approach for improving the unfavorable vertical composition gradients of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) in the photoactive layer of bulk heterojunction solar cells. The proposed method involves simply depositing a thin layer of P3HT on top of poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) prior to the P3HT:PCBM blend is spin coated. The results from photoluminescence and photovoltaic measurements indicate that incorporating this P3HT layer significantly enhances the electron blocking ability of PEDOT:PSS, the efficiency of photoinduced electron transfer and the photocurrent of the device, resulting in an improvement of the power conversion efficiency from 3.98% to 5.05%.

  14. Ultrafast transient optical studies of charge pair generation and recombination in poly-3-hexylthiophene(P3ht):[6,6]phenyl C61 butyric methyl acid ester (PCBM) blend films.

    PubMed

    Kirkpatrick, James; Keivanidis, Panagiotis E; Bruno, Annalisa; Ma, Fei; Haque, Saif A; Yarstev, Arkady; Sundstrom, Villy; Nelson, Jenny

    2011-12-29

    Charge generation and recombination are studied in blend films of poly-3-hexylthiophene (P3HT) and [6,6']phenyl C61 butyric acid methyl ester (PCBM) using ultrafast transient absorption spectroscopy. We find that the charge generation yield depends upon both blend film composition and thermal annealing. The data suggest that recombination occurs over a wide range of time scales and that, in the least favorable cases, the fastest charge recombination occurs on a time scale similar to exciton diffusion. The results are explained using a simple model that incorporates the effect of P3HT domain size on exciton diffusion and uses empirical models of recombination kinetics. We propose our method as a route to interpretation of spectroscopic data where different processes occur on similar time scales.

  15. Metabolism of fatty acid in yeast: addition of reducing agents to the reaction medium influences beta-oxidation activities, gamma-decalactone production, and cell ultrastructure in Sporidiobolus ruinenii cultivated on ricinoleic acid methyl ester.

    PubMed

    Feron, Gilles; Mauvais, Geneviève; Lherminier, Jeanine; Michel, Joël; Wang, Xiao-Dong; Viel, Christophe; Cachon, Rémy

    2007-06-01

    The sensitivity of Sporidiobolus ruinenii yeast to the use of reducing agents, reflected in changes in the oxidoreduction potential at pH 7 (Eh7) environment, ricinoleic acid methyl ester catabolism, gamma-decalactone synthesis, cofactor level, beta-oxidation activity, and ultrastructure of the cell, was studied. Three environmental conditions (corresponding to oxidative, neutral, and reducing conditions) were fixed with the use of air or air and reducing agents (hydrogen and dithiothreitol). Lowering Eh7 to neutral conditions (Eh7 = +30 mV and +2.5 mV) favoured the production of lactone more than the more oxidative condition (Eh7 = +350 mV). In contrast, when a reducing condition was used (Eh7 = -130 mV), the production of gamma-decalactone was very low. These results were linked to changes in the cofactor ratio during lactone production, to the beta-oxidation activity involved in decanolide synthesis, and to ultrastructural modification of the cell.

  16. Graphene composite for improvement in the conversion efficiency of flexible poly 3-hexyl-thiophene:[6,6]-phenyl C{sub 71} butyric acid methyl ester polymer solar cells

    SciTech Connect

    Chauhan, A. K. E-mail: akc.barc@gmail.com; Gusain, Abhay; Jha, P.; Koiry, S. P.; Saxena, Vibha; Veerender, P.; Aswal, D. K.; Gupta, S. K.

    2014-03-31

    The solution of thin graphene-sheets obtained from a simple ultrasonic exfoliation process was found to chemically interact with [6,6]-phenyl C{sub 71} butyric acid methyl ester (PCBM) molecules. The thinner graphene-sheets have significantly altered the positions of highest occupied molecular orbital and lowest unoccupied molecular orbital of PCBM, which is beneficial for the enhancement of the open circuit voltage of the solar cells. Flexible bulk heterojunction solar cells fabricated using poly 3-hexylthiophene (P3HT):PCBM-graphene exhibited a power conversion efficiency of 2.51%, which is a ∼2-fold increase as compared to those fabricated using P3HT:PCBM. Inclusion of graphene-sheets not only improved the open-circuit voltage but also enhanced the short-circuit current density owing to an improved electron transport.

