Logical fallacies in animal model research.
Sjoberg, Espen A
2017-02-15
Animal models of human behavioural deficits involve conducting experiments on animals with the hope of gaining new knowledge that can be applied to humans. This paper aims to address risks, biases, and fallacies associated with drawing conclusions when conducting experiments on animals, with focus on animal models of mental illness. Researchers using animal models are susceptible to a fallacy known as false analogy, where inferences based on assumptions of similarities between animals and humans can potentially lead to an incorrect conclusion. There is also a risk of false positive results when evaluating the validity of a putative animal model, particularly if the experiment is not conducted double-blind. It is further argued that animal model experiments are reconstructions of human experiments, and not replications per se, because the animals cannot follow instructions. This leads to an experimental setup that is altered to accommodate the animals, and typically involves a smaller sample size than a human experiment. Researchers on animal models of human behaviour should increase focus on mechanistic validity in order to ensure that the underlying causal mechanisms driving the behaviour are the same, as relying on face validity makes the model susceptible to logical fallacies and a higher risk of Type 1 errors. We discuss measures to reduce bias and risk of making logical fallacies in animal research, and provide a guideline that researchers can follow to increase the rigour of their experiments.
Crazy like a fox. Validity and ethics of animal models of human psychiatric disease.
Rollin, Michael D H; Rollin, Bernard E
2014-04-01
Animal models of human disease play a central role in modern biomedical science. Developing animal models for human mental illness presents unique practical and philosophical challenges. In this article we argue that (1) existing animal models of psychiatric disease are not valid, (2) attempts to model syndromes are undermined by current nosology, (3) models of symptoms are rife with circular logic and anthropomorphism, (4) any model must make unjustified assumptions about subjective experience, and (5) any model deemed valid would be inherently unethical, for if an animal adequately models human subjective experience, then there is no morally relevant difference between that animal and a human.
Kretlow, Ariane; Butzke, Daniel; Goetz, Mario E; Grune, Barbara; Halder, Marlies; Henkler, Frank; Liebsch, Manfred; Nobiling, Rainer; Oelgeschlaeger, Michael; Reifenberg, Kurt; Schaefer, Bernd; Seiler, Andrea; Luch, Andreas
2010-01-01
In 2007, 2.7 million vertebrates were used for animal experiments and other scientific purposes in Germany alone. Since 1998 there has been an increase in the number of animals used for research purposes, which is partly attributable to the growing use of transgenic animals. These animals are, for instance, used as in vivo models to mimic human diseases like diabetes, cancer or Alzheimer's disease. Here, transgenic model organisms serve as valuable tools, being instrumental in facilitating the analysis of the molecular mechanisms underlying human diseases, and might contribute to the development of novel therapeutic approaches. Due to variable and, sometimes low, efficiency (depending on the species used), however, the generation of such animals often requires a large number of embryo donors and recipients. The experts evaluated methods that could possibly be utilised to reduce, refine or even replace experiments with transgenic vertebrates in the mid-term future. Among the promising alternative model organisms available at the moment are the fruit fly Drosophila melanogaster and the roundworm Caenorhabditis elegans. Specific cell culture experiments or three-dimensional (3D) tissue models also offer valuable opportunities to replace experiments with transgenic animals or reduce the number of laboratory animals required by assisting in decision-making processes. Furthermore, at the workshop an in vitro technique was presented which permits the production of complete human antibodies without using genetically modified ("humanised") animals. Up to now, genetically modified mice are widely used for this purpose. Improved breeding protocols, enhanced efficiency of mutagenesis as well as training of laboratory personnel and animal keepers can also help to reduce the numbers of laboratory animals. Well-trained staff in particular can help to minimise the pain, suffering and discomfort of animals and, at the same time, improve the quality of data obtained from animal experiments. This, in turn, can lead to a reduction in the numbers of animals needed for each experiment. The experts also came to the conclusion that the numbers of laboratory animals can be reduced by open access to a central database that provides detailed documentation of completed experiments involving transgenic animals. This documentation should not be restricted to experiments with substantial scientific results that warrant publication, but should also include those with "negative" outcome, which are usually not published. Capturing all kinds of results within such a database provides added value to the respective scientists and the scientific community as a whole; it could also help to stimulate collaborations and to ensure funding for future research. An important aspect to be considered in the generation of this kind of database is the quality and standardisation of the information provided on existing in vitro models and the respective opportunities for their use. The experts felt that the greatest potential for reducing the numbers of laboratory animals in the near future realistically might not be offered by the complete replacement of transgenic animal models but by opportunities to examine specific questions to a greater degree using in vitro models, such as cell and tissue cultures including organotypic models. The use of these models would considerably reduce the number of in vivo experiments using transgenic animals. However, the overall number of experimental animals may still be increasing or remain unaffected, e.g. when transgenic animals continue to serve as the source of primary cells and organs/tissues for in vitro experiments.
Lack of blinding of outcome assessors in animal model experiments implies risk of observer bias.
Bello, Segun; Krogsbøll, Lasse T; Gruber, Jan; Zhao, Zhizhuang J; Fischer, Doris; Hróbjartsson, Asbjørn
2014-09-01
To examine the impact of not blinding outcome assessors on estimates of intervention effects in animal experiments modeling human clinical conditions. We searched PubMed, Biosis, Google Scholar, and HighWire Press and included animal model experiments with both blinded and nonblinded outcome assessors. For each experiment, we calculated the ratio of odds ratios (ROR), that is, the odds ratio (OR) from nonblinded assessments relative to the corresponding OR from blinded assessments. We standardized the ORs according to the experimental hypothesis, such that an ROR <1 indicates that nonblinded assessor exaggerated intervention effect, that is, exaggerated benefit in experiments investigating possible benefit or exaggerated harm in experiments investigating possible harm. We pooled RORs with inverse variance random-effects meta-analysis. We included 10 (2,450 animals) experiments in the main meta-analysis. Outcomes were subjective in most experiments. The pooled ROR was 0.41 (95% confidence interval [CI], 0.20, 0.82; I(2) = 75%; P < 0.001), indicating an average exaggeration of the nonblinded ORs by 59%. The heterogeneity was quantitative and caused by three pesticides experiments with very large observer bias, pooled ROR was 0.20 (95% CI, 0.07, 0.59) in contrast to the pooled ROR in the other seven experiments, 0.82 (95% CI, 0.57, 1.17). Lack of blinding of outcome assessors in animal model experiments with subjective outcomes implies a considerable risk of observer bias. Copyright © 2014 Elsevier Inc. All rights reserved.
Modelling and Simulation as a Recognizing Method in Education
ERIC Educational Resources Information Center
Stoffa, Veronika
2004-01-01
Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…
SHEEP AS AN EXPERIMENTAL MODEL FOR BIOMATERIAL IMPLANT EVALUATION
SARTORETTO, SUELEN CRISTINA; UZEDA, MARCELO JOSÉ; MIGUEL, FÚLVIO BORGES; NASCIMENTO, JHONATHAN RAPHAELL; ASCOLI, FABIO; CALASANS-MAIA, MÔNICA DIUANA
2016-01-01
ABSTRACT Objective: Based on a literature review and on our own experience, this study proposes sheep as an experimental model to evaluate the bioactive capacity of bone substitute biomaterials, dental implant systems and orthopedics devices. The literature review covered relevant databases available on the Internet from 1990 until to date, and was supplemented by our own experience. Methods: For its resemblance in size and weight to humans, sheep are quite suitable for use as an experimental model. However, information about their utility as an experimental model is limited. The different stages involving sheep experiments were discussed, including the care during breeding and maintenance of the animals obtaining specimens for laboratory processing, and highlighting the unnecessary euthanasia of animals at the end of study, in accordance to the guidelines of the 3Rs Program. Results: All experiments have been completed without any complications regarding the animals and allowed us to evaluate hypotheses and explain their mechanisms. Conclusion: The sheep is an excellent animal model for evaluation of biomaterial for bone regeneration and dental implant osseointegration. From an ethical point of view, one sheep allows for up to 12 implants per animal, permitting to keep them alive at the end of the experiments. Level of Evidence II, Retrospective Study. PMID:28149193
Liguori, Gabriel R; Jeronimus, Bertus F; de Aquinas Liguori, Tácia T; Moreira, Luiz Felipe P; Harmsen, Martin C
2017-12-01
Animal experimentation requires a solid and rational moral foundation. Objective and emphatic decision-making and protocol evaluation by researchers and ethics committees remain a difficult and sensitive matter. This article presents three perspectives that facilitate a consideration of the minimally acceptable standard for animal experiments, in particular, in tissue engineering (TE) and regenerative medicine. First, we review the boundaries provided by law and public opinion in America and Europe. Second, we review contemporary moral theory to introduce the Neo-Rawlsian contractarian theory to objectively evaluate the ethics of animal experiments. Third, we introduce the importance of available reduction, replacement, and refinement strategies, which should be accounted for in moral decision-making and protocol evaluation of animal experiments. The three perspectives are integrated into an algorithmic and graphic harm-benefit analysis tool based on the most relevant aspects of animal models in TE. We conclude with a consideration of future avenues to improve animal experiments.
Hybrid pairwise likelihood analysis of animal behavior experiments.
Cattelan, Manuela; Varin, Cristiano
2013-12-01
The study of the determinants of fights between animals is an important issue in understanding animal behavior. For this purpose, tournament experiments among a set of animals are often used by zoologists. The results of these tournament experiments are naturally analyzed by paired comparison models. Proper statistical analysis of these models is complicated by the presence of dependence between the outcomes of fights because the same animal is involved in different contests. This paper discusses two different model specifications to account for between-fights dependence. Models are fitted through the hybrid pairwise likelihood method that iterates between optimal estimating equations for the regression parameters and pairwise likelihood inference for the association parameters. This approach requires the specification of means and covariances only. For this reason, the method can be applied also when the computation of the joint distribution is difficult or inconvenient. The proposed methodology is investigated by simulation studies and applied to real data about adult male Cape Dwarf Chameleons. © 2013, The International Biometric Society.
Use of animal models for space flight physiology studies, with special focus on the immune system
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
2005-01-01
Animal models have been used to study the effects of space flight on physiological systems. The animal models have been used because of the limited availability of human subjects for studies to be carried out in space as well as because of the need to carry out experiments requiring samples and experimental conditions that cannot be performed using humans. Experiments have been carried out in space using a variety of species, and included developmental biology studies. These species included rats, mice, non-human primates, fish, invertebrates, amphibians and insects. The species were chosen because they best fit the experimental conditions required for the experiments. Experiments with animals have also been carried out utilizing ground-based models that simulate some of the effects of exposure to space flight conditions. Most of the animal studies have generated results that parallel the effects of space flight on human physiological systems. Systems studied have included the neurovestibular system, the musculoskeletal system, the immune system, the neurological system, the hematological system, and the cardiovascular system. Hindlimb unloading, a ground-based model of some of the effects of space flight on the immune system, has been used to study the effects of space flight conditions on physiological parameters. For the immune system, exposure to hindlimb unloading has been shown to results in alterations of the immune system similar to those observed after space flight. This has permitted the development of experiments that demonstrated compromised resistance to infection in rodents maintained in the hindlimb unloading model as well as the beginning of studies to develop countermeasures to ameliorate or prevent such occurrences. Although there are limitations to the use of animal models for the effects of space flight on physiological systems, the animal models should prove very valuable in designing countermeasures for exploration class missions of the future.
Muñoz-Tamayo, R; Puillet, L; Daniel, J B; Sauvant, D; Martin, O; Taghipoor, M; Blavy, P
2018-04-01
What is a good (useful) mathematical model in animal science? For models constructed for prediction purposes, the question of model adequacy (usefulness) has been traditionally tackled by statistical analysis applied to observed experimental data relative to model-predicted variables. However, little attention has been paid to analytic tools that exploit the mathematical properties of the model equations. For example, in the context of model calibration, before attempting a numerical estimation of the model parameters, we might want to know if we have any chance of success in estimating a unique best value of the model parameters from available measurements. This question of uniqueness is referred to as structural identifiability; a mathematical property that is defined on the sole basis of the model structure within a hypothetical ideal experiment determined by a setting of model inputs (stimuli) and observable variables (measurements). Structural identifiability analysis applied to dynamic models described by ordinary differential equations (ODEs) is a common practice in control engineering and system identification. This analysis demands mathematical technicalities that are beyond the academic background of animal science, which might explain the lack of pervasiveness of identifiability analysis in animal science modelling. To fill this gap, in this paper we address the analysis of structural identifiability from a practitioner perspective by capitalizing on the use of dedicated software tools. Our objectives are (i) to provide a comprehensive explanation of the structural identifiability notion for the community of animal science modelling, (ii) to assess the relevance of identifiability analysis in animal science modelling and (iii) to motivate the community to use identifiability analysis in the modelling practice (when the identifiability question is relevant). We focus our study on ODE models. By using illustrative examples that include published mathematical models describing lactation in cattle, we show how structural identifiability analysis can contribute to advancing mathematical modelling in animal science towards the production of useful models and, moreover, highly informative experiments via optimal experiment design. Rather than attempting to impose a systematic identifiability analysis to the modelling community during model developments, we wish to open a window towards the discovery of a powerful tool for model construction and experiment design.
de Vries, Rob B M; Wever, Kimberley E; Avey, Marc T; Stephens, Martin L; Sena, Emily S; Leenaars, Marlies
2014-01-01
The question of how animal studies should be designed, conducted, and analyzed remains underexposed in societal debates on animal experimentation. This is not only a scientific but also a moral question. After all, if animal experiments are not appropriately designed, conducted, and analyzed, the results produced are unlikely to be reliable and the animals have in effect been wasted. In this article, we focus on one particular method to address this moral question, namely systematic reviews of previously performed animal experiments. We discuss how the design, conduct, and analysis of future (animal and human) experiments may be optimized through such systematic reviews. In particular, we illustrate how these reviews can help improve the methodological quality of animal experiments, make the choice of an animal model and the translation of animal data to the clinic more evidence-based, and implement the 3Rs. Moreover, we discuss which measures are being taken and which need to be taken in the future to ensure that systematic reviews will actually contribute to optimizing experimental design and thereby to meeting a necessary condition for making the use of animals in these experiments justified. © The Author 2014. Published by Oxford University Press.
de Vries, Rob B. M.; Wever, Kimberley E.; Avey, Marc T.; Stephens, Martin L.; Sena, Emily S.; Leenaars, Marlies
2014-01-01
The question of how animal studies should be designed, conducted, and analyzed remains underexposed in societal debates on animal experimentation. This is not only a scientific but also a moral question. After all, if animal experiments are not appropriately designed, conducted, and analyzed, the results produced are unlikely to be reliable and the animals have in effect been wasted. In this article, we focus on one particular method to address this moral question, namely systematic reviews of previously performed animal experiments. We discuss how the design, conduct, and analysis of future (animal and human) experiments may be optimized through such systematic reviews. In particular, we illustrate how these reviews can help improve the methodological quality of animal experiments, make the choice of an animal model and the translation of animal data to the clinic more evidence-based, and implement the 3Rs. Moreover, we discuss which measures are being taken and which need to be taken in the future to ensure that systematic reviews will actually contribute to optimizing experimental design and thereby to meeting a necessary condition for making the use of animals in these experiments justified. PMID:25541545
Synapse alterations in autism: Review of animal model findings.
Zatkova, Martina; Bakos, Jan; Hodosy, Julius; Ostatnikova, Daniela
2016-06-01
Recent research has produced an explosion of experimental data on the complex neurobiological mechanisms of developmental disorders including autism. Animal models are one approach to studying the phenotypic features and molecular basis of autism. In this review, we describe progress in understanding synaptogenesis and alterations to this process with special emphasis on the cell adhesion molecules and scaffolding proteins implicated in autism. Genetic mouse model experiments are discussed in relation to alterations to selected synaptic proteins and consequent behavioral deficits measured in animal experiments. Pubmed databases were used to search for original and review articles on animal and human clinical studies on autism. The cell adhesion molecules, neurexin, neurolignin and the Shank family of proteins are important molecular targets associated with autism. The heterogeneity of the autism spectrum of disorders limits interpretation of information acquired from any single animal model or animal test. We showed synapse-specific/ model-specific defects associated with a given genotype in these models. Characterization of mouse models with genetic variations may help study the mechanisms of autism in humans. However, it will be necessary to apply new analytic paradigms in using genetically modified mice for understanding autism etiology in humans. Further studies are needed to create animal models with mutations that match the molecular and neural bases of autism.
The Microminipig as an Animal Model for Influenza A Virus Infection
Nakajima, Noriko; Shibata, Masatoshi; Takahashi, Kenta; Sato, Yuko; Kiso, Maki; Yamayoshi, Seiya; Ito, Mutsumi; Enya, Satoko; Otake, Masayoshi; Kangawa, Akihisa; da Silva Lopes, Tiago Jose; Ito, Hirotaka; Hasegawa, Hideki
2016-01-01
ABSTRACT Pigs are considered a mixing vessel for the generation of novel pandemic influenza A viruses through reassortment because of their susceptibility to both avian and human influenza viruses. However, experiments to understand reassortment in pigs in detail have been limited because experiments with regular-sized pigs are difficult to perform. Miniature pigs have been used as an experimental animal model, but they are still large and require relatively large cages for housing. The microminipig is one of the smallest miniature pigs used for experiments. Introduced in 2010, microminipigs weigh around 10 kg at an early stage of maturity (6 to 7 months old) and are easy to handle. To evaluate the microminipig as an animal model for influenza A virus infection, we compared the receptor distribution of 10-week-old male pigs (Yorkshire Large White) and microminipigs. We found that both animals have SAα2,3Gal and SAα2,6Gal in their respiratory tracts, with similar distributions of both receptor types. We further found that the sensitivity of microminipigs to influenza A viruses was the same as that of larger miniature pigs. Our findings indicate that the microminipig could serve as a novel model animal for influenza A virus infection. IMPORTANCE The microminipig is one of the smallest miniature pigs in the world and is used as an experimental animal model for life science research. In this study, we evaluated the microminipig as a novel animal model for influenza A virus infection. The distribution of influenza virus receptors in the respiratory tract of the microminipig was similar to that of the pig, and the sensitivity of microminipigs to influenza A viruses was the same as that of miniature pigs. Our findings suggest that microminipigs represent a novel animal model for influenza A virus infection. PMID:27807225
Inclusion of policies on ethical standards in animal experiments in biomedical science journals.
Rands, Sean A
2011-11-01
Most published biomedical research involving animal models is evaluated carefully to ensure that appropriate ethical standards are met. In the current study, 500 journals randomly selected from MedLine were assessed for whether they presented animal research. Of the 138 journals that did, the instructions to authors of 85 (61.6%) included a requirement for author assurance of adherence to ethical standards during experiments involving animals. In comparison to a wider range of biologic journals, biomedical science journals were more likely to have some sort of ethical policy concerning the reporting and presentation of animal experiments.
Developing an Animal Model of Human Amnesia: The Role of the Hippocampus
ERIC Educational Resources Information Center
Kesner, Raymond P.; Goodrich-Hunsaker, Naomi J.
2010-01-01
This review summarizes a series of experiments aimed at answering the question whether the hippocampus in rats can serve as an animal model of amnesia. It is recognized that a comparison of the functions of the rat hippocampus with human hippocampus is difficult, because of differences in methodology, differences in complexity of life experiences,…
Human Behavior: Do Animals Have the Answer
ERIC Educational Resources Information Center
Trotter, Robert J.
1974-01-01
Results of psychological experiments usinganimals are presented. Use of the animal-human analogy to generalize these findings to humans is discussed. Ethological studies are interpreted in light of the total environment and situation involved. The completeness of the ethological model compared to the animal-experimental model is discussed. (LS)
History, ethics, advantages and limitations of experimental models for hepatic ablation.
Ong, Seok Ling; Gravante, Gianpiero; Metcalfe, Matthew S; Dennison, Ashley R
2013-01-14
Numerous techniques developed in medicine require careful evaluation to determine their indications, limitations and potential side effects prior to their clinical use. At present this generally involves the use of animal models which is undesirable from an ethical standpoint, requires complex and time-consuming authorization, and is very expensive. This process is exemplified in the development of hepatic ablation techniques, starting experiments on explanted livers and progressing to safety and efficacy studies in living animals prior to clinical studies. The two main approaches used are ex vivo isolated non-perfused liver models and in vivo animal models. Ex vivo non perfused models are less expensive, easier to obtain but not suitable to study the heat sink effect or experiments requiring several hours. In vivo animal models closely resemble clinical subjects but often are expensive and have small sample sizes due to ethical guidelines. Isolated perfused ex vivo liver models have been used to study drug toxicity, liver failure, organ transplantation and hepatic ablation and combine advantages of both previous models.
Trevizol, Fabiola; Benvegnú, Dalila M; Barcelos, Raquel C S; Pase, Camila S; Segat, Hecson J; Dias, Verônica Tironi; Dolci, Geisa S; Boufleur, Nardeli; Reckziegel, Patrícia; Bürger, Marilise E
2011-08-01
Acute reserpine and subchronic haloperidol are animal models of extrapyramidal disorders often used to study parkinsonism, akinesia and tardive dyskinesia. In humans, these usually irreversible and disabling extrapyramidal disorders are developed by typical antipsychotic treatment, whose pathophysiology has been related to oxidative damages development. So far, there is no treatment to prevent these problems of the psychiatric clinic, and therefore further studies are needed. Here we used the animal models of extrapyramidal disorders cited above, which were performed in two distinct experiments: orofacial dyskinesia (OD)/catalepsy induced by acute reserpine and subchronic haloperidol after (experiment 1) and before (experiment 2) oral treatment with pecan shell aqueous extract (AE), a natural and promissory antioxidant. When administered previously (exp.1), the AE prevented OD and catalepsy induced by both reserpine and haloperidol. When reserpine and haloperidol were administered before the extract (exp.2), the animals developed OD and catalepsy all the same. However, the orofacial parameter (but not catalepsy) in both animal models was reversed after 7 and 14 days of AE treatment. These results indicate that, acute reserpine and subchronic haloperidol administrations induced similar motor disorders, although through different mechanisms, and therefore are important animal models to study the physiopathology of extrapyramidal disorders. Comparatively, the pecan shell AE was able to both prevent and reverse OD but only to prevent catalepsy. These results reinforce the role of oxidative stress and validate the two animal models used here. Our findings also favor the idea of prevention of extrapyramidal disorders, rather than their reversal. Copyright © 2011 Elsevier B.V. All rights reserved.
Mayer, Richard E; Mathias, Amanda; Wetzell, Karen
2002-09-01
Students received a narrated animation explaining the workings of a car's braking system (Experiments 1 and 2) or a bicycle tire pump (Experiment 3) and then took retention and transfer tests. Some students received pre-training concerning each of the components in the system before receiving the narrated animation (pre-training group), whereas others received no pre-training (no pre-training group) or--only in Experiment 3--training after the narrated animation (post-training group). The pre-training described or depicted the possible states of each part. Students in the pre-training group performed better than did students in other groups on tests of transfer (in all 3 experiments) and retention (in Experiments 1 and 2). Results are consistent with a 2-stage theory of mental model construction.
Reprint: Good laboratory practice: preventing introduction of bias at the bench
Macleod, Malcolm R; Fisher, Marc; O’Collins, Victoria; Sena, Emily S; Dirnagl, Ulrich; Bath, Philip MW; Buchan, Alistair; van der Worp, H Bart; Traystman, Richard J; Minematsu, Kazuo; Donnan, Geoffrey A; Howells, David W
2009-01-01
As a research community, we have failed to show that drugs, which show substantial efficacy in animal models of cerebral ischemia, can also improve outcome in human stroke. Accumulating evidence suggests this may be due, at least in part, to problems in the design, conduct, and reporting of animal experiments which create a systematic bias resulting in the overstatement of neuroprotective efficacy. Here, we set out a series of measures to reduce bias in the design, conduct and reporting of animal experiments modeling human stroke. PMID:18797473
Establishment of a tumor neovascularization animal model with biomaterials in rabbit corneal pouch.
Chu, Yu-Ping; Li, Hong-Chuan; Ma, Ling; Xia, Yang
2018-06-01
The present animal model of tumor neovascularization most often used by researchers is zebrafish. For studies on human breast cancer cell neovascularization, a new animal model was established to enable a more convenient study of tumor neovascularization. A sodium alginate-gelatin blend gel system was used to design the new animal model. The model was established using rabbit corneal pouch implantation. Then, the animal model was validated by human breast cancer cell lines MCF-7-Kindlin-2 and MCF-7-CMV. The experiment intuitively observed the relationship between tumor and neovascularization, and demonstrated the advantages of this animal model in the study of tumor neovascularization. The use of sodium alginate-gelatin blends to establish tumor neovascularization in a rabbit corneal pouch is a novel and ideal method for the study of neovascularization. It may be a better animal model for expanding the research in this area. Copyright © 2018 Elsevier Inc. All rights reserved.
Flaws in animal studies exploring statins and impact on meta-analysis.
Moja, Lorenzo; Pecoraro, Valentina; Ciccolallo, Laura; Dall'Olmo, Luigi; Virgili, Gianni; Garattini, Silvio
2014-06-01
Animal experiments should be appropriately designed, correctly analysed and transparently reported to increase their scientific validity and maximise the knowledge gained from each experiment. This systematic review of animal experiments investigating statins evaluates their quality of reporting and methodological aspects as well as their implications for the conduction of meta-analyses. We searched medline and embase for studies reporting research on statins in mice, rats and rabbits. We collected detailed information about the characteristics of studies, animals and experimental methods. We retrieved 161 studies. A little over half did not report randomisation (55%) and most did not describe blinding (88%). All studies reported details on the experimental procedure, although many omitted information about animal gender, age or weight. Four percent did not report the number of animals used. None reported the sample size. Fixed- and random-effects models gave different results (ratio of effect size increased by five folds). Heterogeneity was consistently substantial within animal models, for which accounting for covariates had minimal impact. Publication bias is highly suspected across studies. Although statins showed efficacy in animal models, preclinical studies highlighted fundamental problems in the way in which such research is conducted and reported. Results were often difficult to interpret and reproduce. Different meta-analytic approaches were highly inconsistent: a reliable approach to estimate the true parameter was imperceptible. Policies that address these issues are required from investigators, editors and institutions that care about the quality standards and ethics of animal research. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.
The Microminipig as an Animal Model for Influenza A Virus Infection.
Iwatsuki-Horimoto, Kiyoko; Nakajima, Noriko; Shibata, Masatoshi; Takahashi, Kenta; Sato, Yuko; Kiso, Maki; Yamayoshi, Seiya; Ito, Mutsumi; Enya, Satoko; Otake, Masayoshi; Kangawa, Akihisa; da Silva Lopes, Tiago Jose; Ito, Hirotaka; Hasegawa, Hideki; Kawaoka, Yoshihiro
2017-01-15
Pigs are considered a mixing vessel for the generation of novel pandemic influenza A viruses through reassortment because of their susceptibility to both avian and human influenza viruses. However, experiments to understand reassortment in pigs in detail have been limited because experiments with regular-sized pigs are difficult to perform. Miniature pigs have been used as an experimental animal model, but they are still large and require relatively large cages for housing. The microminipig is one of the smallest miniature pigs used for experiments. Introduced in 2010, microminipigs weigh around 10 kg at an early stage of maturity (6 to 7 months old) and are easy to handle. To evaluate the microminipig as an animal model for influenza A virus infection, we compared the receptor distribution of 10-week-old male pigs (Yorkshire Large White) and microminipigs. We found that both animals have SAα2,3Gal and SAα2,6Gal in their respiratory tracts, with similar distributions of both receptor types. We further found that the sensitivity of microminipigs to influenza A viruses was the same as that of larger miniature pigs. Our findings indicate that the microminipig could serve as a novel model animal for influenza A virus infection. The microminipig is one of the smallest miniature pigs in the world and is used as an experimental animal model for life science research. In this study, we evaluated the microminipig as a novel animal model for influenza A virus infection. The distribution of influenza virus receptors in the respiratory tract of the microminipig was similar to that of the pig, and the sensitivity of microminipigs to influenza A viruses was the same as that of miniature pigs. Our findings suggest that microminipigs represent a novel animal model for influenza A virus infection. Copyright © 2017 American Society for Microbiology.
Estimation of the Dose and Dose Rate Effectiveness Factor
NASA Technical Reports Server (NTRS)
Chappell, L.; Cucinotta, F. A.
