A space oddity: geographic and specific modulation of migration in Eudyptes penguins.
Thiebot, Jean-Baptiste; Cherel, Yves; Crawford, Robert J M; Makhado, Azwianewi B; Trathan, Philip N; Pinaud, David; Bost, Charles-André
2013-01-01
Post-breeding migration in land-based marine animals is thought to offset seasonal deterioration in foraging or other important environmental conditions at the breeding site. However the inter-breeding distribution of such animals may reflect not only their optimal habitat, but more subtle influences on an individual's migration path, including such factors as the intrinsic influence of each locality's paleoenvironment, thereby influencing animals' wintering distribution. In this study we investigated the influence of the regional marine environment on the migration patterns of a poorly known, but important seabird group. We studied the inter-breeding migration patterns in three species of Eudyptes penguins (E. chrysolophus, E. filholi and E. moseleyi), the main marine prey consumers amongst the World's seabirds. Using ultra-miniaturized logging devices (light-based geolocators) and satellite tags, we tracked 87 migrating individuals originating from 4 sites in the southern Indian Ocean (Marion, Crozet, Kerguelen and Amsterdam Islands) and modelled their wintering habitat using the MADIFA niche modelling technique. For each site, sympatric species followed a similar compass bearing during migration with consistent species-specific latitudinal shifts. Within each species, individuals breeding on different islands showed contrasting migration patterns but similar winter habitat preferences driven by sea-surface temperatures. Our results show that inter-breeding migration patterns in sibling penguin species depend primarily on the site of origin and secondly on the species. Such site-specific migration bearings, together with similar wintering habitat used by parapatrics, support the hypothesis that migration behaviour is affected by the intrinsic characteristics of each site. The paleo-oceanographic conditions (primarily, sea-surface temperatures) when the populations first colonized each of these sites may have been an important determinant of subsequent migration patterns. Based on previous chronological schemes of taxonomic radiation and geographical expansion of the genus Eudyptes, we propose a simple scenario to depict the chronological onset of contrasting migration patterns within this penguin group.
Cherry, Seth G; Derocher, Andrew E; Thiemann, Gregory W; Lunn, Nicholas J
2013-07-01
Understanding how seasonal environmental conditions affect the timing and distribution of synchronized animal movement patterns is a central issue in animal ecology. Migration, a behavioural adaptation to seasonal environmental fluctuations, is a fundamental part of the life history of numerous species. However, global climate change can alter the spatiotemporal distribution of resources and thus affect the seasonal movement patterns of migratory animals. We examined sea ice dynamics relative to migration patterns and seasonal geographical fidelity of an Arctic marine predator, the polar bear (Ursus maritimus). Polar bear movement patterns were quantified using satellite-linked telemetry data collected from collars deployed between 1991-1997 and 2004-2009. We showed that specific sea ice characteristics can predict the timing of seasonal polar bear migration on and off terrestrial refugia. In addition, fidelity to specific onshore regions during the ice-free period was predicted by the spatial pattern of sea ice break-up but not by the timing of break-up. The timing of migration showed a trend towards earlier arrival of polar bears on shore and later departure from land, which has been driven by climate-induced declines in the availability of sea ice. Changes to the timing of migration have resulted in polar bears spending progressively longer periods of time on land without access to sea ice and their marine mammal prey. The links between increased atmospheric temperatures, sea ice dynamics, and the migratory behaviour of an ice-dependent species emphasizes the importance of quantifying and monitoring relationships between migratory wildlife and environmental cues that may be altered by climate change. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Geovisualization of Local and Regional Migration Using Web-mined Demographics
NASA Astrophysics Data System (ADS)
Schuermann, R. T.; Chow, T. E.
2014-11-01
The intent of this research was to augment and facilitate analyses, which gauges the feasibility of web-mined demographics to study spatio-temporal dynamics of migration. As a case study, we explored the spatio-temporal dynamics of Vietnamese Americans (VA) in Texas through geovisualization of mined demographic microdata from the World Wide Web. Based on string matching across all demographic attributes, including full name, address, date of birth, age and phone number, multiple records of the same entity (i.e. person) over time were resolved and reconciled into a database. Migration trajectories were geovisualized through animated sprites by connecting the different addresses associated with the same person and segmenting the trajectory into small fragments. Intra-metropolitan migration patterns appeared at the local scale within many metropolitan areas. At the scale of metropolitan area, varying degrees of immigration and emigration manifest different types of migration clusters. This paper presents a methodology incorporating GIS methods and cartographic design to produce geovisualization animation, enabling the cognitive identification of migration patterns at multiple scales. Identification of spatio-temporal patterns often stimulates further research to better understand the phenomenon and enhance subsequent modeling.
Bastille-Rousseau, Guillaume; Gibbs, James P.; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Fredy; Rousseau, Louis-Philippe
2016-01-01
Animal movement strategies including migration, dispersal, nomadism, and residency are shaped by broad-scale spatial-temporal structuring of the environment, including factors such as the degrees of spatial variation, seasonality and inter-annual predictability. Animal movement strategies, in turn, interact with the characteristics of individuals and the local distribution of resources to determine local patterns of resource selection with complex and poorly understood implications for animal fitness. Here we present a multi-scale investigation of animal movement strategies and resource selection. We consider the degree to which spatial variation, seasonality, and inter-annual predictability in resources drive migration patterns among different taxa and how movement strategies in turn shape local resource selection patterns. We focus on adult Galapagos giant tortoises Chelonoidis spp. as a model system since they display many movement strategies and evolved in the absence of predators of adults. Specifically, our analysis is based on 63 individuals among four taxa tracked on three islands over six years and almost 106 tortoise re-locations. Tortoises displayed a continuum of movement strategies from migration to sedentarism that were linked to the spatio-temporal scale and predictability of resource distributions. Movement strategies shaped patterns of resource selection. Specifically, migratory individuals displayed stronger selection toward areas where resources were more predictable among years than did non-migratory individuals, which indicates a selective advantage for migrants in seasonally structured, more predictable environments. Our analytical framework combines large-scale predictions for movement strategies, based on environmental structuring, with finer-scale analysis of space-use. Integrating different organizational levels of analysis provides a deeper understanding of the eco-evolutionary dynamics at play in the emergence and maintenance of migration and the critical role of resource predictability. Our results highlight that assessing the potential benefits of differential behavioral responses first requires an understanding of the interactions among movement strategies, resource selection and individual characteristics.
Fayet, Annette L; Freeman, Robin; Anker-Nilssen, Tycho; Diamond, Antony; Erikstad, Kjell E; Fifield, Dave; Fitzsimmons, Michelle G; Hansen, Erpur S; Harris, Mike P; Jessopp, Mark; Kouwenberg, Amy-Lee; Kress, Steve; Mowat, Stephen; Perrins, Chris M; Petersen, Aevar; Petersen, Ib K; Reiertsen, Tone K; Robertson, Gregory J; Shannon, Paula; Sigurðsson, Ingvar A; Shoji, Akiko; Wanless, Sarah; Guilford, Tim
2017-12-18
Which factors shape animals' migration movements across large geographical scales, how different migratory strategies emerge between populations, and how these may affect population dynamics are central questions in the field of animal migration [1] that only large-scale studies of migration patterns across a species' range can answer [2]. To address these questions, we track the migration of 270 Atlantic puffins Fratercula arctica, a red-listed, declining seabird, across their entire breeding range. We investigate the role of demographic, geographical, and environmental variables in driving spatial and behavioral differences on an ocean-basin scale by measuring puffins' among-colony differences in migratory routes and day-to-day behavior (estimated with individual daily activity budgets and energy expenditure). We show that competition and local winter resource availability are important drivers of migratory movements, with birds from larger colonies or with poorer local winter conditions migrating further and visiting less-productive waters; this in turn led to differences in flight activity and energy expenditure. Other behavioral differences emerge with latitude, with foraging effort and energy expenditure increasing when birds winter further north in colder waters. Importantly, these ocean-wide migration patterns can ultimately be linked with breeding performance: colony productivity is negatively associated with wintering latitude, population size, and migration distance, which demonstrates the cost of competition and migration on future breeding and the link between non-breeding and breeding periods. Our results help us to understand the drivers of animal migration and have important implications for population dynamics and the conservation of migratory species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Animal migration and risk of spread of viral infections: Chapter 9
Prosser, Diann J.; Nagel, Jessica; Takekawa, John Y.; Edited by Singh, Sunit K.
2013-01-01
The potential contribution of migration towards the spread of disease is as varied as the ecology of the pathogens themselves and their host populations. This chapter outlines multiple examples of viral diseases in animal populations and their mechanisms of viral spread. Many species of insects, mammals, fish, and birds exhibit migratory behavior and have the potential to disperse diseases over long distances. The majority of studies available on viral zoonoses have focused on birds and bats, due to their highly migratory life histories. A number of studies have reported evidence of changes in the timing of animal migrations in response to climate change. The majority indicate an advancement of spring migration, with few or inconclusive results for fall migration. Predicting the combined effects of climate change on migratory patterns of host species and epidemiology of viral pathogens is complex and not fully realistic.
Flight mode affects allometry of migration range in birds.
Watanabe, Yuuki Y
2016-08-01
Billions of birds migrate to exploit seasonally available resources. The ranges of migration vary greatly among species, but the underlying mechanisms are poorly understood. I hypothesise that flight mode (flapping or soaring) and body mass affect migration range through their influence on flight energetics. Here, I compiled the tracks of migratory birds (196 species, weighing 12-10 350 g) recorded by electronic tags in the last few decades. In flapping birds, migration ranges decreased with body mass, as predicted from rapidly increasing flight cost with increasing body mass. The species with higher aspect ratio and lower wing loading had larger migration ranges. In soaring birds, migration ranges were mass-independent and larger than those of flapping birds, reflecting their low flight costs irrespective of body mass. This study demonstrates that many animal-tracking studies are now available to explore the general patterns and the underlying mechanisms of animal migration. © 2016 John Wiley & Sons Ltd/CNRS.
Josephson, Matthew P; Miltner, Adam M; Lundquist, Erik A
2016-08-01
Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39 A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39 mab-5 egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. Copyright © 2016 by the Genetics Society of America.
Josephson, Matthew P.; Miltner, Adam M.; Lundquist, Erik A.
2016-01-01
Nervous system development and circuit formation requires neurons to migrate from their birthplaces to specific destinations.Migrating neurons detect extracellular cues that provide guidance information. In Caenorhabditis elegans, the Q right (QR) and Q left (QL) neuroblast descendants migrate long distances in opposite directions. The Hox gene lin-39 cell autonomously promotes anterior QR descendant migration, and mab-5/Hox cell autonomously promotes posterior QL descendant migration. Here we describe a nonautonomous role of mab-5 in regulating both QR and QL descendant migrations, a role masked by redundancy with lin-39. A third Hox gene, egl-5/Abdominal-B, also likely nonautonomously regulates Q descendant migrations. In the lin-39mab-5egl-5 triple mutant, little if any QR and QL descendant migration occurs. In addition to well-described roles of lin-39 and mab-5 in the Q descendants, our results suggest that lin-39, mab-5, and egl-5 might also pattern the posterior region of the animal for Q descendant migration. Previous studies showed that the spon-1 gene might be a target of MAB-5 in Q descendant migration. spon-1 encodes a secreted basement membrane molecule similar to vertebrate F-spondin. Here we show that spon-1 acts nonautonomously to control Q descendant migration, and might function as a permissive rather than instructive signal for cell migration. We find that increased levels of MAB-5 in body wall muscle (BWM) can drive the spon-1 promoter adjacent to the Q cells, and loss of spon-1 suppresses mab-5 gain of function. Thus, MAB-5 might nonautonomously control Q descendant migrations by patterning the posterior region of the animal to which Q cells respond. spon-1 expression from BWMs might be part of the posterior patterning necessary for directed Q descendant migration. PMID:27225683
A new method for discovering behavior patterns among animal movements
Wang, Y.; Luo, Ze; Takekawa, John Y.; Prosser, Diann J.; Xiong, Y.; Newman, S.; Xiao, X.; Batbayar, N.; Spragens, Kyle A.; Balachandran, S.; Yan, B.
2016-01-01
Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.
A new method for discovering behavior patterns among animal movements.
Wang, Yuwei; Luo, Ze; Takekawa, John; Prosser, Diann; Xiong, Yan; Newman, Scott; Xiao, Xiangming; Batbayar, Nyambayar; Spragens, Kyle; Balachandran, Sivananinthaperumal; Yan, Baoping
Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets.
A new method for discovering behavior patterns among animal movements
Wang, Yuwei; Luo, Ze; Takekawa, John; Prosser, Diann; Xiong, Yan; Newman, Scott; Xiao, Xiangming; Batbayar, Nyambayar; Spragens, Kyle; Balachandran, Sivananinthaperumal; Yan, Baoping
2016-01-01
Advanced satellite tracking technologies enable biologists to track animal movements at fine spatial and temporal scales. The resultant data present opportunities and challenges for understanding animal behavioral mechanisms. In this paper, we develop a new method to elucidate animal movement patterns from tracking data. Here, we propose the notion of continuous behavior patterns as a concise representation of popular migration routes and underlying sequential behaviors during migration. Each stage in the pattern is characterized in terms of space (i.e., the places traversed during movements) and time (i.e. the time spent in those places); that is, the behavioral state corresponding to a stage is inferred according to the spatiotemporal and sequential context. Hence, the pattern may be interpreted predictably. We develop a candidate generation and refinement framework to derive all continuous behavior patterns from raw trajectories. In the framework, we first define the representative spots to denote the underlying potential behavioral states that are extracted from individual trajectories according to the similarity of relaxed continuous locations in certain distinct time intervals. We determine the common behaviors of multiple individuals according to the spatiotemporal proximity of representative spots and apply a projection-based extension approach to generate candidate sequential behavior sequences as candidate patterns. Finally, the candidate generation procedure is combined with a refinement procedure to derive continuous behavior patterns. We apply an ordered processing strategy to accelerate candidate refinement. The proposed patterns and discovery framework are evaluated through conceptual experiments on both real GPS-tracking and large synthetic datasets. PMID:27217810
Reconstructing the migration patterns of late Pleistocene mammals from northern Florida, USA
NASA Astrophysics Data System (ADS)
Hoppe, Kathryn A.; Koch, Paul L.
2007-11-01
We used analyses of the strontium isotope ( 87Sr/ 86Sr) ratios of tooth enamel to reconstruct the migration patterns of fossil mammals collected along the Aucilla River in northern Florida. Specimens date to the late-glacial period and before the last glacial maximum (pre-LGM). Deer and tapir displayed low 87Sr/ 86Sr ratios that were similar to the ratios of Florida environments, which suggest that these taxa did not migrate long distance outside of the Florida region. Mastodons, mammoths, and equids all displayed a wide range of 87Sr/ 86Sr ratios. Some individuals in each taxon displayed low 87Sr/ 86Sr ratios that suggest they ranged locally, while other animals had high 87Sr/ 86Sr ratios that suggest they migrated long distances (> 150 km) outside of the Florida region. Mastodons were the only taxa from this region that provided enough well-dated specimens to compare changes in migration patterns over time. Pre-LGM mastodons displayed significantly lower 87Sr/ 86Sr ratios than late-glacial mastodons, which suggests that late-glacial mastodons from Florida migrated longer distances than their earlier counterparts. This change in movement patterns reflects temporal changes in regional vegetation patterns.
ESTIMATING THE TIMING OF DIET SHIFTS USING STABLE ISOTOPES
Stable isotope analysis has become an important tool in studies of trophic food webs and animal feeding patterns. When animals undergo rapid dietary shifts due to migration, metamorphosis, or other reasons, the isotopic composition of their tissues begins changing to reflect tha...
Benefits of the destinations, not costs of the journeys, shape partial migration patterns.
Yackulic, Charles B; Blake, Stephen; Bastille-Rousseau, Guillaume
2017-07-01
The reasons that lead some animals to seasonally migrate, and others to remain in the same area year-round, are poorly understood. Associations between traits, such as body size, and migration provide clues. For example, larger species and individuals are more likely to migrate. One explanation for this size bias in migration is that larger animals are capable of moving faster (movement hypothesis). However, body size is linked to many other biological processes. For instance, the energetic balances of larger animals are generally more sensitive to variation in food density because of body size effects on foraging and metabolism and this sensitivity could drive migratory decisions (forage hypothesis). Identifying the primary selective forces that drive migration ultimately requires quantifying fitness impacts over the full annual migratory cycle. Here, we develop a full annual migratory cycle model from metabolic and foraging theory to compare the importance of the forage and movement hypotheses. We parameterize the model for Galapagos tortoises, which were recently discovered to be size-dependent altitudinal migrants. The model predicts phenomena not included in model development including maximum body sizes, the body size at which individuals begin to migrate, and the seasonal timing of migration and these predictions generally agree with available data. Scenarios strongly support the forage hypothesis over the movement hypothesis. Furthermore, male Galapagos tortoises on Santa Cruz Island would be unable to grow to their enormous sizes without access to both highlands and lowlands. Whereas recent research has focused on links between traits and the migratory phases of the migratory cycle, we find that effects of body size on the non-migratory phases are far more important determinants of the propensity to migrate. Larger animals are more sensitive to changing forage conditions than smaller animals with implications for maintenance of migration and body size in the face of environmental change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
The Origin And Migration Of Primordial Germ Cells In Sturgeons
Saito, Taiju; Pšenička, Martin; Goto, Rie; Adachi, Shinji; Inoue, Kunio; Arai, Katsutoshi; Yamaha, Etsuro
2014-01-01
Primordial germ cells (PGCs) arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser) have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT) assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts. PMID:24505272
A Physics-Inspired Mechanistic Model of Migratory Movement Patterns in Birds.
Revell, Christopher; Somveille, Marius
2017-08-29
In this paper, we introduce a mechanistic model of migratory movement patterns in birds, inspired by ideas and methods from physics. Previous studies have shed light on the factors influencing bird migration but have mainly relied on statistical correlative analysis of tracking data. Our novel method offers a bottom up explanation of population-level migratory movement patterns. It differs from previous mechanistic models of animal migration and enables predictions of pathways and destinations from a given starting location. We define an environmental potential landscape from environmental data and simulate bird movement within this landscape based on simple decision rules drawn from statistical mechanics. We explore the capacity of the model by qualitatively comparing simulation results to the non-breeding migration patterns of a seabird species, the Black-browed Albatross (Thalassarche melanophris). This minimal, two-parameter model was able to capture remarkably well the previously documented migration patterns of the Black-browed Albatross, with the best combination of parameter values conserved across multiple geographically separate populations. Our physics-inspired mechanistic model could be applied to other bird and highly-mobile species, improving our understanding of the relative importance of various factors driving migration and making predictions that could be useful for conservation.
Teitelbaum, Claire S; Converse, Sarah J; Fagan, William F; Böhning-Gaese, Katrin; O'Hara, Robert B; Lacy, Anne E; Mueller, Thomas
2016-09-06
Anthropogenic changes in climate and land use are driving changes in migration patterns of birds worldwide. Spatial changes in migration have been related to long-term temperature trends, but the intrinsic mechanisms by which migratory species adapt to environmental change remain largely unexplored. We show that, for a long-lived social species, older birds with more experience are critical for innovating new migration behaviours. Groups containing older, more experienced individuals establish new overwintering sites closer to the breeding grounds, leading to a rapid population-level shift in migration patterns. Furthermore, these new overwintering sites are in areas where changes in climate have increased temperatures and where food availability from agriculture is high, creating favourable conditions for overwintering. Our results reveal that the age structure of populations is critical for the behavioural mechanisms that allow species to adapt to global change, particularly for long-lived animals, where changes in behaviour can occur faster than evolution.
Teitelbaum, Claire S.; Converse, Sarah J.; Fagan, William F.; Böhning-Gaese, Katrin; O'Hara, Robert B.; Lacy, Anne E.; Mueller, Thomas
2016-01-01
Anthropogenic changes in climate and land use are driving changes in migration patterns of birds worldwide. Spatial changes in migration have been related to long-term temperature trends, but the intrinsic mechanisms by which migratory species adapt to environmental change remain largely unexplored. We show that, for a long-lived social species, older birds with more experience are critical for innovating new migration behaviours. Groups containing older, more experienced individuals establish new overwintering sites closer to the breeding grounds, leading to a rapid population-level shift in migration patterns. Furthermore, these new overwintering sites are in areas where changes in climate have increased temperatures and where food availability from agriculture is high, creating favourable conditions for overwintering. Our results reveal that the age structure of populations is critical for the behavioural mechanisms that allow species to adapt to global change, particularly for long-lived animals, where changes in behaviour can occur faster than evolution. PMID:27597446
Teitelbaum, Claire S.; Converse, Sarah J.; Fagan, William F.; Böhning-Gaese, Katrin; O'Hara, Robert B.; Lacy, Anne E; Mueller, Thomas
2016-01-01
Anthropogenic changes in climate and land use are driving changes in migration patterns of birds worldwide. Spatial changes in migration have been related to long-term temperature trends, but the intrinsic mechanisms by which migratory species adapt to environmental change remain largely unexplored. We show that, for a long-lived social species, older birds with more experience are critical for innovating new migration behaviours. Groups containing older, more experienced individuals establish new overwintering sites closer to the breeding grounds, leading to a rapid population-level shift in migration patterns. Furthermore, these new overwintering sites are in areas where changes in climate have increased temperatures and where food availability from agriculture is high, creating favourable conditions for overwintering. Our results reveal that the age structure of populations is critical for the behavioural mechanisms that allow species to adapt to global change, particularly for long-lived animals, where changes in behaviour can occur faster than evolution.
Quantifying Migration Behaviour Using Net Squared Displacement Approach: Clarifications and Caveats.
Singh, Navinder J; Allen, Andrew M; Ericsson, Göran
2016-01-01
Estimating migration parameters of individuals and populations is vital for their conservation and management. Studies on animal movements and migration often depend upon location data from tracked animals and it is important that such data are appropriately analyzed for reliable estimates of migration and effective management of moving animals. The Net Squared Displacement (NSD) approach for modelling animal movement is being increasingly used as it can objectively quantify migration characteristics and separate different types of movements from migration. However, the ability of NSD to properly classify the movement patterns of individuals has been criticized and issues related to study design arise with respect to starting locations of the data/animals, data sampling regime and extent of movement of species. We address the issues raised over NSD using tracking data from 319 moose (Alces alces) in Sweden. Moose is an ideal species to test this approach, as it can be sedentary, nomadic, dispersing or migratory and individuals vary in their extent, timing and duration of migration. We propose a two-step process of using the NSD approach by first classifying movement modes using mean squared displacement (MSD) instead of NSD and then estimating the extent, duration and timing of migration using NSD. We show that the NSD approach is robust to the choice of starting dates except when the start date occurs during the migratory phase. We also show that the starting location of the animal has a marginal influence on the correct quantification of migration characteristics. The number of locations per day (1-48) did not significantly affect the performance of non-linear mixed effects models, which correctly distinguished migration from other movement types, however, high-resolution data had a significant negative influence on estimates for the timing of migrations. The extent of movement, however, had an effect on the classification of movements, and individuals undertaking short- distance migrations can be misclassified as other movements such as sedentary or nomadic. Our study raises important considerations for designing, analysing and interpreting movement ecology studies, and how these should be determined by the biology of the species and the ecological and conservation questions in focus.
DOT National Transportation Integrated Search
2016-08-23
Wyoming is home to abundant big game, including long-distance migratory species such as mule deer, elk, and pronghorn. Where these animals movement patterns intersect with roads, vehicles often hit animals. This poses a threat both to highway safe...
Satellite (IRLS) tracking of elk
NASA Technical Reports Server (NTRS)
Buechner, H. K.
1972-01-01
The practicability of tracking free roaming animals in natural environments by satellite systems is reported. Satellite systems combine continuous tracking with simultaneous monitoring of physiological and environmental parameters through a combination of radio tracking and biotelemetric ground systems that lead to a better understanding of animal behavior and migration patterns.
Partial migration and transient coexistence of migrants and residents in animal populations.
Singh, Navinder J; Leonardsson, Kjell
2014-01-01
Partial migration, whereby a proportion of the population migrates, is common across the animal kingdom. Much of the focus in the literature has been on trying to explain the underlying mechanisms for the coexistence of migrants and residents. In addition, there has been an increasing number of reports on the prevalence and frequency of partially migratory populations. One possible explanation for the occurrence of partial migration, which has received no attention in the literature, is that of 'transient coexistence' during the invasion phase of a superior behaviour. In this study we develop a theoretical basis for explaining partial migration as a transient coexistence and derive a method to predict the frequency of residents and migrants in partially migrating populations. This method is useful to predict the frequencies of migrants and residents in a small set of populations as a complementing hypothesis to 'an Evolutionary Stable Strategy (ESS)'. We use the logistic growth equation to derive a formula for predicting the frequencies of residents and migrants. We also use simulations and empirical data from white perch (Morone americana), moose (Alces alces) and red deer (Cervus elaphus) to demonstrate our approach. We show that the probability of detecting partial migration due to transient coexistence depends upon a minimum number of tracked or marked individuals for a given number of populations. Our approach provides a starting point in searching for explanations to the observed frequencies, by contrasting the observed pattern with both the predicted transient and the uniform random pattern. Aggregating such information on observed patterns (proportions of migrants and residents) may eventually lead to the development of a quantitative theory for the equilibrium (ESS) populations as well.
Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF
Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.
2009-01-01
The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202
Benefits of the destinations, not costs of the journeys, shape partial migration patterns
Yackulic, Charles B.; Blake, Stephen; Bastille-Rousseau, Guillaume
2017-01-01
1. The reasons that lead some animals to seasonally migrate, and others to remain in the same area year-round, are poorly understood. Associations between traits, such as body size, and migration provide clues. For example, larger species and individuals are more likely to migrate.2. One explanation for this size bias in migration is that larger animals are capable of moving faster (movement hypothesis). However, body size is linked to many other biological processes. For instance, the energetic balances of larger animals are generally more sensitive to variation in food density because of body size effects on foraging and metabolism and this sensitivity could drive migratory decisions (forage hypothesis).3. Identifying the primary selective forces that drive migration ultimately requires quantifying fitness impacts over the full annual migratory cycle. Here, we develop a full annual migratory cycle model from metabolic and foraging theory to compare the importance of the forage and movement hypotheses. We parameterize the model for Galapagos tortoises, which were recently discovered to be size-dependent altitudinal migrants.4. The model predicts phenomena not included in model development including maximum body sizes, the body size at which individuals begin to migrate, and the seasonal timing of migration and these predictions generally agree with available data. Scenarios strongly support the forage hypothesis over the movement hypothesis. Furthermore, male Galapagos tortoises on Santa Cruz Island would be unable to grow to their enormous sizes without access to both highlands and lowlands.5. Whereas recent research has focused on links between traits and the migratory phases of the migratory cycle, we find that effects of body size on the non-migratory phases are far more important determinants of the propensity to migrate. Larger animals are more sensitive to changing forage conditions than smaller animals with implications for maintenance of migration and body size in the face of environmental change.
Putman, Nathan F.; Jenkins, Erica S.; Michielsens, Catherine G. J.; Noakes, David L. G.
2014-01-01
Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. PMID:25056214
Putman, Nathan F; Jenkins, Erica S; Michielsens, Catherine G J; Noakes, David L G
2014-10-06
Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning from the Pacific Ocean to the Fraser River, British Columbia. Drift of the magnetic field (i.e. geomagnetic imprinting) uniquely accounted for 23.2% and 44.0% of the variation in migration routes for sockeye and pink salmon, respectively. Ocean circulation (i.e. olfactory imprinting) predicted 6.1% and 0.1% of the variation in sockeye and pink migration routes, respectively. Sea surface temperature (a variable influencing salmon distribution but not navigation, directly) accounted for 13.0% of the variation in sockeye migration but was unrelated to pink migration. These findings suggest that geomagnetic navigation plays an important role in long-distance homing in salmon and that consideration of navigation mechanisms can aid in the management of migratory fishes by better predicting movement patterns. Finally, given the diversity of animals that use the Earth's magnetic field for navigation, geomagnetic drift may provide a unifying explanation for spatio-temporal variation in the movement patterns of many species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Free-zone electrophoresis of animal cells. 1: Experiments on cell-cell interactions
NASA Technical Reports Server (NTRS)
Todd, P. W.; Hjerten, S.
1985-01-01
The electrophoretically migrating zones wasa monitored. The absence of fluid flows in the direction of migration permits direct measurement of electrophoretic velocities of any material. Sedimentation is orthogonal to electrokinetic motion and the effects of particle-particle interaction on electrophoretic mobility is studied by free zone electrophoresis. Fixed erythrocytes at high concentrations, mixtures of fixed erythrocytes from different animal species, and mixtures of cultured human cells were studied in low ionic strength buffers. The electrophoretic velocity of fixed erythrocytes was not altered by increasing cell concentration or by the mixing of erythrocytes from different species. When zones containing cultured human glial cells and neuroblastoma cells are permitted to interact during electrophoresis, altered migration patterns occur. It is found that cell-cell interactions depends upon cell type.
Landbird migration in the American West: Recent progress and future research directions
Carlisle, J.D.; Skagen, S.K.; Kus, B.E.; van Riper, Charles; Paxton, K.L.; Kelly, J.F.
2009-01-01
Our knowledge of avian behaviors during the nonbreeding period still lags behind that of the breeding season, but the last decade has witnessed a proliferation in research that has yielded significant progress in understanding migration patterns of North American birds. And, although historically the great majority of migration research has been conducted in the eastern half of the continent, there has been much recent progress on aspects of avian migration in the West. In particular, expanded use of techniques such as radar, plasma metabolites, mist-netting, count surveys, stable isotopes, genetic data, and animal tracking, coupled with an increase in multi-investigator collaborations, have all contributed to this growth of knowledge. There is increasing recognition that migration is likely the most limiting time of year for migratory birds, increasing the importance of continuing to decipher patterns of stopover ecology, identifying critical stopover habitats, and documenting migration routes in the diverse and changing landscapes of the American West. Here, we review and briefly synthesize the latest findings and advances in avian migration and consider research needs to guide future research on migration in the West. ?? 2009 by The Cooper Ornithological Society. All rights reserved.
Sky Compass Orientation in Desert Locusts-Evidence from Field and Laboratory Studies.
Homberg, Uwe
2015-01-01
Locusts are long-range migratory insects. At high population density, immature animals form marching hopper bands while adults take off and form huge swarms of millions of animals. At low population densities animals are solitarious, but likewise migrate, mostly during the night. Numerous studies aimed at predicting locust infestations showed that migrations both as hopper bands and as adults are largely downwind following seasonal shifts of the tropical convergence zone taking the animals to areas of rainfall. Only a few studies provided evidence for active orientation mechanisms, including the involvement of a sun compass. This scarcity of evidence stands in contrast to recent neurobiological data showing sophisticated neuronal adaptations suited for sky compass navigation. These include a special dorsal eye region with photoreceptors suited to analyze the polarization pattern of the sky and a system of topographically arranged sky compass neurons in the central complex of the brain. Laboratory experiments, moreover, demonstrated polarotaxis in tethered flying animals. The discrepancy of these findings call for more rigorous field studies on active orientation mechanisms in locusts. It remains to be shown how locusts use their internal sky compass during mass migrations and what role it plays to guide solitarious locusts in their natural habitat.
Changes in cell migration and survival in the olfactory bulb of the pcd/pcd mouse.
Valero, J; Weruaga, E; Murias, A R; Recio, J S; Curto, G G; Gómez, C; Alonso, J R
2007-06-01
Postnatally, the Purkinje cell degeneration mutant mice lose the main projecting neurons of the main olfactory bulb (OB): mitral cells (MC). In adult animals, progenitor cells from the rostral migratory stream (RMS) differentiate into bulbar interneurons that modulate MC activity. In the present work, we studied changes in proliferation, tangential migration, radial migration patterns, and the survival of these newly generated neurons in this neurodegeneration animal model. The animals were injected with bromodeoxyuridine 2 weeks or 2 months before killing in order to label neuroblast incorporation into the OB and to analyze the survival of these cells after differentiation, respectively. Both the organization and cellular composition of the RMS and the differentiation of the newly generated neurons in the OB were studied using specific markers of glial cells, neuroblasts, and mature neurons. No changes were observed in the cell proliferation rate nor in their tangential migration through the RMS, indicating that migrating neuroblasts are only weakly responsive to the alteration in their target region, the OB. However, the absence of MC does elicit differences in the final destination of the newly generated interneurons. Moreover, the loss of MC also produces changes in the survival of the newly generated interneurons, in accordance with the dramatic decrease in the number of synaptic targets available.
Linking animals aloft with the terrestrial landscape
Buler, Jeffrey J.; Barrow, Wylie; Boone, Matthew; Dawson, Deanna K.; Diehl, Robert H.; Moore, Frank R.; Randall, Lori A.; Schreckengost, Timothy; Smolinsky, Jaclyn A.
2018-01-01
Despite using the aerosphere for many facets of their life, most flying animals (i.e., birds, bats, some insects) are still bound to terrestrial habitats for resting, feeding, and reproduction. Comprehensive broad-scale observations by weather surveillance radars of animals as they leave terrestrial habitats for migration or feeding flights can be used to map their terrestrial distributions either as point locations (e.g., communal roosts) or as continuous surface layers (e.g., animal densities in habitats across a landscape). We discuss some of the technical challenges to reducing measurement biases related to how radars sample the aerosphere and the flight behavior of animals. We highlight a recently developed methodological approach that precisely and quantitatively links the horizontal spatial structure of birds aloft to their terrestrial distributions and provides novel insights into avian ecology and conservation across broad landscapes. Specifically, we present case studies that (1) elucidate how migrating birds contend with crossing ecological barriers and extreme weather events, (2) identify important stopover areas and habitat use patterns of birds along their migration routes, and (3) assess waterfowl response to wetland habitat management and restoration. These studies aid our understanding of how anthropogenic modification of the terrestrial landscape (e.g., urbanization, habitat management), natural geographic features, and weather (e.g., hurricanes) can affect the terrestrial distributions of flying animals.
Freeman, Robin; Dean, Ben; Kirk, Holly; Leonard, Kerry; Phillips, Richard A.; Perrins, Chris M.; Guilford, Tim
2013-01-01
Understanding the behaviour of animals in the wild is fundamental to conservation efforts. Advances in bio-logging technologies have offered insights into the behaviour of animals during foraging, migration and social interaction. However, broader application of these systems has been limited by device mass, cost and longevity. Here, we use information from multiple logger types to predict individual behaviour in a highly pelagic, migratory seabird, the Manx Shearwater (Puffinus puffinus). Using behavioural states resolved from GPS tracking of foraging during the breeding season, we demonstrate that individual behaviours can be accurately predicted during multi-year migrations from low cost, lightweight, salt-water immersion devices. This reveals a complex pattern of migratory stopovers: some involving high proportions of foraging, and others of rest behaviour. We use this technique to examine three consecutive years of global migrations, revealing the prominence of foraging behaviour during migration and the importance of highly productive waters during migratory stopover. PMID:23635496
Storms drive altitudinal migration in a tropical bird
Boyle, W. Alice; Norris, D. Ryan; Guglielmo, Christopher G.
2010-01-01
Although migration is a widespread and taxonomically diverse behaviour, the ecological factors shaping migratory behaviour are poorly understood. Like other montane taxa, many birds migrate along elevational gradients in the tropics. Forty years ago, Alexander Skutch postulated that severe storms could drive birds to migrate downhill. Here, we articulate a novel mechanism that could link storms to mortality risks via reductions in foraging time and provide, to our knowledge, the first tests of this hypothesis in the White-ruffed Manakin (Corapipo altera), a small partially migratory frugivore breeding on the Atlantic slope of Costa Rica. As predicted, variation in rainfall was associated with plasma corticosterone levels, fat stores, plasma metabolites and haematocrit. By collecting data at high and low elevation sites simultaneously, we also found that high-elevation residents were more adversely affected by storms than low elevation migrants. These results, together with striking temporal capture patterns of altitudinal migrants relative to storms, provide, to our knowledge, the first evidence that weather-related risks incurred by species requiring high food intake rates can explain altitudinal migrations of tropical animals. These findings resolve conflicting evidence for and against food limitation being important in the evolution of this behaviour, and highlight how endogenous and exogenous processes influence life-history trade-offs made by individuals in the wild. Because seasonal storms are a defining characteristic of most tropical ecosystems and rainfall patterns will probably change in ensuing decades, these results have important implications for understanding the ecology, evolution and conservation of tropical animals. PMID:20375047
Storms drive altitudinal migration in a tropical bird.
Boyle, W Alice; Norris, D Ryan; Guglielmo, Christopher G
2010-08-22
Although migration is a widespread and taxonomically diverse behaviour, the ecological factors shaping migratory behaviour are poorly understood. Like other montane taxa, many birds migrate along elevational gradients in the tropics. Forty years ago, Alexander Skutch postulated that severe storms could drive birds to migrate downhill. Here, we articulate a novel mechanism that could link storms to mortality risks via reductions in foraging time and provide, to our knowledge, the first tests of this hypothesis in the White-ruffed Manakin (Corapipo altera), a small partially migratory frugivore breeding on the Atlantic slope of Costa Rica. As predicted, variation in rainfall was associated with plasma corticosterone levels, fat stores, plasma metabolites and haematocrit. By collecting data at high and low elevation sites simultaneously, we also found that high-elevation residents were more adversely affected by storms than low elevation migrants. These results, together with striking temporal capture patterns of altitudinal migrants relative to storms, provide, to our knowledge, the first evidence that weather-related risks incurred by species requiring high food intake rates can explain altitudinal migrations of tropical animals. These findings resolve conflicting evidence for and against food limitation being important in the evolution of this behaviour, and highlight how endogenous and exogenous processes influence life-history trade-offs made by individuals in the wild. Because seasonal storms are a defining characteristic of most tropical ecosystems and rainfall patterns will probably change in ensuing decades, these results have important implications for understanding the ecology, evolution and conservation of tropical animals.
Klaassen, Raymond H G; Hake, Mikael; Strandberg, Roine; Koks, Ben J; Trierweiler, Christiane; Exo, Klaus-Michael; Bairlein, Franz; Alerstam, Thomas
2014-01-01
Information about when and where animals die is important to understand population regulation. In migratory animals, mortality might occur not only during the stationary periods (e.g. breeding and wintering) but also during the migration seasons. However, the relative importance of population limiting factors during different periods of the year remains poorly understood, and previous studies mainly relied on indirect evidence. Here, we provide direct evidence about when and where migrants die by identifying cases of confirmed and probable deaths in three species of long-distance migratory raptors tracked by satellite telemetry. We show that mortality rate was about six times higher during migration seasons than during stationary periods. However, total mortality was surprisingly similar between periods, which can be explained by the fact that risky migration periods are shorter than safer stationary periods. Nevertheless, more than half of the annual mortality occurred during migration. We also found spatiotemporal patterns in mortality: spring mortality occurred mainly in Africa in association with the crossing of the Sahara desert, while most mortality during autumn took place in Europe. Our results strongly suggest that events during the migration seasons have an important impact on the population dynamics of long-distance migrants. We speculate that mortality during spring migration may account for short-term annual variation in survival and population sizes, while mortality during autumn migration may be more important for long-term population regulation (through density-dependent effects). © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Monteith, Kevin L.; Bleich, Vernon C.; Stephenson, Thomas R.; Pierce, Beck M.; Conner, Mary M.; Klaver, Robert W.; Bowyer, R. Terry
2011-01-01
Phenological events of plants and animals are sensitive to climatic processes. Migration is a life-history event exhibited by most large herbivores living in seasonal environments, and is thought to occur in response to dynamics of forage and weather. Decisions regarding when to migrate, however, may be affected by differences in life-history characteristics of individuals. Long-term and intensive study of a population of mule deer (Odocoileus hemionus) in the Sierra Nevada, California, USA, allowed us to document patterns of migration during 11 years that encompassed a wide array of environmental conditions. We used two new techniques to properly account for interval-censored data and disentangle effects of broad-scale climate, local weather patterns, and plant phenology on seasonal patterns of migration, while incorporating effects of individual life-history characteristics. Timing of autumn migration varied substantially among individual deer, but was associated with the severity of winter weather, and in particular, snow depth and cold temperatures. Migratory responses to winter weather, however, were affected by age, nutritional condition, and summer residency of individual females. Old females and those in good nutritional condition risked encountering severe weather by delaying autumn migration, and were thus risk-prone with respect to the potential loss of foraging opportunities in deep snow compared with young females and those in poor nutritional condition. Females that summered on the west side of the crest of the Sierra Nevada delayed autumn migration relative to east-side females, which supports the influence of the local environment on timing of migration. In contrast, timing of spring migration was unrelated to individual life-history characteristics, was nearly twice as synchronous as autumn migration, differed among years, was related to the southern oscillation index, and was influenced by absolute snow depth and advancing phenology of plants. Plasticity in timing of migration in response to climatic conditions and plant phenology may be an adaptive behavioral strategy, which should reduce the detrimental effects of trophic mismatches between resources and other life-history events of large herbivores. Failure to consider effects of nutrition and other life-history traits may cloud interpretation of phenological patterns of mammals and conceal relationships associated with climate change.
Patterns in diurnal airspace use by migratory landbirds along an ecological barrier.
Peterson, Anna C; Niemi, Gerald J; Johnson, Douglas H
2015-04-01
Migratory bird populations and survival are affected by conditions experienced during migration. While many studies and conservation and management efforts focus on terrestrial stoppage and staging areas, the aerial environment through which migrants move also is subjected to anthropogenic impacts with potential consequences to migratory movement and survival. During autumn migration, the northern coastline of Lake Superior acts as an ecological barrier for many landbirds migrating out of the boreal forests of North America. From 24 observation points, we assessed the diurnal movements of birds throughout autumn migration, 2008-2010, within a 210 × 10 km coastal region along the northern coast of Lake Superior. Several raptor species showed patterns in airspace associated with topographic features such as proximity to the coastline and presence of ridgelines. Funneling movement, commonly used to describe the concentration of raptors along a migratory diversion line that either prevents or enhances migration progress, occurred only for Bald and Golden Eagles. This suggests a "leaky" migration funnel for most migratory raptors (e.g., migrating birds exiting the purported migration corridor). Passerines migrating during the late season showed more spatial and temporal structure in airspace distribution than raptors did, including funneling and an association with airspace near the coast. We conclude that (1) the diurnal use of airspace by many migratory landbirds is patterned in space and time, (2) autumn count sites situated along ecological barriers substantially underestimate the number of raptors due to "leakage" out of these concentration areas, and (3) the magnitude and structure of diurnal passerine movements in airspace have been overlooked. The heavy and structured use of airspace by migratory landbirds, especially the airspace associated with anthropogenic development (e.g., buildings, towers, turbines) necessitates a shift in focus to airspace management and conservation attention for these animals.
Patterns in diurnal airspace use by migratory landbirds along an ecological barrier
Peterson, Anna C.; Niemi, Gerald J.; Johnson, Douglas H.
2015-01-01
Migratory bird populations and survival are affected by conditions experienced during migration. While many studies and conservation and management efforts focus on terrestrial stoppage and staging areas, the aerial environment through which migrants move also is subjected to anthropogenic impacts with potential consequences to migratory movement and survival. During autumn migration, the northern coastline of Lake Superior acts as an ecological barrier for many landbirds migrating out of the boreal forests of North America. From 24 observation points, we assessed the diurnal movements of birds throughout autumn migration, 2008-2010, within a 210 km by 10 km coastal region along the northern coast of Lake Superior. Several raptor species showed patterns in airspace associated with topographic features such as proximity to the coastline and presence of ridgelines. Funneling movement, commonly used to describe the concentration of raptors along a migratory diversion line that either prevents or enhances migration progress, occurred only for Bald and Golden Eagles. This suggests a "leaky" migration funnel for most migratory raptors (e.g., migrating birds exiting the purported migration corridor). Passerines migrating during the late season showed more spatial and temporal structure in airspace distribution than raptors, including funneling and an association with airspace near the coast. We conclude that a) the diurnal use of airspace by many migratory landbirds is patterned in space and time, b) autumn count sites situated along ecological barriers substantially underestimate the number of raptors due to 'leakage' out of these concentration areas, and c) the magnitude and structure of diurnal passerine movements in airspace have been overlooked. The heavy and structured use of airspace by migratory landbirds, especially the airspace associated with anthropogenic development (e.g., buildings, towers, turbines) necessitates a shift in focus to airspace management and conservation attention for these animals.
Due to complex population dynamics and migration behaviors, the well-being of animal populations that host human diseases sometimes varies across landscapes in ways that cannot be deduced from geographic abundance patterns alone. In such cases, efficient management of ecological...
Convergent evolution in locomotory patterns of flying and swimming animals.
Gleiss, Adrian C; Jorgensen, Salvador J; Liebsch, Nikolai; Sala, Juan E; Norman, Brad; Hays, Graeme C; Quintana, Flavio; Grundy, Edward; Campagna, Claudio; Trites, Andrew W; Block, Barbara A; Wilson, Rory P
2011-06-14
Locomotion is one of the major energetic costs faced by animals and various strategies have evolved to reduce its cost. Birds use interspersed periods of flapping and gliding to reduce the mechanical requirements of level flight while undergoing cyclical changes in flight altitude, known as undulating flight. Here we equipped free-ranging marine vertebrates with accelerometers and demonstrate that gait patterns resembling undulating flight occur in four marine vertebrate species comprising sharks and pinnipeds. Both sharks and pinnipeds display intermittent gliding interspersed with powered locomotion. We suggest, that the convergent use of similar gait patterns by distinct groups of animals points to universal physical and physiological principles that operate beyond taxonomic limits and shape common solutions to increase energetic efficiency. Energetically expensive large-scale migrations performed by many vertebrates provide common selection pressure for efficient locomotion, with potential for the convergence of locomotory strategies by a wide variety of species.
Conservation physiology of animal migration
Lennox, Robert J.; Chapman, Jacqueline M.; Souliere, Christopher M.; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D.; Cooke, Steven J.
2016-01-01
Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains because of the complexity of biological systems, the inherently dynamic nature of the environment and the scale at which many migrations occur and associated threats operate, necessitating improved integration of physiological approaches to the conservation of migratory animals. PMID:27293751
Conservation physiology of animal migration.
Lennox, Robert J; Chapman, Jacqueline M; Souliere, Christopher M; Tudorache, Christian; Wikelski, Martin; Metcalfe, Julian D; Cooke, Steven J
2016-01-01
Migration is a widespread phenomenon among many taxa. This complex behaviour enables animals to exploit many temporally productive and spatially discrete habitats to accrue various fitness benefits (e.g. growth, reproduction, predator avoidance). Human activities and global environmental change represent potential threats to migrating animals (from individuals to species), and research is underway to understand mechanisms that control migration and how migration responds to modern challenges. Focusing on behavioural and physiological aspects of migration can help to provide better understanding, management and conservation of migratory populations. Here, we highlight different physiological, behavioural and biomechanical aspects of animal migration that will help us to understand how migratory animals interact with current and future anthropogenic threats. We are in the early stages of a changing planet, and our understanding of how physiology is linked to the persistence of migratory animals is still developing; therefore, we regard the following questions as being central to the conservation physiology of animal migrations. Will climate change influence the energetic costs of migration? Will shifting temperatures change the annual clocks of migrating animals? Will anthropogenic influences have an effect on orientation during migration? Will increased anthropogenic alteration of migration stopover sites/migration corridors affect the stress physiology of migrating animals? Can physiological knowledge be used to identify strategies for facilitating the movement of animals? Our synthesis reveals that given the inherent challenges of migration, additional stressors derived from altered environments (e.g. climate change, physical habitat alteration, light pollution) or interaction with human infrastructure (e.g. wind or hydrokinetic turbines, dams) or activities (e.g. fisheries) could lead to long-term changes to migratory phenotypes. However, uncertainty remains because of the complexity of biological systems, the inherently dynamic nature of the environment and the scale at which many migrations occur and associated threats operate, necessitating improved integration of physiological approaches to the conservation of migratory animals.
Due to complex population dynamics and migration behaviors, the well-being of animal populations that host human diseases sometimes varies across landscapes in ways that cannot be deduced from geographic abundance patterns alone. In such cases, efficient management of ecologica...
Manent, Jean-Bernard; Wang, Yu; Chang, YoonJeung; Paramasivam, Murugan; LoTurco, Joseph J
2009-01-01
Disorders of neuronal migration can lead to malformations of the cerebral neocortex that greatly increase the risk of seizures. It remains untested whether malformations caused by disorders in neuronal migration can be reduced by reactivating cellular migration, and whether such repair can decrease seizure risk. Here we show, in a rat model of subcortical band heterotopia (SBH) generated by in utero RNAi of Dcx, that aberrantly positioned neurons can be stimulated to migrate by re-expressing Dcx after birth. Re-starting migration in this way both reduces neocortical malformations and restores neuronal patterning. We find further that the capacity to reduce SBH has a critical period in early postnatal development. Moreover, intervention after birth reduces convulsant-induced seizure threshold to levels similar to that of malformation-free controls. These results suggest that disorders of neuronal migration may be eventually treatable by re-engaging developmental programs both to reduce the size of cortical malformations and to reduce seizure risk. PMID:19098909
[Ethnic dimension to migration in the Senegal river valley].
Traore, S
1993-08-01
Studies of the factors determining migratory patterns in the Senegal River Valley usually stress the importance of economic factors related to colonial domination. But when cultural factors and the social relations governing them are examined in a comparative study of ethnic groups, distinct population subgroups may be revealed to have differential migratory patterns. The Soninka and the Poular, two groups highly affected by migration, were chosen for an analysis of the impact of specific historical experiences on migratory behavior. A historical analysis of colonial archives and anthropological and historical monographs and the 1982-83 "Survey of Migration in the Valley of the Senegal River" provided data. The survey indicated that Soninka and Poular migratory patterns differed from each other, but that both differed from the migratory patterns of all other ethnic groups in the region. Soninka migration is international and oriented primarily toward Europe. It has recently become more intense than that of the poular. The determinants of migration in the two groups appear related more to the structure of households than to lack of educational and health facilities or even of food at the village level. Pastoral life and its associated beliefs and religious ideology appear to have been the principal determinants of precolonial movement among the Poular, while Soninka migration responded more to competition over control of manpower. Itinerant commercial activity was coupled with use of slave labor to ensure food production. But the suppression of slavery and crises of subsistence aggravated by colonial policy provoked ever more distant migration, which found a focus in the French demand for labor after World War II. Migration as an alternative does not appear to have been as significant for the Poular until more recently, when subsistence agriculture and the sale of animals were no longer sufficient to cover monetary needs. Male migration among the Soninka is a consequence of the sexual division of labor in which men were primarily responsible for economic activity and the movement of women was controlled in the interests of social cohesion. The movement of young people is now related to the hopes of older family members for social and economic advancement.
Sybill K. Amelon; Frank R. III Thompson; Joshua J. Millspaugh
2014-01-01
Resource selection by animals influences ecological processes such as dispersal, reproduction, foraging, and migration. Little information exists regarding foraging resource selection by bats during the maternity season. We evaluated support for effects of landcover type, landform, and landscape pattern on resource selection by individual foraging female eastern red...
[Review on the feeding ecology and migration patterns of sharks using stable isotopes].
Li, Yun-Kai
2014-09-01
With the rapidly increasing use of stable isotope analysis (SIA) in ecology, it becomes a powerful tool and complement to traditional methods for investigating the trophic ecology of animals. Sharks play a keystone role in marine food webs as the apex predators and are recently becoming the frontier topic of food web studies and marine conservation because of their unique characteristics of evolution. Recently, SIA has recently been applied to trophic ecology studies of shark species. Here, we reviewed the current applications of SIA in shark species, focusing on available tissues for analyzing, standardized analytical approaches, diet-tissue discrimination factors, diet shift investigation, migration patterns predictions and niche-width analyses, with the aim of getting better understanding of stable-isotope dynamics in shark biology and ecology research.
Biodiversity and diel variation of the benthohyponeuston: A case study of the Northeast Black Sea
NASA Astrophysics Data System (ADS)
Vereshchaka, Alexander L.; Anokhina, Ludmila L.
2015-12-01
The neustal is a specific habitat of oceans, which significantly differs in abiotic parameters from the waters below. One of the most significant components of the coastal neustonic fauna is the benthohyponeuston migrating diurnally between benthic and neustonic realms. Data on this fauna are fragmentary and contradictory, partly due to lack of the criteria to distinguish benthohyponeuston from other benthopelagic animals diurnally migrating to the bulk water from the seafloor. We propose a criterion to quantify the degree of aggregation/avoidance of the neustal zone, reveal four distinct ecological groups and describe patterns of their overnight dynamics. Benthohyponeuston appears in open water at sunset, its biomass most rapidly increases one hour after sunset. Cumaceans, mysids and polychaetes make significant contribution during first three hours after sunset. Decapods are important around midnight and 3 h later. Amphipods are significant overnight. By analogy with the benthopelagic species, we define the benthohyponeuston as benthic animals, which are associated with the neustal zone at least at one stage of their life cycle. This association is necessary for reproduction, dispersal or feeding - that represent three basic pathways connecting neustonic and benthic/benthopelagic coastal communities below. The data on benthohyponeuston and patterns of its overnight dynamics will help in a better understanding of vertical migrations in the coastal zone and in estimating diurnal fluxes of organic matter.
Bird Migration Under Climate Change - A Mechanistic Approach Using Remote Sensing
NASA Technical Reports Server (NTRS)
Smith, James A.; Blattner, Tim; Messmer, Peter
2010-01-01
The broad-scale reductions and shifts that may be expected under climate change in the availability and quality of stopover habitat for long-distance migrants is an area of increasing concern for conservation biologists. Researchers generally have taken two broad approaches to the modeling of migration behaviour to understand the impact of these changes on migratory bird populations. These include models based on causal processes and their response to environmental stimulation, "mechanistic models", or models that primarily are based on observed animal distribution patterns and the correlation of these patterns with environmental variables, i.e. "data driven" models. Investigators have applied the latter technique to forecast changes in migration patterns with changes in the environment, for example, as might be expected under climate change, by forecasting how the underlying environmental data layers upon which the relationships are built will change over time. The learned geostatstical correlations are then applied to the modified data layers.. However, this is problematic. Even if the projections of how the underlying data layers will change are correct, it is not evident that the statistical relationships will remain the same, i.e. that the animal organism may not adapt its' behaviour to the changing conditions. Mechanistic models that explicitly take into account the physical, biological, and behaviour responses of an organism as well as the underlying changes in the landscape offer an alternative to address these shortcomings. The availability of satellite remote sensing observations at multiple spatial and temporal scales, coupled with advances in climate modeling and information technologies enable the application of the mechanistic models to predict how continental bird migration patterns may change in response to environmental change. In earlier work, we simulated the impact of effects of wetland loss and inter-annual variability on the fitness of migratory shorebirds in the central fly ways of North America. We demonstrated the phenotypic plasticity of a migratory population of Pectoral sandpipers consisting of an ensemble of 10,000 individual birds in response to changes in stopover locations using an individual based migration model driven by remotely sensed land surface data, climate data and biological field data. With the advent of new computing capabilities enabled hy recent GPU-GP computing paradigms and commodity hardware, it now is possible to simulate both larger ensemble populations and to incorporate more realistic mechanistic factors into migration models. Here, we take our first steps use these tools to study the impact of long-term drought variability on shorebird survival.
Kessel, Steven T; Hondorp, Darryl W; Holbrook, Christopher M; Boase, James C; Chiotti, Justin A; Thomas, Michael V; Wills, Todd C; Roseman, Edward F; Drouin, Richard; Krueger, Charles C
2018-01-01
Population structure, distribution, abundance and dispersal arguably underpin the entire field of animal ecology, with consequences for regional species persistence, and provision of ecosystem services. Divergent migration behaviours among individuals or among populations are an important aspect of the ecology of highly mobile animals, allowing populations to exploit spatially or temporally distributed food and space resources. This study investigated the spatial ecology of lake sturgeon (Acipenser fulvescens) within the barrier free Huron-Erie Corridor (HEC), which connects Lake Huron and Lake Erie of the North American Laurentian Great Lakes. Over 6 years (2011-2016), movements of 268 lake sturgeon in the HEC were continuously monitored across the Great Lakes using acoustic telemetry (10 years battery life acoustic transmitters). Five distinct migration behaviours were identified with hierarchical cluster analysis, based on the phenology and duration of river and lake use. Lake sturgeon in the HEC were found to contain a high level of intraspecific divergent migration, including partial migration with the existence of residents. Specific behaviours included year-round river residency and multiple lake-migrant behaviours that involved movements between lakes and rivers. Over 85% of individuals were assigned to migration behaviours as movements were consistently repeated over the study, which suggested migration behaviours were consistent and persistent in lake sturgeon. Differential use of specific rivers or lakes by acoustic-tagged lake sturgeon further subdivided individuals into 14 "contingents" (spatiotemporally segregated subgroups). Contingents associated with one river (Detroit or St. Clair) were rarely detected in the other river, which confirmed that lake sturgeon in the Detroit and St. Clair represent two semi-independent populations that could require separate management consideration for their conservation. The distribution of migration behaviours did not vary between populations, sexes, body size or among release locations, which indicated that intrapopulation variability in migratory behaviour is a general feature of the spatial ecology of lake sturgeon in unfragmented landscapes. 2017 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
ERIC Educational Resources Information Center
Haydar, Tarik F.
2005-01-01
Studies on human patients and animal models of disease have shown that disruptions in prenatal and early postnatal brain development are a root cause of mental retardation. Since proper brain development is achieved by a strict spatiotemporal control of neurogenesis, cell migration, and patterning of synapses, abnormalities in one or more of these…
Jonathan N. Pauli; Winston P. Smith; Merav Ben-David
2012-01-01
Advances in the application of stable isotopes have allowed the quantitative evaluation of previously cryptic ecological processes. In particular, researchers have utilized the predictable spatial patterning in natural abundance of isotopes to better understand animal dispersal and migration. However, quantifying dispersal via natural abundance alone has proven to be...
Bloch, Guy; Barnes, Brian M.; Gerkema, Menno P.; Helm, Barbara
2013-01-01
Circadian rhythms are ubiquitous in many organisms. Animals that are forced to be active around the clock typically show reduced performance, health and survival. Nevertheless, we review evidence of animals showing prolonged intervals of activity with attenuated or nil overt circadian rhythms and no apparent ill effects. We show that around-the-clock and ultradian activity patterns are more common than is generally appreciated, particularly in herbivores, in animals inhabiting polar regions and habitats with constant physical environments, in animals during specific life-history stages (such as migration or reproduction), and in highly social animals. The underlying mechanisms are diverse, but studies suggest that some circadian pacemakers continue to measure time in animals active around the clock. The prevalence of around-the-clock activity in diverse animals and habitats, and an apparent diversity of underlying mechanisms, are consistent with convergent evolution. We suggest that the basic organizational principles of the circadian system and its complexity encompass the potential for chronobiological plasticity. There may be trade-offs between benefits of persistent daily rhythms versus plasticity, which for reasons still poorly understood make overt daily arrhythmicity functionally adaptive only in selected habitats and for selected lifestyles. PMID:23825202
Honey buzzards don't always make a beeline.
Chapman, Jason W
2017-03-01
(a) European honey buzzards breeding in Western Europe primarily use soaring flight to make annual long-range migrations via the Strait of Gibraltar to winter in West Africa; this adult male was photographed on migration near Gibraltar. Photo: Javier Elloriaga. (b) Autumn migration routes of 12 satellite tagged adult European honey buzzards (colour-coded lines); compared with the shortest possible straight-line routes (dashed lines), most routes involved substantial westerly detours in Africa. Adapted from Vansteelant et al. (2016). (c) In contrast, Montagu's harriers predominantly use flapping flight during their migrations; this adult male is carrying a satellite transmitter. Photo: Theo van Kooten. (d) Autumn migration routes of 34 satellite tagged adult Montagu's harriers; migratory tracks more closely approached straight-line routes, and typically involved longer sea crossings, than seen in European honey buzzards. Adapted from Trierweiler et al. (). In Focus: Vansteelant, W.M.G., Shamoun-Baranes, J., van Manen, W., van Diermen, J. & Bouten, W. (2017) Seasonal detours by soaring migrants shaped by wind regimes along the East Atlantic Flyway. Journal of Animal Ecology, 86, 179-191. Migratory birds often make substantial detours from the shortest possible route during their annual migrations, which may potentially increase the duration and energetic cost of their journeys. Vansteelant et al. () investigate repeated migrations of adult European honey buzzards between the Netherlands and sub-Saharan Africa, and find that they make large westerly detours in Africa on both the spring and autumn routes. These detours allow migrants to capitalise on more favourable winds further along the route, thus reducing energy expenditure. Lifelong tracking studies will allow researchers to identify how migration routes have evolved to exploit predictable atmospheric and oceanic circulation patterns. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.
Chagas Disease, Migration and Community Settlement Patterns in Arequipa, Peru
Gilman, Robert H.; Cornejo del Carpio, Juan G.; Naquira, Cesar; Bern, Caryn; Levy, Michael Z.
2009-01-01
Background Chagas disease is one of the most important neglected tropical diseases in the Americas. Vectorborne transmission of Chagas disease has been historically rare in urban settings. However, in marginal communities near the city of Arequipa, Peru, urban transmission cycles have become established. We examined the history of migration and settlement patterns in these communities, and their connections to Chagas disease transmission. Methodology/Principal Findings This was a qualitative study that employed focus group discussions and in-depth interviews. Five focus groups and 50 in-depth interviews were carried out with 94 community members from three shantytowns and two traditional towns near Arequipa, Peru. Focus groups utilized participatory methodologies to explore the community's mobility patterns and the historical and current presence of triatomine vectors. In-depth interviews based on event history calendars explored participants' migration patterns and experience with Chagas disease and vectors. Focus group data were analyzed using participatory analysis methodologies, and interview data were coded and analyzed using a grounded theory approach. Entomologic data were provided by an ongoing vector control campaign. We found that migrants to shantytowns in Arequipa were unlikely to have brought triatomines to the city upon arrival. Frequent seasonal moves, however, took shantytown residents to valleys surrounding Arequipa where vectors are prevalent. In addition, the pattern of settlement of shantytowns and the practice of raising domestic animals by residents creates a favorable environment for vector proliferation and dispersal. Finally, we uncovered a phenomenon of population loss and replacement by low-income migrants in one traditional town, which created the human settlement pattern of a new shantytown within this traditional community. Conclusions/Significance The pattern of human migration is therefore an important underlying determinant of Chagas disease risk in and around Arequipa. Frequent seasonal migration by residents of peri-urban shantytowns provides a path of entry of vectors into these communities. Changing demographic dynamics of traditional towns are also leading to favorable conditions for Chagas disease transmission. Control programs must include surveillance for infestation in communities assumed to be free of vectors. PMID:20016830
Migration and the evolution of duetting in songbirds.
Logue, David M; Hall, Michelle L
2014-05-07
Many groups of animals defend shared resources with coordinated signals. The best-studied of these signals are the vocal duets produced by mated pairs of birds. Duets are believed to be more common among tropical-breeding species, but a comprehensive test of this hypothesis is lacking, and the mechanisms that generate latitudinal patterns in duetting are not known. We used a stratified sample of 372 songbird species to conduct the first broad-scale, phylogenetically explicit analysis of duet evolution. We found that duetting evolves in association with the absence of migration, but not with sexual monochromatism or tropical breeding. We conclude that the evolution of migration exerts a major influence on the evolution of duetting. The perceived association between tropical breeding and duetting may be a by-product of the migration-duetting relationship. Migration reduces the average duration of partnerships, potentially reducing the benefits of cooperative behaviour, including duetting. Ultimately, the evolution of coordinated resource-defence signals in songbirds may be driven by ecological conditions that favour sedentary lifestyles and social stability.
Jonsen, Ian D; Myers, Ransom A; James, Michael C
2006-09-01
1. Biological and statistical complexity are features common to most ecological data that hinder our ability to extract meaningful patterns using conventional tools. Recent work on implementing modern statistical methods for analysis of such ecological data has focused primarily on population dynamics but other types of data, such as animal movement pathways obtained from satellite telemetry, can also benefit from the application of modern statistical tools. 2. We develop a robust hierarchical state-space approach for analysis of multiple satellite telemetry pathways obtained via the Argos system. State-space models are time-series methods that allow unobserved states and biological parameters to be estimated from data observed with error. We show that the approach can reveal important patterns in complex, noisy data where conventional methods cannot. 3. Using the largest Atlantic satellite telemetry data set for critically endangered leatherback turtles, we show that the diel pattern in travel rates of these turtles changes over different phases of their migratory cycle. While foraging in northern waters the turtles show similar travel rates during day and night, but on their southward migration to tropical waters travel rates are markedly faster during the day. These patterns are generally consistent with diving data, and may be related to changes in foraging behaviour. Interestingly, individuals that migrate southward to breed generally show higher daytime travel rates than individuals that migrate southward in a non-breeding year. 4. Our approach is extremely flexible and can be applied to many ecological analyses that use complex, sequential data.
Spatio-Temporal Migration Patterns of Pacific Salmon Smolts in Rivers and Coastal Marine Waters
Melnychuk, Michael C.; Welch, David W.; Walters, Carl J.
2010-01-01
Background Migrations allow animals to find food resources, rearing habitats, or mates, but often impose considerable predation risk. Several behavioural strategies may reduce this risk, including faster travel speed and taking routes with shorter total distance. Descriptions of the natural range of variation in migration strategies among individuals and populations is necessary before the ecological consequences of such variation can be established. Methodology/Principal Findings Movements of tagged juvenile coho, steelhead, sockeye, and Chinook salmon were quantified using a large-scale acoustic tracking array in southern British Columbia, Canada. Smolts from 13 watersheds (49 watershed/species/year combinations) were tagged between 2004–2008 and combined into a mixed-effects model analysis of travel speed. During the downstream migration, steelhead were slower on average than other species, possibly related to freshwater residualization. During the migration through the Strait of Georgia, coho were slower than steelhead and sockeye, likely related to some degree of inshore summer residency. Hatchery-reared smolts were slower than wild smolts during the downstream migration, but after ocean entry, average speeds were similar. In small rivers, downstream travel speed increased with body length, but in the larger Fraser River and during the coastal migration, average speed was independent of body length. Smolts leaving rivers located towards the northern end of the Strait of Georgia ecosystem migrated strictly northwards after ocean entry, but those from rivers towards the southern end displayed split-route migration patterns within populations, with some moving southward. Conclusions/Significance Our results reveal a tremendous diversity of behavioural migration strategies used by juvenile salmon, across species, rearing histories, and habitats, as well as within individual populations. During the downstream migration, factors that had strong effects on travel speeds included species, wild or hatchery-rearing history, watershed size and, in smaller rivers, body length. During the coastal migration, travel speeds were only strongly affected by species differences. PMID:20886121
Lowland-upland migration of sauropod dinosaurs during the Late Jurassic epoch.
Fricke, Henry C; Hencecroth, Justin; Hoerner, Marie E
2011-10-26
Sauropod dinosaurs were the largest vertebrates ever to walk the Earth, and as mega-herbivores they were important parts of terrestrial ecosystems. In the Late Jurassic-aged Morrison depositional basin of western North America, these animals occupied lowland river-floodplain settings characterized by a seasonally dry climate. Massive herbivores with high nutritional and water needs could periodically experience nutritional and water stress under these conditions, and thus the common occurrence of sauropods in this basin has remained a paradox. Energetic arguments and mammalian analogues have been used to suggest that migration allowed sauropods access to food and water resources over a wide region or during times of drought or both, but there has been no direct support for these hypotheses. Here we compare oxygen isotope ratios (δ(18)O) of tooth-enamel carbonate from the sauropod Camarasaurus with those of ancient soil, lake and wetland (that is, 'authigenic') carbonates that formed in lowland settings. We demonstrate that certain populations of these animals did in fact undertake seasonal migrations of several hundred kilometres from lowland to upland environments. This ability to describe patterns of sauropod movement will help to elucidate the role that migration played in the ecology and evolution of gigantism of these and associated dinosaurs.
Maclean, Glenn; Dollé, Pascal; Petkovich, Martin
2009-03-01
Cyp26b1 encodes a cytochrome-P450 enzyme that catabolizes retinoic acid (RA), a vitamin A derived signaling molecule. We have examined Cyp26b1(-/-) mice and report that mutants exhibit numerous abnormalities in cranial neural crest cell derived tissues. At embryonic day (E) 18.5 Cyp26b1(-/-) animals exhibit a truncated mandible, abnormal tooth buds, reduced ossification of calvaria, and are missing structures of the maxilla and nasal process. Some of these abnormalities may be due to defects in formation of Meckel's cartilage, which is truncated with an unfused distal region at E14.5 in mutant animals. Despite the severe malformations, we did not detect any abnormalities in rhombomere segmentation, or in patterning and migration of anterior hindbrain derived neural crest cells. Abnormal migration of neural crest cells toward the posterior branchial arches was observed, which may underlie defects in larynx and hyoid development. These data suggest different periods of sensitivity of anterior and posterior hindbrain neural crest derivatives to elevated levels of RA in the absence of CYP26B1. (c) 2009 Wiley-Liss, Inc.
Migration stopovers and the conservation of arctic-breeding Calidrine sandpipers
Skagen, Susan K.