  17. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: evidence of cyclodextrins cavity dependent complex stoichiometry.

    PubMed

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-15

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Study of protein-probe interaction and protective action of surfactant sodium dodecyl sulphate in urea-denatured HSA using charge transfer fluorescence probe methyl ester of N,N-dimethylamino naphthyl acrylic acid.

    PubMed

    Mahanta, Subrata; Singh, Rupashree Balia; Guchhait, Nikhil

    2009-03-01

    We have demonstrated that the intramolecular charge transfer (ICT) probe Methyl ester of N,N-dimethylamino naphthyl acrylic acid (MDMANA) serves as an efficient reporter of the proteinous microenvironment of Human Serum Albumin (HSA). This work reports the binding phenomenon of MDMANA with HSA and spectral modulation thereupon. The extent of binding and free energy change for complexation reaction along with efficient fluorescence resonance energy transfer from Trp-214 of HSA to MDMANA indicates strong binding between probe and protein. Fluorescence anisotropy, red edge excitation shift, acrylamide quenching and time resolved measurements corroborate the binding nature of the probe with protein and predicts that the probe molecule is located at the hydrophobic site of the protein HSA. Due to the strong binding ability of MDMANA with HSA, it is successfully utilized for the study of stabilizing action of anionic surfactant Sodium Dodecyl Sulphate to the unfolding and folding of protein with denaturant urea in concentration range 1M to 9M.

  19. Effect of pressure on the selectivity of polymeric C18 and C30 stationary phases in reversed-phase liquid chromatography. Increased separation of isomeric fatty acid methyl esters, triacylglycerols, and tocopherols at high pressure.

    PubMed

    Okusa, Kensuke; Iwasaki, Yuki; Kuroda, Ikuma; Miwa, Shohei; Ohira, Masayoshi; Nagai, Toshiharu; Mizobe, Hoyo; Gotoh, Naohiro; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2014-04-25

    A high-density, polymeric C18 stationary phase (Inertsil ODS-P) or a polymeric C30 phase (Inertsil C30) provided improved resolution of the isomeric fatty acids (FAs), FA methyl esters (FAMEs), triacylglycerols (TAGs), and tocopherols with an increase in pressure of 20-70MPa in reversed-phase HPLC. With respect to isomeric C18 FAMEs with one cis-double bond, ODS-P phase was effective for recognizing the position of a double bond among petroselinic (methyl 6Z-octadecenoate), oleic (methyl 9Z-octadecenoate), and cis-vaccenic (methyl 11Z-octadecenoate), especially at high pressure, but the differentiation between oleic and cis-vaccenic was not achieved by C30 phase regardless of the pressure. A monomeric C18 phase (InertSustain C18) was not effective for recognizing the position of the double bond in monounsaturated FAME, while the separation of cis- and trans-isomers was achieved by any of the stationary phases. The ODS-P and C30 phases provided increased separation for TAGs and β- and γ-tocopherols at high pressure. The transfer of FA, FAME, or TAG molecules from the mobile phase to the ODS-P stationary phase was accompanied by large volume reduction (-30∼-90mL/mol) resulting in a large increase in retention (up to 100% for an increase of 50MPa) and improved isomer separation at high pressure. For some isomer pairs, the ODS-P and C30 provided the opposite elution order, and in each case higher pressure improved the separation. The two stationary phases showed selectivity for the isomers having rigid structures, but only the ODS-P was effective for differentiating the position of a double bond in monounsaturated FAMEs. The results indicate that the improved isomer separation was provided by the increased dispersion interactions between the solute and the binding site of the stationary phase at high pressure.

  20. An overview of the properties of fatty acid alkyl esters

    USDA-ARS?s Scientific Manuscript database

    Fatty acid alkyl esters of plant oils, especially in the form of methyl esters, have numerous applications with fuel use having received the most attention in recent times due to the potential high volume. Various properties imparted by neat fatty acid alkyl esters have been shown to influence fuel ...