2013-01-01
Current models to estimate radiation risk use the Life Span Study (LSS) cohort that received high doses and high dose rates of radiation. Transferring risks from these high dose rates to the low doses and dose rates received by astronauts in space is a source of uncertainty in our risk calculations. The solid cancer models recommended by BEIR VII [1], UNSCEAR [2], and Preston et al [3] is fitted adequately by a linear dose response model, which implies that low doses and dose rates would be estimated the same as high doses and dose rates. However animal and cell experiments imply there should be curvature in the dose response curve for tumor induction. Furthermore animal experiments that directly compare acute to chronic exposures show lower increases in tumor induction than acute exposures. A dose and dose rate effectiveness factor (DDREF) has been estimated and applied to transfer risks from the high doses and dose rates of the LSS cohort to low doses and dose rates such as from missions in space. The BEIR VII committee [1] combined DDREF estimates using the LSS cohort and animal experiments using Bayesian methods for their recommendation for a DDREF value of 1.5 with uncertainty. We reexamined the animal data considered by BEIR VII and included more animal data and human chromosome aberration data to improve the estimate for DDREF. Several experiments chosen by BEIR VII were deemed inappropriate for application to human risk models of solid cancer risk. Animal tumor experiments performed by Ullrich et al [4], Alpen et al [5], and Grahn et al [6] were analyzed to estimate the DDREF. Human chromosome aberration experiments performed on a sample of astronauts within NASA were also available to estimate the DDREF. The LSS cohort results reported by BEIR VII were combined with the new radiobiology results using Bayesian methods.
The Roles of Mental Animations and External Animations in Understanding Mechanical Systems
ERIC Educational Resources Information Center
Hegarty, Mary; Kriz, Sarah; Cate, Christina
2003-01-01
The effects of computer animations and mental animation on people's mental models of a mechanical system are examined. In 3 experiments, students learned how a mechanical system works from various instructional treatments including viewing a static diagram of the machine, predicting motion from static diagrams, viewing computer animations, and…
Smielik, Ievgen; Hütwohl, Jan-Marco; Gierszewski, Stefanie; Witte, Klaudia; Kuhnert, Klaus-Dieter
2017-01-01
Abstract Animal behavior researchers often face problems regarding standardization and reproducibility of their experiments. This has led to the partial substitution of live animals with artificial virtual stimuli. In addition to standardization and reproducibility, virtual stimuli open new options for researchers since they are easily changeable in morphology and appearance, and their behavior can be defined. In this article, a novel toolchain to conduct behavior experiments with fish is presented by a case study in sailfin mollies Poecilia latipinna. As the toolchain holds many different and novel features, it offers new possibilities for studies in behavioral animal research and promotes the standardization of experiments. The presented method includes options to design, animate, and present virtual stimuli to live fish. The designing tool offers an easy and user-friendly way to define size, coloration, and morphology of stimuli and moreover it is able to configure virtual stimuli randomly without any user influence. Furthermore, the toolchain brings a novel method to animate stimuli in a semiautomatic way with the help of a game controller. These created swimming paths can be applied to different stimuli in real time. A presentation tool combines models and swimming paths regarding formerly defined playlists, and presents the stimuli onto 2 screens. Experiments with live sailfin mollies validated the usage of the created virtual 3D fish models in mate-choice experiments. PMID:29491963
Müller, Klaus; Smielik, Ievgen; Hütwohl, Jan-Marco; Gierszewski, Stefanie; Witte, Klaudia; Kuhnert, Klaus-Dieter
2017-02-01
Animal behavior researchers often face problems regarding standardization and reproducibility of their experiments. This has led to the partial substitution of live animals with artificial virtual stimuli. In addition to standardization and reproducibility, virtual stimuli open new options for researchers since they are easily changeable in morphology and appearance, and their behavior can be defined. In this article, a novel toolchain to conduct behavior experiments with fish is presented by a case study in sailfin mollies Poecilia latipinna . As the toolchain holds many different and novel features, it offers new possibilities for studies in behavioral animal research and promotes the standardization of experiments. The presented method includes options to design, animate, and present virtual stimuli to live fish. The designing tool offers an easy and user-friendly way to define size, coloration, and morphology of stimuli and moreover it is able to configure virtual stimuli randomly without any user influence. Furthermore, the toolchain brings a novel method to animate stimuli in a semiautomatic way with the help of a game controller. These created swimming paths can be applied to different stimuli in real time. A presentation tool combines models and swimming paths regarding formerly defined playlists, and presents the stimuli onto 2 screens. Experiments with live sailfin mollies validated the usage of the created virtual 3D fish models in mate-choice experiments.
An overview of animal models of pain: disease models and outcome measures
Gregory, N; Harris, AL; Robinson, CR; Dougherty, PM; Fuchs, PN; Sluka, KA
2013-01-01
Pain is ultimately a perceptual phenomenon. It is built from information gathered by specialized pain receptors in tissue, modified by spinal and supraspinal mechanisms, and integrated into a discrete sensory experience with an emotional valence in the brain. Because of this, studying intact animals allows the multidimensional nature of pain to be examined. A number of animal models have been developed, reflecting observations that pain phenotypes are mediated by distinct mechanisms. Animal models of pain are designed to mimic distinct clinical diseases to better evaluate underlying mechanisms and potential treatments. Outcome measures are designed to measure multiple parts of the pain experience including reflexive hyperalgesia measures, sensory and affective dimensions of pain and impact of pain on function and quality of life. In this review we discuss the common methods used for inducing each of the pain phenotypes related to clinical pain syndromes, as well as the main behavioral tests for assessing pain in each model. PMID:24035349
Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho
2017-01-01
As the world's space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organism's self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as "pathfinders," which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes. In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.
Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho
2017-01-01
As the worlds space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organisms self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as pathfinders, which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes.In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.
Cataractogenic potential of ionizing radiations in animal models that simulate man
NASA Technical Reports Server (NTRS)
Lett, J. T.; Cox, A. B.; Lee, A. C.
1986-01-01
Aspects of experiments on radiation-induced lenticular opacification during the life spans of two animal models, the New Zealand white rabbit and the rhesus monkey, are compared and contrasted with published results from a life-span study of another animal model, the beagle dog, and the most recent data from the ongoing study of the survivors from radiation exposure at Hiroshima and Nagasaki. An important connection among the three animal studies is that all the measurements of cataract indices were made by one of the authors (Lee), so variation from personal subjectivity was reduced to a minimum. The primary objective of the rabbit experiments (radiations involved: Fe-56, Ar-40, and Ne-20 ions and Co-60 gamma photons) is an evaluation of hazards to astronauts from Galactic particulate radiations. An analogous evaluation of hazards from solar flares during space flight is being made with monkeys exposed to 32, 55, 138 and 400-MeV protons. Conclusions are drawn about the proper use of animal models to simulate radiation responses in man and the levels of radiation-induced lenticular opacification that pose risks to man in space.
Animal Models of Subjective Tinnitus
2014-01-01
Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients. PMID:24829805
Animal models in motion sickness research
NASA Technical Reports Server (NTRS)
Daunton, Nancy G.
1990-01-01
Practical information on candidate animal models for motion sickness research and on methods used to elicit and detect motion sickness in these models is provided. Four good potential models for use in motion sickness experiments include the dog, cat, squirrel monkey, and rat. It is concluded that the appropriate use of the animal models, combined with exploitation of state-of-the-art biomedical techniques, should generate a great step forward in the understanding of motion sickness mechanisms and in the development of efficient and effective approaches to its prevention and treatment in humans.
[EXPERIMENTAL MODEL AND CURRENCY OF EXPERIMENT OF DISTANT RESULTS OF LEAD EXPOSITION].
Pataraia, G; Bagashvili, T; Andronikashvili, G; Gurashvili, T; Gogeshvili, K; Avalishvili, M
2017-02-01
In order to explore the distant results of exposition of little doses of lead, for the objective of the experiment model we have selected 32 mongral rats, of different age, but aged of both sex. Experimental animals were divided in two groups. During first two month from the beginning of the experiment, together with permissible food, animals were given the water, in which was open Pb(NO3)2 - to first group 1.5 mg on kg/weight and to II group 15 mg on kg/weight during the day and night. Before the beginning of the experiment, in the time of process and after it, observation was conducted, description and collection of photo-video materials about the behavior of animals, physiological parameters, possible change of weight, clear-sighted changes in appearance. During the autopsy of the animal, died during the experiment, it turned out that the reason of the death was acute heart failure caused by septicopyemia, the bilateral abscess pneumonia and right sided purulent pleurisy. The reason of the death of second animal was DIC (disseminated intravascular coagulation) Syndrome and the polyorganic pathology caused by it. We made the Nembutal injection to third animal because there was detected the 50×40×20 sized subcutaneous formation on the right surface of the chest, that turned out to be the breast adenoma with cystic fibrosis. After the completion of the experiment of distant results of lead exposition, surviving rats before autopsy will be dropped to sleep with high dose of drugs in compliance with the "Guidelines of animal care and ethical behavior", taken material will be processed for histopathological (in case of necessity histochemical and imunomorphological) and electronic microscopic researches.
Heard, Kennon; Cleveland, Nathan R; Krier, Shay
2011-11-01
There are no controlled human studies to determine the efficacy of benzodiazepines or antipsychotic medications for prevention or treatment of acute cocaine toxicity. The only available controlled data are from animal models and these studies have reported inconsistent benefits. The objective of this study was to quantify the reported efficacy of benzodiazepines and antipsychotic medication for the prevention of mortality due to cocaine poisoning. We conducted a systematic review to identify English language articles describing experiments that compared a benzodiazepine or antipsychotic medication to placebo for the prevention of acute cocaine toxicity in an animal model. We then used these articles in a meta-analysis with a random-effects model to quantify the absolute risk reduction observed in these experiments. We found 10 articles evaluating antipsychotic medications and 15 articles evaluating benzodiazepines. Antipsychotic medications reduced the risk of death by 27% (95% CI, 15.2%-38.7%) compared to placebo and benzodiazepines reduced the risk of death by 52% (42.8%-60.7%) compared to placebo. Both treatments showed evidence of a dose-response effect, and no experiment found a statistically significant increase in risk of death. We conclude that both benzodiazepines and antipsychotic medications are effective for the prevention of lethality from cocaine toxicity in animal models.
The Effects of Panax ginseng and Panax quinquefolius on Thermoregulation in Animal Models
Hong, Bin Na; Do, Moon Ho; Her, You Ri
2015-01-01
We devised a study using animal models of hyperthermia and hypothermia and also attempted to accurately assess the effects of Panax ginseng (PG) and Panax quinquefolius (PQ) on body temperature using these models. In addition, we investigated the effects of PG and PQ in our animal models in high and low temperature environments. The results of our experiments show that mice with normothermia, hyperthermia, and hypothermia maintained their body temperatures after a certain period in accordance with the condition of each animal model. In our experiments of body temperature change in models of normal, low, or high room temperature, the hyperthermic model did not show any body temperature change in either the PG- or PQ-administered group. In the normal and low room temperature models, the group administered PG maintained body temperature, while the body temperature of the PQ-administered group was lower than or similar to that of the control group. In conclusion, the fact that PG increases body temperature could not be verified until now. We also showed that the effect of maintaining body temperature in the PG-administered group was superior in a hypothermia-prone low temperature environment. PMID:25709709
Mannava, Sandeep; Plate, Johannes F; Tuohy, Christopher J; Seyler, Thorsten M; Whitlock, Patrick W; Curl, Walton W; Smith, Thomas L; Saul, Katherine R
2013-07-01
The purpose of this article is to review basic science studies using various animal models for rotator cuff research and to describe structural, biomechanical, and functional changes to muscle following rotator cuff tears. The use of computational simulations to translate the findings from animal models to human scale is further detailed. A comprehensive review was performed of the basic science literature describing the use of animal models and simulation analysis to examine muscle function following rotator cuff injury and repair in the ageing population. The findings from various studies of rotator cuff pathology emphasize the importance of preventing permanent muscular changes with detrimental results. In vivo muscle function, electromyography, and passive muscle-tendon unit properties were studied before and after supraspinatus tenotomy in a rodent rotator cuff injury model (acute vs chronic). Then, a series of simulation experiments were conducted using a validated computational human musculoskeletal shoulder model to assess both passive and active tension of rotator cuff repairs based on surgical positioning. Outcomes of rotator cuff repair may be improved by earlier surgical intervention, with lower surgical repair tensions and fewer electromyographic neuromuscular changes. An integrated approach of animal experiments, computer simulation analyses, and clinical studies may allow us to gain a fundamental understanding of the underlying pathology and interpret the results for clinical translation.
Reproducibility Issues: Avoiding Pitfalls in Animal Inflammation Models.
Laman, Jon D; Kooistra, Susanne M; Clausen, Björn E
2017-01-01
In light of an enhanced awareness of ethical questions and ever increasing costs when working with animals in biomedical research, there is a dedicated and sometimes fierce debate concerning the (lack of) reproducibility of animal models and their relevance for human inflammatory diseases. Despite evident advancements in searching for alternatives, that is, replacing, reducing, and refining animal experiments-the three R's of Russel and Burch (1959)-understanding the complex interactions of the cells of the immune system, the nervous system and the affected tissue/organ during inflammation critically relies on in vivo models. Consequently, scientific advancement and ultimately novel therapeutic interventions depend on improving the reproducibility of animal inflammation models. As a prelude to the remaining hands-on protocols described in this volume, here, we summarize potential pitfalls of preclinical animal research and provide resources and background reading on how to avoid them.
Pedersen, Ingeborg; Ihlebæk, Camilla; Kirkevold, Marit
2012-01-01
The main aim of this study was to obtain participants' own experience of a farm animal-assisted intervention, and what they perceived as important elements in relation to their mental health. A qualitative study, inspired by a phenomenological-hermeneutical perspective was conducted. Eight persons with clinical depression who had completed a 12-week farm animal-assisted intervention at a dairy farm participated in thematic interviews between May and June 2009. The intervention was regarded as a positive experience for the participants. The analyses revealed that central elements in the intervention were the possibility to experience an ordinary work life, but also the importance of a distraction to their illness. Furthermore, the flexibility of the intervention made it possible to adjust the intervention to the participants' shifting reality and was thereby a key element in farm animal-assisted intervention. The flexibility and adapted work tasks were important elements that the participants associated with their experience of coping. A model showing the interaction between the different elements reported as important by the participants was constructed. This study shows that a farm animal-assisted intervention could be a supplement in mental health rehabilitation. All the elements in our model could possibly influence positively on mental health.
Cataractogenic potential of ionizing radiations in animal models that simulate man
NASA Astrophysics Data System (ADS)
Lett, J. T.; Cox, A. B.; Lee, A. C.
Aspects of experiments on radiation-induced lenticular opacification during the life spans of two animal models, the New Zealand white rabbit and the rhesus monkey, are compared and contrasted with published results from a life span study of another animal model, the beagle dog, and the most recent data from the ongoing study of the survivors from radiation exposure at Hiroshima and Nagasaki. An important connection among the three animal studies is that all the measurements of cataract indices were made by one of the authors (A.C.L.), so variation from personal subjectivity was reduced to a minimum. The primary objective of the rabbit experiments (radiations involved: 56Fe, 40Ar and 20Ne ions and 60Co γ photons) is an evaluation of hazards to astronauts from galactic particulate radiations. An analogous evaluation of hazards from solar flares during space flight is being made with monkeys exposed to 32, 55, 138 and 400 MeV protons. Conclusions are drawn about the proper use of animal models to simulate radiation responses in man and the levels of radiation-induced lenticular opacification that pose risks to man in space.
Animal models of traumatic brain injury
Xiong, Ye; Mahmood, Asim; Chopp, Michael
2014-01-01
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity in both civilian life and the battlefield worldwide. Survivors of TBI frequently experience long-term disabling changes in cognition, sensorimotor function and personality. Over the past three decades, animal models have been developed to replicate the various aspects of human TBI, to better understand the underlying pathophysiology and to explore potential treatments. Nevertheless, promising neuroprotective drugs, which were identified to be effective in animal TBI models, have all failed in phase II or phase III clinical trials. This failure in clinical translation of preclinical studies highlights a compelling need to revisit the current status of animal models of TBI and therapeutic strategies. PMID:23329160
Animal models in biological and biomedical research - experimental and ethical concerns.
Andersen, Monica L; Winter, Lucile M F
2017-09-04
Animal models have been used in experimental research to increase human knowledge and contribute to finding solutions to biological and biomedical questions. However, increased concern for the welfare of the animals used, and a growing awareness of the concept of animal rights, has brought a greater focus on the related ethical issues. In this review, we intend to give examples on how animals are used in the health research related to some major health problems in Brazil, as well as to stimulate discussion about the application of ethics in the use of animals in research and education, highlighting the role of National Council for the Control of Animal Experimentation (Conselho Nacional de Controle de Experimentação Animal - CONCEA) in these areas. In 2008, Brazil emerged into a new era of animal research regulation, with the promulgation of Law 11794, previously known as the Arouca Law, resulting in an increased focus, and rapid learning experience, on questions related to all aspects of animal experimentation. The law reinforces the idea that animal experiments must be based on ethical considerations and integrity-based assumptions, and provides a regulatory framework to achieve this. This review describes the health research involving animals and the current Brazilian framework for regulating laboratory animal science, and hopes to help to improve the awareness of the scientific community of these ethical and legal rules.
Smith, M M; Clarke, E C; Little, C B
2017-03-01
To review the factors in experimental design that contribute to poor translation of pre-clinical research to therapies for patients with osteoarthritis (OA) and how this might be improved. Narrative review of the literature, and evaluation of the different stages of design conduct and analysis of studies using animal models of OA to define specific issues that might reduce quality of evidence and how this can be minimised. Preventing bias and improving experimental rigour and reporting are important modifiable factors to improve translation from pre-clinical animal models to successful clinical trials of therapeutic agents. Despite publication and adoption by many journals of guidelines such as Animals in Research: Reporting In Vivo Experiments (ARRIVE), experimental animal studies published in leading rheumatology journals are still deficient in their reporting. In part, this may be caused by researchers first consulting these guidelines after the completion of experiments, at the time of publication. This review discusses factors that can (1) bias the outcome of experimental studies using animal models of osteoarthritis or (2) alter the quality of evidence for translation. We propose a checklist to consult prior to starting experiments; in the Design and Execution of Protocols for Animal Research and Treatment (DEPART). Following DEPART during the design phase will enable completion of the ARRIVE checklist at the time of publication, and thus improve the quality of evidence for inclusion of experimental animal research in meta-analyses and systematic reviews: "DEPART well-prepared and ARRIVE safely". Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Howe, Andrew; O'Hare, Peter; Crawford, Paul; Delafont, Bruno; McAlister, Olibhear; Di Maio, Rebecca; Clutton, Eddie; Adgey, Jennifer; McEneaney, David
2015-11-01
Optimising the depth and rate of applied chest compressions following out of hospital cardiac arrest is crucial in maintaining end organ perfusion and improving survival. The impedance cardiogram (ICG) measured via defibrillator pads produces a characteristic waveform during chest compressions with the potential to provide feedback on cardiopulmonary resuscitation (CPR) and enhance performance. The objective of this pre-clinical study was to investigate the relationship between mechanical and physiological markers of CPR efficacy in a porcine model and examine the strength of correlation between the ICG amplitude, compression depth and end-tidal CO2 (ETCO2). Two experiments were performed using 24 swine (12 per experiment). For experiment 1, ventricular fibrillation (VF) was induced and mechanical CPR commenced at varying thrusts (0-60 kg) for 2 min intervals. Chest compression depth was recorded using a Philips QCPR device with additional recording of invasive physiological parameters: systolic blood pressure, ETCO2, cardiac output and carotid flow. For experiment 2, VF was induced and mechanical CPR commenced at varying depths (0-5 cm) for 2 min intervals. The ICG was recorded via defibrillator pads attached to the animal's sternum and connected to a Heartsine 500 P defibrillator. ICG amplitude, chest compression depth, systolic blood pressure and ETCO2 were recorded during each cycle. In both experiments the within-animal correlation between the measured parameters was assessed using a mixed effect model. In experiment 1 moderate within-animal correlations were observed between physiological parameters and compression depth (r=0.69-0.77) and thrust (r=0.66-0.82). A moderate correlation was observed between compression depth and thrust (r=0.75). In experiment 2 a strong within-animal correlation and moderate overall correlations were observed between ICG amplitude and compression depth (r=0.89, r=0.79) and ETCO2 (r=0.85, r=0.64). In this porcine model of induced cardiac arrest moderate within animal correlations were observed between mechanical and physiological markers of chest compression efficacy demonstrating the challenge in utilising a single mechanical metric to quantify chest compression efficacy. ICG amplitude demonstrated strong within animal correlations with compression depth and ETCO2 suggesting its potential utility to provide CPR feedback in the out of hospital setting to improve performance. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Chappell, Jackie; Hawes, Nick
2012-01-01
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended. PMID:22927571
Chappell, Jackie; Hawes, Nick
2012-10-05
Do we fully understand the structure of the problems we present to our subjects in experiments on animal cognition, and the information required to solve them? While we currently have a good understanding of the behavioural and neurobiological mechanisms underlying associative learning processes, we understand much less about the mechanisms underlying more complex forms of cognition in animals. In this study, we present a proposal for a new way of thinking about animal cognition experiments. We describe a process in which a physical cognition task domain can be decomposed into its component parts, and models constructed to represent both the causal events of the domain and the information available to the agent. We then implement a simple set of models, using the planning language MAPL within the MAPSIM simulation environment, and applying it to a puzzle tube task previously presented to orangutans. We discuss the results of the models and compare them with the results from the experiments with orangutans, describing the advantages of this approach, and the ways in which it could be extended.
Are There Feasible Alternatives to Laboratory Animals?
ERIC Educational Resources Information Center
Rowan, A. N.
1976-01-01
Discusses several alternatives to the use of laboratory animals in investigating biomedical problems. Alternatives include tissue culture, use of plant and bacterial material, redesigning experiments, and construction of mathematical and computer models. (CS)
Animal models of GM2 gangliosidosis: utility and limitations.
Lawson, Cheryl A; Martin, Douglas R
2016-01-01
GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay-Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay-Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described.
Animal models of GM2 gangliosidosis: utility and limitations
Lawson, Cheryl A; Martin, Douglas R
2016-01-01
GM2 gangliosidosis, a subset of lysosomal storage disorders, is caused by a deficiency of the glycohydrolase, β-N-acetylhexosaminidase, and includes the closely related Tay–Sachs and Sandhoff diseases. The enzyme deficiency prevents the normal, stepwise degradation of ganglioside, which accumulates unchecked within the cellular lysosome, particularly in neurons. As a result, individuals with GM2 gangliosidosis experience progressive neurological diseases including motor deficits, progressive weakness and hypotonia, decreased responsiveness, vision deterioration, and seizures. Mice and cats are well-established animal models for Sandhoff disease, whereas Jacob sheep are the only known laboratory animal model of Tay–Sachs disease to exhibit clinical symptoms. Since the human diseases are relatively rare, animal models are indispensable tools for further study of pathogenesis and for development of potential treatments. Though no effective treatments for gangliosidoses currently exist, animal models have been used to test promising experimental therapies. Herein, the utility and limitations of gangliosidosis animal models and how they have contributed to the development of potential new treatments are described. PMID:27499644
A systematic review of animal models for Staphylococcus aureus osteomyelitis
Reizner, W.; Hunter, J.G.; O’Malley, N.T.; Southgate, R.D.; Schwarz, E.M.; Kates, S.L.
2015-01-01
Staphylococcus aureus (S. aureus) osteomyelitis is a significant complication for orthopaedic patients undergoing surgery, particularly with fracture fixation and arthroplasty. Given the difficulty in studying S. aureus infections in human subjects, animal models serve an integral role in exploring the pathogenesis of osteomyelitis, and aid in determining the efficacy of prophylactic and therapeutic treatments. Animal models should mimic the clinical scenarios seen in patients as closely as possible to permit the experimental results to be translated to the corresponding clinical care. To help understand existing animal models of S. aureus, we conducted a systematic search of PubMed & Ovid MEDLINE to identify in vivo animal experiments that have investigated the management of S. aureus osteomyelitis in the context of fractures and metallic implants. In this review, experimental studies are categorized by animal species and are further classified by the setting of the infection. Study methods are summarized and the relevant advantages and disadvantages of each species and model are discussed. While no ideal animal model exists, the understanding of a model’s strengths and limitations should assist clinicians and researchers to appropriately select an animal model to translate the conclusions to the clinical setting. PMID:24668594
Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L
2010-01-01
Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models. PMID:20579432
Lynch, Wendy J; Nicholson, Katherine L; Dance, Mario E; Morgan, Richard W; Foley, Patricia L
2010-06-01
Substance abuse and addiction are well recognized public health concerns, with 2 NIH institutes (the National Institute on Drug Abuse and the National Institute on Alcohol Abuse and Alcoholism) specifically targeting this societal problem. As such, this is an important area of research for which animal experiments play a critical role. This overview presents the importance of substance abuse and addiction in society; reviews the development and refinement of animal models that address crucial areas of biology, pathophysiology, clinical treatments, and drug screening for abuse liability; and discusses some of the unique veterinary, husbandry, and IACUC challenges associated with these models.
A review of fundamental principles for animal models of DOHaD research: an Australian perspective.
Dickinson, H; Moss, T J; Gatford, K L; Moritz, K M; Akison, L; Fullston, T; Hryciw, D H; Maloney, C A; Morris, M J; Wooldridge, A L; Schjenken, J E; Robertson, S A; Waddell, B J; Mark, P J; Wyrwoll, C S; Ellery, S J; Thornburg, K L; Muhlhausler, B S; Morrison, J L
2016-10-01
Epidemiology formed the basis of 'the Barker hypothesis', the concept of 'developmental programming' and today's discipline of the Developmental Origins of Health and Disease (DOHaD). Animal experimentation provided proof of the underlying concepts, and continues to generate knowledge of underlying mechanisms. Interventions in humans, based on DOHaD principles, will be informed by experiments in animals. As knowledge in this discipline has accumulated, from studies of humans and other animals, the complexity of interactions between genome, environment and epigenetics, has been revealed. The vast nature of programming stimuli and breadth of effects is becoming known. As a result of our accumulating knowledge we now appreciate the impact of many variables that contribute to programmed outcomes. To guide further animal research in this field, the Australia and New Zealand DOHaD society (ANZ DOHaD) Animals Models of DOHaD Research Working Group convened at the 2nd Annual ANZ DOHaD Congress in Melbourne, Australia in April 2015. This review summarizes the contributions of animal research to the understanding of DOHaD, and makes recommendations for the design and conduct of animal experiments to maximize relevance, reproducibility and translation of knowledge into improving health and well-being.
Sabatino, Denise E.; Nichols, Timothy C.; Merricks, Elizabeth; Bellinger, Dwight A.; Herzog, Roland W.; Monahan, Paul E.
2013-01-01
The X-linked bleeding disorder hemophilia is caused by mutations in coagulation factor VIII (hemophilia A) or factor IX (hemophilia B). Unless prophylactic treatment is provided, patients with severe disease (less than 1% clotting activity) typically experience frequent spontaneous bleeds. Current treatment is largely based on intravenous infusion of recombinant or plasma-derived coagulation factor concentrate. More effective factor products are being developed. Moreover, gene therapies for sustained correction of hemophilia are showing much promise in pre-clinical studies and in clinical trials. These advances in molecular medicine heavily depend on availability of well-characterized small and large animal models of hemophilia, primarily hemophilia mice and dogs. Experiments in these animals represent important early and intermediate steps of translational research aimed at development of better and safer treatments for hemophilia, such a protein and gene therapies or immune tolerance protocols. While murine models are excellent for studies of large groups of animals using genetically defined strains, canine models are important for testing scale-up and for longer-term follow-up as well as for studies that require larger blood volumes. PMID:22137432
Animal models and their importance to human physiological responses in microgravity
NASA Technical Reports Server (NTRS)
Tipton, C. M.
1996-01-01
Two prominent theories to explain the physiological effects of microgravity relate to the cascade of changes associated with the cephalic shifts of fluids and the absence of tissue deformation forces. One-g experiments for humans used bed rest and the head-down tilt (HDT) method, while animal experiments have been conducted using the tail-suspended, head-down, and hindlimbs non-weightbearing model. Because of the success of the HDT approach with rats to simulate the gravitational effects on the musculoskeletal system exhibited by humans, the same model has been used to study the effects of gravity on the cardiopulmonary systems of humans and other vertebrates. Results to date indicate the model is effective in producing comparable changes associated with blood volume, erythropoiesis, cardiac mass, baroreceptor responsiveness, carbohydrate metabolism, post-flight VO2max, and post-flight cardiac output during exercise. Inherent with these results is the potential of the model to be useful in investigating responsible mechanisms. The suspension model has promise in understanding the capillary blood PO2 changes in space as well as the arterial PO2 changes in subjects participating in a HDT experiment. However, whether the model can provide insights on the up-or-down regulation of adrenoreceptors remains to be determined, and many investigators believe the HDT approach should not be followed to study gravitational influences on pulmonary function in either humans or animals. It was concluded that the tail-suspended animal model had sufficient merit to study in-flight and post-flight human physiological responses and mechanisms.