2006-01-01
Long-distance migration, one of the most physically demanding events in the animal kingdom, is well developed in many species of Charadriidae and Scolopacidae. Some shorebirds renowned for their extraordinary long-distance migrations, notably American Golden-Plover (Pluvialis dominica), Red Knot (Calidris canutus rufa), and White-rumped Sandpiper (C. fuscicollis), travel as many as 15,000 km between southern South American wintering grounds and Canadian Arctic breeding areas. Migration strategies of shorebirds vary in many aspects. There are remarkable accounts of shorebirds, such as northbound Red Knots, that stage in a few key sites for 2–3 weeks and lay on extensive body stores, then fly nonstop for distances of ≤2,500 km (Harrington 2001, Piersma et al. 2005). Less well known are the examples of populations that refuel only briefly at stopover sites, disperse broadly on the landscape, and fly shorter distances between sites (Skagen 1997, Haig et al. 1998, Warnock et al. 1998). This latter pattern applies to many long-distance migrant shorebirds that cross the interior plains of North America during spring and fall migrations. For them, interior wetland complexes provide critical refueling resources along the direct routes between summering and wintering grounds (Skagen et al. 1999). In this issue of The Auk, Krapu et al. (2006) describe patterns and implications of fat deposition by Semipalmated Sandpipers (C. pusilla), White-rumped Sandpipers, and Baird's Sandpipers (C. bairdii) refueling during northward migration across the prairies of mid-continental North America.
Sawyer, Hall; Middleton, Arthur D.; Hayes, Matthew M.; Kauffman, Matthew J.; Monteith, Kevin L.
2016-01-01
Partial migration occurs across a variety of taxa and has important ecological and evolutionary consequences. Among ungulates, studies of partially migratory populations have allowed researchers to compare and contrast performance metrics of migrants versus residents and examine how environmental factors influence the relative abundance of each. Such studies tend to characterize animals discretely as either migratory or resident, but we suggest that variable migration distances within migratory herds are an important and overlooked form of population structure, with potential consequences for animal fitness. We examined whether the variation in individual migration distances (20–264 km) within a single wintering population of mule deer (Odocoileus hemionus) was associated with several critical behavioral attributes of migration, including timing of migration, time allocation to seasonal ranges, and exposure to anthropogenic mortality risks. Both the timing of migration and the amount of time animals allocated to seasonal ranges varied with migration distance. Animals migrating long distances (150–250 km) initiated spring migration more than three weeks before than those migrating moderate (50–150 km) or short distances (<50 km). Across an entire year, long-distance migrants spent approximately 100 more days migrating compared to moderate- and short-distance migrants. Relatedly, winter residency of long-distance migrants was 71 d fewer than for animals migrating shorter distances. Exposure to anthropogenic mortality factors, including highways and fences, was high for long-distance migrants, whereas vulnerability to harvest was high for short- and moderate-distance migrants. By reducing the amount of time that animals spend on winter range, long-distance migration may alleviate intraspecific competition for limited forage and effectively increase carrying capacity. Clear differences in winter residency, migration duration, and risk of anthropogenic mortality among short-, moderate-, and long-distance migrants suggest fitness trade-offs may exist among migratory segments of the population. Future studies of partial migration may benefit from expanding comparisons of residents and migrants, to consider how variable migration distances of migrants may influence the costs and benefits of migration.
Kessel, Steven T.; Hondorp, Darryl W.; Holbrook, Christopher; Boase, James C.; Chiotti, Justin A.; Thomas, Michael V.; Wills, Todd C.; Roseman, Edward; Drouin, Richard; Krueger, Charles C.
2018-01-01
Population structure, distribution, abundance, and dispersal arguably underpin the entire field of animal ecology, with consequences for regional species persistence, and provision of ecosystem services. Divergent migration behaviours among individuals or among populations is an important aspect of the ecology of highly-mobile animals, allowing populations to exploit spatially- or temporally-distributed food and space resources.This study investigated the spatial ecology of lake sturgeon (Acipenser fulvescens) within the barrier free Huron-Erie Corridor (HEC), which connects Lake Huron and Lake Erie of the North American Laurentian Great Lakes.Over six years (2011 – 2016), movements of 268 lake sturgeon in the HEC were continuously monitored across the Great Lakes using acoustic telemetry (10 yr battery life acoustic transmitters). Five distinct migration behaviours were identified with hierarchical cluster analysis, based on the phenology and duration of river and lake use.Lake sturgeon in the HEC were found to contain a high level of intraspecific divergent migration, including partial migration with the existence of residents. Specific behaviours included year-round river residency and multiple lake-migrant behaviours that involved movements between lakes and rivers. Over 85% of individuals were assign to migration behaviours as movements were consistently repeated over the study, which suggested migration behaviours were consistent and persistent in lake sturgeon. Differential use of specific rivers or lakes by acoustic-tagged lake sturgeon further subdivided individuals into 14 “contingents” (spatiotemporally segregated subgroups).Contingents associated with one river (Detroit or St. Clair) were rarely detected in the other river, which confirmed that lake sturgeon in the Detroit and St. Clair represent two semi-independent populations that could require separate management consideration for their conservation. The distribution of migration behaviours did not vary between populations, sexes, body size, or among release locations, which indicated that intrapopulation variability in migratory behaviour is a general feature of the spatial ecology of lake sturgeon in un-fragmented landscapes.
NASA Astrophysics Data System (ADS)
Cox, Brian N.; Snead, Malcolm L.
2016-02-01
We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, "enhanced shear motility", accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in homogeneous populations and network formation by invaders, morphological outcomes are governed by the ratio of the rates of two competing time dependent processes, one a migration velocity and the other a relaxation velocity related to the propagation of strain information. Relaxation velocities are approximately constant for different species and organs, whereas cell migration rates vary by three orders of magnitude. We conjecture that developmental processes use rapid cell migration to achieve certain outcomes, and slow migration to achieve others. We infer from analysis of host relaxation during network formation that a transition exists in the mechanical response of a host cell from animate to inanimate behavior when its strain changes at a rate that exceeds 10-4-10-3 s-1. The transition has previously been observed in experiments conducted in vitro.
Isotope signatures in winter moulted feathers predict malaria prevalence in a breeding avian host.
Yohannes, Elizabeth; Hansson, Bengt; Lee, Raymond W; Waldenström, Jonas; Westerdahl, Helena; Akesson, Mikael; Hasselquist, Dennis; Bensch, Staffan
2008-11-01
It is widely accepted that animal distribution and migration strategy might have co-evolved in relation to selection pressures exerted by parasites. Here, we first determined the prevalence and types of malaria blood parasites in a breeding population of great reed warblers Acrocephalus arundinaceus using PCR. Secondly, we tested for differences in individual feather stable isotope signatures (delta (13)C, delta (15)N, deltaD and delta (34)S) to investigate whether malaria infected and non-infected birds had occupied different areas in winter. We show that birds moulting in Afro-tropical habitats with significantly higher delta (13)C and delta (15)N but lower deltaD and delta(34)S values were more frequently infected with malaria parasites. Based on established patterns of isotopic distributions, our results indicate that moulting sites with higher incidence of malaria are generally drier and situated further to the north in West Africa than sites with lower incidence of malaria. Our findings are pertinent to the general hypothesis that animal distribution and particularly avian migration strategy might evolve in response to selection pressures exerted by parasites at different geographic scales. Tradeoffs between investment in energy demanding life history traits (e.g. migration and winter moult) and immune function are suggested to contribute to the particular choice of habitat during migration and at wintering sites.
Migration and the evolution of duetting in songbirds
Logue, David M.; Hall, Michelle L.
2014-01-01
Many groups of animals defend shared resources with coordinated signals. The best-studied of these signals are the vocal duets produced by mated pairs of birds. Duets are believed to be more common among tropical-breeding species, but a comprehensive test of this hypothesis is lacking, and the mechanisms that generate latitudinal patterns in duetting are not known. We used a stratified sample of 372 songbird species to conduct the first broad-scale, phylogenetically explicit analysis of duet evolution. We found that duetting evolves in association with the absence of migration, but not with sexual monochromatism or tropical breeding. We conclude that the evolution of migration exerts a major influence on the evolution of duetting. The perceived association between tropical breeding and duetting may be a by-product of the migration–duetting relationship. Migration reduces the average duration of partnerships, potentially reducing the benefits of cooperative behaviour, including duetting. Ultimately, the evolution of coordinated resource-defence signals in songbirds may be driven by ecological conditions that favour sedentary lifestyles and social stability. PMID:24619447
Espinoza, Mario; Heupel, Michelle R.; Tobin, Andrew J.; Simpfendorfer, Colin A.
2016-01-01
Understanding animal movement decisions that involve migration is critical for evaluating population connectivity, and thus persistence. Recent work on sharks has shown that often only a portion of the adult population will undertake migrations, while the rest may be resident in an area for long periods. Defining the extent to which adult sharks use specific habitats and their migratory behaviour is essential for assessing their risk of exposure to threats such as fishing and habitat degradation. The present study used acoustic telemetry to examine residency patterns and migratory behaviour of adult bull sharks (Carcharhinus leucas) along the East coast of Australia. Fifty-six VR2W acoustic receivers were used to monitor the movements of 33 bull sharks in the central Great Barrier Reef (GBR). Both males and females were detected year-round, but their abundance and residency peaked between September and December across years (2012–2014). High individual variability in reef use patterns was apparent, with some individuals leaving the array for long periods, whereas others (36%) exhibited medium (0.20–0.40) or high residency (> 0.50). A large portion of the population (51%) undertook migrations of up to 1,400 km to other coral reefs and/or inshore coastal habitats in Queensland and New South Wales. Most of these individuals (76%) were mature females, and the timing of migrations coincided with the austral summer (Dec-Feb). All migrating individuals (except one) returned to the central GBR, highlighting its importance as a potential foraging ground. Our findings suggest that adult bull sharks appear to be highly dependent on coral reef resources and provide evidence of partial migration, where only a portion of the female population undertook seasonal migrations potentially to give birth. Given that estuarine habitats face constant anthropogenic pressures, understanding partial migration and habitat connectivity of large coastal predators should be a priority for their management. PMID:26841110
Elizabeth A. Roznik; Steve A. Johnson; Cathryn H. Greenberg; George W. Tanner
2009-01-01
Many animals exhibit changes in patterns of movement and habitat use as they age, and understanding such ontogenetic shifts is important for ensuring that habitat management is appropriate for all life stages. We used radiotelemetry to study movements and habitat use of juvenile and adult gopher frogs (Rana capito) as they migrated from the same ponds following...
Scascitelli, M; Whitney, K D; Randell, R A; King, Matthew; Buerkle, C A; Rieseberg, L H
2010-02-01
Although the sexual transfer of genetic material between species (i.e. introgression) has been documented in many groups of plants and animals, genome-wide patterns of introgression are poorly understood. Is most of the genome permeable to interspecific gene flow, or is introgression typically restricted to a handful of genomic regions? Here, we assess the genomic extent and direction of introgression between three sunflowers from the south-central USA: the common sunflower, Helianthus annuus ssp. annuus; a near-endemic to Texas, Helianthus debilis ssp. cucumerifolius; and their putative hybrid derivative, thought to have recently colonized Texas, H. annuus ssp. texanus. Analyses of variation at 88 genetically mapped microsatellite loci revealed that long-term migration rates were high, genome-wide and asymmetric, with higher migration rates from H. annuus texanus into the two parental taxa than vice versa. These results imply a longer history of intermittent contact between H. debilis and H. annuus than previously believed, and that H. annuus texanus may serve as a bridge for the transfer of alleles between its parental taxa. They also contradict recent theory suggesting that introgression should predominantly be in the direction of the colonizing species. As in previous studies of hybridizing sunflower species, regions of genetic differentiation appear small, whether estimated in terms of FST or unidirectional migration rates. Estimates of recent immigration and admixture were inconsistent, depending on the type of analysis. At the individual locus level, one marker showed striking asymmetry in migration rates, a pattern consistent with tight linkage to a Bateson-Dobzhansky-Muller incompatibility.
NASA Astrophysics Data System (ADS)
Harvey, Michel; Galbraith, Peter S.; Descroix, Aurélie
2009-01-01
Vertical distribution of various species and stages of macrozooplankton (euphausiacea, chaetognatha, cnidaria, mysidacea, amphipoda) were determined for different times of the day and related to the physical environment. Stratified sampling with the BIONESS was carried out during seven cruises in spring and fall 1998, 2000, and 2001, and fall 1999, in two different habitats in the St. Lawrence marine system: the lower St. Lawrence Estuary and the NW Gulf of St. Lawrence. Our results indicate that the various macrozooplankton species were distributed throughout the whole water column including the surface layer, the cold intermediate layer (CIL), and the deep layer at different times of day and night in both areas during all periods. Moreover, three types of migrational patterns were observed within this zooplanktonic community: (1) nocturnal ascent by the whole population, (2) segregation into two groups; one which performed nocturnal accent and another which remained in the deep, and (3) no detectable migration. We also observed that the diel vertical migration (DVM) amplitude in most of the macrozooplankton species varied as a function of physical factors, in particular the spatio-temporal variations of the CIL thermal properties, including the upper and the lower limits of the CIL and the depth of the CIL core temperature. Finally, the different DVM patterns coupled with estuarine circulation patterns and bottom topography could place animals in different flow regimes by night and by day and contribute to their retention (aggregation) and/or dispersion in different areas, time of the day, and seasons.
Huffard, Christine L.; Caldwell, Roy L.; DeLoach, Ned; Gentry, David Wayne; Humann, Paul; MacDonald, Bill; Moore, Bruce; Ross, Richard; Uno, Takako; Wong, Stephen
2008-01-01
Studies on the longevity and migration patterns of wild animals rely heavily on the ability to track individual adults. Non-extractive sampling methods are particularly important when monitoring animals that are commercially important to ecotourism, and/or are rare. The use of unique body patterns to recognize and track individual vertebrates is well-established, but not common in ecological studies of invertebrates. Here we provide a method for identifying individual Wunderpus photogenicus using unique body color patterns. This charismatic tropical octopus is commercially important to the underwater photography, dive tourism, and home aquarium trades, but is yet to be monitored in the wild. Among the adults examined closely, the configurations of fixed white markings on the dorsal mantle were found to be unique. In two animals kept in aquaria, these fixed markings were found not to change over time. We believe another individual was photographed twice in the wild, two months apart. When presented with multiple images of W. photogenicus, volunteer observers reliably matched photographs of the same individuals. Given the popularity of W. photogenicus among underwater photographers, and the ease with which volunteers can correctly identify individuals, photo-identification appears to be a practical means to monitor individuals in the wild. PMID:19009019
Middleton, Arthur D; Kauffman, Matthew J; McWhirter, Douglas E; Cook, John G; Cook, Rachel C; Nelson, Abigail A; Jimenez, Michael D; Klaver, Robert W
2013-06-01
Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring-summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence such seasonal ranges may alter the ecological basis of migratory behavior, representing an important challenge for, and a powerful lens into, the ecology and conservation of migratory taxa.
Middleton, Arthur D.; Kauffman, Matthew J.; McWhirter, Douglas E.; Cook, John G.; Cook, Rachel C.; Nelson, Abigail A.; Jimenez, Michael D.; Klaver, Robert W.
2013-01-01
Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring–summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence such seasonal ranges may alter the ecological basis of migratory behavior, representing an important challenge for, and a powerful lens into, the ecology and conservation of migratory taxa.
Integrating Meteorology into Research on Migration
Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E. Emiel
2010-01-01
Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research. PMID:20811515
Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems
Lea, James S. E.; Wetherbee, Bradley M.; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L.; Mucientes, Gonzalo R.; Humphries, Nicolas E.; Harvey, Guy M.; Sims, David W.; Shivji, Mahmood S.
2015-01-01
Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks. PMID:26057337
Lea, James S E; Wetherbee, Bradley M; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L; Mucientes, Gonzalo R; Humphries, Nicolas E; Harvey, Guy M; Sims, David W; Shivji, Mahmood S
2015-06-09
Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks.
Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems
NASA Astrophysics Data System (ADS)
Lea, James S. E.; Wetherbee, Bradley M.; Queiroz, Nuno; Burnie, Neil; Aming, Choy; Sousa, Lara L.; Mucientes, Gonzalo R.; Humphries, Nicolas E.; Harvey, Guy M.; Sims, David W.; Shivji, Mahmood S.
2015-06-01
Long-distance movements of animals are an important driver of population spatial dynamics and determine the extent of overlap with area-focused human activities, such as fishing. Despite global concerns of declining shark populations, a major limitation in assessments of population trends or spatial management options is the lack of information on their long-term migratory behaviour. For a large marine predator, the tiger shark Galeocerdo cuvier, we show from individuals satellite-tracked for multiple years (up to 1101 days) that adult males undertake annually repeated, round-trip migrations of over 7,500 km in the northwest Atlantic. Notably, these migrations occurred between the highly disparate ecosystems of Caribbean coral reef regions in winter and high latitude oceanic areas in summer, with strong, repeated philopatry to specific overwintering insular habitat. Partial migration also occurred, with smaller, immature individuals displaying reduced migration propensity. Foraging may be a putative motivation for these oceanic migrations, with summer behaviour showing higher path tortuosity at the oceanic range extremes. The predictable migratory patterns and use of highly divergent ecosystems shown by male tiger sharks appear broadly similar to migrations seen in birds, reptiles and mammals, and highlight opportunities for dynamic spatial management and conservation measures of highly mobile sharks.
Identification of animal behavioral strategies by inverse reinforcement learning.
Yamaguchi, Shoichiro; Naoki, Honda; Ikeda, Muneki; Tsukada, Yuki; Nakano, Shunji; Mori, Ikue; Ishii, Shin
2018-05-01
Animals are able to reach a desired state in an environment by controlling various behavioral patterns. Identification of the behavioral strategy used for this control is important for understanding animals' decision-making and is fundamental to dissect information processing done by the nervous system. However, methods for quantifying such behavioral strategies have not been fully established. In this study, we developed an inverse reinforcement-learning (IRL) framework to identify an animal's behavioral strategy from behavioral time-series data. We applied this framework to C. elegans thermotactic behavior; after cultivation at a constant temperature with or without food, fed worms prefer, while starved worms avoid the cultivation temperature on a thermal gradient. Our IRL approach revealed that the fed worms used both the absolute temperature and its temporal derivative and that their behavior involved two strategies: directed migration (DM) and isothermal migration (IM). With DM, worms efficiently reached specific temperatures, which explains their thermotactic behavior when fed. With IM, worms moved along a constant temperature, which reflects isothermal tracking, well-observed in previous studies. In contrast to fed animals, starved worms escaped the cultivation temperature using only the absolute, but not the temporal derivative of temperature. We also investigated the neural basis underlying these strategies, by applying our method to thermosensory neuron-deficient worms. Thus, our IRL-based approach is useful in identifying animal strategies from behavioral time-series data and could be applied to a wide range of behavioral studies, including decision-making, in other organisms.
NASA Astrophysics Data System (ADS)
Steig, Tracey W.; Timko, Mark A.
2005-04-01
Acoustic tags were used to monitor the swimming patterns of downstream migrating salmon smolts approaching various dams on the Columbia River, USA. Downstream migrating yearling chinook (Oncorhynchus tshawytscha), steelhead (Oncorhynchus mykiss), sockeye (Oncorhynchus nerka), and sub-yearling chinook smolts were surgically implanted with acoustic tags. Fish were tracked in three-dimensions as they approached and passed into the turbine intakes, spillways, and surface bypass channel entrances at the dams during the 2004 spring and summer outmigrations. A number of advances in the analysis techniques and software have been made over the past few years. Some of these improvements include the development of various fish density algorithms, stream trace modeling analysis, and advances of three-dimensional animation programs. Three-dimensional tracks of fish approaching the turbine intakes, spillways, and surface bypass channel entrances will be presented. Concentrations of fish passage will be presented as three-dimensional fish densities superimposed over dam structures. Stream trace modeling animation will be presented showing predicted fish passage routes.
Honji, R M; Narcizo, A M; Borella, M I; Romagosa, E; Moreira, R G
2009-03-01
Fecundity and oocyte development in Salminus hilarii female brood stock were analyzed with the aim of investigating the impact of migration impediment on oogenesis. Histological analyses of the ovaries were performed in adult females caught in two different environments--the Tietê River (natural) and captivity--and the gonadossomatic index, oocyte diameter and fecundity determined. Five germ cell development stages (oogonium, perinucleolar, cortical alveoli, vitellogenic, ripe) and two other structures (postovulatory follicles and atretic oocytes) were observed in females caught in the river. Captive animals lacked the ripe oocytes and postovulatory follicles and had a relatively higher number of atretic oocytes. Females in captivity are known to produce larger oocytes, and they release fewer eggs in each spawn (absolute fecundity) when compared with animals that are able to migrate. Our results suggest that the Tietê River is undergoing alterations which are being reflected in the reproductive performance of S. hilarii, mainly due to the presence of atretic oocytes in females caught in the river. The lack of postovulatory follicles and ripe oocytes in captive animals reveals that migratory impediment negatively impacts final oocyte maturation. However, the stage of maturation reached is adequate for ovulation induction with hormone manipulation.
Turner Tomaszewicz, Calandra N; Seminoff, Jeffrey A; Peckham, S Hoyt; Avens, Larisa; Kurle, Carolyn M
2017-05-01
Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat-use patterns is especially difficult for remote oceanic species. To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ 15 N) patterns that differentiate distinct ocean regions to create a 'regional isotope characterization', analysed the δ 15 N values from annual bone growth layer rings from dead-stranded animals, and then combined the bone and regional isotope data to track individual animal movement patterns over multiple years. We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life-history parameters. We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42·7 ± 7·2 vs. 68·3 ± 3·4 cm carapace length, 7·5 ± 2·7 vs. 15·6 ± 1·7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements and threats, and these differences can influence life-history parameters such as growth, survival and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat-use patterns for juveniles foraging in the eastern NPO. We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat-use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Population Genetic Analysis Infers Migration Pathways of Phytophthora ramorum in US Nurseries
Goss, Erica M.; Larsen, Meg; Chastagner, Gary A.; Givens, Donald R.; Grünwald, Niklaus J.
2009-01-01
Recently introduced, exotic plant pathogens may exhibit low genetic diversity and be limited to clonal reproduction. However, rapidly mutating molecular markers such as microsatellites can reveal genetic variation within these populations and be used to model putative migration patterns. Phytophthora ramorum is the exotic pathogen, discovered in the late 1990s, that is responsible for sudden oak death in California forests and ramorum blight of common ornamentals. The nursery trade has moved this pathogen from source populations on the West Coast to locations across the United States, thus risking introduction to other native forests. We examined the genetic diversity of P. ramorum in United States nurseries by microsatellite genotyping 279 isolates collected from 19 states between 2004 and 2007. Of the three known P. ramorum clonal lineages, the most common and genetically diverse lineage in the sample was NA1. Two eastward migration pathways were revealed in the clustering of NA1 isolates into two groups, one containing isolates from Connecticut, Oregon, and Washington and the other isolates from California and the remaining states. This finding is consistent with trace forward analyses conducted by the US Department of Agriculture's Animal and Plant Health Inspection Service. At the same time, genetic diversities in several states equaled those observed in California, Oregon, and Washington and two-thirds of multilocus genotypes exhibited limited geographic distributions, indicating that mutation was common during or subsequent to migration. Together, these data suggest that migration, rapid mutation, and genetic drift all play a role in structuring the genetic diversity of P. ramorum in US nurseries. This work demonstrates that fast-evolving genetic markers can be used to examine the evolutionary processes acting on recently introduced pathogens and to infer their putative migration patterns, thus showing promise for the application of forensics to plant pathogens. PMID:19774068
Energetic and biomechanical constraints on animal migration distance.
Hein, Andrew M; Hou, Chen; Gillooly, James F
2012-02-01
Animal migration is one of the great wonders of nature, but the factors that determine how far migrants travel remain poorly understood. We present a new quantitative model of animal migration and use it to describe the maximum migration distance of walking, swimming and flying migrants. The model combines biomechanics and metabolic scaling to show how maximum migration distance is constrained by body size for each mode of travel. The model also indicates that the number of body lengths travelled by walking and swimming migrants should be approximately invariant of body size. Data from over 200 species of migratory birds, mammals, fish, and invertebrates support the central conclusion of the model - that body size drives variation in maximum migration distance among species through its effects on metabolism and the cost of locomotion. The model provides a new tool to enhance general understanding of the ecology and evolution of migration. © 2011 Blackwell Publishing Ltd/CNRS.
Polito, Michael J; Hinke, Jefferson T; Hart, Tom; Santos, Mercedes; Houghton, Leah A; Thorrold, Simon R
2017-08-01
Identifying the at-sea distribution of wide-ranging marine predators is critical to understanding their ecology. Advances in electronic tracking devices and intrinsic biogeochemical markers have greatly improved our ability to track animal movements on ocean-wide scales. Here, we show that, in combination with direct tracking, stable carbon isotope analysis of essential amino acids in tail feathers provides the ability to track the movement patterns of two, wide-ranging penguin species over ocean basin scales. In addition, we use this isotopic approach across multiple breeding colonies in the Scotia Arc to evaluate migration trends at a regional scale that would be logistically challenging using direct tracking alone. © 2017 The Author(s).
Dietary patterns in India and their association with obesity and central obesity.
Satija, Ambika; Hu, Frank B; Bowen, Liza; Bharathi, Ankalmadugu V; Vaz, Mario; Prabhakaran, Dorairaj; Reddy, K Srinath; Ben-Shlomo, Yoav; Davey Smith, George; Kinra, Sanjay; Ebrahim, Shah
2015-11-01
Obesity is a growing problem in India, the dietary determinants of which have been studied using an 'individual food/nutrient' approach. Examining dietary patterns may provide more coherent findings, but few studies in developing countries have adopted this approach. The present study aimed to identify dietary patterns in an Indian population and assess their relationship with anthropometric risk factors. FFQ data from the cross-sectional sib-pair Indian Migration Study (IMS; n 7067) were used to identify dietary patterns using principal component analysis. Mixed-effects logistic regression was used to examine associations with obesity and central obesity. The IMS was conducted at four factory locations across India: Lucknow, Nagpur, Hyderabad and Bangalore. The participants were rural-to-urban migrant and urban non-migrant factory workers, their rural and urban resident siblings, and their co-resident spouses. Three dietary patterns were identified: 'cereals-savoury foods' (cooked grains, rice/rice-based dishes, snacks, condiments, soups, nuts), 'fruit-veg-sweets-snacks' (Western cereals, vegetables, fruit, fruit juices, cooked milk products, snacks, sugars, sweets) and 'animal-food' (red meat, poultry, fish/seafood, eggs). In adjusted analysis, positive graded associations were found between the 'animal-food' pattern and both anthropometric risk factors. Moderate intake of the 'cereals-savoury foods' pattern was associated with reduced odds of obesity and central obesity. Distinct dietary patterns were identified in a large Indian sample, which were different from those identified in previous literature. A clear 'plant food-based/animal food-based pattern' dichotomy emerged, with the latter being associated with higher odds of anthropometric risk factors. Longitudinal studies are needed to further clarify this relationship in India.
Turner Tomaszewicz, Calandra N.; Seminoff, Jeffrey A.; Peckham, S. Hoyt; Avens, Larisa; Kurle, Carolyn M.
2016-01-01
Summary Determining location and timing of ontogenetic shifts in the habitat use of highly migratory species, along with possible intrapopulation variation in these shifts, is essential for understanding mechanisms driving alternate life histories and assessing overall population trends. Measuring variations in multi-year habitat use patterns is especially difficult for remote oceanic species.To investigate the potential for differential habitat use among migratory marine vertebrates, we measured the naturally occurring stable nitrogen isotope (δ15N) patterns that differentiate distinct ocean regions to create a “regional isotope characterization”, analyzed the δ15N values from annual bone growth layer rings from dead-stranded animals, then combined the bone and regional isotope data to track individual animal movement patterns over multiple years.We used humeri from juvenile North Pacific loggerhead turtles (Caretta caretta), animals that undergo long migrations across the North Pacific Ocean (NPO), using multiple discrete regions as they develop to adulthood. Typical of many migratory marine species, ontogenetic changes in habitat use throughout their decades-long juvenile stage is poorly understood, but each potential habitat has unique foraging opportunities and spatially explicit natural and anthropogenic threats that could affect key life history parameters.We found a bimodal size/age distribution in the timing that juveniles underwent an ontogenetic habitat shift from the oceanic central North Pacific (CNP) to the neritic east Pacific region near the Baja California Peninsula (BCP) (42.7±7.2 vs. 68.3±3.4 cm carapace length, 7.5±2.7 vs. 15.6±1.7 years). Important to the survival of this population, these disparate habitats differ considerably in their food availability, energy requirements, and threats, and these differences can influence life history parameters such as growth, survival, and future fecundity. This is the first evidence of alternative ontogenetic shifts and habitat use patterns for juveniles foraging in the eastern NPO.We combine two techniques, skeletochronology and stable isotope analysis, to reconstruct multi-year habitat use patterns of a remote migratory species, linked to estimated ages and body sizes of individuals, to reveal variable ontogeny during the juvenile life stage that could drive alternate life histories and that has the potential to illuminate the migration patterns for other species with accretionary tissues. PMID:28075017
Hierarchical State-Space Estimation of Leatherback Turtle Navigation Ability
Mills Flemming, Joanna; Jonsen, Ian D.; Field, Christopher A.
2010-01-01
Remotely sensed tracking technology has revealed remarkable migration patterns that were previously unknown; however, models to optimally use such data have developed more slowly. Here, we present a hierarchical Bayes state-space framework that allows us to combine tracking data from a collection of animals and make inferences at both individual and broader levels. We formulate models that allow the navigation ability of animals to be estimated and demonstrate how information can be combined over many animals to allow improved estimation. We also show how formal hypothesis testing regarding navigation ability can easily be accomplished in this framework. Using Argos satellite tracking data from 14 leatherback turtles, 7 males and 7 females, during their southward migration from Nova Scotia, Canada, we find that the circle of confusion (the radius around an animal's location within which it is unable to determine its location precisely) is approximately 96 km. This estimate suggests that the turtles' navigation does not need to be highly accurate, especially if they are able to use more reliable cues as they near their destination. Moreover, for the 14 turtles examined, there is little evidence to suggest that male and female navigation abilities differ. Because of the minimal assumptions made about the movement process, our approach can be used to estimate and compare navigation ability for many migratory species that are able to carry electronic tracking devices. PMID:21203382
Analyzing animal movements using Brownian bridges.
Horne, Jon S; Garton, Edward O; Krone, Stephen M; Lewis, Jesse S
2007-09-01
By studying animal movements, researchers can gain insight into many of the ecological characteristics and processes important for understanding population-level dynamics. We developed a Brownian bridge movement model (BBMM) for estimating the expected movement path of an animal, using discrete location data obtained at relatively short time intervals. The BBMM is based on the properties of a conditional random walk between successive pairs of locations, dependent on the time between locations, the distance between locations, and the Brownian motion variance that is related to the animal's mobility. We describe two critical developments that enable widespread use of the BBMM, including a derivation of the model when location data are measured with error and a maximum likelihood approach for estimating the Brownian motion variance. After the BBMM is fitted to location data, an estimate of the animal's probability of occurrence can be generated for an area during the time of observation. To illustrate potential applications, we provide three examples: estimating animal home ranges, estimating animal migration routes, and evaluating the influence of fine-scale resource selection on animal movement patterns.
Integrating meteorology into research on migration.
Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E Emiel
2010-09-01
Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
Lin, Xinda; Yao, Yun; Wang, Bo; Emlen, Douglas J; Lavine, Laura Corley
2016-01-01
Crowding and changes in food availability are two critical environmental conditions that impact an animal's trajectory toward either migration or reproduction. Many insects facing this challenge have evolved wing polyphenisms. When conditions favor reproduction, wing polyphenic species produce adults that either have no wings or short, non-functional wings. Facultative wing growth reflects a physiological and evolutionary trade-off between migration and reproduction, triggered by environmental conditions. How environmental cues are transduced to produce these alternative forms, and their associated ecological shift from migration to reproduction, remains an important unsolved problem in evolutionary ecology. The brown planthopper, a wing polymorphic insect exhibiting strong trade-offs in investment between migration and reproduction, is one of the most serious rice pests in Asia. In this study, we investigated the function of four genes in the insulin-signaling pathway known to couple nutrition with growth, PI3 Kinase (PI3K), PDK1, Akt (Protein Kinase B), and the forkhead gene FOXO. Using a combination of RNA interference and pharmacological inhibitor treatment, we show that all four genes contribute to tissue level regulation of wing polymorphic development in this insect. As predicted, silencing of the NlPI3K, NlAkt and NlPDK1 through dsRNA and with the pharmacological inhibitor Perifosine resulted in short-winged brown planthoppers, whereas knockdown of NlFOXO resulted in long-winged planthoppers. Morphometric analyses confirm that phenotypes from our manipulations mimic what would be found in nature, i.e., major parameters such as bristle number, wing area and body weight are not significantly different from non-experimental animals. Taken together, these data implicate the insulin-signaling pathway in the transduction of environmental factors into condition-dependent patterns of wing growth in insects.
Long-Term Trends in Migration Timing Based on Thermal Response of a Temperate Forage Fish
NASA Astrophysics Data System (ADS)
Palamara, L. J.; Manderson, J.; Kohut, J. T.; Snow, A.
2016-02-01
The physiology of many marine animals is tightly coupled to their surrounding fluid environment. Several habitat features, most notably temperature, determine these animals' fitness by affecting their growth, survival, and reproductive success. In temperate regions, many species are mobile and able to track the specific temperatures encompassed by their thermal niches as the regional temperature distribution changes. Butterfish (Peprilus triacanthus), which demonstrate very strong seasonal and temperature-dependent migration patterns in the Mid-Atlantic Bight (MAB), a region exhibiting some of the highest seasonal and interannual temperature variability in the world, is an excellent example of this phenomenon. We developed a thermal niche model for butterfish based on the statistical relationship between catches and measured temperatures from spring and fall NMFS and NEAMAP surveys and several state inshore surveys, and fit parameters to the Boltzmann-Arrhenius function, a simple yet explanatory model of temperature dependence, so that the resulting curve closely matched the statistical relationship. This thermal relationship was coupled to over 30 years of daily shallow-water OI SST (optimal interpolation sea surface temperature) measured by satellite and various in situ platforms, and daily bottom temperatures estimated by a hydrodynamic hindcast ROMS (Regional Ocean Modeling System) model to examine long-term trends in thermal migration triggers into shallow inshore waters in the spring, and out of them to deep offshore wintering habitat in the fall. In many parts of the MAB, the "thermal fall" migration trigger was delayed during later decades of the time series compared to earlier decades. This suggests potential changes in butterfish productivity and life history stages, as well as potential changes in NMFS survey bias, as the ships are unable to tow in shallow waters and will catch most butterfish in deeper waters after the variable migration trigger.
Künzel, Timo; Heiermann, Reinhard; Frank, Uri; Müller, Werner; Tilmann, Wido; Bause, Markus; Nonn, Anja; Helling, Matthias; Schwarz, Ryan S; Plickert, Günter
2010-12-01
To analyse cell migration and the differentiation potential of migratory stem cells in Hydractinia, we generated animals with an eGFP reporter gene stably expressed and transmitted via the germline. The transgene was placed under the control of two different actin promoters and the promoter of elongation factor-1α. One actin promoter (Act-II) and the EF-1α promoter enabled expression of the transgene in all cells, the other actin promoter (Act-I) in epithelial and gametogenic cells, but not in the pluripotent migratory stem cells. We produced chimeric animals consisting of histocompatible wild type and transgenic parts. When the transgene was under the control of the epithelial cell specific actin-I promoter, non-fluorescent transgenic stem cells immigrated into wild type tissue, stopped migration and differentiated into epithelial cells which then commenced eGFP-expression. Migratory stem cells are therefore pluripotent and can give rise not only to germ cells, nematocytes and nerve cells, but also to epithelial cells. While in somatic cells expression of the act-I promoter was restricted to epithelial cells it became also active in gametogenesis. The act-I gene is expressed in spermatogonia, oogonia and oocytes. In males the expression pattern showed that migratory stem cells are the precursors of both the spermatogonia and their somatic envelopes. Comparative expression studies using the promoters of the actin-II gene and the elongation factor-1α gene revealed the potential of transgenic techniques to trace the development of the nervous system. Copyright © 2010 Elsevier Inc. All rights reserved.
Between-Site Differences in the Scale of Dispersal and Gene Flow in Red Oak
Moran, Emily V.; Clark, James S.
2012-01-01
Background Nut-bearing trees, including oaks (Quercus spp.), are considered to be highly dispersal limited, leading to concerns about their ability to colonize new sites or migrate in response to climate change. However, estimating seed dispersal is challenging in species that are secondarily dispersed by animals, and differences in disperser abundance or behavior could lead to large spatio-temporal variation in dispersal ability. Parentage and dispersal analyses combining genetic and ecological data provide accurate estimates of current dispersal, while spatial genetic structure (SGS) can shed light on past patterns of dispersal and establishment. Methodology and Principal Findings In this study, we estimate seed and pollen dispersal and parentage for two mixed-species red oak populations using a hierarchical Bayesian approach. We compare these results to those of a genetic ML parentage model. We also test whether observed patterns of SGS in three size cohorts are consistent with known site history and current dispersal patterns. We find that, while pollen dispersal is extensive at both sites, the scale of seed dispersal differs substantially. Parentage results differ between models due to additional data included in Bayesian model and differing genotyping error assumptions, but both indicate between-site dispersal differences. Patterns of SGS in large adults, small adults, and seedlings are consistent with known site history (farmed vs. selectively harvested), and with long-term differences in seed dispersal. This difference is consistent with predator/disperser satiation due to higher acorn production at the low-dispersal site. While this site-to-site variation results in substantial differences in asymptotic spread rates, dispersal for both sites is substantially lower than required to track latitudinal temperature shifts. Conclusions Animal-dispersed trees can exhibit considerable spatial variation in seed dispersal, although patterns may be surprisingly constant over time. However, even under favorable conditions, migration in heavy-seeded species is likely to lag contemporary climate change. PMID:22563504
Implementing a U.S. national phenology network
Betancourt, J.L.; Schwartz, M.D.; Breshears, D.D.; Cayan, D.R.; Dettinger, M.D.; Inouye, D.W.; Post, E.; Reed, B.C.
2005-01-01
The passing of seasons, as gauged by annual events or phenophases in organisms' life cycles, is arguably one of the most pervasive environmental variations on Earth. Shifts in seasonal timing, or phenology, are observed in flowering and other stages of plant development, animal migration and reproduction, hibernation, and the seasonal activity of cold-blooded animals [e.g., Schwartz, 2003; Root et al., 2005]. As an important life history trait, phenology is an object of natural selection; depending on timescales, shifts in phenology can lead to evolutionary change. Thus, phenology is not only an indicator of pattern in environmental science, but also its variation has fitness consequences for individuals, and these can scale up to broader ecological dynamics.
Zenzal, Theodore J; Contina, Andrea J; Kelly, Jeffrey F; Moore, Frank R
2018-01-01
Autumn latitudinal migrations generally exhibit one of two different temporal migration patterns: type 1 where southern populations migrate south before northern populations, or type 2 where northern populations overtake southern populations en route . The ruby-throated hummingbird ( Archilochus colubris ) is a species with an expansive breeding range, which allows opportunities to examine variation in the timing of migration. Our objective was to determine a relationship between natal origin of ruby-throated hummingbirds and arrival at a Gulf coast stopover site; and if so, what factors, such as differences in body size across the range as well as the cost of migration, might drive such a pattern. To carry out our objectives, we captured hummingbirds at a coastal stopover site during autumn migration, at which time we collected feathers from juveniles for analysis of hydrogen stable isotopes. Using the hydrogen stable isotope gradient of precipitation across North America and published hydrogen isotope values of feathers from populations of breeding ruby-throated hummingbirds, we assigned migrants to probable natal latitudes. Our results confirm that individuals from across the range (30-50° N) stopover along the Gulf of Mexico and there is a positive relationship between arrival day and latitude, suggesting a type 1 migration pattern. We also found no relationship between fuel load (proxy for migration cost) or fat-free body mass (proxy for body size) and natal latitude. Our results, coupled with previous work on the spatial migration patterns of hummingbirds, show a type 1 chain migration pattern. While the mechanisms we tested do not seem to influence the evolution of migratory patterns, other factors such as resource availability may play a prominent role in the evolution of this migration system.
Wyman, Megan T.; Kavet, Robert
2017-01-01
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth’s main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. PMID:28575021
Klimley, A Peter; Wyman, Megan T; Kavet, Robert
2017-01-01
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We have studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leading underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. In addition, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less
Klimley, A. Peter; Wyman, Megan T.; Kavet, Robert; ...
2017-06-02
Empirical evidence exists that some marine animals perceive and orient to local distortions in the earth's main static geomagnetic field. The magnetic fields produced by undersea electric power cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth's main field. Concerns exist that animals migrating along the continental shelves might orient to the magnetic field from the cables, and move either inshore or offshore away from their normal path. We studied the effect of the Trans Bay Cable (TBC), an 85-km long, high voltage, direct current (DC) transmission line leadingmore » underwater from Pittsburg, CA to San Francisco, CA, on fishes migrating through the San Francisco Estuary. These included Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. And based on a detailed gradiometer survey, we found that the distortions in the earth's main field produced by bridges across the estuary were much greater than those from the Trans Bay Cable. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Additionally, adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon.« less
Zipperer, Ginger R.; Arumugam, Sridhar; Chirgwin, Sharon R.; Coleman, Sharon U.; Shakya, Krishna P.; Klei, Thomas R.
2013-01-01
Previous studies have shown that intradermally (ID) injected B. pahangi L3s migrate through various tissues and into the lymphatics of gerbils in a distinct pattern. Excretory/secretory products (ES) produced at the time of invasion of B. pahangi are likely to be important in this early migration phase of the parasite life cycle in their rodent host. Hence, early L3 ES was collected from 24 hr in vitro cultures of B. pahangi L3 larvae and used in immunization experiments to investigate the effect of immunity to early L3 ES on worm migration, survival and development of B. pahangi. Immunization of gerbils with ES in RIBI adjuvant produced antibodies to numerous ES proteins eliciting a strong humoral response to ES and indirect fluorescent antibody (IFA) assay using anti-ES serum recognized the ES proteins on the surface of B. pahangi L3 larvae. Following ES immunization, gerbils were challenged either ID or intraperitoneally (IP) with 100 L3s of B. pahangi and euthanized at 3 or 106 days post inoculation (DPI). Immunization with early ES slowed the migration of ID inoculated L3 at 3DPI and significantly altered the locations of adult worms at 106 DPI. Immunization did not induce protection in any treatment group. However, immunized animals had significantly fewer microfilariae per female worm suggesting the antigens in ES are important in microfilariae development or survival in the host. The number of lymphatic granulomas was also significantly reduced in ES immunized animals. It is important to note that microfilariae serve as a nidus in these granulomas. Our results shows immunization with early B. malayi L3 ES alters the worm migration, affects circulating microfilarial numbers and reduces lymphatic granulomas associated with B. pahangi infection in gerbils. PMID:23981910
Marine turtles used to assist Austronesian sailors reaching new islands.
Wilmé, Lucienne; Waeber, Patrick O; Ganzhorn, Joerg U
2016-02-01
Austronesians colonized the islands of Rapa Nui, Hawaii, the Marquesas and Madagascar. All of these islands have been found to harbor Austronesian artifacts and also, all of them are known nesting sites for marine turtles. Turtles are well known for their transoceanic migrations, sometimes totalling thousands of miles, between feeding and nesting grounds. All marine turtles require land for nesting. Ancient Austronesians are known to have had outstanding navigation skills, which they used to adjust course directions. But these skills will have been insufficient to locate tiny, remote islands in the vast Indo-Pacific oceans. We postulate that the Austronesians must have had an understanding of the marine turtles' migration patterns and used this knowledge to locate remote and unknown islands. The depth and speed at which marine turtles migrate makes following them by outrigger canoes feasible. Humans have long capitalized on knowledge of animal behavior. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Ren, Zhumei; Zhong, Yang; Kurosu, Utako; Aoki, Shigeyuki; Ma, Enbo; von Dohlen, Carol D; Wen, Jun
2013-12-01
Intercontinental biotic disjunctions have been documented and analyzed in numerous Holarctic taxa. Patterns previously synthesized for animals compared to plants suggest that the timing of animal disjunctions are mostly Early Tertiary and were generated by migration and vicariance events occurring in the North Atlantic, while plant disjunctions are mostly Mid-Late Tertiary and imply migration and vicariance over Beringia. Melaphidina aphids (Hemiptera: Aphididae: Fordini) exhibit host-alternating life cycles comprising an obligate seasonal shift between Rhus subgenus Rhus species (Anacardiaceae) and mosses (Bryophyta). Similar to their Rhus hosts, melaphidines are distributed disjunctly between Eastern Asia and Eastern North America. We examined evolutionary relationships within Melaphidina to determine the position of the North American lineage, date its divergence from Asian relatives, and compare these results to a previous historical biogeographic study of Rhus. We sampled nine species and three subspecies representing all six genera of Melaphidina. Data included sequences of mitochondrial cytochrome c oxidase subunits I and II+leucine tRNA, cytochrome b, and nuclear elongation factor 1α genes. Phylogenetic analyses (Bayesian, maximum-likelihood, parsimony) of the combined data (3282 bp) supported the monophyly of all genera except Nurudea and Schlechtendalia, due to the position of N. ibofushi. While the exact position of the North American Melaphis was not well resolved, there was high support for a derived position within Asian taxa. The divergence of Melaphis from Asian relatives centered on the Eocene-Oligocene boundary (~33-35Ma), which coincides with closure of Beringian Land Bridge I. This also corresponded to the Asian-North American disjunction previously estimated for subgenus Rhus spp. We suggest the late-Eocene Bering Land Bridge as the most likely migration route for Melaphis ancestors, as was also hypothesized for North American Rhus ancestors. Results for the Melaphidina disjunction depart from the modal pattern in animal lineages, and present a case where insect and host-plant taxa apparently responded similarly to Tertiary climate change. Copyright © 2013 Elsevier Inc. All rights reserved.
Science 101: How Do Animals Navigate during Migration?
ERIC Educational Resources Information Center
Robertson, William C.
2007-01-01
Migrating animals do amazing things. Homing pigeons can find their way "home" across hundreds of miles; salmon return to their spawning location thousands of miles away; turtles travel over eight thousand miles to lay their eggs in the spot where they originally hatched. Scientists have studied how animals navigate around the globe and have…
Inferring the rules of social interaction in migrating caribou.
Torney, Colin J; Lamont, Myles; Debell, Leon; Angohiatok, Ryan J; Leclerc, Lisa-Marie; Berdahl, Andrew M
2018-05-19
Social interactions are a significant factor that influence the decision-making of species ranging from humans to bacteria. In the context of animal migration, social interactions may lead to improved decision-making, greater ability to respond to environmental cues, and the cultural transmission of optimal routes. Despite their significance, the precise nature of social interactions in migrating species remains largely unknown. Here we deploy unmanned aerial systems to collect aerial footage of caribou as they undertake their migration from Victoria Island to mainland Canada. Through a Bayesian analysis of trajectories we reveal the fine-scale interaction rules of migrating caribou and show they are attracted to one another and copy directional choices of neighbours, but do not interact through clearly defined metric or topological interaction ranges. By explicitly considering the role of social information on movement decisions we construct a map of near neighbour influence that quantifies the nature of information flow in these herds. These results will inform more realistic, mechanism-based models of migration in caribou and other social ungulates, leading to better predictions of spatial use patterns and responses to changing environmental conditions. Moreover, we anticipate that the protocol we developed here will be broadly applicable to study social behaviour in a wide range of migratory and non-migratory taxa.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Authors.
Czepiel, Marcin; Leicher, Lasse; Becker, Katja; Boddeke, Erik
2014-01-01
Cell replacement therapy aiming at the compensation of lost oligodendrocytes and restoration of myelination in acquired or congenital demyelination disorders has gained considerable interest since the discovery of induced pluripotent stem cells (iPSCs). Patient-derived iPSCs provide an inexhaustible source for transplantable autologous oligodendrocyte precursors (OPCs). The first transplantation studies in animal models for demyelination with iPSC-derived OPCs demonstrated their survival and remyelinating capacity, but also revealed their limited migration capacity. In the present study, we induced overexpression of the polysialylating enzyme sialyltransferase X (STX) in iPSC-derived OPCs to stimulate the production of polysialic acid-neuronal cell adhesion molecules (PSA-NCAMs), known to promote and facilitate the migration of OPCs. The STX-overexpressing iPSC-derived OPCs showed a normal differentiation and maturation pattern and were able to downregulate PSA-NCAMs when they became myelin-forming oligodendrocytes. After implantation in the demyelinated corpus callosum of cuprizone-fed mice, STX-expressing iPSC-derived OPCs demonstrated a significant increase in migration along the axons. Our findings suggest that the reach and efficacy of iPSC-derived OPC transplantation can be improved by stimulating the OPC migration potential via specific gene modulation. PMID:25069776
To boldly go: individual differences in boldness influence migratory tendency.
Chapman, Ben B; Hulthén, Kaj; Blomqvist, David R; Hansson, Lars-Anders; Nilsson, Jan-Åke; Brodersen, Jakob; Anders Nilsson, P; Skov, Christian; Brönmark, Christer
2011-09-01
Partial migration, whereby only a fraction of the population migrates, is thought to be the most common type of migration in the animal kingdom, and can have important ecological and evolutionary consequences. Despite this, the factors that influence which individuals migrate and which remain resident are poorly understood. Recent work has shown that consistent individual differences in personality traits in animals can be ecologically important, but field studies integrating personality traits with migratory behaviour are extremely rare. In this study, we investigate the influence of individual boldness, an important personality trait, upon the migratory propensity of roach, a freshwater fish, over two consecutive migration seasons. We assay and individually tag 460 roach and show that boldness influences migratory propensity, with bold individuals being more likely to migrate than shy fish. Our data suggest that an extremely widespread personality trait in animals can have significant ecological consequences via influencing individual-level migratory behaviour. © 2011 Blackwell Publishing Ltd/CNRS.
Conflicting evidence about long-distance animal navigation.
Alerstam, Thomas
2006-08-11
Because of conflicting evidence about several fundamental issues, long-distance animal navigation has yet to be satisfactorily explained. Among the unsolved problems are the nature of genetic spatial control of migration and the relationships between celestial and magnetic compass mechanisms and between different map-related cues in orientation and homing, respectively. In addition, navigation is expected to differ between animal groups depending on sensory capabilities and ecological conditions. Evaluations based on modern long-term tracking techniques of the geometry of migration routes and individual migration history, combined with behavioral experiments and exploration of the sensory and genetic mechanisms, will be crucial for understanding the spatial principles that guide animals on their global journeys.
NASA Astrophysics Data System (ADS)
Galbraith, E. D.; bianchi, D.
2013-12-01
A global network of marine multi-proxy sediment records has shown that during the last deglaciation, hypoxic waters of the northern Indo-Pacific expanded, the oxygen minimum zones intensified, and denitrification within the oxygen minima accelerated. These changes would have impacted the fish and zooplankton that migrate on a daily basis down to the upper margins of hypoxic, or even suboxic waters, presumably in order to hide from predators. But the reasons behind these observed changes remain uncertain. Physical circulation changes could have altered the supply rate of oxygen to the subsurface, simultaneously modifying the resupply of nutrients to the ocean surface, while changes in dust deposition could have changed the iron nutrition of phytoplankton, further modifying export fluxes. Changes in respiration patterns could also have played an important part, either by altering the sinking depth of organic particles, or - perhaps - through changes in the respiration patterns of migrating animals, which could have acted as a strong feedback on any of the other changes. We show model simulations that explore the possible roles of these different mechanisms in natural oceanic oxygenation changes of the Quaternary.
Are Plant Species Able to Keep Pace with the Rapidly Changing Climate?
Cunze, Sarah; Heydel, Felix; Tackenberg, Oliver
2013-01-01
Future climate change is predicted to advance faster than the postglacial warming. Migration may therefore become a key driver for future development of biodiversity and ecosystem functioning. For 140 European plant species we computed past range shifts since the last glacial maximum and future range shifts for a variety of Intergovernmental Panel on Climate Change (IPCC) scenarios and global circulation models (GCMs). Range shift rates were estimated by means of species distribution modelling (SDM). With process-based seed dispersal models we estimated species-specific migration rates for 27 dispersal modes addressing dispersal by wind (anemochory) for different wind conditions, as well as dispersal by mammals (dispersal on animal's coat – epizoochory and dispersal by animals after feeding and digestion – endozoochory) considering different animal species. Our process-based modelled migration rates generally exceeded the postglacial range shift rates indicating that the process-based models we used are capable of predicting migration rates that are in accordance with realized past migration. For most of the considered species, the modelled migration rates were considerably lower than the expected future climate change induced range shift rates. This implies that most plant species will not entirely be able to follow future climate-change-induced range shifts due to dispersal limitation. Animals with large day- and home-ranges are highly important for achieving high migration rates for many plant species, whereas anemochory is relevant for only few species. PMID:23894290
Endogenous electric fields as guiding cue for cell migration
Funk, Richard H. W.
2015-01-01
This review covers two topics: (1) “membrane potential of low magnitude and related electric fields (bioelectricity)” and (2) “cell migration under the guiding cue of electric fields (EF).”Membrane potentials for this “bioelectricity” arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the “electric” interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions. PMID:26029113
A Triple-Isotope Approach to Predict the Breeding Origins of European Bats
Popa-Lisseanu, Ana G.; Sörgel, Karin; Luckner, Anja; Wassenaar, Leonard I.; Ibáñez, Carlos; Kramer-Schadt, Stephanie; Ciechanowski, Mateusz; Görföl, Tamás; Niermann, Ivo; Beuneux, Grégory; Mysłajek, Robert W.; Juste, Javier; Fonderflick, Jocelyn; Kelm, Detlev H.; Voigt, Christian C.
2012-01-01
Despite a commitment by the European Union to protect its migratory bat populations, conservation efforts are hindered by a poor understanding of bat migratory strategies and connectivity between breeding and wintering grounds. Traditional methods like mark-recapture are ineffective to study broad-scale bat migratory patterns. Stable hydrogen isotopes (δD) have been proven useful in establishing spatial migratory connectivity of animal populations. Before applying this tool, the method was calibrated using bat samples of known origin. Here we established the potential of δD as a robust geographical tracer of breeding origins of European bats by measuring δD in hair of five sedentary bat species from 45 locations throughout Europe. The δD of bat hair strongly correlated with well-established spatial isotopic patterns in mean annual precipitation in Europe, and therefore was highly correlated with latitude. We calculated a linear mixed-effects model, with species as random effect, linking δD of bat hair to precipitation δD of the areas of hair growth. This model can be used to predict breeding origins of European migrating bats. We used δ13C and δ15N to discriminate among potential origins of bats, and found that these isotopes can be used as variables to further refine origin predictions. A triple-isotope approach could thereby pinpoint populations or subpopulations that have distinct origins. Our results further corroborated stable isotope analysis as a powerful method to delineate animal migrations in Europe. PMID:22291947
Migration Related to Climate Change: Impact, Challenges and Proposed Policy Initiatives
NASA Astrophysics Data System (ADS)
Sarkar, A.
2015-12-01
Migration of human population possesses a great threat to human development and nation building. A significant cause for migration is due to change in climatic conditions and vulnerabilities associated with it. Our case study focuses on the consequent reason and impact of such migration in the coastal areas of West Bengal, India. The changes in rainfall pattern and the variation of temperature have been considered as parameters which have resulted in migration. It is worthy to note that the agricultural pattern has subsequently changed over the last two decades due to change in rainfall and temperature. India being an agriculture oriented economy, the changes in the meteorological variables have not only altered the rate of agricultural pattern but also the rate of migration. A proposed framework depicting relationship between changes in meteorological variables and the migration pattern, and an estimate of how the migration pattern is expected to change over the next century by utilizing the downscaled values of future rainfall and temperature has been analyzed. Moreover, various public policy frameworks has also been proposed through the study for addressing the challenges of migration related to climate change. The proposed public policy framework has been streamlined along the lines of various international treaties and conventions in order to integrate the policy initiatives through universalization of law and policy research.
Geographic migration of black and white families over four generations.
Sharkey, Patrick
2015-02-01
This article analyzes patterns of geographic migration of black and white American families over four consecutive generations. The analysis is based on a unique set of questions in the Panel Study of Income Dynamics (PSID) asking respondents about the counties and states in which their parents and grandparents were raised. Using this information along with the extensive geographic information available in the PSID survey, the article tracks the geographic locations of four generations of family members and considers the ways in which families and places are linked together over the course of a family's history. The patterns documented in the article are consistent with much of the demographic literature on the Great Migration of black Americans out of the South, but they reveal new insights into patterns of black migration after the Great Migration. In the most recent generation, black Americans have remained in place to a degree that is unique relative to the previous generation and relative to whites of the same generation. This new geographic immobility is the most pronounced change in black Americans' migration patterns after the Great Migration, and it is a pattern that has implications for the demography of black migration as well as the literature on racial inequality.
The impact of spatial and temporal patterns on multi-cellular behavior
NASA Astrophysics Data System (ADS)
Nikolic, Djordje L.
What makes a fruit fly a fruit fly? Essentially this question stems from one of the most fascinating problems in biology: how a single cell (fertilized egg) can give rise to a fully grown animal. To be able to answer this question, the importance to how spatial and temporal patterns of gene and protein expression influence the development of an organism must be understood. After all, fruit fly larvae are segmented, while fertilized eggs are not. Pattern formation is fundamental to establishing this organization of the developing embryo with the ultimate goal being the precise arrangements of specialized cells and tissues within each organ in an adult organism. The research presented here showcases the examples of studies that assess the impact spatial and temporal protein patterns have on the behavior of a collection of cells. By introducing new experimental, non-traditional techniques we developed model systems that allowed us to examine the dependence of the strength of adhesion of cells on the protein organization on sub-cellular, micron length scales, and to investigate how epithelial cell sheets coordinate their migration incorporating individual cell locomotion, molecular signal propagation and different boundary conditions. The first part of this dissertation presents a photolithography-based silanization patterning technique that allowed us to homogeneously pattern large areas with high precision. This method is then applied to organizing cell adhesion-promoting proteins on surfaces for the purposes of studying and manipulating cell behavior. We show how the strength of adhesion is dependent on high local density of an adhesive extracellular matrix protein fibronectin. The varied appeal of this technique is exhibited by showing its applicability to pattern stretched DNA, too. The second part of this dissertation focuses on the impact of spatial and temporal propagation of a molecular signal (ERK 1/2 MAPK) in migrating epithelial sheets during wound healing. By tracking the motion of individual cells within the sheet under the three constructed conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet in accordance with the activation of ERK 1/2 MAPK.
Optimal chemotaxis in intermittent migration of animal cells
NASA Astrophysics Data System (ADS)
Romanczuk, P.; Salbreux, G.
2015-04-01
Animal cells can sense chemical gradients without moving and are faced with the challenge of migrating towards a target despite noisy information on the target position. Here we discuss optimal search strategies for a chaser that moves by switching between two phases of motion ("run" and "tumble"), reorienting itself towards the target during tumble phases, and performing persistent migration during run phases. We show that the chaser average run time can be adjusted to minimize the target catching time or the spatial dispersion of the chasers. We obtain analytical results for the catching time and for the spatial dispersion in the limits of small and large ratios of run time to tumble time and scaling laws for the optimal run times. Our findings have implications for optimal chemotactic strategies in animal cell migration.
Turing patterns and a stochastic individual-based model for predator-prey systems
NASA Astrophysics Data System (ADS)
Nagano, Seido
2012-02-01
Reaction-diffusion theory has played a very important role in the study of pattern formations in biology. However, a group of individuals is described by a single state variable representing population density in reaction-diffusion models and interaction between individuals can be included only phenomenologically. Recently, we have seamlessly combined individual-based models with elements of reaction-diffusion theory. To include animal migration in the scheme, we have adopted a relationship between the diffusion and the random numbers generated according to a two-dimensional bivariate normal distribution. Thus, we have observed the transition of population patterns from an extinction mode, a stable mode, or an oscillatory mode to the chaotic mode as the population growth rate increases. We show our phase diagram of predator-prey systems and discuss the microscopic mechanism for the stable lattice formation in detail.
Lonsdorf, Eric V.; Thogmartin, Wayne E.; Jacobi, Sarah; Coppen, Jorge; Davis, Amélie Y.; Fox, Timothy J.; Heglund, Patricia J.; Johnson, Rex; Jones, Tim; Kenow, Kevin P.; Lyons, James E.; Luke, Kirsten E.; Still, Shannon; Tavernia, Brian G.
2016-01-01
Conserving migratory birds is made especially difficult because of movement among spatially disparate locations across the annual cycle. In light of challenges presented by the scale and ecology of migratory birds, successful conservation requires integrating objectives, management, and monitoring across scales, from local management units to ecoregional and flyway administrative boundaries. We present an integrated approach using a spatially explicit energetic-based mechanistic bird migration model useful to conservation decision-making across disparate scales and locations. This model moves a mallard-like bird (Anas platyrhynchos), through spring and fall migration as a function of caloric gains and losses across a continental scale energy landscape. We predicted with this model that fall migration, where birds moved from breeding to wintering habitat, took a mean of 27.5 days of flight with a mean seasonal survivorship of 90.5% (95% CI = 89.2%, 91.9%) whereas spring migration took a mean of 23.5 days of flight with mean seasonal survivorship of 93.6% (95% CI = 92.5%, 94.7%). Sensitivity analyses suggested that survival during migration was sensitive to flight speed, flight cost, the amount of energy the animal could carry and the spatial pattern of energy availability, but generally insensitive to total energy availability per se. Nevertheless, continental patterns in the bird-use days occurred principally in relation to wetland cover and agricultural habitat in the fall. Bird-use days were highest in both spring and fall in the Mississippi Alluvial Valley and along the coast and near-shore environments of South Carolina. Spatial sensitivity analyses suggested that locations nearer to migratory endpoints were less important to survivorship; for instance, removing energy from a 1,036 km2 stopover site at a time from the Atlantic Flyway suggested coastal areas between New Jersey and North Carolina, including Chesapeake Bay and the North Carolina piedmont, are essential locations for efficient migration and increasing survivorship during spring migration but not locations in Ontario and Massachusetts. This sort of spatially explicit information may allow decision-makers to prioritize their conservation actions toward locations most influential to migratory success. Thus, this mechanistic model of avian migration provides a decision-analytic medium integrating the potential consequences of local actions to flyway-scale phenomena.
Rakhimberdiev, Eldar; Winkler, David W; Bridge, Eli; Seavy, Nathaniel E; Sheldon, Daniel; Piersma, Theunis; Saveliev, Anatoly
2015-01-01
Solar archival tags (henceforth called geolocators) are tracking devices deployed on animals to reconstruct their long-distance movements on the basis of locations inferred post hoc with reference to the geographical and seasonal variations in the timing and speeds of sunrise and sunset. The increased use of geolocators has created a need for analytical tools to produce accurate and objective estimates of migration routes that are explicit in their uncertainty about the position estimates. We developed a hidden Markov chain model for the analysis of geolocator data. This model estimates tracks for animals with complex migratory behaviour by combining: (1) a shading-insensitive, template-fit physical model, (2) an uncorrelated random walk movement model that includes migratory and sedentary behavioural states, and (3) spatially explicit behavioural masks. The model is implemented in a specially developed open source R package FLightR. We used the particle filter (PF) algorithm to provide relatively fast model posterior computation. We illustrate our modelling approach with analysis of simulated data for stationary tags and of real tracks of both a tree swallow Tachycineta bicolor migrating along the east and a golden-crowned sparrow Zonotrichia atricapilla migrating along the west coast of North America. We provide a model that increases accuracy in analyses of noisy data and movements of animals with complicated migration behaviour. It provides posterior distributions for the positions of animals, their behavioural states (e.g., migrating or sedentary), and distance and direction of movement. Our approach allows biologists to estimate locations of animals with complex migratory behaviour based on raw light data. This model advances the current methods for estimating migration tracks from solar geolocation, and will benefit a fast-growing number of tracking studies with this technology.
Athukorala, P
1993-11-01
"This paper reviews the literature on international labour migration from and within the Asian-Pacific region. It deals with patterns and characteristics of migration flows, government policies towards labour migration, and economic implications of labour migration for both labour-exporting and importing countries in the region. The indications are that, despite gradual slowing down of labour flows to the western industrial countries and the Middle East, labour migration will continue to be a major economic influence on surplus-labour countries in the region. As an integral part of the growth dynamism in the region, labour migration has now begun to take on a regional dimension, with immense implications for the process of industrial restructuring in high growth economies and the changing pattern of economic interdependence among countries." excerpt
MIGRATION OF COLLEGE AND UNIVERSITY STUDENTS, STATE OF WASHINGTON.
ERIC Educational Resources Information Center
GOSSMAN, CHARLES S.; AND OTHERS
TWO GENERAL ASPECTS OF COLLEGE AND UNIVERSITY STUDENT MIGRATION AS IT RELATES TO THE STATE OF WASHINGTON ARE DISCUSSED. THE FIRST ASPECT INCLUDES ANALYSIS OF MIGRATION PATTERNS IN ACCORDANCE WITH ENROLLMENT CATEGORIES AND TYPES OF INSTITUTIONS, DIFFERENTIAL VOLUMES AND PATTERNS OF MIGRATION FOR SPECIFIC COLLEGES AND UNIVERSITIES IN THE STATE, AND…
Chen, Wenbo; Doko, Tomoko; Fujita, Go; Hijikata, Naoya; Tokita, Ken-Ichi; Uchida, Kiyoshi; Konishi, Kan; Hiraoka, Emiko; Higuchi, Hiroyoshi
2016-02-01
Migration through the Eastern Palearctic (EP) flyway by tundra swans (Cygnus columbianus) has not been thoroughly documented. We satellite-tracked the migration of 16 tundra swans that winter in Japan. The objectives of this study were 1) to show the migration pattern of the EP flyway of tundra swans; 2) to compare this pattern with the migration pattern of whooper swans; and 3) to identify stopover sites that are important for these swans' conservation. Tundra swans were captured at Kutcharo Lake, Hokkaido, in 2009-2012 and satellite-tracked. A new method called the "MATCHED (Migratory Analytical Time Change Easy Detection) method" was developed. Based on median, the spring migration began on 18 April and ended on 27 May. Autumn migration began on 9 September and ended on 2 November. The median duration of the spring and autumn migrations were 48 and 50 days, respectively. The mean duration at one stopover site was 5.5 days and 6.8 days for the spring and autumn migrations, respectively. The number of stopover sites was 3.0 and 2.5 for the spring and autumn migrations, respectively. The mean travel distances for the spring and autumn migrations were 6471 and 6331 km, respectively. Seven migration routes passing Sakhalin, the Amur River, and/or Kamchatka were identified. There were 15, 32, and eight wintering, stopover, and breeding sites, respectively. The migration routes and staging areas of tundra swans partially overlap with those of whooper swans, whose migration patterns have been previously documented. The migration patterns of these two swan species that winter in Japan confirm the importance of the Amur River, Udyl' Lake, Shchastya Bay, Aniva Bay, zaliv Chayvo Lake, zal Piltun Lake, zaliv Baykal Lake, Kolyma River, Buyunda River, Sen-kyuyel' Lake, and northern coastal areas of the Sea of Okhotsk.
RSA migration of total knee replacements.
Pijls, Bart G; Plevier, José W M; Nelissen, Rob G H H
2018-06-01
Purpose - We performed a systematic review and meta-analyses to evaluate the early and long-term migration patterns of tibial components of TKR of all known RSA studies. Methods - Migration pattern was defined as at least 2 postoperative RSA follow-up moments. Maximal total point motion (MTPM) at 6 weeks, 3 months, 6 months, 1 year, 2 years, 5 years, and 10 years were considered. Results - The literature search yielded 1,167 hits of which 53 studies were included, comprising 111 study groups and 2,470 knees. The majority of the early migration occurred in the first 6 months postoperatively followed by a period of stability, i.e., no or very little migration. Cemented and uncemented tibial components had different migration patterns. For cemented tibial components there was no difference in migration between all-poly and metal-backed components, between mobile bearing and fixed bearing, between cruciate retaining and posterior stabilized. Furthermore, no difference existed between TKR measured with model-based RSA or marker-based RSA methods. For uncemented TKR there was some variation in migration with the highest migration for uncoated TKR. Interpretation - The results from this meta-analysis on RSA migration of TKR are in line with both the survival analyses results from joint registries of these TKRs as well as revision rates results from meta-analyses, thus providing further proof for the association between early migration and late revision for loosening. The pooled migration patterns can be used both as benchmarks and for defining migration thresholds for future evaluation of new TKR.
Smith, Adam D.; Paton, Peter W. C.; McWilliams, Scott R.