Olsson, I Anna S; Hansen, Axel K; Sandøe, Peter
2008-07-01
The use of animals in biomedical and other research presents an ethical dilemma: we do not want to lose scientific benefits, nor do we want to cause laboratory animals to suffer. Scientists often refer to the potential human benefits of animal models to justify their use. However, even if this is accepted, it still needs to be argued that the same benefits could not have been achieved with a mitigated impact on animal welfare. Reducing the adverse effects of scientific protocols ('refinement') is therefore crucial in animal-based research. It is especially important that researchers share knowledge on how to avoid causing unnecessary suffering. We have previously demonstrated that even in studies in which animal use leads to spontaneous death, scientists often fail to report measures to minimize animal distress (Olsson et al. 2007). In this paper, we present the full results of a case study examining reports, published in peer-reviewed journals between 2003 and 2004, of experiments employing animal models to study the neurodegenerative disorder Huntington's disease. In 51 references, experiments in which animals were expected to develop motor deficits so severe that they would have difficulty eating and drinking normally were conducted, yet only three references were made to housing adaptation to facilitate food and water intake. Experiments including end-stages of the disease were reported in 14 papers, yet of these only six referred to the euthanasia of moribund animals. If the reference in scientific publications reflects the actual application of refinement, researchers do not follow the 3Rs (replacement, reduction, refinement) principle. While in some cases, it is clear that less-than-optimal techniques were used, we recognize that scientists may apply refinement without referring to it; however, if they do not include such information in publications, it suggests they find it less relevant. Journal publishing policy could play an important role: first, in ensuring that referees seriously consider whether submitted studies were indeed carried out with the smallest achievable negative impact on the animals and, secondly, in encouraging scientists to share refinements through the inclusion of a 3Rs section in papers publishing the results of animal-based research.
Ultrasonic brain therapy: First trans-skull in vivo experiments on sheep using adaptive focusing
NASA Astrophysics Data System (ADS)
Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Michael; Fink, Mathias; Boch, Anne-Laure; Kujas, Michèle
2004-05-01
A high-power prototype dedicated to trans-skull therapy has been tested in vivo on 20 sheep. The array is made of 200 high-power transducers working at 1-MHz central and is able to reach 260 bars at focus in water. An echographic array connected to a Philips HDI 1000 system has been inserted in the therapeutic array in order to perform real-time monitoring of the treatment. A complete craniotomy has been performed on half of the treated animal models in order to get a reference model. On the other animals, a minimally invasive surgery has been performed thanks to a time-reversal experiment: a hydrophone was inserted at the target inside the brain thanks to a 1-mm2 craniotomy. A time-reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. For all the animals a specified region around the target was treated thanks to electronic beam steering. Animals were finally divided into three groups and sacrificed, respectively, 0, 1, and 2 weeks after treatment. Finally, histological examination confirmed tissue damage. These in vivo experiments highlight the strong potential of high-power time-reversal technology.
The Neurological Ecology of Fear: Insights Neuroscientists and Ecologists Have to Offer one Another
Clinchy, Michael; Schulkin, Jay; Zanette, Liana Y.; Sheriff, Michael J.; McGowan, Patrick O.; Boonstra, Rudy
2011-01-01
That the fear and stress of life-threatening experiences can leave an indelible trace on the brain is most clearly exemplified by post-traumatic stress disorder (PTSD). Many researchers studying the animal model of PTSD have adopted utilizing exposure to a predator as a life-threatening psychological stressor, to emulate the experience in humans, and the resulting body of literature has demonstrated numerous long-lasting neurological effects paralleling those in PTSD patients. Even though much more extreme, predator-induced fear and stress in animals in the wild was, until the 1990s, not thought to have any lasting effects, whereas recent experiments have demonstrated that the effects on free-living animals are sufficiently long-lasting to even affect reproduction, though the lasting neurological effects remain unexplored. We suggest neuroscientists and ecologists both have much to gain from collaborating in studying the neurological effects of predator-induced fear and stress in animals in the wild. We outline the approaches taken in the lab that appear most readily translatable to the field, and detail the advantages that studying animals in the wild can offer researchers investigating the “predator model of PTSD.” PMID:21629856
Stochastic modelling of animal movement.
Smouse, Peter E; Focardi, Stefano; Moorcroft, Paul R; Kie, John G; Forester, James D; Morales, Juan M
2010-07-27
Modern animal movement modelling derives from two traditions. Lagrangian models, based on random walk behaviour, are useful for multi-step trajectories of single animals. Continuous Eulerian models describe expected behaviour, averaged over stochastic realizations, and are usefully applied to ensembles of individuals. We illustrate three modern research arenas. (i) Models of home-range formation describe the process of an animal 'settling down', accomplished by including one or more focal points that attract the animal's movements. (ii) Memory-based models are used to predict how accumulated experience translates into biased movement choices, employing reinforced random walk behaviour, with previous visitation increasing or decreasing the probability of repetition. (iii) Lévy movement involves a step-length distribution that is over-dispersed, relative to standard probability distributions, and adaptive in exploring new environments or searching for rare targets. Each of these modelling arenas implies more detail in the movement pattern than general models of movement can accommodate, but realistic empiric evaluation of their predictions requires dense locational data, both in time and space, only available with modern GPS telemetry.
Uterus transplantation: Experimental animal models and recent experience in humans
Şahin, Sadık; Selçuk, Selçuk; Eroğlu, Mustafa; Karateke, Ateş
2015-01-01
Uterus transplantation has been considered as an alternative management modality in the last few years for adoption or gestational surrogacy for women with absence of uterus due to congenital or acquired reasons. Surrogacy is legal in only a few countries because of ethical, social and legal issues. Up to date, a total of 11 uterus transplantation cases have been reported in which uteri were harvested from ten live donors and one donor with brain death. After unsuccessful attempt of first uterus transplantation, many studies have been conducted in animals and these experimental models enabled our knowledge to increase on this topic. First experimental studies were performed in rodents; later uterus transplantation was accomplished in sheep, pigs and rabbits. Recently, researches in non-human primates have led the experience regarding transplantation technique and success to improve. In this review, we reviewed the experimental animal researches in the area of uterus transplantation and recent experience in humans. PMID:28913039
Featherstone, Robert E; Burton, Christie L; Coppa-Hopman, Romina; Rizos, Zoë; Sinyard, Judy; Kapur, Shitij; Fletcher, Paul J
2009-10-01
Schizophrenia is associated with increased rates of substance abuse that are thought to be the result of changes in cortical and mesolimbic dopamine activity. Previous work has shown that gestational methylazoxymethanol acetate (MAM) treatment induces increased mesolimbic dopamine activity when given around the time of embryonic day 17 (ED17), suggesting that MAM treatment may model some aspects of schizophrenia. Given that increased dopaminergic activity facilitates aspects of drug self-administration and reinstatement of drug seeking, the current experiments sought to assess cocaine self-administration in MAM treated animals. Experiment 1 examined the acquisition of cocaine self-administration in ED17 MAM and saline treated rats using a sub-threshold dose of cocaine. In experiment 2 ED17 MAM and saline treated animals were trained to self-administer cocaine and were then assessed under varying doses of cocaine (dose-response), followed by extinction and drug-induced reinstatement of responding. A subset of these animals was trained on a win-shift radial maze task, designed to detect impairments in hippocampal-dependent memory. In experiment 3, MAM and saline treated animals were assessed on a progressive ratio schedule of cocaine delivery. Finally, in experiment 4 MAM and saline treated animals were assessed on cocaine-induced locomotor activity across a range of doses of cocaine. MAM treatment disrupted performance of the win-shift task but did not alter cocaine self-administration or cocaine-induced locomotion. Implications of these results for the MAM model of schizophrenia are discussed.
Peters, Kristina; Michel, Maurice Stephan; Matis, Ulrike; Häcker, Axel
2006-01-01
Experiments to develop innovative surgical therapy procedures are conventionally conducted on animals, as crucial aspects like tissue removal and bleeding disposition cannot be investigated in vitro. Extracorporeal organ models however reflect these aspects and could thus reduce the use of animals for this purpose fundamentally in the future. The aim of this work was to validate the isolated perfused porcine kidney model with regard to its use for surgical purposes on the basis of histological and radiological procedures. The results show that neither storage nor artificial perfusion led to any structural or functional damage which would affect the quality of the organ. The kidney model is highly suitable for simulating the main aspects of renal physiology and allows a constant calibration of perfusion pressure and tissue temperature. Thus, with only a moderate amount of work involved, the kidney model provides a cheap and readily available alternative to conventional animal experiments; it allows standardised experimental settings and provides valid results.
2013-03-01
operation. 2.1.2 Canine model The canine experiment (n ¼ 1) was performed as a validation of the correlation of visible reflectance imaging measurements...http://spiedl.org/terms with actual blood oxygenation. The canine laparotomy, as part of an animal protocol approved by the Institutional Animal Care and...All data analysis was performed using algorithms and software written in-house using the programming languages Matlab and IDL/ ENVI (ITT Visual
Bigham-Sadegh, Amin; Oryan, Ahmad
2015-06-01
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
Computer Modeling of Microbiological Experiments in the Teaching Laboratory: Animation Techniques.
ERIC Educational Resources Information Center
Tritz, Gerald J.
1987-01-01
Discusses the use of computer assisted instruction in the medical education program of the Kirksville College of Osteopathic Medicine (Missouri). Describes the animation techniques used in a series of simulations for microbiology. (TW)
McNamara, J P; Hanigan, M D; White, R R
2016-12-01
The National Animal Nutrition Program "National Research Support Project 9" supports efforts in livestock nutrition, including the National Research Council's committees on the nutrient requirements of animals. Our objective was to review the status of experimentation and data reporting in animal nutrition literature and to provide suggestions for the advancement of animal nutrition research and the ongoing improvement of field-applied nutrient requirement models. Improved data reporting consistency and completeness represent a substantial opportunity to improve nutrition-related mathematical models. We reviewed a body of nutrition research; recorded common phrases used to describe diets, animals, housing, and environmental conditions; and proposed equivalent numerical data that could be reported. With the increasing availability of online supplementary material sections in journals, we developed a comprehensive checklist of data that should be included in publications. To continue to improve our research effectiveness, studies utilizing multiple research methodologies to address complex systems and measure multiple variables will be necessary. From the current body of animal nutrition literature, we identified a series of opportunities to integrate research focuses (nutrition, reproduction and genetics) to advance the development of nutrient requirement models. From our survey of current experimentation and data reporting in animal nutrition, we identified 4 key opportunities to advance animal nutrition knowledge: (1) coordinated experiments should be designed to employ multiple research methodologies; (2) systems-oriented research approaches should be encouraged and supported; (3) publication guidelines should be updated to encourage and support sharing of more complete data sets; and (4) new experiments should be more rapidly integrated into our knowledge bases, research programs and practical applications. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Lin, Tai-Chi; Zhu, Danhong; Hinton, David R.; Clegg, Dennis O.; Humayun, Mark S.
2017-01-01
Dysfunction and death of retinal pigment epithelium (RPE) and or photoreceptors can lead to irreversible vision loss. The eye represents an ideal microenvironment for stem cell-based therapy. It is considered an “immune privileged” site, and the number of cells needed for therapy is relatively low for the area of focused vision (macula). Further, surgical placement of stem cell-derived grafts (RPE, retinal progenitors, and photoreceptor precursors) into the vitreous cavity or subretinal space has been well established. For preclinical tests, assessments of stem cell-derived graft survival and functionality are conducted in animal models by various noninvasive approaches and imaging modalities. In vivo experiments conducted in animal models based on replacing photoreceptors and/or RPE cells have shown survival and functionality of the transplanted cells, rescue of the host retina, and improvement of visual function. Based on the positive results obtained from these animal experiments, human clinical trials are being initiated. Despite such progress in stem cell research, ethical, regulatory, safety, and technical difficulties still remain a challenge for the transformation of this technique into a standard clinical approach. In this review, the current status of preclinical safety and efficacy studies for retinal cell replacement therapies conducted in animal models will be discussed. PMID:28928775
Wang, Xin-Shi; Zhang, Zeng-Rui; Zhang, Man-Man; Sun, Miao-Xuan; Wang, Wen-Wen; Xie, Cheng-Long
2017-08-17
Curcumin (diferuloylmethane), a polyphenol extracted from the plant Curcuma longa, is widely used in Southeast Asia, China and India in food preparation and for medicinal purposes. Meanwhile, the neuroprotective actions of curcumin have been documented for experimental therapy in Parkinson's disease (PD). In this study, we used a systematic review to comprehensively assess the efficacy of curcumin in experimental PD. Using electronic and manual search for the literatures, we identified studies describing the efficacy of curcumin in animal models of PD. We identified 13 studies with a total of 298 animals describing the efficacy of curcumin in animal models of PD. The methodological quality of all preclinical trials is ranged from 2 to 5. The majority of the experiment studies demonstrated that curcumin was more significantly neuroprotection effective than control groups for treating PD. Among them, five studies indicated that curcumin had an anti-inflammatory effect in the PD animal models (p < 0.05). Meanwhile, four studies showed the antioxidant capability of curcumin, by which it protected substantia nigra neurons and improved striatal dopamine levels. Furthermore, two studies in this review displayed that curcumin treatment was also effective in reducing neuronal apoptosis and improving functional outcome in animal models of PD. Most of the preclinical studies demonstrated the positive findings while one study reported that curcumin had no beneficial effects against Mn-induced disruption of hippocampal metal and neurotransmitter homeostasis. The results demonstrated a marked efficacy of curcumin in experimental model of PD, suggesting curcumin probably a candidate neuroprotective drug for human PD patients.
Guidelines for the welfare and use of animals in cancer research
Workman, P; Aboagye, E O; Balkwill, F; Balmain, A; Bruder, G; Chaplin, D J; Double, J A; Everitt, J; Farningham, D A H; Glennie, M J; Kelland, L R; Robinson, V; Stratford, I J; Tozer, G M; Watson, S; Wedge, S R; Eccles, S A
2010-01-01
Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer research. All experiments should incorporate the 3Rs: replacement, reduction and refinement. Focusing on animal welfare, we present recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models (e.g., genetically engineered, orthotopic and metastatic); therapy (including drugs and radiation); imaging (covering techniques, anaesthesia and restraint); humane endpoints (including tumour burden and site); and publication of best practice. PMID:20502460
Jönsson, A; Arvebo, E; Schantz, B
1988-01-01
Experiments with an anthropomorphic dummy for blast research demonstrated that pressures recorded in the lung model of the dummy could be correlated to primary air blast effects on the lungs of experimental animals. The results presented here were obtained with a dummy of the type mentioned above, but with the lung model modified to improve geometric similarity to man. Blast experiments were performed in a shock tube, and impact experiments in a special impact machine. Experiments with nonpenetrating missiles were performed with small-caliber firearms and the dummy protected by body armor. Severity indices derived from the blast experiments were related to established criteria for primary lung injury in man. Impacts delivered in the impact machine and by nonpenetrating missiles are compared. Relationships between severity of impact based on experiments with animals and primary lung injury in man are discussed.
Webster, John
2014-01-01
Simple Summary When making a choice of species for animal experimentation we must balance its suitability as a model for human medicine against the potential harms to the animals both from the procedures and the quality of their lifetime experience. The capacity to experience pain may be similar in mammals, birds and fish. The capacity to suffer from fear is governed more by sentience than cognitive ability, so it cannot be assumed that rodents or farm animals suffer less than dogs or primates. I suggest that it is unethical to base the choice of species for animal experimentation simply on the basis that it will cause less distress within society. Abstract Ethical principles governing the conduct of experiments with animals are reviewed, especially those relating to the choice of species. Legislation requires that the potential harm to animals arising from any procedure should be assessed in advance and justified in terms of its possible benefit to society. Potential harms may arise both from the procedures and the quality of the animals’ lifetime experience. The conventional approach to species selection is to use animals with the “lowest degree of neurophysiological sensitivity”. However; this concept should be applied with extreme caution in the light of new knowledge. The capacity to experience pain may be similar in mammals, birds and fish. The capacity to suffer from fear is governed more by sentience than cognitive ability, so it cannot be assumed that rodents or farm animals suffer less than dogs or primates. I suggest that it is unethical to base the choice of species for animal experimentation simply on the basis that it will cause less distress within society. A set of responsibilities is outlined for each category of moral agent. These include regulators, operators directly concerned with the conduct of scientific experiments and toxicology trials, veterinarians and animal care staff; and society at large. PMID:26479009
Placebo Analgesia in Rodents: Current and Future Research
Keller, Asaf; Akintola, Titilola; Colloca, Luana
2018-01-01
The investigation of placebo effects in animal pain models has received less attention than human research. This may be related to a number of difficulties, including the fact that animals lack the ability to use language and establish expectancies verbally, that animals cannot report and rate the extent to which they experience pain, and the inadequacy of current models of pain. Here, we describe the relatively small number of studies that have been published, communicating the opportunities and excitement of this research. We critically discuss pitfalls and limitations with the hope that this will advance future animal placebo-related research. PMID:29681320
Olayo-Lortia, Jesús; Ferreira-Nuño, Armando; Velázquez-Moctezuma, Javier; Morales-Otal, Adriana
2014-10-01
The multiple partner choice arena (MPCA) is an experimental setup in which male rats display a significant shortening of ejaculation latency, which is the main characteristic of premature ejaculation (PE) in men. Thus, the MPCA is a potential animal model for PE. In this study, we further analyze whether the features of the MPCA satisfy the validity criteria for it to be considered an animal model as well as the possible participation of the serotoninergic system in the faster ejaculation exhibited by male rats in the MPCA. In Experiment 1, male rats were tested in a standard arena to assess their sexual behavior, then were assessed 1 week later in the MPCA. Another group was first tested in the MPCA, then in a standard arena. In Experiment 2, male rats divided into two groups were treated daily with WAY-100635 (5-HT(1A) antagonist) or vehicle for 15 days. In each group, half of the subjects were tested in a standard arena and half were tested in the MPCA on days 1, 8, and 15 of treatment. Number of intromissions and intromission and ejaculation latencies were the main outcome measures. In Experiment 1, males tested in the MPCA ejaculated significantly faster, regardless of the order in which they were evaluated in both arenas. In Experiment 2, the administration of WAY-100635 increased intromission and ejaculation latencies, and the number of intromissions in the MPCA. The results obtained in the MPCA support its use as an animal model for PE evaluation. © 2014 International Society for Sexual Medicine.
The Effect of Disgust and Fear Modeling on Children’s Disgust and Fear for Animals
2014-01-01
Disgust is a protective emotion associated with certain types of animal fears. Given that a primary function of disgust is to protect against harm, increasing children’s disgust-related beliefs for animals may affect how threatening they think animals are and their avoidance of them. One way that children’s disgust beliefs for animals might change is via vicarious learning: by observing others responding to the animal with disgust. In Experiment 1, children (ages 7–10 years) were presented with images of novel animals together with adult faces expressing disgust. Children’s fear beliefs and avoidance preferences increased for these disgust-paired animals compared with unpaired control animals. Experiment 2 used the same procedure and compared disgust vicarious learning with vicarious learning with fear faces. Children’s fear beliefs and avoidance preferences for animals again increased as a result of disgust vicarious learning, and animals seen with disgust or fear faces were also rated more disgusting than control animals. The relationship between increased fear beliefs and avoidance preferences for animals was mediated by disgust for the animals. The experiments demonstrate that children can learn to believe that animals are disgusting and threatening after observing an adult responding with disgust toward them. The findings also suggest a bidirectional relationship between fear and disgust with fear-related vicarious learning leading to increased disgust for animals and disgust-related vicarious learning leading to increased fear and avoidance. PMID:24955571
Animal models in burn research.
Abdullahi, A; Amini-Nik, S; Jeschke, M G
2014-09-01
Burn injury is a severe form of trauma affecting more than 2 million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury, to elucidate the pathophysiology, and to explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research.
Animal Models in Burn Research
Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G
2014-01-01
Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the various aspects of burn injury; to elucidate the pathophysiology and explore potential treatment interventions. Understanding the advantages and limitations of these animal models is essential for the design and development of treatments that are clinically relevant to humans. This review paper aims to highlight the common animal models of burn injury in order to provide investigators with a better understanding of the benefits and limitations of these models for translational applications. While many animal models of burn exist, we limit our discussion to the skin healing of mouse, rat, and pig. Additionally, we briefly explain hypermetabolic characteristics of burn injury and the animal model utilized to study this phenomena. Finally, we discuss the economic costs associated with each of these models in order to guide decisions of choosing the appropriate animal model for burn research. PMID:24714880
de Mello Schier, Alexandre R; de Oliveira Ribeiro, Natalia P; Coutinho, Danielle S; Machado, Sergio; Arias-Carrión, Oscar; Crippa, Jose A; Zuardi, Antonio W; Nardi, Antonio E; Silva, Adriana C
2014-01-01
Anxiety and depression are pathologies that affect human beings in many aspects of life, including social life, productivity and health. Cannabidiol (CBD) is a constituent non-psychotomimetic of Cannabis sativa with great psychiatric potential, including uses as an antidepressant-like and anxiolytic-like compound. The aim of this study is to review studies of animal models using CBD as an anxiolytic-like and antidepressant-like compound. Studies involving animal models, performing a variety of experiments on the above-mentioned disorders, such as the forced swimming test (FST), elevated plus maze (EPM) and Vogel conflict test (VCT), suggest that CBD exhibited an anti-anxiety and antidepressant effects in animal models discussed. Experiments with CBD demonstrated non-activation of neuroreceptors CB1 and CB2. Most of the studies demonstrated a good interaction between CBD and the 5-HT1A neuro-receptor.
Frequency domain fluorescence diffuse tomography of small animals
NASA Astrophysics Data System (ADS)
Orlova, Anna G.; Turchin, Ilya V.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Balalaeva, Irina V.; Sergeeva, Ekaterina A.; Shirmanova, Marina V.; Kleshnin, Michail S.
2007-05-01
Fluorescent compounds for selective cancer cell marking are used for development of novel medical diagnostic methods, investigation of the influence of external factors on tumor growth, regress and metastasis. Only special tools for turbid media imaging, such as optical diffusion tomography permit noninvasive monitoring of fluorescent-labeled tumor alterations deep in animal tissue. In this work, the results of preliminary experiments utilizing frequency-domain fluorescent diffusion tomography (FD FDT) experimental setup in small animal are presented. Low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the wavelength of 532 nm was used in the setup. The transilluminative planar configuration was used in the setup. A series of model experiments has been conducted and show good agreement between theoretical and experimental fluorescence intensity. Models of deep tumors were created by two methods: (1) glass capsules containing fluorophore solution were inserted into esophagus of small animals to simulate marked tumors; (2) a suspension of transfected HEΚ293-Turbo-RFP cells was subcutaneously injected to small animal. The conducted experiments have shown that FD FDT allows one to detect the presence of labeled tumor cells in small animals, to determine the volume of an experimental tumor, to perform 3D tumor reconstruction, as well as to conduct monitoring investigations. The obtained results demonstrate the potential capability of the FD FDT method for noninvasive whole-body imaging in cancer studies, diagnostics and therapy.
The use of auxiliary variables in capture-recapture and removal experiments
Pollock, K.H.; Hines, J.E.; Nichols, J.D.
1984-01-01
The dependence of animal capture probabilities on auxiliary variables is an important practical problem which has not been considered in the development of estimation procedures for capture-recapture and removal experiments. In this paper the linear logistic binary regression model is used to relate the probability of capture to continuous auxiliary variables. The auxiliary variables could be environmental quantities such as air or water temperature, or characteristics of individual animals, such as body length or weight. Maximum likelihood estimators of the population parameters are considered for a variety of models which all assume a closed population. Testing between models is also considered. The models can also be used when one auxiliary variable is a measure of the effort expended in obtaining the sample.
Beuter, Anne
2017-05-01
Recent publications call for more animal models to be used and more experiments to be performed, in order to better understand the mechanisms of neurodegenerative disorders, to improve human health, and to develop new brain stimulation treatments. In response to these calls, some limitations of the current animal models are examined by using Deep Brain Stimulation (DBS) in Parkinson's disease as an illustrative example. Without focusing on the arguments for or against animal experimentation, or on the history of DBS, the present paper argues that given recent technological and theoretical advances, the time has come to consider bioinspired computational modelling as a valid alternative to animal models, in order to design the next generation of human brain stimulation treatments. However, before computational neuroscience is fully integrated in the translational process and used as a substitute for animal models, several obstacles need to be overcome. These obstacles are examined in the context of institutional, financial, technological and behavioural lock-in. Recommendations include encouraging agreement to change long-term habitual practices, explaining what alternative models can achieve, considering economic stakes, simplifying administrative and regulatory constraints, and carefully examining possible conflicts of interest. 2017 FRAME.
Critical overview of all available animal models for abdominal wall hernia research.
Vogels, R R M; Kaufmann, R; van den Hil, L C L; van Steensel, S; Schreinemacher, M H F; Lange, J F; Bouvy, N D
2017-10-01
Since the introduction of the first prosthetic mesh for abdominal hernia repair, there has been a search for the "ideal mesh." The use of preclinical or animal models for assessment of necessary characteristics of new and existing meshes is an indispensable part of hernia research. Unfortunately, in our experience there is a lack of consensus among different research groups on which model to use. Therefore, we hypothesized that there is a lack of comparability within published animal research on hernia surgery due to wide range in experimental setup among different research groups. A systematic search of the literature was performed to provide a complete overview of all animal models published between 2000 and 2014. Relevant parameters on model characteristics and outcome measurement were scored on a standardized scoring sheet. Due to the wide range in different animals used, ranging from large animal models like pigs to rodents, we decided to limit the study to 168 articles concerning rat models. Within these rat models, we found wide range of baseline animal characteristics, operation techniques, and outcome measurements. Making reliable comparison of results among these studies is impossible. There is a lack of comparability among experimental hernia research, limiting the impact of this experimental research. We therefore propose the establishment of guidelines for experimental hernia research by the EHS.
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh B.; Poeggel, Sven; Adilzhan, Abzal; Aliakhmet, Kamilla; Silvestri, Sergio; Leen, Gabriel; Lewis, Elfed
2016-05-01
Optical fibre sensors have been applied to perform biophysical measurement in ex-vivo laser ablation (LA), on pancreas animal phantom. Experiments have been performed using Fibre Bragg Grating (FBG) arrays for spatially resolved temperature detection, and an all-glass Extrinsic Fabry-Perot Interferometer (EFPI) for pressure measurement. Results using a Nd:YAG laser source as ablation device, are presented and discussed.
Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature.
Morad, Golnaz; Kheiri, Lida; Khojasteh, Arash
2013-12-01
This review of literature was aimed to assess in vivo experiments which have evaluated the efficacy of dental pulp stem cells (DPSCs) for bone regeneration. An electronic search of English-language papers was conducted on PubMed database. Studies that assessed the use of DPSCs in bone regeneration in vivo were included and experiments evaluating regeneration of hard tissues other than bone were excluded. The retrieved articles were thoroughly reviewed according to the source of stem cell, cell carrier, the in vivo experimental model, defect type, method of evaluating bone regeneration, and the obtained results. Further assessment of the results was conducted by classifying the studies based on the defect type. Seventeen papers formed the basis of this systematic review. Sixteen out of 17 experiments were performed on animal models with mouse and rat being the most frequently used animal models. Seven out of 17 animal studies, contained subcutaneous pockets on back of the animal for stem cell implantation. In only one study hard tissue formation was not observed. Other types of defects used in the retrieved studies, included cranial defects and mandibular bone defects, in all of which bone formation was reported. When applied in actual bone defects, DPSCs were capable of regenerating bone. Nevertheless, a precise conclusion regarding the efficiency of DPSCs for bone regeneration is yet to be made, considering the limited number of the in vivo experiments and the heterogeneity within their methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Souza, Leonardo C; Martynhak, Bruno J; Bassani, Taysa B; Turnes, Joelle de M; Machado, Meira M; Moura, Eric; Andreatini, Roberto; Vital, Maria A B F
2018-05-01
Parkinson's disease (PD) patients often suffer from circadian locomotor rhythms impairment and depression, important non-motor symptoms. It is known that toxin-based animal models of PD can reproduce these features. In a 6-hydroxydopamine (6-OHDA) intranigral model, we first investigated the possible disturbances on circadian rhythms of locomotor activity. The rats were divided into 6-OHDA and Sham groups. After a partial dopaminergic lesion, the 6-OHDA group showed slight alterations in different circadian locomotor rhythms parameters. In a second experiment, we hypothesized agomelatine, an melatoninergic antidepressant with potential to resynchronize disturbed rhythms, could prevent neuronal damage and rhythm alterations in the same 6-OHDA model. The animals were divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. However, the treated animals (agomelatine 50 mg/kg for 22 days) showed an impaired rhythm robustness, and agomelatine did not induce significant changes in the other circadian parameters nor neuroprotection. Finally, in a third experiment, we examined the effects of agomelatine in the 6-OHDA model regarding depressive-like behavior, evaluated by sucrose preference test. The animals were also divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. The toxin infused animals showed a decrease in sucrose preference in comparison with the vehicle infused animals, however, agomelatine did not prevent this decrease. Our findings indicate that agomelatine worsened circadian locomotor rhythm and was not able to reverse the depressive-like behavior of rats in the 6-OHDA PD model. Copyright © 2018. Published by Elsevier Inc.
Using an experimental model for the study of therapeutic touch.
dos Santos, Daniella Soares; Marta, Ilda Estéfani Ribeiro; Cárnio, Evelin Capellari; de Quadros, Andreza Urba; Cunha, Thiago Mattar; de Carvalho, Emilia Campos
2013-02-01
to verify whether the Paw Edema Model can be used in investigations about the effects of Therapeutic Touch on inflammation by measuring the variables pain, edema and neutrophil migration. this is a pilot and experimental study, involving ten male mice of the same genetic strain and divided into experimental and control group, submitted to the chemical induction of local inflammation in the right back paw. The experimental group received a daily administration of Therapeutic Touch for 15 minutes during three days. the data showed statistically significant differences in the nociceptive threshold and in the paw circumference of the animals from the experimental group on the second day of the experiment. the experiment model involving animals can contribute to study the effects of Therapeutic Touch on inflammation, and adjustments are suggested in the treatment duration, number of sessions and experiment duration.
Experimental Animal Models for Studies on the Mechanisms of Blast-Induced Neurotrauma
Risling, Mårten; Davidsson, Johan
2012-01-01
A blast injury is a complex type of physical trauma resulting from the detonation of explosive compounds and has become an important issue due to the use of improvised explosive devices (IED) in current military conflicts. Blast-induced neurotrauma (BINT) is a major concern in contemporary military medicine and includes a variety of injuries that range from mild to lethal. Extreme forces and their complex propagation characterize BINT. Modern body protection and the development of armored military vehicles can be assumed to have changed the outcome of BINT. Primary blast injuries are caused by overpressure waves whereas secondary, tertiary, and quaternary blast injuries can have more varied origins such as the impact of fragments, abnormal movements, or heat. The characteristics of the blast wave can be assumed to be significantly different in open field detonations compared to explosions in a confined space, such an armored vehicle. Important parameters include peak pressure, duration, and shape of the pulse. Reflections from walls and armor can make the prediction of effects in individual cases very complex. Epidemiological data do not contain information of the comparative importance of the different blast mechanisms. It is therefore important to generate data in carefully designed animal models. Such models can be selective reproductions of a primary blast, penetrating injuries from fragments, acceleration movements, or combinations of such mechanisms. It is of crucial importance that the physical parameters of the employed models are well characterized so that the experiments can be reproduced in different laboratory settings. Ideally, pressure recordings should be calibrated by using the same equipment in several laboratories. With carefully designed models and thoroughly evaluated animal data it should be possible to achieve a translation of data between animal and clinical data. Imaging and computer simulation represent a possible link between experiments and studies of human cases. However, in order for mathematical simulations to be completely useful, the predictions will most likely have to be validated by detailed data from animal experiments. Some aspects of BINT can conceivably be studied in vitro. However, factors such as systemic response, brain edema, inflammation, vasospasm, or changes in synaptic transmission and behavior must be evaluated in experimental animals. Against this background, it is necessary that such animal experiments are carefully developed imitations of actual components in the blast injury. This paper describes and discusses examples of different designs of experimental models relevant to BINT. PMID:22485104
Brozoski, Thomas J; Bauer, Carol A
2016-08-01
Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or motivational manipulation, but its sensitivity, reliability, mechanism, and optimal implementation are incompletely understood. While to date animal models have significantly expanded the neuroscience of tinnitus, they have been limited to examining sensory features. In the human condition, emotional and cognitive factors are also important. It is not clear that the emotional features of tinnitus can be further understood using animal models, but models may be applied to examine cognitive factors. A recently developed model is described that reveals an interaction between tinnitus and auditory attention. This research suggests that effective tinnitus therapy could rely on modifying attention to the sensation rather than modifying the sensation itself. This article is part of a Special Issue entitled
Weidner, Christopher; Steinfath, Matthias; Wistorf, Elisa; Oelgeschläger, Michael; Schneider, Marlon R; Schönfelder, Gilbert
2017-08-16
Recent studies that compared transcriptomic datasets of human diseases with datasets from mouse models using traditional gene-to-gene comparison techniques resulted in contradictory conclusions regarding the relevance of animal models for translational research. A major reason for the discrepancies between different gene expression analyses is the arbitrary filtering of differentially expressed genes. Furthermore, the comparison of single genes between different species and platforms often is limited by technical variance, leading to misinterpretation of the con/discordance between data from human and animal models. Thus, standardized approaches for systematic data analysis are needed. To overcome subjective gene filtering and ineffective gene-to-gene comparisons, we recently demonstrated that gene set enrichment analysis (GSEA) has the potential to avoid these problems. Therefore, we developed a standardized protocol for the use of GSEA to distinguish between appropriate and inappropriate animal models for translational research. This protocol is not suitable to predict how to design new model systems a-priori, as it requires existing experimental omics data. However, the protocol describes how to interpret existing data in a standardized manner in order to select the most suitable animal model, thus avoiding unnecessary animal experiments and misleading translational studies.
[Animal experiment, can we replace?
Combrisson, H
2017-09-01
Animal experiment is a subject of controversies. Some people, defenders of animals, think that it is not acceptable to use for scientific purposes at the risk of making them suffer or assert that the results obtained with animals are not transposable in the human beings. Others, in particular researchers in biology or medicine, think that the animal models are essential for the biomedical search. This confrontation of the opinions bases largely on an evolution of the place of animals in our society. The regulations authorize the use of animals for scientific purposes but oblige to make it under restrictive conditions. The application of 3Rs - replacement, reduction, and refinement - expressed in 1959 by Russel and Burch is an ethical guide to improve the welfare of animals in research. The alternative methods do not allow, in the present state of the knowledge, to answer all the scientific questions in biology and medicine research. They are, most of the time, complementary methods of the in vivo methods. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Using web-based animations to teach histology.
Brisbourne, Marc A S; Chin, Susan S-L; Melnyk, Erica; Begg, David A
2002-02-15
We have been experimenting with the use of animations to teach histology as part of an interactive multimedia program we are developing to replace the traditional lecture/laboratory-based histology course in our medical and dental curricula. This program, called HistoQuest, uses animations to illustrate basic histologic principles, explain dynamic processes, integrate histologic structure with physiological function, and assist students in forming mental models with which to organize and integrate new information into their learning. With this article, we first briefly discuss the theory of mental modeling, principles of visual presentation, and how mental modeling and visual presentation can be integrated to create effective animations. We then discuss the major Web-based animation technologies that are currently available and their suitability for different visual styles and navigational structures. Finally, we describe the process we use to produce animations for our program. The approach described in this study can be used by other developers to create animations for delivery over the Internet for the teaching of histology.
Rules of good practice in the care of laboratory animals used in biomedical research.
Valanzano, Angelina
2004-01-01
In recent years, the use of laboratory animals has decreased as a result of the adoption of alternative methods such as in vitro experiments and simulation studies. Nonetheless, animal models continue to be necessary in many fields of biomedical research, giving rise to ethical issues regarding the treatment of these animals. In the present work, a general overview of the rules of good practise in caring for laboratory animals is provided, focussing on housing conditions and the proper means of handling animals, including the importance of the relationship or "bond" between the researcher and the animal.
Immunological Targeting of Tumor Initiating Prostate Cancer Cells
2014-10-01
clinically using well-accepted immuno-competent animal models. 2) Keywords: Prostate Cancer, Lymphocyte, Vaccine, Antibody 3) Overall Project Summary...castrate animals . Task 1: Identify and verify antigenic targets from CAstrate Resistant Luminal Epithelial Cells (CRLEC) (months 1-16... animals per group will be processed to derive sufficient RNA for microarray analysis; the experiment will be repeated x 3. Microarray analysis will
Infants' Knowledge of the Path that Animals Take to Reach a Goal
ERIC Educational Resources Information Center
Rakison, David H.; Cicchino, Jessica B.; Hahn, Erin R.
2007-01-01
Two experiments with the inductive generalization procedure tested whether 16- and 20-month-old infants understand that animals and not vehicles follow a rational path to reach a goal. Infants were tested with four different events and the model exemplar was either an animal or ambiguous block. Results showed that infants at 20 months of age, but…
Miyoshi, S; Sakajiri, M; Ifukube, T; Matsushima, J
1997-01-01
We have proposed the Tripolar Electrode Stimulation Method (TESM) which may enable us to narrow the stimulation region and to move continuously the stimulation site for the cochlear implants. We evaluated whether or not TESM works according to a theory based on numerical analysis using the auditory nerve fiber model. In this simulation, the sum of the excited model fibers were compared with the compound actions potentials obtained from animal experiments. As a result, this experiment showed that TESM could narrow a stimulation region by controlling the sum of the currents emitted from the electrodes on both sides, and continuously move a stimulation site by changing the ratio of the currents emitted from the electrodes on both sides.
Morrissey, Bethny; Blyth, Karen; Carter, Phil; Chelala, Claude; Jones, Louise; Holen, Ingunn; Speirs, Valerie
2017-01-01
While significant medical breakthroughs have been achieved through using animal models, our experience shows that often there is surplus material remaining that is frequently never revisited but could be put to good use by other scientists. Recognising that most scientists are willing to share this material on a collaborative basis, it makes economic, ethical, and academic sense to explore the option to utilise this precious resource before generating new/additional animal models and associated samples. To bring together those requiring animal tissue and those holding this type of archival material, we have devised a framework called Sharing Experimental Animal Resources, Coordinating Holdings (SEARCH) with the aim of making remaining material derived from animal studies in biomedical research more visible and accessible to the scientific community. We encourage journals, funding bodies, and scientists to unite in promoting a new way of approaching animal research by adopting the SEARCH framework.
Morrissey, Bethny; Blyth, Karen; Carter, Phil; Chelala, Claude; Jones, Louise; Holen, Ingunn; Speirs, Valerie
2017-01-01
While significant medical breakthroughs have been achieved through using animal models, our experience shows that often there is surplus material remaining that is frequently never revisited but could be put to good use by other scientists. Recognising that most scientists are willing to share this material on a collaborative basis, it makes economic, ethical, and academic sense to explore the option to utilise this precious resource before generating new/additional animal models and associated samples. To bring together those requiring animal tissue and those holding this type of archival material, we have devised a framework called Sharing Experimental Animal Resources, Coordinating Holdings (SEARCH) with the aim of making remaining material derived from animal studies in biomedical research more visible and accessible to the scientific community. We encourage journals, funding bodies, and scientists to unite in promoting a new way of approaching animal research by adopting the SEARCH framework. PMID:28081116
Sound For Animation And Virtual Reality
NASA Technical Reports Server (NTRS)
Hahn, James K.; Docter, Pete; Foster, Scott H.; Mangini, Mark; Myers, Tom; Wenzel, Elizabeth M.; Null, Cynthia (Technical Monitor)
1995-01-01
Sound is an integral part of the experience in computer animation and virtual reality. In this course, we will present some of the important technical issues in sound modeling, rendering, and synchronization as well as the "art" and business of sound that are being applied in animations, feature films, and virtual reality. The central theme is to bring leading researchers and practitioners from various disciplines to share their experiences in this interdisciplinary field. The course will give the participants an understanding of the problems and techniques involved in producing and synchronizing sounds, sound effects, dialogue, and music. The problem spans a number of domains including computer animation and virtual reality. Since sound has been an integral part of animations and films much longer than for computer-related domains, we have much to learn from traditional animation and film production. By bringing leading researchers and practitioners from a wide variety of disciplines, the course seeks to give the audience a rich mixture of experiences. It is expected that the audience will be able to apply what they have learned from this course in their research or production.
Life sciences research in space: The requirement for animal models
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Philips, R. W.; Ballard, R. W.
1987-01-01
Use of animals in NASA space programs is reviewed. Animals are needed because life science experimentation frequently requires long-term controlled exposure to environments, statistical validation, invasive instrumentation or biological tissue sampling, tissue destruction, exposure to dangerous or unknown agents, or sacrifice of the subject. The availability and use of human subjects inflight is complicated by the multiple needs and demands upon crew time. Because only living organisms can sense, integrate and respond to the environment around them, the sole use of tissue culture and computer models is insufficient for understanding the influence of the space environment on intact organisms. Equipment for spaceborne experiments with animals is described.
Research and implementation of group animation based on normal cloud model
NASA Astrophysics Data System (ADS)
Li, Min; Wei, Bin; Peng, Bao
2011-12-01
Group Animation is a difficult technology problem which always has not been solved in computer Animation technology, All current methods have their limitations. This paper put forward a method: the Motion Coordinate and Motion Speed of true fish group was collected as sample data, reverse cloud generator was designed and run, expectation, entropy and super entropy are gotten. Which are quantitative value of qualitative concept. These parameters are used as basis, forward cloud generator was designed and run, Motion Coordinate and Motion Speed of two-dimensional fish group animation are produced, And two spirit state variable about fish group : the feeling of hunger, the feeling of fear are designed. Experiment is used to simulated the motion state of fish Group Animation which is affected by internal cause and external cause above, The experiment shows that the Group Animation which is designed by this method has strong Realistic.
Tillner, Falk; Thute, Prasad; Bütof, Rebecca; Krause, Mechthild; Enghardt, Wolfgang
2014-12-01
For translational cancer research, pre-clinical in-vivo studies using small animals have become indispensable in bridging the gap between in-vitro cell experiments and clinical implementation. When setting up such small animal experiments, various biological, technical and methodical aspects have to be considered. In this work we present a comprehensive topical review based on relevant publications on irradiation techniques used for pre-clinical cancer research in mice and rats. Clinical radiotherapy treatment devices for the application of external beam radiotherapy and brachytherapy as well as dedicated research irradiation devices are feasible for small animal irradiation depending on the animal model and the experimental goals. In this work, appropriate solutions for the technological transfer of human radiation oncology to small animal radiation research are summarised. Additionally, important information concerning the experimental design is provided such that reliable and clinically relevant results can be attained. Copyright © 2014. Published by Elsevier GmbH.
Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models
2006-02-01
1-0113 TITLE: Enhancement of Intermittent Androgen Ablation Therapy by Finasteride Administration in Animal Models...To) 14 JAN 2002 - 13 JAN 2006 4. TITLE AND SUBTITLE Enhancement of Intermittent Androgen Ablation Therapy by Finasteride 5a. CONTRACT NUMBER... finasteride , an inhibitor of T to DHT conversion. We have tested our hypothesis using LNCaP xenograft tumors in nude mice. Our experiments showed
Garner, Joseph P.
2014-01-01
The vast majority of drugs entering human trials fail. This problem (called “attrition”) is widely recognized as a public health crisis, and has been discussed openly for the last two decades. Multiple recent reviews argue that animals may be just too different physiologically, anatomically, and psychologically from humans to be able to predict human outcomes, essentially questioning the justification of basic biomedical research in animals. This review argues instead that the philosophy and practice of experimental design and analysis is so different in basic animal work and human clinical trials that an animal experiment (as currently conducted) cannot reasonably predict the outcome of a human trial. Thus, attrition does reflect a lack of predictive validity of animal experiments, but it would be a tragic mistake to conclude that animal models cannot show predictive validity. A variety of contributing factors to poor validity are reviewed. The need to adopt methods and models that are highly specific (i.e., which can identify true negative results) in order to complement the current preponderance of highly sensitive methods (which are prone to false positive results) is emphasized. Concepts in biomarker-based medicine are offered as a potential solution, and changes in the use of animal models required to embrace a translational biomarker-based approach are outlined. In essence, this review advocates a fundamental shift, where we treat every aspect of an animal experiment that we can as if it was a clinical trial in a human population. However, it is unrealistic to expect researchers to adopt a new methodology that cannot be empirically justified until a successful human trial. “Validation with known failures” is proposed as a solution. Thus new methods or models can be compared against existing ones using a drug that has translated (a known positive) and one that has failed (a known negative). Current methods should incorrectly identify both as effective, but a more specific method should identify the negative compound correctly. By using a library of known failures we can thereby empirically test the impact of suggested solutions such as enrichment, controlled heterogenization, biomarker-based models, or reverse-translated measures. PMID:25541546
Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils
Speciation analysis is essential when evaluating risks from, arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with animal microbiota. Howeve...
Acute and chronic animal models for the evaluation of anti-diabetic agents
2012-01-01
Diabetes mellitus is a potentially morbid condition with high prevalence worldwide thus being a major medical concern. Experimental induction of diabetes mellitus in animal models is essential for the advancement of our knowledge and understanding of the various aspects of its pathogenesis and ultimately finding new therapies and cure. Experimental diabetes mellitus is generally induced in laboratory animals by several methods that include: chemical, surgical and genetic (immunological) manipulations. Most of the experiments in diabetes are carried out in rodents, although some studies are still performed in larger animals. The present review highlights the various methods of inducing diabetes in experimental animals in order to test the newer drugs for their anti-diabetic potential. PMID:22257465
Demas, Gregory E; Polacek, Kelly M; Durazzo, Alfredo; Jasnow, Aaron M
2004-12-01
Among the suite of seasonal adaptations displayed by nontropical rodents, some species demonstrate increased territorial aggression in short compared with long day lengths despite basal levels of testosterone. The precise physiological mechanisms mediating seasonal changes in aggression, however, remain largely unknown. The goal of the present study was to examine the role of melatonin, as well as adrenal hormones, in the regulation of seasonal aggression in male Siberian hamsters (Phodopus sungorus). In Experiment 1, male Siberian hamsters received either daily (s.c.) injections of melatonin (15 microg/day) or saline 2 h before lights out for 10 consecutive days. In Experiment 2, hamsters received adrenal demedullations (ADMEDx), whereas in Experiment 3 animals received adrenalectomies (ADx); control animals in both experiments received sham surgeries. Animals in both experiments subsequently received daily injections of melatonin or vehicle as in Experiment 1. Animals in all experiments were tested using a resident-intruder model of aggression. In Experiment 1, exogenous melatonin treatment increased aggression compared with control hamsters. In Experiment 2, ADMEDx had no effect on melatonin-induced aggression. In Experiment 3, the melatonin-induced increase in aggression was significantly attenuated by ADx. Collectively, the results of the present study demonstrate that short day-like patterns of melatonin increase aggression in male Siberian hamsters and suggest that increased aggression is due, in part, to changes in adrenocortical steroids.
Hosaka, Tetsuro; Sugimoto, Koun; Numata, Shinya
2017-01-01
Urban biodiversity conservation often aims to promote the quality of life for urban residents by providing ecosystem services as well as habitats for diverse wildlife. However, biodiversity inevitably brings some disadvantages, including problems and nuisances caused by wildlife. Although some studies have reported that enhancement of nature interaction among urban children promotes their affective attitude toward of favorable animals, its effect on tolerance toward problem-causing wildlife is unknown. In this study, we assessed the tolerance of 1,030 urban residents in Japan toward hornets and wild boar, and analyzed the effects of childhood experience with nature on tolerance using a structural equation model. The model used sociodemographic factors and childhood nature experience as explanatory variables, affective attitude toward these animals as a mediator, and tolerance as a response variable. The public tolerance toward hornets and boars was low; over 60% of the respondents would request the removal of hornets and wild boar from nearby green spaces by government services, even when the animals had not caused any damage. Tolerance was lower in females and elderly respondents. Childhood experience with nature had a greater influence on tolerance than did sociodemographic factors in the scenario where animals have not caused any problems; however, its effect was only indirect via promoting positive affective attitude toward wildlife when the animals have caused problems. Our results suggest that increasing people's direct experience with nature is important to raise public tolerance, but its effect is limited to cases where wildlife does not cause any problems. To obtain wider support for conservation in urban areas, conservationists, working together with municipal officials, educators and the media, should provide relevant information on the ecological functions performed by problem-causing wildlife and strategies for avoiding the problems that wildlife can cause.
Mellor, David J.
2017-01-01
Simple Summary The Five Domains Model is a focusing device to facilitate systematic, structured, comprehensive and coherent assessment of animal welfare; it is not a definition of animal welfare, nor is it intended to be an accurate representation of body structure and function. The purpose of each of the five domains is to draw attention to areas that are relevant to both animal welfare assessment and management. This paper begins by briefly describing the major features of the Model and the operational interactions between the five domains, and then it details seven interacting applications of the Model. These underlie its utility and increasing application to welfare assessment and management in diverse animal use sectors. Abstract In accord with contemporary animal welfare science understanding, the Five Domains Model has a significant focus on subjective experiences, known as affects, which collectively contribute to an animal’s overall welfare state. Operationally, the focus of the Model is on the presence or absence of various internal physical/functional states and external circumstances that give rise to welfare-relevant negative and/or positive mental experiences, i.e., affects. The internal states and external circumstances of animals are evaluated systematically by referring to each of the first four domains of the Model, designated “Nutrition”, “Environment”, “Health” and “Behaviour”. Then affects, considered carefully and cautiously to be generated by factors in these domains, are accumulated into the fifth domain, designated “Mental State”. The scientific foundations of this operational procedure, published in detail elsewhere, are described briefly here, and then seven key ways the Model may be applied to the assessment and management of animal welfare are considered. These applications have the following beneficial objectives—they (1) specify key general foci for animal welfare management; (2) highlight the foundations of specific welfare management objectives; (3) identify previously unrecognised features of poor and good welfare; (4) enable monitoring of responses to specific welfare-focused remedial interventions and/or maintenance activities; (5) facilitate qualitative grading of particular features of welfare compromise and/or enhancement; (6) enable both prospective and retrospective animal welfare assessments to be conducted; and, (7) provide adjunct information to support consideration of quality of life evaluations in the context of end-of-life decisions. However, also noted is the importance of not overstating what utilisation of the Model can achieve. PMID:28792485
Graham, Melanie L; Prescott, Mark J
2015-07-15
Ethics on animal use in science in Western society is based on utilitarianism, weighing the harms and benefits to the animals involved against those of the intended human beneficiaries. The 3Rs concept (Replacement, Reduction, Refinement) is both a robust framework for minimizing animal use and suffering (addressing the harms to animals) and a means of supporting high quality science and translation (addressing the benefits). The ambiguity of basic research performed early in the research continuum can sometimes make harm-benefit analysis more difficult since anticipated benefit is often an incremental contribution to a field of knowledge. On the other hand, benefit is much more evident in translational research aimed at developing treatments for direct application in humans or animals suffering from disease. Though benefit may be easier to define, it should certainly not be considered automatic. Issues related to model validity seriously compromise experiments and have been implicated as a major impediment in translation, especially in complex disease models where harms to animals can be intensified. Increased investment and activity in the 3Rs is delivering new research models, tools and approaches with reduced reliance on animal use, improved animal welfare, and improved scientific and predictive value. Copyright © 2015 Elsevier B.V. All rights reserved.
The multifactorial role of the 3Rs in shifting the harm-benefit analysis in animal models of disease
Graham, Melanie L.; Prescott, Mark J.
2015-01-01
Ethics on animal use in science in Western society is based on utilitarianism, weighing the harms and benefits to the animals involved against those of the intended human beneficiaries. The 3Rs concept (Replacement, Reduction, Refinement) is both a robust framework for minimizing animal use and suffering (addressing the harms to animals) and a means of supporting high quality science and translation (addressing the benefits). The ambiguity of basic research performed early in the research continuum can sometimes make harm-benefit analysis more difficult since anticipated benefit is often an incremental contribution to a field of knowledge. On the other hand, benefit is much more evident in translational research aimed at developing treatments for direct application in humans or animals suffering from disease. Though benefit may be easier to define, it should certainly not be considered automatic. Issues related to model validity seriously compromise experiments and have been implicated as a major impediment in translation, especially in complex disease models where harms to animals can be intensified. Increased investment and activity in the 3Rs is delivering new research models, tools and approaches with reduced reliance on animal use, improved animal welfare, and improved scientific and predictive value. PMID:25823812
Unbridle biomedical research from the laboratory cage
Lahvis, Garet P
2017-01-01
Many biomedical research studies use captive animals to model human health and disease. However, a surprising number of studies show that the biological systems of animals living in standard laboratory housing are abnormal. To make animal studies more relevant to human health, research animals should live in the wild or be able to roam free in captive environments that offer a natural range of both positive and negative experiences. Recent technological advances now allow us to study freely roaming animals and we should make use of them. PMID:28661398
An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones
Nuss, Katja MR; Auer, Joerg A; Boos, Alois; Rechenberg, Brigitte von
2006-01-01
Background The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. Methods A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. Results This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. Conclusion This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials. PMID:16911787
An animal model in sheep for biocompatibility testing of biomaterials in cancellous bones.
Nuss, Katja M R; Auer, Joerg A; Boos, Alois; von Rechenberg, Brigitte
2006-08-15
The past years have seen the development of many synthetic bone replacements. To test their biocompatibility and ability for osseointegration, osseoinduction and -conduction requires their placement within bone preferably in an animal experiment of a higher species. A suitable experimental animal model in sheep with drill holes of 8 mm diameter and 13 mm depth within the proximal and distal humerus and femur for testing biocompatibility issues is introduced. This present sheep model allows the placing of up to 8 different test materials within one animal and because of the standardization of the bone defect, routine evaluation by means of histomorphometry is easily conducted. This method was used successfully in 66 White Alpine Sheep. When the drill holes were correctly placed no complications such as spontaneous fractures were encountered. This experimental animal model serves an excellent basis for testing the biocompatibility of novel biomaterials to be used as bone replacement or new bone formation enhancing materials.
[A method for inducing standardized spiral fractures of the tibia in the animal experiment].
Seibold, R; Schlegel, U; Cordey, J
1995-07-01
A method for the deliberate weakening of cortical bone has been developed on the basis of an already established technique for creating butterfly fractures. It enables one to create the same type of fracture, i.e., a spiral fracture, every time. The fracturing process is recorded as a force-strain curve. The results of the in vitro investigations form a basis for the preparation of experimental tasks aimed at demonstrating internal fixation techniques and their influence on the vascularity of the bone in simulated fractures. Animal protection law lays down that this fracture model must not fail in animal experiments.
Auer, Jorg A; Goodship, Allen; Arnoczky, Steven; Pearce, Simon; Price, Jill; Claes, Lutz; von Rechenberg, Brigitte; Hofmann-Amtenbrinck, Margarethe; Schneider, Erich; Müller-Terpitz, R; Thiele, F; Rippe, Klaus-Peter; Grainger, David W
2007-08-01
In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS) according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1) Intelligent study designs to receive appropriate answers; 2) Minimal complication rates (5 to max. 10%); 3) Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA) audit of protocols in GLP studies; 4) Sufficient details for materials and methods applied; 5) Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences); 6) Post-operative management with emphasis on analgesia and follow-up examinations; 7) Study protocols to satisfy criteria established for a "justified animal study"; 8) Surgical expertise to conduct surgery on animals; 9) Pilot studies as a critical part of model validation and powering of the definitive study design; 10) Criteria for funding agencies to include requirements related to animal experiments as part of the overall scientific proposal review protocols. Such agencies are also encouraged to seriously consider and adopt the recommendations described here when awarding funds for specific projects. Specific new requirements and mandates related both to improving the welfare and scientific rigour of animal-based research models are urgently needed as part of international harmonization of standards.
Weidlich, P; Adam, C; Sroka, R; Lanzl, I; Assmann, W; Stief, C
2007-09-01
The treatment of urethral strictures represents an unsolved urological problem. The effect of a (32)P-coated urethral catheter in the sense of low-dose rate brachytherapy to modulate wound healing will be analyzed in an animal experiment. Unfortunately it is not possible to present any results because this is being studied for the first time and there are no experiences with low-dose rate brachytherapy and this form of application in the lower urinary tract. Furthermore the animal experiment will only start in the near future. Both decade-long experiences with radiotherapy to treat benign diseases and our own results of previous studies in otolaryngology and ophthalmology let us expect a significantly lower formation of urethral strictures after internal urethrotomy. This study will contribute to improving the treatment of urethral strictures as demanded in previous papers.