2014-01-01
Atmospheric conditions fundamentally influence the timing, intensity, energetics, and geography of avian migration. While radar is typically used to infer the influence of weather on the magnitude and spatiotemporal patterns of nocturnal bird migration, monitoring the flight calls produced by many bird species during nocturnal migration represents an alternative methodology and provides information regarding the species composition of nocturnal migration. We used nocturnal flight call (NFC) recordings of at least 22 migratory songbirds (14 warbler and 8 sparrow species) during fall migration from eight sites along the mainland and island coasts of Rhode Island to evaluate five hypotheses regarding NFC detections. Patterns of warbler and sparrow NFC detections largely supported our expectations in that (1) NFC detections associated positively and strongly with wind conditions that influence the intensity of coastal bird migration and negatively with regional precipitation; (2) NFCs increased during conditions with reduced visibility (e.g., high cloud cover); (3) NFCs decreased with higher wind speeds, presumably due mostly to increased ambient noise; and (4) coastal mainland sites recorded five to nine times more NFCs, on average, than coastal nearshore or offshore island sites. However, we found little evidence that (5) nightly or intra-night patterns of NFCs reflected the well-documented latitudinal patterns of migrant abundance on an offshore island. Despite some potential complications in inferring migration intensity and species composition from NFC data, the acoustic monitoring of NFCs provides a viable and complementary methodology for exploring the spatiotemporal patterns of songbird migration as well as evaluating the atmospheric conditions that shape these patterns. PMID:24643060
Afolayan, A A
1985-09-01
"The paper sets out to test whether or not the movement pattern of people in Nigeria is step-wise. It examines the spatial order in the country and the movement pattern of people. It then analyzes the survey data and tests for the validity of step-wise migration in the country. The findings show that step-wise migration cannot adequately describe all the patterns observed." The presence of large-scale circulatory migration between rural and urban areas is noted. Ways to decrease the pressure on Lagos by developing intermediate urban areas are considered. excerpt
Horning, M; Trillmich, F
1999-01-01
In our study of the development of diving in Galápagos fur seals, we analysed changes in diving activity and body mass trends over the lunar cycle. Based on previously observed lunar cycles in colony attendance patterns, we hypothesized a greater impact of prey migrations of deep scattering layer organisms on younger fur seals. Using electronic dive recorders, we determined that seals dived less and deeper on moonlit nights than at new moon, and incurred body mass losses. These changes in foraging over the lunar cycle correlate with the suppression of the vertical migration of prey by lunar light. All effects were more pronounced in juveniles than adult females, with greater relative mass loss during full moon, which must (i) negatively affect long-term juvenile growth rates, (ii) lengthen periods of maternal dependence, and (iii) contribute to the lowest reproductive rate reported for seals. This underlines the importance of studying ontogeny in order to understand life histories, and for determining the susceptibility of animal populations to fluctuations in food availability. PMID:10406130
Rotics, Shay; Kaatz, Michael; Resheff, Yehezkel S; Turjeman, Sondra Feldman; Zurell, Damaris; Sapir, Nir; Eggers, Ute; Flack, Andrea; Fiedler, Wolfgang; Jeltsch, Florian; Wikelski, Martin; Nathan, Ran
2016-07-01
Migration conveys an immense challenge, especially for juvenile birds coping with enduring and risky journeys shortly after fledging. Accordingly, juveniles exhibit considerably lower survival rates compared to adults, particularly during migration. Juvenile white storks (Ciconia ciconia), which are known to rely on adults during their first fall migration presumably for navigational purposes, also display much lower annual survival than adults. Using detailed GPS and body acceleration data, we examined the patterns and potential causes of age-related differences in fall migration properties of white storks by comparing first-year juveniles and adults. We compared juvenile and adult parameters of movement, behaviour and energy expenditure (estimated from overall dynamic body acceleration) and placed this in the context of the juveniles' lower survival rate. Juveniles used flapping flight vs. soaring flight 23% more than adults and were estimated to expend 14% more energy during flight. Juveniles did not compensate for their higher flight costs by increased refuelling or resting during migration. When juveniles and adults migrated together in the same flock, the juvenile flew mostly behind the adult and was left behind when they separated. Juveniles showed greater improvement in flight efficiency throughout migration compared to adults which appears crucial because juveniles exhibiting higher flight costs suffered increased mortality. Our findings demonstrate the conflict between the juveniles' inferior flight skills and their urge to keep up with mixed adult-juvenile flocks. We suggest that increased flight costs are an important proximate cause of juvenile mortality in white storks and likely in other soaring migrants and that natural selection is operating on juvenile variation in flight efficiency. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Flexibility of Continental Navigation and Migration in European Mallards
van Toor, Mariëlle L.; Hedenström, Anders; Waldenström, Jonas; Fiedler, Wolfgang; Holland, Richard A.; Thorup, Kasper; Wikelski, Martin
2013-01-01
The ontogeny of continent-wide navigation mechanisms of the individual organism, despite being crucial for the understanding of animal movement and migration, is still poorly understood. Several previous studies, mainly conducted on passerines, indicate that inexperienced, juvenile birds may not generally correct for displacement during fall migration. Waterbirds such as the mallard (Anas platyrhynchos, Linnaeus 1758) are more flexible in their migration behavior than most migratory songbirds, but previous experiments with waterbirds have not yet allowed clear conclusions about their navigation abilities. Here we tested whether immature mallard ducks correct for latitudinal displacement during fall migration within Europe. During two consecutive fall migration periods, we caught immature females on a stopover site in southeast Sweden, and translocated a group of them ca. 1,000 km to southern Germany. We followed the movements of the ducks via satellite GPS-tracking and observed their migration decisions during the fall and consecutive spring migration. The control animals released in Ottenby behaved as expected from banding recoveries: they continued migration during the winter and in spring returned to the population’s breeding grounds in the Baltics and Northwest Russia. Contrary to the control animals, the translocated mallards did not continue migration and stayed at Lake Constance. In spring, three types of movement tactics could be observed: 61.5% of the ducks (16 of 26) stayed around Lake Constance, 27% (7 of 26) migrated in a northerly direction towards Sweden and 11.5% of the individuals (3 of 26) headed east for ca. 1,000 km and then north. We suggest that young female mallards flexibly adjust their migration tactics and develop a navigational map that allows them to return to their natal breeding area. PMID:24023629
NASA Astrophysics Data System (ADS)
Horton, T. W.; Holdaway, R. N.; Zerbini, A.; Andriolo, A.; Clapham, P. J.
2010-12-01
Determining how animals perform long-distance animal migration remains one of the most enduring and fundamental mysteries of behavioural ecology. It is widely accepted that navigation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and significant experimental research has documented a variety of viable orientation and navigation cues. However, relatively few investigations have attempted to reconcile experimentally determined orientation and navigation capacities of animals with empirical remotely sensed animal track data, leaving most theories of navigation and orientation untested. Here we show, using basic hypothesis testing, that leatherback turtle (Dermochelys coriacea), great white shark (Carcharodon carcharias), arctic tern (Sterna paradisaea), and humpback whale (Megaptera novaeangliae) migration paths are non-randomly distributed in magnetic coordinate space, with local peaks in magnetic coordinate distributions equal to fractional multiples of the angular obliquity of Earth’s axis of rotation. Time series analysis of humpback whale migratory behaviours, including migration initiation, changes in course, and migratory stop-overs, further demonstrate coupling of magnetic and celestial orientation cues during long-distance migration. These unexpected and highly novel results indicate that diverse taxa integrate magnetic and celestial orientation cues during long-distance migration. These results are compatible with a 'map and compass' orientation and navigation system. Humpback whale migration track geometries further indicate a map and compass orientation system is used. Several humpback whale tracks include highly directional segments (Mercator latitude vs. longitude r2>0.99) exceeding 2000 km in length, despite exposure to variable strength (c. 0-1 km/hr) surface cross-currents. Humpback whales appear to be able to compensate for surface current drift. The remarkable directional precision of these humpback whale track segments is far better than the ±25°-40° precision of the avian magnetic compass. The positional and directional orientation data presented suggests signal transduction provides spatial information to migrating animals with better than 1° precision.
The Effect of Skeletal Maturity on the Regenerative Function of Intrinsic ACL Cells
Mastrangelo, Ashley N.; Magarian, Elise M.; Palmer, Matthew P.; Vavken, Patrick; Murray, Martha M.
2010-01-01
Anterior cruciate ligament (ACL) injuries are an important clinical problem, particularly for adolescent patients. The effect of skeletal maturity on the potential for ACL healing is as yet unknown. In this study, we hypothesized that fibroblastic cells from the ACLs of skeletally immature animals would proliferate and migrate more quickly than cells from adolescent and adult animals. ACL tissue from skeletally immature, adolescent, and adult pigs and sheep were obtained and cells obtained using explant culture. Cell proliferation within a collagen–platelet scaffold was measured at days 2, 7, and 14 of culture using AMMTT assay. Cellular migration was measured at 4 and 24 h using a modified Boyden chamber assay, and cell outgrowth from the explants also measured at 1 week. ACL cells from skeletally immature animals had higher proliferation between 7 and 14 days (p < 0.01 for all comparisons) and higher migration potential at all time points in both species (p < 0.01 for all comparisons).ACL cells from skeletally immature animals have greater cellular proliferation and migration potential than cells from adolescent or adult animals. These experiments suggest that skeletal maturity may influence the biologic repair capacity of intrinsic ACL cells. PMID:19890988
Lauri Monnot; Jason B. Dunham; Tammy Hoem; Peter Koetsier
2008-01-01
Many fishes migrate extensively through stream networks, yet patterns are commonly described only in terms of the origin and destination of migration (e.g., between natal and feeding habitats). To better understand patterns of migration in bull trout, Salvelinus confluentus we studied the influences of body size (total length [TL]) and environmental...
Hughes, Alison J; Chen, Yea-Hung; Scheer, Susan; Raymond, H Fisher
2017-06-01
In the early 1980s, men who have sex with men (MSM) in San Francisco were one of the first populations to be affected by the human immunodeficiency virus (HIV) epidemic, and they continue to bear a heavy HIV burden. Once a rapidly fatal disease, survival with HIV improved drastically following the introduction of combination antiretroviral therapy in 1996. As a result, the ability of HIV-positive persons to move into and out of San Francisco has increased due to lengthened survival. Although there is a high level of migration among the general US population and among HIV-positive persons in San Francisco, in- and out-migration patterns of MSM in San Francisco have, to our knowledge, never been described. Understanding migration patterns by HIV serostatus is crucial in determining how migration could influence both HIV transmission dynamics and estimates of the HIV prevalence and incidence. In this article, we describe methods, results, and implications of a novel approach for indirect estimation of in- and out-migration patterns, and consequently population size, of MSM by HIV serostatus and race in San Francisco. The results suggest that the overall MSM population and all the MSM subpopulations studied decreased in size from 2006 to 2014. Further, there were differences in migration patterns by race and by HIV serostatus. The modeling methods outlined can be applied by others to determine how migration patterns contribute to HIV-positive population size and output from these models can be used in a transmission model to better understand how migration can impact HIV transmission.
Worldwide Patterns of Ancestry, Divergence, and Admixture in Domesticated Cattle
Decker, Jared E.; McKay, Stephanie D.; Rolf, Megan M.; Kim, JaeWoo; Molina Alcalá, Antonio; Sonstegard, Tad S.; Hanotte, Olivier; Götherström, Anders; Seabury, Christopher M.; Praharani, Lisa; Babar, Masroor Ellahi; Correia de Almeida Regitano, Luciana; Yildiz, Mehmet Ali; Heaton, Michael P.; Liu, Wan-Sheng; Lei, Chu-Zhao; Reecy, James M.; Saif-Ur-Rehman, Muhammad; Schnabel, Robert D.; Taylor, Jeremy F.
2014-01-01
The domestication and development of cattle has considerably impacted human societies, but the histories of cattle breeds and populations have been poorly understood especially for African, Asian, and American breeds. Using genotypes from 43,043 autosomal single nucleotide polymorphism markers scored in 1,543 animals, we evaluate the population structure of 134 domesticated bovid breeds. Regardless of the analytical method or sample subset, the three major groups of Asian indicine, Eurasian taurine, and African taurine were consistently observed. Patterns of geographic dispersal resulting from co-migration with humans and exportation are recognizable in phylogenetic networks. All analytical methods reveal patterns of hybridization which occurred after divergence. Using 19 breeds, we map the cline of indicine introgression into Africa. We infer that African taurine possess a large portion of wild African auroch ancestry, causing their divergence from Eurasian taurine. We detect exportation patterns in Asia and identify a cline of Eurasian taurine/indicine hybridization in Asia. We also identify the influence of species other than Bos taurus taurus and B. t. indicus in the formation of Asian breeds. We detect the pronounced influence of Shorthorn cattle in the formation of European breeds. Iberian and Italian cattle possess introgression from African taurine. American Criollo cattle originate from Iberia, and not directly from Africa with African ancestry inherited via Iberian ancestors. Indicine introgression into American cattle occurred in the Americas, and not Europe. We argue that cattle migration, movement and trading followed by admixture have been important forces in shaping modern bovine genomic variation. PMID:24675901
The El Niño–Southern Oscillation (ENSO)–pandemic Influenza connection: Coincident or causal?
Shaman, Jeffrey; Lipsitch, Marc
2013-01-01
We find that the four most recent human influenza pandemics (1918, 1957, 1968, and 2009), all of which were first identified in boreal spring or summer, were preceded by La Niña conditions in the equatorial Pacific. Changes in the phase of the El Niño–Southern Oscillation have been shown to alter the migration, stopover time, fitness, and interspecies mixing of migratory birds, and consequently, likely affect their mixing with domestic animals. We hypothesize that La Niña conditions bring divergent influenza subtypes together in some parts of the world and favor the reassortment of influenza through simultaneous multiple infection of individual hosts and the generation of novel pandemic strains. We propose approaches to test this hypothesis using influenza population genetics, virus prevalence in various host species, and avian migration patterns. PMID:22308322
Johnson, Haley; Solensky, Michelle J.; Satterfield, Dara A.; Davis, Andrew K.
2014-01-01
In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success. PMID:24695643
Johnson, Haley; Solensky, Michelle J; Satterfield, Dara A; Davis, Andrew K
2014-01-01
In animals with complex life cycles, all resources needed to form adult tissues are procured at the larval stage. For butterflies, the proper development of wings involves synthesizing tissue during metamorphosis based on the raw materials obtained by larvae. Similarly, manufacture of pigment for wing scales also requires resources acquired by larvae. We conducted an experiment to test the effects of food deprivation in the larval stage on multiple measures of adult wing morphology and coloration of monarch butterflies (Danaus plexippus), a species in which long-distance migration makes flight efficiency critical. In a captive setting, we restricted food (milkweed) from late-stage larvae for either 24 hrs or 48 hrs, then after metamorphosis we used image analysis methods to measure forewing surface area and elongation (length/width), which are both important for migration. We also measured the brightness of orange pigment and the intensity of black on the wing. There were correlations between several wing features, including an unexpected association between wing elongation and melanism, which will require further study to fully understand. The clearest effect of food restriction was a reduction in adult wing size in the high stress group (by approximately 2%). Patterns observed for other wing traits were ambiguous: monarchs in the low stress group (but not the high) had less elongated and paler orange pigmentation. There was no effect on wing melanism. Although some patterns obtained in this study were unclear, our results concerning wing size have direct bearing on the monarch migration. We show that if milkweed is limited for monarch larvae, their wings become stunted, which could ultimately result in lower migration success.
Primordial Germ Cell Specification and Migration
Marlow, Florence
2015-01-01
Primordial germ cells are the progenitor cells that give rise to the gametes. In some animals, the germline is induced by zygotic transcription factors, whereas in others, primordial germ cell specification occurs via inheritance of maternally provided gene products known as germ plasm. Once specified, the primordial germ cells of some animals must acquire motility and migrate to the gonad in order to survive. In all animals examined, perinuclear structures called germ granules form within germ cells. This review focuses on some of the recent studies, conducted by several groups using diverse systems, from invertebrates to vertebrates, which have provided mechanistic insight into the molecular regulation of germ cell specification and migration. PMID:26918157
A framework for understanding semi-permeable barrier effects on migratory ungulates
Sawyer, Hall; Kauffman, Matthew J.; Middleton, Arthur D.; Morrison, Thomas A.; Nielson, Ryan M.; Wyckoff, Teal B.
2013-01-01
1. Impermeable barriers to migration can greatly constrain the set of possible routes and ranges used by migrating animals. For ungulates, however, many forms of development are semi-permeable, and making informed management decisions about their potential impacts to the persistence of migration routes is difficult because our knowledge of how semi-permeable barriers affect migratory behaviour and function is limited. 2. Here, we propose a general framework to advance the understanding of barrier effects on ungulate migration by emphasizing the need to (i) quantify potential barriers in terms that allow behavioural thresholds to be considered, (ii) identify and measure behavioural responses to semi-permeable barriers and (iii) consider the functional attributes of the migratory landscape (e.g. stopovers) and how the benefits of migration might be reduced by behavioural changes. 3. We used global position system (GPS) data collected from two subpopulations of mule deer Odocoileus hemionus to evaluate how different levels of gas development influenced migratory behaviour, including movement rates and stopover use at the individual level, and intensity of use and width of migration route at the population level. We then characterized the functional landscape of migration routes as either stopover habitat or movement corridors and examined how the observed behavioural changes affected the functionality of the migration route in terms of stopover use. 4. We found migratory behaviour to vary with development intensity. Our results suggest that mule deer can migrate through moderate levels of development without any noticeable effects on migratory behaviour. However, in areas with more intensive development, animals often detoured from established routes, increased their rate of movement and reduced stopover use, while the overall use and width of migration routes decreased. 5. Synthesis and applications. In contrast to impermeable barriers that impede animal movement, semi-permeable barriers allow animals to maintain connectivity between their seasonal ranges. Our results identify the mechanisms (e.g. detouring, increased movement rates, reduced stopover use) by which semi-permeable barriers affect the functionality of ungulate migration routes and emphasize that the management of semi-permeable barriers may play a key role in the conservation of migratory ungulate populations.
Judd, Kathleen; Monroe, Cara; Hilldorfer, Lindsay; Cordray, Connor; Schad, Rebecca; Reams, Erin
2017-01-01
The 13th century Puebloan depopulation of the Four Corners region of the US Southwest is an iconic episode in world prehistory. Studies of its causes, as well as its consequences, have a bearing not only on archaeological method and theory, but also social responses to climate change, the sociology of social movements, and contemporary patterns of cultural diversity. Previous research has debated the demographic scale, destinations, and impacts of Four Corners migrants. Much of this uncertainty stems from the substantial differences in material culture between the Four Corners vs. hypothesized destination areas. Comparable biological evidence has been difficult to obtain due to the complete departure of farmers from the Four Corners in the 13th century CE and restrictions on sampling human remains. As an alternative, patterns of genetic variation among domesticated species were used to address the role of migration in this collapse. We collected mitochondrial haplotypic data from dog (Canis lupus familiaris) and turkey (Meleagris gallopavo) remains from archaeological sites in the most densely-populated portion of the Four Corners region, and the most commonly proposed destination area for that population under migration scenarios. Results are consistent with a large-scale migration of humans, accompanied by their domestic turkeys, during the 13th century CE. These results support scenarios that suggest contemporary Pueblo peoples of the Northern Rio Grande are biological and cultural descendants of Four Corners populations. PMID:28746407
Robotic Patterning a Superhydrophobic Surface for Collective Cell Migration Screening.
Pang, Yonggang; Yang, Jing; Hui, Zhixin; Grottkau, Brian E
2018-04-01
Collective cell migration, in which cells migrate as a group, is fundamental in many biological and pathological processes. There is increasing interest in studying the collective cell migration in high throughput. Cell scratching, insertion blocker, and gel-dissolving techniques are some methodologies used previously. However, these methods have the drawbacks of cell damage, substrate surface alteration, limitation in medium exchange, and solvent interference. The superhydrophobic surface, on which the water contact angle is greater than 150 degrees, has been recently utilized to generate patterned arrays. Independent cell culture areas can be generated on a substrate that functions the same as a conventional multiple well plate. However, so far there has been no report on superhydrophobic patterning for the study of cell migration. In this study, we report on the successful development of a robotically patterned superhydrophobic array for studying collective cell migration in high throughput. The array was developed on a rectangular single-well cell culture plate consisting of hydrophilic flat microwells separated by the superhydrophobic surface. The manufacturing process is robotic and includes patterning discrete protective masks to the substrate using 3D printing, robotic spray coating of silica nanoparticles, robotic mask removal, robotic mini silicone blocker patterning, automatic cell seeding, and liquid handling. Compared with a standard 96-well plate, our system increases the throughput by 2.25-fold and generates a cell-free area in each well non-destructively. Our system also demonstrates higher efficiency than conventional way of liquid handling using microwell plates, and shorter processing time than manual operating in migration assays. The superhydrophobic surface had no negative impact on cell viability. Using our system, we studied the collective migration of human umbilical vein endothelial cells and cancer cells using assays of endpoint quantification, dynamic cell tracking, and migration quantification following varied drug treatments. This system provides a versatile platform to study collective cell migration in high throughput for a broad range of applications.
NASA Astrophysics Data System (ADS)
Beck, P. S.; Bohrer, G.; Wethington, S.; Bartlam-Brooks, H. L.; Powers, D. R.; Goetz, S. J.; Graham, C. H.
2012-12-01
Animal migrations have evolved in response to spatio-temporal heterogeneity in resources, habitats, predation, and competition. Their reliance on disjunct habitats makes migratory animals potentially more vulnerable to extreme climate events or phenological changes at other trophic levels. The advent of affordable satellite-based tracking technology has revolutionized the study of animal movement in the past two decades. Understanding internal and external drivers of migratory behavior, and how they interact, is critical for migration ecology to move beyond solely the measurement and description of organism-level movement and to predict how environmental change might affect migrations. To achieve this, it is necessary to not only measure animals' movement but also their reliance on prevailing external, i.e. environmental, conditions prior to, and during migration. An increasingly wide array of satellite and model-derived gridded data sets that map environmental conditions at regular temporal intervals are now readily accessible because of standardized processing and data formats, as well as a variety of online portals that provide host data archives and/or on-demand processing free-of-charge. While they are often of coarser spatial resolution, these data can overcome many limitations of in situ measurements with regard to spatial extent and temporal frequency. We demonstrate the use of global gridded environmental time-series in the study of animal migrations through case studies. First we show how inter-annual weather variation in wintering habitats affects migratory behavior of broad-tailed hummingbirds and investigate how it carries over to their reproductive success and survival in summer habitats. To do so, we use vegetation indices as proxies of resource availability, and the NCEP Climate Forecast System Reanalysis (CFSR) to map known physiological constraints on the birds. Secondly, we investigated the effects of long as well as short-term variations in environmental conditions on departure date and movement speed of zebras during the longest migration known in Botswana. We show how zebra movements between dry and wet season habitats can be predicted at daily time steps (R2=0.914) using coincident observations of rainfall rate and cumulative precipitation from the Tropical Rainfall Measuring Mission (TRMM) dataset and MODIS-derived normalized difference vegetation index (NDVI) and its temporal rate of change. Building on these and other case studies, we explore questions in migration ecology that can be addressed by combining novel environmental data sets and animal tracking data.
Remotely sensed wind speed predicts soaring behaviour in a wide-ranging pelagic seabird.
Gibb, Rory; Shoji, Akiko; Fayet, Annette L; Perrins, Chris M; Guilford, Tim; Freeman, Robin
2017-07-01
Global wind patterns affect flight strategies in many birds, including pelagic seabirds, many of which use wind-powered soaring to reduce energy costs during at-sea foraging trips and migration. Such long-distance movement patterns are underpinned by local interactions between wind conditions and flight behaviour, but these fine-scale relationships are far less well understood. Here we show that remotely sensed ocean wind speed and direction are highly significant predictors of soaring behaviour in a migratory pelagic seabird, the Manx shearwater ( Puffinus puffinus ). We used high-frequency GPS tracking data (10 Hz) and statistical behaviour state classification to identify two energetic modes in at-sea flight, corresponding to flap-like and soar-like flight. We show that soaring is significantly more likely to occur in tailwinds and crosswinds above a wind speed threshold of around 8 m s -1 , suggesting that these conditions enable birds to reduce metabolic costs by preferentially soaring over flapping. Our results suggest a behavioural mechanism by which wind conditions may shape foraging and migration ecology in pelagic seabirds, and thus indicate that shifts in wind patterns driven by climate change could impact this and other species. They also emphasize the emerging potential of high-frequency GPS biologgers to provide detailed quantitative insights into fine-scale flight behaviour in free-living animals. © 2017 The Author(s).
Migration and Socio-Economic Change in Africa.
ERIC Educational Resources Information Center
Adepoju, Aderanti
1979-01-01
Explores determinants, characteristics, and patterns of migration in Africa and relates these factors to socioeconomic change processes. Influences of migration are evaluated as they relate to work conditions, land use, marriage and family patterns, life style, and new skills and experiences gained in formal and non-formal educational situations.…
Shridhar, Krithiga; Satija, Ambika; Dhillon, Preet K; Agrawal, Sutapa; Gupta, Ruby; Bowen, Liza; Kinra, Sanjay; Bharathi, A V; Prabhakaran, D; Srinath Reddy, K; Ebrahim, Shah
2018-02-08
Dietary patterns (DPs) in India are heterogenous. To date, data on association of indigenous DPs in India with risk factors of nutrition-related noncommunicable diseases (cardiovascular disease and diabetes), leading causes of premature death and disability, are limited. We aimed to evaluate the associations of empirically-derived DPs with blood lipids, fasting glucose and blood pressure levels in an adult Indian population recruited across four geographical regions of India. We used cross-sectional data from the Indian Migration Study (2005-2007). Study participants included urban migrants, their rural siblings and urban residents and their urban siblings from Lucknow, Nagpur, Hyderabad and Bangalore (n = 7067, mean age 40.8 yrs). Information on diet (validated interviewer-administered, 184-item semi-quantitative food frequency questionnaire), tobacco consumption, alcohol intake, physical activity, medical history, as well as anthropometric measurements were collected. Fasting-blood samples were collected for estimation of blood lipids and glucose. Principal component analysis (PCA) was used to identify major DPs based on eigenvalue> 1 and component interpretability. Robust standard error multivariable linear regression models were used to investigate the association of DPs (tertiles) with total cholesterol (TC), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C), triglycerides, fasting-blood glucose (FBG), systolic and diastolic blood pressure (SBP and DBP) levels. Three major DPs were identified: 'cereal-savoury' (cooked grains, rice/rice-based dishes, snacks, condiments, soups, nuts), 'fruit-vegetable-sweets-snacks' (Western cereals, vegetables, fruit, fruit juices, cooked milk products, snacks, sugars, sweets) and 'animal food' (red meat, poultry, fish/seafood, eggs) patterns. High intake of the 'animal food' pattern was positively associated with levels of TC (β = 0.10 mmol/L; 95% CI: 0.02, 0.17 mmol/L; p-trend = 0.013); LDL-C (β = 0.07 mmol/L; 95% CI: 0.004, 0.14 mmol/L; p-trend = 0.041); HDL-C (β = 0.02 mmol/L; 95% CI: 0.004, 0.04 mmol/L; p-trend = 0.016), FBG: (β = 0.09 mmol/L; 95% CI: 0.01, 0.16 mmol/L; p-trend = 0.021) SBP (β = 1.2 mm/Hg; 95% CI: 0.1, 2.3 mm/Hg; p-trend = 0.032); DBP: (β = 0.9 mm/Hg; 95% CI: 0.2, 1.5 mm/Hg; p-trend = 0.013). The 'cereal-savoury' and 'fruit-vegetable-sweets-snacks' patterns showed no association with any parameter except for a positive association with diastolic blood pressure for high intake of 'fruits-vegetables-sweets-snacks' pattern. Our results indicate positive associations of the 'animal food' pattern with cardio-metabolic risk factors in India. Further longitudinal assessments of dietary patterns in India are required to validate the findings.
Gender and spatial population mobility in Iran.
Hemmasi, M
1994-01-01
1976-1986 data from the National Census of Population and Housing were analyzed to examine the spatial patterns of internal migration of women and men in Iran within its Islamic patriarchal cultural system. The researcher also organized 1986 data into two interprovincial migration matrixes for men and women. Women were spatially as mobile as men (urban, 16.7% for men and 17% for women; rural, 8.4% and 8.9%, respectively). Gender spatial mobility patterns during the 10 years included: migration streams from nine provinces consistently led to Tehran province, most migration flows to Tehran and most other provinces originated from Khuzistan, East Azerbaijan province still continued to lose population (about 500,000), and out-flows generally originated from the provinces affected by the Iran-Iraq war and went to the central and eastern provinces. The strongest determinants of women's migration was men's migration ratio and the road distance between the origin and destination. Reasons for these strong associations were few employed women ( 10%), strong family ties, and traditional cultural values (e.g., women tend not to travel alone). So their migration patterns tended to be associational rather than autonomous. Despite the fact that internal migration patterns of men and women were the same, the causes, processes, and consequences of migration were still very gender-specific in Iran. There are no signs of change in the near future.
Mid-term migration analysis of a femoral short-stem prosthesis: a five-year EBRA-FCA-study.
Freitag, Tobias; Fuchs, Michael; Woelfle-Roos, Julia V; Reichel, Heiko; Bieger, Ralf
2018-05-01
The objective of this study was to evaluate the mid-term migration pattern of a femoral short stem. Implant migration of 73 femoral short-stems was assessed by Ein-Bild-Roentgen-Analysis Femoral-Component-Analysis (EBRA-FCA) 5 years after surgery. Migration pattern of the whole group was analysed and compared to the migration pattern of implants "at risk" with a subsidence of more than 1.5 mm 2 years postoperative. Mean axial subsidence was 1.1 mm (-5.0 mm to 1.5 mm) after 60 months. There was a statistical significant axial migration until 2 years postoperative with settling thereafter. 2 years after surgery 18 of 73 Implants were classified "at risk." Nevertheless, all stems showed secondary stabilisation in the following period with no implant failure neither in the group of implants with early stabilisation nor the group with extensive early onset migration. In summary, even in the group of stems with more pronounced early subsidence, delayed settling occurred in all cases. The determination of a threshold of critical early femoral short stem subsidence is necessary because of the differing migration pattern described in this study with delayed settling of the Fitmore stem 2 years postoperatively compared to early settling within the first postoperative year described for conventional stems.
Doody, J. Sean; Clulow, Simon; Kay, Geoff; D’Amore, Domenic; Rhind, David; Wilson, Steve; Ellis, Ryan; Castellano, Christina; McHenry, Colin; Quayle, Michelle; Hands, Kim; Sawyer, Graeme; Bass, Michael
2015-01-01
In the wet-dry tropics, animal species face the major challenges of acquiring food, water or shelter during an extended dry season. Although large and conspicuous animals such as ungulates and waterfowl migrate to wetter areas during this time, little is known of how smaller and more cryptic animal species with less mobility meet these challenges. We fenced off the entire entrance of a gorge in the Australian tropical savanna, offering the unique opportunity to determine the composition and seasonal movement patterns of the small vertebrate community. The 1.7 km-long fence was converted to a trapline that was deployed for 18-21 days during the early dry season in each of two years, and paired traps on both sides of the fence allowed us to detect the direction of animal movements. We predicted that semi-aquatic species (e.g., frogs and turtles) would move upstream into the wetter gorge during the dry season, while more terrestrial species (e.g., lizards, snakes, mammals) would not. The trapline captured 1590 individual vertebrates comprising 60 species. There was a significant bias for captures on the outside of the fence compared to the inside for all species combined (outside/inside = 5.2, CI = 3.7-7.2), for all vertebrate classes, and for specific taxonomic groups. The opposite bias (inside/outside = 7.3, N= 25) for turtles during the early wet season suggested return migration heading into the wet season. Our study revealed that the small vertebrate community uses the gorge as a dry season refuge. The generality of this unreplicated finding could be tested by extending this type of survey to tropical savannahs worldwide. A better understanding of how small animals use the landscape is needed to reveal the size of buffer zones around wetlands required to protect both semi-aquatic and terrestrial fauna in gorges in tropical savannah woodland, and thus in ecosystems in general. PMID:26135472
Clines in quantitative traits: The role of migration patterns and selection scenarios
Geroldinger, Ludwig; Bürger, Reinhard
2015-01-01
The existence, uniqueness, and shape of clines in a quantitative trait under selection toward a spatially varying optimum is studied. The focus is on deterministic diploid two-locus n-deme models subject to various migration patterns and selection scenarios. Migration patterns may exhibit isolation by distance, as in the stepping-stone model, or random dispersal, as in the island model. The phenotypic optimum may change abruptly in a single environmental step, more gradually, or not at all. Symmetry assumptions are imposed on phenotypic optima and migration rates. We study clines in the mean, variance, and linkage disequilibrium (LD). Clines result from polymorphic equilibria. The possible equilibrium configurations are determined as functions of the migration rate. Whereas for weak migration, many polymorphic equilibria may be simultaneously stable, their number decreases with increasing migration rate. Also for intermediate migration rates polymorphic equilibria are in general not unique, however, for loci of equal effects the corresponding clines in the mean, variance, and LD are unique. For sufficiently strong migration, no polymorphism is maintained. Both migration pattern and selection scenario exert strong influence on the existence and shape of clines. The results for discrete demes are compared with those from models in which space varies continuously and dispersal is modeled by diffusion. Comparisons with previous studies, which investigated clines under neutrality or under linkage equilibrium, are performed. If there is no long-distance migration, the environment does not change abruptly, and linkage is not very tight, populations are almost everywhere close to linkage equilibrium. PMID:25446959
Role of wild birds as carriers of multi-drug resistant Escherichia coli and Escherichia vulneris
Shobrak, Mohammed Y.; Abo-Amer, Aly E.
2014-01-01
Emergence and distribution of multi-drug resistant (MDR) bacteria in environments pose a risk to human and animal health. A total of 82 isolates of Escherichia spp. were recovered from cloacal swabs of migrating and non-migrating wild birds. All bacterial isolates were identified and characterized morphologically and biochemically. 72% and 50% of isolates recovered from non-migrating and migrating birds, respectively, showed positive congo red dye binding (a virulence factor). Also, hemolysin production (a virulence factor) was showed in 8% of isolates recovered from non-migrating birds and 75% of isolates recovered from migrating birds. All isolates recovered from non-migrating birds were found resistant to Oxacillin while all isolates recovered from migrating birds demonstrated resistance to Oxacillin, Chloramphenicol, Oxytetracycline and Lincomycin. Some bacterial isolates recovered from non-migrating birds and migrating birds exhibited MDR phenotype. The MDR isolates were further characterized by API 20E and 16S rRNA as E. coli and E. vulneris. MDR Escherichia isolates contain ~1–5 plasmids of high-molecular weights. Accordingly, wild birds could create a potential threat to human and animal health by transmitting MDR bacteria to water streams and other environmental sources through their faecal residues, and to remote regions by migration. PMID:25763023
The Reversal in Migration Patterns -- Some Rural Development Consequences.
ERIC Educational Resources Information Center
Ploch, Louis A.
The reversal in migration patterns in the 1970's resulting in a net population flow from metropolitan (urban) to nonmetropolitan (rural) areas may have a variety of rural development consequences. Sizeable population increase in rural communities which traditionally have experienced net out-migration or very slow increases is evident in Maine…
Stroebele-Benschop, Nanette; Depa, Julia; Gyngell, Fiona; Müller, Annalena; Eleraky, Laila; Hilzendegen, Carolin
2018-03-29
People with low income tend to eat less balanced than people with higher income. This seems to be particularly the case for people with migration background. This cross-sectional study examined the relation of consumption patterns of 597 food bank users with different migration background in Germany. Questionnaires were distributed assessing sociodemographic information and consumption patterns. Analyses were conducted using binary logistic regressions. Models were controlled for age, gender, type of household and education. The group of German food bank users consumed fewer fruits and vegetables and less fish compared to all other groups with migration background (former USSR, Balkan region, Middle East). A significant predictor for fruit and vegetable consumption was migration status. Participants from the former USSR consumed less often SSBs compared to the other groups. Dietary recommendations for low income populations should take into consideration other aspects besides income such as migration status.
SDN-1/syndecan regulates growth factor signaling in distal tip cell migrations in C. elegans.
Schwabiuk, Megan; Coudiere, Ludivine; Merz, David C
2009-10-01
Mutations in the sdn-1/syndecan gene act as genetic enhancers of the ventral-to-dorsal distal tip cell (DTC) migration defects caused by a weak allele of the netrin receptor gene unc-5. The sdn-1(ev697) allele was identified in a genetic screen for enhancers of unc-5 DTC migration defects, and carried a nonsense mutation predicted to truncate the SDN-1 protein prior to the transmembrane domain. The enhancement of unc-5 caused by an sdn-1 mutation was rescued by expression of wild-type sdn-1 in the hypodermis or nervous system rather than the DTCs, indicating a cell non-autonomous function of sdn-1. The enhancement was also partially reversed by mutations in the egl-17/FGF or egl-20/Wnt genes, suggesting that sdn-1 affects UNC-5 function through a mis-regulation of signaling in growth factor pathways. egl-20 reporter constructs exhibited increased and mis-localized EGL-20 distribution in sdn-1 mutants compared to wild-type animals. Finally, using loss of function mutations, we show that egl-17/Fgf and egl-20/Wnt are partially redundant in regulating the migration pattern of the posterior DTC, as double mutants exhibit significant frequencies of defects in migration phases along both the anteroposterior and dorsoventral axes. Together these results suggest that SDN-1 affects UNC-5 function by regulating the proper extracellular distribution of growth factors.
Park, Hong Suk; Choo, In Wook; Seo, Soowon; Hyun, Dongho; Lim, Sooyoun; Kim, Jae J; Hong, Saet-Byul; Min, Byung-Hoon; Do, Young Soo; Choo, Sung Wook; Shin, Sung Wook; Park, Kwang Bo; Cho, Sung Ki
2015-01-01
Migration of stents is one of the most common adverse events in covered stent placement in GI tract obstruction. To compare physical property and migration rates in a canine colon obstruction model among a novel stent and conventional stents. Comparative physical test and animal study. Medical device testing laboratory and animal laboratory. Mongrel dogs (N=26). Surgical colon obstruction followed by placement of a novel (n=13) or conventional (n=13) stent. Physical properties, migration, and adverse events. The novel stent showed better flexibility, as in a physical test of longitudinal compressibility and axial force, than did conventional stents, and it withstood the fatigue test for 10 days. In terms of radial force and tensile strength, the novel stent showed the same or better results than conventional stents. In a canine colon obstruction model, the migration rate of a novel stent was significantly lower than that of a conventional stent (2/13, 15.4% vs 8/13, 61.5%; P=.008). Animal study of limited size. The novel, ring-connected stent is more flexible and more resistant to migration than the conventional stents. Copyright © 2015 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.
WLCI researchers employ new approaches to help managers conserve deer migrations
Allen, Leslie A.; Kauffman, Matthew J.
2012-01-01
Elk, mule deer, pronghorn antelope, moose, and bighorn sheep are iconic animals of the American West. These hooved animals, known as ungulates, commonly travel 30–60 miles between seasonal ranges. These migrations between winter and summer ranges are vital for survival and reproduction. As habitat fragmentation continues, the conservation of ungulate migration routes has received considerable attention in the West and across the globe. For example, it is estimated that many ungulate migration routes in the Greater Yellowstone Ecosystem have already been lost. The traditional migration routes of Wyoming ungulates are threatened by unprecedented levels of energy development and by increasing levels of rural ranchette development (including fences, structures, and roads). In the past, migration corridors have been mapped based primarily on the expert opinions of state game managers, but long-term conservation of Wyoming's ungulate migration routes requires a better understanding of migration ecology and more sophisticated management tools. Wyoming Landscape Conservation Initiative (WLCI) researchers investigated the migration of a large mule deer herd across the Dad and Wild Horse winter ranges in southwest Wyoming, where 2,000 gas wells and 1,609 kilometers of pipelines and roads have been proposed for development.
The principles of collective animal behaviour
Sumpter, D.J.T
2005-01-01
In recent years, the concept of self-organization has been used to understand collective behaviour of animals. The central tenet of self-organization is that simple repeated interactions between individuals can produce complex adaptive patterns at the level of the group. Inspiration comes from patterns seen in physical systems, such as spiralling chemical waves, which arise without complexity at the level of the individual units of which the system is composed. The suggestion is that biological structures such as termite mounds, ant trail networks and even human crowds can be explained in terms of repeated interactions between the animals and their environment, without invoking individual complexity. Here, I review cases in which the self-organization approach has been successful in explaining collective behaviour of animal groups and societies. Ant pheromone trail networks, aggregation of cockroaches, the applause of opera audiences and the migration of fish schools have all been accurately described in terms of individuals following simple sets of rules. Unlike the simple units composing physical systems, however, animals are themselves complex entities, and other examples of collective behaviour, such as honey bee foraging with its myriad of dance signals and behavioural cues, cannot be fully understood in terms of simple individuals alone. I argue that the key to understanding collective behaviour lies in identifying the principles of the behavioural algorithms followed by individual animals and of how information flows between the animals. These principles, such as positive feedback, response thresholds and individual integrity, are repeatedly observed in very different animal societies. The future of collective behaviour research lies in classifying these principles, establishing the properties they produce at a group level and asking why they have evolved in so many different and distinct natural systems. Ultimately, this research could inform not only our understanding of animal societies, but also the principles by which we organize our own society. PMID:16553306
The principles of collective animal behaviour.
Sumpter, D J T
2006-01-29
In recent years, the concept of self-organization has been used to understand collective behaviour of animals. The central tenet of self-organization is that simple repeated interactions between individuals can produce complex adaptive patterns at the level of the group. Inspiration comes from patterns seen in physical systems, such as spiralling chemical waves, which arise without complexity at the level of the individual units of which the system is composed. The suggestion is that biological structures such as termite mounds, ant trail networks and even human crowds can be explained in terms of repeated interactions between the animals and their environment, without invoking individual complexity. Here, I review cases in which the self-organization approach has been successful in explaining collective behaviour of animal groups and societies. Ant pheromone trail networks, aggregation of cockroaches, the applause of opera audiences and the migration of fish schools have all been accurately described in terms of individuals following simple sets of rules. Unlike the simple units composing physical systems, however, animals are themselves complex entities, and other examples of collective behaviour, such as honey bee foraging with its myriad of dance signals and behavioural cues, cannot be fully understood in terms of simple individuals alone. I argue that the key to understanding collective behaviour lies in identifying the principles of the behavioural algorithms followed by individual animals and of how information flows between the animals. These principles, such as positive feedback, response thresholds and individual integrity, are repeatedly observed in very different animal societies. The future of collective behaviour research lies in classifying these principles, establishing the properties they produce at a group level and asking why they have evolved in so many different and distinct natural systems. Ultimately, this research could inform not only our understanding of animal societies, but also the principles by which we organize our own society.
Stable isotope turnover and half-life in animal tissues: a literature synthesis.
Vander Zanden, M Jake; Clayton, Murray K; Moody, Eric K; Solomon, Christopher T; Weidel, Brian C
2015-01-01
Stable isotopes of carbon, nitrogen, and sulfur are used as ecological tracers for a variety of applications, such as studies of animal migrations, energy sources, and food web pathways. Yet uncertainty relating to the time period integrated by isotopic measurement of animal tissues can confound the interpretation of isotopic data. There have been a large number of experimental isotopic diet shift studies aimed at quantifying animal tissue isotopic turnover rate λ (%·day(-1), often expressed as isotopic half-life, ln(2)/λ, days). Yet no studies have evaluated or summarized the many individual half-life estimates in an effort to both seek broad-scale patterns and characterize the degree of variability. Here, we collect previously published half-life estimates, examine how half-life is related to body size, and test for tissue- and taxa-varying allometric relationships. Half-life generally increases with animal body mass, and is longer in muscle and blood compared to plasma and internal organs. Half-life was longest in ecotherms, followed by mammals, and finally birds. For ectotherms, different taxa-tissue combinations had similar allometric slopes that generally matched predictions of metabolic theory. Half-life for ectotherms can be approximated as: ln (half-life) = 0.22*ln (body mass) + group-specific intercept; n = 261, p<0.0001, r2 = 0.63. For endothermic groups, relationships with body mass were weak and model slopes and intercepts were heterogeneous. While isotopic half-life can be approximated using simple allometric relationships for some taxa and tissue types, there is also a high degree of unexplained variation in our models. Our study highlights several strong and general patterns, though accurate prediction of isotopic half-life from readily available variables such as animal body mass remains elusive.
McCloskey, Sarah E.; Uher-Koch, Brian D.; Schmutz, Joel A.; Fondell, Thomas F.
2018-01-01
Identifying post-breeding migration and wintering distributions of migratory birds is important for understanding factors that may drive population dynamics. Red-throated Loons (Gavia stellata) are widely distributed across Alaska and currently have varying population trends, including some populations with recent periods of decline. To investigate population differentiation and the location of migration pathways and wintering areas, which may inform population trend patterns, we used satellite transmitters (n = 32) to describe migration patterns of four geographically separate breeding populations of Red-throated Loons in Alaska. On average (± SD) Red-throated Loons underwent long (6,288 ± 1,825 km) fall and spring migrations predominantly along coastlines. The most northern population (Arctic Coastal Plain) migrated westward to East Asia and traveled approximately 2,000 km farther to wintering sites than the three more southerly populations (Seward Peninsula, Yukon-Kuskokwim Delta, and Copper River Delta) which migrated south along the Pacific coast of North America. These migration paths are consistent with the hypothesis that Red-throated Loons from the Arctic Coastal Plain are exposed to contaminants in East Asia. The three more southerly breeding populations demonstrated a chain migration pattern in which the more northerly breeding populations generally wintered in more northerly latitudes. Collectively, the migration paths observed in this study demonstrate that some geographically distinct breeding populations overlap in wintering distribution while others use highly different wintering areas. Red-throated Loon population trends in Alaska may therefore be driven by a wide range of effects throughout the annual cycle.
COLLINSON, MARK A.; TOLLMAN, STEPHEN M.; KAHN, KATHLEEN
2010-01-01
Background World population growth will be increasingly concentrated in the urban areas of the developing world; however, some scholars caution against the oversimplification of African urbanization noting that there may be “counter-urbanization” and a prevailing pattern of circular rural–urban migration. The aim of the paper is to examine the ongoing urban transition in South Africa in the post-apartheid period, and to consider the health and social policy implications of prevailing migration patterns. Methods Two data sets were analysed, namely the South African national census of 2001 and the Agincourt health and demographic surveillance system. A settlement-type transition matrix was constructed on the national data to show how patterns of settlement have changed in a five-year period. Using the sub-district data, permanent and temporary migration was characterized, providing migration rates by age and sex, and showing the distribution of origins and destinations. Findings The comparison of national and sub-district data highlight the following features: urban population growth, particularly in metropolitan areas, resulting from permanent and temporary migration; prevailing patterns of temporary, circular migration, and a changing gender balance in this form of migration; stepwise urbanization; and return migration from urban to rural areas. Conclusions Policy concerns include: rural poverty exacerbated by labour migration; explosive conditions for the transmission of HIV; labour migrants returning to die in rural areas; and the challenges for health information created by chronically ill migrants returning to rural areas to convalesce. Lastly, suggestions are made on how to address the dearth of relevant population information for policy-making in the fields of migration, settlement change and health. PMID:17676507
Collinson, Mark A; Tollman, Stephen M; Kahn, Kathleen
2007-08-01
World population growth will be increasingly concentrated in the urban areas of the developing world; however, some scholars caution against the oversimplification of African urbanization noting that there may be "counter-urbanization" and a prevailing pattern of circular rural-urban migration. The aim of the paper is to examine the ongoing urban transition in South Africa in the post-apartheid period, and to consider the health and social policy implications of prevailing migration patterns. Two data sets were analysed, namely the South African national census of 2001 and the Agincourt health and demographic surveillance system. A settlement-type transition matrix was constructed on the national data to show how patterns of settlement have changed in a five-year period. Using the sub-district data, permanent and temporary migration was characterized, providing migration rates by age and sex, and showing the distribution of origins and destinations. The comparison of national and sub-district data highlight the following features: urban population growth, particularly in metropolitan areas, resulting from permanent and temporary migration; prevailing patterns of temporary, circular migration, and a changing gender balance in this form of migration; stepwise urbanization; and return migration from urban to rural areas. Policy concerns include: rural poverty exacerbated by labour migration; explosive conditions for the transmission of HIV; labour migrants returning to die in rural areas; and the challenges for health information created by chronically ill migrants returning to rural areas to convalesce. Lastly, suggestions are made on how to address the dearth of relevant population information for policy-making in the fields of migration, settlement change and health.
Ocean Heat Content Reveals Secrets of Fish Migrations
Luo, Jiangang; Ault, Jerald S.; Shay, Lynn K.; Hoolihan, John P.; Prince, Eric D.; Brown, Craig A.; Rooker, Jay R.
2015-01-01
For centuries, the mechanisms surrounding spatially complex animal migrations have intrigued scientists and the public. We present a new methodology using ocean heat content (OHC), a habitat metric that is normally a fundamental part of hurricane intensity forecasting, to estimate movements and migration of satellite-tagged marine fishes. Previous satellite-tagging research of fishes using archival depth, temperature and light data for geolocations have been too coarse to resolve detailed ocean habitat utilization. We combined tag data with OHC estimated from ocean circulation and transport models in an optimization framework that substantially improved geolocation accuracy over SST-based tracks. The OHC-based movement track provided the first quantitative evidence that many of the tagged highly migratory fishes displayed affinities for ocean fronts and eddies. The OHC method provides a new quantitative tool for studying dynamic use of ocean habitats, migration processes and responses to environmental changes by fishes, and further, improves ocean animal tracking and extends satellite-based animal tracking data for other potential physical, ecological, and fisheries applications. PMID:26484541
Raymer, James; van der Erf, Rob; van Wissen, Leo
2010-01-01
Due to differences in definitions and measurement methods, cross-country comparisons of international migration patterns are difficult and confusing. Emigration numbers reported by sending countries tend to differ from the corresponding immigration numbers reported by receiving countries. In this paper, a methodology is presented to achieve harmonised estimates of migration flows benchmarked to a specific definition of duration. This methodology accounts for both differences in definitions and the effects of measurement error due to, for example, under reporting and sampling fluctuations. More specifically, the differences between the two sets of reported data are overcome by estimating a set of adjustment factors for each country’s immigration and emigration data. The adjusted data take into account any special cases where the origin–destination patterns do not match the overall patterns. The new method for harmonising migration flows that we present is based on earlier efforts by Poulain (European Journal of Population, 9(4): 353–381 1993, Working Paper 12, joint ECE-Eurostat Work Session on Migration Statistics, Geneva, Switzerland 1999) and is illustrated for movements between 19 European countries from 2002 to 2007. The results represent a reliable and consistent set of international migration flows that can be used for understanding recent changes in migration patterns, as inputs into population projections and for developing evidence-based migration policies. PMID:21124647
de Beer, Joop; Raymer, James; van der Erf, Rob; van Wissen, Leo
2010-11-01
Due to differences in definitions and measurement methods, cross-country comparisons of international migration patterns are difficult and confusing. Emigration numbers reported by sending countries tend to differ from the corresponding immigration numbers reported by receiving countries. In this paper, a methodology is presented to achieve harmonised estimates of migration flows benchmarked to a specific definition of duration. This methodology accounts for both differences in definitions and the effects of measurement error due to, for example, under reporting and sampling fluctuations. More specifically, the differences between the two sets of reported data are overcome by estimating a set of adjustment factors for each country's immigration and emigration data. The adjusted data take into account any special cases where the origin-destination patterns do not match the overall patterns. The new method for harmonising migration flows that we present is based on earlier efforts by Poulain (European Journal of Population, 9(4): 353-381 1993, Working Paper 12, joint ECE-Eurostat Work Session on Migration Statistics, Geneva, Switzerland 1999) and is illustrated for movements between 19 European countries from 2002 to 2007. The results represent a reliable and consistent set of international migration flows that can be used for understanding recent changes in migration patterns, as inputs into population projections and for developing evidence-based migration policies.
Coat color genetics of Peromyscus: IV. Variable white, a new dominant mutation in the deer mouse.
Cowling, K; Robbins, R J; Haigh, G R; Teed, S K; Dawson, W D
1994-01-01
The variable white mutation arose spontaneously in 1983 within a laboratory stock of wild-type deer mice (Peromyscus maniculatus). The original mutant animal was born to a wild-type pair that had previously produced several entirely wild-type litters. Other variable white animals were bred from the initial individual. Variable white deer mice exhibit extensive areas of white on the head, sides, and tail. Usually a portion of pigmented pelage occurs dorsally and on the shoulders, but the extent of white varies from nearly all white to patches of white on the muzzle, tip of tail, and sides. The pattern is irregular, but not entirely asymmetrical. Eyes are pigmented, but histologically reveal a decrease in thickness and pigmentation of the choroid layer. Many variable white animals do not respond to auditory stimuli, an effect that is particularly evident in animals in which the head is entirely white. Ataxic behavior is also prevalent. Pigment distribution, together with auditory and retinal deficiencies, suggests a neural crest cell migration defect. Breeding data are consistent with an autosomal semidominant, lethal mode of inheritance. The trait differs from two somewhat similar variants in Peromyscus: from dominant spot (S) in extent and pattern of pigmentation and from whiteside (ws), an autosomal recessive trait, in the mode of inheritance and viability. Evidence for possible homology with the Va (varitint-waddler) locus in house mouse (Mus) is presented. The symbol Vw is tentatively assigned for the variable white locus in Peromyscus.
Ultrastructure and molecular characterization of Fusobacterium necrophorum biovars.
Garcia, M M; Becker, S A; Brooks, B W; Berg, J N; Finegold, S M
1992-01-01
The ultrastructural features and molecular components of 18 strains of Fusobacterium necrophorum biovars A, AB and B, isolated from animal and human infections, were examined by electron microscopy, multilocus enzyme electrophoresis (MEE) and by sodium dodecyl sulfate-gradient polyacrylamide gel electrophoresis (SDS-PAGE). High resolution scanning electron microscopy revealed that the strains possessed a convoluted surface pattern. Transmission electron microscopy showed that all strains possessed a cell wall structure typical of gram-negative bacteria. Bleb formation was not uncommon. Numerous extracellular materials, resembling lipopolysaccharide (LPS) fragments, surrounded cells of both human strains and biovar B animal strains. Biovar A field strains revealed capsules as stained by ruthenium red whereas a stock culture strain showed the capsule only when immunostabilized with hyperimmune serum. Starch gel electrophoresis showed all strains to possess adenyl kinase, glutamate dehydrogenases and lactate dehydrogenase; each enzyme migrated uniformly (monomorphic) among the strains and represented an electrotype. However, SDS-PAGE indicated differences in the protein profiles between all of the strains; the most distinctly different was a human isolate (FN 606). Silver staining to detect LPS showed extensive "ladder" patterns among the majority of biovar A strains but not in the animal biovar B strains. Immunoblotting of LPS with a rabbit antiserum prepared against phenol extracted LPS from a biovar A animal isolate (LA 19) suggested marked variability in the LPS antigens among the isolates studied. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 7. Fig. 8. Fig. 9. PMID:1477801
Normal and tumoral melanocytes exhibit q-Gaussian random search patterns.
da Silva, Priscila C A; Rosembach, Tiago V; Santos, Anésia A; Rocha, Márcio S; Martins, Marcelo L
2014-01-01
In multicellular organisms, cell motility is central in all morphogenetic processes, tissue maintenance, wound healing and immune surveillance. Hence, failures in its regulation potentiates numerous diseases. Here, cell migration assays on plastic 2D surfaces were performed using normal (Melan A) and tumoral (B16F10) murine melanocytes in random motility conditions. The trajectories of the centroids of the cell perimeters were tracked through time-lapse microscopy. The statistics of these trajectories was analyzed by building velocity and turn angle distributions, as well as velocity autocorrelations and the scaling of mean-squared displacements. We find that these cells exhibit a crossover from a normal to a super-diffusive motion without angular persistence at long time scales. Moreover, these melanocytes move with non-Gaussian velocity distributions. This major finding indicates that amongst those animal cells supposedly migrating through Lévy walks, some of them can instead perform q-Gaussian walks. Furthermore, our results reveal that B16F10 cells infected by mycoplasmas exhibit essentially the same diffusivity than their healthy counterparts. Finally, a q-Gaussian random walk model was proposed to account for these melanocytic migratory traits. Simulations based on this model correctly describe the crossover to super-diffusivity in the cell migration tracks.
Hominin reactions to herbivore distribution in the Lower Palaeolithic of the Southern Levant
NASA Astrophysics Data System (ADS)
Devès, Maud; Sturdy, Derek; Godet, Nan; King, Geoffrey C. P.; Bailey, Geoffrey N.
2014-07-01
We explore the relationship between the edaphic potential of soils and the mineral properties of the underlying geology as a means of mapping the differential productivity of different areas of the Pleistocene landscape for large herbivores. These factors strongly control the health of grazing animals irrespective of the particular types of vegetation growing on them, but they have generally been neglected in palaeoanthropological studies in favour of a more general emphasis on water and vegetation, which provide an incomplete picture. Taking the Carmel-Galilee-Golan region as an example, we show how an understanding of edaphic potential provides insight into how animals might have exploited the environment. In order to simplify the analysis, we concentrate on the Lower Palaeolithic period and the very large animals that dominate the archaeofaunal assemblages of this period. Topography and the ability of soils to retain water also contribute to the differential productivity and accessibility of different regions and to patterns of seasonal movements of the animals, which are essential to ensure a supply of healthy fodder throughout the year, especially for large animals such as elephants, which require substantial regions of good grazing and browsing. Other animals migrating in groups have similar needs. The complex topography of the Southern Levant with frequent sudden and severe changes in gradient, and a wide variety of landforms including rocky outcrops, cliffs, gorges, and ridges, places major limits on these patterns of seasonal movements. We develop methods of mapping these variables, based on the geology and our substantial field experience, in order to create a framework of landscape variation that can be compared with the locations and contents of archaeological sites to suggest ways in which early hominins used the variable features of the landscape to target animal prey, and extend the analysis to the consideration of smaller mammals that were exploited more intensively after the disappearance of the elephants. We consider some of the ways in which this regional-scale approach can be further tested and refined, and advocate the development of such studies as an essential contribution to understanding the wider pattern of hominin dispersal.
Fractal analysis of narwhal space use patterns.
Laidre, Kristin L; Heide-Jørgensen, Mads P; Logsdon, Miles L; Hobbs, Roderick C; Dietz, Rune; VanBlaricom, Glenn R
2004-01-01
Quantifying animal movement in response to a spatially and temporally heterogeneous environment is critical to understanding the structural and functional landscape influences on population viability. Generalities of landscape structure can easily be extended to the marine environment, as marine predators inhabit a patchy, dynamic system, which influences animal choice and behavior. An innovative use of the fractal measure of complexity, indexing the linearity of movement paths over replicate temporal scales, was applied to satellite tracking data collected from narwhals (Monodon monoceros) (n = 20) in West Greenland and the eastern Canadian high Arctic. Daily movements of individuals were obtained using polar orbiting satellites via the ARGOS data location and collection system. Geographic positions were filtered to obtain a daily good quality position for each whale. The length of total pathway was measured over seven different temporal length scales (step lengths), ranging from one day to one week, and a seasonal mean was calculated. Fractal dimension (D) was significantly different between seasons, highest during summer (D = 1.61, SE 0.04) and winter (D = 1.69, SE 0.06) when whales made convoluted movements in focal areas. Fractal dimension was lowest during fall (D = 1.34, SE 0.03) when whales were migrating south ahead of the forming sea ice. There were no significant effects of size category or sex on fractal dimension by season. The greater linearity of movement during the migration period suggests individuals do not intensively forage on patchy resources until they arrive at summer or winter sites. The highly convoluted movements observed during summer and winter suggest foraging or searching efforts in localized areas. Significant differences between the fractal dimensions on two separate wintering grounds in Baffin Bay suggest differential movement patterns in response to the dynamics of sea ice.
Arai, Takaomi
2014-01-01
The disabling of the Fukushima Daiichi Nuclear Power Plant (F1NPP) resulted in the release of radionuclides, including 134Cs and 137Cs, into the air and the ocean. The unpredicted nuclear accident is of global concern for human health and the ecosystem. Although investigations of radionuclides in environments were performed shortly after the accident started, the temporal and spatial impacts and fluctuations on the releasing radionuclides to natural environment remain unclear. I focused on salmon, which migrate from inland to the open ocean globally, to reveal the three-year (May 2011 to February 2014) fluctuations and accumulations of 134Cs and 137Cs from terrestrial to open ocean environments after the F1NPP accident. The 134Cs and 137Cs concentrations in six salmonids exhibited lower temporal variations for three years after the F1NPP accident, suggesting that these radionuclides are widely distributed and these radionuclides remain in the natural environment globally with less convergence. The accumulation patterns were significantly different among the different salmon species. Fluvial (freshwater residence) type salmons exhibited significantly higher accumulation in 134Cs (25.3-40.2 Bq kg(-1) in mean) and 137Cs (41.4-51.7 Bq kg(-1) in mean) than did the anadromous (sea-run) type salmons (0.64-8.03 Bq kg(-1) in mean 134Cs and 0.42-10.2 Bq kg(-1) in mean 137Cs) suggesting widespread contamination in terrestrial environments versus the coastal and open ocean environments. Salmonids are the most highly migratory animals and are characterised by their strong tendency to return home to their natal site for reproduction. Salmonids have a potential to be a good indicator as an effective monitoring animal.
Magnetosensitive neurons mediate geomagnetic orientation in Caenorhabditis elegans
Vidal-Gadea, Andrés; Ward, Kristi; Beron, Celia; Ghorashian, Navid; Gokce, Sertan; Russell, Joshua; Truong, Nicholas; Parikh, Adhishri; Gadea, Otilia; Ben-Yakar, Adela; Pierce-Shimomura, Jonathan
2015-01-01
Many organisms spanning from bacteria to mammals orient to the earth's magnetic field. For a few animals, central neurons responsive to earth-strength magnetic fields have been identified; however, magnetosensory neurons have yet to be identified in any animal. We show that the nematode Caenorhabditis elegans orients to the earth's magnetic field during vertical burrowing migrations. Well-fed worms migrated up, while starved worms migrated down. Populations isolated from around the world, migrated at angles to the magnetic vector that would optimize vertical translation in their native soil, with northern- and southern-hemisphere worms displaying opposite migratory preferences. Magnetic orientation and vertical migrations required the TAX-4 cyclic nucleotide-gated ion channel in the AFD sensory neuron pair. Calcium imaging showed that these neurons respond to magnetic fields even without synaptic input. C. elegans may have adapted magnetic orientation to simplify their vertical burrowing migration by reducing the orientation task from three dimensions to one. DOI: http://dx.doi.org/10.7554/eLife.07493.001 PMID:26083711
Franchini, Paolo; Irisarri, Iker; Fudickar, Adam; Schmidt, Andreas; Meyer, Axel; Wikelski, Martin; Partecke, Jesko
2017-06-01
Seasonal migration is a widespread phenomenon, which is found in many different lineages of animals. This spectacular behaviour allows animals to avoid seasonally adverse environmental conditions to exploit more favourable habitats. Migration has been intensively studied in birds, which display astonishing variation in migration strategies, thus providing a powerful system for studying the ecological and evolutionary processes that shape migratory behaviour. Despite intensive research, the genetic basis of migration remains largely unknown. Here, we used state-of-the-art radio-tracking technology to characterize the migratory behaviour of a partially migratory population of European blackbirds (Turdus merula) in southern Germany. We compared gene expression of resident and migrant individuals using high-throughput transcriptomics in blood samples. Analyses of sequence variation revealed a nonsignificant genetic structure between blackbirds differing by their migratory phenotype. We detected only four differentially expressed genes between migrants and residents, which might be associated with hyperphagia, moulting and enhanced DNA replication and transcription. The most pronounced changes in gene expression occurred between migratory birds depending on when, in relation to their date of departure, blood was collected. Overall, the differentially expressed genes detected in this analysis may play crucial roles in determining the decision to migrate, or in controlling the physiological processes required for the onset of migration. These results provide new insights into, and testable hypotheses for, the molecular mechanisms controlling the migratory phenotype and its underlying physiological mechanisms in blackbirds and other migratory bird species. © 2017 John Wiley & Sons Ltd.
Migration characteristics and early clinical results of the NANOS® short-stem hip arthroplasty.
Kaipel, Martin; Grabowiecki, Phillip; Sinz, Katrina; Farr, Sebastian; Sinz, Günter
2015-05-01
Femoral short stems promise essential advantages in total hip arthroplasty. Up to now, only short- and midterm clinical studies exist. Data on early stem migration that could predict later aseptic loosening at an early stage are rare. The purpose of this study was to assess migration patterns and clinical outcome 2 years after hip replacement by a metaphyseal anchored cementless short stem. Migration data and clinical results were prospectively assessed in 49 patients. Clinical outcome was measured using the Harris Hip Score (HHS). Migration analyses were performed using the computer-assisted Einzel-Bild-Roentgen-Analyse (EBRA) system. At 2 years after surgery, none of the implants needed revision, and HHS increased from 47.9 up to 98.1. Of 49 patients, 5 (10%) showed increased vertical stem migration (1.5 mm/2a) that might predict late aseptic loosening. Of 49 stems, 44 (90%) showed stable migration patterns indicating a beneficial long-term outcome. Results of this study confirm the excellent clinical data of previous works. Migration patterns strongly suggest that short-stem arthroplasty is not only an innovative but also a reliable strategy in total hip replacement.
ERIC Educational Resources Information Center
Fenske, Robert H.; Scott, Craig S.
This study of student migration patterns is based on the assumption that an important determinant of change in student migration patterns in recent years has been the increase in the number of two-year colleges. The present study utilizes data which makes possible an analysis of the relationship between student characteristics and their migration…
Scaling Relations for the Efficiency of Radial Migration in Disk Galaxies
NASA Astrophysics Data System (ADS)
Daniel, Kathryne J.
2018-01-01
Radial migration is frequently recognized as an internal, secular process that could play an important role in disk galaxy evolution. The driving mechanism for radial migration is transient spiral patterns, which rearrange the orbital angular momentum distribution of disk stars around corotation without causing kinematic heating. Should radial migration be an efficient process, it could cause a substantial fraction of disk stars to move large radial distances over the lifetime of the disk, thus having a significant impact on the disk’s kinematic, structural and chemical evolution. Observational and simulated data are consistent with radial migration being important for kinematically cold stellar populations and less so for populations with hot kinematics. I will present an analytic criterion that determines which stars are in orbits that could lead to radial migration. I will then show some scaling relations for the efficacy of radial migration that result from applying this analytic criterion to a series of models that have a variety of distribution functions and spiral patterns in systems with an assumed flat rotation curve. Most importantly, I will argue that these scaling relations can be used to place constraints on the efficiency of radial migration, where stronger spiral patterns and kinematically cold populations will lead to a higher fraction of stars in orbits that can lead to radial migration.
Daly, Ryan; Smale, Malcolm J.; Cowley, Paul D.; Froneman, Pierre W.
2014-01-01
Bull sharks (Carcharhinus leucas) are globally distributed top predators that play an important ecological role within coastal marine communities. However, little is known about the spatial and temporal scales of their habitat use and associated ecological role. In this study, we employed passive acoustic telemetry to investigate the residency patterns and migration dynamics of 18 adult bull sharks (195–283 cm total length) tagged in southern Mozambique for a period of between 10 and 22 months. The majority of sharks (n = 16) exhibited temporally and spatially variable residency patterns interspersed with migration events. Ten individuals undertook coastal migrations that ranged between 433 and 709 km (mean = 533 km) with eight of these sharks returning to the study site. During migration, individuals exhibited rates of movement between 2 and 59 km.d−1 (mean = 17.58 km.d−1) and were recorded travelling annual distances of between 450 and 3760 km (mean = 1163 km). Migration towards lower latitudes primarily took place in austral spring and winter and there was a significant negative correlation between residency and mean monthly sea temperature at the study site. This suggested that seasonal change is the primary driver behind migration events but further investigation is required to assess how foraging and reproductive activity may influence residency patterns and migration. Results from this study highlight the need for further understanding of bull shark migration dynamics and suggest that effective conservation strategies for this vulnerable species necessitate the incorporation of congruent trans-boundary policies over large spatial scales. PMID:25295972
Hill, Sarah C.; Lee, Youn-Jeong; Song, Byung-Min; Kang, Hyun-Mi; Lee, Eun-Kyoung; Hanna, Amanda; Gilbert, Marius; Brown, Ian H.; Pybus, Oliver G.
2015-01-01
Highly pathogenic avian influenza (HPAI) viruses threaten human and animal health yet their emergence is poorly understood, partly because sampling of the HPAI Asian-origin H5N1 lineage immediately after its identification in 1996 was comparatively sparse. The discovery of a novel H5N8 virus in 2013 provides a new opportunity to investigate HPAI emergence in greater detail. Here we investigate the origin and transmission of H5N8 in the Republic of Korea, the second country to report the new strain. We reconstruct viral spread using phylogeographic methods and interpret the results in the context of ecological data on poultry density, overwintering wild bird numbers, and bird migration patterns. Our results indicate that wild waterfowl migration and domestic duck density were important to H5N8 epidemiology. Specifically, we infer that H5N8 entered the Republic of Korea via Jeonbuk province, then spread rapidly among western provinces where densities of overwintering waterfowl and domestic ducks are higher, yet rarely persisted in eastern regions. The common ancestor of H5N8 in the Republic of Korea was estimated to have arrived during the peak of inward migration of overwintering birds. Recent virus isolations likely represent re-introductions via bird migration from an as-yet unsampled reservoir. Based on the limited data from outside the Republic of Korea, our data suggest that H5N8 may have entered Europe at least twice, and Asia at least three times from this reservoir, most likely carried by wild migrating birds. PMID:26079277
Hill, Sarah C; Lee, Youn-Jeong; Song, Byung-Min; Kang, Hyun-Mi; Lee, Eun-Kyoung; Hanna, Amanda; Gilbert, Marius; Brown, Ian H; Pybus, Oliver G
2015-08-01
Highly pathogenic avian influenza (HPAI) viruses threaten human and animal health yet their emergence is poorly understood, partly because sampling of the HPAI Asian-origin H5N1 lineage immediately after its identification in 1996 was comparatively sparse. The discovery of a novel H5N8 virus in 2013 provides a new opportunity to investigate HPAI emergence in greater detail. Here we investigate the origin and transmission of H5N8 in the Republic of Korea, the second country to report the new strain. We reconstruct viral spread using phylogeographic methods and interpret the results in the context of ecological data on poultry density, overwintering wild bird numbers, and bird migration patterns. Our results indicate that wild waterfowl migration and domestic duck density were important to H5N8 epidemiology. Specifically, we infer that H5N8 entered the Republic of Korea via Jeonbuk province, then spread rapidly among western provinces where densities of overwintering waterfowl and domestic ducks are higher, yet rarely persisted in eastern regions. The common ancestor of H5N8 in the Republic of Korea was estimated to have arrived during the peak of inward migration of overwintering birds. Recent virus isolations likely represent re-introductions via bird migration from an as-yet unsampled reservoir. Based on the limited data from outside the Republic of Korea, our data suggest that H5N8 may have entered Europe at least twice, and Asia at least three times from this reservoir, most likely carried by wild migrating birds. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Identifying impediments to long-distance mammal migrations.
Seidler, Renee G; Long, Ryan A; Berger, Joel; Bergen, Scott; Beckmann, Jon P
2015-02-01
In much of the world, the persistence of long-distance migrations by mammals is threatened by development. Even where human population density is relatively low, there are roads, fencing, and energy development that present barriers to animal movement. If we are to conserve species that rely on long-distance migration, then it is critical that we identify existing migration impediments. To delineate stopover sites associated with anthropogenic development, we applied Brownian bridge movement models to high-frequency locations of pronghorn (Antilocapra americana) in the Greater Yellowstone Ecosystem. We then used resource utilization functions to assess the threats to long-distance migration of pronghorn that were due to fences and highways. Migrating pronghorn avoided dense developments of natural gas fields. Highways with relatively high volumes of traffic and woven-wire sheep fence acted as complete barriers. At crossings with known migration bottlenecks, use of high-quality forage and shrub habitat by pronghorn as they approached the highway was lower than expected based on availability of those resources. In contrast, pronghorn consistently utilized high-quality forage close to the highway at crossings with no known migration bottlenecks. Our findings demonstrate the importance of minimizing development in migration corridors in the future and of mitigating existing pressure on migratory animals by removing barriers, reducing the development footprint, or installing crossing structures. © 2014 Society for Conservation Biology.
Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind.
Chapman, Jason W; Nilsson, Cecilia; Lim, Ka S; Bäckman, Johan; Reynolds, Don R; Alerstam, Thomas
2016-01-01
Animals that use flight as their mode of transportation must cope with the fact that their migration and orientation performance is strongly affected by the flow of the medium they are moving in, that is by the winds. Different strategies can be used to mitigate the negative effects and benefit from the positive effects of a moving flow. The strategies an animal can use will be constrained by the relationship between the speed of the flow and the speed of the animal's own propulsion in relation to the surrounding air. Here we analyse entomological and ornithological radar data from north-western Europe to investigate how two different nocturnal migrant taxa, the noctuid moth Autographa gamma and songbirds, deal with wind by analysing variation in resulting flight directions in relation to the wind-dependent angle between the animal's heading and track direction. Our results, from fixed locations along the migratory journey, reveal different global strategies used by moths and songbirds during their migratory journeys. As expected, nocturnally migrating moths experienced a greater degree of wind drift than nocturnally migrating songbirds, but both groups were more affected by wind in autumn than in spring. The songbirds' strategies involve elements of both drift and compensation, providing some benefits from wind in combination with destination and time control. In contrast, moths expose themselves to a significantly higher degree of drift in order to obtain strong wind assistance, surpassing the songbirds in mean ground speed, at the cost of a comparatively lower spatiotemporal migratory precision. Moths and songbirds show contrasting but adaptive responses to migrating through a moving flow, which are fine-tuned to the respective flight capabilities of each group in relation to the wind currents they travel within. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.
Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.
2014-01-01
The principal goal of protected area networks is biodiversity preservation, but efficacy of such networks is directly linked to animal movement within and outside area boundaries. We examined wetland selection patterns of mallards (Anas platyrhynchos) during non-breeding periods from 2010 to 2012 to evaluate the utility of protected areas to migratory waterfowl in North America. We tracked 33 adult females using global positioning system (GPS) satellite transmitters and implemented a use-availability resource selection design to examine mallard use of wetlands under varying degrees of protection. Specifically, we examined effects of proximities to National Wildlife Refuges, private land, state wildlife management areas, Wetland Reserve Program easements (WRP), and waterfowl sanctuaries on mallard wetland selection. In addition, we included landscape-level variables that measured areas of sanctuary and WRP within the surrounding landscape of each used and available wetland. We developed 8 wetland selection models according to season (autumn migration, winter, spring migration), hunting season (present, absent), and time period (diurnal, nocturnal). Model averaged parameter estimates indicated wetland selection patterns varied across seasons and time periods, but ducks consistently selected wetlands with greater areas of sanctuary and WRP in the surrounding landscape. Consequently, WRP has the potential to supplement protected area networks in the midcontinent region. Additionally, seasonal variation in wetland selection patterns indicated considering the effects of habitat management and anthropogenic disturbances on migratory waterfowl during the non-breeding period is essential in designing protected area networks.
Travel and the emergence of infectious diseases.
Wilson, M. E.
1995-01-01
Travel is a potent force in the emergence of disease. Migration of humans has been the pathway for disseminating infectious diseases throughout recorded history and will continue to shape the emergence, frequency, and spread of infections in geographic areas and populations. The current volume, speed, and reach of travel are unprecedented. The consequences of travel extend beyond the traveler to the population visited and the ecosystem. When they travel, humans carry their genetic makeup, immunologic sequelae of past infections, cultural preferences, customs, and behavioral patterns. Microbes, animals, and other biologic life also accompany them. Today's massive movement of humans and materials sets the stage for mixing diverse genetic pools at rates and in combinations previously unknown. Concomitant changes in the environment, climate, technology, land use, human behavior, and demographics converge to favor the emergence of infectious diseases caused by a broad range of organisms in humans, as well as in plants and animals. PMID:8903157
Pechmann, Matthias; Benton, Matthew A; Kenny, Nathan J; Posnien, Nico; Roth, Siegfried
2017-08-29
Organizers play important roles during the embryonic development of many animals. The most famous example is the Spemann organizer that sets up embryonic axes in amphibian embryos. In spiders, a group of BMP secreting mesenchymal cells (the cumulus) functions as an organizer of the dorsoventral axis. Similar to experiments performed with the Spemann organizer, transplantation of the cumulus is able to induce a secondary axis in spiders. Despite the importance of this structure, it is unknown which factors are needed to activate cumulus specific gene expression. To address this question, we performed a transcriptomic analysis of early embryonic development in the spider Parasteatoda tepidariorum. Through this work, we found that the transcription factor Pt-Ets4 is needed for cumulus integrity, dorsoventral patterning and for the activation of Pt-hunchback and Pt-twist expression. Furthermore, ectopic expression of Pt-Ets4 is sufficient to induce cell delamination and migration by inducing a mesoderm-like cell fate.
A pheromone outweighs temperature in influencing migration of sea lamprey
Brant, Cory O.; Li, Ke; Johnson, Nicholas S.; Li, Weiming
2015-01-01
Organisms continuously acquire and process information from surrounding cues. While some cues complement one another in delivering more reliable information, others may provide conflicting information. How organisms extract and use reliable information from a multitude of cues is largely unknown. We examined movement decisions of sea lampreys (Petromyzon marinus L.) exposed to a conspecific and an environmental cue during pre-spawning migration. Specifically, we predicted that the mature male-released sex pheromone 3-keto petromyzonol sulfate (3kPZS) will outweigh the locomotor inhibiting effects of cold stream temperature (less than 15°C). Using large-scale stream bioassays, we found that 3kPZS elicits an increase (more than 40%) in upstream movement of pre-spawning lampreys when the water temperatures were below 15°C. Both warming temperatures and conspecific cues increase upstream movement when the water temperature rose above 15°C. These patterns define an interaction between abiotic and conspecific cues in modulating animal decision-making, providing an example of the hierarchy of contradictory information.
Japanese migration in contemporary Japan: economic segmentation and interprefectural migration.
Fukurai, H
1991-01-01
This paper examines the economic segmentation model in explaining 1985-86 Japanese interregional migration. The analysis takes advantage of statistical graphic techniques to illustrate the following substantive issues of interregional migration: (1) to examine whether economic segmentation significantly influences Japanese regional migration and (2) to explain socioeconomic characteristics of prefectures for both in- and out-migration. Analytic techniques include a latent structural equation (LISREL) methodology and statistical residual mapping. The residual dispersion patterns, for instance, suggest the extent to which socioeconomic and geopolitical variables explain migration differences by showing unique clusters of unexplained residuals. The analysis further points out that extraneous factors such as high residential land values, significant commuting populations, and regional-specific cultures and traditions need to be incorporated in the economic segmentation model in order to assess the extent of the model's reliability in explaining the pattern of interprefectural migration.
Kampuansai, Jatupol; Kutanan, Wibhu; Tassi, Francesca; Kaewgahya, Massupa; Ghirotto, Silvia; Kangwanpong, Daoroong
2017-02-01
The migration of the Tai-Kadai speaking people from southern China to northern Thailand over the past hundreds of years has revealed numerous patterns that have likely been influenced by routes, purposes and periods of time. To study the effects of different migration patterns on Tai-Kadai maternal genetic structure, mitochondrial DNA hypervariable region I sequences from the Yong and the Lue people having well-documented histories in northern Thailand were analyzed. Although the Yong and Lue people were historically close relatives who shared Xishuangbanna Dai ancestors, significant genetic differences have been observed among them. The Yong people who have been known to practice mass migration have exhibited a closer genetic affinity to their Dai ancestors than have the Lue people. Genetic heterogeneity and a sudden reduced effective population size within the Lue group is likely a direct result of the circumstances of the founder effect.
NASA Astrophysics Data System (ADS)
Detjen, M.; Sterling, E.; Gómez, A.
2015-12-01
Sea turtles are migratory animals that travel long distances between their feeding and breeding grounds. Traditional methods for researching sea turtle migratory behavior have important disadvantages, and the development of alternatives would enhance our ability to monitor and manage these globally endangered species. Here we report on the isotope signatures in green sea-turtle (Chelonia mydas) barnacles (Platylepas sp.) and discuss their potential relevance as tools with which to study green sea turtle migration and habitat use patterns. We analyzed oxygen (δ18O) and carbon (δ13C) isotope ratios in barnacle calcite layers from specimens collected from green turtles captured at the Palmyra Atoll National Wildlife Refuge (PANWR) in the central Pacific. Carbon isotopes were not informative in this study. However, the oxygen isotope results suggest likely regional movement patterns when mapped onto a predictive oxygen isotope map of the Pacific. Barnacle proxies could therefore complement other methods in understanding regional movement patterns, informing more effective conservation policy that takes into account connectivity between populations.
NASA Astrophysics Data System (ADS)
Detjen, M.; Sterling, E.; Gómez, A.
2015-03-01
Sea turtles are migratory animals that travel long distances between their feeding and breeding grounds. Traditional methods for researching sea turtle migratory behavior have important disadvantages, and the development of alternatives would enhance our ability to monitor and manage these globally endangered species. Here we report on the isotope signatures in green sea turtle (Chelonia mydas) barnacles (Platylepas sp.) and discuss their potential relevance as tools with which to study green sea turtle migration and habitat use patterns. We analyzed oxygen (δ18O) and carbon (δ13C) isotope ratios in barnacle calcite layers from specimens collected from green turtles captured at the Palmyra Atoll National Wildlife Refuge (PANWR) in the Central Pacific. Carbon isotopes were not informative in this study. However, the oxygen isotope results suggest likely regional movement patterns when mapped onto a predictive oxygen isotope map of the Pacific. Barnacle proxies could therefore complement other methods in understanding regional movement patterns, informing more effective conservation policy that takes into account connectivity between populations.
Persistent leatherback turtle migrations present opportunities for conservation.
Shillinger, George L; Palacios, Daniel M; Bailey, Helen; Bograd, Steven J; Swithenbank, Alan M; Gaspar, Philippe; Wallace, Bryan P; Spotila, James R; Paladino, Frank V; Piedra, Rotney; Eckert, Scott A; Block, Barbara A
2008-07-15
Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004-2005, 2005-2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre.
Monnot, L.; Dunham, J.B.; Hoem, T.; Koetsier, P.
2008-01-01
Many fishes migrate extensively through stream networks, yet patterns are commonly described only in terms of the origin and destination of migration (e.g., between natal and feeding habitats). To better understand patterns of migration in bull trout,Salvelinus confluentus we studied the influences of body size (total length [TL]) and environmental factors (stream temperature and discharge) on migrations in the Boise River basin, Idaho. During the autumns of 2001-2003, we tracked the downstream migrations of 174 radio-tagged bull trout ranging in size from 21 to 73 cm TL. The results indicated that large bull trout (>30 cm) were more likely than small fish to migrate rapidly downstream after spawning in headwater streams in early autumn. Large bull trout also had a higher probability of arriving at the current terminus of migration in the system, Arrowrock Reservoir. The rate of migration by small bull trout was more variable and individuals were less likely to move into Arrowrock Reservoir. The rate of downstream migration by all fish was slower when stream discharge was greater. Temperature was not associated with the rate of migration. These findings indicate that fish size and environmentally related changes in behavior have important influences on patterns of migration. In a broader context, these results and other recent work suggest, at least in some cases, that commonly used classifications of migratory behavior may not accurately reflect the full range of behaviors and variability among individuals (or life stages) and environmental conditions. ?? Copyright by the American Fisheries Society 2008.
NASA Astrophysics Data System (ADS)
Copeland, Sandi R.; Cawthra, Hayley C.; Fisher, Erich C.; Lee-Thorp, Julia A.; Cowling, Richard M.; le Roux, Petrus J.; Hodgkins, Jamie; Marean, Curtis W.
2016-06-01
Middle Stone Age sites located within the Greater Cape Floristic Region on the South African southern coast have material culture with early evidence for key modern human behaviors such as projectile weaponry, large animal hunting, and symbolic behavior. In order to interpret how and why these changes evolved, it is necessary to understand their ecological context as it has direct relevance to foraging behavior. During periods of lowered sea level, a largely flat and vast expanse of land existed south of the modern coastline, but it is now submerged by higher sea levels. This exposed area, the Paleo-Agulhas Plain, likely created an ecological context unlike anything in the region today, as evidenced by fossil assemblages dominated by migratory ungulates. One hypothesis is that the Paleo-Agulhas Plain supported a migration ecosystem of large grazers driven by summer rainfall, producing palatable forage during summer in the east, and winter rainfall, producing palatable forage during winter in the west. Alternatively, ungulates may have been moving from the coastal plain in the south to the interior north of the Cape Fold Mountains, as observed for elephants in historic times. In this study, we assess ungulate movement patterns with inter- and intra-tooth enamel samples for strontium isotopes in fossil fauna from Pinnacle Point sites PP13B and PP30. To accomplish our goals we created a bioavailable 87Sr/86Sr isoscape for the region by collecting plants at 171 sampling sites and developing a geospatial model. The strontium isotope results indicate that ungulates spent most of their time on the Paleo-Agulhas Plain and avoided dissected plain, foothill, and mountain habitats located more than about 15 km north of the modern coastline. The results clearly exclude a north-south (coastal-interior) movement or migration pattern, and cannot falsify the east-west movements hypothesized in the south coast migration ecosystem hypothesis.
Yano, Junko; Palmer, Glen E.; Eberle, Karen E.; Peters, Brian M.; Vogl, Thomas; McKenzie, Andrew N.
2014-01-01
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women worldwide. Animal and clinical studies suggest that the immunopathogenic inflammatory condition of VVC is initiated by S100 alarmins in response to C. albicans, which stimulate polymorphonuclear neutrophil (PMN) migration to the vagina. The purpose of this study was to extend previous in vitro data and determine the requirement for the alarmin S100A8 in the PMN response and to evaluate pattern recognition receptors (PRRs) that initiate the response. For the former, PMN migration was evaluated in vitro or in vivo in the presence or absence of S100 alarmins initiated by several approaches. For the latter, vaginal epithelial cells were evaluated for PRR expression and C. albicans-induced S100A8 and S100A9 mRNAs, followed by evaluation of the PMN response in inoculated PRR-deficient mice. Results revealed that, consistent with previously reported in vitro data, eukaryote-derived S100A8, but not prokaryote-derived recombinant S100A8, induced significant PMN chemotaxis in vivo. Conversely, a lack of biologically active S100A8 alarmin, achieved by antibody neutralization or by using S100A9−/− mice, had no effect on the PMN response in vivo. In PRR analyses, whereas Toll-like receptor 4 (TLR4)- and SIGNR1-deficient vaginal epithelial cells showed a dramatic reduction in C. albicans-induced S100A8/S100A9 mRNAs in vitro, inoculated mice deficient in these PRRs showed PMN migration similar to that in wild-type controls. These results suggest that S100A8 alarmin is sufficient, but not necessary, to induce PMN migration during VVC and that the vaginal PMN response to C. albicans involves PRRs in addition to SIGNR1 and TLR4, or other induction pathways. PMID:24478092
Yano, Junko; Palmer, Glen E; Eberle, Karen E; Peters, Brian M; Vogl, Thomas; McKenzie, Andrew N; Fidel, Paul L
2014-02-01
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women worldwide. Animal and clinical studies suggest that the immunopathogenic inflammatory condition of VVC is initiated by S100 alarmins in response to C. albicans, which stimulate polymorphonuclear neutrophil (PMN) migration to the vagina. The purpose of this study was to extend previous in vitro data and determine the requirement for the alarmin S100A8 in the PMN response and to evaluate pattern recognition receptors (PRRs) that initiate the response. For the former, PMN migration was evaluated in vitro or in vivo in the presence or absence of S100 alarmins initiated by several approaches. For the latter, vaginal epithelial cells were evaluated for PRR expression and C. albicans-induced S100A8 and S100A9 mRNAs, followed by evaluation of the PMN response in inoculated PRR-deficient mice. Results revealed that, consistent with previously reported in vitro data, eukaryote-derived S100A8, but not prokaryote-derived recombinant S100A8, induced significant PMN chemotaxis in vivo. Conversely, a lack of biologically active S100A8 alarmin, achieved by antibody neutralization or by using S100A9(-/-) mice, had no effect on the PMN response in vivo. In PRR analyses, whereas Toll-like receptor 4 (TLR4)- and SIGNR1-deficient vaginal epithelial cells showed a dramatic reduction in C. albicans-induced S100A8/S100A9 mRNAs in vitro, inoculated mice deficient in these PRRs showed PMN migration similar to that in wild-type controls. These results suggest that S100A8 alarmin is sufficient, but not necessary, to induce PMN migration during VVC and that the vaginal PMN response to C. albicans involves PRRs in addition to SIGNR1 and TLR4, or other induction pathways.
Liang, Yajie; Li, Kaizhen; Riecken, Kristoffer; Maslyukov, Anatoliy; Gomez-Nicola, Diego; Kovalchuk, Yury; Fehse, Boris; Garaschuk, Olga
2016-01-01
The behavior of adult-born cells can be easily monitored in cell culture or in lower model organisms, but longitudinal observation of individual mammalian adult-born cells in their native microenvironment still proves to be a challenge. Here we have established an approach named optical cell positioning system for long-term in vivo single-cell tracking, which integrates red-green-blue cell labeling with repeated angiography. By combining this approach with in vivo two-photon imaging technique, we characterized the in vivo migration patterns of adult-born neurons in the olfactory bulb. In contrast to the traditional view of mere radial migration of adult-born cells within the bulb, we found that juxtaglomerular cells switch from radial migration to long distance lateral migration upon arrival in their destination layer. This unique long-distance lateral migration has characteristic temporal (stop-and-go) and spatial (migratory, unidirectional or multidirectional) patterns, with a clear cell age-dependent decrease in the migration speed. The active migration of adult-born cells coincides with the time period of initial fate determination and is likely to impact on the integration sites of adult-born cells, their odor responsiveness, as well as their survival rate. PMID:27174051
Hussey, Peter S
2007-12-01
To analyze the dynamics of physician international migration patterns and identify the countries deviating most from expected migration rates. A negative binomial log-linear model of physician migration to the United States from every other country was constructed using a panel of country-level data for years 1994-2000. The model was used to identify factors associated with physician migration and to identify countries with higher or lower rates of physician migration than expected. Physician migration varied with a country's GDP per capita in an inverse-U pattern, with highest migration rates from middle-income countries. The absence of medical schools, immigrant networks in the United States, medical instruction in English, proximity to the United States, and the lack of political and civil liberties were also associated with higher migration rates. Countries with higher-than-predicted migration rates included Iceland, Albania, Armenia, Dominica, Lebanon, Syria, the United Arab Emirates, and Bulgaria. Countries with lower-than-predicted migration rates included Mexico, Japan, Brazil, Zimbabwe, Mauritania, Portugal, Senegal, and France. This analysis shows that many of the most powerful factors associated with physician migration are difficult or impossible for countries to change through public policy. GDP per capita and proximity to the U.S. are two of the most powerful predictors of physician migration. Networks of immigrants in the U.S. and fewer political and civil liberties also put countries at higher risk for physician emigration. Several other factors that were associated with physician migration might be more easily amenable to policy intervention. These factors include the absence of a medical school and medical instruction in English. Policies addressing these factors would involve making several difficult tradeoffs, however. Other examples of policies that are effective in minimizing physician migration might be found by examining countries with lower-than-expected migration rates.
Conserved pattern of tangential neuronal migration during forebrain development.
Métin, Christine; Alvarez, Chantal; Moudoux, David; Vitalis, Tania; Pieau, Claude; Molnár, Zoltán
2007-08-01
Origin, timing and direction of neuronal migration during brain development determine the distinct organization of adult structures. Changes in these processes might have driven the evolution of the forebrain in vertebrates. GABAergic neurons originate from the ganglionic eminence in mammals and migrate tangentially to the cortex. We are interested in differences and similarities in tangential migration patterns across corresponding telencephalic territories in mammals and reptiles. Using morphological criteria and expression patterns of Darpp-32, Tbr1, Nkx2.1 and Pax6 genes, we show in slice cultures of turtle embryos that early cohorts of tangentially migrating cells are released from the medial ganglionic eminence between stages 14 and 18. Additional populations migrate tangentially from the dorsal subpallium. Large cohorts of tangentially migrating neurons originate ventral to the dorsal ventricular ridge at stage 14 and from the lateral ganglionic eminence from stage 15. Release of GABAergic cells from these regions was investigated further in explant cultures. Tangential migration in turtle proceeds in a fashion similar to mammals. In chimeric slice culture and in ovo graft experiments, the tangentially migrating cells behaved according to the host environment - turtle cells responded to the available cues in mouse slices and mouse cells assumed characteristic migratory routes in turtle brains, indicating highly conserved embryonic signals between these distant species. Our study contributes to the evaluation of theories on the origin of the dorsal cortex and indicates that tangential migration is universal in mammals and sauropsids.
Rainfall Patterns and U.S. Migration from Rural Mexico
Hunter, Lori M.; Murray, Sheena; Riosmena, Fernando
2014-01-01
In many rural regions of developing countries, natural resource dependency means changes in climate patterns hold tremendous potential to impact livelihoods. When environmentally-based livelihood options are constrained, migration can become an important adaptive strategy. Using data from the Mexican Migration Project, we model U.S. emigration from rural communities as related to community, household and climate factors. The results suggest that households subjected to recent drought conditions are far more likely to send a U.S. migrant, but only in communities with strong migration histories. In regions lacking such social networks, rainfall deficits actually reduce migration propensities, perhaps reflecting constraints in the ability to engage in migration as a coping strategy. Policy implications emphasize diversification of rural Mexican livelihoods in the face of contemporary climate change. PMID:25473143
Biogeographical profiles of shorebird migration in midcontinental North America
Skagen, Susan K.; Sharpe, Peter B.; Waltermire, Robert G.; Dillon, M. Beth
1999-01-01
The biogeographic information described here will help identify the uniqueness of different regions of the plains to migrating shorebirds. Although shorebirds migrating along Atlantic and Pacific coastal areas are capable of long jumps between refueling stops, there is evidence that some species move short rather than long distances between refueling sites. Maps of distribution patterns and chronology accounts can lend insight towards understanding migration strategies of the different shorebird species.This report focuses on the distribution patterns of enroute migrants that refuel in interior wetlands during migration. We provide information on the spatial and temporal occurrence and habitat requirements for individual species and groups of species with the intent that this information be used in guiding management efforts.
Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates
Kelsh, Robert N.; Harris, Melissa L.; Colanesi, Sarah; Erickson, Carol A.
2009-01-01
Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here –chick, mouse, and zebrafish – each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated progenitor cells play a major role in generating adult pigment cells. PMID:18977309
Rural-Urban Migration in Colombia.
ERIC Educational Resources Information Center
Schultz, T. Paul
The rural-urban migration pattern in Colombia during the last 25 years has resulted in a population increase in urban areas from 30 to 52 percent of the total population. This study explores the causes of internal migration. Migration rates are estimated for various groups in the population to clarify who migrates and to where. A model of…
Delavari, Maryam; Sønderlund, Anders Larrabee; Mellor, David; Mohebbi, Mohammadreza; Swinburn, Boyd
2015-01-01
While migration from low- to high-income countries is typically associated with weight gain, the obesity risks of migration from middle-income countries are less certain. In addition to changes in behaviours and cultural orientation upon migration, analyses of changes in environments are needed to explain post-migration risks for obesity. The present study examines the interaction between obesity-related environmental factors and the pattern of migrant acculturation in a sample of 152 Iranian immigrants in Victoria, Australia. Weight measurements, demographics, physical activity levels and diet habits were also surveyed. The pattern of acculturation (relative integration, assimilation, separation or marginalization) was not related to body mass index, diet, or physical activity behaviours. Three relevant aspects of participants’ perception of the Australian environment (physically active environments, social pressure to be fit, unhealthy food environments) varied considerably by demographic characteristics, but only one (physically active environments) was related to a pattern of acculturation (assimilation). Overall, this research highlighted a number of key relationships between acculturation and obesity-related environments and behaviours for our study sample. Theoretical models on migration, culture and obesity need to include environmental factors. PMID:25648171
Climate Shocks and Migration: An Agent-Based Modeling Approach.
Entwisle, Barbara; Williams, Nathalie E; Verdery, Ashton M; Rindfuss, Ronald R; Walsh, Stephen J; Malanson, George P; Mucha, Peter J; Frizzelle, Brian G; McDaniel, Philip M; Yao, Xiaozheng; Heumann, Benjamin W; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree
2016-09-01
This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, 'normal' scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response.
Climate Shocks and Migration: An Agent-Based Modeling Approach
Entwisle, Barbara; Williams, Nathalie E.; Verdery, Ashton M.; Rindfuss, Ronald R.; Walsh, Stephen J.; Malanson, George P.; Mucha, Peter J.; Frizzelle, Brian G.; McDaniel, Philip M.; Yao, Xiaozheng; Heumann, Benjamin W.; Prasartkul, Pramote; Sawangdee, Yothin; Jampaklay, Aree
2016-01-01
This is a study of migration responses to climate shocks. We construct an agent-based model that incorporates dynamic linkages between demographic behaviors, such as migration, marriage, and births, and agriculture and land use, which depend on rainfall patterns. The rules and parameterization of our model are empirically derived from qualitative and quantitative analyses of a well-studied demographic field site, Nang Rong district, Northeast Thailand. With this model, we simulate patterns of migration under four weather regimes in a rice economy: 1) a reference, ‘normal’ scenario; 2) seven years of unusually wet weather; 3) seven years of unusually dry weather; and 4) seven years of extremely variable weather. Results show relatively small impacts on migration. Experiments with the model show that existing high migration rates and strong selection factors, which are unaffected by climate change, are likely responsible for the weak migration response. PMID:27594725
[The rural-urban nature and geographical nature of patterns of internal migration].
Raczynski, D
1981-07-01
The rural-urban nature and geographical patterns of internal migration in Chile are studied. The magnitude, nature, and relative importance of rural-urban, interurban, inter-rural, and urban-rural movements in the country are examined, with a focus on the impact of internal migration on urbanization and on the demographic growth of cities and rural areas. Rural and urban differentials in propensity to migrate and in the capacity to attract and retain population are investigated using 1970 census data on migratory flows to and from the Santiago metropolitan area and those directed to other parts of the country.
Roads, interrupted dispersal, and genetic diversity in timber rattlesnakes.
Clark, Rulon W; Brown, William S; Stechert, Randy; Zamudio, Kelly R
2010-08-01
Anthropogenic habitat modification often creates barriers to animal movement, transforming formerly contiguous habitat into a patchwork of habitat islands with low connectivity. Roadways are a feature of most landscapes that can act as barriers or filters to migration among local populations. Even small and recently constructed roads can have a significant impact on population genetic structure of some species, but not others. We developed a research approach that combines fine-scale molecular genetics with behavioral and ecological data to understand the impacts of roads on population structure and connectivity. We used microsatellite markers to characterize genetic variation within and among populations of timber rattlesnakes (Crotalus horridus) occupying communal hibernacula (dens) in regions bisected by roadways. We examined the impact of roads on seasonal migration, genetic diversity, and gene flow among populations. Snakes in hibernacula isolated by roads had significantly lower genetic diversity and higher genetic differentiation than snakes in hibernacula in contiguous habitat. Genetic-assignment analyses revealed that interruption to seasonal migration was the mechanism underlying these patterns. Our results underscore the sizeable impact of roads on this species, despite their relatively recent construction at our study sites (7 to 10 generations of rattlesnakes), the utility of population genetics for studies of road ecology, and the need for mitigating effects of roads.
Hindrikson, Maris; Remm, Jaanus; Männil, Peep; Ozolins, Janis; Tammeleht, Egle; Saarma, Urmas
2013-01-01
Spatial genetics is a relatively new field in wildlife and conservation biology that is becoming an essential tool for unravelling the complexities of animal population processes, and for designing effective strategies for conservation and management. Conceptual and methodological developments in this field are therefore critical. Here we present two novel methodological approaches that further the analytical possibilities of STRUCTURE and DResD. Using these approaches we analyse structure and migrations in a grey wolf (Canislupus) population in north-eastern Europe. We genotyped 16 microsatellite loci in 166 individuals sampled from the wolf population in Estonia and Latvia that has been under strong and continuous hunting pressure for decades. Our analysis demonstrated that this relatively small wolf population is represented by four genetic groups. We also used a novel methodological approach that uses linear interpolation to statistically test the spatial separation of genetic groups. The new method, which is capable of using program STRUCTURE output, can be applied widely in population genetics to reveal both core areas and areas of low significance for genetic groups. We also used a recently developed spatially explicit individual-based method DResD, and applied it for the first time to microsatellite data, revealing a migration corridor and barriers, and several contact zones.
Agricultural activity shapes the communication and migration patterns in Senegal.
Martin-Gutierrez, S; Borondo, J; Morales, A J; Losada, J C; Tarquis, A M; Benito, R M
2016-06-01
The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country.
Agricultural activity shapes the communication and migration patterns in Senegal
NASA Astrophysics Data System (ADS)
Martin-Gutierrez, S.; Borondo, J.; Morales, A. J.; Losada, J. C.; Tarquis, A. M.; Benito, R. M.
2016-06-01
The communication and migration patterns of a country are shaped by its socioeconomic processes. The economy of Senegal is predominantly rural, as agriculture employs over 70% of the labor force. In this paper, we use mobile phone records to explore the impact of agricultural activity on the communication and mobility patterns of the inhabitants of Senegal. We find two peaks of phone calls activity emerging during the growing season. Moreover, during the harvest period, we detect an increase in the migration flows throughout the country. However, religious holidays also shape the mobility patterns of the Senegalese people. Hence, in the light of our results, agricultural activity and religious holidays are the primary drivers of mobility inside the country.
Blanchette, Cassandra R; Thackeray, Andrea; Perrat, Paola N; Hekimi, Siegfried; Bénard, Claire Y
2017-01-01
The regulation of cell migration is essential to animal development and physiology. Heparan sulfate proteoglycans shape the interactions of morphogens and guidance cues with their respective receptors to elicit appropriate cellular responses. Heparan sulfate proteoglycans consist of a protein core with attached heparan sulfate glycosaminoglycan chains, which are synthesized by glycosyltransferases of the exostosin (EXT) family. Abnormal HS chain synthesis results in pleiotropic consequences, including abnormal development and tumor formation. In humans, mutations in either of the exostosin genes EXT1 and EXT2 lead to osteosarcomas or multiple exostoses. Complete loss of any of the exostosin glycosyltransferases in mouse, fish, flies and worms leads to drastic morphogenetic defects and embryonic lethality. Here we identify and study previously unavailable viable hypomorphic mutations in the two C. elegans exostosin glycosyltransferases genes, rib-1 and rib-2. These partial loss-of-function mutations lead to a severe reduction of HS levels and result in profound but specific developmental defects, including abnormal cell and axonal migrations. We find that the expression pattern of the HS copolymerase is dynamic during embryonic and larval morphogenesis, and is sustained throughout life in specific cell types, consistent with HSPGs playing both developmental and post-developmental roles. Cell-type specific expression of the HS copolymerase shows that HS elongation is required in both the migrating neuron and neighboring cells to coordinate migration guidance. Our findings provide insights into general principles underlying HSPG function in development.
Gendered Patterns of Migration in Rural South Africa
Camlin, Carol S.; Snow, Rachel C.; Hosegood, Victoria
2013-01-01
Gender is increasingly recognized as fundamental to understanding migration processes, causes and consequences. In South Africa, it is intrinsic to the social transformations fueling high levels of internal migration and complex forms of mobility. While female migration in Africa has often been characterized as less prevalent than male migration, and primarily related to marriage, in South Africa a feminization of internal migration is underway, fueled by women’s increasing labor market participation. In this paper, we report sex differences in patterns, trends and determinants of internal migration based on data collected in a demographic surveillance system between 2001 and 2006 in rural KwaZulu-Natal. We show that women were somewhat more likely than men to undertake any migration, but sex differences in migration trends differed by migration flow, with women more likely to migrate into the area than men, and men more likely to out-migrate. Out-migration was suppressed by marriage particularly for women, but most women were not married; both men’s and women’s out-migrations were undertaken mainly for purposes of employment. Over half of female out-migrations (versus 35% of male out-migrations) were to nearby rural areas. The findings highlight the high mobility of this population and the extent to which gender is intimately related to the processes determining migration. We consider the implications of these findings for the measurement of migration and mobility, in particular for health and social policy and research among highly mobile populations in southern Africa. PMID:25332690
Flying with the winds: differential migration strategies in relation to winds in moth and songbirds.
Åkesson, Susanne
2016-01-01
The gamma Y moth selects to migrate in stronger winds compared to songbirds, enabling fast transport to distant breeding sites, but a lower precision in orientation as the moth allows itself to be drifted by the winds. Photo: Ian Woiwod. In Focus: Chapman, J.R., Nilsson, C., Lim, K.S., Bäckman, J., Reynolds, D.R. & Alerstam, T. (2015) Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to winds. Journal of Animal Ecology, In press Insects and songbirds regularly migrate long distances across continents and seas. During these nocturnal migrations, they are exposed to a fluid medium, the air, in which they transport themselves by flight at similar speeds as the winds may carry them. It is crucial for an animal to select the most favourable flight conditions relative to winds to minimize the distance flown on a given amount of fuel and to avoid hazardous situations. Chapman et al. (2015a) showed contrasting strategies in how moths initiate migration predominantly under tailwind conditions, allowing themselves to drift to a larger extent and gain ground speed as compared to nocturnal songbird migrants. The songbirds use more variable flight strategies in relation to winds, where they sometimes allow themselves to drift, and at other occasions compensate for wind drift. This study shows how insects and birds have differentially adapted to migration in relation to winds, which is strongly dependent on their own flight capability, with higher flexibility enabling fine-tuned responses to keep a time programme and reach a goal in songbirds compared to in insects. © 2015 The Author. Journal of Animal Ecology © 2015 British Ecological Society.
Coalbed methane accumulation and dissipation patterns: A Case study of the Junggar Basin, NW China
NASA Astrophysics Data System (ADS)
Li, Xin; Fu, Xuehai; Yang, Xuesong; Ge, Yanyan; Quan, Fangkai
2018-07-01
The Junggar Basin is a potential replacement area of coalbed methane (CBM) development in China. To improve the efficiency of CBM exploration, we investigated CBM accumulation and dissipation patterns of coal profiles located in the northwestern, southern, eastern, and central Junggar Basin based on the following criteria: burial depth, hydrogeological zone, CBM origin, CBM phase, and CBM migration type. We identified four types of CBM accumulation patterns: (1) a self-sourcing CBM pattern containing adsorbed gas of biogenic origin from shallow-depth coal within a weak runoff zone; (2) an endogenic migration pattern containing adsorbed gas of thermogenic origin from the medium and deep coals within a stagnant zone; (3) an exogenic migration pattern containing adsorbed gas of thermogenic origin from deep coal within a stagnant zone; and (4) an exogenic migration pattern containing adsorbed and free gas of thermogenic origin from ultra-deep coal within a stagnant zone. We also identified two types of CBM dissipation patterns: (1) shallow-depth coal within a runoff zone with mixed origin CBM; and (2) shallow and medium-deep coal seams with mixed origin CBM. CBM migration in low-rank coals was more substantial than that adsorbed in high-rank coal. CBM in shallow coal could easily escape, in the absence of closed structures or hydrogeological seals. CBM reservoirs occurred in deep coal where oversaturated gas may accumulate. Future exploration should focus on gas-water sealing structures in shallow coalbeds. CBM that occurred in adsorbed and free phases and other unconventional natural gas dominated by free gas in the coal stratum should be co-explored and co-developed.
Gryseels, S; Goüy de Bellocq, J; Makundi, R; Vanmechelen, K; Broeckhove, J; Mazoch, V; Šumbera, R; Zima, J; Leirs, H; Baird, S J E
2016-10-01
Special conditions are required for genetic differentiation to arise at a local geographical scale in the face of gene flow. The Natal multimammate mouse, Mastomys natalensis, is the most widely distributed and abundant rodent in sub-Saharan Africa. A notorious agricultural pest and a natural host for many zoonotic diseases, it can live in close proximity to humans and appears to compete with other rodents for the synanthropic niche. We surveyed its population genetic structure across a 180-km transect in central Tanzania along which the landscape varied between agricultural land in a rural setting and natural woody vegetation, rivers, roads and a city (Morogoro). We sampled M. natalensis across 10 localities and genotyped 15 microsatellite loci from 515 individuals. Hierarchical STRUCTURE analyses show a K-invariant pattern distinguishing Morogoro suburbs (located in the centre of the transect) from nine surrounding rural localities. Landscape connectivity analyses in Circuitscape and comparison of rainfall patterns suggest that neither geographical isolation nor natural breeding asynchrony could explain the genetic differentiation of the urban population. Using the isolation-with-migration model implemented in IMa2, we inferred that a split between suburban and rural populations would have occurred recently (<150 years ago) with higher urban effective population density consistent with an urban source to rural sink of effective migration. The observed genetic differentiation of urban multimammate mice is striking given the uninterrupted distribution of the animal throughout the landscape and the high estimates of effective migration (2N e M = 3.0 and 29.7), suggesting a strong selection gradient across the urban boundary. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.
Exploring Child Mortality Risks Associated with Diverse Patterns of Maternal Migration in Haiti
Smith-Greenaway, Emily; Thomas, Kevin
2014-01-01
Internal migration is a salient dimension of adulthood in Haiti, particularly among women. Despite the prevalence of migration in Haiti, it remains unknown whether Haitian women’s diverse patterns of migration influence their children’s health and survival. In this paper, we introduce the concept of lateral (i.e., rural-to-rural, urban-to-urban) versus nonlateral (i.e., rural-to-urban, urban-to-rural) migration to describe how some patterns of mothers’ internal migration may be associated with particularly high mortality among children. We use the 2006 Haitian Demographic and Health Survey to estimate a series of discrete-time hazard models among 7,409 rural children and 3,864 urban children. We find that, compared with their peers with nonmigrant mothers, children born to lateral migrants generally experience lower mortality whereas those born to nonlateral migrants generally experience higher mortality. Although there are important distinctions across Haiti’s rural and urban contexts, these associations remain net of socioeconomic factors, suggesting they are not entirely attributable to migrant selection. Considering the timing of maternal migration uncovers even more variation in the child health implications of maternal migration; however, the results counter the standard disruption and adaptation perspective. Although future work is needed to identify the processes underlying the differential risk of child mortality across lateral versus nonlateral migrants, the study demonstrates that looking beyond rural-to-urban migration and considering the timing of maternal migration can provide a fuller, more complex understanding of migration’s association with child health. PMID:25506111
NASA Astrophysics Data System (ADS)
Bartlam-Brooks, Hattie L. A.; Beck, Pieter S. A.; Bohrer, Gil; Harris, Stephen
2013-12-01
ungulate migrations occurred in most grassland and boreal woodland ecosystems, but many have been lost due to increasing habitat loss and fragmentation. With the rate of environmental change increasing, identifying and prioritizing migration routes for conservation has taken on a new urgency. Understanding the cues that drive long-distance animal movements is critical to predicting the fate of migrations under different environmental change scenarios and how large migratory herbivores will respond to increasing resource heterogeneity and anthropogenic influences. We used an individual-based modeling approach to investigate the influence of environmental conditions, monitored using satellite data, on departure date and movement speed of migrating zebras in Botswana. Daily zebra movements between dry and rainy season ranges were annotated with coincident observations of precipitation from the Tropical Rainfall Measuring Mission data set and Moderate Resolution Imaging Spectroradiometer-derived normalized difference vegetation index (NDVI). An array of increasingly complex movement models representing alternative hypotheses regarding the environmental cues and controls for movement was parameterized and tested. The best and most justified model predicted daily zebra movement as two linear functions of precipitation rate and NDVI and included a modeled departure date as a function of cumulative precipitation. The model was highly successful at replicating both the timing and pace of seven actual migrations observed using GPS telemetry (R2 = 0.914). It shows how zebras rapidly adjust their movement to changing environmental conditions during migration and are able to reverse migration to avoid adverse conditions or exploit renewed resource availability, a nomadic behavior which should lend them a degree of resilience to climate and environmental change. Our results demonstrate how competing individual-based migration models, informed by freely available satellite data, can be used to evaluate the weight of evidence for multiple hypotheses regarding the use of environmental cues in animal movement. This modeling framework can be applied to quantify how animals adapt the timing and pace of their movements to prevailing environmental conditions and to forecast migrations in near real time or under alternative environmental scenarios.
Giroux, Marie-Andrée; Berteaux, Dominique; Lecomte, Nicolas; Gauthier, Gilles; Szor, Guillaume; Bêty, Joël
2012-05-01
1. Flows of nutrients and energy across ecosystem boundaries have the potential to subsidize consumer populations and modify the dynamics of food webs, but how spatio-temporal variations in autochthonous and allochthonous resources affect consumers' subsidization remains largely unexplored. 2. We studied spatio-temporal patterns in the allochthonous subsidization of a predator living in a relatively simple ecosystem. We worked on Bylot Island (Nunavut, Canada), where arctic foxes (Vulpes lagopus L.) feed preferentially on lemmings (Lemmus trimucronatus and Dicrostonyx groenlandicus Traill), and alternatively on colonial greater snow geese (Anser caerulescens atlanticus L.). Geese migrate annually from their wintering grounds (where they feed on farmlands and marshes) to the Canadian Arctic, thus generating a strong flow of nutrients and energy across ecosystem boundaries. 3. We examined the influence of spatial variations in availability of geese on the diet of fox cubs (2003-2005) and on fox reproductive output (1996-2005) during different phases of the lemming cycle. 4. Using stable isotope analysis and a simple statistical routine developed to analyse the outputs of a multisource mixing model (SIAR), we showed that the contribution of geese to the diet of arctic fox cubs decreased with distance from the goose colony. 5. The probability that a den was used for reproduction by foxes decreased with distance from the subsidized goose colony and increased with lemming abundance. When lemmings were highly abundant, the effect of distance from the colony disappeared. The goose colony thus generated a spatial patterning of reproduction probability of foxes, while the lemming cycle generated a strong temporal variation of reproduction probability of foxes. 6. This study shows how the input of energy owing to the large-scale migration of prey affects the functional and reproductive responses of an opportunistic consumer, and how this input is spatially and temporally modulated through the foraging behaviour of the consumer. Thus, perspectives of both landscape and foraging ecology are needed to fully resolve the effects of subsidies on animal demographic processes and population dynamics. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.
Aspects of Migration in an Advanced Industrial Society.
ERIC Educational Resources Information Center
Wilson, Franklin D.
This paper evaluates the hypothesis that patterns of migration within and between the metropolitan and nonmetropolitan sectors and between regions, and migrant/nonmigrant differentials in education attainment during the 1935-1980 period of United States history reflect historical differences in socioeconomic development and settlement patterns.…
Sediment and Vegetation Controls on Delta Channel Networks
NASA Astrophysics Data System (ADS)
Lauzon, R.; Murray, A. B.; Piliouras, A.; Kim, W.
2016-12-01
Numerous factors control the patterns of distributary channels formed on a delta, including water and sediment discharge, grain size, sea level rise rates, and vegetation type. In turn, these channel networks influence the shape and evolution of a delta, including what types of plant and animal life - such as humans - it can support. Previous fluvial modeling and flume experiments, outside of the delta context, have addressed how interactions between sediment and vegetation, through their influence on lateral transport of sediment, determine what type of channel networks develops. Similar interactions likely also shape delta flow patterns. Vegetation introduces cohesion, tending to reduce channel migration rates and strengthen existing channel banks, reinforcing existing channels and resulting in localized, relatively stable flow patterns. On the other hand, sediment transport processes can result in lateral migration and frequent switching of active channels, resulting in flow resembling that of a braided stream. While previous studies of deltas have indirectly explored the effects of vegetation through the introduction of cohesive sediment, we directly incorporate key effects of vegetation on flow and sediment transport into the delta-building model DeltaRCM to explore how these effects influence delta channel network formation. Model development is informed by laboratory flume experiments at UT Austin. Here we present initial results of experiments exploring the effects of sea level rise rate, sediment grain size, vegetation type, and vegetation growth rate on delta channel network morphology. These results support the hypothesis that the ability for lateral transport of sediment to occur plays a key role in determining the evolution of delta channel networks and delta morphology.
Mark-recapture population estimates of parasitic sea lampreys (Petromyzon marinus) in Lake Huron
Bergstedt, Roger A.; McDonald, Rodney B.; Mullett, Katherine M.; Wright, Gregory M.; Swink, William D.; Burnham, Kenneth P.
2003-01-01
Metamorphosed sea lampreys (Petromyzon marinus) were collected and marked at two points in their life cycle. Recently metamorphosed juveniles were collected from streams, marked with coded wire tags, and returned to migrate to the Great Lakes. Juveniles already in the lakes and feeding on teleost hosts were obtained from incidental catches by sport or commercial fisheries. Sea lampreys in the Great Lakes spend only 1 feeding year as parasites, and marked animals were recaptured during the spawning runs. For one marked group in each of four parasitic cohorts (feeding years 1991 to 1994) and two marked groups in each of three cohorts (feeding years 1998 to 2000) we recovered from 1.1 to 10.2 percent of marked animals. The number of metamorphosed animals present in autumn before migration to Lake Huron was estimated for five cohorts, with estimates ranging from 639 to 803 thousand. The number of feeding, parasitic animals present in Lake Huron in mid summer was estimated for five cohorts, with estimates ranging from 515,000 to 2,342,000. The larger estimates later in the parasitic year suggested that animals collected and marked from sport or commercial fisheries did not survive at the same rate as unmarked animals. It is recommended that only estimates from recaptures of animals marked in the streams before migration be used until it can be established why survival of juveniles obtained from sport or commercial fisheries might be affected.
Mueser, P R; White, M J; Tierney, J P
1988-01-01
This paper examines age patterns of net migration for US counties, arguing that the shift in the character of population redistribution will be reflected in the age structure of net migration across counties. The authors hypothesize that the increased specialization of counties with respect to activities characteristic of particular states of the life cycle would be evident in the greater dispersion of net migration rates at selected ages. For the 1950s and the 1960s, the authors used net migration estimates for US counties calculated by age, race, and sex by Gladys Bowles and colleagues. For 1970-1980, the authors constructed estimates. The study analyzed over 3000 counties or county equivalents. The results of the analysis confirm the importance of changes in age- specific patterns and provide support for the hypothesis. The increasing importance of localized amenities and an associated growth of age-specialized institutional structures across location, serves to increase concentration of net migration in certain age groups. Specifically, 1) nonmetropolitan counties become particularly attractive to migrants in their late 20s and early 30s; 2) since 1970, the dispersion of net migration rates for those over 30 have increased appreciably; 3) the degree of dispersion differs greatly across regions and is especially large among counties in the West; 4) metropolitan counties exhibit declines in the dispersion of net migration rate from the 1950s to the 1960s, which may indicate the exhaustion of the most attractive urban opportunities; and 5) since 1970, dispersion has increased, especially for rates applying to those over age 55, suggesting increased age specialization among metropolitan counties. Thus, changes in both the median rates of net migration and the dispersion of those rates are consistent with increased specialization in the age-related opportunities and services those counties provide. New patterns of net migration by age suggest that change in both the causes and effects of migration go far beyond a simple shift in the balance of population flows.
Bohrer, Gil; Beck, Pieter Sa; Ngene, Shadrack M; Skidmore, Andrew K; Douglas-Hamilton, Ian
2014-01-01
This study investigates the ranging behavior of elephants in relation to precipitation-driven dynamics of vegetation. Movement data were acquired for five bachelors and five female family herds during three years in the Marsabit protected area in Kenya and changes in vegetation were mapped using MODIS normalized difference vegetation index time series (NDVI). In the study area, elevations of 650 to 1100 m.a.s.l experience two growth periods per year, while above 1100 m.a.s.l. growth periods last a year or longer. We find that elephants respond quickly to changes in forage and water availability, making migrations in response to both large and small rainfall events. The elevational migration of individual elephants closely matched the patterns of greening and senescing of vegetation in their home range. Elephants occupied lower elevations when vegetation activity was high, whereas they retreated to the evergreen forest at higher elevations while vegetation senesced. Elephant home ranges decreased in size, and overlapped less with increasing elevation. A recent hypothesis that ungulate migrations in savannas result from countervailing seasonally driven rainfall and fertility gradients is demonstrated, and extended to shorter-distance migrations. In other words, the trade-off between the poor forage quality and accessibility in the forest with its year-round water sources on the one hand and the higher quality forage in the low-elevation scrubland with its seasonal availability of water on the other hand, drives the relatively short migrations (the two main corridors are 20 and 90 km) of the elephants. In addition, increased intra-specific competition appears to influence the animals' habitat use during the dry season indicating that the human encroachment on the forest is affecting the elephant population.
Ramasamy, Srinivas; Wang, Hui; Quach, Helen Ngoc Bao; Sampath, Karuna
2006-04-15
In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. Work in Drosophila, C. elegans, Xenopus, and zebrafish has shown that maternally provided localized cytoplasmic determinants specify the germ line in these organisms (Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. Nat. Rev., Genet. 4, 690--700; Santos, A.C., Lehmann, R., 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578-R589). The Drosophila RNA-binding protein, Staufen is required for germ cell formation, and mutations in stau result in a maternal effect grandchild-less phenotype (Schupbach,T., Weischaus, E., 1989. Female sterile mutations on the second chromosome of Drosophila melanogaster:1. Maternal effect mutations. Genetics 121, 101-17). Here we describe the functions of two zebrafish Staufen-related proteins, Stau1 and Stau2. When Stau1 or Stau2 functions are compromised in embryos by injecting antisense morpholino modified oligonucleotides or dominant-negative Stau peptides, germ layer patterning is not affected. However, expression of the PGC marker vasa is not maintained. Furthermore, expression of a green fluorescent protein (GFP):nanos 3'UTR fusion protein in germ cells shows that PGC migration is aberrant, and the mis-migrating PGCs do not survive in Stau-compromised embryos. Stau2 is also required for survival of neurons in the central nervous system (CNS). These phenotypes are rescued by co-injection of Drosophila stau mRNA. Thus, staufen has an evolutionarily conserved function in germ cells. In addition, we have identified a function for Stau proteins in PGC migration.
Towards the Automatic Classification of Avian Flight Calls for Bioacoustic Monitoring
Bello, Juan Pablo; Farnsworth, Andrew; Robbins, Matt; Keen, Sara; Klinck, Holger; Kelling, Steve
2016-01-01
Automatic classification of animal vocalizations has great potential to enhance the monitoring of species movements and behaviors. This is particularly true for monitoring nocturnal bird migration, where automated classification of migrants’ flight calls could yield new biological insights and conservation applications for birds that vocalize during migration. In this paper we investigate the automatic classification of bird species from flight calls, and in particular the relationship between two different problem formulations commonly found in the literature: classifying a short clip containing one of a fixed set of known species (N-class problem) and the continuous monitoring problem, the latter of which is relevant to migration monitoring. We implemented a state-of-the-art audio classification model based on unsupervised feature learning and evaluated it on three novel datasets, one for studying the N-class problem including over 5000 flight calls from 43 different species, and two realistic datasets for studying the monitoring scenario comprising hundreds of thousands of audio clips that were compiled by means of remote acoustic sensors deployed in the field during two migration seasons. We show that the model achieves high accuracy when classifying a clip to one of N known species, even for a large number of species. In contrast, the model does not perform as well in the continuous monitoring case. Through a detailed error analysis (that included full expert review of false positives and negatives) we show the model is confounded by varying background noise conditions and previously unseen vocalizations. We also show that the model needs to be parameterized and benchmarked differently for the continuous monitoring scenario. Finally, we show that despite the reduced performance, given the right conditions the model can still characterize the migration pattern of a specific species. The paper concludes with directions for future research. PMID:27880836
Persistent Leatherback Turtle Migrations Present Opportunities for Conservation
Shillinger, George L; Palacios, Daniel M; Bailey, Helen; Bograd, Steven J; Swithenbank, Alan M; Gaspar, Philippe; Wallace, Bryan P; Spotila, James R; Paladino, Frank V; Piedra, Rotney; Eckert, Scott A; Block, Barbara A
2008-01-01
Effective transboundary conservation of highly migratory marine animals requires international management cooperation as well as clear scientific information about habitat use by these species. Populations of leatherback turtles (Dermochelys coriacea) in the eastern Pacific have declined by >90% during the past two decades, primarily due to unsustainable egg harvest and fisheries bycatch mortality. While research and conservation efforts on nesting beaches are ongoing, relatively little is known about this population of leatherbacks' oceanic habitat use and migration pathways. We present the largest multi-year (2004–2005, 2005–2006, and 2007) satellite tracking dataset (12,095 cumulative satellite tracking days) collected for leatherback turtles. Forty-six females were electronically tagged during three field seasons at Playa Grande, Costa Rica, the largest extant nesting colony in the eastern Pacific. After completing nesting, the turtles headed southward, traversing the dynamic equatorial currents with rapid, directed movements. In contrast to the highly varied dispersal patterns seen in many other sea turtle populations, leatherbacks from Playa Grande traveled within a persistent migration corridor from Costa Rica, past the equator, and into the South Pacific Gyre, a vast, low-energy, low-productivity region. We describe the predictable effects of ocean currents on a leatherback migration corridor and characterize long-distance movements by the turtles in the eastern South Pacific. These data from high seas habitats will also elucidate potential areas for mitigating fisheries bycatch interactions. These findings directly inform existing multinational conservation frameworks and provide immediate regions in the migration corridor where conservation can be implemented. We identify high seas locations for focusing future conservation efforts within the leatherback dispersal zone in the South Pacific Gyre. PMID:18630987
ERIC Educational Resources Information Center
Katseli, Louka T.; Xenogiani, Theodora
2006-01-01
The effects of migration on development depend on who leaves, where they go, and how home countries adjust to their leaving. The authors advocate that migration patterns and the capacity to adjust are fundamental determinants of a migration-development nexus, and that migration and development policies are complements rather than substitutes. The…
USDA-ARS?s Scientific Manuscript database
The need for resources is a major driver of animal migration and yet migration itself is energetically demanding. Mormon crickets and nymphal locusts readily engage in cannibalistic attacks that result in aligned, coordinated movement of individuals in massive bands that march daily for weeks at a ...
Examining speed versus selection in connectivity models using elk migration as an example
Brennan, Angela; Hanks, Ephraim M.; Merkle, Jerod A.; Cole, Eric K.; Dewey, Sarah R.; Courtemanch, Alyson B.; Cross, Paul C.
2018-01-01
ContextLandscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity.ObjectiveTo compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection.MethodsUsing movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements.ResultsAll connectivity models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP models.ConclusionsCTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.
Examining speed versus selection in connectivity models using elk migration as an example
Brennan, Angela; Hanks, EM; Merkle, JA; Cole, EK; Dewey, SR; Courtemanch, AB; Cross, Paul C.
2018-01-01
Context: Landscape resistance is vital to connectivity modeling and frequently derived from resource selection functions (RSFs). RSFs estimate relative probability of use and tend to focus on understanding habitat preferences during slow, routine animal movements (e.g., foraging). Dispersal and migration, however, can produce rarer, faster movements, in which case models of movement speed rather than resource selection may be more realistic for identifying habitats that facilitate connectivity. Objective: To compare two connectivity modeling approaches applied to resistance estimated from models of movement rate and resource selection. Methods: Using movement data from migrating elk, we evaluated continuous time Markov chain (CTMC) and movement-based RSF models (i.e., step selection functions [SSFs]). We applied circuit theory and shortest random path (SRP) algorithms to CTMC, SSF and null (i.e., flat) resistance surfaces to predict corridors between elk seasonal ranges. We evaluated prediction accuracy by comparing model predictions to empirical elk movements. Results: All models predicted elk movements well, but models applied to CTMC resistance were more accurate than models applied to SSF and null resistance. Circuit theory models were more accurate on average than SRP algorithms. Conclusions: CTMC can be more realistic than SSFs for estimating resistance for fast movements, though SSFs may demonstrate some predictive ability when animals also move slowly through corridors (e.g., stopover use during migration). High null model accuracy suggests seasonal range data may also be critical for predicting direct migration routes. For animals that migrate or disperse across large landscapes, we recommend incorporating CTMC into the connectivity modeling toolkit.
Nair, Manisha; Webster, Premila
2013-03-01
About a third of the countries affected by shortage of human resources for health are the emerging market economies (EMEs). The greatest shortage in absolute terms was found to be in India and Indonesia leading to health system crisis. This review identifies the patterns of migration of health workers, causes and possible solutions in these EMEs. A qualitative synthesis approach based on the 'critical review' and 'realist review' approaches to the literature review was used. The patterns of migration of health professionals' in the EMEs have led to two types of discrepancies between health needs and healthcare workers: (i) within country (rural-urban, public-private or government healthcare sector-private sector) and (ii) across countries (south to north). Factors that influence migration include lack of employment opportunities, appropriate work environment and wages in EMEs, growing demand in high-income countries due to demographic transition, favourable country policies for financial remittances by migrant workers and medical education system of EMEs. A range of successful national and international initiatives to address health workforce migration were identified. Measures to control migration should be country specific and designed in accordance with the push and pull factors existing in the EMEs.
Cabieses, Baltica; Tunstall, Helena; Pickett, Kate E; Gideon, Jasmine
2013-07-01
Migration patterns in Latin America have changed significantly in recent decades, particularly since the onset of global recession in 2007. These recent economic changes have highlighted and exacerbated the weakness of evidence from Latin America regarding migration-a crucial determinant of health. Migration patterns are constantly evolving in Latin America, but research on migration has not developed at the same speed. This article focuses on the need for better understanding of the living conditions and health of migrant populations in Latin America within the context of the recent global recession. The authors explain how new data on migrant well-being could be obtained through improved evidence from censuses and ongoing research surveys to 1) better inform policy-makers about the needs of migrant populations in Latin America and 2) help determine better ways of reaching undocumented immigrants. Longitudinal studies on immigrants in Latin America are essential for generating a better representation of migrant living conditions and health needs during the initial stages of immigration and over time. To help meet this need, the authors support the promotion of sustainable sources of data and evidence on the complex relationship between migration and health.
Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns
NASA Astrophysics Data System (ADS)
Böhme, M.
2004-05-01
The migration history of an air-breathing fish group (Channidae; snakehead fishes) is used for reconstructing Neogene Eurasian precipitation and atmospheric circulation patterns. The study shows that snakeheads are sensitive indicators of summer precipitation maxima in subtropical and temperate regions, and are present regularly if the wettest month exceeds 150 mm precipitation and 20 °C mean temperature. The analysis of 515 fossil freshwater fish deposits of the past 50 m.y. from Africa and Eurasia shows two continental-scale migration events from the snakeheads' center of origin in the south Himalayan region, events that can be related to changes in the Northern Hemisphere circulation pattern. The first migration, ca. 17.5 Ma, into western and central Eurasia may have been caused by a northward shift of the Intertropical Convergence Zone that brought western Eurasia under the influence of trade winds that produced a zonal and meridional precipitation gradient in Europe. During the second migration, between 8 and 4 Ma, into Africa and East Asia, snakeheads reached their present-day distribution. This migration could have been related to the intensification of the Asian monsoon that brought summer precipitation to their migratory pathways in East Africa Arabia and East Asia.
The spring migration of adult North American Ospreys
Martell, Mark S.; Bierregaard, Richard O.; Washburn, Brian E.; Elliott, John E.; Henny, Charles J.; Kennedy, Robert S.; MacLeod, Iain
2014-01-01
Most North American Ospreys (Pandion haliaetus) are migratory, breeding in northern latitudes and migrating long distances to and from their wintering grounds in the tropics. Although fall migration patterns of North American Ospreys have been described and studied, very little has been published about the spring migration of these birds. We used satellite telemetry to: (1) determine the characteristics (timing, duration, migratory routes) of spring migrations of Ospreys; (2) determine if differences in spring migration patterns existed between sexes and among three breeding populations (east coast, midwestern, and western); and (3) compare consecutive fall and spring migrations of individual Ospreys. The median dates for departure from the wintering grounds and arrival on the breeding grounds did not differ significantly between adult male and female Ospreys. Compared to their fall migrations, all male and all east coast Ospreys spent fewer days on migration, fewer days in stopover periods along the migration route, traveled shorter distances overall, and traveled farther (on average) each day during spring. In contrast, fall and spring migration characteristics of all female and western Ospreys were similar. Our findings suggest that, although sex and breeding location might influence the spring migration strategy used by individual Ospreys, both males and females minimize the time spent on migration to ensure a timely arrival on the breeding grounds to establish or defend a nesting territory.
Li, Miao; Anderson, James G
2016-08-01
Drawing on the life course perspective and the assumptive world theory, this paper examines whether pre-migration trauma exposure is associated with psychological distress through post-migration perceived discrimination for Asian American immigrants. The study is based on cross-sectional data from the National Latino and Asian American Study (N = 1639). Structural equation model is used to estimate the relationship between pre-migration trauma, post-migration perceived discrimination, and psychological distress. Additional models are estimated to explore possible variations across ethnic groups as well as across different types of pre-migration trauma experience. Pre-migration trauma exposure is associated with higher levels of psychological distress, both directly and indirectly through higher level of perceived discrimination, even after controlling for demographic/acculturative factors and post-migration trauma exposure. This pattern holds for the following sub-types of pre-migration trauma: political trauma, crime victimization, physical violence, accidental trauma, and relational trauma. Multi-group analyses show that this pattern holds for all Asian immigrant subgroups except the Vietnamese. Studies of immigrant mental health primarily focus on post-migration stressors. Few studies have considered the link between pre- and post-migration contexts in assessing mental health outcomes. The study illustrates the usefulness of bridging the pre- and post-migration context in identifying the mental health risks along the immigrant life course.
Probing Leader Cells in Endothelial Collective Migration by Plasma Lithography Geometric Confinement
Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S.; Riahi, Reza; Wong, Pak Kin
2016-01-01
When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters. PMID:26936382
NASA Astrophysics Data System (ADS)
Nagatani, Takashi; Tainaka, Kei-ichi
2018-01-01
In most cases, physicists have studied the migration of biospecies by the use of random walk. In the present article, we apply cellular automaton of traffic model. For simplicity, we deal with an ecosystem contains a prey and predator, and use one-dimensional lattice with two layers. Preys stay on the first layer, but predators uni-directionally move on the second layer. The spatial and temporal evolution is numerically explored. It is shown that the migration has the important effect on populations of both prey and predator. Without migration, the phase transition between a prey-phase and coexisting-phase occurs. In contrast, the phase transition disappears by migration. This is because predator can survive due to migration. We find another phase transition for spatial distribution: in one phase, prey and predator form a stripe pattern of condensation and rarefaction, while in the other phase, they uniformly distribute. The self-organized stripe may be similar to the migration patterns in real ecosystems.
Use of NEXRAD to study shorebird migration in the Prairie Pothole region: A feasibility study
Melcher, Cynthia P.; Skagen, Susan K.; Randall, Lori
2006-01-01
An essential component of shorebird conservation is identifying, protecting, and managing high-priority stopover sites and migration habitats crucial to the long-term persistence of migrating shorebirds. Because of the tremendous variability in migrant shorebird occurrence patterns in the Prairie Pothole Region of the U.S. (Skagen 1997), it is labor- and cost-intensive to locate the majority of sites used heavily by shorebirds in any one migration period. Because WSR-88D (Weather Surveillance Radar – 1988 Doppler) or NEXRAD (NEXt generation weather RADar) has been useful for locating migrating birds and revealing migration patterns and important roosting sites of some species (e.g., Diehl and others 2003, Gauthreaux and Belser 2003), we undertook a pilot field study to determine wheTHER it also might be feasible to use NEXRAD for locating important stopover sites used by migrating shorebirds in the prairie potholes landscape. Coordinated efforts to advance the applicability of radar technology to bird conservation are underway (Ruth and others 2005).
Yang, Yongliang; Jamilpour, Nima; Yao, Baoyin; Dean, Zachary S; Riahi, Reza; Wong, Pak Kin
2016-03-03
When blood vessels are injured, leader cells emerge in the endothelium to heal the wound and restore the vasculature integrity. The characteristics of leader cells during endothelial collective migration under diverse physiological conditions, however, are poorly understood. Here we investigate the regulation and function of endothelial leader cells by plasma lithography geometric confinement generated. Endothelial leader cells display an aggressive phenotype, connect to follower cells via peripheral actin cables and discontinuous adherens junctions, and lead migrating clusters near the leading edge. Time-lapse microscopy, immunostaining, and particle image velocimetry reveal that the density of leader cells and the speed of migrating clusters are tightly regulated in a wide range of geometric patterns. By challenging the cells with converging, diverging and competing patterns, we show that the density of leader cells correlates with the size and coherence of the migrating clusters. Collectively, our data provide evidence that leader cells control endothelial collective migration by regualting the migrating clusters.
NASA Astrophysics Data System (ADS)
Farfan, E. B.; Gashchak, S. P.; Makliuk, Y. A.; Maksymenko, A. M.; Bondarkov, M. D.; Jannik, G. T.; Marra, J. C.
2009-12-01
A widespread environmental contamination of the areas adjacent to the Chernobyl Nuclear Power Plant (ChNPP) site attracted a great deal of publicity to the biological consequences of the ChNPP catastrophe. However, only a few studies focused on a detailed analysis of radioactive contamination of the local wild fauna and most of them were published in Eastern European languages, making them poorly accessible for Western scientists. In addition, evaluation of this information appears difficult due to significant differences in raw data acquisition and analysis methodologies and final data presentation formats. Using an integrated approach to assessment of all available information, the International Radioecology Laboratory scientists showed that the ChNPP accident had increased the average values of the animals 137Cs and 90Sr contamination by a factor of thousands, followed by its decrease by a factor of tens, primarily resulting from a decrease in the biological accessibility of the radionuclides. However, this trend depended on many factors. Plant and bottom feeding fish species were the first to reach the maximum contamination levels. No data are available on other vertebrates, but it can be assumed that the same trend was true for all plant feeding animals and animals searching for food on the soil surface. The most significant decrease of the average values occurred during the first 3-5 years after the accident and it was the most pronounced for elks and plant and plankton feeding fish. Their diet included elements “alienated” from the major radionuclide inventory; for example, upper soil layers and bottom deposits where the fallout that had originally precipitated on plants, water and soils gradually migrated. Further radionuclide penetration into deeper layers of soils and its bonding with their mineral components intensified decontamination of the fauna. It took a while for the contamination of predatory fish and mammals (wolves) to reach the maximum followed by its similar slow decrease. Currently, these species are found to be the most contaminated. Species that are environmentally connected with soils or bottom deposits (terrestrial amphibians, rodents, burrowing animals, birds searching for food in soils and underlying layers and wild hogs) also show relatively high contamination levels. In general, by the mid 1990’s, fluctuations in 137Cs contamination primarily depended on seasonal changes in food patterns, physiology and migration for animal species and on all these factors plus seasonal changes of water temperature and flood patterns for fish species. An increase of 90Sr biological accessibility in soils affected its average accumulation. Currently, due to stabilization of environmental complexes and processes in the region, long-term profiles of radioactive contamination of vertebrate animals mostly indicate a gradual decay of radionuclides, with further changes in biological accessibility of radionuclides being practically unnoticeable due to significant seasonal and geographical fluctuations of the contamination.