2016-05-18
research involving animals , as required by AFMAN 40-401 IP : "The experiments reported herein were conducted according to the principles set forth in...the National Institute of Health Publication No. 80-23, Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act of 1966, as...Castaneda, Maria G Contractor 59th MDW e. Boudreau, Susan M Contractor 59th MOW f. I CERTIFY ANY HUMAN OR ANIMAL RESEARCH RELATED STUDIES WERE APPROVED
Coordination of Knowledge in Judging Animated Motion
ERIC Educational Resources Information Center
Thaden-Koch, Thomas C.; Dufresne, Robert J.; Mestre, Jose P.
2006-01-01
Coordination class theory is used to explain college students' judgments about animated depictions of moving objects. diSessa's coordination class theory models a "concept" as a complex knowledge system that can reliably determine a particular type of information in widely varying situations. In the experiment described here, fifty individually…
Small-Animal Molecular Imaging for Preclinical Cancer Research: .μPET and μ.SPECT.
Cuccurullo, Vincenzo; Di Stasio, Giuseppe D; Schillirò, Maria L; Mansi, Luigi
2016-01-01
Due to different sizes of humans and rodents, the performance of clinical imaging devices is not enough for a scientifically reliable evaluation in mice and rats; therefore dedicated small-animal systems with a much higher sensitivity and spatial resolution, compared to the ones used in humans, are required. Smallanimal imaging represents a cutting-edge research method able to approach an enormous variety of pathologies in which animal models of disease may be used to elucidate the mechanisms underlying the human condition and/or to allow a translational pharmacological (or other) evaluation of therapeutic tools. Molecular imaging, avoiding animal sacrifice, permits repetitive (i.e. longitudinal) studies on the same animal which becomes its own control. In this way also the over time evaluation of disease progression or of the treatment response is enabled. Many different rodent models have been applied to study almost all kind of human pathologies or to experiment a wide series of drugs and/or other therapeutic instruments. In particular, relevant information has been achieved in oncology by in vivo neoplastic phenotypes, obtained through procedures such as subcutaneous tumor grafts, surgical transplantation of solid tumor, orthotopic injection of tumor cells into specific organs/sites of interest, genetic modification of animals to promote tumor-genesis; in this way traditional or innovative treatments, also including gene therapy, of animals with a cancer induced by a known carcinogen may be experimented. Each model has its own disadvantage but, comparing different studies, it is possible to achieve a panoramic and therefore substantially reliable view on the specific subject. Small-animal molecular imaging has become an invaluable component of modern biomedical research that will gain probably an increasingly important role in the next few years.
Ratios of transfer coefficients for radiocesium transport in ruminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assimakopoulos, P.A.; Ioannides, K.G.; Karamanis, D.
1995-09-01
A corollary of the multiple-compartment model for the transport of trace elements through animals was tested for cows, goats, and sheep. According to this corollary, for a given body {open_quotes}compartment{close_quotes} k of the animal (soft tissue, lung, liver, etc.), the ratio a(k)=f(k)/f(blood) of the transfer coefficients f, should exhibit similar values for physiologically similar animals. In order to verify this prediction, two experiments were performed at the Agricultural Research Station of Ioannina and at the facilities of Ria Pripyat in Pripyat, Ukranine. Eight animals in the first experiment and eighteen in the second were housed in individual pens and weremore » artificially contaminated with a constant daily dose of radiocesium until equilibrium was reached. the animals were then sacrificed and transfer coefficients f(k) to twelve body {open_quotes}compartments{close_quotes} k were measured. These data were used to calculate the ratios a(k). The results were in accordance with predictions of the model and average values of a(k) were extracted for ruminants. It is concluded that these values may be employed for the prediction of animal contamination in any body compartment through the measurement of blood samples. 7 refs., 8 tabs.« less
Zoladz, Phillip R; Diamond, David M
2016-10-01
Research on post-traumatic stress disorder (PTSD) is faced with the challenge of understanding how a traumatic experience produces long-lasting detrimental effects on behavior and brain functioning, and more globally, how stress exacerbates somatic disorders, including cardiovascular disease. Moreover, the design of translational research needs to link animal models of PTSD to clinically relevant risk factors which address why only a subset of traumatized individuals develop persistent psychopathology. In this review, we have summarized our psychosocial stress rodent model of PTSD which is based on well-described PTSD-inducing risk factors, including a life-threatening experience, a sense of horror and uncontrollability, and insufficient social support. Specifically, our animal model of PTSD integrates acute episodes of inescapable exposure of immobilized rats to a predator with chronic daily social instability. This stress regimen produces PTSD-like effects in rats at behavioral, cognitive, physiological, pharmacological and epigenetic levels of analysis. We have discussed a recent extension of our animal model of PTSD in which stress exacerbated coronary pathology following an ischemic event, assessed in vitro. In addition, we have reviewed our research investigating pharmacological and non-pharmacological therapeutic strategies which may have value in clinical approaches toward the treatment of traumatized people. Overall, our translational approach bridges the gap between human and animal PTSD research to create a framework with which to enhance our understanding of the biological basis of trauma-induced pathology and to assess therapeutic approaches in the treatment of psychopathology. Copyright © 2016 Elsevier Inc. All rights reserved.
Naudin, Clément; Schumski, Ariane; Salo-Ahen, Outi M H; Herwald, Heiko; Smeds, Emanuel
2017-05-01
Species tropism constitutes a serious problem for developing relevant animal models of infection. Human pathogens can express virulence factors that show specific selectivity to human proteins, while their affinity for orthologs from other species can vary significantly. Suitable animal species must be used to analyse whether virulence factors are potential targets for drug development. We developed an assay that rapidly predicts applicable animal species for studying virulence factors binding plasma proteins. We used two well-characterized Staphylococcus aureus proteins, SSL7 and Efb, to develop an ELISA-based inhibition assay using plasma from different animal species. The interaction between SSL7 and human C5 and the binding of Efb to human fibrinogen and human C3 was studied. Affinity experiments and Western blot analyses were used to validate the assay. Human, monkey and cat plasma interfered with binding of SSL7 to human C5. Binding of Efb to human fibrinogen was blocked in human, monkey, gerbil and pig plasma, while human, monkey, gerbil, rabbit, cat and guinea pig plasma inhibited the binding of Efb to human C3. These results emphasize the importance of choosing correct animal models, and thus, our approach is a rapid and cost-effective method that can be used to prevent unnecessary animal experiments. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Animal models for posttraumatic stress disorder: An overview of what is used in research
Borghans, Bart; Homberg, Judith R
2015-01-01
Posttraumatic stress disorder (PTSD) is a common anxiety disorder characterised by its persistence of symptoms after a traumatic experience. Although some patients can be cured, many do not benefit enough from the psychological therapies or medication strategies used. Many researchers use animal models to learn more about the disorder and several models are available. The most-used physical stressor models are single-prolonged stress, restraint stress, foot shock, stress-enhanced fear learning, and underwater trauma. Common social stressors are housing instability, social instability, early-life stress, and social defeat. Psychological models are not as diverse and rely on controlled exposure to the test animal’s natural predator. While validation of these models has been resolved with replicated symptoms using analogous stressors, translating new findings to human patients remains essential for their impact on the field. Choosing a model to experiment with can be challenging; this overview of what is possible with individual models may aid in making a decision. PMID:26740930
Everitt, J I; Berridge, B R
2017-07-01
Institutional Animal Care and Use Committees (IACUCs) have a mandated role under the Animal Welfare Act and under Public Health Service Policy to assure the ethical and humane use of research animals in experiments conducted in the United States. The IACUC by virtue of its mandated functions is well positioned to help nurture an institutional culture of optimized animal use since this Committee is often responsible in large part for the culture of animal use that evolves within an institution. In addition to fostering a culture of humane care for research animals and a culture of working with the concepts of the 3Rs (refinement, reduction, replacement), the IACUC can help foster a culture of optimized animal use that encourages high quality reproducible studies that contribute to translational success. In part this is achieved when the IACUC is successful in encouraging interdisciplinary collaboration early and often within the animal use community it serves. Unfortunately in some instances the institutional research community may envisage the IACUC as a bureaucratic burden, regulatory necessity, and compliance tool more than a group that enhances the methodology and quality of animal experiments. A well-functioning IACUC should strive to nurture an institutional culture that places value in enhancing the scientific quality of research to help assure the reproducibility of animal studies and translational success of animal models. This is integral to both high quality science as well as excellence in the supporting animal care and use. © The Author 2017. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The Pleurodele, an animal model for space biology studies
NASA Astrophysics Data System (ADS)
Gualandris, L.; Grinfeld, S.; Foulquier, F.; Kan, P.; Duprat, A. M.
Pleurodeles waltl, an Urodele amphibian is proposed as a model for space biology studies. Our laboratory is developing three types of experiments in space using this animal: 1) in vivo fertilization and development (``FERTILE'' project); 2) influence of microgravity and space radiation on the organization and preservation of spacialized structures in the neurons and muscle cells (in vitro; ``CELIMENE'' PROJECT); 3) influence of microgravity on tissue regeneration (muscle, bone, epidermis and spinal cord).
Animal use in pharmacology education and research: the changing scenario.
Badyal, Dinesh K; Desai, Chetna
2014-01-01
The use of animals in research and education dates back to the period when humans started to look for ways to prevent and cure ailments. Most of present day's drug discoveries were possible because of the use of animals in research. The dilemma to continue animal experiments in education and research continues with varied and confusing guidelines. However, the animal use and their handling vary in each laboratory and educational institution. It has been reported that the animals are being subjected to painful procedures in education and training unnecessarily. The extensive use of animals in toxicity studies and testing dermatological preparations has raised concerns about the ways animals are sacrificed for these "irrelevant experiments". On the other side of the coin are scientists who advocate the relevant and judicious use of animals in research so that new discoveries can continue. In this review, we discuss the evolution of the use of animals in education and research and how these have been affected in recent times owing to concerns from animal lovers and government regulations. A number of computer simulation and other models have been recommended for use as alternatives to use of animals for pharmacology education. In this review we also discuss some of these alternatives.
On the choice of statistical models for estimating occurrence and extinction from animal surveys
Dorazio, R.M.
2007-01-01
In surveys of natural animal populations the number of animals that are present and available to be detected at a sample location is often low, resulting in few or no detections. Low detection frequencies are especially common in surveys of imperiled species; however, the choice of sampling method and protocol also may influence the size of the population that is vulnerable to detection. In these circumstances, probabilities of animal occurrence and extinction will generally be estimated more accurately if the models used in data analysis account for differences in abundance among sample locations and for the dependence between site-specific abundance and detection. Simulation experiments are used to illustrate conditions wherein these types of models can be expected to outperform alternative estimators of population site occupancy and extinction. ?? 2007 by the Ecological Society of America.
Robots in the service of animal behavior.
Klein, Barrett A; Stein, Joey; Taylor, Ryan C
2012-09-01
As reading fiction can challenge us to better understand fact, using fake animals can sometimes serve as our best solution to understanding the behavior of real animals. The use of dummies, doppelgangers, fakes, and physical models have served to elicit behaviors in animal experiments since the early history of behavior studies, and, more recently, robotic animals have been employed by researchers to further coax behaviors from their study subjects. Here, we review the use of robots in the service of animal behavior, and describe in detail the production and use of one type of robot - "faux" frogs - to test female responses to multisensory courtship signals. The túngara frog (Physalaemus pustulosus) has been a study subject for investigating multimodal signaling, and we discuss the benefits and drawbacks of using the faux frogs we have designed, with the larger aim of inspiring other scientists to consider the appropriate application of physical models and robots in their research.
Changes in the Welfare of an Injured Working Farm Dog Assessed Using the Five Domains Model
Littlewood, Katherine E.; Mellor, David J.
2016-01-01
Simple Summary The Five Domains Model is now increasingly used to assess the welfare status of a wide range of species in markedly different circumstances. Particular strengths are that the Model facilitates structured, systematic and comprehensive evaluations of animals’ negative and positive mental experiences, the overall balance of which underlies their welfare status or quality of life. Importantly, the Model also clarifies the specific internal and external factors that give rise to those experiences. The welfare evaluation published here is the first to use the most up-to-date version of the Model, and stands as a detailed example that may assist others undertaking such welfare evaluations in other species and contexts. Moreover, it is the first such evaluation of a companion animal. It employs a fictitious scenario involving a working farm dog before, during and after it sustains a serious hind leg injury requiring amputation and its subsequent rehoming as a pet. A wide range of negative and positive experiences are graded, interactions between them are revealed, and the balance between negative and positive states at different stages of the scenario is described. Such Model evaluations can highlight current practices that merit re-evaluation. More generally, when major welfare issues are identified, use of the Model could enhance expert witness participation in related prosecutions by highlighting scientifically supported connections between indicative physical/functional states and behaviours and their associated negative experiences in ill-treated animals. Five Domains Model evaluations can also facilitate quality of life assessments and end-of-life decisions. Abstract The present structured, systematic and comprehensive welfare evaluation of an injured working farm dog using the Five Domains Model is of interest in its own right. It is also an example for others wanting to apply the Model to welfare evaluations in different species and contexts. Six stages of a fictitious scenario involving the dog are considered: (1) its on-farm circumstances before one hind leg is injured; (2) its entanglement in barbed wire, cutting it free and transporting it to a veterinary clinic; (3) the initial veterinary examination and overnight stay; (4) amputation of the limb and immediate post-operative recovery; (5) its first four weeks after rehoming to a lifestyle block; and (6) its subsequent life as an amputee and pet. Not all features of the scenario represent average-to-good practice; indeed, some have been selected to indicate poor practice. It is shown how the Model can draw attention to areas of animal welfare concern and, importantly, to how welfare enhancement may be impeded or facilitated. Also illustrated is how the welfare implications of a sequence of events can be traced and evaluated, and, in relation to specific situations, how the degrees of welfare compromise and enhancement may be graded. In addition, the choice of a companion animal, contrasting its welfare status as a working dog and pet, and considering its treatment in a veterinary clinical setting, help to highlight various welfare impacts of some practices. By focussing attention on welfare problems, the Model can guide the implementation of remedies, including ways of promoting positive welfare states. Finally, wider applications of the Five Domains Model are noted: by enabling both negative and positive welfare-relevant experiences to be graded, the Model can be applied to quality of life assessments and end-of-life decisions and, with particular regard to negative experiences, the Model can also help to strengthen expert witness testimony during prosecutions for serious ill treatment of animals. PMID:27657140
Bar, Nadav S.; Skogestad, Sigurd; Marçal, Jose M.; Ulanovsky, Nachum; Yovel, Yossi
2015-01-01
Animal flight requires fine motor control. However, it is unknown how flying animals rapidly transform noisy sensory information into adequate motor commands. Here we developed a sensorimotor control model that explains vertebrate flight guidance with high fidelity. This simple model accurately reconstructed complex trajectories of bats flying in the dark. The model implies that in order to apply appropriate motor commands, bats have to estimate not only the angle-to-target, as was previously assumed, but also the angular velocity (“proportional-derivative” controller). Next, we conducted experiments in which bats flew in light conditions. When using vision, bats altered their movements, reducing the flight curvature. This change was explained by the model via reduction in sensory noise under vision versus pure echolocation. These results imply a surprising link between sensory noise and movement dynamics. We propose that this sensory-motor link is fundamental to motion control in rapidly moving animals under different sensory conditions, on land, sea, or air. PMID:25629809
From Storyboard to Story: Animation Content Development
ERIC Educational Resources Information Center
Mou, Tsai-Yun; Jeng, Tay-Sheng; Chen, Chien-Hsu
2013-01-01
This research focused on a new method in the development of animation story content, which could shorten the creation process and arouse new ideas. Two phases of experiments were conducted to explore this reversed model. The first phase is a pretest of participants' creativity, which was a base for further examination the relationship between…
Animals and the 3Rs in toxicology research and testing: The way forward.
Stokes, W S
2015-12-01
Despite efforts to eliminate the use of animals in testing and the availability of many accepted alternative methods, animals are still widely used for toxicological research and testing. While research using in vitro and computational models has dramatically increased in recent years, such efforts have not yet measurably impacted animal use for regulatory testing and are not likely to do so for many years or even decades. Until regulatory authorities have accepted test methods that can totally replace animals and these are fully implemented, large numbers of animals will continue to be used and many will continue to experience significant pain and distress. In order to positively impact the welfare of these animals, accepted alternatives must be implemented, and efforts must be directed at eliminating pain and distress and reducing animal numbers. Animal pain and distress can be reduced by earlier predictive humane endpoints, pain-relieving medications, and supportive clinical care, while sequential testing and routine use of integrated testing and decision strategies can reduce animal numbers. Applying advances in science and technology to the development of scientifically sound alternative testing models and strategies can improve animal welfare and further reduce and replace animal use. © The Author(s) 2015.
In vitro cell culture models to study the corneal drug absorption.
Reichl, Stephan; Kölln, Christian; Hahne, Matthias; Verstraelen, Jessica
2011-05-01
Many diseases of the anterior eye segment are treated using topically applied ophthalmic drugs. For these drugs, the cornea is the main barrier to reaching the interior of the eye. In vitro studies regarding transcorneal drug absorption are commonly performed using excised corneas from experimental animals. Due to several disadvantages and limitations of these animal experiments, establishing corneal cell culture models has been attempted as an alternative. This review summarizes the development of in vitro models based on corneal cell cultures for permeation studies during the last 20 years, starting with simple epithelial models and moving toward complex organotypical 3D corneal equivalents. Current human 3D corneal cell culture models have the potential to replace excised animal corneas in drug absorption studies. However, for widespread use, the contemporary validation of existent systems is required.
Watters, Jason V; Powell, David M
2012-01-01
The concept that animals have personalities is gaining traction in the scientific community and is well established in zoos and aquariums. Applying knowledge of animal personalities has occurred more slowly and is most often only considered informally. However, animal personalities are likely to affect the welfare animals experience in captivity and thus should be of primary concern to zoo managers. In addition, animal personality likely affects the outcomes of zoo guest experiences and potentially guests' conservation-related behavior. With over 1,000,000 animals in the care of zoos internationally and hundreds of millions of visitors annually, it would be prudent and beneficial to maximize our use of animal personality data in zoos to effect positive conservation outcomes. Understanding how to broaden population planning techniques to include measures of animal personality and the important outcomes of welfare and education value is of prime importance to the zoo industry. In order to succeed, it is necessary to employ techniques that reliably assess animal personalities and provide measures that can easily be used in population planning models. We discuss the outcomes of recent workshops designed to determine the best techniques for measuring animal personalities in the zoo setting with the goal of incorporating personality into population planning. © 2011 Wiley Periodicals, Inc.
Diffusion model to describe osteogenesis within a porous titanium scaffold.
Schmitt, M; Allena, R; Schouman, T; Frasca, S; Collombet, J M; Holy, X; Rouch, P
2016-01-01
In this study, we develop a two-dimensional finite element model, which is derived from an animal experiment and allows simulating osteogenesis within a porous titanium scaffold implanted in ewe's hemi-mandible during 12 weeks. The cell activity is described through diffusion equations and regulated by the stress state of the structure. We compare our model to (i) histological observations and (ii) experimental data obtained from a mechanical test done on sacrificed animal. We show that our mechano-biological approach provides consistent numerical results and constitutes a useful tool to predict osteogenesis pattern.
Van Hoomissen, Jacqueline; Kunrath, Julie; Dentlinger, Renee; Lafrenz, Andrew; Krause, Mark; Azar, Afaf
2011-09-12
Despite the evidence that exercise improves cognitive behavior in animal models, little is known about these beneficial effects in animal models of pathology. We examined the effects of activity wheel (AW) running on contextual fear conditioning (CFC) and locomotor/exploratory behavior in the olfactory bulbectomy (OBX) model of depression, which is characterized by hyperactivity and changes in cognitive function. Twenty-four hours after the conditioning session of the CFC protocol, the animals were tested for the conditioned response in a conditioned and a novel context to test for the effects of both AW and OBX on CFC, but also the context specificity of the effect. OBX reduced overall AW running behavior throughout the experiment, but increased locomotor/exploratory behavior during CFC, thus demonstrating a context-dependent effect. OBX animals, however, displayed normal CFC behavior that was context-specific, indicating that aversively conditioned memory is preserved in this model. AW running increased freezing behavior during the testing session of the CFC protocol in the control animals but only in the conditioned context, supporting the hypothesis that AW running improves cognitive function in a context-specific manner that does not generalize to an animal model of pathology. Blood corticosterone levels were increased in all animals at the conclusion of the testing sessions, but levels were higher in AW compared to sedentary groups indicating an effect of exercise on neuroendocrine function. Given the differential results of AW running on behavior and neuroendocrine function after OBX, further exploration of the beneficial effects of exercise in animal models of neuropathology is warranted. Copyright © 2011 Elsevier B.V. All rights reserved.
Is the use of animals in biomedical research still necessary in 2002? Unfortunately, "yes".
Festing, Michael F W
2004-06-01
The use of laboratory animals in the year 2002 is essential both to maintain human health and to develop new treatments for the many diseases that still plague humans. The suggestion by Greek and Greek in Sacred Cows and Golden Geese in 2000, that animal experiments are invalid because animals are different from humans, shows clearly that they do not understand the philosophical basis for the use of models in science and every day life. Models only need to resemble the thing being modelled (the target) in a few key respects. A map of Brooklyn Botanic Garden is a useful model, but it differs from the garden in many respects. There are many examples where studies on animals and in vitro alternatives result in accurate predictions of human responses even though the models differ from humans in other ways. In the drug development model, validation is done in clinical trials. Models are also used in the discovery of fundamental processes shared by some, or all, living organisms. The laws of genetics were first discovered by using garden peas, but they are equally applicable to humans. It is because of the ethical, rather than scientific, objections to the use of animals that all scientists are urged to find alternatives according to the principles of reduction, refinement and replacement, laid down by Russell and Burch in 1959.
Building the bridge between animal movement and population dynamics.
Morales, Juan M; Moorcroft, Paul R; Matthiopoulos, Jason; Frair, Jacqueline L; Kie, John G; Powell, Roger A; Merrill, Evelyn H; Haydon, Daniel T
2010-07-27
While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through 'spatially informed' movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission-fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction.
Available for the Apple II: FIRM: Florida InteRactive Modeler.
ERIC Educational Resources Information Center
Levy, C. Michael; And Others
1983-01-01
The Apple II microcomputer program described allows instructors with minimal programing experience to construct computer models of psychological phenomena for students to investigate. Use of these models eliminates need to maintain/house/breed animals or purchase sophisticated laboratory equipment. Several content models are also described,…
Trépanier, Marc-Olivier; Lim, Joonbum; Lai, Terence K Y; Cho, Hye Jin; Domenichiello, Anthony F; Chen, Chuck T; Taha, Ameer Y; Bazinet, Richard P; Burnham, W M
2014-04-01
Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid (n-3 PUFA) which has been shown to raise seizure thresholds following acute administration in rats. The aims of the present experiment were the following: 1) to test whether subchronic DHA administration raises seizure threshold in the maximal pentylenetetrazol (PTZ) model 24h following the last injection and 2) to determine whether the increase in seizure threshold is correlated with an increase in serum and/or brain DHA. Animals received daily intraperitoneal (i.p.) injections of 50mg/kg of DHA, DHA ethyl ester (DHA EE), or volume-matched vehicle (albumin/saline) for 14days. On day 15, one subset of animals was seizure tested in the maximal PTZ model (Experiment 1). In a separate (non-seizure tested) subset of animals, blood was collected, and brains were excised following high-energy, head-focused microwave fixation. Lipid analysis was performed on serum and brain (Experiment 2). For data analysis, the DHA and DHA EE groups were combined since they did not differ significantly from each other. In the maximal PTZ model, DHA significantly increased seizure latency by approximately 3-fold as compared to vehicle-injected animals. This increase in seizure latency was associated with an increase in serum unesterified DHA. Total brain DHA and brain unesterified DHA concentrations, however, did not differ significantly in the treatment and control groups. An increase in serum unesterified DHA concentration reflecting increased flux of DHA to the brain appears to explain changes in seizure threshold, independent of changes in brain DHA concentrations. Copyright © 2014 Elsevier Inc. All rights reserved.
SEARCH: Spatially Explicit Animal Response to Composition of Habitat.
Pauli, Benjamin P; McCann, Nicholas P; Zollner, Patrick A; Cummings, Robert; Gilbert, Jonathan H; Gustafson, Eric J
2013-01-01
Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of SEARCH for a variety of applications and illustrate benefits it can provide for conservation planning.
Considering aspects of the 3Rs principles within experimental animal biology.
Sneddon, Lynne U; Halsey, Lewis G; Bury, Nic R
2017-09-01
The 3Rs - Replacement, Reduction and Refinement - are embedded into the legislation and guidelines governing the ethics of animal use in experiments. Here, we consider the advantages of adopting key aspects of the 3Rs into experimental biology, represented mainly by the fields of animal behaviour, neurobiology, physiology, toxicology and biomechanics. Replacing protected animals with less sentient forms or species, cells, tissues or computer modelling approaches has been broadly successful. However, many studies investigate specific models that exhibit a particular adaptation, or a species that is a target for conservation, such that their replacement is inappropriate. Regardless of the species used, refining procedures to ensure the health and well-being of animals prior to and during experiments is crucial for the integrity of the results and legitimacy of the science. Although the concepts of health and welfare are developed for model organisms, relatively little is known regarding non-traditional species that may be more ecologically relevant. Studies should reduce the number of experimental animals by employing the minimum suitable sample size. This is often calculated using power analyses, which is associated with making statistical inferences based on the P -value, yet P -values often leave scientists on shaky ground. We endorse focusing on effect sizes accompanied by confidence intervals as a more appropriate means of interpreting data; in turn, sample size could be calculated based on effect size precision. Ultimately, the appropriate employment of the 3Rs principles in experimental biology empowers scientists in justifying their research, and results in higher-quality science. © 2017. Published by The Company of Biologists Ltd.
A Comprehensive Breath Plume Model for Disease Transmission via Expiratory Aerosols
NASA Astrophysics Data System (ADS)
Halloran, S. K.; Wexler, A. S.; Ristenpart, W. D.
2012-11-01
The peak in influenza incidence during wintertime represents a longstanding unresolved scientific question. One hypothesis is that the efficacy of airborne transmission via aerosols is increased at low humidity and temperature, conditions that prevail in wintertime. Recent experiments with guinea pigs suggest that transmission is indeed maximized at low humidity and temperature, a finding which has been widely interpreted in terms of airborne influenza virus survivability. This interpretation, however, neglects the effect of the airflow on the transmission probability. Here we provide a comprehensive model for assessing the probability of disease transmission via expiratory aerosols between test animals in laboratory conditions. The spread of aerosols emitted from an infected animal is modeled using dispersion theory for a homogeneous turbulent airflow. The concentration and size distribution of the evaporating droplets in the resulting ``Gaussian breath plume'' are calculated as functions of downstream position. We demonstrate that the breath plume model is broadly consistent with the guinea pig experiments, without invoking airborne virus survivability. Moreover, the results highlight the need for careful characterization of the airflow in airborne transmission experiments.
Synthetic oligosaccharides can replace animal-sourced low-molecular weight heparins.
Xu, Yongmei; Chandarajoti, Kasemsiri; Zhang, Xing; Pagadala, Vijayakanth; Dou, Wenfang; Hoppensteadt, Debra Moorman; Sparkenbaugh, Erica M; Cooley, Brian; Daily, Sharon; Key, Nigel S; Severynse-Stevens, Diana; Fareed, Jawed; Linhardt, Robert J; Pawlinski, Rafal; Liu, Jian
2017-09-06
Low-molecular weight heparin (LMWH) is used clinically to treat clotting disorders. As an animal-sourced product, LMWH is a highly heterogeneous mixture, and its anticoagulant activity is not fully reversible by protamine. Furthermore, the reliability of the LMWH supply chain is a concern for regulatory agencies. We demonstrate the synthesis of heparin dodecasaccharides (12-mers) at the gram scale. In vitro experiments demonstrate that the anticoagulant activity of the 12-mers could be reversed using protamine. One of these, labeled as 12-mer-1, reduced the size of blood clots in the mouse model of deep vein thrombosis and attenuated circulating procoagulant markers in the mouse model of sickle cell disease. An ex vivo experiment demonstrates that the anticoagulant activity of 12-mer-1 could be reversed by protamine. 12-mer-1 was also examined in a nonhuman primate model to determine its pharmacodynamic parameters. A 7-day toxicity study in a rat model showed no toxic effects. The data suggest that a synthetic homogeneous oligosaccharide can replace animal-sourced LMWHs. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
NASA Astrophysics Data System (ADS)
Guziałowska-Tic, Joanna
2017-10-01
According to the Directive of the European Parliament and of the Council concerning the protection of animals used for scientific purposes, the number of experiments involving the use of animals needs to be reduced. The methods which can replace animal testing include computational prediction methods, for instance, the quantitative structure-activity relationships (QSAR). These methods are designed to find a cohesive relationship between differences in the values of the properties of molecules and the biological activity of a series of test compounds. This paper compares the results of the author's own results of examination on the n-octanol/water coefficient for the hydroxyester HE-1 with those generated by means of three models: Kowwin, MlogP, AlogP. The test results indicate that, in the case of molecular similarity, the highest determination coefficient was obtained for the model MlogP and the lowest root-mean square error was obtained for the Kowwin method. When comparing the mean logP value obtained using the QSAR models with the value resulting from the author's own experiments, it was observed that the best conformity was that recorded for the model AlogP, where relative error was 15.2%.