Interregional migration in socialist countries: the case of China.
Wei, Y
1997-03-01
"This paper analyzes changing interregional migration in China and reveals that the recent eastward migration reverses patterns of migration under Mao. It finds that investment variables are more important than the conventional variables of income and job opportunities in determining China's recent interregional migration. It suggests that both state policy and the global force influence interregional migration, challenging the popular view that the socialist state is the only critical determinant. This paper also criticizes Mao's approach to interregional migration and discusses the impact of migration on development." excerpt
Migration stopover ecology of western avian populations: A southwestern migration workshop
Skagen, Susan K.; Melcher, Cynthia P.; Hazelwood, Rob
2004-01-01
Workshop participants discussed a coordinated approach for addressing immediate research needs regarding migration patterns and crucial stopover sites and types. They envisioned a three-tiered, coordinated approach: (1) long-term research to address effects of climate change and other large-scale patterns, (2) intensive, short-term survey and monitoring efforts using a stratified random design within habitats of interest to elucidate regional patterns of distribution and habitat use, and (3) research conducted at existing survey and banding sites to address more in-depth questions (e.g., rates of lipid deposition, microhabitat use, isotope analyses). There was considerable interest in developing common research proposals to blend the broad expertise represented at this workshop. A second meeting is recommended to build on the momentum of these discussions, to facilitate collaborations, and further the goals of integrated approaches to broadscale research on migration stopover ecology.
Geography of spring landbird migration through riparian habitats in southwestern North America
Susan K. Skagen; Jeffrey F. Kelly; Charles van Riper III; Richard L. Hutto; Deborah M. Finch; David J. Krueper; Cynthia P. Melcher
2005-01-01
Migration stopover resources, particularly riparian habitats, are critically important to landbirds migrating across the arid southwestern region of North America. To explore the effects of species biogeography and habitat affinity on spring migration patterns, we synthesized existing bird abundance and capture data collected in riparian habitats of the borderlands...
Women in Migration: A Third World Focus. Summary.
ERIC Educational Resources Information Center
International Center for Research on Women, Washington, DC.
A study of women in migration in Third World countries since 1960 reveals that, contrary to assumptions, more women are migrating autonomously from rural to urban areas in an often unsuccessful effort to improve their economic status. The results of the study of migration patterns in Africa, Asia, Central America, South America, and the Middle…
Migration from Rural Areas: Employment and Education. IIEP Seminar Paper: 26.
ERIC Educational Resources Information Center
Hallak, Jacques
Discussing migration and migration patterns in the third world, this paper asserts that the failure of plans for controlling rural to urban migration is due to: lack of knowledge about the phenomenon; the favor given to one-dimensional interpretations stressing certain aspects of urban economies; and the implicit assumptions underlying most…
The circle game: understanding physician migration patterns within Canada.
Dauphinee, W Dale
2006-12-01
This report explores the movement of physicians to, from, and within Canada and identifies recurring patterns of migration. The primary position of the report is that physician movement is part of reality both internationally and within Canada, and that movement of Canadian-trained physicians creates a need for international medical graduates (IMGs) in "physician-losing" locations. The report's argument is based on data retrieved from public sources on aggregate physician practice patterns in Canada and analyzed for migration patterns. In addition, literature was reviewed on factors affecting the migration patterns being described.Canadian-educated physicians have tended to move from less prosperous to more prosperous provinces and from rural to urban areas; because of the resulting need, the physician-losing locales generally have the highest proportions of IMGs. Physicians traditionally have tended to emigrate from Canada to the United States, thus increasing Canadian demand for IMGs, but recently this movement has slowed and even reversed. In Canada, liberalized immigration policies for physicians combined with a shortage of postgraduate training positions to create a serious bottleneck early in the current decade. However, this problem is now being resolved. In summary, physician migration within Canada shows specific long-term patterns, and IMGs will be needed in underserved areas for years to come. Well-informed policies for workforce management are essential in Canada to ensure an adequate physician supply consisting mainly of Canadian-educated physicians but also including IMGs. A role for nonadvocacy groups such as the Educational Commission for Foreign Medical Graduates may be to help ensure that recruitment of physicians from developing countries follows accepted ethical principles.
Behavioural flexibility in migratory behaviour in a long-lived large herbivore.
Eggeman, Scott L; Hebblewhite, Mark; Bohm, Holger; Whittington, Jesse; Merrill, Evelyn H
2016-05-01
Migratory animals are predicted to enhance lifetime fitness by obtaining higher quality forage and/or reducing predation risk compared to non-migratory conspecifics. Despite evidence for behavioural flexibility in other taxa, previous research on large mammals has often assumed that migratory behaviour is a fixed behavioural trait. Migratory behaviour may be plastic for many species, although few studies have tested for individual-level flexibility using long-term monitoring of marked individuals, especially in large mammals such as ungulates. We tested variability in individual migratory behaviour using a 10-year telemetry data set of 223 adult female elk (Cervus elaphus) in the partially migratory Ya Ha Tinda population in Alberta, Canada. We used net squared displacement (NSD) to classify migratory strategy for each individual elk-year. Individuals switched between migrant and resident strategies at a mean rate of 15% per year, and migrants were more likely to switch than residents. We then tested how extrinsic (climate, elk/wolf abundance) and intrinsic (age) factors affected the probability of migrating, and, secondly, the decision to switch between migratory strategies. Over 630 individual elk-years, the probability of an individual elk migrating increased following a severe winter, in years of higher wolf abundance, and with increasing age. At an individual elk level, we observed 148 switching events of 430 possible transitions in elk monitored at least 2 years. We found switching was density-dependent, where migrants switched to a resident strategy at low elk abundance, but residents switched more to a migrant strategy at high elk abundance. Precipitation during the previous summer had a weak carryover effect, with migrants switching slightly more following wetter summers, whereas residents showed the opposite pattern. Older migrant elk rarely switched, whereas resident elk switched more frequently to migrate at older ages. Our results show migratory behaviour in ungulates is an individually variable trait that can respond to intrinsic, environmental and density-dependent forces. Different strategies had opposing responses to density-dependent and intrinsic drivers, providing a stabilizing mechanism for the maintenance of partial migration and demographic fitness in this population. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Willemoes, Mikkel; Strandberg, Roine; Klaassen, Raymond H. G.; Tøttrup, Anders P.; Vardanis, Yannis; Howey, Paul W.; Thorup, Kasper; Wikelski, Martin; Alerstam, Thomas
2014-01-01
Narrow migration corridors known in diurnal, social migrants such as raptors, storks and geese are thought to be caused by topographical leading line effects in combination with learning detailed routes across generations. Here, we document narrow-front migration in a nocturnal, solitary migrant, the common cuckoo Cuculus canorus, using satellite telemetry. We tracked the migration of adult cuckoos from the breeding grounds in southern Scandinavia (n = 8), to wintering sites in south-western Central Africa (n = 6) and back to the breeding grounds (n = 3). Migration patterns were very complex; in addition to the breeding and wintering sites, six different stopover sites were identified during the 16,000 km annual route that formed a large-scale clockwise loop. Despite this complexity, individuals showed surprisingly similar migration patterns, with very little variation between routes. We compared observed tracks with simulated routes based on vector orientation (with and without effects of barriers on orientation and survival). Observed distances between routes were often significantly smaller than expected if the routes were established on the basis of an innate vector orientation programme. Average distance between individuals in eastern Sahel after having migrated more than 5,000 km for example, was merely 164 km. This implies that more sophisticated inherent guiding mechanisms, possibly involving elements of intermediate goal area navigation or more elaborate external cues, are necessary to explain the complex narrow-front migration pattern observed for the cuckoos in this study. PMID:24421890
Genetic profiling links changing sea-ice to shifting beluga whale migration patterns
Mahoney, Andrew R.; Suydam, Robert; Quakenbush, Lori; Whiting, Alex; Lowry, Lloyd; Harwood, Lois
2016-01-01
There is increasing concern over how Arctic fauna will adapt to climate related changes in sea-ice. We used long-term sighting and genetic data on beluga whales (Delphinapterus leucas) in conjunction with multi-decadal patterns of sea-ice in the Pacific Arctic to investigate the influence of sea-ice on spring migration and summer residency patterns. Substantial variations in sea-ice conditions were detected across seasons, years and sub-regions, revealing ice–ocean dynamics more complex than Arctic-wide trends suggest. This variation contrasted with a highly consistent pattern of migration and residency by several populations, indicating that belugas can accommodate widely varying sea-ice conditions to perpetuate philopatry to coastal migration destinations. However, a number of anomalous migration and residency events were detected and coincided with anomalous ice years, and in one case with an increase in killer whale (Orcinus orca) sightings and reported predation on beluga whales. The behavioural shifts were likely driven by changing sea-ice and associated changes in resource dispersion and predation risk. Continued reductions in sea-ice may result in increased predation at key aggregation areas and shifts in beluga whale behaviour with implications for population viability, ecosystem structure and the subsistence cultures that rely on them.
Giant panda foraging and movement patterns in response to bamboo shoot growth.
Zhang, Mingchun; Zhang, Zhizhong; Li, Zhong; Hong, Mingsheng; Zhou, Xiaoping; Zhou, Shiqiang; Zhang, Jindong; Hull, Vanessa; Huang, Jinyan; Zhang, Hemin
2018-03-01
Diet plays a pivotal role in dictating behavioral patterns of herbivorous animals, particularly specialist species. The giant panda (Ailuropoda melanoleuca) is well-known as a bamboo specialist. In the present study, the response of giant pandas to spatiotemporal variation of bamboo shoots was explored using field surveys and GPS collar tracking. Results show the dynamics in panda-bamboo space-time relationships that have not been previously articulated. For instance, we found a higher bamboo stump height of foraged bamboo with increasing elevation, places where pandas foraged later in spring when bamboo shoots become more fibrous and woody. The time required for shoots to reach optimum height for foraging was significantly delayed as elevation increased, a pattern which corresponded with panda elevational migration patterns beginning from the lower elevational end of Fargesia robusta distribution and gradually shifting upward until the end of the shooting season. These results indicate that giant pandas can respond to spatiotemporal variation of bamboo resources, such as available shoots. Anthropogenic interference of low-elevation F. robusta habitat should be mitigated, and conservation attention and increased monitoring should be given to F. robusta areas at the low- and mid-elevation ranges, particularly in the spring shooting season.
Multiple maternal origins and weak phylogeographic structure in domestic goats
Luikart, Gordon; Gielly, Ludovic; Excoffier, Laurent; Vigne, Jean-Denis; Bouvet, Jean; Taberlet, Pierre
2001-01-01
Domestic animals have played a key role in human history. Despite their importance, however, the origins of most domestic species remain poorly understood. We assessed the phylogenetic history and population structure of domestic goats by sequencing a hypervariable segment (481 bp) of the mtDNA control region from 406 goats representing 88 breeds distributed across the Old World. Phylogeographic analysis revealed three highly divergent goat lineages (estimated divergence >200,000 years ago), with one lineage occurring only in eastern and southern Asia. A remarkably similar pattern exists in cattle, sheep, and pigs. These results, combined with recent archaeological findings, suggest that goats and other farm animals have multiple maternal origins with a possible center of origin in Asia, as well as in the Fertile Crescent. The pattern of goat mtDNA diversity suggests that all three lineages have undergone population expansions, but that the expansion was relatively recent for two of the lineages (including the Asian lineage). Goat populations are surprisingly less genetically structured than cattle populations. In goats only ≈10% of the mtDNA variation is partitioned among continents. In cattle the amount is ≥50%. This weak structuring suggests extensive intercontinental transportation of goats and has intriguing implications about the importance of goats in historical human migrations and commerce. PMID:11344314
Primate archaeology reveals cultural transmission in wild chimpanzees (Pan troglodytes verus).
Luncz, Lydia V; Wittig, Roman M; Boesch, Christophe
2015-11-19
Recovering evidence of past human activities enables us to recreate behaviour where direct observations are missing. Here, we apply archaeological methods to further investigate cultural transmission processes in percussive tool use among neighbouring chimpanzee communities in the Taï National Park, Côte d'Ivoire, West Africa. Differences in the selection of nut-cracking tools between neighbouring groups are maintained over time, despite frequent female transfer, which leads to persistent cultural diversity between chimpanzee groups. Through the recovery of used tools in the suggested natal territory of immigrants, we have been able to reconstruct the tool material selection of females prior to migration. In combination with direct observations of tool selection of local residents and immigrants after migration, we uncovered temporal changes in tool selection for immigrating females. After controlling for ecological differences between territories of immigrants and residents our data suggest that immigrants abandoned their previous tool preference and adopted the pattern of their new community, despite previous personal proficiency of the same foraging task. Our study adds to the growing body of knowledge on the importance of conformist tendencies in animals. © 2015 The Author(s).
The ENSO-pandemic influenza connection: coincident or causal?
NASA Astrophysics Data System (ADS)
Shaman, J. L.; Lipsitch, M.
2011-12-01
The El Niño-Southern Oscillation (ENSO) is a coupled ocean-atmosphere system in the tropical Pacific, which affects weather conditions, including temperatures, precipitation, winds and storm activity, across the planet. ENSO has two extreme phases marked by either warmer (El Niño) or cooler (La Niña) than average sea surface temperatures in the central equatorial Pacific. We find that the 4 most recent human influenza pandemics (1918, 1957, 1968, 2009), all of which were first identified in boreal spring or summer, were preceded by La Niña conditions in the equatorial Pacific. Changes in ENSO have been shown to alter the migration, stopover time, fitness and interspecies mixing of migratory birds, and consequently likely affect their mixing with domestic animals. We hypothesize that La Niña conditions bring divergent influenza subtypes together in some parts of the world and favor the reassortment of influenza through simultaneous multiple infection of individual hosts and the generation of novel pandemic strains. We propose approaches to test this hypothesis using influenza population genetics, virus prevalence in various host species, and avian migration patterns.
Intense Exercise Promotes Adult Hippocampal Neurogenesis But Not Spatial Discrimination
So, Ji H.; Huang, Chao; Ge, Minyan; Cai, Guangyao; Zhang, Lanqiu; Lu, Yisheng; Mu, Yangling
2017-01-01
Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior. Here we found that, chronic moderate treadmill running led to an increase of cell proliferation, survival, neuronal differentiation, and migration. In contrast, intense running only promoted neuronal differentiation and migration, which was accompanied with lower expressions of vascular endothelial growth factor, brain-derived neurotrophic factor, insulin-like growth factor 1, and erythropoietin. In addition, the intensely but not mildly exercised animals exhibited a lower mitochondrial activity in the dentate gyrus. Correspondingly, neurogenesis induced by moderate but not intense exercise was sufficient to improve the animal’s ability in spatial pattern separation. Our data indicate that the effect of exercise on spatial learning is intensity-dependent and may involve mechanisms other than a simple increase in the number of new neurons. PMID:28197080
ERIC Educational Resources Information Center
Rasmussen, Marie
This paper provides a description of the use of surface design in India and how those patterns have migrated throughout India. This study is confined in interest to the use of design and pattern to convey religious symbolism and other auspicious meanings. The migration of pattern to various parts of India will change the name or the technique, but…
Willerslev, Eske
2018-02-14
Eske Willerslev from the University of Copenhagen on Understanding Historical Human Migration Patterns and Interbreeding Using the Ancient Genomes of a Palaeo-Eskimo and an Aboriginal Australian at the 7th Annual Genomics of Energy & Environment Meeting on March 21, 2012 in Walnut Creek, California.
Isolation-by-distance in landscapes: considerations for landscape genetics
van Strien, M J; Holderegger, R; Van Heck, H J
2015-01-01
In landscape genetics, isolation-by-distance (IBD) is regarded as a baseline pattern that is obtained without additional effects of landscape elements on gene flow. However, the configuration of suitable habitat patches determines deme topology, which in turn should affect rates of gene flow. IBD patterns can be characterized either by monotonically increasing pairwise genetic differentiation (for example, FST) with increasing interdeme geographic distance (case-I pattern) or by monotonically increasing pairwise genetic differentiation up to a certain geographical distance beyond which no correlation is detectable anymore (case-IV pattern). We investigated if landscape configuration influenced the rate at which a case-IV pattern changed to a case-I pattern. We also determined at what interdeme distance the highest correlation was measured between genetic differentiation and geographic distance and whether this distance corresponded to the maximum migration distance. We set up a population genetic simulation study and assessed the development of IBD patterns for several habitat configurations and maximum migration distances. We show that the rate and likelihood of the transition of case-IV to case-I FST–distance relationships was strongly influenced by habitat configuration and maximum migration distance. We also found that the maximum correlation between genetic differentiation and geographic distance was not related to the maximum migration distance and was measured across all deme pairs in a case-I pattern and, for a case-IV pattern, at the distance where the FST–distance curve flattens out. We argue that in landscape genetics, separate analyses should be performed to either assess IBD or the landscape effects on gene flow. PMID:25052412
Patterns of East Asian pig domestication, migration, and turnover revealed by modern and ancient DNA
Larson, Greger; Liu, Ranran; Zhao, Xingbo; Yuan, Jing; Fuller, Dorian; Barton, Loukas; Dobney, Keith; Fan, Qipeng; Gu, Zhiliang; Liu, Xiao-Hui; Luo, Yunbing; Lv, Peng; Andersson, Leif; Li, Ning
2010-01-01
The establishment of agricultural economies based upon domestic animals began independently in many parts of the world and led to both increases in human population size and the migration of people carrying domestic plants and animals. The precise circumstances of the earliest phases of these events remain mysterious given their antiquity and the fact that subsequent waves of migrants have often replaced the first. Through the use of more than 1,500 modern (including 151 previously uncharacterized specimens) and 18 ancient (representing six East Asian archeological sites) pig (Sus scrofa) DNA sequences sampled across East Asia, we provide evidence for the long-term genetic continuity between modern and ancient Chinese domestic pigs. Although the Chinese case for independent pig domestication is supported by both genetic and archaeological evidence, we discuss five additional (and possibly) independent domestications of indigenous wild boar populations: one in India, three in peninsular Southeast Asia, and one off the coast of Taiwan. Collectively, we refer to these instances as “cryptic domestication,” given the current lack of corroborating archaeological evidence. In addition, we demonstrate the existence of numerous populations of genetically distinct and widespread wild boar populations that have not contributed maternal genetic material to modern domestic stocks. The overall findings provide the most complete picture yet of pig evolution and domestication in East Asia, and generate testable hypotheses regarding the development and spread of early farmers in the Far East. PMID:20404179
The Social and Economic Significance of Human Migration in the Western Region. Bulletin 859.
ERIC Educational Resources Information Center
Knop, Edward, Comp.; And Others
Because migration trends in the West and their consequences have sometimes served as indicators of what other regions can expect, it is important that such trends and effects be monitored and analyzed. This bulletin describes patterns of migration, assesses individual and family and social considerations in western migration, and discusses policy…
Sparagano, Olivier; George, David; Giangaspero, Annunziata; Špitalská, Eva
2015-09-30
Geographic spread of parasites and pathogens poses a constant risk to animal health and welfare, particularly given that climate change is expected to potentially expand appropriate ranges for many key species. The spread of deleterious organisms via trade routes and human travelling is relatively closely controlled, though represents only one possible means of parasite/pathogen distribution. The transmission via natural parasite/pathogen movement between geographic locales, is far harder to manage. Though the extent of such movement may be limited by the relative inability of many parasites and pathogens to actively migrate, passive movement over long distances may still occur via migratory hosts. This paper reviews the potential role of migrating birds in the transfer of ectoparasites and pathogens between geographic locales, focusing primarily on ticks. Bird-tick-pathogen relationships are considered, and evidence provided of long-range parasite/pathogen transfer from one location to another during bird migration events. As shown in this paper not only many different arthropod species are carried by migrating birds but consequently these pests carry many different pathogens species which can be transmitted to the migrating birds or to other animal species when those arthropods are dropping during these migrations. Data available from the literature are provided highlighting the need to understand better dissemination paths and disease epidemiology. Copyright © 2015 Elsevier B.V. All rights reserved.
Tornadic storm avoidance behavior in breeding songbirds
Streby, Henry M.; Kramer, Gunnar R.; Peterson, Sean M.; Lehman, Justin A.; Buehler, David A.; Andersen, David E.
2015-01-01
Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research.
Warne, Robin W; Proudfoot, Glenn A; Crespi, Erica J
2015-02-01
Diverse biomarkers including stable isotope, hormonal, and ecoimmunological assays are powerful tools to assess animal condition. However, an integrative approach is necessary to provide the context essential to understanding how biomarkers reveal animal health in varied ecological conditions. A barrier to such integration is a general lack of awareness of how shared extraction methods from across fields can provide material from the same animal tissues for diverse biomarker assays. In addition, the use of shared methods for extracting differing tissue fractions can also provide biomarkers for how animal health varies across time. Specifically, no study has explicitly illustrated the depth and breadth of spacial and temporal information that can be derived from coupled biomarker assessments on two easily collected tissues: blood and feathers or hair. This study used integrated measures of glucocorticoids, stable isotopes, and parasite loads in the feathers and blood of fall-migrating Northern saw-whet owls (Aegolius acadicus) to illustrate the wealth of knowledge about animal health and ecology across both time and space. In feathers, we assayed deuterium (δD) isotope and corticosterone (CORT) profiles, while in blood we measured CORT and blood parasite levels. We found that while earlier migrating owls had elevated CORT levels relative to later migrating birds, there was also a disassociation between plasma and feather CORT, and blood parasite loads. These results demonstrate how these tissues integrate time periods from weeks to seasons and reflect energetic demands during differing life stages. Taken together, these findings illustrate the potential for integrating diverse biomarkers to assess interactions between environmental factors and animal health across varied time periods without the necessity of continually recapturing and tracking individuals. Combining biomarkers from diverse research fields into an integrated framework hold great promise for advancing our understanding of environmental effects on animal health.
Patterns of testosterone in three Nearctic-Neotropical migratory songbirds during spring passage.
Covino, Kristen M; Morris, Sara R; Moore, Frank R
2015-12-01
Preparation for breeding may overlap extensively with vernal migration in long-distance migratory songbirds. Testosterone plays a central role in mediating this transition into breeding condition by facilitating changes to physiology and behavior. While changes in testosterone levels are well studied in captive migrants, these changes are less well known in free-living birds. We examined testosterone levels in free-living Nearctic-Neotropical migrants of three species during their vernal migration. Testosterone levels increased during the migratory period in males of all three species but significantly so in only two. Testosterone levels in females remained the same throughout their migration. Our results support the extensive overlap between vernal migration and breeding preparation in male songbirds. The pattern of testosterone changes during vernal migration is far from clear in females. Copyright © 2015 Elsevier Inc. All rights reserved.
A landscape scale decision support tool for monitoring bird and bat migration across Wisconsin
Suarez, Manuel J.; Heglund, Patricia J.; Kratt, Robert; Kirsch, Eileen
2008-01-01
This project was initiated to begin addressing the question, “Are there patterns in timing, location, and direction among migrating landbirds?” that have been at the forefront of discussion with our Federal, State, and County partners with regard to siting wind energy projects. Our goal was to explore the use of Nexrad weather data to see if examining 5 or more years’ worth of data would provide us with a sense of the general timing, movement patterns and habitat use by migrating landbirds.
NASA Astrophysics Data System (ADS)
Zhang, Guotao; Zhang, Shangfeng; Li, Yuan
2015-04-01
The channels of deep-water submarine fan under Niger delta slope are characterized by large dimensions special deposition positions and complex formation processes, its geographical location and sedimentary environment also hinder the research and exploration development. According to the strata slicing, RMS amplitude attribute and other techniques, we exhibit the platforms patterns of channels at different period, and based on the analysis of internal architecture and deformation history of channel-leveed systems, migration and evolution process of channel systems could be understood accurately. A great quantity of isolated channels develop in middle Miocene and aggrading streams in late Miocene, which generating because of large scale of turbidity caused by the drop of second order sea-level, which characterized by vertical accretion at smooth channel, while vertical accretion and lateral migration at bend. Evolution of channel systems can be divided into three stages: the initial erosion, erosion and filling alternately, and abandoned stage. With these three stages, the sinuosity of channel change from moderate to high, then decrease. Incision and filling of channels, being during the three development phases, is the driving force of meander-loops migration, which promote three kinds of migration patterns: lateral, down-system and combination migration. The research provides theoretical basis for high-precision prediction and evaluation of deep-water reservoir.
ERIC Educational Resources Information Center
National Audubon Society, New York, NY.
This set of teaching aids consists of 14 Audubon Nature Bulletins, providing teachers and students with informational reading on animals. The bulletin titles are as follows: Birds: Their Adaptations to Ways of Life; Our Friends the Hawks; Mysteries of Bird Migration; Bird Nests; Camouflage in the Animal World; Snakes; Turtles; Frogs and Toads;…
AKT signaling displays multifaceted functions in neural crest development.
Sittewelle, Méghane; Monsoro-Burq, Anne H
2018-05-31
AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation. Copyright © 2018 Elsevier Inc. All rights reserved.
The role of wind-tunnel studies in integrative research on migration biology.
Engel, Sophia; Bowlin, Melissa S; Hedenström, Anders
2010-09-01
Wind tunnels allow researchers to investigate animals' flight under controlled conditions, and provide easy access to the animals during flight. These increasingly popular devices can benefit integrative migration biology by allowing us to explore the links between aerodynamic theory and migration as well as the links between flight behavior and physiology. Currently, wind tunnels are being used to investigate many different migratory phenomena, including the relationship between metabolic power and flight speed and carry-over effects between different seasons. Although biotelemetry is also becoming increasingly common, it is unlikely that it will be able to completely supplant wind tunnels because of the difficulty of measuring or varying parameters such as flight speed or temperature in the wild. Wind tunnels and swim tunnels will therefore continue to be important tools we can use for studying integrative migration biology. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.
ERIC Educational Resources Information Center
Goodman, Joyce; Jacobs, Andrea; Kisby, Fiona; Loader, Helen
2011-01-01
This paper explores the migration patterns of women who studied at Girton and Newnham prior to 1939 through whom dissemination of knowledge and values flowed from Cambridge overseas. It also considers organisations that fostered women's mobility in empire, particularly the Colonial Intelligence League for Educated Women and the International…
An Analysis of Rural Manpower Migration Patterns in the South Plains Region of Texas.
ERIC Educational Resources Information Center
Stapleton, Richard C.
Because of declining prices for sorghum and cotton, increased operating costs, and reduction in the underground water level, opportunities for male high school graduates in the Southern Plains region have declined in recent years. The study collected data on migration patterns of males who graduated during the 1953-63 period by surveying high…
Evaluating methods to visualize patterns of genetic differentiation on a landscape.
House, Geoffrey L; Hahn, Matthew W
2018-05-01
With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. © 2017 John Wiley & Sons Ltd.
Wu, Tsung-Hsien; Li, Chia-Hui; Tang, Ming-Jer; Liang, Jen-I; Chen, Chia-Hsin; Yeh, Ming-Long
2013-10-01
The epithelial to mesenchymal transition (EMT) involves several physiological and pathological phenomena and endows cells with invasive and migratory properties. However, the effects of substrate stiffness and topography on the migration of cells before or after transforming growth factor-β1 (TGF-β1)-induced EMT (tEMT) are unknown. Herein, we seed control or tEMT NMuMG cells on the 2D patterns consisted of 1 μm or 5 μm line-widths and groove or cone patterns on either 2 MPa (1.96 ± 0.48 MPa) or 4 MPa (3.70 ± 0.74 MPa) polydimethylsiloxane (PDMS) substrates. After tEMT, the increased expression of α-SMA with vinculin in focal adhesion (FA) sites led to an acceleration of tEMT cell motility. On the 2 MPa substrate, the most influenced substrate was the 1 μm, cone-patterned substrate, where the tEMT cells' motility decelerated by 0.13 μm/min (36% slower than the cells on groove pattern). However, on the 5 μm, groove-patterned substrate, where the tEMT cells demonstrated the most rapid motility relative to the control cells, with an increment of 0.18 μm/min (100%). Among the different physical cues from substrate, the cone pattern could impede the migration speed of tEMT cells. Furthermore, we recommend the groove-patterned with a 5 μm line-width substrate as a useful tool to differentiate control and tEMT cells by migration speed.
Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling
Norris, Megan L; Pauli, Andrea; Gagnon, James A; Lord, Nathan D; Rogers, Katherine W; Mosimann, Christian; Zon, Leonard I
2017-01-01
Toddler/Apela/Elabela is a conserved secreted peptide that regulates mesendoderm development during zebrafish gastrulation. Two non-exclusive models have been proposed to explain Toddler function. The ‘specification model’ postulates that Toddler signaling enhances Nodal signaling to properly specify endoderm, whereas the ‘migration model’ posits that Toddler signaling regulates mesendodermal cell migration downstream of Nodal signaling. Here, we test key predictions of both models. We find that in toddler mutants Nodal signaling is initially normal and increasing endoderm specification does not rescue mesendodermal cell migration. Mesodermal cell migration defects in toddler mutants result from a decrease in animal pole-directed migration and are independent of endoderm. Conversely, endodermal cell migration defects are dependent on a Cxcr4a-regulated tether of the endoderm to mesoderm. These results suggest that Toddler signaling regulates mesodermal cell migration downstream of Nodal signaling and indirectly affects endodermal cell migration via Cxcr4a-signaling. PMID:29117894
Capitalist development and internal migration in Nigeria.
Akor, R I; Mou, D
1986-12-01
The authors analyze internal migration trends in Nigeria by examining individual household strategies and how they have adapted to structural changes brought about by colonial rule and capitalist development. The first section of this article describes the structural changes that started the process of labor migration. The second section deals with post-independence industrialization and the consequent rural-urban migration. The final section analyzes the consequences of these migration patterns for urban growth and rural productivity.
Vidal-Mateo, Javier; Mellone, Ugo; López-López, Pascual; La Puente, Javier De; García-Ripollés, Clara; Bermejo, Ana; Urios, Vicente
2016-01-01
Abstract Wind is among the most important environmental factors shaping birds’ migration patterns. Birds must deal with the displacement caused by crosswinds and their behavior can vary according to different factors such as flight mode, migratory season, experience, and distance to goal areas. Here we analyze the relationship between wind and migratory movements of three raptor species which migrate by soaring–gliding flight: Egyptian vulture Neophron percnopterus, booted eagle Aquila pennata, and short-toed snake eagle Circaetus gallicus. We analyzed daily migratory segments (i.e., the path joining consecutive roosting locations) using data recorded by GPS satellite telemetry. Daily movements of Egyptian vultures and booted eagles were significantly affected by tailwinds during both autumn and spring migrations. In contrast, daily movements of short-toed eagles were only significantly affected by tailwinds during autumn migration. The effect of crosswinds was significant in all cases. Interestingly, Egyptian vultures and booted eagles showed latitudinal differences in their behavior: both species compensated more frequently at the onset of autumn migration and, at the end of the season when reaching their wintering areas, the proportion of drift segments was higher. In contrast, there was a higher drift at the onset of spring migration and a higher compensation at the end. Our results highlight the effect of wind patterns on the migratory routes of soaring raptors, with different outcomes in relation to species, season, and latitude, ultimately shaping the loop migration patterns that current tracking techniques are showing to be widespread in many long distance migrants. PMID:29491895
Circular Migration and Young Child Malnutrition in Guatemala.
ERIC Educational Resources Information Center
Teller, Charles H.; Butz, William P.
This paper examined the relationship between temporary migration and childhood malnutrition in Guatemala and questioned whether migration patterns or low socioeconomic status produced a special risk group. The study emphasized policy implications of high priorities placed on population redistribution in Latin American governments and the…
40 CFR 264.601 - Environmental performance standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... to migration of waste constituents in the ground water or subsurface environment, considering: (1... for migration through soil, liners, or other containing structures; (2) The hydrologic and geologic... users; (6) The patterns of land use in the -region; (7) The potential for deposition or migration of...
Integrative Mechanisms of Oriented Neuronal Migration in the Developing Brain
Evsyukova, Irina; Plestant, Charlotte; Anton, E.S.
2014-01-01
The emergence of functional neuronal connectivity in the developing cerebral cortex depends on neuronal migration. This process enables appropriate positioning of neurons and the emergence of neuronal identity so that the correct patterns of functional synaptic connectivity between the right types and numbers of neurons can emerge. Delineating the complexities of neuronal migration is critical to our understanding of normal cerebral cortical formation and neurodevelopmental disorders resulting from neuronal migration defects. For the most part, the integrated cell biological basis of the complex behavior of oriented neuronal migration within the developing mammalian cerebral cortex remains an enigma. This review aims to analyze the integrative mechanisms that enable neurons to sense environmental guidance cues and translate them into oriented patterns of migration toward defined areas of the cerebral cortex. We discuss how signals emanating from different domains of neurons get integrated to control distinct aspects of migratory behavior and how different types of cortical neurons coordinate their migratory activities within the developing cerebral cortex to produce functionally critical laminar organization. PMID:23937349
Toward conservation of midcontinental shorebird migrations
Skagen, Susan K.; Knopf, Fritz L.
1993-01-01
Shorebirds represent a highly diverse group of species, many of which experience tremendous energy demands associated with long-distance migratory flights. Transcontinental migrants are dependant upon dynamic freshwater wetlands for stopover resources essential for replenishment of lipid reserves and completion of migration. Patterns of shorebird migration across midcontinental wetlands were detected from migration reports to American Birds and information provided by U.S. Fish and Wildlife Service national wildlife refuges. Patterns in species composition and abundance varied geographically, emphasizing the uniqueness of different regions to migrating shorebirds. Smaller species and neotropical migrants moved primarily across the Great Plains, whereas larger species and North American migrants predominated in assemblages in the intermountain west. Shorebirds were broadly dispersed in wetland habitats with dynamic water regimes. Whereas populations of shorebirds in coastal system appear to concentrate at sites of seasonally predictable and abundant food resources, we propose that transcontinental shorebirds disperse and use wetlands opportunistically. This migration system exemplifies the need for large-scale, coordinated regional management efforts that recognize the dynamic nature of ecosystem processes.
Migration and Vulnerability among Adolescents in Slum Areas of Addis Ababa, Ethiopia
ERIC Educational Resources Information Center
Erulkar, Annabel S.; Mekbib, Tekle-Ab; Simie, Negussie; Gulema, Tsehai
2006-01-01
Studies of urban rural migration often find the most likely migrants are adolescents and young people. Yet few studies have explored patterns of adolescent migration and the role of migration in transitions to adulthood. This study uses data from a population-based survey of over 1000 adolescents aged 10-19 in slum areas of Addis Ababa.…
Warren, M A; Morbey, Y E
2012-09-01
Diel patterns of migration and migration speed were compared between reproductive timing phenotypes in female kokanee salmon Oncorhynchus nerka. Females of varying degrees of reproductive maturation were captured on their migration route to the Meadow Creek Spawning Channel (British Columbia, Canada), were tagged with passive-integrated transponders (PIT tags) and were subsequently monitored with stationary receivers. Females showed crepuscular migration timing, with approximately equal detections at dawn and dusk. In particular, peaks of movement were associated with the appearance of the sun over the mountains in the east and the disappearance of the sun over the mountains in the west. Over 25 m, migration speed was 1·0 body lengths (measured as fork length; L(F)) s(-1) and did not depend on maturation state. Over 3 km, migration speed was much slower (0·2-0·3 L(F) s(-1)) than over the short distance, with less mature females migrating more slowly than more mature females. Less mature females appeared to be in less of a hurry to reach breeding areas compared with more mature females. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.
Garcia-Calero, Elena; Botella-Lopez, Arancha; Bahamonde, Olga; Perez-Balaguer, Ariadna; Martinez, Salvador
2016-07-01
In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.
The Use of Census Migration Data to Approximate Human Movement Patterns across Temporal Scales
Wesolowski, Amy; Buckee, Caroline O.; Pindolia, Deepa K.; Eagle, Nathan; Smith, David L.; Garcia, Andres J.; Tatem, Andrew J.
2013-01-01
Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data. PMID:23326367
Residency patterns of migrating sandpipers at a midcontinental stopover
Skagen, Susan K.; Knopf, Fritz L.
1994-01-01
Arctic-nesting shorebirds require several refueling stops during their long migrations between breeding grounds and Central and South American wintering areas. The protection of stopover habitats for transcontinental migrants depends on whether birds fly long distances between a few select sites or fly short distances and stop at several wetlands. Although the Great Plains historically provided a vast array of wetlands for use by migrants, wetland loss and conversion have reduced the availability of stopover sites in recent decades. In this study, we examined (1) residency periods, (2) fat dynamics, and (3) migration chronology of two shorebird species, the Semipalmated Sandpiper (Calidris pusilla) and White-rumped Sandpiper (C. fuscicollis) at Quivira National Wildlife Refuge (NWR), Kansas. Semipalmated Sandpipers had prolonged periods of species residency with overlapping arrivals and departures. Individual residency periods were highly variable and were unrelated to lipid reserves upon arrival. In contrast, White-rumped Sandpipers arrived and departed more synchronously. Birds that arrived in poor condition stayed longer than those with more body fat in 1991, but not in 1992. Wind direction did not influence patterns of departures of either species. We hypothesize that Semipalmated Sandpipers are ecologically eurytopic when migrating across the Great Plains in the spring. Highly variable patterns in arrival, residency, and lipid levels indicate that spring migration of this species is relaxed and opportunistic. White-rumped Sandpipers showed a pattern of reduced flexibility. Flight range estimates suggest that most birds require intermediate stopovers before reaching the breeding grounds. Interior wetlands appear to function as migration stopovers rather than staging areas for shorebirds.
Hayes, Mark A.; Cryan, Paul M.; Wunder, Michael B.
2015-01-01
Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn—the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as ‘risk from turbines is highest in habitats between hoary bat summering and wintering grounds’. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution. PMID:26208098
Hayes, Mark A.; Cryan, Paul M.; Wunder, Michael B.
2015-01-01
Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn—the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as ‘risk from turbines is highest in habitats between hoary bat summering and wintering grounds’. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.
Kadu, Caroline A. C.; Konrad, Heino; Schueler, Silvio; Muluvi, Geoffrey M.; Eyog-Matig, Oscar; Muchugi, Alice; Williams, Vivienne L.; Ramamonjisoa, Lolona; Kapinga, Consolatha; Foahom, Bernard; Katsvanga, Cuthbert; Hafashimana, David; Obama, Crisantos; Geburek, Thomas
2013-01-01
Background and Aims Afromontane forest ecosystems share a high similarity of plant and animal biodiversity, although they occur mainly on isolated mountain massifs throughout the continent. This resemblance has long provoked questions on former wider distribution of Afromontane forests. In this study Prunus africana (one of the character trees of Afromontane forests) is used as a model for understanding the biogeography of this vegetation zone. Methods Thirty natural populations from nine African countries covering a large part of Afromontane regions were analysed using six nuclear microsatellites. Standard population genetic analysis as well as Bayesian and maximum likelihood models were used to infer genetic diversity, population differentiation, barriers to gene flow, and recent and all migration among populations. Key Results Prunus africana exhibits strong divergence among five main Afromontane regions: West Africa, East Africa west of the Eastern Rift Valley (ERV), East Africa east of the ERV, southern Africa and Madagascar. The strongest divergence was evident between Madagascar and continental Africa. Populations from West Africa showed high similarity with East African populations west of the ERV, whereas populations east of the ERV are closely related to populations of southern Africa, respectively. Conclusions The observed patterns indicate divergent population history across the continent most likely associated to Pleistocene changes in climatic conditions. The high genetic similarity between populations of West Africa with population of East Africa west of the ERV is in agreement with faunistic and floristic patterns and provides further evidence for a historical migration route. Contrasting estimates of recent and historical gene flow indicate a shift of the main barrier to gene flow from the Lake Victoria basin to the ERV, highlighting the dynamic environmental and evolutionary history of the region. PMID:23250908
Nagasawa, Kazue; Fernandes, Jorge MO; Yoshizaki, Goro; Miwa, Misako; Babiak, Igor
2013-01-01
No information exists on the identification of primordial germ cells (PGCs) in the super-order Protacanthopterygii, which includes the Salmonidae family and Atlantic salmon (Salmo salar L.), one of the most commercially important aquatic animals worldwide. In order to identify salmon PGCs, we cloned the full-length cDNA of vasa, dead end (dnd), and lymphocyte antigen 75 (ly75/CD205) genes as germ cell marker candidates, and analyzed their expression patterns in both adult and embryonic stages of Atlantic salmon. Semi-quantitative RT-PCR results showed that salmon vasa and dnd were specifically expressed in testis and ovary, and vasa, dnd, and ly75 mRNA were maternally deposited in the egg. vasa mRNA was consistently detected throughout embryogenesis while dnd and ly75 mRNA were gradually degraded during cleavages. In situ analysis revealed the localization of vasa and dnd mRNA and Ly75 protein in PGCs of hatched larvae. Whole-mount in situ hybridization detected vasa mRNA during embryogenesis, showing a distribution pattern somewhat different to that of zebrafish; specifically, at mid-blastula stage, vasa-expressing cells were randomly distributed at the central part of blastodisc, and then they migrated to the presumptive region of embryonic shield. Therefore, the typical vasa localization pattern of four clusters during blastulation, as found in zebrafish, was not present in Atlantic salmon. In addition, salmon PGCs could be specifically labeled with a green fluorescence protein (GFP) using gfp-rt-vasa 3′-UTR RNA microinjection for further applications. These findings may assist in understanding PGC development not only in Atlantic salmon but also in other salmonids. PMID:23239145
Hayes, Mark A; Cryan, Paul M; Wunder, Michael B
2015-01-01
Understanding seasonal distribution and movement patterns of animals that migrate long distances is an essential part of monitoring and conserving their populations. Compared to migratory birds and other more conspicuous migrants, we know very little about the movement patterns of many migratory bats. Hoary bats (Lasiurus cinereus), a cryptic, wide-ranging, long-distance migrant, comprise a substantial proportion of the tens to hundreds of thousands of bat fatalities estimated to occur each year at wind turbines in North America. We created seasonally-dynamic species distribution models (SDMs) from 2,753 museum occurrence records collected over five decades in North America to better understand the seasonal geographic distributions of hoary bats. We used 5 SDM approaches: logistic regression, multivariate adaptive regression splines, boosted regression trees, random forest, and maximum entropy and consolidated outputs to generate ensemble maps. These maps represent the first formal hypotheses for sex- and season-specific hoary bat distributions. Our results suggest that North American hoary bats winter in regions with relatively long growing seasons where temperatures are moderated by proximity to oceans, and then move to the continental interior for the summer. SDMs suggested that hoary bats are most broadly distributed in autumn-the season when they are most susceptible to mortality from wind turbines; this season contains the greatest overlap between potentially suitable habitat and wind energy facilities. Comparing wind-turbine fatality data to model outputs could test many predictions, such as 'risk from turbines is highest in habitats between hoary bat summering and wintering grounds'. Although future field studies are needed to validate the SDMs, this study generated well-justified and testable hypotheses of hoary bat migration patterns and seasonal distribution.
Boyfriends and booty calls: sexual partnership patterns among Canadian Aboriginal young people.
Devries, Karen M; Free, Caroline J
2011-01-01
Sexual partnership patterns, forced sex, and condom non-use can contribute to STI risk, but little is known about these patterns among Aboriginal young people despite elevated STI risk in this group. We describe sexual relationship and condom use patterns among Canadian Aboriginal young people, and how these patterns relate to the socio-structural context as experienced by young people. We use data from in-depth individual interviews conducted in 2004 with 22 young people who reported ever having sex and who self-identified as Aboriginal in British Columbia, Canada. A thematic analysis is presented. Young people described a range of partnership patterns, including 'on-off' relationships which could have high rates of partner turnover but could sometimes be viewed as acceptable contexts for pregnancy, precluding condom use. Contextual elements beyond individual control appeared to contribute to these patterns. Migration between geographic locations was linked with risky partnership patterns, especially if it was linked with family instability or substance use problems. Sexual health interventions for this group must address partnership patterns in addition to promoting condom use. Survey research into 'migration' as a risk factor for STI transmission should consider reasons for migration. Interventions that address both individual level behaviour and the contextual elements that shape behaviour should be developed and tested.
The workforce for health in a globalized context--global shortages and international migration.
Aluttis, Christoph; Bishaw, Tewabech; Frank, Martina W
2014-01-01
The 'crisis in human resources' in the health sector has been described as one of the most pressing global health issues of our time. The World Health Organization (WHO) estimates that the world faces a global shortage of almost 4.3 million doctors, midwives, nurses, and other healthcare professionals. A global undersupply of these threatens the quality and sustainability of health systems worldwide. This undersupply is concurrent with globalization and the resulting liberalization of markets, which allow health workers to offer their services in countries other than those of their origin. The opportunities of health workers to seek employment abroad has led to a complex migration pattern, characterized by a flow of health professionals from low- to high-income countries. This global migration pattern has sparked a broad international debate about the consequences for health systems worldwide, including questions about sustainability, justice, and global social accountabilities. This article provides a review of this phenomenon and gives an overview of the current scope of health workforce migration patterns. It further focuses on the scientific discourse regarding health workforce migration and its effects on both high- and low-income countries in an interdependent world. The article also reviews the internal and external factors that fuel health worker migration and illustrates how health workforce migration is a classic global health issue of our time. Accordingly, it elaborates on the international community's approach to solving the workforce crisis, focusing in particular on the WHO Code of Practice, established in 2010.
The workforce for health in a globalized context – global shortages and international migration
Aluttis, Christoph; Bishaw, Tewabech; Frank, Martina W.
2014-01-01
The ‘crisis in human resources’ in the health sector has been described as one of the most pressing global health issues of our time. The World Health Organization (WHO) estimates that the world faces a global shortage of almost 4.3 million doctors, midwives, nurses, and other healthcare professionals. A global undersupply of these threatens the quality and sustainability of health systems worldwide. This undersupply is concurrent with globalization and the resulting liberalization of markets, which allow health workers to offer their services in countries other than those of their origin. The opportunities of health workers to seek employment abroad has led to a complex migration pattern, characterized by a flow of health professionals from low- to high-income countries. This global migration pattern has sparked a broad international debate about the consequences for health systems worldwide, including questions about sustainability, justice, and global social accountabilities. This article provides a review of this phenomenon and gives an overview of the current scope of health workforce migration patterns. It further focuses on the scientific discourse regarding health workforce migration and its effects on both high- and low-income countries in an interdependent world. The article also reviews the internal and external factors that fuel health worker migration and illustrates how health workforce migration is a classic global health issue of our time. Accordingly, it elaborates on the international community's approach to solving the workforce crisis, focusing in particular on the WHO Code of Practice, established in 2010. PMID:24560265
Dynamics of neutrophil migration in lymph nodes during infection.
Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A
2008-09-19
Although the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning-laser microscopy to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We found that neutrophils formed both small, transient and large, persistent swarms via a coordinated migration pattern. We provided evidence that cooperative action of neutrophils and parasite egress from host cells could trigger swarm formation. Neutrophil swarm formation coincided in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses.
Dynamics of neutrophil migration in lymph nodes during infection
Chtanova, Tatyana; Schaeffer, Marie; Han, Seong-Ji; van Dooren, Giel G.; Nollmann, Marcelo; Herzmark, Paul; Chan, Shiao Wei; Satija, Harshita; Camfield, Kristin; Aaron, Holly; Striepen, Boris; Robey, Ellen A.
2008-01-01
Summary While the signals that control neutrophil migration from the blood to sites of infection have been well characterized, little is known about their migration patterns within lymph nodes, or the strategies that neutrophils use to find their local sites of action. To address these questions, we used two-photon scanning laser microscopy (TPSLM) to examine neutrophil migration in intact lymph nodes during infection with an intracellular parasite, Toxoplasma gondii. We find that neutrophils form both small, transient or large, persistent swarms via a strikingly coordinated migration pattern. We provide evidence that cooperative action of neutrophils and parasite egress from host cells can trigger swarm formation. Neutrophil swarm formation coincides in space and time with the removal of macrophages that line the subcapsular sinus of the lymph node. Our data provide insights into the cellular mechanisms underlying neutrophil swarming and suggest new roles for neutrophils in shaping immune responses. PMID:18718768
Hippo kinases maintain polarity during directional cell migration in Caenorhabditis elegans.
Feng, Guoxin; Zhu, Zhiwen; Li, Wen-Jun; Lin, Qirong; Chai, Yongping; Dong, Meng-Qiu; Ou, Guangshuo
2017-02-01
Precise positioning of cells is crucial for metazoan development. Despite immense progress in the elucidation of the attractive cues of cell migration, the repulsive mechanisms that prevent the formation of secondary leading edges remain less investigated. Here, we demonstrate that Caenorhabditis elegans Hippo kinases promote cell migration along the anterior-posterior body axis via the inhibition of dorsal-ventral (DV) migration. Ectopic DV polarization was also demonstrated in gain-of-function mutant animals for C. elegans RhoG MIG-2. We identified serine 139 of MIG-2 as a novel conserved Hippo kinase phosphorylation site and demonstrated that purified Hippo kinases directly phosphorylate MIG-2 S139 Live imaging analysis of genome-edited animals indicates that MIG-2 S139 phosphorylation impedes actin assembly in migrating cells. Intriguingly, Hippo kinases are excluded from the leading edge in wild-type cells, while MIG-2 loss induces uniform distribution of Hippo kinases. We provide evidence that Hippo kinases inhibit RhoG activity locally and are in turn restricted to the cell body by RhoG-mediated polarization. Therefore, we propose that the Hippo-RhoG feedback regulation maintains cell polarity during directional cell motility. © 2016 The Authors.
Natal foraging philopatry in eastern Pacific hawksbill turtles.
Gaos, Alexander R; Lewison, Rebecca L; Jensen, Michael P; Liles, Michael J; Henriquez, Ana; Chavarria, Sofia; Pacheco, Carlos Mario; Valle, Melissa; Melero, David; Gadea, Velkiss; Altamirano, Eduardo; Torres, Perla; Vallejo, Felipe; Miranda, Cristina; LeMarie, Carolina; Lucero, Jesus; Oceguera, Karen; Chácon, Didiher; Fonseca, Luis; Abrego, Marino; Seminoff, Jeffrey A; Flores, Eric E; Llamas, Israel; Donadi, Rodrigo; Peña, Bernardo; Muñoz, Juan Pablo; Ruales, Daniela Alarcòn; Chaves, Jaime A; Otterstrom, Sarah; Zavala, Alan; Hart, Catherine E; Brittain, Rachel; Alfaro-Shigueto, Joanna; Mangel, Jeffrey; Yañez, Ingrid L; Dutton, Peter H
2017-08-01
The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles ( Eretmochelys imbricata ) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry.
Natal foraging philopatry in eastern Pacific hawksbill turtles
Lewison, Rebecca L.; Jensen, Michael P.; Liles, Michael J.; Henriquez, Ana; Chavarria, Sofia; Pacheco, Carlos Mario; Valle, Melissa; Melero, David; Gadea, Velkiss; Altamirano, Eduardo; Torres, Perla; Vallejo, Felipe; Miranda, Cristina; LeMarie, Carolina; Lucero, Jesus; Oceguera, Karen; Chácon, Didiher; Fonseca, Luis; Abrego, Marino; Seminoff, Jeffrey A.; Flores, Eric E.; Llamas, Israel; Donadi, Rodrigo; Peña, Bernardo; Muñoz, Juan Pablo; Ruales, Daniela Alarcòn; Chaves, Jaime A.; Otterstrom, Sarah; Zavala, Alan; Hart, Catherine E.; Brittain, Rachel; Alfaro-Shigueto, Joanna; Mangel, Jeffrey; Yañez, Ingrid L.; Dutton, Peter H.
2017-01-01
The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles (Eretmochelys imbricata) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry. PMID:28878969
Tracking Migratory Animals: Going Online for Environmental Education.
ERIC Educational Resources Information Center
Coulter, Bob
1997-01-01
Describes a project in which students pick a migratory animal and track it during migration using internet resources. Employs background readings, authentic research data, and questions to experts to enable students to have meaningful learning experiences. (DDR)
The Adventures of the Gray Whale: An Integrated Approach to Learning about the Long Migration
ERIC Educational Resources Information Center
Britton, Stacey; Tippins, Deborah; Cajigal, Aris; Cox, Melissa; Cole, Gerri; Vazquez, Max; Trejo, Martha Cabrera; Guzman, Amelia
2010-01-01
Using migration as a springboard, students can begin to understand patterns of survival and interdependence that exist within nature, as well as humankind's role in modifying these patterns. This mini-unit involves a series of integrated activities designed to take middle school students (fifth through eighth grades) on a journey of the eastern…
Innovative Visualizations Shed Light on Avian Nocturnal Migration.
Shamoun-Baranes, Judy; Farnsworth, Andrew; Aelterman, Bart; Alves, Jose A; Azijn, Kevin; Bernstein, Garrett; Branco, Sérgio; Desmet, Peter; Dokter, Adriaan M; Horton, Kyle; Kelling, Steve; Kelly, Jeffrey F; Leijnse, Hidde; Rong, Jingjing; Sheldon, Daniel; Van den Broeck, Wouter; Van Den Meersche, Jan Klaas; Van Doren, Benjamin Mark; van Gasteren, Hans
2016-01-01
Globally, billions of flying animals undergo seasonal migrations, many of which occur at night. The temporal and spatial scales at which migrations occur and our inability to directly observe these nocturnal movements makes monitoring and characterizing this critical period in migratory animals' life cycles difficult. Remote sensing, therefore, has played an important role in our understanding of large-scale nocturnal bird migrations. Weather surveillance radar networks in Europe and North America have great potential for long-term low-cost monitoring of bird migration at scales that have previously been impossible to achieve. Such long-term monitoring, however, poses a number of challenges for the ornithological and ecological communities: how does one take advantage of this vast data resource, integrate information across multiple sensors and large spatial and temporal scales, and visually represent the data for interpretation and dissemination, considering the dynamic nature of migration? We assembled an interdisciplinary team of ecologists, meteorologists, computer scientists, and graphic designers to develop two different flow visualizations, which are interactive and open source, in order to create novel representations of broad-front nocturnal bird migration to address a primary impediment to long-term, large-scale nocturnal migration monitoring. We have applied these visualization techniques to mass bird migration events recorded by two different weather surveillance radar networks covering regions in Europe and North America. These applications show the flexibility and portability of such an approach. The visualizations provide an intuitive representation of the scale and dynamics of these complex systems, are easily accessible for a broad interest group, and are biologically insightful. Additionally, they facilitate fundamental ecological research, conservation, mitigation of human-wildlife conflicts, improvement of meteorological products, and public outreach, education, and engagement.
Wildhaber, M.L.; Holan, S.H.; Davis, G.M.; Gladish, D.W.; DeLonay, A.J.; Papoulias, D.M.; Sommerhauser, D.K.
2011-01-01
Approaches using telemetry, precise reproductive assessments, and surgically implanted data storage tags (DSTs) were used in combination with novel applications of analytical techniques for fish movement studies to describe patterns in migratory behavior and predict spawning success of gravid shovelnose sturgeon. From 2004 to 2007, over 300 gravid female shovelnose sturgeon (Scaphirhynchus platorynchus) from the Lower Missouri River, that were expected to spawn in the year they were collected, were surgically implanted with transmitters and archival DSTs. Functional cluster modeling of telemetry data from the spawning season suggested two common migration patterns of gravid female shovelnose sturgeon. Fish implanted from 958 to 1181 river kilometer (rkm) from the mouth of the Missouri River (or northern portion of the Lower Missouri River within 354rkm of the lowest Missouri River dam at rkm 1305) had one migration pattern. Of fish implanted from 209 to 402rkm from the mouth of the Missouri River (or southern portion of the Lower Missouri River), half demonstrated a movement pattern similar to the northern fish while the other half demonstrated a migration pattern that covered more of the river. There was no apparent difference in migration patterns between successful and unsuccessful spawners. Multiple hypotheses exist to explain differences in migratory patterns among fish from different river reaches. Additional work is required to determine if observed differences are due to multiple adapted strategies, environmental alteration, and/or initial tagging date. Hierarchical Bayesian modeling of DST data indicated that variation in depth usage patterns was consistently different between successful and unsuccessful spawners, as indicated by differences in likelihood of switching between high and low variability states. Analyses of DST data, and data collected at capture, were sufficient to predict 8 of 10 non-spawners/incomplete spawners and all 30 spawners in the absence of telemetry location data. Together, the results of these two separate analyses suggest that caution is necessary in extrapolating spawning success from broad-scale movement data alone. More direct measures of spawning success may be necessary to precisely determine spawning success and to evaluate the effects of management actions. ?? 2011 Blackwell Verlag, Berlin.
Wildhaber, M.L.; Holan, S.H.; Davis, G.M.; Gladish, D.W.; DeLonay, A.J.; Papoulias, D.M.; Sommerhauser, D.K.
2011-01-01
Approaches using telemetry, precise reproductive assessments, and surgically implanted data storage tags (DSTs) were used in combination with novel applications of analytical techniques for fish movement studies to describe patterns in migratory behavior and predict spawning success of gravid shovelnose sturgeon. From 2004 to 2007, over 300 gravid female shovelnose sturgeon (Scaphirhynchus platorynchus) from the Lower Missouri River, that were expected to spawn in the year they were collected, were surgically implanted with transmitters and archival DSTs. Functional cluster modeling of telemetry data from the spawning season suggested two common migration patterns of gravid female shovelnose sturgeon. Fish implanted from 958 to 1181 river kilometer (rkm) from the mouth of the Missouri River (or northern portion of the Lower Missouri River within 354 rkm of the lowest Missouri River dam at rkm 1305) had one migration pattern. Of fish implanted from 209 to 402 rkm from the mouth of the Missouri River (or southern portion of the Lower Missouri River), half demonstrated a movement pattern similar to the northern fish while the other half demonstrated a migration pattern that covered more of the river. There was no apparent difference in migration patterns between successful and unsuccessful spawners. Multiple hypotheses exist to explain differences in migratory patterns among fish from different river reaches. Additional work is required to determine if observed differences are due to multiple adapted strategies, environmental alteration, and/or initial tagging date. Hierarchical Bayesian modeling of DST data indicated that variation in depth usage patterns was consistently different between successful and unsuccessful spawners, as indicated by differences in likelihood of switching between high and low variability states. Analyses of DST data, and data collected at capture, were sufficient to predict 8 of 10 non-spawners/incomplete spawners and all 30 spawners in the absence of telemetry location data. Together, the results of these two separate analyses suggest that caution is necessary in extrapolating spawning success from broad-scale movement data alone. More direct measures of spawning success may be necessary to precisely determine spawning success and to evaluate the effects of management actions.
Ancient X chromosomes reveal contrasting sex bias in Neolithic and Bronze Age Eurasian migrations.
Goldberg, Amy; Günther, Torsten; Rosenberg, Noah A; Jakobsson, Mattias
2017-03-07
Dramatic events in human prehistory, such as the spread of agriculture to Europe from Anatolia and the late Neolithic/Bronze Age migration from the Pontic-Caspian Steppe, can be investigated using patterns of genetic variation among the people who lived in those times. In particular, studies of differing female and male demographic histories on the basis of ancient genomes can provide information about complexities of social structures and cultural interactions in prehistoric populations. We use a mechanistic admixture model to compare the sex-specifically-inherited X chromosome with the autosomes in 20 early Neolithic and 16 late Neolithic/Bronze Age human remains. Contrary to previous hypotheses suggested by the patrilocality of many agricultural populations, we find no evidence of sex-biased admixture during the migration that spread farming across Europe during the early Neolithic. For later migrations from the Pontic Steppe during the late Neolithic/Bronze Age, however, we estimate a dramatic male bias, with approximately five to 14 migrating males for every migrating female. We find evidence of ongoing, primarily male, migration from the steppe to central Europe over a period of multiple generations, with a level of sex bias that excludes a pulse migration during a single generation. The contrasting patterns of sex-specific migration during these two migrations suggest a view of differing cultural histories in which the Neolithic transition was driven by mass migration of both males and females in roughly equal numbers, perhaps whole families, whereas the later Bronze Age migration and cultural shift were instead driven by male migration, potentially connected to new technology and conquest.
Weidinger, G; Wolke, U; Köprunner, M; Klinger, M; Raz, E
1999-12-01
In many organisms, the primordial germ cells have to migrate from the position where they are specified towards the developing gonad where they generate gametes. Extensive studies of the migration of primordial germ cells in Drosophila, mouse, chick and Xenopus have identified somatic tissues important for this process and demonstrated a role for specific molecules in directing the cells towards their target. In zebrafish, a unique situation is found in that the primordial germ cells, as marked by expression of vasa mRNA, are specified in random positions relative to the future embryonic axis. Hence, the migrating cells have to navigate towards their destination from various starting positions that differ among individual embryos. Here, we present a detailed description of the migration of the primordial germ cells during the first 24 hours of wild-type zebrafish embryonic development. We define six distinct steps of migration bringing the primordial germ cells from their random positions before gastrulation to form two cell clusters on either side of the midline by the end of the first day of development. To obtain information on the origin of the positional cues provided to the germ cells by somatic tissues during their migration, we analyzed the migration pattern in mutants, including spadetail, swirl, chordino, floating head, cloche, knypek and no isthmus. In mutants with defects in axial structures, paraxial mesoderm or dorsoventral patterning, we find that certain steps of the migration process are specifically affected. We show that the paraxial mesoderm is important for providing proper anteroposterior information to the migrating primordial germ cells and that these cells can respond to changes in the global dorsoventral coordinates. In certain mutants, we observe accumulation of ectopic cells in different regions of the embryo. These ectopic cells can retain both morphological and molecular characteristics of primordial germ cells, suggesting that, in zebrafish at the early stages tested, the vasa-expressing cells are committed to the germ cell lineage.
Tornadic storm avoidance behavior in breeding songbirds.
Streby, Henry M; Kramer, Gunnar R; Peterson, Sean M; Lehman, Justin A; Buehler, David A; Andersen, David E
2015-01-05
Migration is a common behavior used by animals of many taxa to occupy different habitats during different periods. Migrant birds are categorized as either facultative (i.e., those that are forced to migrate by some proximal cue, often weather) or obligate (i.e., those that migrate on a regular cycle). During migration, obligate migrants can curtail or delay flights in response to inclement weather or until favorable winds prevail, and they can temporarily reorient or reverse direction when ecological or meteorological obstacles are encountered. However, it is not known whether obligate migrants undertake facultative migrations and make large-scale movements in response to proximal cues outside of their regular migration periods. Here, we present the first documentation of obligate long-distance migrant birds undertaking a facultative migration, wherein breeding golden-winged warblers (Vermivora chrysoptera) carrying light-level geolocators performed a >1,500 km 5-day circumvention of a severe tornadic storm. The birds evacuated their breeding territories >24 hr before the arrival of the storm and atmospheric variation associated with it. The probable cue, radiating >1,000 km from tornadic storms, perceived by birds and influencing bird behavior and movements, is infrasound (i.e., sound below the range of human hearing). With the predicted increase in severity and frequency of similar storms as anthropogenic climate change progresses, understanding large-scale behavioral responses of animals to such events will be an important objective of future research. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cryan, Paul M.; Diehl, Robert H.
2009-01-01
T HE MIGRATORY MOVEIvl.ENTS OF BATS have proven ex tremely difficult to determine. Despite extensive efforts during the past century to track the movements of bats across landscapes, efficient methods of following small- to medium-size volant animals <240 gl for extended periods (>8 weeks) over long distances (>100 km) have not been developed. Important questions about bat migration remain unanswered: Which bats migrate? Where do they go? How far do they move? How high and fast do they fly? What are their habitat needs during migration? How do bats orient and navigate during migration? Addressing these apparently simple questions will be a considerable challenge to anyone interested in advancing the study of bat migration. In this chapter, we present direct and indirect methods used to study bat migration as well as techniques that have worked for studying bird migration that could feasibly be adapted to the study of bats.
Migration of moth species in a network of small islands.
Nieminen, Marko
1996-12-01
Rapidly increasing fragmentation of natural landscapes decreases the ability of many species to reach the smaller and more isolated patches of habitat in a metapopulation. The densities of local populations of several moth species and the butterfly Hipparchia semele in a network of small islands, and the rates of inter-island movement and movement patterns, were investigated, to determine the factors affecting the rate and pattern of movements. The estimated population densities ranged from 0.001 to 0.2 individuals/m 2 . The observed emigration and immigration rates depended on island isolation and various traits of the species, with great variability in migration rates among species. Thin-bodied, slow-flying species did not move among the islands, whereas many robust, fast-flying species moved among the islands relatively frequently. Migration rate increased significantly with body size and was significantly higher in oligophagous than in polyphagous species, suggesting that these factors are important determinants of the migration rate of the species. Migration rate was low when the surface temperature of the sea was low, and a greater proportion of individuals emigrated from small than large patches of habitat. The migration distances of female noctuids were shorter than those of males and those of both sexes of the butterfly H. semele. The observed movement patterns are consistent with a metapopulation structure in most of the moth species.
Capturing migration phenology of terrestrial wildlife using camera traps
Tape, Ken D.; Gustine, David D.
2014-01-01
Remote photography, using camera traps, can be an effective and noninvasive tool for capturing the migration phenology of terrestrial wildlife. We deployed 14 digital cameras along a 104-kilometer longitudinal transect to record the spring migrations of caribou (Rangifer tarandus) and ptarmigan (Lagopus spp.) in the Alaskan Arctic. The cameras recorded images at 15-minute intervals, producing approximately 40,000 images, including 6685 caribou observations and 5329 ptarmigan observations. The northward caribou migration was evident because the median caribou observation (i.e., herd median) occurred later with increasing latitude; average caribou migration speed also increased with latitude (r2 = .91). Except at the northernmost latitude, a northward ptarmigan migration was similarly evident (r2 = .93). Future applications of this method could be used to examine the conditions proximate to animal movement, such as habitat or snow cover, that may influence migration phenology.
Population mobility in Peninsular Malaysia.
Jones, G W; Sidh, M S
1979-12-01
1970 census materials were used to analyze migration patterns in Peninsular Malaysia. Inter-state migration patterns were analyzed by comparing birth place and current place of residence data, and inter-district and intra-district migration patterns were assessed using information on previous and current place of residence. The proportion of inter-state migrants in the total population increased from 4.7%-10.9% from 1947-1970. 53% of the inter-state migrants were Malays, 33% were Chinese, and 13% were Indian. The states of Selangor and Pahang had the highest net migration gains and Perak had the highest number of out-migrants. Selangor attracted migrants because it was a major industrial, administrative and educational center. Migrants were attracted to Pahang because of recent efforts by the government to promote agricultural development in the state. Areas which showed a net migration loss were experiencing slow economic growth. 48.4% of the inter-state migrants migrated to either rural or suburban areas, 26% moved to cities with populations of 75,000 or more, and 26% moved to towns with populations of 1000-10,000. 48.6% of the inter-state migrants were females. When all types of internal migration were taken into account it was estimated that approximately 30% of the population had moved at some point in their life time. During the early 1900s, Peninsular Malaysia received many immigrants from China, India, and other countries, and the Chinese became the dominant group in many urban areas and in many economic sectors. In 1950 the government, fearing that the Malays would become a minority group in their own country, halted international immigration. The recent increase in internal migration has contributed toward equalizing the influence and power of the Chinese and the Malays in urban areas and in various economic sectors.
Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Stockwell, Jason D.; Yule, Daniel L.; Sass, Greg G.
2011-01-01
Diel vertical migrations are common among many aquatic species and are often associated with changing light levels. The underlying mechanisms are generally attributed to optimizing foraging efficiency or growth rates and avoiding predation risk (μ). The objectives of this study were to (1) assess seasonal and interannual changes in vertical migration patterns of three trophic levels in the Lake Superior pelagic food web and (2) examine the mechanisms underlying the observed variability by using models of foraging, growth, and μ. Our results suggest that the opossum shrimp Mysis diluviana, kiyi Coregonus kiyi, and siscowet lake trout Salvelinus namaycush migrate concurrently during each season, but spring migrations are less extensive than summer and fall migrations. In comparison with M. diluviana, kiyis, and siscowets, the migrations by ciscoes C. artedi were not as deep in the water column during the day, regardless of season. Foraging potential and μ probably drive the movement patterns of M. diluviana, while our modeling results indicate that movements by kiyis and ciscoes are related to foraging opportunity and growth potential and receive a lesser influence from μ. The siscowet is an abundant apex predator in the pelagia of Lake Superior and probably undertakes vertical migrations in the water column to optimize foraging efficiency and growth. The concurrent vertical movement patterns of most species are likely to facilitate nutrient transport in this exceedingly oligotrophic ecosystem, and they demonstrate strong linkages between predators and prey. Fishery management strategies should use an ecosystem approach and should consider how altering the densities of long-lived top predators produces cascading effects on the nutrient cycling and energy flow in lower trophic levels.
Rural-urban migration in a developing country: Botswana, Africa.
Tarver, J D; Miller, H M
1987-01-01
Trends in internal migration in Botswana are analyzed, with a focus on rural-urban migration. Data are from the 1981 census and from a survey carried out in 1979. The authors note that even though the predominance of subsistence agriculture acts as a deterrent to rural-urban migration, it is probable that the total and percentage of people living in urban areas will increase. However, the magnitude and pattern of future migration will fluctuate over time as social and economic conditions change.
Movements of walruses radio-tagged in Bristol Bay, Alaska
Jay, C.V.; Hills, Susan
2005-01-01
Satellite radio-location data from 57 adult male Pacific walruses (Odobenus rosmarus divergens) were used to estimate haul-out fidelity, broadly describe seasonal foraging distributions, and determine the approximate timing of autumn migration from Bristol Bay, Alaska. Data were collected intermittently during 1987-91 and 1995-2000, primarily during the period from May to October. Transmitter longevity ranged from less than 1 day to 560 days (median 75 d). The four tagging sites were the only haul-outs that were commonly used in the bay from spring through autumn. Mean fidelity, defined as the chance that an animal will return to an area where it previously hauled out, was 0.56 (SE = 0.09). However, small sample sizes precluded comparisons of fidelity among years and among haul-outs by season. No tagged animals migrated out of the bay between spring and early autumn. Combined monthly locations suggest that foraging occurred primarily in the southern and eastern areas of the bay in spring and gradually shifted towards northwestern areas in late autumn and winter. Ninety-eight percent of the in-water locations were in waters under 60 m deep, which account for 76% of the study area. Some animals migrated out of the bay in late autumn and winter; others remained within the bay throughout the year. Those making long-range migrations departed the bay during November and December. ?? The Arctic Institute of North America.
Andresen, Ellen; Díaz-Castelazo, Cecilia
2016-01-01
Background. Ecological communities are dynamic collections whose composition and structure change over time, making up complex interspecific interaction networks. Mutualistic plant–animal networks can be approached through complex network analysis; these networks are characterized by a nested structure consisting of a core of generalist species, which endows the network with stability and robustness against disturbance. Those mutualistic network structures can vary as a consequence of seasonal fluctuations and food availability, as well as the arrival of new species into the system that might disorder the mutualistic network structure (e.g., a decrease in nested pattern). However, there is no assessment on how the arrival of migratory species into seasonal tropical systems can modify such patterns. Emergent and fine structural temporal patterns are adressed here for the first time for plant-frugivorous bird networks in a highly seasonal tropical environment. Methods. In a plant-frugivorous bird community, we analyzed the temporal turnover of bird species comprising the network core and periphery of ten temporal interaction networks resulting from different bird migration periods. Additionally, we evaluated how fruit abundance and richness, as well as the arrival of migratory birds into the system, explained the temporal changes in network parameters such as network size, connectance, nestedness, specialization, interaction strength asymmetry and niche overlap. The analysis included data from 10 quantitative plant-frugivorous bird networks registered from November 2013 to November 2014. Results. We registered a total of 319 interactions between 42 plant species and 44 frugivorous bird species; only ten bird species were part of the network core. We witnessed a noteworthy turnover of the species comprising the network periphery during migration periods, as opposed to the network core, which did not show significant temporal changes in species composition. Our results revealed that migration and fruit richness explain the temporal variations in network size, connectance, nestedness and interaction strength asymmetry. On the other hand, fruit abundance only explained connectance and nestedness. Discussion. By means of a fine-resolution temporal analysis, we evidenced for the first time how temporal changes in the interaction network structure respond to the arrival of migratory species into the system and to fruit availability. Additionally, few migratory bird species are important links for structuring networks, while most of them were peripheral species. We showed the relevance of studying bird–plant interactions at fine temporal scales, considering changing scenarios of species composition with a quantitative network approach. PMID:27330852
Matchmaker, Matchmaker, Make Me a Match: Migration of Populations via Marriages in the Past
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Ffrancon, Robyn; Abrams, Daniel M.; Kim, Beom Jun; Porter, Mason A.
2014-10-01
The study of human mobility is both of fundamental importance and of great potential value. For example, it can be leveraged to facilitate efficient city planning and improve prevention strategies when faced with epidemics. The newfound wealth of rich sources of data—including banknote flows, mobile phone records, and transportation data—has led to an explosion of attempts to characterize modern human mobility. Unfortunately, the dearth of comparable historical data makes it much more difficult to study human mobility patterns from the past. In this paper, we present an analysis of long-term human migration, which is important for processes such as urbanization and the spread of ideas. We demonstrate that the data record from Korean family books (called "jokbo") can be used to estimate migration patterns via marriages from the past 750 years. We apply two generative models of long-term human mobility to quantify the relevance of geographical information to human marriage records in the data, and we find that the wide variety in the geographical distributions of the clans poses interesting challenges for the direct application of these models. Using the different geographical distributions of clans, we quantify the "ergodicity" of clans in terms of how widely and uniformly they have spread across Korea, and we compare these results to those obtained using surname data from the Czech Republic. To examine population flow in more detail, we also construct and examine a population-flow network between regions. Based on the correlation between ergodicity and migration in Korea, we identify two different types of migration patterns: diffusive and convective. We expect the analysis of diffusive versus convective effects in population flows to be widely applicable to the study of mobility and migration patterns across different cultures.
NASA Astrophysics Data System (ADS)
Norris, R.; Miller, N.; Wassenaar, L.; Hobson, K.
2010-12-01
Each spring, millions of monarch butterflies (Danaus plexippus) migrate up to 3000 km from central Mexico to re-colonize eastern North America. However, despite centuries of research, the patterns of re-colonization are not well understood. We combined stable-hydrogen (δD) and -carbon (δ13C) isotope measurements with demographic models to test (1) whether individuals sampled in the northern part of the breeding range in the Great Lakes originate directly from Mexico or are second generation individuals born in the southern US and (2) to estimate whether populations on the eastern seaboard migrate longitudinally over the Appalachians or originate directly from the Gulf Coast. In the Great Lakes, we found that the majority of individuals were second-generation monarchs born in the Gulf Coast and Central regions of the US. However, 25% individuals originated directly from Mexico and we estimated that these individuals produced the majority of offspring born in the Great Lakes region during June. On the eastern seaboard, we found the majority of monarchs (88%) originated in the mid-west and Great Lakes regions, providing the first direct evidence that second generation monarchs born in June complete a (trans-) longitudinal migration across the Appalachian mountains. The remaining individuals (12%) originated from parents that migrated directly from the Gulf coast during early spring. Our results demonstrate how stable isotopes, when combined with ecological data, can provide insights into patterns of connectivity in migratory insects that have been impossible to test using conventional techniques. The migration patterns presented here have important implications for predicting future changes in population size and for developing effective conservation plans for this species.
NASA Astrophysics Data System (ADS)
Pang, Zhenguo; Chang, Yaqing; Sun, Huiling; Yu, Jiaping
2010-05-01
Fully grown oocytes of Apostichopus japonicus have a cytoplasmic protuberance where the oocyte attaches to the follicle. The protuberance and the oolamina located on the opposite side of the oocyte indicate the animal-vegetal axis. Two pre-meiotic centrosomes are anchored to the protuberance by microtubules between centrosomes and protuberance. After meiosis reinitiation induced by DTT solution, the germinal vesicle (GV) migrates towards the protuberance. The GV breaks down after it migrates to the oocyte membrane on the protuberance side. The protuberance then contracts back into the oocyte and the first polar body extrudes from the site of the former protuberance. The second polar body forms beneath the first. Thus the oocyte protuberance indicates the presumptive animal pole well before maturation of the oocyte.
The mechanism for migration in Poland.
Rykiel, Z
1988-01-01
The author reviews neoclassical theories and models of migration. The mobility theory, which concerns the impact of local labor markets on migration, is discussed in the Polish context. A general model of the regional labor market and a multicausal model are developed to explain the patterns of internal migration. The period of a managed economy (1949-1980) is contrasted with the period since the implementation of a new economic system in 1983.
The fertility of internal migrants to Kinshasa.
Anglewicz, Philip; Corker, Jamaica; Kayembe, Patrick
2017-01-01
The rapid population growth of many African cities has important implications for population health, yet little is known about factors contributing to increasing population, such as the fertility of internal migrants. We examine whether in-migrants to Kinshasa have different fertility patterns than lifetime Kinshasa residents, and identify characteristics of migrants that may explain differences in fertility. We also use detailed migration histories to examine whether fertility differs by features of migration. We use representative data from the PMA2020 Project for 2197 women in Kinshasa, including 340 women who moved to Kinshasa. We examine differences between migrants and non-migrants in fertility and other fertility-related characteristics. We also examine whether fertility differs by duration of residence in Kinshasa, number of lifetime moves, age at first migration, urban/rural classification of birthplace, and the distinction between intra-Kinshasa migration and migration to Kinshasa.. Migrants have significantly higher fertility than permanent Kinshasa residents, but the difference is relatively small in magnitude. This higher fertility appears due in part to patterns of contraceptive use among migrants. There is noteworthy heterogeneity among migrants: higher fertility among migrants is associated with longer duration in Kinshasa, more lifetime moves, urban-Kinshasa migration, older age at first migration, and moving to Kinshasa from outside (as opposed to intra-Kinshasa migration).
NASA Astrophysics Data System (ADS)
Pulsani, B. R.
2017-11-01
Tank Information System is a web application which provides comprehensive information about minor irrigation tanks of Telangana State. As part of the program, a web mapping application using Flex and ArcGIS server was developed to make the data available to the public. In course of time as Flex be-came outdated, a migration of the client interface to the latest JavaScript based technologies was carried out. Initially, the Flex based application was migrated to ArcGIS JavaScript API using Dojo Toolkit. Both the client applications used published services from ArcGIS server. To check the migration pattern from proprietary to open source, the JavaScript based ArcGIS application was later migrated to OpenLayers and Dojo Toolkit which used published service from GeoServer. The migration pattern noticed in the study especially emphasizes upon the use of Dojo Toolkit and PostgreSQL database for ArcGIS server so that migration to open source could be performed effortlessly. The current ap-plication provides a case in study which could assist organizations in migrating their proprietary based ArcGIS web applications to open source. Furthermore, the study reveals cost benefits of adopting open source against commercial software's.
[Female migration and social change in Africa. The case of Kenya].
Vorlaufer, K
1985-06-01
Causes of the recent increase in female rural-urban migration in Kenya are investigated. "Reasons for this additional migration-wave are to be found in a general weakening of traditional values and authorities, the increasing land shortage and the resulting population pressure in the rural areas, which are factors that do in fact force women to migrate to towns." Comparisons are made with male migration flows. Regional differences in migration patterns are also noted. The author concludes that the increase in female migration is not a result of greater emancipation of women but rather a symptom of increasing poverty among Kenya's female population. (SUMMARY IN ENG) excerpt
Hard to Swallow: Developmental Biological Insights into Pediatric Dysphagia
LaMantia, Anthony-Samuel; Moody, Sally A.; Maynard, Thomas M.; Karpinski, Beverly A.; Zohn, Irene E.; Mendelowitz, David; Lee, Norman H.; Popratiloff, Anastas
2015-01-01
Pediatric dysphagia—feeding and swallowing difficulties that begin at birth, last throughout childhood, and continue into maturity—is one of the most common, least understood complications in children with developmental disorders. We argue that a major cause of pediatric dysphagia is altered hindbrain patterning during pre-natal development. Such changes can compromise craniofacial structures including oropharyngeal muscles and skeletal elements as well as motor and sensory circuits necessary for normal feeding and swallowing. Animal models of developmental disorders that include pediatric dysphagia in their phenotypic spectrum can provide mechanistic insight into pathogenesis of feeding and swallowing difficulties. A fairly common human genetic developmental disorder, DiGeorge/22q11.2 Deletion Syndrome (22q11DS) includes a substantial incidence of pediatric dysphagia in its phenotypic spectrum. Infant mice carrying a parallel deletion to 22q11DS patients have feeding and swallowing difficulties. Altered hindbrain patterning, neural crest migration, craniofacial malformations, and changes in cranial nerve growth prefigure these difficulties. Thus, in addition to craniofacial and pharyngeal anomalies that arise independently of altered neural development, pediatric dysphagia may reflect disrupted hindbrain patterning and its impact on neural circuit development critical for feeding and swallowing. The mechanisms that disrupt hindbrain patterning and circuitry may provide a foundation to develop novel therapeutic approaches for improved clinical management of pediatric dysphagia. PMID:26554723
High Altitude Bird Migration at Temperate Latitudes: A Synoptic Perspective on Wind Assistance
Dokter, Adriaan M.; Shamoun-Baranes, Judy; Kemp, Michael U.; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts. PMID:23300969
High altitude bird migration at temperate latitudes: a synoptic perspective on wind assistance.
Dokter, Adriaan M; Shamoun-Baranes, Judy; Kemp, Michael U; Tijm, Sander; Holleman, Iwan
2013-01-01
At temperate latitudes the synoptic patterns of bird migration are strongly structured by the presence of cyclones and anticyclones, both in the horizontal and altitudinal dimensions. In certain synoptic conditions, birds may efficiently cross regions with opposing surface wind by choosing a higher flight altitude with more favourable wind. We observed migratory passerines at mid-latitudes that selected high altitude wind optima on particular nights, leading to the formation of structured migration layers at varying altitude up to 3 km. Using long-term vertical profiling of bird migration by C-band Doppler radar in the Netherlands, we find that such migration layers occur nearly exclusively during spring migration in the presence of a high-pressure system. A conceptual analytic framework providing insight into the synoptic patterns of wind assistance for migrants that includes the altitudinal dimension has so far been lacking. We present a simple model for a baroclinic atmosphere that relates vertical profiles of wind assistance to the pressure and temperature patterns occurring at temperate latitudes. We show how the magnitude and direction of the large scale horizontal temperature gradient affects the relative gain in wind assistance that migrants obtain through ascending. Temperature gradients typical for northerly high-pressure systems in spring are shown to cause high altitude wind optima in the easterly sectors of anticyclones, thereby explaining the frequent observations of high altitude migration in these synoptic conditions. Given the recurring synoptic arrangements of pressure systems across temperate continents, the opportunities for exploiting high altitude wind will differ between flyways, for example between easterly and westerly oceanic coasts.
Liang, Zai; Chunyu, Miao David
2013-07-01
This paper tests a new strategy for simultaneously studying internal migration within, and international migration from, China. Our theoretical discussion draws on ideas from migration-networks theory and studies of the transition to a market-oriented economy. Data collection is modelled on the Mexican Migration Project. We find that education is more important in initiating internal migration than international migration. Second, although the role of migration networks at a community level seems similar to that for Mexico-USA migration, the networks at a family level show a different pattern. Third, there is evidence that internal and international migration are competing options. Finally, we find that individuals with cadres (public officials) in the family are less likely to undertake internal migration, but more likely to participate in international migration, a finding that highlights the continuing significance of the cadres in coastal rural China.
Migration, Adjustment, and Integration of the Indian Into the Urban Environment.
ERIC Educational Resources Information Center
McCaskill, Donald N.
The migration, adjustment, and integration patterns of Canadian Indian and Metis families in an urban setting were studied. Data were collected in 1968 via a 64-item interview schedule administered to a sample of 71 families moving into the city of Winnepeg, Canada. Addressing the problems of migration, adjustment, and integration, analysis…
Patterning C. elegans: homeotic cluster genes, cell fates and cell migrations.
Salser, S J; Kenyon, C
1994-05-01
Despite its simple body form, the nematode C. elegans expresses homeotic cluster genes similar to those of insects and vertebrates in the patterning of many cell types and tissues along the anteroposterior axis. In the ventral nerve cord, these genes program spatial patterns of cell death, fusion, division and neurotransmitter production; in migrating cells they regulate the direction and extent of movement. Nematode development permits an analysis at the cellular level of how homeotic cluster genes interact to specify cell fates, and how cell behavior can be regulated to assemble an organism.
A Simple Force-Motion Relation for Migrating Cells Revealed by Multipole Analysis of Traction Stress
Tanimoto, Hirokazu; Sano, Masaki
2014-01-01
For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. PMID:24411233
The evolution of immunity in relation to colonization and migration.
O'Connor, Emily A; Cornwallis, Charlie K; Hasselquist, Dennis; Nilsson, Jan-Åke; Westerdahl, Helena
2018-05-01
Colonization and migration have a crucial effect on patterns of biodiversity, with disease predicted to play an important role in these processes. However, evidence of the effect of pathogens on broad patterns of colonization and migration is limited. Here, using phylogenetic analyses of 1,311 species of Afro-Palaearctic songbirds, we show that colonization events from regions of high (sub-Saharan Africa) to low (the Palaearctic) pathogen diversity were up to 20 times more frequent than the reverse, and that migration has evolved 3 times more frequently from African- as opposed to Palaearctic-resident species. We also found that resident species that colonized the Palaearctic from Africa, as well as African species that evolved long-distance migration to breed in the Palaearctic, have reduced diversity of key immune genes associated with pathogen recognition (major histocompatibility complex class I). These results suggest that changes in the pathogen community that occur during colonization and migration shape the evolution of the immune system, potentially by adjusting the trade-off between the benefits of extensive pathogen recognition and the costs of immunopathology that result from high major histocompatibility complex class I diversity.
Salser, S J; Kenyon, C
1992-01-16
Anterior-posterior patterning in insects, vertebrates and nematodes involves members of conserved Antennapedia-class homeobox gene clusters (HOM-C) that are thought to give specific body regions their identities. The effects of these genes on region-specific body structures have been described extensively, particularly in Drosophila, but little is known about how HOM-C genes affect the behaviours of cells that migrate into their domains of function. In Caenorhabditis elegans, the Antennapedia-like HOM-C gene mab-5 not only specifies postembryonic fates of cells in a posterior body region, but also influences the migration of mesodermal and neural cells that move through this region. Here we show that as one neuroblast migrates into this posterior region, it switches on mab-5 gene expression; mab-5 then acts as a developmental switch to control the migratory behaviour of the neuroblast descendants. HOM-C genes can therefore not only direct region-specific patterns of cell division and differentiation, but can also act within migrating cells to programme region-specific migratory behaviour.
Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.
2002-01-01
1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.
Applying network theory to animal movements to identify properties of landscape space use.
Bastille-Rousseau, Guillaume; Douglas-Hamilton, Iain; Blake, Stephen; Northrup, Joseph M; Wittemyer, George
2018-04-01
Network (graph) theory is a popular analytical framework to characterize the structure and dynamics among discrete objects and is particularly effective at identifying critical hubs and patterns of connectivity. The identification of such attributes is a fundamental objective of animal movement research, yet network theory has rarely been applied directly to animal relocation data. We develop an approach that allows the analysis of movement data using network theory by defining occupied pixels as nodes and connection among these pixels as edges. We first quantify node-level (local) metrics and graph-level (system) metrics on simulated movement trajectories to assess the ability of these metrics to pull out known properties in movement paths. We then apply our framework to empirical data from African elephants (Loxodonta africana), giant Galapagos tortoises (Chelonoidis spp.), and mule deer (Odocoileous hemionus). Our results indicate that certain node-level metrics, namely degree, weight, and betweenness, perform well in capturing local patterns of space use, such as the definition of core areas and paths used for inter-patch movement. These metrics were generally applicable across data sets, indicating their robustness to assumptions structuring analysis or strategies of movement. Other metrics capture local patterns effectively, but were sensitive to specified graph properties, indicating case specific applications. Our analysis indicates that graph-level metrics are unlikely to outperform other approaches for the categorization of general movement strategies (central place foraging, migration, nomadism). By identifying critical nodes, our approach provides a robust quantitative framework to identify local properties of space use that can be used to evaluate the effect of the loss of specific nodes on range wide connectivity. Our network approach is intuitive, and can be implemented across imperfectly sampled or large-scale data sets efficiently, providing a framework for conservationists to analyze movement data. Functions created for the analyses are available within the R package moveNT. © 2018 by the Ecological Society of America.
Flight response of slope-soaring birds to seasonal variation in thermal generation
Adam E. Duerr; Tricia A. Miller; Michael Lanzone; David Brandes; Jeff Cooper; Kieran O' Malley; Charles Maisonneuve; Junior A. Tremblay; Todd Katzner
2014-01-01
Animals respond to a variety of environmental cues, including weather conditions, when migrating. Understanding the relationship between weather and migration behaviour is vital to assessing time- and energy limitations of soaring birds. Different soaring modes have different efficiencies, are dependent upon different types of subsidized lift and are weather dependent...
Recent trends in human migrations: the case of the Venezuelan Andes.
Suarez, M M; Torrealba, R
1982-01-01
Changes in world capitalism caused prices of traditional raw materials to fall and new energy demands to arise at the end of the 19th and beginning of the 20th century. The Andean countries witnessed the fall in the value of their exports and began to receive large flows of foreign investment in mining and industry. Consequently, urban economies were strengthened and demographic patterns were changed. This led to the internal migrations and to a process of social change. These consequences are summarized from relevant studies focusing on Ecuador, Colombia, and Venezuela. Since the 1960s a compendium of information has become available which highlights the causes of the migration, migration patterns, the composition of migratory movements, and the mechanisms that the migrant uses to establish himself/herself in the city. Preston (1969) distinguished 2 migratory patterns in Ecuador: rural to urban, with migratory flows from the rural areas to urban centers and new industrial cities that experienced development and high demand for unskilled labor at comparatively high wages: and rural to rural, based on the movement of population from depressed rural areas to other areas in which programs for colonization or commercial agriculture have been promoted. In a study of Colombia, McGreevey (1968) identifies the lack of cultivatable land, rural violence in certain departments, and other economic and family causes as the principal factors that induced migrations to the cities. The study emphasizes that the predominant model of movement relates to "fill in" migration. The spatial mobility of the Venezuelan Andean population was initially outlined in a voluminous report on economic and social problems of the region (1954). The study indicates that during the intercensal period 1941-50 cities grew much more rapidly than rural "municipos" and that the drive to find employment and earn a living were the most important motives in the movement of peasants to the cities. All of the studies identified that use demographic, economic, or phychosocial approaches have provided partial explanations of the current status of Andean migrations. The explanations they offer, by not transcending the current reality of the migrants, overlook the historical traits of internal migration. Migratory flows do not spring up suddenly. They result from specific socio-political circumstances which, when closely linked to demographic evidence, serve as a basis for understanding the process. Review of studies on internal migration in the Northern Andes, as presented here, reveals a series of distinguishing characteristics: there are 5 migratory patterns--rural to rural, rural to urban, urban to urban, seasonal worker migration, and return migration, and the predominant pattern has been rural to urban; the demographic data show the importance of rural migrants to urban growth in the region and a complementary loss of population in the rural areas; depopulation of the countryside has been selective; and there is a marked disparity in employment remuneration between rural and urban areas.
Evidence for geomagnetic imprinting and magnetic navigation in the natal homing of sea turtles.
Brothers, J Roger; Lohmann, Kenneth J
2015-02-02
Natal homing is a pattern of behavior in which animals migrate away from their geographic area of origin and then return to reproduce in the same location where they began life [1-3]. Although diverse long-distance migrants accomplish natal homing [1-8], little is known about how they do so. The enigma is epitomized by loggerhead sea turtles (Caretta caretta), which leave their home beaches as hatchlings and migrate across entire ocean basins before returning to nest in the same coastal area where they originated [9, 10]. One hypothesis is that turtles imprint on the unique geomagnetic signature of their natal area and use this information to return [1]. Because Earth's field changes over time, geomagnetic imprinting should cause turtles to change their nesting locations as magnetic signatures drift slightly along coastlines. To investigate, we analyzed a 19-year database of loggerhead nesting sites in the largest sea turtle rookery in North America. Here we report a strong association between the spatial distribution of turtle nests and subtle changes in Earth's magnetic field. Nesting density increased significantly in coastal areas where magnetic signatures of adjacent beach locations converged over time, whereas nesting density decreased in places where magnetic signatures diverged. These findings confirm central predictions of the geomagnetic imprinting hypothesis and provide strong evidence that such imprinting plays an important role in natal homing in sea turtles. The results give credence to initial reports of geomagnetic imprinting in salmon [11, 12] and suggest that similar mechanisms might underlie long-distance natal homing in diverse animals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interplay of migratory and division forces as a generic mechanism for stem cell patterns
NASA Astrophysics Data System (ADS)
Hannezo, Edouard; Coucke, Alice; Joanny, Jean-François
2016-02-01
In many adult tissues, stem cells and differentiated cells are not homogeneously distributed: stem cells are arranged in periodic "niches," and differentiated cells are constantly produced and migrate out of these niches. In this article, we provide a general theoretical framework to study mixtures of dividing and actively migrating particles, which we apply to biological tissues. We show in particular that the interplay between the stresses arising from active cell migration and stem cell division give rise to robust stem cell patterns. The instability of the tissue leads to spatial patterns which are either steady or oscillating in time. The wavelength of the instability has an order of magnitude consistent with the biological observations. We also discuss the implications of these results for future in vitro and in vivo experiments.
Spatial patterns of close relationships across the lifespan
NASA Astrophysics Data System (ADS)
Jo, Hang-Hyun; Saramäki, Jari; Dunbar, Robin I. M.; Kaski, Kimmo
2014-11-01
The dynamics of close relationships is important for understanding the migration patterns of individual life-courses. The bottom-up approach to this subject by social scientists has been limited by sample size, while the more recent top-down approach using large-scale datasets suffers from a lack of detail about the human individuals. We incorporate the geographic and demographic information of millions of mobile phone users with their communication patterns to study the dynamics of close relationships and its effect in their life-course migration. We demonstrate how the close age- and sex-biased dyadic relationships are correlated with the geographic proximity of the pair of individuals, e.g., young couples tend to live further from each other than old couples. In addition, we find that emotionally closer pairs are living geographically closer to each other. These findings imply that the life-course framework is crucial for understanding the complex dynamics of close relationships and their effect on the migration patterns of human individuals.
Starcevich, Steven J.; Howell, Philip J.; Jacobs, Steven E.; Sankovich, Paul M.
2012-01-01
From 1997 to 2004, we used radio telemetry to investigate movement and distribution patterns of 206 adult fluvial bull trout (mean, 449 mm FL) from watersheds representing a wide range of habitat conditions in northeastern Oregon and southwestern Washington, a region for which there was little previous information about this species. Migrations between spawning and wintering locations were longest for fish from the Imnaha River (median, 89 km) and three Grande Ronde River tributaries, the Wenaha (56 km) and Lostine (41 km) rivers and Lookingglass Creek (47 km). Shorter migrations were observed in the John Day (8 km), Walla Walla (20 km) and Umatilla river (22 km) systems, where relatively extensive human alterations of the riverscape have been reported. From November through May, fish displayed station-keeping behavior within a narrow range (basin medians, 0.5–6.2 km). Prespawning migrations began after snowmelt-driven peak discharge and coincided with declining flows. Most postspawning migrations began by late September. Migration rates of individuals ranged from 0.1 to 10.7 km/day. Adults migrated to spawning grounds in consecutive years and displayed strong fidelity to previous spawning areas and winter locations. In the Grande Ronde River basin, most fish displayed an unusual fluvial pattern: After exiting the spawning tributary and entering a main stem river, individuals moved upstream to wintering habitat, often a substantial distance (maximum, 49 km). Our work provides additional evidence of a strong migratory capacity in fluvial bull trout, but the short migrations we observed suggest adult fluvial migration may be restricted in basins with substantial anthropogenic habitat alteration. More research into bull trout ecology in large river habitats is needed to improve our understanding of how adults establish migration patterns, what factors influence adult spatial distribution in winter, and how managers can protect and enhance fluvial populations. PMID:22655037
Migration patterns among Floridians with AIDS, 1993-2007: implications for HIV prevention and care.
Trepka, Mary Jo; Fennie, Kristopher P; Pelletier, Valerie; Lutfi, Khaleeq; Lieb, Spencer; Maddox, Lorene M
2014-09-01
To characterize migration patterns among people diagnosed as having and who died of acquired immunodeficiency syndrome (AIDS) from 1993 to 2007 because migrating to a new community can disrupt human immunodeficiency virus/AIDS care delivery and patients' adherence to care and affect migrants' social services and healthcare needs. Florida AIDS surveillance data were used to describe patterns of migration among people diagnosed as having and who died of AIDS from 1993 to 2007. Individual and community characteristics were compared between residence at the time of AIDS diagnosis and residence at the time of death by type of migration. Of 31,816 people in the cohort, 2510 (7.9%) migrated to another county in Florida and 1306 (4.1%) migrated to another state. Interstate migrants were more likely to be men, 20 to 39 years old, non-Hispanic white, and born in the United States, to have had a transmission mode of injection drug use (IDU) or men who have sex with men with IDU (MSM&IDU), and to have been diagnosed before 1999. Intercounty migrants were more likely to be non-Hispanic white, younger than 60 years, have had a transmission mode of MSM, IDU, or MSM&IDU, have higher CD4 counts/percentages, and to have lived in areas with low levels of poverty or low physician density. There was a small net movement from urban to rural areas within the state. A sizable percentage of people, particularly younger people and people with a transmission mode of IDU and IDU&MSM, migrated at least once between the time of their AIDS diagnosis and death. This has important implications for care and treatment, as well as efforts to prevent the disease. Further research is needed to explore barriers and facilitators to access to care upon migration and to assess the need for programs to help people transfer their human immunodeficiency virus/AIDS care, ensuring continuity of care and adherence.
Patterns of Migration and Risks Associated with Leprosy among Migrants in Maranhão, Brazil
Murto, Christine; Chammartin, Frédérique; Schwarz, Karolin; da Costa, Lea Marcia Melo; Kaplan, Charles; Heukelbach, Jorg
2013-01-01
Leprosy remains a public health problem in Brazil with new case incidence exceeding World Health Organization (WHO) goals in endemic clusters throughout the country. Migration can facilitate movement of disease between endemic and non-endemic areas, and has been considered a possible factor in continued leprosy incidence in Brazil. A study was conducted to investigate migration as a risk factor for leprosy. The study had three aims: (1) examine past five year migration as a risk factor for leprosy, (2) describe and compare geographic and temporal patterns of migration among past 5-year migrants with leprosy and a control group, and (3) examine social determinants of health associated with leprosy among past 5-year migrants. The study implemented a matched case-control design and analysis comparing individuals newly diagnosed with leprosy (n = 340) and a clinically unapparent control group (n = 340) without clinical signs of leprosy, matched for age, sex and location in four endemic municipalities in the state of Maranhão, northeastern Brazil. Fishers exact test was used to conduct bivariate analyses. A multivariate logistic regression analysis was employed to control for possible confounding variables. Eighty cases (23.5%) migrated 5-years prior to diagnosis, and 55 controls (16.2%) migrated 5-years prior to the corresponding case diagnosis. Past 5 year migration was found to be associated with leprosy (OR: 1.59; 95% CI 1.07–2.38; p = 0.02), and remained significantly associated with leprosy after controlling for leprosy contact in the family, household, and family/household contact. Poverty, as well as leprosy contact in the family, household and other leprosy contact, was associated with leprosy among past 5-year migrants in the bivariate analysis. Alcohol consumption was also associated with leprosy, a relevant risk factor in susceptibility to infection that should be explored in future research. Our findings provide insight into patterns of migration to localize focused control efforts in endemic areas with high population mobility. PMID:24040433
Modeling Caribou Movements: Seasonal Ranges and Migration Routes of the Central Arctic Herd
Nicholson, Kerry L.; Arthur, Stephen M.; Horne, Jon S.; Garton, Edward O.; Del Vecchio, Patricia A.
2016-01-01
Migration is an important component of the life history of many animals, but persistence of large-scale terrestrial migrations is being challenged by environmental changes that fragment habitats and create obstacles to animal movements. In northern Alaska, the Central Arctic herd (CAH) of barren-ground caribou (Rangifer tarandus granti) is known to migrate over large distances, but the herd’s seasonal distributions and migratory movements are not well documented. From 2003–2007, we used GPS radio-collars to determine seasonal ranges and migration routes of 54 female caribou from the CAH. We calculated Brownian bridges to model fall and spring migrations for each year and used the mean of these over all 4 years to identify areas that were used repeatedly. Annual estimates of sizes of seasonal ranges determined by 90% fixed kernel utilization distributions were similar between summer and winter (X̅ = 27,929 SE = 1,064 and X̅ = 26,585 SE = 4912 km2, respectively). Overlap between consecutive summer and winter ranges varied from 3.3–18.3%. Percent overlap between summer ranges used during consecutive years (X̅ = 62.4% SE = 3.7%) was higher than for winter ranges (X̅ = 42.8% SE = 5.9%). Caribou used multiple migration routes each year, but some areas were used by caribou during all years, suggesting that these areas should be managed to allow for continued utilization by caribou. Restoring migration routes after they have been disturbed or fragmented is challenging. However, prior knowledge of movements and threats may facilitate maintenance of migratory paths and seasonal ranges necessary for long-term persistence of migratory species. PMID:27045587
Temporal patterns in adult salmon migration timing across southeast Alaska
Kovach, Ryan P.; Ellison, Stephen; Pyare, Sanjay; Tallmon, David
2015-01-01
Pacific salmon migration timing can drive population productivity, ecosystem dynamics, and human harvest. Nevertheless, little is known about long-term variation in salmon migration timing for multiple species across broad regions. We used long-term data for five Pacific salmon species throughout rapidly warming southeast Alaska to describe long-term changes in salmon migration timing, interannual phenological synchrony, relationships between climatic variation and migratory timing, and to test whether long-term changes in migration timing are related to glaciation in headwater streams. Temporal changes in the median date of salmon migration timing varied widely across species. Most sockeye populations are migrating later over time (11 of 14), but pink, chum, and especially coho populations are migrating earlier than they did historically (16 of 19 combined). Temporal trends in duration and interannual variation in migration timing were highly variable across species and populations. The greatest temporal shifts in the median date of migration timing were correlated with decreases in the duration of migration timing, suggestive of a loss of phenotypic variation due to natural selection. Pairwise interannual correlations in migration timing varied widely but were generally positive, providing evidence for weak region-wide phenological synchrony. This synchrony is likely a function of climatic variation, as interannual variation in migration timing was related to climatic phenomenon operating at large- (Pacific decadal oscillation), moderate- (sea surface temperature), and local-scales (precipitation). Surprisingly, the presence or the absence of glaciers within a watershed was unrelated to long-term shifts in phenology. Overall, there was extensive heterogeneity in long-term patterns of migration timing throughout this climatically and geographically complex region, highlighting that future climatic change will likely have widely divergent impacts on salmon migration timing. Although salmon phenological diversity will complicate future predictions of migration timing, this variation likely acts as a major contributor to population and ecosystem resiliency in southeast Alaska.
Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors
NASA Astrophysics Data System (ADS)
Wilcox, Douglas A.
1989-05-01
The east-west density gradient and the pattern and mode of migration of the wetland exotic, purple loosestrife ( Lythrum salicaria L.), were assessed in a survey of populations along the New York State Thruway from Albany to Buffalo to determine if the highway corridor contributed to the spread of this species. During the peak flowering season of late July to early August, individual colonies of purple loosestrife were identified and categorized into three size classes in parallel belt transects consisting of the median strip and highway rights-of-way on the north and south sides of the road. Data were also collected on the presence of colonies adjacent to the corridor and on highway drainage patterns. Although a distinct east-west density gradient existed in the corridor, it corresponded to the gradient on adjacent lands and was greatly influenced by a major infestation at Montezuma National Wildlife Refuge. The disturbed highway corridor served as a migration route for purple loosestrife, but topographic features dictated that this migration was a short-distance rather than long-distance process. Ditch and culvert drainage patterns increased the ability of purple loosestrife to migrate to new wetland sites. Management strategies proposed to reduce the spread of this wetland threat include minimizing disturbance, pulling by hand, spraying with glyphosate, disking, and mowing.
Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors
Wilcox, Douglas A.
1989-01-01
The east-west density gradient and the pattern and mode of migration of the wetland exotic, purple loosestrife (Lythrum salicaria L.), were assessed in a survey of populations along the New York State Thruway from Albany to Buffalo to determine if the highway corridor contributed to the spread of this species. During the peak flowering season of late July to early August, individual colonies of purple loosestrife were identified and categorized into three size classes in parallel belt transects consisting of the median strip and highway rights-of-way on the north and south sides of the road. Data were also collected on the presence of colonies adjacent to the corridor and on highway drainage patterns. Although a distinct east-west density gradient existed in the corridor, it corresponded to the gradient on adjacent lands and was greatly influenced by a major infestation at Montezuma National Wildlife Refuge. The disturbed highway corridor served as a migration route for purple loosestrife, but topographic features dictated that this migration was a short-distance rather than long-distance process. Ditch and culvert drainage patterns increased the ability of purple loosestrife to migrate to new wetland sites. Management strategies proposed to reduce the spread of this wetland threat include minimizing disturbance, pulling by hand, spraying with glyphosate, disking, and mowing.
Drift Diving by Hooded Seals (Cystophora cristata) in the Northwest Atlantic Ocean
Andersen, Julie M.; Stenson, Garry B.; Skern-Maurizen, Mette; Wiersma, Yolanda F.; Rosing-Asvid, Aqqalu; Hammill, Mike O.; Boehme, Lars
2014-01-01
Many pinniped species perform a specific dive type, referred to as a ‘drift dive’, where they drift passively through the water column. This dive type has been suggested to function as a resting/sleeping or food processing dive, and can be used as an indication of feeding success by calculating the daily change in vertical drift rates over time, which reflects the relative fluctuations in buoyancy of the animal as the proportion of lipids in the body change. Northwest Atlantic hooded seals perform drift dives at regular intervals throughout their annual migration across the Northwest Atlantic Ocean. We found that the daily change in drift rate varied with geographic location and the time of year and that this differed between sexes. Positive changes in buoyancy (reflecting increased lipid stores) were evident throughout their migration range and although overlapping somewhat, they were not statistically associated with high use areas as indicated by First Passage Time (FPT). Differences in the seasonal fluctuations of buoyancy between males and females suggest that they experience a difference in patterns of energy gain and loss during winter and spring, associated with breeding. The fluctuations in buoyancy around the moulting period were similar between sexes. PMID:25051251
The genetic structure of a relict population of wood frogs
Scherer, Rick; Muths, Erin; Noon, Barry; Oyler-McCance, Sara
2012-01-01
Habitat fragmentation and the associated reduction in connectivity between habitat patches are commonly cited causes of genetic differentiation and reduced genetic variation in animal populations. We used eight microsatellite markers to investigate genetic structure and levels of genetic diversity in a relict population of wood frogs (Lithobates sylvatica) in Rocky Mountain National Park, Colorado, where recent disturbances have altered hydrologic processes and fragmented amphibian habitat. We also estimated migration rates among subpopulations, tested for a pattern of isolation-by-distance, and looked for evidence of a recent population bottleneck. The results from the clustering algorithm in Program STRUCTURE indicated the population is partitioned into two genetic clusters (subpopulations), and this result was further supported by factorial component analysis. In addition, an estimate of FST (FST = 0.0675, P value \\0.0001) supported the genetic differentiation of the two clusters. Estimates of migration rates among the two subpopulations were low, as were estimates of genetic variability. Conservation of the population of wood frogs may be improved by increasing the spatial distribution of the population and improving gene flow between the subpopulations. Construction or restoration of wetlands in the landscape between the clusters has the potential to address each of these objectives.
Energy efficiency drives the global seasonal distribution of birds.
Somveille, Marius; Rodrigues, Ana S L; Manica, Andrea
2018-06-01
The uneven distribution of biodiversity on Earth is one of the most general and puzzling patterns in ecology. Many hypotheses have been proposed to explain it, based on evolutionary processes or on constraints related to geography and energy. However, previous studies investigating these hypotheses have been largely descriptive due to the logistical difficulties of conducting controlled experiments on such large geographical scales. Here, we use bird migration-the seasonal redistribution of approximately 15% of bird species across the world-as a natural experiment for testing the species-energy relationship, the hypothesis that animal diversity is driven by energetic constraints. We develop a mechanistic model of bird distributions across the world, and across seasons, based on simple ecological and energetic principles. Using this model, we show that bird species distributions optimize the balance between energy acquisition and energy expenditure while taking into account competition with other species. These findings support, and provide a mechanistic explanation for, the species-energy relationship. The findings also provide a general explanation of migration as a mechanism that allows birds to optimize their energy budget in the face of seasonality and competition. Finally, our mechanistic model provides a tool for predicting how ecosystems will respond to global anthropogenic change.
Powder, Kara E.; Cousin, Hélène; McLinden, Gretchen P.; Craig Albertson, R.
2014-01-01
Since the time of Darwin, biologists have sought to understand the origins and maintenance of life’s diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes. PMID:25234704
Torney, Colin J; Hopcraft, J Grant C; Morrison, Thomas A; Couzin, Iain D; Levin, Simon A
2018-05-19
A central question in ecology is how to link processes that occur over different scales. The daily interactions of individual organisms ultimately determine community dynamics, population fluctuations and the functioning of entire ecosystems. Observations of these multiscale ecological processes are constrained by various technological, biological or logistical issues, and there are often vast discrepancies between the scale at which observation is possible and the scale of the question of interest. Animal movement is characterized by processes that act over multiple spatial and temporal scales. Second-by-second decisions accumulate to produce annual movement patterns. Individuals influence, and are influenced by, collective movement decisions, which then govern the spatial distribution of populations and the connectivity of meta-populations. While the field of movement ecology is experiencing unprecedented growth in the availability of movement data, there remain challenges in integrating observations with questions of ecological interest. In this article, we present the major challenges of addressing these issues within the context of the Serengeti wildebeest migration, a keystone ecological phenomena that crosses multiple scales of space, time and biological complexity.This article is part of the theme issue 'Collective movement ecology'. © 2018 The Author(s).
Hyslop, N S
1976-06-01
Extracts of 3 soya bean preparations, used commercially in certain countries to replace part of the meat in popular meat products, were made by treatment with (i) sodium dodecyl sulphate, (ii) Triton-X100 or (iii) n-Butanol. Similar extracts were made from beef and pork. All extracts were examined by electrophoretic and immunological techniques. Stained polyacrylamide gels revealed distinctive protein bands after electrophoresis. The migration rates of corresponding bands differed between beef and pork extracts. However, the migration rates of vegetable bands revealed certain similarities, but differed very greatly from those of animal origin. Characteristic fast-migrating S-bands were distinguishable only in extracts of vegetable protein. Immunodiffusion tests, using antisera produced in rabbits against each extract, revealed varying degrees of similarity between extracts of vegetable origin, but the antisera were specific for either vegetable or animal protein.
Hyslop, N. S.
1976-01-01
Extracts of 3 soya bean preparations, used commercially in certain countries to replace part of the meat in popular meat products, were made by treatment with (i) sodium dodecyl sulphate, (ii) Triton-X100 or (iii) n-Butanol. Similar extracts were made from beef and pork. All extracts were examined by electrophoretic and immunological techniques. Stained polyacrylamide gels revealed distinctive protein bands after electrophoresis. The migration rates of corresponding bands differed between beef and pork extracts. However, the migration rates of vegetable bands revealed certain similarities, but differed very greatly from those of animal origin. Characteristic fast-migrating S-bands were distinguishable only in extracts of vegetable protein. Immunodiffusion tests, using antisera produced in rabbits against each extract, revealed varying degrees of similarity between extracts of vegetable origin, but the antisera were specific for either vegetable or animal protein. Images Plate 1 Plate 2 PMID:819572
Migrations of California gray whales tracked by oxygen-18 variations in their epizoic barnacles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killingley, J.S.
1980-02-15
Barnacles attached to the California gray whale have oxygen isotope compositions that serve as a record of changing ocean temperatures as the whale migrates between arctic and subtropical waters. The isotopic values for the barnacles can be used to track whale migrations and to reconstruct the recent movements of beached whales. The method may be useful for tracing the movements of other animals, living or fossil, and for reconstructing the voyages of ancient ships.
NASA Astrophysics Data System (ADS)
Sharma, Rishi; Quinn, Thomas P.
2012-05-01
Chinook salmon, Oncorhynchus tshawytscha, are commonly categorized as ocean-type (migrating to the ocean in their first year of life) or stream-type (migrating after a full year in freshwater). These two forms have been hypothesized to display different ocean migration pathways; the former are hypothesized to migrate primarily on the continental shelf whereas the latter are hypothesized to migrate off the shelf to the open ocean. These differences in migration patterns have important implications for management, as fishing mortality rates are strongly influenced by ocean migration. Ocean-type Chinook salmon predominate in coastal rivers in the southern part of the species' range, whereas stream-type predominate in the interior and northerly rivers. This latitudinal gradient has confounded previous efforts to test the hypothesis regarding ocean migration pathways. To address this problem, we used a pair-wise design based on coded wire tagging data to compare the marine distributions of stream- and ocean-type Chinook salmon from a suite of rivers producing both forms. Both forms of Chinook salmon from the lower Columbia River, Oregon coast, lower Fraser River, and northern British Columbia rivers followed similar migration paths, contradicting the hypothesis. In contrast, recoveries of tagged Chinook salmon from the upper Columbia River, Snake River, and the upper Fraser River revealed migration patterns consistent with the hypothesis. These findings have important implications for our understanding of these life history types, and also for the conservation and management of declining, threatened, or endangered stream-type Chinook salmon populations in the US and Canada.
Satterfield, Dara A; Villablanca, Francis X; Maerz, John C; Altizer, Sonia
2016-08-01
Long-distance migration can lower infection risk for animal populations by removing infected individuals during strenuous journeys, spatially separating susceptible age classes, or allowing migrants to periodically escape from contaminated habitats. Many seasonal migrations are changing due to human activities including climate change and habitat alteration. Moreover, for some migratory populations, sedentary behaviors are becoming more common as migrants abandon or shorten their journeys in response to supplemental feeding or warming temperatures. Exploring the consequences of reduced movement for host-parasite interactions is needed to predict future responses of animal pathogens to anthropogenic change. Monarch butterflies (Danaus plexippus) and their specialist protozoan parasite Ophryocystis elektroscirrha (OE) provide a model system for examining how long-distance migration affects infectious disease processes in a rapidly changing world. Annual monarch migration from eastern North America to Mexico is known to reduce protozoan infection prevalence, and more recent work suggests that monarchs that forego migration to breed year-round on non-native milkweeds in the southeastern and south central Unites States face extremely high risk of infection. Here, we examined the prevalence of OE infection from 2013 to 2016 in western North America, and compared monarchs exhibiting migratory behavior (overwintering annually along the California coast) with those that exhibit year-round breeding. Data from field collections and a joint citizen science program of Monarch Health and Monarch Alert showed that infection frequency was over nine times higher for monarchs sampled in gardens with year-round milkweed as compared to migratory monarchs sampled at overwintering sites. Results here underscore the importance of animal migrations for lowering infection risk and motivate future studies of pathogen transmission in migratory species affected by environmental change. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Changing patterns of migration in the Adriatic region.
Schatzer, P
1988-06-01
International migration in the Adriatic countries of Albania, Greece, Italy, San Marino, and Yugoslavia is briefly examined using data from official and other published sources. The main types of migratory movements identified by the author within the region are "1) economically motivated migration (legal and clandestine); 2) immigration of refugees for resettlement; 3) immigration with the scope of final resettlement in a third country (transit movements); [and] 4) return migration by former emigrants." excerpt
China’s Internal Migration, Public Policies, and Economic Growth
2012-12-01
Studying the internal migration of China since 1949, the overall effect of migration on economic performance has had a discernible impact both...positive and negative at different times. There are two distinct aspects: the actual migration patterns and their relative effects on the economy; and the ...domestic policies enacted by the PRC that directly prompted movements whether intentional or not. This thesis has led to the conclusion that it was the
Losada-Barragán, Monica; Umaña-Pérez, Adriana; Cuervo-Escobar, Sergio; Berbert, Luiz Ricardo; Porrozzi, Renato; Morgado, Fernanda N.; Mendes-da-Cruz, Daniella Areas; Savino, Wilson; Sánchez-Gómez, Myriam; Cuervo, Patricia
2017-01-01
Protein malnutrition, the most deleterious cause of malnutrition in developing countries, has been considered a primary risk factor for the development of clinical visceral leishmaniasis (VL). Protein malnutrition and infection with Leishmania infantum leads to lymphoid tissue disorganization, including changes in cellularity and lymphocyte subpopulations in the thymus and spleen. Here we report that protein malnutrition modifies thymic chemotactic factors by diminishing the CCL5, CXCL12, IGF1, CXCL9 and CXCL10 protein levels in infected animals. Nevertheless, T cells preserve their migratory capability, as they were able to migrate ex vivo in response to chemotactic stimuli, indicating that malnutrition may compromise the thymic microenvironment and alter in vivo thymocyte migration. Decrease in chemotactic factors protein levels was accompanied by an early increase in the parasite load of the spleen. These results suggest that the precondition of malnutrition is affecting the cell-mediated immune response to L. infantum by altering T cell migration and interfering with the capacity of protein-deprived animals to control parasite spreading and proliferation. Our data provide evidence for a disturbance of T lymphocyte migration involving both central and peripheral T-cells, which likely contribute to the pathophysiology of VL that occurs in malnourished individuals. PMID:28397794
Geographical and temporal flexibility in the response to crosswinds by migrating raptors.
Klaassen, Raymond H G; Hake, Mikael; Strandberg, Roine; Alerstam, Thomas
2011-05-07
Wind and ocean currents may potentially have important effects on travelling animals, as an animal which does not respond to lateral flow will be drifted from its intended direction of movement. By analysing daily movements of migrating ospreys Pandion haliaetus and marsh harriers Circus aeruginosus, as recorded by satellite telemetry, in relation to global wind data, we showed that these raptors allow on average 47 per cent drift. Furthermore, our analyses revealed significant geographical and temporal variation in the response to crosswinds. During some parts of the migration, the birds drifted and in other parts they compensated or even overcompensated. In some regions, the response of marsh harriers depended on the wind direction. They drifted when the wind came from one side and (over)compensated when the wind came from the opposite side, and this flexible response was different in different geographical regions. These results suggest that migrating raptors modulate their response to crosswinds at different places and times during their travels and show that individual birds use a much more varied repertoire of behavioural responses to wind than hitherto assumed. Our results may also explain why contrasting and variable results have been obtained in previous studies of the effect of wind on bird migration.
Geographical and temporal flexibility in the response to crosswinds by migrating raptors
Klaassen, Raymond H. G.; Hake, Mikael; Strandberg, Roine; Alerstam, Thomas
2011-01-01
Wind and ocean currents may potentially have important effects on travelling animals, as an animal which does not respond to lateral flow will be drifted from its intended direction of movement. By analysing daily movements of migrating ospreys Pandion haliaetus and marsh harriers Circus aeruginosus, as recorded by satellite telemetry, in relation to global wind data, we showed that these raptors allow on average 47 per cent drift. Furthermore, our analyses revealed significant geographical and temporal variation in the response to crosswinds. During some parts of the migration, the birds drifted and in other parts they compensated or even overcompensated. In some regions, the response of marsh harriers depended on the wind direction. They drifted when the wind came from one side and (over)compensated when the wind came from the opposite side, and this flexible response was different in different geographical regions. These results suggest that migrating raptors modulate their response to crosswinds at different places and times during their travels and show that individual birds use a much more varied repertoire of behavioural responses to wind than hitherto assumed. Our results may also explain why contrasting and variable results have been obtained in previous studies of the effect of wind on bird migration. PMID:20980299
Clemente, Isabel; Aznar, Margarita; Nerín, Cristina; Bosetti, Osvaldo
2016-01-01
Inks and varnishes used in food packaging multilayer materials can contain different substances that are potential migrants when packaging is in contact with food. Although printing inks are applied on the external layer, they can migrate due to set-off phenomena. In order to assess food safety, migration tests were performed from two materials sets: set A based on paper and set B based on PET; both contained inks. Migration was performed to four food simulants (EtOH 50%, isooctane, EtOH 95% and Tenax(®)) and the volatile compounds profile was analysed by GC-MS. The effect of presence/absence of inks and varnishes and also their position in the material was studied. A total of 149 volatile compounds were found in migration from set A and 156 from set B materials, some of them came from inks. Quantitative analysis and a principal component analysis were performed in order to identify patterns among sample groups.
Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness.
Hribar, Kolin C; Choi, Yu Suk; Ondeck, Matthew; Engler, Adam J; Chen, Shaochen
2014-08-20
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels-water-swollen polymeric networks that act as ECM substrates-has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, "digital plasmonic patterning" (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near-infrared laser, according to a digital (computer-generated) pattern. DPP can provide orders of magnitude changes in stiffness, and can be tuned by laser intensity and speed of writing. In vitro cellular experiments using A7R5 smooth muscle cells confirm cell migration and alignment according to these patterns, making DPP a useful technique for mechanically patterning hydrogels for various biomedical applications.
Srygley, Robert B.
2001-01-01
Migrating insects may fly over large bodies of water that lack landmarks, but little is known about their ability to navigate in such a fluid environment. Using boat navigation instruments to measure compensation for fluctuations in crosswind drift, I investigated the ability of butterflies (Lepidoptera: Hesperiidae, Nymphalidae and Pieridae) to orient with and without landmarks as they migrated naturally over the Caribbean Sea. I used the presence or absence of landmarks or clouds to evaluate their use by the butterflies as guides for compensation. Forty-one per cent of the butterflies compensated for crosswind drift, whereas only 16% did not compensate. No conclusion could be drawn for the remainder. Without landmarks or clouds, butterflies were significantly less likely to compensate for drift than when these local cues were present. Butterflies were more likely to compensate fully in the presence of a landmark than when only clouds were present. Phoebis sennae butterflies drifted in the morning and overcompensated for drift in the afternoon, a pattern found both within and between individuals independent of landmarks. Although I cannot exclude the use of clouds, this would probably result in undercompensation. Hence, a ground reference in conjunction with a sun or magnetic compass is the most likely orientation cue. In the absence of clouds, one butterfly compensated, at least in part, indicating that it was using ripples on the sea surface as a ground reference in conjunction with a sun or magnetic compass. Copyright 2001 The Association for the Study of Animal Behaviour.
Hydrology, phenology and the USA National Phenology Network
Kish, George R.
2010-01-01
Phenology is the study of seasonally-recurring biological events (such as leaf-out, fruit production, and animal reproduction and migration) and how these events are influenced by environmental change. Phenological changes are some of the most sensitive biological indicators of climate change, and also affect nearly all aspects of ecosystem function. Spatially extensive patterns of phenological observations have been closely linked with climate variability. Phenology and hydrology are closely linked and affect one another across a variety of scales, from leaf intercellular spaces to the troposphere, and over periods of seconds to centuries. Ecosystem life cycles and diversity are also influenced by hydrologic processes such as floods and droughts. Therefore, understanding the relationships between hydrology and phenology is increasingly important in understanding how climate change affects biological and physical systems.
Temporal variations in early developmental decisions: an engine of forebrain evolution.
Bielen, H; Pal, S; Tole, S; Houart, C
2017-02-01
Tight control of developmental timing is pivotal to many major processes in developmental biology, such as patterning, fate specification, cell cycle dynamics, cell migration and connectivity. Temporal change in these ontogenetic sequences is known as heterochrony, a major force in the evolution of body plans and organogenesis. In the last 5 years, studies in fish and rodents indicate that heterochrony in signaling during early development generates diversity in forebrain size and complexity. Here, we summarize these findings and propose that, additionally to spatio-temporal tuning of neurogenesis, temporal and quantitative modulation of signaling events drive pivotal changes in shape, size and complexity of the forebrain across evolution, participating to the generation of diversity in animal behavior and emergence of cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Don't Fence Me In: Free Meanders in a Confined River Valley
NASA Astrophysics Data System (ADS)
Eke, E. C.; Wilcock, P. R.
2015-12-01
The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.
Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A.
2017-01-01
Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1, snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum. Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo. PMID:28893948
A Foraging Cost of Migration for a Partially Migratory Cyprinid Fish
Chapman, Ben B.; Eriksen, Anders; Baktoft, Henrik; Brodersen, Jakob; Nilsson, P. Anders; Hulthen, Kaj; Brönmark, Christer; Hansson, Lars-Anders; Grønkjær, Peter; Skov, Christian
2013-01-01
Migration has evolved as a strategy to maximise individual fitness in response to seasonally changing ecological and environmental conditions. However, migration can also incur costs, and quantifying these costs can provide important clues to the ultimate ecological forces that underpin migratory behaviour. A key emerging model to explain migration in many systems posits that migration is driven by seasonal changes to a predation/growth potential (p/g) trade-off that a wide range of animals face. In this study we assess a key assumption of this model for a common cyprinid partial migrant, the roach Rutilus rutilus, which migrates from shallow lakes to streams during winter. By sampling fish from stream and lake habitats in the autumn and spring and measuring their stomach fullness and diet composition, we tested if migrating roach pay a cost of reduced foraging when migrating. Resident fish had fuller stomachs containing more high quality prey items than migrant fish. Hence, we document a feeding cost to migration in roach, which adds additional support for the validity of the p/g model of migration in freshwater systems. PMID:23723967
Deutsch, C.J.; Reid, J.P.; Bonde, R.K.; Easton, Dean E.; Kochman, H.I.; O'Shea, T.J.
2003-01-01
The West Indian manatee (Trichechus manatus) is endangered by human activities throughout its range, including the U.S. Atlantic coast where habitat degradation from coastal development and manatee deaths from watercraft collisions have been particularly severe. We radio-tagged and tracked 78 manatees along the east coast of Florida and Georgia over a 12-year period (1986-1998). Our goals were to characterize the seasonal movements, migratory behavior, and site fidelity of manatees in this region in order to provide information for the development of effective conservation strategies. Most study animals were tracked remotely with the Argos satellite system, which yielded a mean (SD) of 3.7 (1.6) locations per day; all were regularly tracked in the field using conventional radiotelemetry methods. The combined data collection effort yielded >93,000 locations over nearly 32,000 tag-days. The median duration of tracking was 8.3 months per individual, but numerous manatees were tracked over multiple years (max = 6.8 years). Most manatees migrated seasonally over large distances between a northerly warm-season range and a southerly winter range (median one-way distance = 280 km, max = 830 km), but 12% of individuals were resident in a relatively small area (2,300 km of coastline between southeastern Florida and Rhode Island. No study animals journeyed to the Gulf coast of Florida. Regions heavily utilized by tagged manatees included: Fernandina Beach, FL to Brunswick, GA in the warm season; northern Biscayne Bay to Port Everglades, FL in the winter; and central coastal Florida, especially the Banana River and northern Indian River lagoons, in all seasons. Daily travel rate, defined as the distance between successive mean daily locations, averaged 2.5 km (SD = 1.7), but this varied with season, migratory pattern, and sex. Adult males traveled a significantly greater distance per day than did adult females for most of the warm season, which corresponded closely with the principal period of breeding activity, but there was no difference between the sexes in daily travel rate during the winter. The timing of seasonal migrations differed markedly between geographic regions. Most long-distance movements in the southern half of the study area occurred between November and March in response to changing temperatures, whereas most migrations in the northern region took place during the warmer, non-winter months. Manatees left their warm-season range in central Florida in response to cold fronts that dropped water temperatures by an average of 2.0??C over the 24-hr period preceding departure. Water temperature at departure from the warm-season range averaged 19??C, but varied among individuals (16-22??C) and was not related to body size or female reproductive status. The presence of industrial warm-water effluents permitted many manatees to overwinter north of their historic winter range, and for some migrants this delayed autumn migrations and facilitated earlier spring migrations. Southward autumn and northward spring migrations lasted an average of 10 and 15 days at mean rates of 33.5 (SD = 7.6) and 27.3 (SD = 10.5) km/day, respectively. The highest rate of travel during migration was 87 km/day (3.6 km/hr) during winter. Manatees overwintering in southeastern Florida often traveled north during mild weather - sometimes reaching their warm-season range - only to return south again with the next major cold front. Manatees were consistent in their seasonal movement patterns across years and showed strong fidelity, to warm-season and winter ranges. Within a season, individuals usually occupied only 1 or 2 core use areas that encompassed about 90% of daily locations. Most manatees returned faithfully to the same seasonal ranges year after year (median distance between range centers was <5 km between years). Seasonal movements of 4 immature manatees tracked as calves with their mothers
In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps.
Aufschnaiter, Roland; Zamir, Evan A; Little, Charles D; Özbek, Suat; Münder, Sandra; David, Charles N; Li, Li; Sarras, Michael P; Zhang, Xiaoming
2011-12-01
Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra 'tissue movements' are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues.
ERIC Educational Resources Information Center
Foulkes, Matt; Newbold, K. Bruce
2008-01-01
Research has thoroughly documented how out-migration of the educated and skilled from rural areas leaves behind a poorer population and creates pockets of rural poverty. Recently, studies have recognized that the poor are also geographically mobile and that poverty migration patterns can reinforce rural poverty concentrations. In this process,…
Green migration into rural America: The new frontier of environmentalism?
Robert Emmet Jones; J. Mark Fly; James Talley; H. Ken Cordell
2003-01-01
This article proposes that shifts in rural population and economic growth patterns may help explain rising levels of support for environmental values in many rural areas. In particular, it assesses a model of "green migration" that assumes that domestic in-migration, with its impacts on the character and composition of rural communities, is one of the reasons...
Dual impacts of climate change: forest migration and turnover through life history
Kai Zhu; Christopher W. Woodall; Souparno Ghosh; Alan E. Gelfand; James S. Clark
2014-01-01
Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would...
ERIC Educational Resources Information Center
Bachmeier, James D.
2013-01-01
This article applies the tenets of Massey's (1999) cumulative causation theory of migration to explain variation in aggregate patterns of Mexican migration to U.S. metropolitan destinations during the late 1990s. Analogous to sending contexts, results suggest that the dynamics of migration vary substantially with the maturity of the Mexican…
Miró-Herrans, Aida T.; Al-Meeri, Ali; Mulligan, Connie J.
2014-01-01
Population migration has played an important role in human evolutionary history and in the patterning of human genetic variation. A deeper and empirically-based understanding of human migration dynamics is needed in order to interpret genetic and archaeological evidence and to accurately reconstruct the prehistoric processes that comprise human evolutionary history. Current empirical estimates of migration include either short time frames (i.e. within one generation) or partial knowledge about migration, such as proportion of migrants or distance of migration. An analysis of migration that includes both proportion of migrants and distance, and direction over multiple generations would better inform prehistoric reconstructions. To evaluate human migration, we use GPS coordinates from the place of residence of the Yemeni individuals sampled in our study, their birthplaces and their parents' and grandparents' birthplaces to calculate the proportion of migrants, as well as the distance and direction of migration events between each generation. We test for differences in these values between the generations and identify factors that influence the probability of migration. Our results show that the proportion and distance of migration between females and males is similar within generations. In contrast, the proportion and distance of migration is significantly lower in the grandparents' generation, most likely reflecting the decreasing effect of technology. Based on our results, we calculate the proportion of migration events (0.102) and mean and median distances of migration (96 km and 26 km) for the grandparent's generation to represent early times in human evolution. These estimates can serve to set parameter values of demographic models in model-based methods of prehistoric reconstruction, such as approximate Bayesian computation. Our study provides the first empirically-based estimates of human migration over multiple generations in a developing country and these estimates are intended to enable more precise reconstruction of the demographic processes that characterized human evolution. PMID:24759992
Peasant flood in China: internal migration and its policy determinants.
Wan, G H
1995-06-01
A survey was undertaken by the Chinese Academy of Sciences in 1986 to explore the composition and patterns of rural population movements. 230 villages were selected from 84 townships in 59 counties scattered across 11 regions. Because of incomplete information, only data for 222 villages were used. Population flows were classified into: 1) intramigration or intraflow within the boundaries of their own townships; 2) out-migration, emigration, or outflow involving those who left the townships; and 3) in-migration, immigration, or inflow that affected those who moved into the 222 villages from outside. Age, sex, education, postmigration occupation, and duration of stay details were obtained for every migrant. Some 43,223 persons were involved in intraflows and 26,993 emigrated from the surveyed townships in 1986. The volume of internal migration in China seemed to be related to the distance between the origins and destinations of migrants. Among 70,216 migrants, about 74% were males and only 26% were females. Over 57.38% of the migrants from 222 villages shifted into industrial (34.31%) and construction (23.07%) activities. The service sector (food providers, stall holders, door-to-door retailers, barbers, and small shops) attracted 9.73%. Only 565 were engaged in cropping and 1614 in forestry, animal husbandry, sideline production, and fishery. As to age groups, 1688 (2.4%) were aged 17 years or under, 61,530 (88%) were aged 18-45, and 6999 (9.9%) were 46 years old or older. In 1986 seasonal migrants accounted for some 80% of all emigrants from the surveyed villages. Education did not play a significant role in promoting migration in the mid-1980s. 39% of the labor force had received primary education and the same percentage of out-migrants had acquired primary school education. The younger the age group, the more of them tended to move away from home: for those aged 17 or under if 100 persons migrated within the township, 113 moved out of town. A nationwide network should be established to provide information for migrants regarding their rights and obligations, job prospects, and cultural differences.
Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E
2018-03-13
Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.
Selective Modulation of Integrin-mediated Cell Migration by Distinct ADAM Family MembersV⃞
Huang, Jing; Bridges, Lance C.; White, Judith M.
2005-01-01
A disintegrin and a metalloprotease (ADAM) family members have been implicated in many biological processes. Although it is recognized that recombinant ADAM disintegrin domains can interact with integrins, little is known about ADAM-integrin interactions in cellular context. Here, we tested whether ADAMs can selectively regulate integrin-mediated cell migration. ADAMs were expressed in Chinese hamster ovary cells that express defined integrins (α4β1, α5β1, or both), and cell migration on full-length fibronectin or on its α4β1 or α5β1 binding fragments was studied. We found that ADAMs inhibit integrin-mediated cell migration in patterns dictated by the integrin binding profiles of their isolated disintegrin domains. ADAM12 inhibited cell migration mediated by the α4β1 but not the α5β1 integrin. ADAM17 had the reciprocal effect; it inhibited α5β1- but not α4β1-mediated cell migration. ADAM19 and ADAM33 inhibited migration mediated by both α4β1 and α5β1 integrins. A point mutation in the ADAM12 disintegrin loop partially reduced the inhibitory effect of ADAM12 on cell migration on the α4β1 binding fragment of fibronectin, whereas mutations that block metalloprotease activity had no effect. Our results indicate that distinct ADAMs can modulate cell migration mediated by specific integrins in a pattern dictated, at least in part, by their disintegrin domains. PMID:16079176
Clan-structured migration and phenotypic differentiation in the Jirels of Nepal.
Williams-Blangero, S
1989-04-01
This paper examines the impact of clan-structured migration on the between-village differentiation of the Jirels, a tribal population of eastern Nepal. The Jirel population is geographically restricted to nine villages, all of which were sampled to some extent for this study. Data on five head measurements, stature, and digital ridge counts are utilized to illustrate the patterns of phenotypic variation. Multivariate statistical techniques are used to assess the extent to which clan membership and associated patterns of marital exchange influence the population structure of the Jirels. The phenotypic characteristics of randomly generated migrant sets are compared to those of the observed clan-structured sets, demonstrating the clan-related phenotypic nonrandomness of migrants. The results indicate that clan-structured migration may significantly influence the amount of between-village variation. Clan structure may be a significant factor in determining patterns of variation and should not be ignored in studies of microdifferentiation in tribal populations.
Bourget, Jean-Michel; Kérourédan, Olivia; Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain; Devillard, Raphaël
2016-01-01
Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro . Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors.
Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain
2016-01-01
Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro. Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors. PMID:27833916
McCabe, J. Terrence; Smith, Nicole M.; Leslie, Paul W.; Telligman, Amy L.
2015-01-01
This paper brings together over two decades of research concerning the patterns and processes of livelihood diversification through migration among Maasai pastoralists and agro-pastoralists of northern Tanzania. Two case studies, one from the Ngorongoro Conservation Area and the other from the Simanjiro plains, jointly demonstrate the complexity of migration within a single ethnic group. We analyze the relationship between wealth and migration and examine some of the consequences of migration for building herds, expanding cultivation, and influencing political leadership. We further argue that migration in Maasai communities is becoming a cultural norm and not only a response to economic conditions. PMID:25745192
Counterintuitive migration patterns by Atlantic salmon Salmo salar smolts in a large lake.
Honkanen, H M; Rodger, J R; Stephen, A; Adams, K; Freeman, J; Adams, C E
2018-06-21
What little is known about the seaward migration of Salmo salar smolt migration through standing waters indicates that it is both slow and results in high mortality rates, compared with riverine migration. This may be partly because smolts in lakes need to swim more actively and require more complex directional cues than they do in rivers. In this telemetry study of smolt migration through Loch Lomond, S. salar smolts made repeated movements in directions away from the outflowing river, which considerably increased migration time. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Continental-scale, seasonal movements of a heterothermic migratory tree bat
Cryan, Paul M.; Stricker, Craig A.; Wunder, Michael B.