Selection of an appropriate animal model for study of bone loss in weightlessness
NASA Technical Reports Server (NTRS)
Wolinsky, I.
1986-01-01
Prolonged weightlessness in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. A number of preventative measures have been suggested, i.e., exercise during flight, dietary calcium supplements, use of specific prophylactic drugs. In order to facilitate research in these areas it is necessary to develop appropriate ground-based animal models that simulate the human condition of osteoporsis. An appropriate animal model would permit bone density studies, calcium balance studies, biochemical analyses, ground-based simulation models of weightlessness (bed rest, restraint, immobilization) and the planning of inflight experiments. Several animal models have been proposed in the biomedical research literature, but have inherent deficiencies. The purpose of this project was to evaluate models in the literature and determine which of these most closely simulates the phenomenon of bone loss in humans with regard to growth, bone remodeling, structural, chemical and mineralization similarities to human. This was accomplished by a comprehensive computer assisted literature search and report. Three animal models were examined closely for their relative suitability: the albino rat, monkey, and Beagle.
Overview of large animal myocardial infarction models (review).
Lukács, E; Magyari, B; Tóth, L; Petrási, Zs; Repa, I; Koller, A; Horváth, Iván
2012-12-01
There are several experimental models for the in vivo investigation of myocardial infarction (MI) in small (mouse, rat) and large animals (dog, pig, sheep and baboons). The application of large animal models raises ethical concerns, the design of experiments needs longer follow-up times, requiring proper breeding and housing conditions, therefore resulting in higher cost, than in vitro or small animal studies. On the other hand, the relevance of large animal models is very important, since they mostly resemble to human physiological and pathophysiological processes. The first main difference among MI models is the method of induction (open or closed chest, e.g. surgical or catheter based); the second main difference is the presence or absence of reperfusion. The former (i.e. reperfused MI) allows the investigation of reperfusion injury and new catheter based techniques during percutaneous coronary interventions, while the latter (i.e. nonreperfused MI) serves as a traditional coronary occlusion model, to test the effects of new pharmacological agents and biological therapies, as cell therapy. The reperfused and nonreperfused myocardial infarction has different outcomes, regarding left ventricular function, remodelling, subsequent heart failure, aneurysm formation and mortality. Our aim was to review the literature and report our findings regarding experimental MI models, regarding the differences among species, methods, reproducibility and interpretation.
In vivo porcine training model for laparoscopic Roux-en-Y choledochojejunostomy.
Lee, Jun Suh; Hong, Tae Ho
2015-06-01
The purpose of this study was to develop a porcine training model for laparoscopic choledochojejunostomy (CJ) that can act as a bridge between simulation models and actual surgery for novice surgeons. The feasibility of this model was evaluated. Laparoscopic CJ using intracorporeal sutures was performed on ten animals by a surgical fellow with no experience in human laparoscopic CJ. A single layer of running sutures was placed in the posterior and anterior layers. Jejunojejunostomy was performed using a linear stapler, and the jejunal opening was closed using absorbable unidirectional sutures (V-Loc 180). The average operation time was 131.3 ± 36.4 minutes, and the CJ time was 57.5 ± 18.4 minutes. Both the operation time and CJ time showed a steady decrease with an increasing number of cases. The average diameter of the CBD was 6.4 ± 0.8 mm. Of a total of ten animals, eight were sacrificed after the procedure. In two animals, a survival model was evaluated. Both pigs recovered completely and survived for two weeks, after which both animals were sacrificed. None of the animals exhibited any signs of bile leakage or anastomosis site stricture. The porcine training model introduced in this paper is an adequate model for practicing laparoscopic CJ. Human tissue simulation is excellent.
[A NEW APPROACH FOR FOOD PREFERENCE TESTING IN ANIMAL EXPERIMENTATION].
Albertin, S V
2015-10-01
An article describes the original method allowing to study a mechanism of food preference related to the sensory properties of foods in animals. The method gives a good possibility to select the role of visual and orosensory signaling in food preference as well as to model the processes of physiological and pathological food and drug dependence in animal experiments. The role of discrete food presentation in the formation of the current motivations and food preferences was discussed.
Spontaneous Reperfusion after In Situ Thromboembolic Stroke in Mice
Cho, Tae-Hee; Bolbos, Radu; Langlois, Jean-Baptiste; Hermitte, Laure; Wiart, Marlène; Berthezène, Yves; Nighoghossian, Norbert
2012-01-01
Injection of thrombin into the middle cerebral artery (MCA) of mice has been proposed as a new model of thromboembolic stroke. The present study used sequential multiparametric Magnetic Resonance Imaging (MRI), including Magnetic Resonance Angiography (MRA), Diffusion-Weighted Imaging (DWI) and Perfusion-Weighted Imaging (PWI), to document MCA occlusion, PWI-DWI mismatch, and lesion development. In the first experiment, complete MCA occlusion and reproducible hypoperfusion were obtained in 85% of animals during the first hour after stroke onset. In the second experiment, 80% of animals showed partial to complete reperfusion during a three-hour follow-up. Spontaneous reperfusion thus contributed to the variability in ischemic volume in this model. The study confirmed the value of the model for evaluating new thrombolytic treatments, but calls for extended MRI follow-up at the acute stage in therapeutic studies. PMID:23166825
Sugimoto, Koun; Numata, Shinya
2017-01-01
Urban biodiversity conservation often aims to promote the quality of life for urban residents by providing ecosystem services as well as habitats for diverse wildlife. However, biodiversity inevitably brings some disadvantages, including problems and nuisances caused by wildlife. Although some studies have reported that enhancement of nature interaction among urban children promotes their affective attitude toward of favorable animals, its effect on tolerance toward problem-causing wildlife is unknown. In this study, we assessed the tolerance of 1,030 urban residents in Japan toward hornets and wild boar, and analyzed the effects of childhood experience with nature on tolerance using a structural equation model. The model used sociodemographic factors and childhood nature experience as explanatory variables, affective attitude toward these animals as a mediator, and tolerance as a response variable. The public tolerance toward hornets and boars was low; over 60% of the respondents would request the removal of hornets and wild boar from nearby green spaces by government services, even when the animals had not caused any damage. Tolerance was lower in females and elderly respondents. Childhood experience with nature had a greater influence on tolerance than did sociodemographic factors in the scenario where animals have not caused any problems; however, its effect was only indirect via promoting positive affective attitude toward wildlife when the animals have caused problems. Our results suggest that increasing people’s direct experience with nature is important to raise public tolerance, but its effect is limited to cases where wildlife does not cause any problems. To obtain wider support for conservation in urban areas, conservationists, working together with municipal officials, educators and the media, should provide relevant information on the ecological functions performed by problem-causing wildlife and strategies for avoiding the problems that wildlife can cause. PMID:28388643
Auer, Jorg A; Goodship, Allen; Arnoczky, Steven; Pearce, Simon; Price, Jill; Claes, Lutz; von Rechenberg, Brigitte; Hofmann-Amtenbrinck, Margarethe; Schneider, Erich; Müller-Terpitz, R; Thiele, F; Rippe, Klaus-Peter; Grainger, David W
2007-01-01
Background In an attempt to establish some consensus on the proper use and design of experimental animal models in musculoskeletal research, AOVET (the veterinary specialty group of the AO Foundation) in concert with the AO Research Institute (ARI), and the European Academy for the Study of Scientific and Technological Advance, convened a group of musculoskeletal researchers, veterinarians, legal experts, and ethicists to discuss, in a frank and open forum, the use of animals in musculoskeletal research. Methods The group narrowed the field to fracture research. The consensus opinion resulting from this workshop can be summarized as follows: Results & Conclusion Anaesthesia and pain management protocols for research animals should follow standard protocols applied in clinical work for the species involved. This will improve morbidity and mortality outcomes. A database should be established to facilitate selection of anaesthesia and pain management protocols for specific experimental surgical procedures and adopted as an International Standard (IS) according to animal species selected. A list of 10 golden rules and requirements for conduction of animal experiments in musculoskeletal research was drawn up comprising 1) Intelligent study designs to receive appropriate answers; 2) Minimal complication rates (5 to max. 10%); 3) Defined end-points for both welfare and scientific outputs analogous to quality assessment (QA) audit of protocols in GLP studies; 4) Sufficient details for materials and methods applied; 5) Potentially confounding variables (genetic background, seasonal, hormonal, size, histological, and biomechanical differences); 6) Post-operative management with emphasis on analgesia and follow-up examinations; 7) Study protocols to satisfy criteria established for a "justified animal study"; 8) Surgical expertise to conduct surgery on animals; 9) Pilot studies as a critical part of model validation and powering of the definitive study design; 10) Criteria for funding agencies to include requirements related to animal experiments as part of the overall scientific proposal review protocols. Such agencies are also encouraged to seriously consider and adopt the recommendations described here when awarding funds for specific projects. Specific new requirements and mandates related both to improving the welfare and scientific rigour of animal-based research models are urgently needed as part of international harmonization of standards. PMID:17678534
Animal experimental studies using small intestine endoscope
Liu, Jin-Hua; Liu, Dan-Yang; Wang, Li; Han, Li-Ping; Qi, Zhe-Yu; Ren, Hai-Jun; Feng, Yan; Luan, Feng-Ming; Mi, Liang-Tian; Shan, Shu-Mei
2017-01-01
AIM To assess the feasibility and safety of a novel enteroscope, negative-pressure suction endoscope in examining the small intestine of a porcine model. METHODS In vitro experiments in small intestinal loops from 20 pigs and in vivo experiments in 20 living pigs were conducted. RESULTS In in vitro experiments, a negative pressure of > 0.06 MPa was necessary for optimal visualization of the intestine, and this pressure did not cause gross or histological damage to the mucosa. For satisfactory examination of the small intestine in vivo, higher negative pressure (> 1.00 MPa) was required. Despite this higher pressure, the small intestine did not show any gross or microscopic damage in the suctioned areas. The average time of examination in the living animals was 60 ± 7.67 min. The animals did not experience any apparent ill effects from the procedure. CONCLUSION Small intestine endoscope was safely performed within a reasonable time period and enabled complete visualization of the intestine in most cases. PMID:28611521
Cohen, Ami; George, Olivier
2013-01-01
Much evidence indicates that individuals use tobacco primarily to experience the psychopharmacological properties of nicotine and that a large proportion of smokers eventually become dependent on nicotine. In humans, nicotine acutely produces positive reinforcing effects, including mild euphoria, whereas a nicotine abstinence syndrome with both somatic and affective components is observed after chronic nicotine exposure. Animal models of nicotine self-administration and chronic exposure to nicotine have been critical in unveiling the neurobiological substrates that mediate the acute reinforcing effects of nicotine and emergence of a withdrawal syndrome during abstinence. However, important aspects of the transition from nicotine abuse to nicotine dependence, such as the emergence of increased motivation and compulsive nicotine intake following repeated exposure to the drug, have only recently begun to be modeled in animals. Thus, the neurobiological mechanisms that are involved in these important aspects of nicotine addiction remain largely unknown. In this review, we describe the different animal models available to date and discuss recent advances in animal models of nicotine exposure and nicotine dependence. This review demonstrates that novel animal models of nicotine vapor exposure and escalation of nicotine intake provide a unique opportunity to investigate the neurobiological effects of second-hand nicotine exposure, electronic cigarette use, and the mechanisms that underlie the transition from nicotine use to compulsive nicotine intake. PMID:23761766
Opportunities for improving animal welfare in rodent models of epilepsy and seizures.
Lidster, Katie; Jefferys, John G; Blümcke, Ingmar; Crunelli, Vincenzo; Flecknell, Paul; Frenguelli, Bruno G; Gray, William P; Kaminski, Rafal; Pitkänen, Asla; Ragan, Ian; Shah, Mala; Simonato, Michele; Trevelyan, Andrew; Volk, Holger; Walker, Matthew; Yates, Neil; Prescott, Mark J
2016-02-15
Animal models of epilepsy and seizures, mostly involving mice and rats, are used to understand the pathophysiology of the different forms of epilepsy and their comorbidities, to identify biomarkers, and to discover new antiepileptic drugs and treatments for comorbidities. Such models represent an important area for application of the 3Rs (replacement, reduction and refinement of animal use). This report provides background information and recommendations aimed at minimising pain, suffering and distress in rodent models of epilepsy and seizures in order to improve animal welfare and optimise the quality of studies in this area. The report includes practical guidance on principles of choosing a model, induction procedures, in vivo recordings, perioperative care, welfare assessment, humane endpoints, social housing, environmental enrichment, reporting of studies and data sharing. In addition, some model-specific welfare considerations are discussed, and data gaps and areas for further research are identified. The guidance is based upon a systematic review of the scientific literature, survey of the international epilepsy research community, consultation with veterinarians and animal care and welfare officers, and the expert opinion and practical experience of the members of a Working Group convened by the United Kingdom's National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs). Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Enhancing semantic congruity effects with category-contingent comparative judgments
Leth-Steensen, Craig; Petrusic, William M.; Shaki, Samuel
2014-01-01
In each of two experiments the direction of a binary comparison was contingent on the category of the stimulus pair. In one experiment, participants had to compare the size of animals from memory. On congruent trials, they had to select the smaller animal if both were small and the larger if both were large and on incongruent trials they selected the larger if both were small and the smaller if both were large. In a second experiment, participants had to compare visual extents and the direction of the comparison was contingent on whether the lines were short or long. Response times were increased and semantic congruity effects (SCEs) were greatly amplified with the category-contingent instructions relative to the conventional non-contingent instructions, precisely as predicted by the class of evidence accrual models of decisional processing and contrary to the single-sample stage models of the SCE. PMID:25374556
Takalo, Jouni; Piironen, Arto; Honkanen, Anna; Lempeä, Mikko; Aikio, Mika; Tuukkanen, Tuomas; Vähäsöyrinki, Mikko
2012-01-01
Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system's performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest.
Repetition Is the Feature Behind the Attentional Bias for Recognizing Threatening Patterns.
Shabbir, Maryam; Zon, Adelynn M Y; Thuppil, Vivek
2018-01-01
Animals attend to what is relevant in order to behave in an effective manner and succeed in their environments. In several nonhuman species, there is an evolved bias for attending to patterns indicative of threats in the natural environment such as dangerous animals. Because skins of many dangerous animals are typically repetitive, we propose that repetition is the key feature enabling recognition of evolutionarily important threats. The current study consists of two experiments where we measured participants' reactions to pictures of male and female models wearing clothing of various repeating (leopard skin, snakeskin, and floral print) and nonrepeating (camouflage, shiny, and plain) patterns. In Experiment 1, when models wearing patterns were presented side by side with total fixation duration as the measure, the repeating floral pattern was the most provocative, with total fixation duration significantly longer than all other patterns. Leopard and snakeskin patterns had total fixation durations that were significantly longer than the plain pattern. In Experiment 2, we employed a visual-search task where participants were required to find models wearing the various patterns in a setting of a crowded airport terminal. Participants detected leopard skin pattern and repetitive floral pattern significantly faster than two of the nonpatterned clothing styles. Our experimental findings support the hypothesis that repetition of specific visual features might facilitate target detection, especially those characterizing evolutionary important threats. Our findings that intricate, but nonthreatening repeating patterns can have similar attention-grabbing properties to animal skin patterns have important implications for the fashion industry and wildlife trade.
Steps for the autologous ex vivo perfused porcine liver-kidney experiment.
Chung, Wen Yuan; Eltweri, Amar M; Isherwood, John; Haqq, Jonathan; Ong, Seok Ling; Gravante, Gianpiero; Lloyd, David M; Metcalfe, Matthew S; Dennison, Ashley R
2013-12-18
The use of ex vivo perfused models can mimic the physiological conditions of the liver for short periods, but to maintain normal homeostasis for an extended perfusion period is challenging. We have added the kidney to our previous ex vivo perfused liver experiment model to reproduce a more accurate physiological state for prolonged experiments without using live animals. Five intact livers and kidneys were retrieved post-mortem from sacrificed pigs on different days and perfused for a minimum of 6 hr. Hourly arterial blood gases were obtained to analyze pH, lactate, glucose and renal parameters. The primary endpoint was to investigate the effect of adding one kidney to the model on the acid base balance, glucose, and electrolyte levels. The result of this liver-kidney experiment was compared to the results of five previous liver only perfusion models. In summary, with the addition of one kidney to the ex vivo liver circuit, hyperglycemia and metabolic acidosis were improved. In addition this model reproduces the physiological and metabolic responses of the liver sufficiently accurately to obviate the need for the use of live animals. The ex vivo liver-kidney perfusion model can be used as an alternative method in organ specific studies. It provides a disconnection from numerous systemic influences and allows specific and accurate adjustments of arterial and venous pressures and flow.
Fortes, Inês; Machado, Armando; Vasconcelos, Marco
2017-11-01
In the natural environment, when an animal encounters a stimulus that signals the absence of food-a 'bad-news' stimulus-it will most likely redirect its search to another patch or prey. Because the animal does not pay the opportunity cost of waiting in the presence of a bad-news stimulus, the properties of the stimulus (e.g., its duration and probability) may have little impact in the evolution of the decision processes deployed in these circumstances. Hence, in the laboratory, when animals are forced to experience a bad-news stimulus they seem to ignore its duration, even though they pay the cost of waiting. Under certain circumstances, this insensitivity to the opportunity cost can lead to suboptimal preferences, such as a preference for an option yielding a low rather than a high rate of reinforcement. In 2 experiments, we tested Vasconcelos, Monteiro, and Kacelnik's (2015) assumption that, if given the opportunity, animals will escape the bad-news stimulus. To predict when an escape response should occur, we incorporated ideas from the prey choice model into Vasconcelos et al. (2015) model and made 2 novel predictions. Namely, both longer intertrial intervals and longer durations of signals predicting food or no food should lead to higher proportions of escape responses. The results of 2 experiments with pigeons supported these predictions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Effects of Geometry and Kinematics on Animals Leaping Out of Water
NASA Astrophysics Data System (ADS)
Chang, Brian; Myeong, Jihye; Virot, Emmanuel; Kim, Ho-Young; Jung, Sunghwan
2017-11-01
Leaping out of water is a phenomenon exhibited by a variety of aquatic and semi-aquatic animals, such as frogs and whales. In this study, we aim to elucidate the effects of geometric and kinematic conditions on the propulsive and drag force required for an animal to jump through the water interface. A simple mechanism was designed to measure the propulsive thrust produced by a flapping appendage. In a separate experiment to measure the opposing drag, simplified models of animals are 3D printed and fitted with pressure sensors. The model is accelerated from rest and covers a range of Re from 103 to 105. Using a high-speed camera and pressure sensors, we observed a deformation of the free surface prior to water exit, and correlated this to the drag force. Finally, we discuss a scaling law to describe the general physics which allow animals to leap out of water. NSF EAPSI.
Baum, Michael J
2006-11-01
Clinical investigators have been forced primarily to use experiments of nature (e.g., cloacal exstrophy; androgen insensitivity, congenital adrenal hyperplasia) to assess the contribution of fetal sex hormone exposure to the development of male- and female-typical profiles of gender identity and role behavior as well as sexual orientation. In this review, I summarize the results of numerous correlative as well as mechanistic animal experiments that shed significant light on general neuroendocrine mechanisms controlling the differentiation of neural circuits controlling sexual partner preference (sexual orientation) in mammalian species including man. I also argue, however, that results of animal studies can, at best, provide only indirect insights into the neuroendocrine determinants of human gender identity and role behaviors.
Features that contribute to the usefulness of low-fidelity models for surgical skills training.
Langebæk, R; Berendt, M; Pedersen, L T; Jensen, A L; Eika, B
2012-04-07
For practical, ethical and economic reasons, veterinary surgical education is becoming increasingly dependent on models for training. The limited availability and high cost of commercially produced surgical models has increased the need for useful, low-cost alternatives. For this reason, a number of models were developed to be used in a basic surgical skills course for veterinary students. The models were low fidelity, having limited resemblance to real animals. The aim of the present study was to describe the students' learning experience with the models and to report their perception of the usefulness of the models in applying the trained skills to live animal surgery. One hundred and forty-six veterinary fourth-year students evaluated the models on a four-point Likert scale. Of these, 26 additionally participated in individual semistructured interviews. The survey results showed that 75 per cent of the students rated the models 'useful'/'very useful'. Interviews revealed that tactile, dimensional, visual, situational and emotional features are important to students' perception of a successful translation of skills from models to live animal. In conclusion, low-fidelity models are useful educational tools in preparation for live animal surgery. However, there are specific features to take into account when developing models in order for students to perceive them as useful.
New Directions in the Study of Early Experience.
ERIC Educational Resources Information Center
Bertenthal, Bennett I; Campos, Joseph J.
1987-01-01
Reviews Greenough, Black, and Wallace's (1987) conceptual framework for understanding the effects of early experience and sensitive periods on development, and illustrates the applicability of their model with recent data on the consequences for animals and human infants of the acquistion of self-produced locomotion. (BN)
Griffin, G; Clark, J MacArthur; Zurlo, J; Ritskes-Hoitinga, M
2014-04-01
The principles of humane experimental technique, first described by Russell and Burch in 1959, focus on minimising suffering to animals used for scientific purposes. Internationally, as these principles became embedded in the various systems of oversight for the use of animals in science, attention focused on how to minimise pain, distress and lasting harm to animals while maximising the benefits to be obtained from the work. Suffering can arise from the experimental procedures, but it can also arise from the manner in which the animals are housed and cared for. Increased attention is therefore being paid to the entire lifetime experience of an animal, in order to afford it as good a quality of life as possible. Russell and Burch were also concerned that animals should not be used if alternatives to such use were available, and that animals were not wasted through poor-quality science. This concept is being revisited through new efforts to ensure that experiments are well designed and properly reported in the literature, that all results--positive, negative or neutral--are made available to ensure a complete research record, and that animal models are properly evaluated through periodic systematic reviews. These efforts should ensure that animal use is truly reduced as far as possible and that the benefits derived through the use of animals truly outweigh the harms.
Effects of gravity perturbation on developing animal systems
NASA Technical Reports Server (NTRS)
Malacinski, G. M.; Neff, A. W.
1986-01-01
The use of developing animal systems to analyze the effects of microgravity on animals is discussed. Some of the key features of developing systems, especially embryos, are reviewed and relevant space data are summarized. Issues to be addressed in the design of future space experiments are discussed. It is noted that an embryo which exhibits ground based gravity effects should be selected for use as a model system and individual variation in gravity response among batches of embryos should be taken into account.
Robots in the service of animal behavior
Klein, Barrett A.; Stein, Joey; Taylor, Ryan C.
2012-01-01
As reading fiction can challenge us to better understand fact, using fake animals can sometimes serve as our best solution to understanding the behavior of real animals. The use of dummies, doppelgangers, fakes, and physical models have served to elicit behaviors in animal experiments since the early history of behavior studies, and, more recently, robotic animals have been employed by researchers to further coax behaviors from their study subjects. Here, we review the use of robots in the service of animal behavior, and describe in detail the production and use of one type of robot – “faux” frogs – to test female responses to multisensory courtship signals. The túngara frog (Physalaemus pustulosus) has been a study subject for investigating multimodal signaling, and we discuss the benefits and drawbacks of using the faux frogs we have designed, with the larger aim of inspiring other scientists to consider the appropriate application of physical models and robots in their research. PMID:23181162
Høybye, Mette Terp; Vesterby, Martin; Jørgensen, Lene Bastrup
2016-06-01
Visual approaches to health information reduce complexity and may bridge challenges in health literacy. But the mechanisms and meanings of using animated video in communication with patients undergoing surgery are not well described. By comparing two versions of a two-dimensional animated video on spinal anesthesia, this study tested the patient-avatar identification within two different narrative models. To explore the perspectives of total hip arthroplasty, we employed qualitative methods of interviews and ethnographic observation. The animated presentation of the spinal anesthesia procedure was immediately recognized by all participants as reflecting their experience of the procedure independent of the narrative form. The avatar gender did not affect this identification. We found no preference for either narrative form. This study supports the potential of animation video in health informatics as a didactic model for qualifying patient behavior. Animation video creates a high degree of identification that may work to reduce pre-surgical anxiety. © The Author(s) 2014.
Mellor, David J.
2016-01-01
Simple Summary A Five Provisions/Welfare Aims paradigm has been formulated as a coherent alternative to the Five Freedoms. It retains the memorable simplicity of the original paradigm and is linked to it, but avoids the acknowledged complications that arise by using the term “freedoms”. Also, it accommodates current scientific understanding of animal welfare, is easily understood and provides guidance on beneficial objectives for animal welfare management. It is an evocative and engaging paradigm anticipated to be of particular interest to non-specialist members of the lay public who are concerned about animal welfare. Abstract Although the Five Freedoms paradigm has been very influential in shaping animal welfare thinking for the last two decades, it has two key disadvantages. First, the focus on “freedom” from a range of negative experiences and states has been misunderstood in a number of quarters to mean that complete freedom from these experiences and states is possible, when in fact the best that can be achieved is for them to be minimised. Second, the major focus of the Freedoms on negative experiences and states is now seen to be a disadvantage in view of current understanding that animal welfare management should also include the promotion of positive experiences and states. The challenge therefore was to formulate a paradigm that overcame these two main problems and yet was straightforward enough to be accessible to non-specialists, including members of the lay public who are interested in animal welfare. This was achieved by highlighting the Five Provisions, originally aligned with the Five Freedoms, but now updated to direct welfare management towards activities that both minimise negative experiences or states and promote positive experiences or states as specified by particular Animal Welfare Aims assigned to each Provision. Aspects of the four welfare principles from the European Welfare Quality assessment system (WQ®) and elements of all domains of the Five Domains Model for animal welfare assessment have been incorporated into the new Five Provisions/Welfare Aims paradigm. Thus, the paradigm is easily understood and provides clear guidance on beneficial objectives for animal welfare management. It is anticipated that the paradigm will have application to many species found in a wide range of circumstances. PMID:27669313
Tissue engineering of the bladder--reality or myth? A systematic review.
Sloff, Marije; Simaioforidis, Vasileios; de Vries, Rob; Oosterwijk, Egbert; Feitz, Wout
2014-10-01
We systematically reviewed preclinical studies in the literature to evaluate the potential of tissue engineering of the bladder. Study outcomes were compared to the available clinical evidence to assess the feasibility of tissue engineering for future clinical use. Preclinical studies of tissue engineering for bladder augmentation were identified through a systematic search of PubMed and Embase™ from January 1, 1980 to January 1, 2014. Primary studies in English were included if bladder reconstruction after partial cystectomy was performed using a tissue engineered biomaterial in any animal species, with cystometric bladder capacity as an outcome measure. Outcomes were compared to clinical studies available at http://www.clinicaltrials.gov and published clinical studies. A total of 28 preclinical studies are included, demonstrating remarkable heterogeneity in study characteristics and design. Studies in which preoperative bladder volumes were compared to postoperative volumes were considered the most clinically relevant (18 studies). Bladder augmentation through tissue engineering resulted in a normal bladder volume in healthy animals, with the influence of a cellular component being negligible. Furthermore, experiments in large animal models (pigs and dogs) approximated the desired bladder volume more accurately than in smaller species. The initial clinical experience was based on seemingly predictive healthy animal models with a promising outcome. Unfortunately these results were not substantiated in all clinical trials, revealing dissimilar outcomes in different clinical/disease backgrounds. Thus, the translational predictability of a model using healthy animals might be questioned. Through this systematic approach we present an unbiased overview of all published preclinical studies investigating the effect of bladder tissue engineering on cystometric bladder capacity. Preclinical research in healthy animals appears to show the feasibility of bladder augmentation by tissue engineering. However, in view of the disappointing clinical results based on healthy animal models new approaches should also be evaluated in preclinical models using dysfunctional/diseased bladders. This endeavor may aid in the development of clinically applicable tissue engineered bladder augmentation with satisfactory long-term outcome. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
[Prediction of 137Cs accumulation in animal products in the territory of Semipalatinsk test site].