2014-01-01
Long-distance migration evolved independently in bats and unique migration behaviors are likely, but because of their cryptic lifestyles, many details remain unknown. North American hoary bats (Lasiurus cinereus cinereus) roost in trees year-round and probably migrate farther than any other bats, yet we still lack basic information about their migration patterns and wintering locations or strategies. This information is needed to better understand unprecedented fatality of hoary bats at wind turbines during autumn migration and to determine whether the species could be susceptible to an emerging disease affecting hibernating bats. Our aim was to infer probable seasonal movements of individual hoary bats to better understand their migration and seasonal distribution in North America. We analyzed the stable isotope values of non-exchangeable hydrogen in the keratin of bat hair and combined isotopic results with prior distributional information to derive relative probability density surfaces for the geographic origins of individuals. We then mapped probable directions and distances of seasonal movement. Results indicate that hoary bats summer across broad areas. In addition to assumed latitudinal migration, we uncovered evidence of longitudinal movement by hoary bats from inland summering grounds to coastal regions during autumn and winter. Coastal regions with nonfreezing temperatures may be important wintering areas for hoary bats. Hoary bats migrating through any particular area, such as a wind turbine facility in autumn, are likely to have originated from a broad expanse of summering grounds from which they have traveled in no recognizable order. Better characterizing migration patterns and wintering behaviors of hoary bats sheds light on the evolution of migration and provides context for conserving these migrants.
Changing drainage patterns within South Cascade Glacier, Washington, USA, 1964-1992
Fountain, A.G.; Vaughn, B.H.
1995-01-01
The theoretical patterns of water drainage are presented for South Cascade Glacier for four different years between 1964 and 1992, during which the glacier was thinning and receding. The theoretical pattern compares well, in a broad sense, with the flow pattern determined from tracer injections in 1986 and 1987. Differences between the patterns may result from the routing of surface meltwater in crevasses prior to entering the body of the glacier. The changing drainage pattern was caused by glacier thinning. The migration of a drainage divide eventually rerouted most of the surface meltwater from the main stream that drained the glacier in 1987 to another, formerly smaller, stream by 1992. On the basis of projected glacier thinning between 1992 and 1999, we predict that the drainage divide will continue to migrate across the glacier.
Risely, Alice; Waite, David W; Ujvari, Beata; Hoye, Bethany J; Klaassen, Marcel
2018-03-01
Gut microbes are increasingly recognised for their role in regulating an animal's metabolism and immunity. However, identifying repeatable associations between host physiological processes and their gut microbiota has proved challenging, in part because microbial communities often respond stochastically to host physiological stress (e.g. fasting, forced exercise or infection). Migratory birds provide a valuable system in which to test host-microbe interactions under physiological extremes because these hosts are adapted to predictable metabolic and immunological challenges as they undergo seasonal migrations, including temporary gut atrophy during long-distance flights. These physiological challenges may either temporarily disrupt gut microbial ecosystems, or, alternatively, promote predictable host-microbe associations during migration. To determine the relationship between migration and gut microbiota, we compared gut microbiota composition between migrating and non-migrating ("resident") conspecific shorebirds sharing a flock. We performed this across two sandpiper species, Calidris ferruginea and Calidris ruficollis, in north-western Australia, and an additional C. ruficollis population 3,000 km away in southern Australia. We found that migrants consistently had higher abundances of the bacterial genus Corynebacterium (average 28% abundance) compared to conspecific residents (average <1% abundance), with this effect holding across both species and sites. However, other than this specific association, community structure and diversity was almost identical between migrants and residents, with migration status accounting for only 1% of gut community variation when excluding Corynebacterium. Our findings suggest a consistent relationship between Corynebacterium and Calidris shorebirds during migration, with further research required to identify causal mechanisms behind the association, and to elucidate functionality to the host. However, outside this specific association, migrating shorebirds broadly maintained gut community structure, which may allow them to quickly recover gut function after a migratory flight. This study provides a rare example of a repeatable and specific response of the gut microbiota to a major physiological challenge across two species and two distant populations. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Radiotelemetry; techniques and analysis
Sybill K. Amelon; David C. Dalton; Joshua J. Millspaugh; Sandy A. Wolf
2009-01-01
Radiotelemetry has become and important tool in studies of animal behavior, ecology, management, and conservation. From the first decades following the introduction of radio transmitters, radiotelemetry emerged as a prominent and critically important tool in wildlife science for the study of physiology, animal movements (migration, dispersal, and home range), survival...
Influence of summer biogeography on wood warbler stopover abundance
Jeffrey F. Kelly; Rob Smith; Deborah M. Finch; Frank R. Moore; Wang Yong
1999-01-01
We evaluated the effect of summer biogeography of migrant wood warblers (Parulidae) on their stopover abundance. To characterize abundance patterns, we used mist-net capture data from spring and fall migration in the Middle Rio Grande Valley, New Mexico, spring migration on the Gulf Coast of Louisiana, and fall migration on the Gulf Coast of Alabama. To describe the...
ERIC Educational Resources Information Center
Katseli, Louka T.; Lucas, Robert E. B.; Xenogiani, Theodora
2006-01-01
This report evaluates the evidence on how migration may promote or hinder development in countries of origin, and explores possible win-win solutions for both sending and receiving countries. The analysis of recent OECD data of foreign-born nationals into Europe documents the presence of multiple migration patterns and reveals that the EU lags…
ERIC Educational Resources Information Center
Goldstein, Sidney; Goldstein, Alice
Using data from the 1960, 1970, and 1980 censuses of Thailand, this paper explores the changing pattern of internal migration. Throughout the period, the census indicates a high degree of stability. Lifetime migration shows a slight rise in each period; recently it has risen in inter- as opposed to intra-regional movement. Five year…
Tanimoto, Hirokazu; Sano, Masaki
2014-01-07
For biophysical understanding of cell motility, the relationship between mechanical force and cell migration must be uncovered, but it remains elusive. Since cells migrate at small scale in dissipative circumstances, the inertia force is negligible and all forces should cancel out. This implies that one must quantify the spatial pattern of the force instead of just the summation to elucidate the force-motion relation. Here, we introduced multipole analysis to quantify the traction stress dynamics of migrating cells. We measured the traction stress of Dictyostelium discoideum cells and investigated the lowest two moments, the force dipole and quadrupole moments, which reflect rotational and front-rear asymmetries of the stress field. We derived a simple force-motion relation in which cells migrate along the force dipole axis with a direction determined by the force quadrupole. Furthermore, as a complementary approach, we also investigated fine structures in the stress field that show front-rear asymmetric kinetics consistent with the multipole analysis. The tight force-motion relation enables us to predict cell migration only from the traction stress patterns. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Simon, Malene; Stafford, Kathleen M; Beedholm, Kristian; Lee, Craig M; Madsen, Peter T
2010-11-01
Most baleen whales undertake migrations between low-latitude breeding grounds and high-latitude feeding grounds. Though little is known about the timing of their migration from the Arctic, fin whales are assumed to undertake a similar migratory pattern. To address questions about habitat use and migrations, the acoustic activity of fin whales in Davis Strait, between Greenland and Canada, was monitored continuously for two years using three bottom-moored acoustic recorders. The acoustic power in the fin whale call frequencies peaked in November-December, showing that fin whales are present in Davis Strait much later in the year than previously expected. The closely timed peaks in song activity and conception time imply that not all fin whales migrate south to mate, but rather start mating at high latitudes rather than or before migrating. Singing activity was strongly linked to daylight hours, suggesting that fin whales might feed during the few daylight hours of the late fall and early Arctic winter. A negative correlation between the advancing sea ice front and power in fin whale frequencies indicates that future changes in sea ice conditions from global warming might change the distribution and migratory patterns of fin whales near the poles.
Moving Across Boundaries: Migration in South Africa, 1950–2000
2013-01-01
Existing knowledge about historical patterns of black internal migration in South Africa is incomplete, primarily because of the lack of good life course studies as well as the apartheid government’s suppression and censoring of data. This article provides a comprehensive picture of historical internal migration patterns with an analysis of a unique individual retrospective life history data set. This sample of the black population, collected in 2000, is the only known nationally representative life history data for South Africa; it includes all residential moves for each individual during his/her lifetime. Various mobility outcomes are analyzed: moves within/across provinces, moves within/across rural and urban areas, forced moves, moves with a nuclear family, and individual moves. The results indicate that migration significantly increased among black South Africans during the last half of the twentieth century, and that this increase began before the Pass Laws were repealed in 1986 and well before the official end of apartheid in 1991 or the first free election in 1994. The timing of this increase in migration rates suggests that migration in defiance of the Pass Laws (albeit a dangerous and desperate proposition) was a way of life for many black South Africans. PMID:22956415
Javed, Sàlim; Douglas, David C.; Khan, Shahid Noor; Nazeer Shah, Junid; Ali Al Hammadi, Abdullah
2012-01-01
The movement and migration pattern of the 'Near Threatened' Sooty Falcon Falco concolor is poorly known. Sooty Falcons breed on the islands of the Arabian Gulf after arriving from their non-breeding areas that are mainly in Madagascar. In the first satellite tracking of the species we fitted a 9.5 g Argos solar powered transmitter on an adult breeding Sooty Falcon off the western coast of Abu Dhabi in the United Arab Emirates. The bird successfully undertook autumn migration to Madagascar, a known wintering area for the species. We document the Sooty Falcon's autumn migration route and stop-over sites. The adult Sooty Falcon initiated its migration at night and with tailwinds, and travelled mainly during daytime hours for 13 days over an inland route of more than 5,656 km. The three stop-over sites in East Africa were characterised by moderate to sparse shrub cover associated with potential sources of water. We discuss the migration pattern of the tracked bird in relation to importance of non-breeding areas for Sooty Falcons and recent declines in numbers in their breeding range.
Moving across boundaries: migration in South Africa, 1950-2000.
Reed, Holly E
2013-02-01
Existing knowledge about historical patterns of black internal migration in South Africa is incomplete, primarily because of the lack of good life course studies as well as the apartheid government's suppression and censoring of data. This article provides a comprehensive picture of historical internal migration patterns with an analysis of a unique individual retrospective life history data set. This sample of the black population, collected in 2000, is the only known nationally representative life history data for South Africa; it includes all residential moves for each individual during his/her lifetime. Various mobility outcomes are analyzed: moves within/across provinces, moves within/across rural and urban areas, forced moves, moves with a nuclear family, and individual moves. The results indicate that migration significantly increased among black South Africans during the last half of the twentieth century, and that this increase began before the Pass Laws were repealed in 1986 and well before the official end of apartheid in 1991 or the first free election in 1994. The timing of this increase in migration rates suggests that migration in defiance of the Pass Laws (albeit a dangerous and desperate proposition) was a way of life for many black South Africans.
The tardigrade Hypsibius dujardini, a new model for studying the evolution of development.
Gabriel, Willow N; McNuff, Robert; Patel, Sapna K; Gregory, T Ryan; Jeck, William R; Jones, Corbin D; Goldstein, Bob
2007-12-15
Studying development in diverse taxa can address a central issue in evolutionary biology: how morphological diversity arises through the evolution of developmental mechanisms. Two of the best-studied developmental model organisms, the arthropod Drosophila and the nematode Caenorhabditis elegans, have been found to belong to a single protostome superclade, the Ecdysozoa. This finding suggests that a closely related ecdysozoan phylum could serve as a valuable model for studying how developmental mechanisms evolve in ways that can produce diverse body plans. Tardigrades, also called water bears, make up a phylum of microscopic ecdysozoan animals. Tardigrades share many characteristics with C. elegans and Drosophila that could make them useful laboratory models, but long-term culturing of tardigrades historically has been a challenge, and there have been few studies of tardigrade development. Here, we show that the tardigrade Hypsibius dujardini can be cultured continuously for decades and can be cryopreserved. We report that H. dujardini has a compact genome, a little smaller than that of C. elegans or Drosophila, and that sequence evolution has occurred at a typical rate. H. dujardini has a short generation time, 13-14 days at room temperature. We have found that the embryos of H. dujardini have a stereotyped cleavage pattern with asymmetric cell divisions, nuclear migrations, and cell migrations occurring in reproducible patterns. We present a cell lineage of the early embryo and an embryonic staging series. We expect that these data can serve as a platform for using H. dujardini as a model for studying the evolution of developmental mechanisms.
Chicken HOXA3 Gene: Its Expression Pattern and Role in Branchial Nerve Precursor Cell Migration
Watari-Goshima, Natsuko; Chisaka, Osamu
2011-01-01
In vertebrates, the proximal and distal sensory ganglia of the branchial nerves are derived from neural crest cells (NCCs) and placodes, respectively. We previously reported that in Hoxa3 knockout mouse embryos, NCCs and placode-derived cells of the glossopharyngeal nerve were defective in their migration. In this report, to determine the cell-type origin for this Hoxa3 knockout phenotype, we blocked the expression of the gene with antisense morpholino oligonucleotides (MO) specifically in either NCCs/neural tube or placodal cells of chicken embryos. Our results showed that HOXA3 function was required for the migration of the epibranchial placode-derived cells and that HOXA3 regulated this cell migration in both NCCs/neural tube and placodal cells. We also report that the expression pattern of chicken HOXA3 was slightly different from that of mouse Hoxa3. PMID:21278919
Periodic Pattern Formation of Bacterial Colonies
NASA Astrophysics Data System (ADS)
Itoh, Hiroto; Wakita, Jun-ichi; Matsuyama, Tohey; Matsushita, Mitsugu
1999-04-01
We have experimentally investigated pattern formation of colonies ofbacterial species Proteus mirabilis, which is famous forforming concentric-ring-like colonies.The colony grows cyclically with the interface repeating an advance anda stop alternately on a surface of a solid agar medium.We distinguish three phases (initial lag phase, the followingmigration and consolidation phases that appear alternately) for the colony growth.When we cut a colony just behind a migrating front shortly after the migrationstarted, the migration ended earlier and the following consolidationlasted longer.However, the following cycles were not influenced by the cut, i.e., thephases of the migration and consolidation were not affected.Global chemical signals governing the colony formation from thecenter were not found to exist.We also quantitatively checked phase entrainment by letting two coloniescollide with each other and found that it does not take place in macroscopic scales.All these experimental results suggest that the most important factorfor the migration is the cell population density.
Variability in Migration Routes Influences Early Marine Survival of Juvenile Salmon Smolts
Furey, Nathan B.; Vincent, Stephen P.; Hinch, Scott G.; Welch, David W.
2015-01-01
Variability in animal migratory behavior is expected to influence fitness, but few empirical examples demonstrating this relationship exist. The initial marine phase in the migration of juvenile salmon smolts has been identified as a potentially critical life history stage to overall population productivity, yet how fine-scale migration routes may influence survival are unknown. Large-scale acoustic telemetry studies have estimated survival rates of outmigrant Pacific salmon smolts through the Strait of Georgia (SOG) along the British Columbian coastline to the Pacific Ocean, but these data have not been used to identify and characterize fine-scale movements. Data collected on over 850 sockeye salmon (Oncorhynchus nerka) and steelhead (Oncorhynchus mykiss) smolts detected at an array in the Strait of Georgia in 2004–2008 and 2010–2013 were analyzed to characterize migration routes and link movements to subsequent survival at an array 250 km further along the marine migration pathway. Both species exhibited disproportionate use of the most eastern route in the Strait of Georgia (Malaspina Strait). While many smolts moved across the northern Strait of Georgia acoustic array with no indication of long-term milling or large-scale east-to-west movements, large proportions (20–40% of sockeye and 30–50% of steelhead) exhibited a different behavior, apparently moving in a westward or counterclockwise pattern. Variability in migratory behavior for both species was linked to subsequent survival through the Strait of Georgia. Survival for both species was influenced by initial east-to-west location, and sockeye were further influenced by migration timing and duration of time spent near the northern Strait of Georgia array. Westward movements result in a net transport of smolts from Malaspina Strait to the Strait of Georgia, particularly for steelhead. Counterclockwise movements may be due to the currents in this area during the time of outmigration, and the higher proportion of steelhead smolts exhibiting this counterclockwise behavior may reflect a greater exposure to wind-altered currents for the more surface-oriented steelhead. Our results provide an empirical example of how movements can affect migration survival, for which examples remain rare in movement ecology, confirming that variability in movements themselves are an important part of the migratory process. PMID:26451837
Lara, Diana; Decker, Martha J; Brindis, Claire D
2016-09-01
Teenage birth rates among young people aged 15-19 years in California, USA, have declined from 47 births per 1000 in 2000 to 24 per 1000 in 2013. Nevertheless, the US counties with the highest teenage birth rates are predominantly rural and have a high proportion of Latinos/as. We conducted 42 interviews with key stakeholders and 12 focus groups with 107 young people in five rural communities to better understand local migration patterns and their influence on intermediate and proximate variables of pregnancy, such as interaction with role models and barriers to access contraception. The migration patterns identified were: residential mobility due to seasonal jobs, residential mobility due to economic and housing changes and migration from other countries to California. These patterns affect young people and families' interactions with school and health systems and other community members, creating both opportunities and barriers to prevent risky sexual behaviours. In rural areas, residential mobility and migration to the USA interconnect. As a result, young people dually navigate the challenges of residential mobility, while also adapting to the dominant US culture. It is important to promote programmes that support the integration of immigrant youth to reduce their sense of isolation, as well as to assure access to sexual health education and reproductive health services.
Amphibian terrestrial habitat selection and movement patterns vary with annual life-history period
Groff, Luke A.; Calhoun, Aram J.K.; Loftin, Cynthia S.
2017-01-01
Identification of essential habitat is a fundamental component of amphibian conservation; however, species with complex life histories frequently move among habitats. To better understand dynamic habitat use, we evaluated Wood Frog (Lithobates sylvaticus (LeConte, 1825)) habitat selection and movement patterns during the spring migration and foraging periods and described the spatiotemporal variability of habitats used during all annual life-history periods. We radio-tracked 71 frogs in Maine during 2011–2013 and evaluated spring migration, foraging activity center (FAC), and within-FAC habitat selection. Telemetered frogs spent the greatest percentage of each field season in hibernacula (≥54.4%), followed by FACs (≥25.5%), migration habitat (≥16.9%), and breeding sites (≥4.5%). FACs ranged 49 – 1 335 m2 (568.0 ± 493.4 m2) and annual home ranges spanned 1 413 – 32 165 m2 (11 780.6 ± 12 506.1 m2). During spring migration, Wood Frogs exhibited different movement patterns (e.g., turn angles), selected different habitat features, and selected habitat features less consistently than while occupying FACs, indicating that the migration and foraging periods are ecologically distinct. Habitat-use studies that do not discriminate among annual life-history periods may obscure true ecological relationships and fail to identify essential habitat necessary for sustaining amphibian populations.
Maguire, J; Pearton, R
2000-09-01
In this study, we examined sociocultural aspects of the identification, selection and development of elite soccer players as part of wider processes of globalization, particularly worker migration. Patterns of migration were identified among the 704 players who comprised the national squads of the 32 nations contesting the finals of the 1998 World Cup in France. An analysis of the migration patterns within and between the six Confederations into which member nations of FIFA are grouped established the European Federation (UEFA) as soccer's core economy. The study is subsequently focused on Europe and, in particular, upon the import strategies of clubs in the four most popular destination countries - England, Germany, Italy and Spain. It is argued that, in light of European Union deregulation of worker migration between member states and, in particular, the Bosman judgement, European soccer is being reshaped. The identification and selection of elite players are producing migrant patterns that are seen increasingly to impact upon indigenous player development and, potentially, the viability and success of national teams. We argue that, although these developments are contoured in part by global economic factors, economic accounts alone do not provide an adequate understanding of them. A series of interrelated economic, political, cultural and social factors is at work. We conclude with a brief outline of the policy implications of the analysis.
Changing clothes easily: connexin41.8 regulates skin pattern variation.
Watanabe, Masakatsu; Kondo, Shigeru
2012-05-01
The skin patterns of animals are very important for their survival, yet the mechanisms involved in skin pattern formation remain unresolved. Turing's reaction-diffusion model presents a well-known mathematical explanation of how animal skin patterns are formed, and this model can predict various animal patterns that are observed in nature. In this study, we used transgenic zebrafish to generate various artificial skin patterns including a narrow stripe with a wide interstripe, a narrow stripe with a narrow interstripe, a labyrinth, and a 'leopard' pattern (or donut-like ring pattern). In this process, connexin41.8 (or its mutant form) was ectopically expressed using the mitfa promoter. Specifically, the leopard pattern was generated as predicted by Turing's model. Our results demonstrate that the pigment cells in animal skin have the potential and plasticity to establish various patterns and that the reaction-diffusion principle can predict skin patterns of animals. © 2012 John Wiley & Sons A/S.
Collective cell migration in development
Scarpa, Elena
2016-01-01
During embryonic development, tissues undergo major rearrangements that lead to germ layer positioning, patterning, and organ morphogenesis. Often these morphogenetic movements are accomplished by the coordinated and cooperative migration of the constituent cells, referred to as collective cell migration. The molecular and biomechanical mechanisms underlying collective migration of developing tissues have been investigated in a variety of models, including border cell migration, tracheal branching, blood vessel sprouting, and the migration of the lateral line primordium, neural crest cells, or head mesendoderm. Here we review recent advances in understanding collective migration in these developmental models, focusing on the interaction between cells and guidance cues presented by the microenvironment and on the role of cell–cell adhesion in mechanical and behavioral coupling of cells within the collective. PMID:26783298
Rural migration and agrarian reform in Russia: a research note.
Wegren, S K
1995-07-01
This study focuses primarily on trends in rural-urban migration in Russia and the former Soviet Union. "New data suggest that a historic shift in migration patterns is underway in Russia, a change that may have profound long-term effects on agrarian reform and the nature of the Russian countryside. We begin with a short review of past rural migration trends and the rural demographic situation, in part using archival data for an oblast in central Russia. We will then present new data on rural migration. Finally, we assess the implications of rural migratory trends for agrarian reform in Russia." excerpt
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klimley, A. P.; Wyman, M. T.; Kavet, Rob
The US Department of Energy and US Department of the Interior, Bureau of Ocean Energy Management commissioned this study to address the limited scientific data on the impacts of high voltage direct current cables on aquatic biota, in particular migratory species within the San Francisco Bay. Empirical evidence exists that marine animals perceive and orient to local distortions in the earth’s main geomagnetic field magnetic field. The electromagnetic fields (EMF) generated by the cables that carry electricity from hydrokinetic energy sources to shore-based power stations may produce similar local distortions in the earth’s main field. Concern exists that animals thatmore » migrate along the continental shelves might orient to the EMF from the cables, and move either inshore or offshore away from their normal path. The Trans Bay Cable (TBC) is a ±200-kilovolt (kV), 400 MW 85-km long High Voltage Direct Current (DC) buried transmission line linking Pittsburg, CA with San Francisco, CA (SF) through the San Francisco Bay. The study addresses the following specific questions based on measurements and projections of the EMF produced by an existing marine cable, the TBC, in San Francisco Bay. Specifically, does the presence of EMF from an operating power cable alter the behavior and path of bony fishes and sharks along a migratory corridor? Does the EMF from an operating power cable guide migratory movements or pose an obstacle to movement? To meet the main study objectives several activities needed to be carried out: 1) modeling of the magnetic fields produced by the TBC, 2) assessing the migratory impacts on Chinook salmon smolts (Oncorhynchus tshawytscha) and green sturgeon (Acipenser medirostris) as a result of local magnetic field distortions produced by bridge structures and 3) analyzing behavioral responses by migratory Chinook salmon and green sturgeon to a high-voltage power cable. To meet the first objective, magnetic field measurements were made using two submerged Geometrics magnetometers towed behind a survey vessel in four locations in the San Francisco estuary along profiles crossing the cable path. We applied basic formulas to describe magnetic field from a DC cable summed vectorially with the background geomagnetic field (in the absence of other sources that would perturb the ambient field) to derive characteristics of the cable not immediately or otherwise observable. The magnetic field profiles of 76 survey lines were regressed against the measured fields, representing eight days of measurement. Many profiles were dominated by field distortions caused by bridge structures or other submerged objects, and the cable contribution to the field was not detectable. The regressions based on fundamental principles (Biot Savart law) and the vectorial summation of cable and geomagnetic fields provide estimates of cable characteristics consistent with plausible expectations. For the second objective, detailed gradiometer survey were examined. Distortions in the earth’s main field produced by bridges across the estuary were much greater than those from the TBC. The former anomalies exceeded the latter by an order of magnitude or more. Significant numbers of tagged Chinook salmon smolts migrated past bridges, which produced strong magnetic anomalies, to the Golden Gate Bridge, where they were recorded by dual arrays of acoustic tag-detecting monitors moored in lines across the mouth of the bay. Adult green sturgeon successfully swam upstream and downstream through the estuary on the way to and from their spawning grounds. Hence, the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon. Finally, to assess the behavioral responses by migratory Chinook salmon and green sturgeon to a high- voltage power cable - the potential impacts effect of the TBC on fishes migrating through the San Francisco Estuary were examined. These included late-fall run Chinook salmon smolts (Oncorhynchus tshawytscha) that migrate downstream through the San Francisco Estuary to the Pacific Ocean and adult green sturgeon (Acipenser medirostris), which migrate upstream from the ocean through the estuary to their spawning habitat in the upper Sacramento River and return to the ocean after spawning occurs. Our results indicate Chinook salmon smolts may be attracted to the cable after activation (more cable location crossings, more detections at Bay Bridge, high importance of distance to cable in predicting fish location), but are not impeded from successfully migrating through the San Francisco Bay (similar proportions of successful exits, faster transit rates). Cable activity had opposite effects on outbound and inbound green sturgeon migrations: outbound migrations had significantly longer transit times while inbound migrations had significantly shorter migration times. However, the proportion of green sturgeon that successfully migrated through the San Francisco Bay was not strongly impacted after cable activation for either migration type. Based on the work, we provide the following conclusions: 1) calculations of magnetic fields for assessment of marine life can be performed; however, local anomalies in the fields resulting from submerged structures require validation of such calculations through collection of ambient DC magnetic field data, 2) the large anomalies produced by the bridges that run perpendicular to these migration routes do not appear to present a strong barrier to the natural seasonal movement patterns of salmonid smolts and adult green sturgeon and 3) Chinook salmon smolts may be attracted to the activated cable based on analysis of cable crossing, misdirections, and first presence at the array data, however, the cable activation does not appear to change the proportion of smolts that successfully migrate through the San Francisco Bay. Cable activation impacts inbound and outbound migrating adult green sturgeon: travel time was increased for outbound migrations but decreased for inbound migrations. However, cable activation did not appear to impact the success of either migration type in this species.« less
NASA Astrophysics Data System (ADS)
Antezana, Tarsicio
2009-12-01
A series of stratified bongo net samples taken over a 2 day period at ca. 18°S, about 20 nm off the coast of Peru, South America, suggest species-specific patterns of diel vertical migration into the Oxygen Minimum Zone (OMZ) of the Humboldt Current Ecosystem (HCE). The OMZ was the most dramatic feature of the water column and seemed to determine the extent of migration: Stylocheiron affine migrated only to the shallow oxycline; whereas Euphausia mucronata, Euphausia eximia, Euphausia distinguenda and Euphausia tenera migrated to the core of the OMZ; and Nematoscelis gracilis to beneath the core of the OMZ. Some differences were also found in the timing and duration of the ascent and descent, and residence times in shallow and deep layers. E. mucronata, N. gracilis and E. distinguenda displayed a normal descent during sunrise, and ascent during sunset. E. eximia and E. tenera also descended during sunrise but seemed to begin their ascent earlier in the afternoon and consequently shortened their deep residence times. S. affine showed the most extended residence times at the shallow layer and the shortest vertical displacement. Day and night vertical stratification and differences in the timing of migration into and out of the OMZ of the HCE suggest a community structure based on habitat partitioning whereby species avoided co-occurrence in time and space. Species-specific patterns of vertical stratification and migratory chronology are examined with regard to body and gill sizes, feeding adaptations of euphausiids, and potential food resources at the OMZ.
Martinez-Garay, Isabel; Guidi, Luiz G; Holloway, Zoe G; Bailey, Melissa A G; Lyngholm, Daniel; Schneider, Tomasz; Donnison, Timothy; Butt, Simon J B; Monaco, Anthony P; Molnár, Zoltán; Velayos-Baeza, Antonio
2017-04-01
Developmental dyslexia is a common disorder with a strong genetic component, but the underlying molecular mechanisms are still unknown. Several candidate dyslexia-susceptibility genes, including KIAA0319, DYX1C1, and DCDC2, have been identified in humans. RNA interference experiments targeting these genes in rat embryos have shown impairments in neuronal migration, suggesting that defects in radial cortical migration could be involved in the disease mechanism of dyslexia. Here we present the first characterisation of a Kiaa0319 knockout mouse line. Animals lacking KIAA0319 protein do not show anatomical abnormalities in any of the layered structures of the brain. Neurogenesis and radial migration of cortical projection neurons are not altered, and the intrinsic electrophysiological properties of Kiaa0319-deficient neurons do not differ from those of wild-type neurons. Kiaa0319 overexpression in cortex delays radial migration, but does not affect final neuronal position. However, knockout animals show subtle differences suggesting possible alterations in anxiety-related behaviour and in sensorimotor gating. Our results do not reveal a migration disorder in the mouse model, adding to the body of evidence available for Dcdc2 and Dyx1c1 that, unlike in the rat in utero knockdown models, the dyslexia-susceptibility candidate mouse homolog genes do not play an evident role in neuronal migration. However, KIAA0319 protein expression seems to be restricted to the brain, not only in early developmental stages but also in adult mice, indicative of a role of this protein in brain function. The constitutive and conditional knockout lines reported here will be useful tools for further functional analyses of Kiaa0319.
Manhard, Christopher V.; Som, Nicholas A.; Perry, Russell W.; Faukner, Jimmy; Soto, Toz
2018-01-01
An area of great importance to resource management and conservation biology in the Klamath Basin is balancing water usage against the life history requirements of threatened Coho Salmon. One tool for addressing this topic is a freshwater dynamics model to forecast Coho Salmon productivity based on environmental inputs. Constructing such a forecasting tool requires local data to quantify the unique life history processes of Coho Salmon inhabiting this region. Here, we describe analytical methods for estimating a series of sub-models, each capturing a different life history process, which will eventually be synchronized as part of a freshwater dynamics model for Klamath River Coho Salmon. Specifically, we draw upon extensive population monitoring data collected in the basin to estimate models of freshwater productivity, overwinter survival, and migration patterns. Our models of freshwater productivity indicated that high summer temperatures and high winter flows can both adversely affect smolt production and that such relationships are more likely in tributaries with naturally regulated flows due to substantial intraannual environmental variation. Our models of overwinter survival demonstrated extensive variability in survival among years, but not among rearing locations, and demonstrated that a substantial proportion (~ 20%) of age-0+ fish emigrate from some rearing sites in the winter. Our models of migration patterns indicated that many age-0+ fish redistribute in the basin during the summer and winter. Further, we observed that these redistributions can entail long migrations in the mainstem where environmental stressors likely play a role in cueing refuge entry. Finally, our models of migration patterns indicated that changes in discharge are important in cueing the seaward migration of smolts, but that the nature of this behavioral response can differ dramatically between tributaries with naturally and artificially regulated flows. Collectively, these analyses demonstrate that environmental variation interacts with most phases of the freshwater life history of Klamath River Coho Salmon and that anthropogenic environmental variation can have a particularly large bearing on productivity.
Pagán, Israel; Holguín, África
2013-01-01
The Caribbean and Central America are among the regions with highest HIV-1B prevalence worldwide. Despite of this high virus burden, little is known about the timing and the migration patterns of HIV-1B in these regions. Migration is one of the major processes shaping the genetic structure of virus populations. Thus, reconstruction of epidemiological network may contribute to understand HIV-1B evolution and reduce virus prevalence. We have investigated the spatio-temporal dynamics of the HIV-1B epidemic in The Caribbean and Central America using 1,610 HIV-1B partial pol sequences from 13 Caribbean and 5 Central American countries. Timing of HIV-1B introduction and virus evolutionary rates, as well as the spatial genetic structure of the HIV-1B populations and the virus migration patterns were inferred. Results revealed that in The Caribbean and Central America most of the HIV-1B variability was generated since the 80 s. At odds with previous data suggesting that Haiti was the origin of the epidemic in The Caribbean, our reconstruction indicated that the virus could have been disseminated from Puerto Rico and Antigua. These two countries connected two distinguishable migration areas corresponding to the (mainly Spanish-colonized) Easter and (mainly British-colonized) Western islands, which indicates that virus migration patterns are determined by geographical barriers and by the movement of human populations among culturally related countries. Similar factors shaped the migration of HIV-1B in Central America. The HIV-1B population was significantly structured according to the country of origin, and the genetic diversity in each country was associated with the virus prevalence in both regions, which suggests that virus populations evolve mainly through genetic drift. Thus, our work contributes to the understanding of HIV-1B evolution and dispersion pattern in the Americas, and its relationship with the geography of the area and the movements of human populations. PMID:23874917
Dionne, Phillip E.; Zydlewski, Gayle B.; Kinnison, Michael T.; Zydlewski, Joseph D.; Wippelhauser, Gail S.
2013-01-01
Efforts to conserve endangered species usually involve attempts to define and manage threats at the appropriate scale of population processes. In some species that scale is localized; in others, dispersal and migration link demic units within larger metapopulations. Current conservation strategies for endangered shortnose sturgeon (Acipenser brevirostrum) assume the species is river resident, with little to no movement between rivers. However we have found that shortnose sturgeon travel more than 130 km through coastal waters between the largest rivers in Maine. Indeed, acoustic telemetry shows that shortnose sturgeon enter six out of the seven acoustically monitored rivers we have monitored, with over 70% of tagged individuals undertaking coastal migrations between river systems. Four migration patterns were identified for shortnose sturgeon inhabiting the Penobscot River, Maine: river resident (28%), spring coastal emigrant (24%), fall coastal emigrant (33%), and summer coastal emigrant (15%). No shortnose sturgeon classified as maturing female exhibited a resident pattern, indicating differential migration. Traditional river-specific assessment and management of shortnose sturgeon could be better characterized using a broader metapopulation scale, at least in the Gulf of Maine, that accounts for diverse migratory strategies and the importance of migratory corridors as critical habitat.
Gong, Yi; Chen, Xin-jun; Li, Yun-kai; Han, Meng-jie
2015-09-01
As a pelagic cephalopod and one of the main target species of Chinese distant water fishery, jumbo squids (Dosidicus gigas) play a major role in the marine ecosystems of the eastern Pacific. Understanding the feeding ecology and migration patterns of jumbo squids is of importance for better utilizing the resources. The isotopic signatures of gladius, have been proved to be a powerful tool to reveal high resolution and ontogenic variations in individual foraging strategies of squids; which is an archival tissue with no elemental turnover after formation. In this study, the growth equation of gladius proostracum was established based on the age information determined by statolith. Gladius was cut successionally by the growth curve of gladius proostracum, the stable isotopic values of the gladius profiles were determined, and the feeding ecology and migration patterns of jumbo squids during its growth process were investigated. Results showed that the jumbo squids began to migrate after 180 days of postnatal, and their trophic levels tended to decrease throughout the life span. These results demonstrated the feasibility of using continuous sampling hard tissue to study the feeding ecology and habitat transfer of jumbo squids.
Gelbke, Heinz-Peter; Banton, Marcy; Faes, Eric; Leibold, Edgar; Pemberton, Mark; Duhayon, Sophie
2014-02-01
Residual styrene present in polystyrene food packaging may migrate into food at low levels. To assure safe use, safe exposure levels are derived for consumers potentially exposed via food using No/Low Adverse Effect Levels from animal and human studies and assessment factors proposed by European organisations (EFSA, ECHA, ECETOC). Ototoxicity and developmental toxicity in rats and human ototoxicity and effects on colour discrimination have been identified as the most relevant toxicological properties for styrene health assessments. Safe exposure levels derived from animal studies with assessment factors of EFSA and ECHA were expectedly much lower than those using the ECETOC approach. Comparable safe exposure levels were obtained from human data with all sets of assessment factors while ototoxicity in rats led to major differences. The safe exposure levels finally selected based on criteria of science and health protection converged to the range of 90-120 mg/person/d. Assuming a consumption of 1 kg food/d for an adult, this translates to 90 mg styrene migration into 1 kg food as safe for consumers. This assessment supports a health based Specific Migration Limit of 90 ppm, a value somewhat higher than the current overall migration limit of 60 ppm in the European Union. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Benskin, Jonathan P; Ikonomou, Michael G; Liu, Jun; Veldhoen, Nik; Dubetz, Cory; Helbing, Caren C; Cosgrove, John R
2014-10-07
The health of Skeena River Sockeye salmon (Onchorhychus nerka) has been of increasing concern due to declining stock returns over the past decade. In the present work, in-migrating Sockeye from the 2008 run were evaluated using a mass spectrometry-based, targeted metabolomics platform. Our objectives were to (a) investigate natural changes in a subset of the hepatic metabolome arising from migration-associated changes in osmoregulation, locomotion, and gametogenesis, and (b) compare the resultant profiles with animals displaying altered hepatic vitellogenin A (vtg) expression at the spawning grounds, which was previously hypothesized as a marker of xenobiotic exposure. Of 203 metabolites monitored, 95 were consistently observed in Sockeye salmon livers and over half of these changed significantly during in-migration. Among the most dramatic changes in both sexes were a decrease in concentrations of taurine (a major organic osmolyte), carnitine (involved in fatty acid transport), and two major polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In females, an increase in amino acids was attributed to protein catabolism associated with vitellogenesis. Animals with atypical vtg mRNA expression demonstrated unusual hepatic amino acid, fatty acid, taurine, and carnitine profiles. The cause of these molecular perturbations remains unclear, but may include xenobiotic exposure, natural senescence, and/or interindividual variability. These data provide a benchmark for further investigation into the long-term health of migrating Skeena Sockeye.
[Contaminants from food packaging : New developments in risk assessment].
Pfaff, Karla; Wölfle, Detlef; Luch, Andreas
2017-07-01
Diverse materials intended for contact with food are important sources of food contamination. Harmonised European regulations including whitelists (so-called "positive lists") of substances along with migration limits and restrictions exist for plastics and regenerated cellulose films only. The European Food Safety Authority (EFSA) is responsible for the risk assessment of substances prior to their authorization and inclusion into the positive lists. In 2016 the EFSA issued an opinion on recent developments in the risk assessment of substances migrating into food for public consideration. Also migration related to non-intentionally added substances (NIASs), e. g. impurities, degradations products or oligomers, may be relevant for risk assessment. For substances migrating in quantities up to 50 ppb the requested data are restricted to genotoxicity testing based on a tiered approach for toxicological data requirements. In the case of higher migration levels (>50 ppb) experimental animal studies are also requested. Along with an evaluation of the available information, toxicological data on structurally similar substances may be used for the assessment if sufficiently justified with the aim to reduce animal studies as far as possible. For the risk assessment of NIASs it is possible to apply in silico methods in the absence of experimental toxicological data. Additionally, new technologies such as the use of nanomaterials, active and intelligent packaging and recycled plastics are challenging tasks in EFSA's risk assessment in accordance with the regulations by the European Commission.
Flexible foraging movements of leatherback turtles across the North Atlantic Ocean.
Hays, Graeme C; Hobson, Victoria J; Metcalfe, Julian D; Righton, David; Sims, David W
2006-10-01
Some marine species have been shown to target foraging at particular hotspots of high prey abundance. However, we show here that in the year after a nesting season, female leatherback turtles (Dermochelys coriacea) in the Atlantic generally spend relatively little time in fixed hotspots, especially those with a surface signature revealed in satellite imagery, but rather tend to have a pattern of near continuous traveling. Associated with this traveling, distinct changes in dive behavior indicate that turtles constantly fine tune their foraging behavior and diel activity patterns in association with local conditions. Switches between nocturnal vs. diurnal activity are rare in the animal kingdom but may be essential for survival on a diet of gelatinous zooplankton where patches of high prey availability are rare. These results indicate that in their first year after nesting, leatherback turtles do not fit the general model of migration where responses to resources are suppressed during transit. However, their behavior may be different in their sabbatical years away from nesting beaches. Our results highlight the importance of whole-ocean fishing gear regulations to minimize turtle bycatch.
Colombo, Arnaldo L; Janini, Mario; Salomão, Reinaldo; Medeiros, Eduardo A S; Wey, Sergio B; Pignatari, Antonio C C
2009-09-01
Several epidemiological changes have occurred in the pattern of nosocomial and community acquired infectious diseases during the past 25 years. Social and demographic changes possibly related to this phenomenon include a rapid population growth, the increase in urban migration and movement across international borders by tourists and immigrants, alterations in the habitats of animals and arthropods that transmit disease, as well as the raise of patients with impaired host defense abilities. Continuous surveillance programs of emergent pathogens and antimicrobial resistance are warranted for detecting in real time new pathogens, as well as to characterize molecular mechanisms of resistance. In order to become more effective, surveillance programs of emergent pathogens should be organized as a multicenter laboratory network connected to the main public and private infection control centers. Microbiological data should be integrated to guide therapy, adapting therapy to local ecology and resistance patterns. This paper presents an overview of data generated by the Division of Infectious Diseases, Federal University of São Paulo, along with its participation in different surveillance programs of nosocomial and community acquired infectious diseases.
NASA Astrophysics Data System (ADS)
Hayes, A. G.; Ewing, R. C.; Cassini Radar Science Team, T.
2011-12-01
Fields of bedform patterns persist across many orders of magnitude, from cm-scale sub-aqueous current ripples to km-scale aeolian dunes, and form with surprisingly little difference in expression despite a range of formative environments. Because of the remarkable similarity between and among patterns, extracting information about climate and environment from these patterns is a challenge. For example, crest orientation is not diagnostic of a particular flow regime; similar patterns form under many different flow configurations. On Titan, these challenges have played out with many attempts to reconcile dune-field patterns with modeled and expected wind regimes. We propose that thinking about the change in dune orientation, rather than the orientation itself, can provide new insights on the long-term stability of the dune-field patterns and the formative wind regime. In this work, we apply the re-orientation model presented by Werner and Kocurek [Geology, 1997] to the equatorial dune fields of Titan. We measure variations in pattern parameters (crest spacing, crest length and defect density, which is the number of defect pairs per total crest length) both within and between Titan's dune fields to describe pattern maturity and identify areas where changes in dune orientation are likely to occur (or may already be occurring). Measured defect densities are similar to Earth's largest linear dune fields, such as the Namib Sand Sea and the Simpson Desert. We use measured defect densities in the Werner and Kocurek model to estimate crestline reorientation rates. We find reorientation timescales varying from ten to a hundred thousand times the average migration timescale (time to migrate a bedform one meter, ~1 Titan year according to Tokano (Aeolian Research, 2010)). Well organized patterns have the longest reorientation time scales (~10^5 migration timescales), while the topographically or spatially isolated patches of dunes show the shortest reorientation times (~10^3 migration timescales). In addition, comparisons between spacing and defect density of Titan's dunes and some of the largest fields observed on Earth and Mars reveal that dune patterns on all three planets are geometrically similar, suggesting that growth and organization share common pattern dynamics. Our results suggest that Titan's dunes may react to gross bedform transport averaged over orbital timescales, relaxing the requirement that a single modern wind regime is required to produce the observed pattern.
Abnave, Prasad; Aboukhatwa, Ellen; Kosaka, Nobuyoshi; Thompson, James; Hill, Mark A; Aboobaker, A Aziz
2017-10-01
Migration of stem cells underpins the physiology of metazoan animals. For tissues to be maintained, stem cells and their progeny must migrate and differentiate in the correct positions. This need is even more acute after tissue damage by wounding or pathogenic infection. Inappropriate migration also underpins metastasis. Despite this, few mechanistic studies address stem cell migration during repair or homeostasis in adult tissues. Here, we present a shielded X-ray irradiation assay that allows us to follow stem cell migration in planarians. We demonstrate the use of this system to study the molecular control of stem cell migration and show that snail-1 , snail-2 and zeb-1 EMT transcription factor homologs are necessary for cell migration to wound sites and for the establishment of migratory cell morphology. We also observed that stem cells undergo homeostatic migration to anterior regions that lack local stem cells, in the absence of injury, maintaining tissue homeostasis. This requires the polarity determinant notum Our work establishes planarians as a suitable model for further in-depth study of the processes controlling stem cell migration in vivo . © 2017. Published by The Company of Biologists Ltd.
Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation
NASA Astrophysics Data System (ADS)
Chen, Guo; Schnyder, Hans; Auerswald, Karl
2017-04-01
Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (p<0.05) to the isotope composition in meteoric water in a regression analysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.
Coastal Forests of the Gulf of Mexico: A Description and Some Thoughts on Their Conservation
W. C. Barrow; L. A. Johnson Randall; M. S. Woodrey; J. Cox; E. Ruelas I.; C. M. Riley; R. B. Hamilton; C. Eberly
2005-01-01
Millions of Nearctic-Neotropical landbirds move through the coastal forests of the Gulf of Mexico each spring and autumn as they migrate across and around the gulf. Migration routes in the gulf region are not static—they shift year to year and season to season according to prevailing wind patterns. Given the dynamic nature of migration routes, coastal forests...
ERIC Educational Resources Information Center
MacGill, Bindi
2012-01-01
Since 2001 there has been an increase in migration patterns by Indigenous families from remote communities to urban and semi-rural locations. Indigenous student emigration from remote Indigenous schools to urban and semi-rural schools is an emerging crisis as there are routinely inadequate service providers for Indigenous emigres. Migration away…
Temporal lobe dual pathology in malignant migrating partial seizures in infancy.
Coppola, Giangennaro; Operto, Francesca Felicia; Auricchio, Gianfranca; D'Amico, Alessandra; Fortunato, Delia; Pascotto, Antonio
2007-06-01
A child had the characteristic clinical and EEG pattern of migrating partial seizures in infancy with left temporal lobe atrophy, hippocampal sclerosis and cortical-subcortical blurring. Seizures were drug-resistant, with recurring episodes of status epilepticus. The child developed microcephaly with arrest of psychomotor development. Focal brain lesions, in the context of migrating partial seizures, have not been previously reported.[Published with video sequences].
Domestic and International Climate Migration from Rural Mexico
Nawrotzki, Raphael J.; Runfola, Daniel M.; Hunter, Lori M.; Riosmena, Fernando
2016-01-01
Evidence is increasing that climate change and variability may influence human migration patterns. However, there is less agreement regarding the type of migration streams most strongly impacted. This study tests whether climate change more strongly impacted international compared to domestic migration from rural Mexico during 1986-99. We employ eight temperature and precipitation-based climate change indices linked to detailed migration histories obtained from the Mexican Migration Project. Results from multilevel discrete-time event-history models challenge the assumption that climate-related migration will be predominantly short distance and domestic, but instead show that climate change more strongly impacted international moves from rural Mexico. The stronger climate impact on international migration may be explained by the self-insurance function of international migration, the presence of strong migrant networks, and climate-related changes in wage difference. While a warming in temperature increased international outmigration, higher levels of precipitation declined the odds of an international move. PMID:28439146
Climate Shocks and the Timing of Migration from Mexico
Nawrotzki, Raphael J.; DeWaard, Jack
2016-01-01
Although evidence is increasing that climate shocks influence human migration, it is unclear exactly when people migrate after a climate shock. A climate shock might be followed by an immediate migration response. Alternatively, migration, as an adaptive strategy of last resort, might be delayed and employed only after available in-situ (in-place) adaptive strategies are exhausted. In this paper, we explore the temporally lagged association between a climate shock and future migration. Using multilevel event-history models, we analyze the risk of Mexico-U.S. migration over a seven-year period after a climate shock. Consistent with a delayed response pattern, we find that the risk of migration is low immediately after a climate shock and increases as households pursue and cycle through in-situ adaptive strategies available to them. However, about three years after the climate shock, the risk of migration decreases, suggesting that households are eventually successful in adapting in-situ. PMID:27795604
Domestic and International Climate Migration from Rural Mexico.
Nawrotzki, Raphael J; Runfola, Daniel M; Hunter, Lori M; Riosmena, Fernando
2016-12-01
Evidence is increasing that climate change and variability may influence human migration patterns. However, there is less agreement regarding the type of migration streams most strongly impacted. This study tests whether climate change more strongly impacted international compared to domestic migration from rural Mexico during 1986-99. We employ eight temperature and precipitation-based climate change indices linked to detailed migration histories obtained from the Mexican Migration Project. Results from multilevel discrete-time event-history models challenge the assumption that climate-related migration will be predominantly short distance and domestic, but instead show that climate change more strongly impacted international moves from rural Mexico. The stronger climate impact on international migration may be explained by the self-insurance function of international migration, the presence of strong migrant networks, and climate-related changes in wage difference. While a warming in temperature increased international outmigration, higher levels of precipitation declined the odds of an international move.
Snyder, Jeremy; Crooks, Valorie A; Johnston, Rory; Adams, Krystyna; Whitmore, Rebecca
2015-01-01
Medical tourism is a practice where individuals cross international borders in order to access medical care. This practice can impact the global distribution of health workers by potentially reducing the emigration of health workers from destination countries for medical tourists and affecting the internal distribution of these workers. Little has been said, however, about the impacts of medical tourism on the immigration of health workers to medical tourism destinations. We discuss five patterns of medical tourism-driven health worker migration to medical tourism destinations: 1) long-term international migration; 2) long-term diasporic migration; 3) long-term migration and 'black sheep'; 4) short-term migration via time share; and 5) short-term migration via patient-provider dyad. These patterns of health worker migration have repercussions for global justice that include potential negative impacts on the following: 1) health worker training; 2) health worker distributions; 3) local provision of care; and 4) local economies. In order to address these potential negative impacts, policy makers in destination countries should work to ensure that changes in health worker training and licensure aimed at promoting the medical tourism sector are also supportive of the health needs of the domestic population. Policy makers in both source and destination countries should be aware of the effects of medical tourism on health worker flows both into and out of medical tourism destinations and work to ensure that the potential harms of these worker flows to both groups are mitigated.
Emigration flows from North Africa to Europe.
Kassar, Hassène; Marzouk, Diaa; Anwar, Wagida A; Lakhoua, Chérifa; Hemminki, Kari; Khyatti, Meriem
2014-08-01
The region of North Africa (NA) represents a striking locality regarding migration with several migration patterns, namely emigration in the form of labour export to Europe and North America and, to a lesser extent, to the Arab Gulf area. The latter has increased enormously in the last decade because of the political instability in most of the NA countries. The aim of the present chapter was to explore the patterns of migration stocks and flows in NA countries, based on several websites, systematic review of journals, comparable data available by the United Nations and by the International Organization of Migration. The NA region has become an area of transit migration and labour migration. Emigrant flows from NA countries towards Europe and North America are increasing this decade more than towards the Arab Gulf countries after being replaced by Asian labour. The recent increase in the proportion of women among the migrant population is remarkable. Remittances sent by African migrants have become an important source of external finance for countries of origin. Transient and irregular migration to Egypt originates at the borders with Sudan, Palestine and Libya with destination to the Euro Mediterranean countries. In Tunisia and Morocco, irregular migrants originate from Sub-Saharan Africa to the northern borders. The NA countries serve as departure rather than destination countries, and migration flows to the Euro-Mediterranean countries through legal or illegal routes. © The Author 2014. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.
Snyder, Jeremy; Crooks, Valorie A.; Johnston, Rory; Adams, Krystyna; Whitmore, Rebecca
2015-01-01
Medical tourism is a practice where individuals cross international borders in order to access medical care. This practice can impact the global distribution of health workers by potentially reducing the emigration of health workers from destination countries for medical tourists and affecting the internal distribution of these workers. Little has been said, however, about the impacts of medical tourism on the immigration of health workers to medical tourism destinations. We discuss five patterns of medical tourism-driven health worker migration to medical tourism destinations: 1) long-term international migration; 2) long-term diasporic migration; 3) long-term migration and ‘black sheep’; 4) short-term migration via time share; and 5) short-term migration via patient-provider dyad. These patterns of health worker migration have repercussions for global justice that include potential negative impacts on the following: 1) health worker training; 2) health worker distributions; 3) local provision of care; and 4) local economies. In order to address these potential negative impacts, policy makers in destination countries should work to ensure that changes in health worker training and licensure aimed at promoting the medical tourism sector are also supportive of the health needs of the domestic population. Policy makers in both source and destination countries should be aware of the effects of medical tourism on health worker flows both into and out of medical tourism destinations and work to ensure that the potential harms of these worker flows to both groups are mitigated. PMID:25865122
Fu, Hongyun; VanLandingham, Mark J.
2012-01-01
Objective We distinguish between selection and true migration effects on weight and body fat for Vietnamese immigrants; and examine the role of acculturation on these outcomes. Methods Data (n=703) were collected among three population-based samples of working-age Vietnamese immigrants, repatriated emigrants and never-migrated Vietnamese nationals. This allows for a decomposition exercise to separate the effects of migration effects from selection effects on body mass index (BMI) and waist-hip ratio (WHR). Results Immigrants are more likely to be overweight and to have high WHR, relative to both never-leavers and returnees, a pattern reflecting the importance of migration over selection. Among immigrants, coming to the US at a younger age is associated with higher BMI and WHR levels. And longer length of residence in the US is related to higher BMI. While higher Vietnamese language proficiency is related to a lower BMI level, being bilingual (proficient in both English and Vietnamese) is associated with lower risks for being overweight. Conclusions The distinct pattern of results suggests that more problematic weight status and fat distribution among Vietnamese immigrants relative to Vietnamese nationals are not artifacts of the types of persons choosing to emigrate, but rather are due to acculturation to American diet and lifestyles. While efforts to promote and maintain traditional patterns of diet and lifestyle are likely to help Vietnamese and other immigrants avoid the perils of American patterns, facilitating a bi-cultural orientation is perhaps the most realistic approach for preserving protective features of the culture of origin with regard to body weight and fat distribution. PMID:22427069
Changes in bird-migration patterns associated with human-induced mortality.
Palacín, Carlos; Alonso, Juan C; Martín, Carlos A; Alonso, Javier A
2017-02-01
Many bird populations have recently changed their migratory behavior in response to alterations of the environment. We collected data over 16 years on male Great Bustards (Otis tarda), a species showing a partial migratory pattern (sedentary and migratory birds coexisting in the same breeding groups). We conducted population counts and radio tracked 180 individuals to examine differences in survival rates between migratory and sedentary individuals and evaluate possible effects of these differences on the migratory pattern of the population. Overall, 65% of individuals migrated and 35% did not. The average distance between breeding and postbreeding areas of migrant individuals was 89.9 km, and the longest average movement of sedentary males was 3.8 km. Breeding group and migration distance had no effect on survival. However, mortality of migrants was 2.4 to 3.5 times higher than mortality of sedentary birds. For marked males, collision with power lines was the main cause of death from unnatural causes (37.6% of all deaths), and migratory birds died in collisions with power lines more frequently than sedentary birds (21.3% vs 6.3%). The percentage of sedentary individuals increased from 17% in 1997 to 45% in 2012. These results were consistent with data collected from radio-tracked individuals: The proportion of migratory individuals decreased from 86% in 1997-1999 to 44% in 2006-2010. The observed decrease in the migratory tendency was not related to climatic changes (temperatures did not change over the study period) or improvements in habitat quality (dry cereal farmland area decreased in the main study area). Our findings suggest that human-induced mortality during migration may be an important factor shaping the migration patterns of species inhabiting humanized landscapes. © 2016 Society for Conservation Biology.
Tukur, Aminu; Sharp, Liz; Stern, Ben; Tizaoui, Chedly; Benkreira, Hadj
2012-04-01
While antimony has been reported to migrate from PET bottles into contents, reports on bottled water and soft drinks usage and PET bottle reuse patterns are currently unavailable in the literature. Bottle use conditions and patterns are important determinants of antimony migration. In this work a survey assessing the pattern of bottle use and reuse in Britain and Nigeria was undertaken. The survey findings influenced the design of laboratory experiments that assessed the migration of antimony from PET bottles into water and soft drinks. Typical storage durations for bottled contents between purchase and opening for use were 7 days or less. However storage of up to one year was reported. Bottle reuse was high and similar for the two countries with reuse durations being higher in Nigeria. The antimony concentration in 32 PET bottle materials from Britain and Nigeria were similar and ranged between 177 and 310 mg kg(-1). For 47 freshly purchased British bottled contents antimony concentration ranged between 0.03 and 6.61 μg L(-1) with only one sample exceeding the EU acceptable limit. Concentrations of Cd, Ge, Zn, Al, Be, Ti, Co and Pb were also measured. At realistic temperatures of 40 and 60 °C antimony concentration in deionised water in bottles remained below the EU acceptable limit even after 48 h exposure. The limit was exceeded for most exposures at 80 °C. Concentration of antimony in some bottled contents exceeded the EU limit after 11 months of storage at room temperature. Bottle aging and increase in bottle volume were associated with decreased migration of antimony from bottles.
Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior
NASA Astrophysics Data System (ADS)
Meco, Edi; Lampe, Kyle J.
2018-02-01
Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.
Animal Telemetry Network Data Assembly Center: Phase 1
2015-09-30
biologging techniques enables a new scientific capacity for studying of animal migrations in the marine environment. In the past two decades, rapid...information that is used to support the management of marine fisheries and endangered and protected species, to assess the potential effects of...sustainable ATN Data Assembly Center (or DAC) for data collected by the growing U.S. community of marine animal taggers or biologgers. The ATN is
Takata, Hiromi; Kominami, Tetsuya
2011-06-01
We have found a novel embryonic cell population in the keyhole sand dollar Astriclypeus manni, which we refer to as lucent fluorescent cells (LFCs). Live LFCs are transparent, but emit autofluorescence after formaldehyde fixation. LFCs become noticeable in the vegetal plate of early gastrulae immediately after the appearance of pigment cells. As development progresses, LFCs increase in number and migrate from the vegetal plate toward the animal pole in a manner similar to pigment cells. Notably, LFCs also migrate into the oral ectoderm, while pigment cells do not. In addition, we determined that there were nearly 300 LFCs per embryo, which greatly exceeds the number of pigment cells. Treatment with the Notch signaling inhibitor N-[(3,5-Difluorophenyl)acetyl]-l-alanyl-2-phenyl]glycine-1,1-dimethylethyl ester (DAPT) resulted in a marked decrease in pigment cell number, but only a modest decrease in LFCs. In DAPT-treated embryos, LFCs had a distribution pattern similar to pigment cells and were excluded from the oral ectoderm. Unlike other sea urchins, Nodal signaling was not involved in the specification of pigment cells and LFCs in these embryos. Pulse treatment and measurement of cell diameters revealed that LFCs underwent 13-15 cycles of cell division and were specified during the 11th cleavage, one cell cycle later than observed for pigment cells. At the pluteus stage, a cluster of LFCs was observed in the animal plate in addition to two rows of LFCs running along the ciliary band. In addition, dozens of LFCs aligned at the uppermost level of the stomodaeum. Therefore, though the two cell populations share some features, LFCs are considerably different from pigment cells. © 2011 The Authors. Development, Growth & Differentiation © 2011 Japanese Society of Developmental Biologists.
Tempo-spatial analysis of Fennoscandian intraplate seismicity
NASA Astrophysics Data System (ADS)
Roberts, Roland; Lund, Björn
2017-04-01
Coupled spatial-temporal patterns of the occurrence of earthquakes in Fennoscandia are analysed using non-parametric methods. The occurrence of larger events is unambiguously and very strongly temporally clustered, with major implications for the assessment of seismic hazard in areas such as Fennoscandia. In addition, there is a clear pattern of geographical migration of activity. Data from the Swedish National Seismic Network and a collated international catalogue are analysed. Results show consistent patterns on different spatial and temporal scales. We are currently investigating these patterns in order to assess the statistical significance of the tempo-spatial patterns, and to what extent these may be consistent with stress transfer mechanism such as coulomb stress and pore fluid migration. Indications are that some further mechanism is necessary in order to explain the data, perhaps related to post-glacial uplift, which is up to 1cm/year.
Russian, Soviet, and post-Soviet scientific migration: history and patterns
NASA Astrophysics Data System (ADS)
Kojevnikov, Alexei
2011-03-01
Immigrant scientists from other European countries (predominantly German) were crucial in establishing the tradition of modern science in the Russian Empire of the 18th and 19th centuries. Since the 1860s, however, outgoing waves of scientific migration started originating in Russia, bringing important innovations to international science. The scale and patterns of migration varied greatly with the turbulent time. The talk will describe several landmark stages of the proceess and their cultural consequences: from opening higher education possibilities for women during the late 19th century, to post-1917 academic refugees and Soviet defectors, to the 1960s brain drain provoked by the launch of Sputnik, and to what can be called the first truly global scientific diaspora of Russophone scientists after 1990.
Patsialou, Antonia; Bravo-Cordero, Jose Javier; Wang, Yarong; Entenberg, David; Liu, Huiping; Clarke, Michael; Condeelis, John S.
2014-01-01
Metastasis is the main cause of death in breast cancer patients. Cell migration is an essential component of almost every step of the metastatic cascade, especially the early step of invasion inside the primary tumor. In this report, we have used intravital multiphoton microscopy to visualize the different migration patterns of human breast tumor cells in live primary tumors. We used xenograft tumors of MDA-MB-231 cells as well as a low passage xenograft tumor from orthotopically injected patient-derived breast tumor cells. Direct visualization of human tumor cells in vivo shows two patterns of high-speed migration inside primary tumors: a. single cells and b. multicellular streams (i.e., cells following each other in a single file but without cohesive cell junctions). Critically, we found that only streaming and not random migration of single cells was significantly correlated with proximity to vessels, with intravasation and with numbers of elevated circulating tumor cells in the bloodstream. Finally, although the two human tumors were derived from diverse genetic backgrounds, we found that their migratory tumor cells exhibited coordinated gene expression changes that led to the same end-phenotype of enhanced migration involving activating actin polymerization and myosin contraction. Our data are the first direct visualization and assessment of in vivo migration within a live patient-derived breast xenograft tumor. PMID:25013744
Bodkin, James L.; Jameson, Ronald J.
1991-01-01
At monthly intervals from February 1980 through December 1986, a 14.5-km section of central California coastline was systematically surveyed for beach-cast carcasses of marine birds and mammals. Five hundred and fifty-four bird carcasses and 194 marine mammal carcasses were found. Common murres, western grebes, and Brandt's cormorants composed 45% of the bird total. California sea lions, sea otters, and harbor seals composed 90% of the mammal total. Several factors appeared to affect patterns of carcass deposition. The El Niño – Southern Oscillation (ENSO) of 1982–1983 was the dominant influence in terms of interannual variation in carcass deposition. During this ENSO, 56% of the seabirds and 48% of the marine mammals washed ashore. Patterns of intra-annual variation were species specific and were related to animal migration patterns, reproduction, and seasonal changes in weather. Nearshore currents and winds influenced the general area of carcass deposition, while beach substrate type and local patterns of sand deposition influenced the location of carcass deposition on a smaller spatial scale. Weekly surveys along a 1.1-km section of coastline indicated that 62% of bird carcasses and 41% of mammal carcasses remained on the beach less than 9 days. Cause of death was determined for only 8% of the carcasses. Oiling was the most common indication of cause of death in birds (6%). Neonates composed 8% of all mammal carcasses.
Duverger, Olivier; Morasso, Maria I
2018-12-01
DLX3 is essential for tooth enamel development and is so far the only transcription factor known to be mutated in a syndromic form of amelogenesis imperfecta. Through conditional deletion of Dlx3 in the dental epithelium in mouse, we have previously established the involvement of DLX3 in enamel pH regulation, as well as in controlling the expression of sets of keratins that contribute to enamel rod sheath formation. Here, we show that the decussation pattern of enamel rods was lost in conditional knockout animals, suggesting that DLX3 controls the coordinated migration of ameloblasts during enamel secretion. We further demonstrate that DLX3 regulates the expression of some components of myosin II complexes potentially involved in driving the movement of ameloblasts that leads to enamel rod decussation.
Diversity in TAF proteomics: consequences for cellular differentiation and migration.
Kazantseva, Jekaterina; Palm, Kaia
2014-09-19
Development is a highly controlled process of cell proliferation and differentiation driven by mechanisms of dynamic gene regulation. Specific DNA binding factors for establishing cell- and tissue-specific transcriptional programs have been characterised in different cell and animal models. However, much less is known about the role of "core transcription machinery" during cell differentiation, given that general transcription factors and their spatiotemporally patterned activity govern different aspects of cell function. In this review, we focus on the role of TATA-box associated factor 4 (TAF4) and its functional isoforms generated by alternative splicing in controlling lineage-specific differentiation of normal mesenchymal stem cells and cancer stem cells. In the light of our recent findings, induction, control and maintenance of cell differentiation status implies diversification of the transcription initiation apparatus orchestrated by alternative splicing.
Srivastava, Rohit K; Bulte, Jeff W M; Walczak, Piotr; Janowski, Miroslaw
2018-05-01
Neurological disorders are a major threat to public health. Stem cell-based regenerative medicine is now a promising experimental paradigm for its treatment, as shown in pre-clinical animal studies. Initial attempts have been on the replacement of neuronal cells only, but glial progenitors (GPs) are now becoming strong alternative cellular therapeutic candidates to replace oligodendrocytes and astrocytes as knowledge accumulates about their important emerging role in various disease processes. There are many examples of successful therapeutic outcomes for transplanted GPs in small animal models, but clinical translation has proved to be challenging due to the 1,000-fold larger volume of the human brain compared to mice. Human GPs transplanted into the mouse brain migrate extensively and can induce global cell replacement, but a similar extent of migration in the human brain would only allow for local rather than global cell replacement. We review here the mechanisms that govern cell migration, which could potentially be exploited to enhance the migratory properties of GPs through cell engineering pre-transplantation. We furthermore discuss the (dis)advantages of the various cell delivery routes that are available, with particular emphasis on intra-arterial injection as the most suitable route for achieving global cell distribution in the larger brain. Now that therapeutic success has proven to be feasible in small animal models, future efforts will need to be directed to enhance global cell delivery and migration to make bench-to-bedside translation a reality. © 2017 Wiley Periodicals, Inc.
Outmigration patterns in development transition of rural areas.
Kaistha, K C
1987-01-01
Using a broadened concept of migration, which includes circulatory migration and commuting, this paper maintains that the patterns of outmigration vary a great deal when the level of development of a rural area is treated as an independent variable. This study uses a stratified conditional sample of 192 households selected from 3 areas: 53 households from a low developed (LDL) area, 56 from a medium (MDL), and 83 from a high (HDL). Data were collected by personal observation, interview, and genealogical methods at both the household and individual level. The households are divided into 3 main categories: 1) non-migrating, 2) commuting only, and 3) migrating (which is further divided into migrating within and migrating outside the boundaries of the district). Results show that 1) 37.51% of household members neither commute nor have migrated outside the village; 2) using the narrow definition of migration, only 10% of males over age 15 migrate, while including commuting in the definition increases the percentage to 40; 3) proportions of non-migrating households decrease from 58.4% for the LDL, to 35.7% for the MDL, to 25.3% for the HDL area; 4) the proportion of commuting only households increases from 26.4% for the LDL, to 35.7% to the MDL, and 55.4% for the HDL area; 5) 15.2% of households in the LDL, 28.6% in the MDL, and 19.3% in the HDL area experience a permanent change in residence; 6) as development accelerates, the overall volume of outmigration increases; 7) the flow of migration from rural to rural areas is mostly limited to the MDL area, while cityward migration increasingly occurs on both LDL and HDL areas; 8) the median age of commuters increases with rising levels of development; and 9) almost all migrants from the LDL area are employed in low prestige occupations, most from the HDL area have higher prestige jobs, and those from the MDL area have both high and low prestige jobs.
Epitaxially grown collagen fibrils reveal diversity in contact guidance behavior among cancer cells.
Wang, Juan; Petefish, Joseph W; Hillier, Andrew C; Schneider, Ian C
2015-01-01
Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology and contact guidance behavior of two invasive breast cancer cell lines (MDA-MB-231 and MTLn3 cells). Others have shown that these cells randomly migrate in qualitatively different ways. MDA-MB-231 cells exert large traction forces, tightly adhere to the ECM, and migrate with spindle-shaped morphology and thus adopt a mesenchymal mode of migration. MTLn3 cells exert small traction forces, loosely adhere to the ECM, and migrate with a more rounded morphology and thus adopt an amoeboid mode of migration. As the degree of alignment of type I collagen fibrils increases, cells become more elongated and engage in more directed contact guidance. MDA-MB-231 cells perceive the directional signal of highly aligned type I collagen fibrils with high fidelity, elongating to large extents and migrating directionally. Interestingly, behavior in MTLn3 cells differs. While highly aligned type I collagen fibril patterns facilitate spreading and random migration of MTLn3 cells, they do not support elongation or directed migration. Thus, different contact guidance cues bias cell migration differently and the fidelity of contact guidance is cell type dependent, suggesting that ECM alignment is a permissive cue for contact guidance, but requires a cell to have certain properties to interpret that cue.
Migration patterns and movements of sandhill cranes wintering in central and southwestern Louisiana
King, Sammy L.; Pierce, Aaron R.; Hersey, Kent R.; Winstead, Nicholas; Hartup, Barry K.