Spiridonov, S I; Gontarenko, I A; Mukusheva, M K; Fesenko, S V; Semioshkina, N A
2005-01-01
The paper describes mathematical models for 137Cs behavior in the organism of horses and sheep pasturing on the bording area to the testing area "Ground Zero" of the Semipalatinsk Test Site. The models are parameterized on the base of the data from an experiment with the breeds of animals now commonly encountered within the Semipalatinsk Test Site. The predictive calculations with the models devised have shown that 137Cs concentrations in milk of horses and sheep pasturingon the testing area to "Ground Zero" can exceed the adopted standards during a long period of time.
Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model.
Cheresiz, S V; Semenova, E A; Chepurnov, A A
2016-01-01
Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups.
Hunt, Pamela S; Barnet, Robert C
2015-09-01
Animal models of Fetal Alcohol Spectrum Disorders (FASD) afford the unique capacity to precisely control timing of alcohol exposure and alcohol exposure amounts in the developing animal. These models have powerfully informed neurophysiological alterations associated with fetal and perinatal alcohol. In two experiments presented here we expand use of the Pavlovian Trace Conditioning procedure to examine cognitive deficits and intervention strategies in a rat model of FASD. Rat pups were exposed to 5g/kg/day ethanol on postnatal days (PD) 4-9, simulating alcohol exposure in the third trimester in humans. During early adolescence, approximately PD 30, the rats were trained in the trace conditioning task in which a light conditioned stimulus (CS) and shock unconditioned stimulus (US) were paired but separated by a 10-s stimulus free trace interval. Learning was assessed in freezing behavior during shock-free tests. Experiment 1 revealed that neonatal ethanol exposure significantly impaired hippocampus-dependent trace conditioning relative to controls. In Experiment 2 a serial compound conditioning procedure known as 'gap filling' completely reversed the ethanol-induced deficit in trace conditioning. We also discuss prior data regarding the beneficial effects of supplemental choline and novel preliminary data regarding the pharmacological cognitive enhancer physostigmine, both of which mitigate the alcohol-induced cognitive deficit otherwise seen in trace conditioning controls. We suggest trace conditioning as a useful tool for characterizing some of the core cognitive deficits seen in FASD, and as a model for developing effective environmental as well as nutritional and pharmacological interventions. Copyright © 2014 Elsevier Inc. All rights reserved.
Hunt, Pamela S.; Barnet, Robert C.
2014-01-01
Animal models of Fetal Alcohol Spectrum Disorders (FASD) afford the unique capacity to precisely control timing of alcohol exposure and alcohol exposure amounts in the developing animal. These models have powerfully informed neurophysiological alterations associated with fetal and perinatal alcohol. In two experiments presented here we expand use of the Pavlovian Trace Conditioning procedure to examine cognitive deficits and intervention strategies in a rat model of FASD. Rat pups were exposed to 5 g/kg/day ethanol on postnatal days (PD) 4–9, simulating alcohol exposure in the third trimester in humans. During early adolescence, approximately PD 30, the rats were trained in the trace conditioning task in which a light conditioned stimulus (CS) and shock unconditioned stimulus (US) were paired but separated by a 10-s stimulus free trace interval. Learning was assessed in freezing behavior during shock-free tests. Experiment 1 revealed that neonatal ethanol exposure significantly impaired hippocampus-dependent trace conditioning relative to controls. In Experiment 2 a serial compound conditioning procedure known as ‘gap filling’ completely reversed the ethanol-induced deficit in trace conditioning. We also discuss prior data regarding the beneficial effects of supplemental choline and novel preliminary data regarding the pharmacological cognitive enhancer physostigmine, both of which mitigate the alcohol-induced cognitive deficit otherwise seen in trace conditioning controls. We suggest trace conditioning as a useful tool for characterizing some of the core cognitive deficits seen in FASD, and as a model for developing effective environmental as well as nutritional and pharmacological interventions. PMID:25477227
NASA Technical Reports Server (NTRS)
Wells, H. B.
1972-01-01
A preliminary study of the environmental control and life support subsystems (EC/LSS) necessary for an earth orbital spacecraft to conduct biological experiments is presented. The primary spacecraft models available for conducting these biological experiments are the space shuttle and modular space station. The experiments would be housed in a separate module that would be contained in either the shuttle payload bay or attached to the modular space station. This module would be manned only for experiment-related tasks, and would contain a separate EC/LSS for the crew and animals. Metabolic data were tabulated on various animals that are considered useful for a typical experiment program. The minimum payload for the 30-day space shuttle module was found to require about the equivalent of a one-man EC/LSS; however, the selected two-man shuttle assemblies will give a growth and contingency factor of about 50 percent. The maximum payloads for the space station mission will require at least a seven-man EC/LSS for the laboratory colony and a nine-man EC/LSS for the centrifuge colony. There is practically no room for growth or contingencies in these areas.
Breast Organotypic Cancer Models.
Carranza-Rosales, Pilar; Guzmán-Delgado, Nancy Elena; Carranza-Torres, Irma Edith; Viveros-Valdez, Ezequiel; Morán-Martínez, Javier
2018-03-20
Breast cancer is the most common cancer type diagnosed in women, it represents a critical public health problem worldwide, with 1,671,149 estimated new cases and nearly 571,000 related deaths. Research on breast cancer has mainly been conducted using two-dimensional (2D) cell cultures and animal models. The usefulness of these models is reflected in the vast knowledge accumulated over the past decades. However, considering that animal models are three-dimensional (3D) in nature, the validity of the studies using 2D cell cultures has recently been questioned. Although animal models are important in cancer research, ethical questions arise about their use and usefulness as there is no clear predictivity of human disease outcome and they are very expensive and take too much time to obtain results. The poor performance or failure of most cancer drugs suggests that preclinical research on cancer has been based on an over-dependence on inadequate animal models. For these reasons, in the last few years development of alternative models has been prioritized to study human breast cancer behavior, while maintaining a 3D microenvironment, and to reduce the number of experiments conducted in animals. One way to achieve this is using organotypic cultures, which are being more frequently explored in cancer research because they mimic tissue architecture in vivo. These characteristics make organotypic cultures a valuable tool in cancer research as an alternative to replace animal models and for predicting risk assessment in humans. This chapter describes the cultures of multicellular spheroids, organoids, 3D bioreactors, and tumor slices, which are the most widely used organotypic models in breast cancer research.
[Animal experimentation, animal welfare and scientific research].
Tal, H
2013-10-01
Hundreds of thousands of laboratory animals are being used every year for scientific experiments held in Israel, mostly mice, rats, rabbits, guinea pigs, and a few sheep, cattle, pigs, cats, dogs, and even a few dozen monkeys. In addition to the animals sacrificed to promote scientific research, millions of animals slain every year for other purposes such as meat and fine leather fashion industries. While opening a front against all is an impossible and perhaps an unjustified task, the state of Israel enacted the Animal Welfare (Animal Experimentation) Law (1994). The law aims to regulate scientific animal experiments and to find the appropriate balance between the need to continue to perform animal experiments for the advancement of research and medicine, and at the same time to avoid unnecessary trials and minimize animal suffering. Among other issues the law deals with the phylogenetic scale according to which experimental animals should be selected, experiments for teaching and practicing, and experiments for the cosmetic industry. This article discusses bioethics considerations in animal experiments as well as the criticism on the scientific validity of such experiments. It further deals with the vitality of animal studies and the moral and legal obligation to prevent suffering from laboratory animals.
Development and testing of a mouse simulated space flight model
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1987-01-01
The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.
Animal models in translational studies of PTSD.
Daskalakis, Nikolaos P; Yehuda, Rachel; Diamond, David M
2013-09-01
Understanding the neurobiological mechanisms of post-traumatic stress disorder (PTSD) is of vital importance for developing biomarkers and more effective pharmacotherapy for this disorder. The design of bidirectional translational studies addressing all facets of PTSD is needed. Animal models of PTSD are needed not only to capture the complexity of PTSD behavioral characteristics, but also to address experimentally the influence of variety of factors which might determine an individual's vulnerability or resilience to trauma, e.g., genetic predisposition, early-life experience and social support. The current review covers recent translational approaches to bridge the gap between human and animal PTSD research and to create a framework for discovery of biomarkers and novel therapeutics. Published by Elsevier Ltd.
Marketing Library and Information Services: Comparing Experiences at Large Institutions.
ERIC Educational Resources Information Center
Noel, Robert; Waugh, Timothy
This paper explores some of the similarities and differences between publicizing information services within the academic and corporate environments, comparing the marketing experiences of Abbot Laboratories (Illinois) and Indiana University. It shows some innovative online marketing tools, including an animated gif model of a large, integrated…
Forensic Use of the Five Domains Model for Assessing Suffering in Cases of Animal Cruelty.
Ledger, Rebecca A; Mellor, David J
2018-06-25
Conceptual frameworks for understanding animal welfare scientifically are widely influential. An early “biological functioning” framework still influences expert opinions prepared for Courts hearing animal cruelty cases, despite deficiencies in it being revealed by the later emergence and wide scientific adoption of an “affective state” framework. According to “biological functioning” precepts, indices of negative welfare states should predominantly be physical and/or clinical and any that refer to animals’ supposed subjective experiences, i.e., their “affective states”, should be excluded. However, “affective state” precepts, which have secure affective neuroscience and aligned animal behaviour science foundations, show that behavioural indices may be utilised to credibly identify negative welfare outcomes in terms of negative subjective experiences, or affects. It is noted that the now very wide scientific acceptance of the “affective state” framework is entirely consistent with the current extensive international recognition that animals of welfare significance are “sentient” beings. A long list of negative affects is discussed and each one is described as a prelude to updating the concept of “suffering” or “distress”, often referred to in animal welfare legislation and prosecutions for alleged ill-treatment of animals. The Five Domains Model for assessing and grading animal welfare compromise is then discussed, highlighting that it incorporates a coherent amalgamation of “biological functioning” and “affective state” precepts into its operational features. That is followed by examples of severe-to-very-severe ill-treatment of dogs. These include inescapable psychological and/or physical abuse or mistreatment, excessively restrictive or otherwise detrimental housing or holding conditions, and/or seriously inadequate provision of the necessities of life, in each case drawing attention to specific affects that such ill-treatment generates. It is concluded that experts should frame their opinions in ways that include negative affective outcomes. Moreover, the cogency of such analyses should be drawn to the attention of the Judiciary when they are deliberating on suffering in animals, thereby providing a basis for them to move from a current heavy reliance on physical and/or clinical indices of cruelty or neglect towards including in their decisions careful evaluations of animals’ negative affective experiences.
Trace elements in unconventional animals: A 40-year experience.
Carpenè, Emilio; Andreani, Giulia; Isani, Gloria
2017-09-01
The role of trace elements in animal health has attracted increasing interest in recent years. The essentiality and toxicity of these elements have been extensively investigated in humans, laboratory animal models and partially in domestic animals, whereas little is known about trace element metabolism in most living organisms. Forty years ago our research started on Cd metabolism in molluscs, thereafter expanding to Zn, Cu, and Fe metabolism in many unconventional animal species of veterinary interest. This review summarizes the main results obtained over this long period of time: some of the findings are original and have not been published to date. They are discussed in more detail and compared with data obtained in conventional animals, including man. Copyright © 2017 Elsevier GmbH. All rights reserved.
A multimodal detection model of dolphins to estimate abundance validated by field experiments.
Akamatsu, Tomonari; Ura, Tamaki; Sugimatsu, Harumi; Bahl, Rajendar; Behera, Sandeep; Panda, Sudarsan; Khan, Muntaz; Kar, S K; Kar, C S; Kimura, Satoko; Sasaki-Yamamoto, Yukiko
2013-09-01
Abundance estimation of marine mammals requires matching of detection of an animal or a group of animal by two independent means. A multimodal detection model using visual and acoustic cues (surfacing and phonation) that enables abundance estimation of dolphins is proposed. The method does not require a specific time window to match the cues of both means for applying mark-recapture method. The proposed model was evaluated using data obtained in field observations of Ganges River dolphins and Irrawaddy dolphins, as examples of dispersed and condensed distributions of animals, respectively. The acoustic detection probability was approximately 80%, 20% higher than that of visual detection for both species, regardless of the distribution of the animals in present study sites. The abundance estimates of Ganges River dolphins and Irrawaddy dolphins fairly agreed with the numbers reported in previous monitoring studies. The single animal detection probability was smaller than that of larger cluster size, as predicted by the model and confirmed by field data. However, dense groups of Irrawaddy dolphins showed difference in cluster sizes observed by visual and acoustic methods. Lower detection probability of single clusters of this species seemed to be caused by the clumped distribution of this species.
Expressive facial animation synthesis by learning speech coarticulation and expression spaces.
Deng, Zhigang; Neumann, Ulrich; Lewis, J P; Kim, Tae-Yong; Bulut, Murtaza; Narayanan, Shrikanth
2006-01-01
Synthesizing expressive facial animation is a very challenging topic within the graphics community. In this paper, we present an expressive facial animation synthesis system enabled by automated learning from facial motion capture data. Accurate 3D motions of the markers on the face of a human subject are captured while he/she recites a predesigned corpus, with specific spoken and visual expressions. We present a novel motion capture mining technique that "learns" speech coarticulation models for diphones and triphones from the recorded data. A Phoneme-Independent Expression Eigenspace (PIEES) that encloses the dynamic expression signals is constructed by motion signal processing (phoneme-based time-warping and subtraction) and Principal Component Analysis (PCA) reduction. New expressive facial animations are synthesized as follows: First, the learned coarticulation models are concatenated to synthesize neutral visual speech according to novel speech input, then a texture-synthesis-based approach is used to generate a novel dynamic expression signal from the PIEES model, and finally the synthesized expression signal is blended with the synthesized neutral visual speech to create the final expressive facial animation. Our experiments demonstrate that the system can effectively synthesize realistic expressive facial animation.
Gut Microbiome Standardization in Control and Experimental Mice.
McCoy, Kathy D; Geuking, Markus B; Ronchi, Francesca
2017-04-03
Mouse models are used extensively to study human health and to investigate the mechanisms underlying human disease. In the past, most animal studies were performed without taking into consideration the impact of the microbiota. However, the microbiota that colonizes all body surfaces, including the gastrointestinal tract, respiratory tract, genitourinary tract, and skin, heavily impacts nearly every aspect of host physiology. When performing studies utilizing mouse models it is critical to understand that the microbiome is heavily impacted by environmental factors, including (but not limited to) food, bedding, caging, and temperature. In addition, stochastic changes in the microbiota can occur over time that also play a role in shaping microbial composition. These factors lead to massive variability in the composition of the microbiota between animal facilities and research institutions, and even within a single facility. Lack of experimental reproducibility between research groups has highlighted the necessity for rigorously controlled experimental designs in order to standardize the microbiota between control and experimental animals. Well controlled experiments are mandatory in order to reduce variability and allow correct interpretation of experimental results, not just of host-microbiome studies but of all mouse models of human disease. The protocols presented are aimed to design experiments that control the microbiota composition between different genetic strains of experimental mice within an animal unit. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.
An animal model to study regenerative endodontics.
Torabinejad, Mahmoud; Corr, Robert; Buhrley, Matthew; Wright, Kenneth; Shabahang, Shahrokh
2011-02-01
A growing body of evidence is demonstrating the possibility for regeneration of tissues within the pulp space and continued root development in teeth with necrotic pulps and open apices. There are areas of research related to regenerative endodontics that need to be investigated in an animal model. The purpose of this study was to investigate ferret cuspid teeth as a model to investigate factors involved in regenerative endodontics. Six young male ferrets between the ages of 36-133 days were used in this investigation. Each animal was anesthetized and perfused with 10% buffered formalin. Block sections including the mandibular and maxillary cuspid teeth and their surrounding periapical tissues were obtained, radiographed, decalcified, sectioned, and stained with hematoxylin-eosin to determine various stages of apical closure in these teeth. The permanent mandibular and maxillary cuspid teeth with open apices erupted approximately 50 days after birth. Initial signs of closure of the apical foramen in these teeth were observed between 90-110 days. Complete apical closure was observed in the cuspid teeth when the animals were 133 days old. Based on the experiment, ferret cuspid teeth can be used to investigate various factors involved in regenerative endodontics that cannot be tested in human subjects. The most appropriate time to conduct the experiments would be when the ferrets are between the ages of 50 and 90 days. Copyright © 2011. Published by Elsevier Inc.
Screening and Evaluation of Medications for Treating Cannabis Use Disorder
Panlilio, Leigh V.; Justinova, Zuzana; Trigo, Jose M.; Le Foll, Bernard
2016-01-01
Cannabis use has been increasingly accepted legally and in public opinion. However, cannabis has the potential to produce adverse physical and mental health effects and can result in cannabis use disorder (CUD) in a substantial percentage of both occasional and daily cannabis users. Many people have difficulty discontinuing use. Therefore, it would be beneficial to develop safe and effective medications for treating CUD. To achieve this, methods have been developed for screening and evaluating potential medications using animal models and controlled experimental protocols in human volunteers. In this chapter we describe: 1) animal models available for assessing the effect of potential medications on specific aspects of CUD; 2) the main findings obtained so far with these animal models; 3) the approaches used to assess potential medications in humans in laboratory experiments and clinical trials; and 4) the effectiveness of several potential pharmacotherapies on the particular aspects of CUD modeled in these human studies. PMID:27055612
Drug administration in animal studies of cardiac arrest does not reflect human clinical experience
Reynolds, Joshua C.; Rittenberger, Jon C.; Menegazzi, James J.
2007-01-01
Introduction To date, there is no evidence showing a benefit from any advanced cardiac life support (ACLS) medication in out-of-hospital cardiac arrest (OOHCA), despite animal data to the contrary. One explanation may be a difference in the time to first drug administration. Our previous work has shown the mean time to first drug administration in clinical trials is 19.4 minutes. We hypothesized that the average time to drug administration in large animal experiments occurs earlier than in OOHCA clinical trials. Methods We conducted a literature review between 1990 and 2006 in MEDLINE using the following MeSH headings: swine, dogs, resuscitation, heart arrest, EMS, EMT, ambulance, ventricular fibrillation, drug therapy, epinephrine, vasopressin, amiodarone, lidocaine, magnesium, and sodium bicarbonate. We reviewed the abstracts of 331 studies and 197 full manuscripts. Exclusion criteria included: non-peer reviewed, all without primary animal data, and traumatic models. From these, we identified 119 papers that contained unique information on time to medication administration. The data are reported as mean, ranges, and 95% confidence intervals. Mean time to first drug administration in animal laboratory studies and clinical trials was compared with a t-test. Regression analysis was performed to determine if time to drug predicted ROSC. Results Mean time to first drug administration in 2378 animals was 9.5 minutes (range 3.0–28.0; 95% CI around mean 2.78, 16.22). This is less than the time reported in clinical trials (19.4 min, p<0.001). Time to drug predicted ROSC (Odds Ratio 0.844; 95% CI 0.738, 0.966). Conclusion Shorter drug delivery time in animal models of cardiac arrest may be one reason for the failure of animal studies to translate successfully into the clinical arena. PMID:17360097
Tupaia belangeri as an experimental animal model for viral infection.
Tsukiyama-Kohara, Kyoko; Kohara, Michinori
2014-01-01
Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development.
Tupaia Belangeri as an Experimental Animal Model for Viral Infection
Tsukiyama-Kohara, Kyoko; Kohara, Michinori
2014-01-01
Tupaias, or tree shrews, are small mammals that are similar in appearance to squirrels. The morphological and behavioral characteristics of the group have been extensively characterized, and despite previously being classified as primates, recent studies have placed the group in its own family, the Tupaiidae. Genomic analysis has revealed that the genus Tupaia is closer to humans than it is to rodents. In addition, tupaias are susceptible to hepatitis B virus and hepatitis C virus. The only other experimental animal that has been demonstrated to be sensitive to both of these viruses is the chimpanzee, but restrictions on animal testing have meant that experiments using chimpanzees have become almost impossible. Consequently, the development of the tupaia for use as an animal infection model could become a powerful tool for hepatitis virus research and in preclinical studies on drug development. PMID:25048261
Adaptive Proactive Inhibitory Control for Embedded Real-Time Applications
Yang, Shufan; McGinnity, T. Martin; Wong-Lin, KongFatt
2012-01-01
Psychologists have studied the inhibitory control of voluntary movement for many years. In particular, the countermanding of an impending action has been extensively studied. In this work, we propose a neural mechanism for adaptive inhibitory control in a firing-rate type model based on current findings in animal electrophysiological and human psychophysical experiments. We then implement this model on a field-programmable gate array (FPGA) prototyping system, using dedicated real-time hardware circuitry. Our results show that the FPGA-based implementation can run in real-time while achieving behavioral performance qualitatively suggestive of the animal experiments. Implementing such biological inhibitory control in an embedded device can lead to the development of control systems that may be used in more realistic cognitive robotics or in neural prosthetic systems aiding human movement control. PMID:22701420
Kaplan, Peter W
2004-01-01
Mary Shelley's Frankenstein is perhaps the most famous work of medical science fiction. She and her husband, the poet Percy Shelley, were aware of nascent neuroscience experimentation and the effects of electricity on neuromuscular function. Such experiments generated theories of voluntary, involuntary, and unconscious neuromuscular function; animal electricity; and the anima--the human vital principle. In Germany and Italy, investigators were performing bizarre electrical experiments on animals and humans to "reanimate" lifeless limbs and bodies. These demonstrations and theories find expression in Frankenstein and provide models for Dr. Frankenstein and his creation.
Howe, William M; Tierney, Patrick L; Young, Damon A; Oomen, Charlotte; Kozak, Rouba
2015-11-01
Gestational day 17 methylazoxymethanol (MAM) treatment has been shown to reproduce, in rodents, some of the alterations in cortical and mesolimbic circuitries thought to contribute to schizophrenia. We characterized the behavior of MAM animals in tasks dependent on these circuitries to see what behavioral aspects of schizophrenia the model captures. We then characterized the integrity of mesolimbic dopamine neurotransmission in a subset of animals used in the behavioral experiments. MAM animals' capacity for working memory, attention, and resilience to distraction was tested with two different paradigms. Cue-reward learning and motivation were assayed with Pavlovian conditioned approach. Measurements of electrically stimulated phasic and tonic DA release in the nucleus accumbens with fast-scan cyclic voltammetry were obtained from the same animals used in the Pavlovian task. MAM animals' basic attentional capacities were intact. MAM animals took longer to acquire the working memory task, but once learned, performed at the same level as shams. MAM animals were also slower to develop a Pavlovian conditioned response, but otherwise no different from controls. These same animals showed alterations in terminal DA release that were unmasked by an amphetamine challenge. The predominant behavioral-cognitive feature of the MAM model is a learning impairment that is evident in acquisition of executive function tasks as well as basic Pavlovian associations. MAM animals also have dysregulated terminal DA release, and this may contribute to observed behavioral differences. The MAM model captures some functional impairments of schizophrenia, particularly those related to acquisition of goal-directed behavior.
Immunology and Homeopathy. 3. Experimental Studies on Animal Models
Bellavite, Paolo; Ortolani, Riccardo; Conforti, Anita
2006-01-01
A search of the literature and the experiments carried out by the authors of this review show that there are a number of animal models where the effect of homeopathic dilutions or the principles of homeopathic medicine have been tested. The results relate to the immunostimulation by ultralow doses of antigens, the immunological models of the ‘simile’, the regulation of acute or chronic inflammatory processes and the use of homeopathic medicines in farming. The models utilized by different research groups are extremely etherogeneous and differ as the test medicines, the dilutions and the outcomes are concerned. Some experimental lines, particularly those utilizing mice models of immunomodulation and anti-inflammatory effects of homeopathic complex formulations, give support to a real effect of homeopathic high dilutions in animals, but often these data are of preliminary nature and have not been independently replicated. The evidence emerging from animal models is supporting the traditional ‘simile’ rule, according to which ultralow doses of compounds, that in high doses are pathogenic, may have paradoxically a protective or curative effect. Despite a few encouraging observational studies, the effectiveness of the homeopathic prevention or therapy of infections in veterinary medicine is not sufficiently supported by randomized and controlled trials. PMID:16786046
Outstanding animal studies in allergy I. From asthma to food allergy and anaphylaxis.
Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Roth-Walter, Franziska
2017-06-01
Animal models published within the past 18 months on asthma, food allergy and anaphylaxis, all conditions of rising public health concern, were reviewed. While domestic animals spontaneously develop asthma, food allergy and anaphylaxis, in animal models, divergent sensitization and challenge routes, dosages, intervals and antigens are used to induce asthmatic, food allergic or anaphylactic phenotypes. This must be considered in the interpretation of results. Instead of model antigens, gradually relevant allergens such as house dust mite in asthma, and food allergens like peanut, apple and peach in food allergy research were used. Novel engineered mouse models such as a mouse with a T-cell receptor for house dust mite allergen Der p 1, or with transgenic human hFcγR genes, facilitated the investigation of single molecules of interest. Whole-body plethysmography has become a state-of-the-art in-vivo readout in asthma research. In food allergy and anaphylaxis research, novel techniques were developed allowing real-time monitoring of in-vivo effects following allergen challenge. Networks to share tissues were established as an effort to reduce animal experiments in allergy which cannot be replaced by in-vitro measures. Natural and artificial animal models were used to explore the pathophysiology of asthma, food allergy and anaphylaxis and to improve prophylactic and therapeutic measures. Especially the novel mouse models mimicking molecular aspects of the complex immune network in asthma, food allergy and anaphylaxis will facilitate proof-of-concept studies under controlled conditions.
Outstanding animal studies in allergy I. From asthma to food allergy and anaphylaxis
Jensen-Jarolim, Erika; Pali-Schöll, Isabella; Roth-Walter, Franziska
2017-01-01
Purpose of review Animal models published within the past 18 months on asthma, food allergy and anaphylaxis, all conditions of rising public health concern, were reviewed. Recent findings While domestic animals spontaneously develop asthma, food allergy and anaphylaxis, in animal models, divergent sensitization and challenge routes, dosages, intervals and antigens are used to induce asthmatic, food allergic or anaphylactic phenotypes. This must be considered in the interpretation of results. Instead of model antigens, gradually relevant allergens such as house dust mite in asthma, and food allergens like peanut, apple and peach in food allergy research were used. Novel engineered mouse models such as a mouse with a T-cell receptor for house dust mite allergen Der p 1, or with transgenic human hFcγR genes, facilitated the investigation of single molecules of interest. Whole-body plethysmography has become a state-of-the-art in-vivo readout in asthma research. In food allergy and anaphylaxis research, novel techniques were developed allowing real-time monitoring of in-vivo effects following allergen challenge. Networks to share tissues were established as an effort to reduce animal experiments in allergy which cannot be replaced by in-vitro measures. Summary Natural and artificial animal models were used to explore the pathophysiology of asthma, food allergy and anaphylaxis and to improve prophylactic and therapeutic measures. Especially the novel mouse models mimicking molecular aspects of the complex immune network in asthma, food allergy and anaphylaxis will facilitate proof-of-concept studies under controlled conditions. PMID:28346234
In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions
NASA Astrophysics Data System (ADS)
Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio
2017-01-01
Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.
In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions
Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio
2017-01-01
Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering. PMID:28071731
Dudley, Peter N; Bonazza, Riccardo; Porter, Warren P
2013-07-01
Animal momentum and heat transfer analysis has historically used direct animal measurements or approximations to calculate drag and heat transfer coefficients. Research can now use modern 3D rendering and computational fluid dynamics software to simulate animal-fluid interactions. Key questions are the level of agreement between simulations and experiments and how superior they are to classical approximations. In this paper we compared experimental and simulated heat transfer and drag calculations on a scale model solid aluminum African elephant casting. We found good agreement between experimental and simulated data and large differences from classical approximations. We used the simulation results to calculate coefficients for heat transfer and drag of the elephant geometry. Copyright © 2013 Wiley Periodicals, Inc.
[Reduction of animal experiments in experimental drug testing].
Behrensdorf-Nicol, H; Krämer, B
2014-10-01
In order to ensure the quality of biomedical products, an experimental test for every single manufactured batch is required for many products. Especially in vaccine testing, animal experiments are traditionally used for this purpose. For example, efficacy is often determined via challenge experiments in laboratory animals. Safety tests of vaccine batches are also mostly performed using laboratory animals. However, many animal experiments have clear inherent disadvantages (low accuracy, questionable transferability to humans, unclear significance). Furthermore, for ethical reasons and animal welfare aspects animal experiments are also seen very critical by the public. Therefore, there is a strong trend towards replacing animal experiments with methods in which no animals are used ("replacement"). If a replacement is not possible, the required animal experiments should be improved in order to minimize the number of animals necessary ("reduction") and to reduce pain and suffering caused by the experiment to a minimum ("refinement"). This "3R concept" is meanwhile firmly established in legislature. In recent years many mandatory animal experiments have been replaced by alternative in vitro methods or improved according to the 3R principles; numerous alternative methods are currently under development. Nevertheless, the process from the development of a new method to its legal implementation takes a long time. Therefore, supplementary regulatory measures to facilitate validation and acceptance of new alternative methods could contribute to a faster and more consequent implementation of the 3R concept in the testing of biomedical products.