2010-01-01
In this study we trapped wintering sandhill cranes (Grus canadensis) in Louisiana and fitted them with satellite transmitters to determine their migration routes. Four of the 6 sandhill cranes with validated locations and a terminus point used the Central Flyway for spring migration; 2 of these 4 (the only 2 for which we have data) also used the Central Flyway for fall migration. Two of the 6 birds used the Mississippi Flyway for spring migration. The results of this study suggest that reintroduced whooping cranes (G. americana) that intermix and migrate with sandhill cranes that winter in Louisiana may enter the Central Flyway. In addition, the Mississippi Flyway is a viable option to use as a migration route for whooping cranes if they are reintroduced in Louisiana.
Lyczek, Agatha; Arnold, Antje; Zhang, Jiangyang; Campanelli, James T; Janowski, Miroslaw; Bulte, Jeff W M; Walczak, Piotr
2017-05-01
The therapeutic effect of glial progenitor transplantation in diseases of dysmyelination is currently attributed to the formation of new myelin. Using magnetic resonance imaging (MRI), we show that the therapeutic outcome in dysmyelinated shiverer mice is dependent on the extent of cell migration but not the presence of mature and compact myelin. Human or mouse glial restricted progenitors (GRPs) were transplanted into rag2 -/ - shiverer mouse neonates and followed for over one year. Mouse GRPs produced mature myelin as detected with multi-parametric MRI, but showed limited migration without extended animal lifespan. In sharp contrast, human GRPs migrated extensively and significantly increased animal survival, but production of mature myelin did not occur until 46weeks post-grafting. We conclude that human GRPs can extend the survival of transplanted shiverer mice prior to production of mature myelin, while mouse GRPs fail to extend animal survival despite the early presence of mature myelin. This paradox suggests that transplanted GRPs provide therapeutic benefits through biological processes other than the formation of mature myelin capable to foster rapid nerve conduction, challenging the current dogma of the primary role of myelination in regaining function of the central nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimal migration energetics of humpback whales and the implications of disturbance.
Braithwaite, Janelle E; Meeuwig, Jessica J; Hipsey, Matthew R
2015-01-01
Whales migrate long distances and reproduce on a finite store of energy. Budgeting the use of this limited energy reserve is an important factor to ensure survival over the period of migration and to maximize reproductive investment. For some whales, migration routes are closely associated with coastal areas, exposing animals to high levels of human activity. It is currently unclear how various forms of human activity may disturb whales during migration, how this might impact their energy balance and how this could translate into long-term demographic changes. Here, we develop a theoretical bioenergetic model for migrating humpback whales to investigate the optimal migration strategy that minimizes energy use. The average migration velocity was an important driver of the total energy used by a whale, and an optimal velocity of 1.1 m s(-1) was determined. This optimal velocity is comparable to documented observed migration speeds, suggesting that whales migrate at a speed that conserves energy. Furthermore, the amount of resting time during migration was influenced by both transport costs and feeding rates. We simulated hypothetical disturbances to the optimal migration strategy in two ways, by altering average velocity to represent changes in behavioural activity and by increasing total travelled distance to represent displacement along the migration route. In both cases, disturbance increased overall energy use, with implications for the growth potential of calves.
Optimal migration energetics of humpback whales and the implications of disturbance
Braithwaite, Janelle E.; Meeuwig, Jessica J.; Hipsey, Matthew R.
2015-01-01
Whales migrate long distances and reproduce on a finite store of energy. Budgeting the use of this limited energy reserve is an important factor to ensure survival over the period of migration and to maximize reproductive investment. For some whales, migration routes are closely associated with coastal areas, exposing animals to high levels of human activity. It is currently unclear how various forms of human activity may disturb whales during migration, how this might impact their energy balance and how this could translate into long-term demographic changes. Here, we develop a theoretical bioenergetic model for migrating humpback whales to investigate the optimal migration strategy that minimizes energy use. The average migration velocity was an important driver of the total energy used by a whale, and an optimal velocity of 1.1 m s−1 was determined. This optimal velocity is comparable to documented observed migration speeds, suggesting that whales migrate at a speed that conserves energy. Furthermore, the amount of resting time during migration was influenced by both transport costs and feeding rates. We simulated hypothetical disturbances to the optimal migration strategy in two ways, by altering average velocity to represent changes in behavioural activity and by increasing total travelled distance to represent displacement along the migration route. In both cases, disturbance increased overall energy use, with implications for the growth potential of calves. PMID:27293686
Measuring Polycentricity of Mega-City Regions in China Based on the Intercity Migration Flows
NASA Astrophysics Data System (ADS)
Mu, Xiaoyan; Yeh, Anthony G. O.
2016-06-01
This paper uses the intercity migration flows to examine relations between Chinese cities, identify the important mega-city regions and measure each region's polycentricity from an interaction perspective. Data set contains the long-term residential migration trajectories of three million Sina weibo users across 345 cities. Cities with close connectivity deployed around one or several mega cities are identified as mega-city regions. Features of the mega-city regions are characterized by the strength of migration flows, density of connections, and regional migration patterns. The results show that the disparities exist in different mega-city regions; most mega-city regions are lack of polycentricity.
Spatial pattern analysis of nuclear migration in remodelled muscles during Drosophila metamorphosis.
Kuleesha; Feng, Lin; Wasser, Martin
2017-07-10
Many human muscle wasting diseases are associated with abnormal nuclear localization. During metamorphosis in Drosophila melanogaster, multi-nucleated larval dorsal abdominal muscles either undergo cell death or are remodeled to temporary adult muscles. Muscle remodeling is associated with anti-polar nuclear migration and atrophy during early pupation followed by polar migration and muscle growth during late pupation. Muscle remodeling is a useful model to study genes involved in myonuclear migration. Previously, we showed that loss of Cathepsin-L inhibited anti-polar movements, while knockdown of autophagy-related genes affected nuclear positioning along the medial axis in late metamorphosis. To compare the phenotypic effects of gene perturbations on nuclear migration more objectively, we developed new descriptors of myonuclear distribution. To obtain nuclear pattern features, we designed an algorithm to detect and track nuclear regions inside live muscles. Nuclear tracks were used to distinguish between fast moving nuclei associated with fragments of dead muscles (sarcolytes) and slow-moving nuclei inside remodelled muscles. Nuclear spatial pattern features, such as longitudinal (lonNS) and lateral nuclear spread (latNS), allowed us to compare nuclear migration during muscle remodelling in different genetic backgrounds. Anti-polar migration leads to a lonNS decrease. As expected, lack of myonuclear migration caused by the loss of Cp1 was correlated with a significantly lower lonNS decrease. Unexpectedly, the decrease in lonNS was significantly enhanced by Atg9, Atg5 and Atg18 silencing, indicating that the loss of autophagy promotes the migration and clustering of nuclei. Loss of autophagy also caused a scattering of nuclei along the lateral axis, leading to a two-row as opposed to single row distribution in control muscles. Increased latNS resulting from knockdown of Atg9 and Atg18 was correlated with increased muscle diameter, suggesting that the wider muscle fibre promotes lateral displacement of nuclei from the medial axis during polar migration. We developed new nuclear features to characterize the dynamics of nuclear distribution in time-lapse images of Drosophila metamorphosis. Image quantification improved our understanding of phenotypic abnormalities in nuclear distribution resulting from gene perturbations. Therefore, in vivo imaging and quantitative image analysis of Drosophila metamorphosis promise to provide novel insights into the relationship between muscle wasting and myonuclear positioning.
Animals in Winter. Young Discovery Library Series.
ERIC Educational Resources Information Center
de Sairigne, Catherine
This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume introduces the habits of a variety of animals during the winter. Topics include: (1) surviving during winter, including concepts such as migration, hibernation, and skin color change; (2) changing…
Migration of female construction labourers to Dhaka City, Bangladesh.
Ahsan, R M
1997-03-01
The author analyzes migration patterns and processes of female construction workers in Dhaka City, Bangladesh, and considers the impact of this migration. "Interviews...reveal that the major goal of these female migrants, whose mobility and employment have traditionally been restricted, is to take responsibility in the struggle for livelihood.... Success of many migrations is linked with participation in construction work in the city. Employment in such activities is largely by women from male-headed households, indicating male support in the work, followed by females heading their own households." excerpt
The C-X-C signalling system in the rodent vs primate testis: impact on germ cell niche interaction.
Heckmann, Laura; Pock, Tim; Tröndle, Ina; Neuhaus, Nina
2018-05-01
In zebrafish, action of the chemokine Cxcl12 is mediated through its G-protein-coupled seven-transmembrane domain receptor Cxcr4 and the atypical receptor Cxcr7. Employing this animal model, it was revealed that this Cxcl12 signalling system plays a crucial role for directed migration of primordial germ cells (PGC) during early testicular development. Importantly, subsequent studies indicated that this regulatory mechanism is evolutionarily conserved also in mice. What is more, the functional role of the CXCL12 system does not seem to be limited to early phases of testicular development. Data from mouse studies rather demonstrate that CXCL12 and its receptors are also involved in the homing process of gonocytes into their niches at the basal membrane of the seminiferous tubules. Intriguingly, even the spermatogonial stem cells (SSCs) present in the adult mouse testis appear to maintain the ability to migrate towards a CXCL12 gradient as demonstrated by functional in vitro migration assays and in vivo germ cell transplantation assays. These findings not only indicate a role of the CXCL12 system throughout male germ cell development in mice but also suggest that this system may be evolutionarily conserved. In this review, we take into account the available literature focusing on the localization patterns of the CXCL12 system not only in rodents but also in primates, including the human. Based on these data, we discuss whether the CXCL12 system is also conserved between rodents and primates and discuss the known and potential functional consequences. © 2018 Society for Reproduction and Fertility.
Direct observation of localized radial oxygen migration in functioning tantalum oxide memristors
Kumar, Suhas; Graves, Catherine E.; Strachan, John Paul; ...
2016-02-02
Oxygen migration in tantalum oxide, a promising next-generation storage material, is studied using in operando x-ray absorption spectromicroscopy and is used to microphysically describe accelerated evolution of conduction channel and device failure. Furthermore, the resulting ring-like patterns of oxygen concentration are modeled using thermophoretic forces and Fick diffusion, establishing the critical role of temperature-activated oxygen migration that has been under question lately.
Influence of landscape characteristics on migration strategies of white-tailed deer
Grovenburg, T.W.; Jacques, C.N.; Klaver, R.W.; Deperno, C.S.; Brinkman, T.J.; Swanson, C.C.; Jenks, J.A.
2011-01-01
A trade-off exists for migrating animals as to whether to migrate or remain residents. Few studies have documented relationships between landscape variables and deer migration strategies. From 2000 to 2007 we captured 267 adult female white-tailed deer (Odocoileus virginianus) at 7 study sites in Minnesota and South Dakota and monitored 149 individuals through ≥3 seasonal migration periods (585 deer-migration seasons). All deer classified as obligate migrators with ≥3 migrations (range 3–9 migration seasons) maintained their obligate status for the duration of the study. Multinomial logistic odds ratios from generalized estimating equations indicated that the odds of being a resident increased by 1.4 and 1.3 per 1-unit increase in forest patch density and mean area, respectively, compared to migrating deer. Odds of being an obligate migrator increased by 0.7 and 0.8 per 1-unit decrease in forest patch density and mean area, respectively, compared to resident or conditional migrating deer. Areas inhabited by resident deer were characterized by greater number of forest patches per 100 ha and larger mean forest patch area than conditional and obligate migrant areas. Odds of migrating increased by 1.1 per 1-unit increase in deer winter severity index. Migration behavior of white-tailed deer varied among regions, and land-cover and landscape characteristics provided predictive indicators of migration strategies for deer that could have important implications for conservation, metapopulation dynamics, and species management.
Levison, S W; Chuang, C; Abramson, B J; Goldman, J E
1993-11-01
Postnatal gliogenesis in the rodent forebrain was studied by infecting subventricular zone cells of either neonates or juvenile rats with replication-deficient retroviruses that encode reporter enzymes, enabling the migration and fate of these germinal zone cells to be traced over the ensuing several weeks. Neither neonatal nor juvenile subventricular zone cells migrated substantially along the rostral-caudal axis. Neonatal subventricular zone cells migrated dorsally and laterally into hemispheric gray and white matter and became both astrocytes and oligodendrocytes. Juvenile subventricular zone cells migrated into more medial areas of the subcortical white matter and on occasion appeared in the white matter of the contralateral hemisphere, but rarely migrated into the neocortex. Juvenile subventricular zone cells almost exclusively differentiated into oligodendrocytes. Thus, the migratory patterns and the developmental fates of subventricular zone cells change during the first 2 weeks of life. When either neonatal or juvenile subventricular zone cells were labeled in vivo and then removed and cultured, some generated homogeneous clones that contained either astrocytes with a 'type 1' phenotype or oligodendrocytes, but some generated heterogeneous clones that contained both glial types. These results provide additional evidence for a common progenitor for astrocytes and oligodendrocytes and strongly suggest that temporally and spatially regulated environmental signals control the destiny of glial progenitors during postnatal development.
Appraisal of rural-urban migration determinants: a case study of Constantine, Algeria.
Boukhemis, K; Zeghiche, A
1988-02-01
Despite some impressive achievements, Algerian planning strategy has neglected the spatial aspect of development, which has accelerated interregional migration and consequently has reinforced existing urban problems: 1) overcrowding, 2) the housing crisis, 3) unemployment, and 4) inadequate infrastructure services. It has become obvious that policy makers must take into account the major role of migration in balanced economic growth, and yet knowledge of migration patterns and processes is very limited in Algeria. Constantine's geographic location and role as a regional metropolis played an essential part in shaping migration flows. Up to 1966, Constantine's disproportionate growth was largely the result of massive migration. Since then, there has been a noticeable slowdown in migration, and natural increase has become the largest component of urban growth. This change reflects the government's development policies. Migration flows to Constantine have been deflected to the new industrial poles, which offer greater employment opportunities. More knowledge of migration is essential for an understanding of the factors that determine the rate and direction of migration flows.
Neuronal cell migration in C. elegans: regulation of Hox gene expression and cell position.
Harris, J; Honigberg, L; Robinson, N; Kenyon, C
1996-10-01
In C. elegans, the Hox gene mab-5, which specifies the fates of cells in the posterior body region, has been shown to direct the migrations of certain cells within its domain of function. mab-5 expression switches on in the neuroblast QL as it migrates into the posterior body region. mab-5 activity is then required for the descendants of QL to migrate to posterior rather than anterior positions. What information activates Hox gene expression during this cell migration? How are these cells subsequently guided to their final positions? We address these questions by describing four genes, egl-20, mig-14, mig-1 and lin-17, that are required to activate expression of mab-5 during migration of the QL neuroblast. We find that two of these genes, egl-20 and mig-14, also act in a mab-5-independent way to determine the final stopping points of the migrating Q descendants. The Q descendants do not migrate toward any obvious physical targets in wild-type or mutant animals. Therefore, these genes appear to be part of a system that positions the migrating Q descendants along the anteroposterior axis.
Differences in contraceptive use across generations of migration among women of Mexican origin.
Wilson, Ellen K
2009-09-01
To explore differences in contraceptive use among women of Mexican origin across generations of migration. Logit models were used to assess contraceptive use among 1,830 women of Mexican origin in Cycles 5 (1995) and 6 (2002) of the National Survey of Family Growth (NSFG). Analyses were stratified by age. Initial models controlled for survey year and underlying differences across generations of migration in age and parity; subsequent models added a range of potential mediating variables. Models account for significant interactions between generation of migration and parity. Among women under age 30 who have not yet had any children, women in their twenties with parity 3 or more, and women 30 or older with parity 1 or 2, those born in the US are much more likely to use contraception than immigrant women. For other levels of parity, there are no significant differences in contraceptive use across generations of migration. Generational differences in marital status, socio-economic status, health insurance coverage, and catholic religiosity did little to mediate the association between generation of migration and contraceptive use. Among women of Mexican origin, patterns of contraceptive use among first-generation immigrants and women of generation 1.5 are similar to those of women in Mexico, with very low rates of contraceptive use among young women who have not yet had a child. Further research is needed to investigate the extent to which this pattern is due to fertility preferences, contraceptive access, or concerns about side effects and infertility. Patterns of contraceptive use appear to change more slowly with acculturation than many other factors, such as education, income, and work force participation.
Dual impacts of climate change: forest migration and turnover through life history.
Zhu, Kai; Woodall, Christopher W; Ghosh, Souparno; Gelfand, Alan E; Clark, James S
2014-01-01
Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics accelerate with longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales.
Farnsworth, Andrew; Van DOREN, Benjamin M; Hochachka, Wesley M; Sheldon, Daniel; Winner, Kevin; Irvine, Jed; Geevarghese, Jeffrey; Kelling, Steve
2016-04-01
Billions of birds migrate at night over North America each year. However, few studies have described the phenology of these movements, such as magnitudes, directions, and speeds, for more than one migration season and at regional scales. In this study, we characterize density, direction, and speed of nocturnally migrating birds using data from 13 weather surveillance radars in the autumns of 2010 and 2011 in the northeastern USA. After screening radar data to remove precipitation, we applied a recently developed algorithm for characterizing velocity profiles with previously developed methods to document bird migration. Many hourly radar scans contained windborne "contamination," and these scans also exhibited generally low overall reflectivities. Hourly scans dominated by birds showed nightly and seasonal patterns that differed markedly from those of low reflectivity scans. Bird migration occurred during many nights, but a smaller number of nights with large movements of birds defined regional nocturnal migration. Densities varied by date, time, and location but peaked in the second and third deciles of night during the autumn period when the most birds were migrating. Migration track (the direction to which birds moved) shifted within nights from south-southwesterly to southwesterly during the seasonal migration peaks; this shift was not consistent with a similar shift in wind direction. Migration speeds varied within nights, although not closely with wind speed. Airspeeds increased during the night; groundspeeds were highest between the second and third deciles of night, when the greatest density of birds was migrating. Airspeeds and groundspeeds increased during the fall season, although groundspeeds fluctuated considerably with prevailing winds. Significant positive correlations characterized relationships among bird densities at southern coastal radar stations and northern inland radar stations. The quantitative descriptions of broadscale nocturnal migration patterns presented here will be essential for biological and conservation applications. These descriptions help to define migration phenology in time and space, fill knowledge gaps in avian annual cycles, and are useful for monitoring long-term population trends of migrants. Furthermore, these descriptions will aid in assessing potential risks to migrants, particularly from structures with which birds collide and artificial lighting that disorients migrants.
Envisioning migration: Mathematics in both experimental analysis and modeling of cell behavior
Zhang, Elizabeth R.; Wu, Lani F.; Altschuler, Steven J.
2013-01-01
The complex nature of cell migration highlights the power and challenges of applying mathematics to biological studies. Mathematics may be used to create model equations that recapitulate migration, which can predict phenomena not easily uncovered by experiments or intuition alone. Alternatively, mathematics may be applied to interpreting complex data sets with better resolution—potentially empowering scientists to discern subtle patterns amid the noise and heterogeneity typical of migrating cells. Iteration between these two methods is necessary in order to reveal connections within the cell migration signaling network, as well as to understand the behavior that arises from those connections. Here, we review recent quantitative analysis and mathematical modeling approaches to the cell migration problem. PMID:23660413
Envisioning migration: mathematics in both experimental analysis and modeling of cell behavior.
Zhang, Elizabeth R; Wu, Lani F; Altschuler, Steven J
2013-10-01
The complex nature of cell migration highlights the power and challenges of applying mathematics to biological studies. Mathematics may be used to create model equations that recapitulate migration, which can predict phenomena not easily uncovered by experiments or intuition alone. Alternatively, mathematics may be applied to interpreting complex data sets with better resolution--potentially empowering scientists to discern subtle patterns amid the noise and heterogeneity typical of migrating cells. Iteration between these two methods is necessary in order to reveal connections within the cell migration signaling network, as well as to understand the behavior that arises from those connections. Here, we review recent quantitative analysis and mathematical modeling approaches to the cell migration problem. Copyright © 2013 Elsevier Ltd. All rights reserved.
Fock, R.A.; Vinolo, M.A.R.; Blatt, S.L.; Borelli, P.
2012-01-01
The objectives of this study were to determine if protein-energy malnutrition (PEM) could affect the hematologic response to lipopolysaccharide (LPS), the interleukin-1β (IL-1β) production, leukocyte migration, and blood leukocyte expression of CD11a/CD18. Two-month-old male Swiss mice were submitted to PEM (N = 30) with a low-protein diet (14 days) containing 4% protein, compared to 20% protein in the control group (N = 30). The total cellularity of blood, bone marrow, spleen, and bronchoalveolar lavage evaluated after the LPS stimulus indicated reduced number of total cells in all compartments studied and different kinetics of migration in malnourished animals. The in vitro migration assay showed reduced capacity of migration after the LPS stimulus in malnourished animals (45.7 ± 17.2 × 104 cells/mL) compared to control (69.6 ± 7.1 × 104 cells/mL, P ≤ 0.05), but there was no difference in CD11a/CD18 expression on the surface of blood leukocytes. In addition, the production of IL-1β in vivo after the LPS stimulus (180.7 pg·h−1·mL−1), and in vitro by bone marrow and spleen cells (41.6 ± 15.0 and 8.3 ± 4.0 pg/mL) was significantly lower in malnourished animals compared to control (591.1 pg·h−1·mL−1, 67.0 ± 23.0 and 17.5 ± 8.0 pg/mL, respectively, P ≤ 0.05). The reduced expression of IL-1β, together with the lower number of leukocytes in the central and peripheral compartments, different leukocyte kinetics, and reduced leukocyte migration capacity are factors that interfere with the capacity to mount an adequate immune response, being partly responsible for the immunodeficiency observed in PEM. PMID:22983177
EBF factors drive expression of multiple classes of target genes governing neuronal development.
Green, Yangsook S; Vetter, Monica L
2011-04-30
Early B cell factor (EBF) family members are transcription factors known to have important roles in several aspects of vertebrate neurogenesis, including commitment, migration and differentiation. Knowledge of how EBF family members contribute to neurogenesis is limited by a lack of detailed understanding of genes that are transcriptionally regulated by these factors. We performed a microarray screen in Xenopus animal caps to search for targets of EBF transcriptional activity, and identified candidate targets with multiple roles, including transcription factors of several classes. We determined that, among the most upregulated candidate genes with expected neuronal functions, most require EBF activity for some or all of their expression, and most have overlapping expression with ebf genes. We also found that the candidate target genes that had the most strongly overlapping expression patterns with ebf genes were predicted to be direct transcriptional targets of EBF transcriptional activity. The identification of candidate targets that are transcription factor genes, including nscl-1, emx1 and aml1, improves our understanding of how EBF proteins participate in the hierarchy of transcription control during neuronal development, and suggests novel mechanisms by which EBF activity promotes migration and differentiation. Other candidate targets, including pcdh8 and kcnk5, expand our knowledge of the types of terminal differentiated neuronal functions that EBF proteins regulate.
Levels and patterns of internal migration in Europe: A cohort perspective.
Bernard, Aude
2017-11-01
Europe displays important variations in the level of internal migration, with a clear spatial gradient of high mobility in northern and western Europe but lower mobility in the south and east. However, cross-national variation in levels of internal migration remains poorly understood, because it is analysed almost exclusively using cross-sectional data and period measures. This paper seeks to advance understanding of cross-national variation in migration levels in 14 European countries by drawing on a recently proposed suite of migration cohort measures, coupled with internationally comparable retrospective residential histories. It shows that differences in migration levels are mainly attributable to variation in the extent of repeat movement, which is underpinned by the differences in mean ages at first and last move that together delineate the average length of migration careers. Cohort analysis provides a robust foundation for exploring the demographic mechanisms underpinning variation in migration levels across countries and over time.
Migration of cemented femoral components after THR. Roentgen stereophotogrammetric analysis.
Kiss, J; Murray, D W; Turner-Smith, A R; Bithell, J; Bulstrode, C J
1996-09-01
We studied the migration of 58 cemented Hinek femoral components for total hip replacement, using roentgen stereophotogrammetric analysis over four years. The implants migrated faster during the first year than subsequently, and the pattern of migration in the second period was very different. During the first year they subsided, tilted into varus and internally rotated. After this there was slow distal migration with no change in orientation. None of the prostheses has yet failed. The early migration is probably caused by resorption of bone damaged by surgical trauma or the heat generated by the polymerisation of bone cement. Later migration may be due to creep in the bone cement or the surrounding fibrous membrane. The prosthesis which we studied allows the preservation of some of the femoral neck, and comparison with published migration studies of the Charnley stem suggests that this decreases rotation and may help to prevent loosening.
Transnational nurse migration: future directions for medical anthropological research.
Prescott, Megan; Nichter, Mark
2014-04-01
Transnational nurse migration is a serious global health issue in which inequitably distributed shortages hinder health and development goals. This article selectively reviews the literature on nurse migration that has emerged from nursing, health planning, and the social sciences and offers productive directions for future anthropological research. The literature on global nurse migration has largely focused on push/pull economic logic and the concept of brain drain to understand the causes and effects of nurse migration. These concepts obscure political-economic, historical, and cultural factors that pattern nurse migration and influence the complex effects of nurse migration. Global nurse care chain analysis helps illuminate the numerous nodes in the production and migration of nurses, and management of this transnational process. Examples are provided from the Philippines and India to illustrate ways in which this analysis may be deepened, refined and rendered more critical by anthropological research. Copyright © 2014 Elsevier Ltd. All rights reserved.
Digital Plasmonic Patterning for Localized Tuning of Hydrogel Stiffness
Hribar, Kolin C.; Choi, Yu Suk; Ondeck, Matthew; Engler, Adam J.
2015-01-01
The mechanical properties of the extracellular matrix (ECM) can dictate cell fate in biological systems. In tissue engineering, varying the stiffness of hydrogels—water-swollen polymeric networks that act as ECM substrates—has previously been demonstrated to control cell migration, proliferation, and differentiation. Here, “digital plasmonic patterning” (DPP) is developed to mechanically alter a hydrogel encapsulated with gold nanorods using a near-infrared laser, according to a digital (computer-generated) pattern. DPP can provide orders of magnitude changes in stiffness, and can be tuned by laser intensity and speed of writing. In vitro cellular experiments using A7R5 smooth muscle cells confirm cell migration and alignment according to these patterns, making DPP a useful technique for mechanically patterning hydrogels for various biomedical applications. PMID:26120293
Barhanpurkar-Naik, Amruta; Mhaske, Suhas T; Pote, Satish T; Singh, Kanupriya; Wani, Mohan R
2017-07-14
Mesenchymal stem cells (MSCs) represent an important source for cell therapy in regenerative medicine. MSCs have shown promising results for repair of damaged tissues in various degenerative diseases in animal models and also in human clinical trials. However, little is known about the factors that could enhance the migration and tissue-specific engraftment of exogenously infused MSCs for successful regenerative cell therapy. Previously, we have reported that interleukin-3 (IL-3) prevents bone and cartilage damage in animal models of rheumatoid arthritis and osteoarthritis. Also, IL-3 promotes the differentiation of human MSCs into functional osteoblasts and increases their in-vivo bone regenerative potential in immunocompromised mice. However, the role of IL-3 in migration of MSCs is not yet known. In the present study, we investigated the role of IL-3 in migration of human MSCs under both in-vitro and in-vivo conditions. MSCs isolated from human bone marrow, adipose and gingival tissues were used for in-vitro cell migration, motility and wound healing assays in the presence or absence of IL-3. The effect of IL-3 preconditioning on expression of chemokine receptors and integrins was examined by flow cytometry and real-time PCR. The in-vivo migration of IL-3-preconditioned MSCs was investigated using a subcutaneous matrigel-releasing stromal cell-derived factor-1 alpha (SDF-1α) model in immunocompromised mice. We observed that human MSCs isolated from all three sources express IL-3 receptor-α (IL-3Rα) both at gene and protein levels. IL-3 significantly enhances in-vitro migration, motility and wound healing abilities of MSCs. Moreover, IL-3 preconditioning upregulates expression of chemokine (C-X-C motif) receptor 4 (CXCR4) on MSCs, which leads to increased migration of cells towards SDF-1α. Furthermore, CXCR4 antagonist AMD3100 decreases the migration of IL-3-treated MSCs towards SDF-1α. Importantly, IL-3 also induces in-vivo migration of MSCs towards subcutaneously implanted matrigel-releasing-SDF-1α in immunocompromised mice. The present study demonstrates for the first time that IL-3 has an important role in enhancing the migration of human MSCs through regulation of the CXCR4/SDF-1α axis. These findings suggest a potential role of IL-3 in improving the efficacy of MSCs in regenerative cell therapy.
IDENTIFYING AND PREDICTING DIVING PLUME BEHAVIOR AT GROUNDWATER SITES CONTAMINATED WITH MTBE: PART 2
As contaminant ground water flows downgradient from a release point, its movement is dictated by site geological conditions and hydraulics that may result in significant perpendicular contamination migration. This vertical migration pattern has been termed 'plume diving'. Under ...
Wooding, Stephen; Ostler, Christopher; Prasad, B V Ravi; Watkins, W Scott; Sung, Sandy; Bamshad, Mike; Jorde, Lynn B
2004-08-01
Genetic, ethnographic, and historical evidence suggests that the Hindu castes have been highly endogamous for several thousand years and that, when movement between castes does occur, it typically consists of females joining castes of higher social status. However, little is known about migration rates in these populations or the extent to which migration occurs between caste groups of low, middle, and high social status. To investigate these aspects of migration, we analyzed the largest collection of genetic markers collected to date in Hindu caste populations. These data included 45 newly typed autosomal short tandem repeat polymorphisms (STRPs), 411 bp of mitochondrial DNA sequence, and 43 Y-chromosomal single-nucleotide polymorphisms that were assayed in more than 200 individuals of known caste status sampled in Andrah Pradesh, in South India. Application of recently developed likelihood-based analyses to this dataset enabled us to obtain genetically derived estimates of intercaste migration rates. STRPs indicated migration rates of 1-2% per generation between high-, middle-, and low-status caste groups. We also found support for the hypothesis that rates of gene flow differ between maternally and paternally inherited genes. Migration rates were substantially higher in maternally than in paternally inherited markers. In addition, while prevailing patterns of migration involved movement between castes of similar rank, paternally inherited markers in the low-status castes were most likely to move into high-status castes. Our findings support earlier evidence that the caste system has been a significant, long-term source of population structuring in South Indian Hindu populations, and that patterns of migration differ between males and females. Copyright 2004 Springer-Verlag
Visualizing Human Migration Trhough Space and Time
NASA Astrophysics Data System (ADS)
Zambotti, G.; Guan, W.; Gest, J.
2015-07-01
Human migration has been an important activity in human societies since antiquity. Since 1890, approximately three percent of the world's population has lived outside of their country of origin. As globalization intensifies in the modern era, human migration persists even as governments seek to more stringently regulate flows. Understanding this phenomenon, its causes, processes and impacts often starts from measuring and visualizing its spatiotemporal patterns. This study builds a generic online platform for users to interactively visualize human migration through space and time. This entails quickly ingesting human migration data in plain text or tabular format; matching the records with pre-established geographic features such as administrative polygons; symbolizing the migration flow by circular arcs of varying color and weight based on the flow attributes; connecting the centroids of the origin and destination polygons; and allowing the user to select either an origin or a destination feature to display all flows in or out of that feature through time. The method was first developed using ArcGIS Server for world-wide cross-country migration, and later applied to visualizing domestic migration patterns within China between provinces, and between states in the United States, all through multiple years. The technical challenges of this study include simplifying the shapes of features to enhance user interaction, rendering performance and application scalability; enabling the temporal renderers to provide time-based rendering of features and the flow among them; and developing a responsive web design (RWD) application to provide an optimal viewing experience. The platform is available online for the public to use, and the methodology is easily adoptable to visualizing any flow, not only human migration but also the flow of goods, capital, disease, ideology, etc., between multiple origins and destinations across space and time.
Causes, trends, and policy of population migration and the floating population.
Cai, F
1996-01-01
This study provides a discussion of migration theory, a description of the main characteristics of migrants and floating population in China, and a migration impact assessment and potential social policy directions. It is argued that the impetus for migration in China was the population distribution pattern and an uneven industrial structure that favored heavy industry. Another factor affecting migration is the gap in income between urban and rural areas, which has widened since reforms in the mid-1980s. The author finds the Todaro or the Harris-Todaro theories inappropriate for understanding migration in developing countries and flawed. Evidence about migrants' characteristics suggest that migration in China was part of a process governed by the laws of economic growth and market development. Legal migrants are defined as those who legally migrated according to the household registration system. China's development strategy during the 1950s relied on growth of capital-intensive heavy industry. The cost was underwritten by adoption of a price system that shifted the price of products in order to lower the cost of heavy industrial development. During 1952-78, agricultural output dropped sharply, but the employment structure changed very little and the rate of urbanization changed slightly. Regional inequality was obvious by 1978. As reform progressed, patterns emerged that favored eastern coastal development. Microlevel reform outdistanced macrolevel reform. Obstacles to migration were reduced: the breakup of the commune system and changes in the urban food supply system and housing. In 1990 there were 34.128 million migrants, of which 32.42% were interprovincial and 42.99% involved job-related shifts. In 1992, 8.1% of urban population were not registered; 94.909 million were floating population. Cities have established policies to match the size of the floating population to the current carrying capacity.
Jean-Richard, Vreni; Crump, Lisa; Daugla, Doumagoum Moto; Hattendorf, Jan; Schelling, Esther; Zinsstag, Jakob
2014-01-01
Background Demographic information is foundational for the planning and management of social programmes, in particular health services. The existing INDEPTH network surveillance sites are limited to coverage of sedentary populations. Including mobile populations in this approach would be expensive, time consuming and possibly low in accuracy. Very little is known about the demography of mobile pastoralists and their animals, so innovative approaches are urgently needed. Objective To test and evaluate a mobile demographic surveillance system for mobile pastoralist households, including livestock herds, using mobile phones. Design Mobile pastoralist camps were monitored (10 for 12 months and 10 for 18 months) using biweekly mobile phone calls with camp leaders and their wives to conduct interviews about the households and livestock. The collected information was validated through personal visits, GPS data and a livestock demographic model. Results The study showed the feasibility of mobile phone surveillance for mobile pastoralist camps, providing usable, valid information on human and livestock population structures, pregnancy outcomes and herd dynamics, as well as migration patterns. The approach was low-cost and applicable with the existing local resources. Conclusion Demographic surveillance in mobile populations is feasible using mobile phones. Expansion of the small-scale system into a full mobile demographic surveillance system is warranted and would likely lead to improved planning and provision of human and animal health care. PMID:24499744
Jean-Richard, Vreni; Crump, Lisa; Moto Daugla, Doumagoum; Hattendorf, Jan; Schelling, Esther; Zinsstag, Jakob
2014-01-01
Demographic information is foundational for the planning and management of social programmes, in particular health services. The existing INDEPTH network surveillance sites are limited to coverage of sedentary populations. Including mobile populations in this approach would be expensive, time consuming and possibly low in accuracy. Very little is known about the demography of mobile pastoralists and their animals, so innovative approaches are urgently needed. To test and evaluate a mobile demographic surveillance system for mobile pastoralist households, including livestock herds, using mobile phones. Mobile pastoralist camps were monitored (10 for 12 months and 10 for 18 months) using biweekly mobile phone calls with camp leaders and their wives to conduct interviews about the households and livestock. The collected information was validated through personal visits, GPS data and a livestock demographic model. The study showed the feasibility of mobile phone surveillance for mobile pastoralist camps, providing usable, valid information on human and livestock population structures, pregnancy outcomes and herd dynamics, as well as migration patterns. The approach was low-cost and applicable with the existing local resources. Demographic surveillance in mobile populations is feasible using mobile phones. Expansion of the small-scale system into a full mobile demographic surveillance system is warranted and would likely lead to improved planning and provision of human and animal health care.
NASA Astrophysics Data System (ADS)
Lockwood, John P.
1990-07-01
Five times within the past 138 yr (1852, 1855-1856, 1880-1881, 1942, and 1984), lava flows from vents on the northeast rift zone of Mauna Loa Volcano have reached within a few kilometres of Hilo (the largest city on the Island of Hawaii). Most lavas erupted on this rift zone in historical time have traveled northeastward (toward Hilo), because their eruptive vents have been concentrated north of the rift zone's broad topographic axis. However, with few exceptions each successive historical eruption on the northeast rift zone has occurred farther southeast than the preceding one. Had the 1984 eruptive vents (the most southeasterly yet) opened less than 200 m farther southeast, the bulk of the 1984 lavas would have flowed away from Hilo. If this historical vent-migration pattern continues, the next eruption on the northeast rift zone could send lavas to the southeast, toward less populated areas. The historical Mauna Loa vent-migration patterns mimic the southeastern "younging" of the Hawaiian-Emperor volcanic chain and may be cryptically related to northwestward movement of the Pacific plate. Systematic temporal-spatial vent-migration patterns may characterize eruptive activity at other volcanoes with flank activity and should be considered as an aid to long-term prediction of eruption sites.
Climate shocks and rural-urban migration in Mexico: Exploring nonlinearities and thresholds.
Nawrotzki, Raphael J; DeWaard, Jack; Bakhtsiyarava, Maryia; Ha, Jasmine Trang
2017-01-01
Adverse climatic conditions may differentially drive human migration patterns between rural and urban areas, with implications for changes in population composition and density, access to infrastructure and resources, and the delivery of essential goods and services. However, there is little empirical evidence to support this notion. In this study, we investigate the relationship between climate shocks and migration between rural and urban areas within Mexico. We combine individual records from the 2000 and 2010 Mexican censuses (n=683,518) with high-resolution climate data from Terra Populus that are linked to census data at the municipality level (n=2,321). We measure climate shocks as monthly deviation from a 30-year (1961-1990) long-term climate normal period, and uncover important nonlinearities using quadratic and cubic specifications. Satellite-based measures of urban extents allow us to classify migrant-sending and migrant-receiving municipalities as rural or urban to examine four internal migration patterns: rural-urban, rural-rural, urban-urban, and urban-rural. Among our key findings, results from multilevel models reveal that each additional drought month increases the odds of rural-urban migration by 3.6%. In contrast, the relationship between heat months and rural-urban migration is nonlinear. After a threshold of ~34 heat months is surpassed, the relationship between heat months and rural-urban migration becomes positive and progressively increases in strength. Policy and programmatic interventions may therefore reduce climate induced rural-urban migration in Mexico through rural climate change adaptation initiatives, while also assisting rural migrants in finding employment and housing in urban areas to offset population impacts.
Climate shocks and rural-urban migration in Mexico: Exploring nonlinearities and thresholds
Nawrotzki, Raphael J.; DeWaard, Jack; Bakhtsiyarava, Maryia; Ha, Jasmine Trang
2016-01-01
Adverse climatic conditions may differentially drive human migration patterns between rural and urban areas, with implications for changes in population composition and density, access to infrastructure and resources, and the delivery of essential goods and services. However, there is little empirical evidence to support this notion. In this study, we investigate the relationship between climate shocks and migration between rural and urban areas within Mexico. We combine individual records from the 2000 and 2010 Mexican censuses (n=683,518) with high-resolution climate data from Terra Populus that are linked to census data at the municipality level (n=2,321). We measure climate shocks as monthly deviation from a 30-year (1961-1990) long-term climate normal period, and uncover important nonlinearities using quadratic and cubic specifications. Satellite-based measures of urban extents allow us to classify migrant-sending and migrant-receiving municipalities as rural or urban to examine four internal migration patterns: rural-urban, rural-rural, urban-urban, and urban-rural. Among our key findings, results from multilevel models reveal that each additional drought month increases the odds of rural-urban migration by 3.6%. In contrast, the relationship between heat months and rural-urban migration is nonlinear. After a threshold of ~34 heat months is surpassed, the relationship between heat months and rural-urban migration becomes positive and progressively increases in strength. Policy and programmatic interventions may therefore reduce climate induced rural-urban migration in Mexico through rural climate change adaptation initiatives, while also assisting rural migrants in finding employment and housing in urban areas to offset population impacts. PMID:28435176
Altizer, Sonia; Hobson, Keith A.; Davis, Andrew K.; De Roode, Jacobus C.; Wassenaar, Leonard I.
2015-01-01
Long-distance migration can lower parasite prevalence if strenuous journeys remove infected animals from wild populations. We examined wild monarch butterflies (Danaus plexippus) to investigate the potential costs of the protozoan Ophryocystis elektroscirrha on migratory success. We collected monarchs from two wintering sites in central Mexico to compare infection status with hydrogen isotope (δ 2H) measurements as an indicator of latitude of origin at the start of fall migration. On average, uninfected monarchs had lower δ 2H values than parasitized butterflies, indicating that uninfected butterflies originated from more northerly latitudes and travelled farther distances to reach Mexico. Within the infected class, monarchs with higher quantitative spore loads originated from more southerly latitudes, indicating that heavily infected monarchs originating from farther north are less likely to reach Mexico. We ruled out the alternative explanation that lower latitudes give rise to more infected monarchs prior to the onset of migration using citizen science data to examine regional differences in parasite prevalence during the summer breeding season. We also found a positive association between monarch wing area and estimated distance flown. Collectively, these results emphasize that seasonal migrations can help lower infection levels in wild animal populations. Our findings, combined with recent declines in the numbers of migratory monarchs wintering in Mexico and observations of sedentary (winter breeding) monarch populations in the southern U.S., suggest that shifts from migratory to sedentary behavior will likely lead to greater infection prevalence for North American monarchs. PMID:26606389
The Migration Matrix: Marine Vertebrate Movements in Magnetic Coordinate Space
NASA Astrophysics Data System (ADS)
Horton, T. W.; Holdaway, R. N.; Clapham, P. J.; Zerbini, A. N.; Andriolo, A.; Hays, G. C.; Egevang, C.; Domeier, M. L.; Lucas, N.
2011-12-01
Determining how vertebrates navigate during their long-distance migrations remains one of the most enduring and fundamental challenges of behavioral ecology. It is widely accepted that spatial orientation relative to a reference datum is a fundamental requirement of long-distance return migration between seasonal habitats, and a variety of viable positional and directional orientation cues, including the sun, stars, and magnetic field, have been documented experimentally. However, a fundamental question remains unanswered: Are empirically observed migratory movements compatible with modern theoretical frameworks of spatial orientation? To address this question, we analysed leatherback turtle (Dermochelys coriacea), arctic tern (Sterna paradisaea), humpback whale (Megaptera novaeangliae), and great white shark (Carcharodon carcharias) track maps, frequency distribution diagrams and time-series plots of animal locations in spherical magnetic coordinate space. Our analyses indicates that, although individual migration tracks are spatially and temporally distinct, vertebrate movements are non-randomly distributed in all three spherical magnetic coordinates (i.e. intensity, inclination, and declination). Stop-over locations, migratory destinations, and re-orientation points occur at similar magnetic coordinate locations, relative to tagging areas, in all four species, suggesting that a common system of magnetic orientation likely informs the navigational behaviors of these phylogenetically diverse taxa. Although our analyses demonstrate that the experiment-derived 'magnetic map' goal orientation theoretical framework of animal navigation is compatible with remotely-sensed migration track data, they also indicate that magnetic information is complemented by spatially and temporally contingent celestial stimuli during navigation.
Altizer, Sonia; Hobson, Keith A; Davis, Andrew K; De Roode, Jacobus C; Wassenaar, Leonard I
2015-01-01
Long-distance migration can lower parasite prevalence if strenuous journeys remove infected animals from wild populations. We examined wild monarch butterflies (Danaus plexippus) to investigate the potential costs of the protozoan Ophryocystis elektroscirrha on migratory success. We collected monarchs from two wintering sites in central Mexico to compare infection status with hydrogen isotope (δ2H) measurements as an indicator of latitude of origin at the start of fall migration. On average, uninfected monarchs had lower δ2H values than parasitized butterflies, indicating that uninfected butterflies originated from more northerly latitudes and travelled farther distances to reach Mexico. Within the infected class, monarchs with higher quantitative spore loads originated from more southerly latitudes, indicating that heavily infected monarchs originating from farther north are less likely to reach Mexico. We ruled out the alternative explanation that lower latitudes give rise to more infected monarchs prior to the onset of migration using citizen science data to examine regional differences in parasite prevalence during the summer breeding season. We also found a positive association between monarch wing area and estimated distance flown. Collectively, these results emphasize that seasonal migrations can help lower infection levels in wild animal populations. Our findings, combined with recent declines in the numbers of migratory monarchs wintering in Mexico and observations of sedentary (winter breeding) monarch populations in the southern U.S., suggest that shifts from migratory to sedentary behavior will likely lead to greater infection prevalence for North American monarchs.
Migration and urbanization in Ecuador: a view from the coast.
Middleton, D R
1979-01-01
"The present study takes a regional view of urbanization and migration in coastal Ecuador, and presents field data collected [in 1970 and 1971] in the port city of Manta. This study seeks to account for various national and international influences that work to shape conditions in Manta, and on the coast generally, and to specify and account for patterns of socieconomic inequality, particularly as they relate to migration and urbanization." excerpt
Tracking of Arctic terns Sterna paradisaea reveals longest animal migration.
Egevang, Carsten; Stenhouse, Iain J; Phillips, Richard A; Petersen, Aevar; Fox, James W; Silk, Janet R D
2010-02-02
The study of long-distance migration provides insights into the habits and performance of organisms at the limit of their physical abilities. The Arctic tern Sterna paradisaea is the epitome of such behavior; despite its small size (<125 g), banding recoveries and at-sea surveys suggest that its annual migration from boreal and high Arctic breeding grounds to the Southern Ocean may be the longest seasonal movement of any animal. Our tracking of 11 Arctic terns fitted with miniature (1.4-g) geolocators revealed that these birds do indeed travel huge distances (more than 80,000 km annually for some individuals). As well as confirming the location of the main wintering region, we also identified a previously unknown oceanic stopover area in the North Atlantic used by birds from at least two breeding populations (from Greenland and Iceland). Although birds from the same colony took one of two alternative southbound migration routes following the African or South American coast, all returned on a broadly similar, sigmoidal trajectory, crossing from east to west in the Atlantic in the region of the equatorial Intertropical Convergence Zone. Arctic terns clearly target regions of high marine productivity both as stopover and wintering areas, and exploit prevailing global wind systems to reduce flight costs on long-distance commutes.
Tracking of Arctic terns Sterna paradisaea reveals longest animal migration
Egevang, Carsten; Stenhouse, Iain J.; Phillips, Richard A.; Petersen, Aevar; Fox, James W.; Silk, Janet R. D.
2010-01-01
The study of long-distance migration provides insights into the habits and performance of organisms at the limit of their physical abilities. The Arctic tern Sterna paradisaea is the epitome of such behavior; despite its small size (<125 g), banding recoveries and at-sea surveys suggest that its annual migration from boreal and high Arctic breeding grounds to the Southern Ocean may be the longest seasonal movement of any animal. Our tracking of 11 Arctic terns fitted with miniature (1.4-g) geolocators revealed that these birds do indeed travel huge distances (more than 80,000 km annually for some individuals). As well as confirming the location of the main wintering region, we also identified a previously unknown oceanic stopover area in the North Atlantic used by birds from at least two breeding populations (from Greenland and Iceland). Although birds from the same colony took one of two alternative southbound migration routes following the African or South American coast, all returned on a broadly similar, sigmoidal trajectory, crossing from east to west in the Atlantic in the region of the equatorial Intertropical Convergence Zone. Arctic terns clearly target regions of high marine productivity both as stopover and wintering areas, and exploit prevailing global wind systems to reduce flight costs on long-distance commutes. PMID:20080662
Somatostatin stimulates the migration of hepatic oval cells in the injured rat liver
Jung, Youngmi; Oh, Seh-Hoon; Witek, Rafal P.; Petersen, Bryon E.
2011-01-01
Background Somatostatin is a pleiotropic peptide, exerting a variety of effects through its receptor subtypes. Recently, somatostatin has been shown to act as a chemoattractant for hematopoietic progenitor cells and hepatic oval cells (HOC) via receptor subtype 2 and subtype 4 (SSTR4), respectively. Aims we investigated the in vivo effect of somatostatin/ SSTR4 on HOC migration in the injured liver model of rats and the type of signaling molecules associated with the chemotactic function. Methods Migration assay, HOC transplantation and PI3K signaling were assessed with or without somatostatin and an analogue of somatostatin (TT232) that specifically binds to SSTR4. Results TT232 was shown to have an anti-migratory action on HOC induced by somatostatin in vitro. In HOC transplantation experiments, a lower number of donor-derived cells was detected in TT232-treated animals, as compared to control animals. Activation of PI3K was observed in HOC exposed to somatostatin, and this activation was suppressed by either anti-SSTR4 antibody or TT232-pretreatment. In addition, a PI3K inhibitor abrogated the motility of HOC. Conclusion Together, these data suggest that somatostatin stimulates the migration of HOC within injured liver through SSTR4, and this action appears to be mediated by the PI3K pathway. PMID:22098068
Risch, Denise; Castellote, Manuel; Clark, Christopher W; Davis, Genevieve E; Dugan, Peter J; Hodge, Lynne Ew; Kumar, Anurag; Lucke, Klaus; Mellinger, David K; Nieukirk, Sharon L; Popescu, Cristian Marian; Ramp, Christian; Read, Andrew J; Rice, Aaron N; Silva, Monica A; Siebert, Ursula; Stafford, Kathleen M; Verdaat, Hans; Van Parijs, Sofie M
2014-01-01
Little is known about migration patterns and seasonal distribution away from coastal summer feeding habitats of many pelagic baleen whales. Recently, large-scale passive acoustic monitoring networks have become available to explore migration patterns and identify critical habitats of these species. North Atlantic minke whales (Balaenoptera acutorostrata) perform seasonal migrations between high latitude summer feeding and low latitude winter breeding grounds. While the distribution and abundance of the species has been studied across their summer range, data on migration and winter habitat are virtually missing. Acoustic recordings, from 16 different sites from across the North Atlantic, were analyzed to examine the seasonal and geographic variation in minke whale pulse train occurrence, infer information about migration routes and timing, and to identify possible winter habitats. Acoustic detections show that minke whales leave their winter grounds south of 30° N from March through early April. On their southward migration in autumn, minke whales leave waters north of 40° N from mid-October through early November. In the western North Atlantic spring migrants appear to track the warmer waters of the Gulf Stream along the continental shelf, while whales travel farther offshore in autumn. Abundant detections were found off the southeastern US and the Caribbean during winter. Minke whale pulse trains showed evidence of geographic variation, with longer pulse trains recorded south of 40° N. Very few pulse trains were recorded during summer in any of the datasets. This study highlights the feasibility of using acoustic monitoring networks to explore migration patterns of pelagic marine mammals. Results confirm the presence of minke whales off the southeastern US and the Caribbean during winter months. The absence of pulse train detections during summer suggests either that minke whales switch their vocal behaviour at this time of year, are absent from available recording sites or that variation in signal structure influenced automated detection. Alternatively, if pulse trains are produced in a reproductive context by males, these data may indicate their absence from the selected recording sites. Evidence of geographic variation in pulse train duration suggests different behavioural functions or use of these calls at different latitudes.
Comparing internal migration across the countries of Latin America: A multidimensional approach
Bernard, Aude; Rowe, Francisco; Bell, Martin; Ueffing, Philipp; Charles-Edwards, Elin
2017-01-01
While considerable progress has been made in understanding the way particular aspects of internal migration, such as its intensity, age profile and spatial impact, vary between countries around the world, little attention to date has been given to establishing how these dimensions of migration interact in different national settings. We use recently developed measures of internal migration that are scale-independent to compare the overall intensity, age composition, spatial impact, and distance profile of internal migration in 19 Latin American countries. Comparisons reveal substantial cross-national variation but cluster analysis suggests the different dimensions of migration evolve systematically to form a broad sequence characterised by low intensities, young ages at migration, unbalanced flows and high friction of distance at lower levels of development, trending to high intensities, an older age profile of migration, more closely balanced flows and lower friction of distance at later stages of development. However, the transition is not linear and local contingencies, such as international migration and political control, often distort the migration-development nexus, leading to unique migration patterns in individual national contexts. PMID:28328932
Population, migration and urbanization.
1982-06-01
Despite recent estimates that natural increase is becoming a more important component of urban growth than rural urban transfer (excess of inmigrants over outmigrants), the share of migration in the total population growth has been consistently increasing in both developed and developing countries. From a demographic perspective, the migration process involves 3 elements: an area of origin which the mover leaves and where he or she is considered an outmigrant; the destination or place of inmigration; and the period over which migration is measured. The 2 basic types of migration are internal and international. Internal migration consists of rural to urban migration, urban to urban migration, rural to rural migration, and urban to rural migration. Among these 4 types of migration various patterns or processes are followed. Migration may be direct when the migrant moves directly from the village to the city and stays there permanently. It can be circular migration, meaning that the migrant moves to the city when it is not planting season and returns to the village when he is needed on the farm. In stage migration the migrant makes a series of moves, each to a city closer to the largest or fastest growing city. Temporary migration may be 1 time or cyclical. The most dominant pattern of internal migration is rural urban. The contribution of migration to urbanization is evident. For example, the rapid urbanization and increase in urban growth from 1960-70 in the Republic of Korea can be attributed to net migration. In Asia the largest component of the population movement consists of individuals and groups moving from 1 rural location to another. Recently, because urban centers could no longer absorb the growing number of migrants from other places, there has been increased interest in the urban to rural population redistribution. This reverse migration also has come about due to slower rates of employment growth in the urban centers and improved economic opportunities in rural areas. According to UN data, at the global level the trend in longterm and permanent migration is towards stabilization or decline in the rate of movement into developed countries like the US, Canada, the UK, and Australia from developing countries. Migrants in the Asian and Pacific region mostly tend to be in the 15-25 year age group. Most migrants streams are male dominant. The rural urban migration stream includes a large proportion of people who are better educated than their rural counterparts but generally less educated than the urban natives. Reasons for migrating in the Asian and Pacific region are economic, educational, sociocultural and political. A negative factor in rural migration is that it deprives villages of the ablest people.
One Health – a strategy for resilience in a changing arctic
Ruscio, Bruce A.; Brubaker, Michael; Glasser, Joshua; Hueston, Will; Hennessy, Thomas W.
2015-01-01
The circumpolar north is uniquely vulnerable to the health impacts of climate change. While international Arctic collaboration on health has enhanced partnerships and advanced the health of inhabitants, significant challenges lie ahead. One Health is an approach that considers the connections between the environment, plant, animal and human health. Understanding this is increasingly critical in assessing the impact of global climate change on the health of Arctic inhabitants. The effects of climate change are complex and difficult to predict with certainty. Health risks include changes in the distribution of infectious disease, expansion of zoonotic diseases and vectors, changing migration patterns, impacts on food security and changes in water availability and quality, among others. A regional network of diverse stakeholder and transdisciplinary specialists from circumpolar nations and Indigenous groups can advance the understanding of complex climate-driven health risks and provide community-based strategies for early identification, prevention and adaption of health risks in human, animals and environment. We propose a regional One Health approach for assessing interactions at the Arctic human–animal–environment interface to enhance the understanding of, and response to, the complexities of climate change on the health of the Arctic inhabitants. PMID:26333722
A mitochondrial analysis reveals distinct founder effect signatures in Canarian and Balearic goats.
Ferrando, A; Manunza, A; Jordana, J; Capote, J; Pons, A; Pais, J; Delgado, T; Atoche, P; Cabrera, B; Martínez, A; Landi, V; Delgado, J V; Argüello, A; Vidal, O; Lalueza-Fox, C; Ramírez, O; Amills, M
2015-08-01
In the course of human migrations, domestic animals often have been translocated to islands with the aim of assuring food availability. These founder events are expected to leave a genetic footprint that may be recognised nowadays. Herewith, we have examined the mitochondrial diversity of goat populations living in the Canarian and Balearic archipelagos. Median-joining network analysis produced very distinct network topologies for these two populations. Indeed, a majority of Canarian goats shared a single ancestral haplotype that segregated in all sampled islands, suggesting a single founder effect followed by a stepping-stone pattern of diffusion. This haplotype also was present in samples collected from archaeological assemblies at Gran Canaria and Lanzarote, making evident its widespread distribution in ancient times. In stark contrast, goats from Majorca and Ibiza did not share any mitochondrial haplotypes, indicating the occurrence of two independent founder events. Furthermore, in Majorcan goats, we detected the segregation of the mitochondrial G haplogroup that has only been identified in goats from Egypt, Iran and Turkey. This finding suggests the translocation of Asian and/or African goats to Majorca, possibly as a consequence of the Phoenician and Carthaginian colonisations of this island. © 2015 Stichting International Foundation for Animal Genetics.
In vivo imaging of basement membrane movement: ECM patterning shapes Hydra polyps
Aufschnaiter, Roland; Zamir, Evan A.; Little, Charles D.; Özbek, Suat; Münder, Sandra; David, Charles N.; Li, Li; Sarras, Michael P.; Zhang, Xiaoming
2011-01-01
Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds. It is not known, whether these tissue movements involve epithelial migration relative to the underlying matrix or whether cells and ECM are displaced as a composite structure. Furthermore, it is unclear, how the ECM is remodeled to adapt to the shape of developing buds and tentacles. To address these questions, we used a new in vivo labeling technique for Hydra collagen-1 and laminin, and tracked the fate of ECM in all body regions of the animal. Our results reveal that Hydra ‘tissue movements’ are largely displacements of epithelial cells together with associated ECM. By contrast, during the evagination of buds and tentacles, extensive movement of epithelial cells relative to the matrix is observed, together with local ECM remodeling. These findings provide new insights into the nature of growth and morphogenesis in epithelial tissues. PMID:22194305
Distinctive ribonucleic acid patterns of human rotavirus subgroups 1 and 2.
Kalica, A R; Greenberg, H B; Espejo, R T; Flores, J; Wyatt, R G; Kapikian, A Z; Chanock, R M
1981-01-01
The ribonucleic acid migration patterns of 7 subgroup 1 and 16 subgroup 2 human rotaviruses recovered from four geographic areas were compared. The subgroup 1 ribonucleic acid patterns had strikingly slower-moving segments 10 and 11, suggesting a correlation between the ribonucleic acid pattern and the subgroup specificity. Images PMID:6270002
Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis.
Thiery, J P; Boyer, B; Tucker, G; Gavrilovic, J; Valles, A M
1988-01-01
Cell-substratum and cell-cell adhesion mechanisms contribute to the development of animal form. The adhesive status of embryonic cells has been analysed during epithelial-mesenchymal cell interconversion and in cell migrations. Clear-cut examples of the modulation of cell adhesion molecules (CAMs) have been described at critical periods of morphogenesis. In chick embryos the three primary CAMs (N-CAM. L-CAM and N-cadherin) present early in embryogenesis are expressed later in a defined pattern during morphogenesis and histogenesis. The axial mesoderm derived from gastrulating cells expresses increasing amounts of N-cadherin and N-CAM. During metamerization these two adhesion molecules become abundant at somitic cell surfaces. Both CAMs are functional in an in vitro aggregation assay; however, the calcium-dependent adhesion molecule N-cadherin is more sensitive to perturbation by specific antibodies. Neural crest cells which separate from the neural epithelium lose their primary CAMs in a defined time-sequence. Adhesion to fibronectins via specific surface receptors becomes a predominant interaction during the migratory process, while some primary and secondary CAMs are expressed de novo during the ontogeny of the peripheral nervous system. In vitro, different fibronectin functional domains have been identified in the attachment, spreading and migration of neural crest cells. The fibronectin receptors which transduce the adhesive signals play a key role in the control of cell movement. All these results have prompted us to examine whether similar mechanisms operate in carcinoma cell invasion and metastasis. In vitro, rat bladder transitional carcinoma cells convert reversibly into invasive mesenchymal cells. A rapid modulation of adhesive properties is found during the epithelial-mesenchymal carcinoma cell interconversion. The different model systems analysed demonstrate that a limited repertoire of adhesion molecules, expressed in a well-defined spatiotemporal pattern, is involved in tissue formation and in key processes of tumour spread.
Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding
2014-01-01
Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise.
Wang, Zhitao; Akamatsu, Tomonari; Wang, Kexiong; Wang, Ding
2014-01-01
Information on the habitat use of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) is critical for its conservation. The diel biosonar behavior of the porpoise in the port areas of the Yangtze River was examined along with simultaneous observations of fish density and boat traffic. Biosonar pulses from the porpoises were detected for 1233 min (5.77%) over a 21,380 min duration of effective observations. In total, 190 (5.63%) buzzes (an indication of prey capture attempts) were recorded among the 3372 identified click trains. Of the 168 echolocation encounters (bouts of click trains less than eight min apart), 150 (89.3%) involved single animals, indicating that solitary porpoises were frequently present and feeding in the port areas. Significant diel patterns were evident involving the biosonar behavior of the porpoises (including click trains and buzzes), fish density and boat traffic. The frequencies of the click trains and buzzes were significantly lower during the day than in the evening and at night, which suggests that porpoises in this region are primarily engaged in crepuscular and nocturnal foraging. The lack of a significant diel pattern in the echolocation encounters indicates the importance of the port in porpoise conservation. A forced feeding schedule may be associated with the lack of a significant correlation between porpoise acoustics and boat traffic. Overall, prey availability appears to be the primary factor that attracts porpoises. Additionally, porpoises tend to migrate or remain downstream in the morning and migrate or remain upstream in the evening, most likely to follow their prey. The findings of this study can be used to improve the conservation of the Yangtze finless porpoise. PMID:24823945
Mining continuous activity patterns from animal trajectory data
Wang, Y.; Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.; Newman, Scott H.
2014-01-01
The increasing availability of animal tracking data brings us opportunities and challenges to intuitively understand the mechanisms of animal activities. In this paper, we aim to discover animal movement patterns from animal trajectory data. In particular, we propose a notion of continuous activity pattern as the concise representation of underlying similar spatio-temporal movements, and develop an extension and refinement framework to discover the patterns. We first preprocess the trajectories into significant semantic locations with time property. Then, we apply a projection-based approach to generate candidate patterns and refine them to generate true patterns. A sequence graph structure and a simple and effective processing strategy is further developed to reduce the computational overhead. The proposed approaches are extensively validated on both real GPS datasets and large synthetic datasets.
Can variation in risk of nest predation explain altitudinal migration in tropical birds?
Boyle, W Alice
2008-03-01
Migration is among the best studied of animal behaviors, yet few empirical studies have tested hypotheses explaining the ultimate causes of these cyclical annual movements. Fretwell's (1980) hypothesis predicts that if nest predation explains why many tropical birds migrate uphill to breed, then predation risk must be negatively associated with elevation. Data from 385 artificial nests spanning 2,740 m of elevation on the Atlantic slope of Costa Rica show an overall decline in predation with increasing elevation. However, nest predation risk was highest at intermediate elevations (500-650 m), not at lowest elevations. The proportion of nests depredated by different types of predators differed among elevations. These results imply that over half of the altitudinal migrant bird species in this region migrate to safer breeding areas than their non-breeding areas, suggesting that variation in nest predation risk could be an important benefit of uphill migrations of many species.
Kato, Mihoko; Sternberg, Paul W
2009-12-01
Cell migration is a common event during organogenesis, yet little is known about how migration is temporally coordinated with organ development. We are investigating stage-specific programs of cell migration using the linker cell (LC), a migratory cell crucial for male gonadogenesis of C. elegans. During the L3 and L4 larval stages of wild-type males, the LC undergoes changes in its position along the migratory route, in transcriptional regulation of the unc-5 netrin receptor and zmp-1 zinc matrix metalloprotease, and in cell morphology. We have identified the tailless homolog nhr-67 as a cell-autonomous, stage-specific regulator of timing in LC migration programs. In nhr-67-deficient animals, each of the L3 and L4 stage changes is either severely delayed or never occurs, yet LC development before the early L3 stage or after the mid-L4 stage occurs with normal timing. We propose that there is a basal migration program utilized throughout LC migration that is modified by stage-specific regulators such as nhr-67.
Functional Coordination of WAVE and WASP in C. elegans Neuroblast Migration.
Zhu, Zhiwen; Chai, Yongping; Jiang, Yuxiang; Li, Wenjing; Hu, Huifang; Li, Wei; Wu, Jia-Wei; Wang, Zhi-Xin; Huang, Shanjin; Ou, Guangshuo
2016-10-24
Directional cell migration is critical for metazoan development. We define two molecular pathways that activate the Arp2/3 complex during neuroblast migration in Caenorhabditis elegans. The transmembrane protein MIG-13/Lrp12 is linked to the Arp2/3 nucleation-promoting factors WAVE or WASP through direct interactions with ABL-1 or SEM-5/Grb2, respectively. WAVE mutations partially impaired F-actin organization and decelerated cell migration, and WASP mutations did not inhibit cell migration but enhanced migration defects in WAVE-deficient cells. Purified SEM-5 and MIG-2 synergistically stimulated the F-actin branching activity of WASP-Arp2/3 in vitro. In GFP knockin animals, WAVE and WASP were largely organized into separate clusters at the leading edge, and the amount of WASP was less than WAVE but could be elevated by WAVE mutations. Our results indicate that the MIG-13-WAVE pathway provides the major force for directional cell motility, whereas MIG-13-WASP partially compensates for its loss, underscoring their coordinated activities in facilitating robust cell migration. Copyright © 2016 Elsevier Inc. All rights reserved.
Dobson, J; McLaughlan, G
2001-01-01
This article presents some findings of a recent study carried out for the Home Office by the Migration Research Unit (MRU) in the Department of Geography at UCL. The study was concerned with patterns and trends in international migration to and from the United Kingdom since 1975, with a particular focus on those in employment, and drew on many sources. The statistics analysed here derive from the International Passenger Survey, including hitherto unpublished tables provided by the Office for National Statistics on migration of the employed by citizenship. They indicate remarkable consistency in some aspects of migration flows and major change in others.
Transoceanic migration, spatial dynamics, and population linkages of white sharks.
Bonfil, Ramón; Meÿer, Michael; Scholl, Michael C; Johnson, Ryan; O'Brien, Shannon; Oosthuizen, Herman; Swanson, Stephan; Kotze, Deon; Paterson, Michael
2005-10-07
The large-scale spatial dynamics and population structure of marine top predators are poorly known. We present electronic tag and photographic identification data showing a complex suite of behavioral patterns in white sharks. These include coastal return migrations and the fastest known transoceanic return migration among swimming fauna, which provide direct evidence of a link between widely separated populations in South Africa and Australia. Transoceanic return migration involved a return to the original capture location, dives to depths of 980 meters, and the tolerance of water temperatures as low as 3.4 degrees C. These findings contradict previous ideas that female white sharks do not make transoceanic migrations, and they suggest natal homing behavior.
Bell, James R; Alderson, Lynda; Izera, Daniela; Kruger, Tracey; Parker, Sue; Pickup, Jon; Shortall, Chris R; Taylor, Mark S; Verrier, Paul; Harrington, Richard
2015-01-01
Aphids represent a significant challenge to food production. The Rothamsted Insect Survey (RIS) runs a network of 12·2-m suction-traps throughout the year to collect migrating aphids. In 2014, the RIS celebrated its 50th anniversary. This paper marks that achievement with an extensive spatiotemporal analysis and the provision of the first British annotated checklist of aphids since 1964. Our main aim was to elucidate mechanisms that advance aphid phenology under climate change and explain these using life-history traits. We then highlight emerging pests using accumulation patterns. Linear and nonlinear mixed-effect models estimated the average rate of change per annum and effects of climate on annual counts, first and last flights and length of flight season since 1965. Two climate drivers were used: the accumulated day degrees above 16 °C (ADD16) indicated the potential for migration during the aphid season; the North Atlantic Oscillation (NAO) signalled the severity of the winter before migration took place. All 55 species studied had earlier first flight trends at rate of β = -0·611 ± SE 0·015 days year(-1). Of these species, 49% had earlier last flights, but the average species effect appeared relatively stationary (β = -0·010 ± SE 0·022 days year(-1)). Most species (85%) showed increasing duration of their flight season (β = 0·336 ± SE 0·026 days year(-1)), even though only 54% increased their log annual count (β = 0·002 ± SE <0·001 year(-1)). The ADD16 and NAO were shown to drive patterns in aphid phenology in a spatiotemporal context. Early in the year when the first aphids were migrating, the effect of the winter NAO was highly significant. Further into the year, ADD16 was a strong predictor. Latitude had a near linear effect on first flights, whereas longitude produced a generally less-clear effect on all responses. Aphids that are anholocyclic (permanently parthenogenetic) or are monoecious (non-host-alternating) were advancing their phenology faster than those that were not. Climate drives phenology and traits help explain how this takes place biologically. Phenology and trait ecology are critical to understanding the threat posed by emerging pests such as Myzus persicae nicotianae and Aphis fabae cirsiiacanthoidis, as revealed by the species accumulation analysis. © 2014 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Restructuring of the labour market and the role of third world migrations in Europe.
Pugliese, E
1993-10-01
"This paper is an analysis of the way in which the changes in the labour market and in the occupational structure in Europe affect the situation and the role of Third World migrants." Changes in European labor migration patterns since the 1960s are first analyzed. The author notes that "intra-European migrations were industrial migrations because manufacturing and building industries were the most important and growing economic activities....Present-day migrations are postindustrial migrations. Immigrants work mostly in service activities and not infrequently in the informal economy. In any case migrant workers are located in the secondary labour market. The picture is made more complex by the fact than many immigrants are alegal or illegal because of the restrictive immigration policies in European countries." excerpt