Reznikov, Roman; Diwan, Mustansir; Nobrega, José N; Hamani, Clement
2015-02-01
Most of the available preclinical models of PTSD have focused on isolated behavioural aspects and have not considered individual variations in response to stress. We employed behavioural criteria to identify and characterize a subpopulation of rats that present several features analogous to PTSD-like states after exposure to classical fear conditioning. Outbred Sprague-Dawley rats were segregated into weak- and strong-extinction groups on the basis of behavioural scores during extinction of conditioned fear responses. Animals were subsequently tested for anxiety-like behaviour in the open-field test (OFT), novelty suppressed feeding (NSF) and elevated plus maze (EPM). Baseline plasma corticosterone was measured prior to any behavioural manipulation. In a second experiment, rats underwent OFT, NSF and EPM prior to being subjected to fear conditioning to ascertain whether or not pre-stress levels of anxiety-like behaviours could predict extinction scores. We found that 25% of rats exhibit low extinction rates of conditioned fear, a feature that was associated with increased anxiety-like behaviour across multiple tests in comparison to rats showing strong extinction. In addition, weak-extinction animals showed low levels of corticosterone prior to fear conditioning, a variable that seemed to predict extinction recall scores. In a separate experiment, anxiety measures taken prior to fear conditioning were not predictive of a weak-extinction phenotype, suggesting that weak-extinction animals do not show detectable traits of anxiety in the absence of a stressful experience. These findings suggest that extinction impairment may be used to identify stress-vulnerable rats, thus providing a useful model for elucidating mechanisms and investigating potential treatments for PTSD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Transcranial magnetic stimulation of mouse brain using high-resolution anatomical models
NASA Astrophysics Data System (ADS)
Crowther, L. J.; Hadimani, R. L.; Kanthasamy, A. G.; Jiles, D. C.
2014-05-01
Transcranial magnetic stimulation (TMS) offers the possibility of non-invasive treatment of brain disorders in humans. Studies on animals can allow rapid progress of the research including exploring a variety of different treatment conditions. Numerical calculations using animal models are needed to help design suitable TMS coils for use in animal experiments, in particular, to estimate the electric field induced in animal brains. In this paper, we have implemented a high-resolution anatomical MRI-derived mouse model consisting of 50 tissue types to accurately calculate induced electric field in the mouse brain. Magnetic field measurements have been performed on the surface of the coil and compared with the calculations in order to validate the calculated magnetic and induced electric fields in the brain. Results show how the induced electric field is distributed in a mouse brain and allow investigation of how this could be improved for TMS studies using mice. The findings have important implications in further preclinical development of TMS for treatment of human diseases.
State-dependent decisions cause apparent violations of rationality in animal choice.
Schuck-Paim, Cynthia; Pompilio, Lorena; Kacelnik, Alex
2004-12-01
Normative models of choice in economics and biology usually expect preferences to be consistent across contexts, or "rational" in economic language. Following a large body of literature reporting economically irrational behaviour in humans, breaches of rationality by animals have also been recently described. If proven systematic, these findings would challenge long-standing biological approaches to behavioural theorising, and suggest that cognitive processes similar to those claimed to cause irrationality in humans can also hinder optimality approaches to modelling animal preferences. Critical differences between human and animal experiments have not, however, been sufficiently acknowledged. While humans can be instructed conceptually about the choice problem, animals need to be trained by repeated exposure to all contingencies. This exposure often leads to differences in state between treatments, hence changing choices while preserving rationality. We report experiments with European starlings demonstrating that apparent breaches of rationality can result from state-dependence. We show that adding an inferior alternative to a choice set (a "decoy") affects choices, an effect previously interpreted as indicating irrationality. However, these effects appear and disappear depending on whether state differences between choice contexts are present or not. These results open the possibility that some expressions of maladaptive behaviour are due to oversights in the migration of ideas between economics and biology, and suggest that key differences between human and nonhuman research must be recognised if ideas are to safely travel between these fields.
Mychasiuk, Richelle; Metz, Gerlinde A S
2016-11-01
Adolescence is defined as the gradual period of transition between childhood and adulthood that is characterized by significant brain maturation, growth spurts, sexual maturation, and heightened social interaction. Although originally believed to be a uniquely human aspect of development, rodent and non-human primates demonstrate maturational patterns that distinctly support an adolescent stage. As epigenetic processes are essential for development and differentiation, but also transpire in mature cells in response to environmental influences, they are an important aspect of adolescent brain maturation. The purpose of this review article was to examine epigenetic programming in animal models of brain maturation during adolescence. The discussion focuses on animal models to examine three main concepts; epigenetic processes involved in normal adolescent brain maturation, the influence of fetal programming on adolescent brain development and the epigenome, and finally, postnatal experiences such as exercise and drugs that modify epigenetic processes important for adolescent brain maturation. This corollary emphasizes the utility of animal models to further our understanding of complex processes such as epigenetic regulation and brain development. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reynolds, Stacey; Lane, Shelly J; Richards, Lorie
2010-09-01
The field of behavioral neuroscience has been successful in using an animal model of enriched environments for over five decades to measure the rehabilitative and preventative effects of sensory, cognitive and motor stimulation in animal models. Several key principles of enriched environments match those used in sensory integration therapy, a treatment used for children with neurodevelopmental disorders. This paper reviews the paradigm of environmental enrichment, compares animal models of enriched environments to principles of sensory integration treatment, and discusses applications for the rehabilitation of neurodevelopmental disorders. Based on this review, the essential features in the enriched environment paradigm which should be included in sensory integration treatment are multiple sensory experiences, novelty in the environment, and active engagement in challenging cognitive, sensory, and motor tasks. Use of sensory integration treatment may be most applicable for children with anxiety, hypersensitivity, repetitive behaviors or heightened levels of stress. Additionally, individuals with deficits in social behavior, social participation, or impairments in learning and memory may show gains with this type of treatment.
Lv, Mengmeng; Zhu, Xingya; Wang, Hao; Wang, Feng; Guan, Wenxian
2014-01-01
The role of dietary restriction regimens such as caloric restriction, ketogenic diet and intermittent fasting in development of cancers has been detected via abundant preclinical experiments. However, the conclusions are controversial. We aim to review the relevant animal studies systematically and provide assistance for further clinical studies. Literatures on associations between dietary restriction and cancer published in PubMed in recent twenty years were comprehensively searched. Animal model, tumor type, feeding regimen, study length, sample size, major outcome, conclusion, quality assessment score and the interferential step of cancer were extracted from each eligible study. We analyzed the tumor incidence rates from 21 studies about caloric restriction. Fifty-nine studies were involved in our system review. The involved studies explored roles of dietary restriction during initiation, progression and metastasis of cancer. About 90.9% of the relevant studies showed that caloric restriction plays an anti-cancer role, with the pooled OR (95%CI) of 0.20 (0.12, 0.34) relative to controls. Ketogenic diet was also positively associated with cancer, which was indicated by eight of the nine studies. However, 37.5% of the related studies obtained a negative conclusion that intermittent fasting was not significantly preventive against cancer. Caloric restriction and ketogenic diet are effective against cancer in animal experiments while the role of intermittent fasting is doubtful and still needs exploration. More clinical experiments are needed and more suitable patterns for humans should be investigated.
Neurobehavioural Effects of Hypergravity Exposure in CD-1 Mice
NASA Astrophysics Data System (ADS)
Santucci, Daniela; Francia, Nadia; Aloe, Luigi; Enrico, Alleva
The effects of spaceflight on the nervous system physiology could have important implications for the prolonged stay outside Earth's gravitational field. In this view, both ground-based and space research using animal models represent useful tools to investigate the impact of gravity (hypergravity, microgravity and weightlessness) on the nervous system and behaviour. Data coming from these studies, besides acquisition of knowledge relevant for spaceflights and pro-longed permanence of both humans and animals in space, could provide insight into basic bio-logical phenomena underlying the plasticity of the nervous system and its adaptive responses to a changing environment. Most ground experiments employing animal models use the paradigm of hypergravity exposure with the expectation that behavioural and physiological reactions to this environment might help to explain reactions to the microgravity challenge faced by or-biting animals. An overview of ground-based experiments set up to investigate the effects of changes of gravitational environment on the neurobehavioural responses of CD-1 mouse will be reported, and will illustrate the short-, medium-and long-term behavioural and neurobiological consequences of hypergravity exposure both at adulthood and during early and late postnatal development. Moreover, since mother-pup interaction is critical for the survival and the devel-opment of neonatal rodents, especially in an extreme environment such as that of space, we characterized, exploiting ethological methods, changes in maternal behaviour of CD-1 outbred mouse dams exposed to mild hypergravity. The results of these experiments will be discussed.
Adapted Lethality: What We Can Learn from Guinea Pig-Adapted Ebola Virus Infection Model
Cheresiz, S. V.; Semenova, E. A.; Chepurnov, A. A.
2016-01-01
Establishment of small animal models of Ebola virus (EBOV) infection is important both for the study of genetic determinants involved in the complex pathology of EBOV disease and for the preliminary screening of antivirals, production of therapeutic heterologic immunoglobulins, and experimental vaccine development. Since the wild-type EBOV is avirulent in rodents, the adaptation series of passages in these animals are required for the virulence/lethality to emerge in these models. Here, we provide an overview of our several adaptation series in guinea pigs, which resulted in the establishment of guinea pig-adapted EBOV (GPA-EBOV) variants different in their characteristics, while uniformly lethal for the infected animals, and compare the virologic, genetic, pathomorphologic, and immunologic findings with those obtained in the adaptation experiments of the other research groups. PMID:26989413
C57 mice increase wheel-running behavior following stress: preliminary findings.
Sibold, Jeremy S; Hammack, Sayamwong E; Falls, William A
2011-10-01
Exercise has been shown to reduce anxiety in both humans and animals. To date, there are few, if any studies that examine the effect of stress on self-selected exercise using an animal model. This study examined the effect of acute stress on wheel-running distance in mice. Forty 8-week-old, male C57BL/6J mice were randomly assigned to one of three groups: no stress + wheel-running experience, stress + wheel-running experience, or stress with no wheel-running experience. Stressed mice were exposed to foot shock in a brightly lit environment. Following treatment, wheel-running distances were observed for three hours. Stress significantly increased voluntary wheel-running in mice with wheel-running experience as compared to nonstressed controls and stressed mice with no wheel-running experience. These results suggest that mice familiar with wheel-running may self-select this exercise as a modality for the mitigation of accumulated anxiety.
A Discordant Monozygotic Twin Design Shows Blunted Cortisol Reactivity among Bullied Children
ERIC Educational Resources Information Center
Ouellet-Morin, Isabelle; Danese, Andrea; Bowes, Lucy; Shakoor, Sania; Ambler, Antony; Pariante, Carmine M.; Papadopoulos, Andrew S.; Caspi, Avshalom; Moffitt, Terrie E.; Arseneault, Louise
2011-01-01
Objective: Childhood adverse experiences are known to engender persistent changes in stress-related systems and brain structures involved in mood, cognition, and behavior in animal models. Uncertainty remains about the causal effect of early stressful experiences on physiological response to stress in human beings, as the impact of these…
USDA-ARS?s Scientific Manuscript database
Measures of animal movement versus consumption rates can provide valuable, ecologically relevant information on feeding preference, specifically estimates of attraction rate, leaving rate, tenure time, or measures of flight/walking path. Here, we develop a simple biostatistical model to analyze repe...
SIGMA--A Graphical Approach to Teaching Simulation.
ERIC Educational Resources Information Center
Schruben, Lee W.
1992-01-01
SIGMA (Simulation Graphical Modeling and Analysis) is a computer graphics environment for building, testing, and experimenting with discrete event simulation models on personal computers. It uses symbolic representations (computer animation) to depict the logic of large, complex discrete event systems for easier understanding and has proven itself…
Feng, Zhihong; Zhao, Jinlong; Zhou, Libin; Dong, Yan; Zhao, Yimin
2009-10-01
The purpose of this report is to show the establishment of an animal model with a unilateral maxilla defect, application of virtual reality and rapid prototyping in the surgical planning for dentoalveolar distraction osteogenesis (DO). Two adult dogs were used to develop an animal model with a unilateral maxillary defect. The 3-dimensional model of the canine craniofacial skeleton was reconstructed with computed tomography data using the software Mimics, version 12.0 (Materialise Group, Leuven, Belgium). A virtual individual distractor was designed and transferred onto the model with the defect, and the osteotomies and distraction processes were simulated. A precise casting technique and numeric control technology were applied to produce the titanium distraction device, which was installed on the physical model with the defect, which was generated using Selective Laser Sintering technology, and the in vitro simulation of osteotomies and DO was done. The 2 dogs survived the operation and were lively. The osteotomies and distraction process were simulated successfully whether on the virtual or the physical model. The bone transport could be distracted to the desired position both in the virtual environment and on the physical model. The novel method to develop an animal model with a unilateral maxillary defect was feasible, and the animal model was suitable to develop the reconstruction method for unilateral maxillary defect cases with dentoalveolar DO. Computer-assisted surgical planning and simulation improved the reliability of the maxillofacial surgery, especially for the complex cases. The novel idea to reconstruct the unilateral maxillary defect with dentoalveolar DO was proved through the model experiment.
Chantziaras, Ilias; Smet, Annemieke; Filippitzi, Maria Eleni; Damiaans, Bert; Haesebrouck, Freddy; Boyen, Filip; Dewulf, Jeroen
2018-06-07
The effect of a competitive exclusion product (Aviguard ® ) on the selection of fluoroquinolone resistance in poultry was assessed in vivo in the absence or presence of fluoroquinolone treatment. Two experiments using a controlled seeder-sentinel animal model (2seeders:4sentinels per group) with one-day-old chicks were used. For both experiments,as soon as the chicks were hatched, the animals of two groups were administered Aviguard ® and two groups were left untreated. Three days later, all groups were inoculated with an enrofloxacin-susceptible commensal E. coli strain. Five days after hatching, two animals per group were inoculated either with a bacteriologically-fit or a bacteriologically non-fit enrofloxacin-resistant commensal E. coli strain. In experiment 2, all groups were orally treated for three consecutive days (Day 8-10) with enrofloxacin. Throughout the experiments, faecal excretion of all inoculated E. coli strains was determined on days 2-5-8-11-18-23 by selective plating (via spiral plater). Linear mixed models were used to assess the effect of Aviguard ® on the selection of fluoroquinolone resistance. The use of Aviguard® (p<0.01) reduced the excretion of enrofloxacin-resistant E. coli when no enrofloxacin treatment was administered. However, this beneficial effect disappeared (p=0.37) when the animals were treated with enrofloxacin. Similarly, bacterial fitness of the enrofloxacin-resistant E. coli strain used for inoculation had an effect (p<0.01) on the selection of enrofloxacin resistance when no treatment was administered, whereas this effect was no longer present when enrofloxacin was administered (p =0.70). Thus, enrofloxacin treatment cancelled the beneficial effects from administrating Aviguard ® in one-day-old broiler chicks and resulted in a enrofloxacin-resistant flora.
Theoretical considerations on maximum running speeds for large and small animals.
Fuentes, Mauricio A
2016-02-07
Mechanical equations for fast running speeds are presented and analyzed. One of the equations and its associated model predict that animals tend to experience larger mechanical stresses in their limbs (muscles, tendons and bones) as a result of larger stride lengths, suggesting a structural restriction entailing the existence of an absolute maximum possible stride length. The consequence for big animals is that an increasingly larger body mass implies decreasing maximal speeds, given that the stride frequency generally decreases for increasingly larger animals. Another restriction, acting on small animals, is discussed only in preliminary terms, but it seems safe to assume from previous studies that for a given range of body masses of small animals, those which are bigger are faster. The difference between speed scaling trends for large and small animals implies the existence of a range of intermediate body masses corresponding to the fastest animals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Spaceflight and bone turnover - Correlation with a new rat model of weightlessness
NASA Technical Reports Server (NTRS)
Morey, E. R.
1979-01-01
Earlier manned spaceflight studies have revealed that the near-weightless environment of orbital flight produce certain biological effects in humans, including abnormalities in mineral metabolism. The data collected were compatible with bone mineral loss. Cosmos 782 and 936 experiments have shown a decrease in rat bone formation rate. In this paper, a rat model of weightlessness is described, which is unique in that the animal is free to move about a 360-deg arc. The model meets the requirements for an acceptable system. Data from the model and spaceflight are presented. Many of the responses noted in suspended animals indicate that the model closely mimics results from rats and man exposed to near-weightlessness during orbital spaceflight.
The Madagascar Hissing Cockroach: A New Model for Learning Insect Anatomy
ERIC Educational Resources Information Center
Heyborne, William H.; Fast, Maggie; Goodding, Daniel D.
2012-01-01
Teaching and learning animal anatomy has a long history in the biology classroom. As in many fields of biology, decades of experience teaching anatomy have led to the unofficial selection of model species. However, in some cases the model may not be the best choice for our students. Our struggle to find an appropriate model for teaching and…
Frutalin reduces acute and neuropathic nociceptive behaviours in rodent models of orofacial pain.
Damasceno, Marina B M V; de Melo Júnior, José de Maria A; Santos, Sacha Aubrey A R; Melo, Luana T M; Leite, Laura Hévila I; Vieira-Neto, Antonio E; Moreira, Renato de A; Monteiro-Moreira, Ana Cristina de O; Campos, Adriana R
2016-08-25
Orofacial pain is a highly prevalent clinical condition, yet difficult to control effectively with available drugs. Much attention is currently focused on the anti-inflammatory and antinociceptive properties of lectins. The purpose of this study was to evaluate the antinociceptive effect of frutalin (FTL) using rodent models of inflammatory and neuropathic orofacial pain. Acute pain was induced by formalin, glutamate or capsaicin (orofacial model) and hypertonic saline (corneal model). In one experiment, animals were pretreated with l-NAME and naloxone to investigate the mechanism of antinociception. The involvement of the lectin domain in the antinociceptive effect of FTL was verified by allowing the lectin to bind to its specific ligand. In another experiment, animals pretreated with FTL or saline were submitted to the temporomandibular joint formalin test. In yet another, animals were submitted to infraorbital nerve transection to induce chronic pain, followed by induction of thermal hypersensitivity using acetone. Motor activity was evaluated with the rotarod test. A molecular docking was performed using the TRPV1 channel. Pretreatment with FTL significantly reduced nociceptive behaviour associated with acute and neuropathic pain, especially at 0.5 mg/kg. Antinociception was effectively inhibited by l-NAME and d-galactose. In line with in vivo experiments, docking studies indicated that FTL may interact with TRPV1. Our results confirm the potential pharmacological relevance of FTL as an inhibitor of orofacial nociception in acute and chronic pain mediated by TRPA1, TRPV1 and TRPM8 receptor. Copyright © 2016. Published by Elsevier Ireland Ltd.
CHARACTERIZATION OF VIRULENCE OF Leptospira ISOLATES IN A HAMSTER MODEL
Silva, Éverton F.; Santos, Cleiton S.; Athanazio, Daniel A.; Seyffert, Núbia; Seixas, Fabiana K.; Cerqueira, Gustavo M.; Fagundes, Michel Q.; Brod, Claudiomar S.; Reis, Mitermayer G.; Dellagostin, Odir A.; Ko, Albert I.
2008-01-01
Effort has been made to identify protective antigens in order to develop a recombinant vaccine against leptospirosis. Several attempts failed to conclusively demonstrate efficacy of vaccine candidates due to the lack of an appropriate model of lethal leptospirosis. The purposes of our study were: (i) to test the virulence of leptospiral isolates from Brazil, which are representative of important serogroups that cause disease in humans and animals; and (ii) to standardize the lethal dose 50% (LD50) for each of the virulent strains using a hamster (Mesocricetus auratus) model. Five of seven Brazilian isolates induced lethality in a hamster model, with inocula lower than 200 leptospires. Histopathological examination of infected animals showed typical lesions found in both natural and experimental leptospirosis. Results described here demonstrated the potential use of Brazilian isolates as highly virulent strains in challenge experiments using hamster as an appropriate animal model for leptospirosis. Furthermore these strains may be useful in heterologous challenge studies which aim to evaluate cross-protective responses induced by subunit vaccine candidates. PMID:18547690
Principles for developing animal models of military PTSD
Daskalakis, Nikolaos P.; Yehuda, Rachel
2014-01-01
The extent to which animal studies can be relevant to military posttraumatic stress disorder (PTSD) continues to be a matter of discussion. Some features of the clinical syndrome are more easily modeled than others. In the animal literature, a great deal of attention is focused on modeling the characteristics of military exposures and their impact on measurable behaviors and biological parameters. There are many issues to consider regarding the ecological validity of predator, social defeat or immobilization stress to combat-related experience. In contrast, less attention has been paid to individual variation following these exposures. Such variation is critical to understand how individual differences in the response to military trauma exposure may result to PTSD or resilience. It is important to consider potential differences in biological findings when comparing extremely exposed to non-exposed animals, versus those that result from examining individual differences. Animal models of military PTSD are also critical in advancing efforts in clinical treatment. In an ideal translational approach to study deployment related outcomes, information from humans and animals, blood and brain, should be carefully considered in tandem, possibly even computed simultaneously, to identify molecules, pathways and networks that are likely to be the key drivers of military PTSD symptoms. With the use novel biological methodologies (e.g., optogenetics) in the animal models, critical genes and pathways can be tuned up or down (rather than over-expressed or ablated completely) in discrete brain regions. Such techniques together with pre-and post-deployment human imaging will accelerate the identification of novel pharmacological and non-pharmacological intervention strategies. PMID:25206946
Discrimination of Complex Human Behavior by Pigeons (Columba livia) and Humans
Qadri, Muhammad A. J.; Sayde, Justin M.; Cook, Robert G.
2014-01-01
The cognitive and neural mechanisms for recognizing and categorizing behavior are not well understood in non-human animals. In the current experiments, pigeons and humans learned to categorize two non-repeating, complex human behaviors (“martial arts” vs. “Indian dance”). Using multiple video exemplars of a digital human model, pigeons discriminated these behaviors in a go/no-go task and humans in a choice task. Experiment 1 found that pigeons already experienced with discriminating the locomotive actions of digital animals acquired the discrimination more rapidly when action information was available than when only pose information was available. Experiments 2 and 3 found this same dynamic superiority effect with naïve pigeons and human participants. Both species used the same combination of immediately available static pose information and more slowly perceived dynamic action cues to discriminate the behavioral categories. Theories based on generalized visual mechanisms, as opposed to embodied, species-specific action networks, offer a parsimonious account of how these different animals recognize behavior across and within species. PMID:25379777
Propagation modeling for sperm whale acoustic clicks in the northern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Sidorovskaia, Natalia A.; Udovydchenkov, Ilya A.; Rypina, Irina I.; Ioup, George E.; Ioup, Juliette W.; Caruthers, Jerald W.; Newcomb, Joal; Fisher, Robert
2004-05-01
Simulations of acoustic broadband (500-6000 Hz) pulse propagation in the northern Gulf of Mexico, based on environmental data collected as a part of the Littoral Acoustic Demonstration Center (LADC) experiments in the summers of 2001 and 2002, are presented. The results of the modeling support the hypothesis that consistent spectrogram interference patterns observed in the LADC marine mammal phonation data cannot be explained by the propagation effects for temporal analysis windows corresponding to the duration of an animal click, and may be due to a uniqueness of an individual animal phonation apparatus. The utilization of simulation data for the development of an animal tracking algorithm based on the acoustic recordings of a single bottom-moored hydrophone is discussed. The identification of the bottom and surface reflected clicks from the same animal is attempted. The critical ranges for listening to a deep-water forging animal by a surface receiving system are estimated. [Research supported by ONR.
Animal models of social stress: the dark side of social interactions.
Masis-Calvo, Marianela; Schmidtner, Anna K; de Moura Oliveira, Vinícius E; Grossmann, Cindy P; de Jong, Trynke R; Neumann, Inga D
2018-05-10
Social stress occurs in all social species, including humans, and shape both mental health and future interactions with conspecifics. Animal models of social stress are used to unravel the precise role of the main stress system - the HPA axis - on the one hand, and the social behavior network on the other, as these are intricately interwoven. The present review aims to summarize the insights gained from three highly useful and clinically relevant animal models of psychosocial stress: the resident-intruder (RI) test, the chronic subordinate colony housing (CSC), and the social fear conditioning (SFC). Each model brings its own focus: the role of the HPA axis in shaping acute social confrontations (RI test), the physiological and behavioral impairments resulting from chronic exposure to negative social experiences (CSC), and the neurobiology underlying social fear and its effects on future social interactions (SFC). Moreover, these models are discussed with special attention to the HPA axis and the neuropeptides vasopressin and oxytocin, which are important messengers in the stress system, in emotion regulation, as well as in the social behavior network. It appears that both nonapeptides balance the relative strength of the stress response, and simultaneously predispose the animal to positive or negative social interactions.
Gene editing tools: state-of-the-art and the road ahead for the model and non-model fishes.
Barman, Hirak Kumar; Rasal, Kiran Dashrath; Chakrapani, Vemulawada; Ninawe, A S; Vengayil, Doyil T; Asrafuzzaman, Syed; Sundaray, Jitendra K; Jayasankar, Pallipuram
2017-10-01
Advancements in the DNA sequencing technologies and computational biology have revolutionized genome/transcriptome sequencing of non-model fishes at an affordable cost. This has led to a paradigm shift with regard to our heightened understandings of structure-functional relationships of genes at a global level, from model animals/fishes to non-model large animals/fishes. Whole genome/transcriptome sequencing technologies were supplemented with the series of discoveries in gene editing tools, which are being used to modify genes at pre-determined positions using programmable nucleases to explore their respective in vivo functions. For a long time, targeted gene disruption experiments were mostly restricted to embryonic stem cells, advances in gene editing technologies such as zinc finger nuclease, transcriptional activator-like effector nucleases and CRISPR (clustered regulatory interspaced short palindromic repeats)/CRISPR-associated nucleases have facilitated targeted genetic modifications beyond stem cells to a wide range of somatic cell lines across species from laboratory animals to farmed animals/fishes. In this review, we discuss use of different gene editing tools and the strategic implications in fish species for basic and applied biology research.
Detection of botulinum toxin types A, B, E, and F activity using the quail embryo
USDA-ARS?s Scientific Manuscript database
We recently demonstrated an effective new model for the detection of botulinum toxin type A using quail embryos in place of the mouse model. These experiments demonstrated that the Japanese quail embryo at 15 days of incubation was an effective vertebrate animal model to detect the activity of botu...
Phyu, Win Kyaw; Ong, Kien Chai; Wong, Kum Thong
2017-07-12
Enterovirus A71 (EV-A71) causes hand-foot-and-mouth disease (HFMD), which may be complicated by fatal encephalomyelitis. Although fecal-oral or oral-oral routes are important in person-to-person transmission, how viral shedding and exposure may predispose individuals to infection remains unknown. We investigated person-to-person transmission by using a model of HFMD and encephalomyelitis based on EV-A71 oral infection of 2-week-old hamsters. Animals (index animals) infected with 10 4 50% cell culture infective doses of virus uniformly developed severe disease four days post-infection (dpi), whereas littermate contacts developed severe disease after six to seven days of exposure to index animals. Virus was detected in oral washes and feces at 3-4 dpi in index animals and at three to eight days after exposure to index animals in littermate contact animals. In a second experiment, non-littermate contact animals exposed for 8 or 12 h to index animals developed the disease six and four days post-exposure, respectively. Tissues from killed index and contact animals, studied by light microscopy, immunohistochemistry and in situ hybridization, exhibited mild inflammatory lesions and/or viral antigens/RNA in the squamous epithelia of the oral cavity, tongue, paws, skin, esophagus, gastric epithelium, salivary glands, lacrimal glands, central nervous system neurons, muscles (skeletal, cardiac and smooth muscles) and liver. Orally shed viruses were probably derived from infected oral mucosa and salivary glands, whereas fecal viruses may have derived from these sites as well as from esophageal and gastric epithelia. Asymptomatic seroconversion in exposed mother hamsters was demonstrated. Our hamster model should be useful in studying person-to-person EV-A71 transmission and how drugs and vaccines may interrupt transmission.
Phyu, Win Kyaw; Ong, Kien Chai; Wong, Kum Thong
2017-01-01
Enterovirus A71 (EV-A71) causes hand-foot-and-mouth disease (HFMD), which may be complicated by fatal encephalomyelitis. Although fecal–oral or oral–oral routes are important in person-to-person transmission, how viral shedding and exposure may predispose individuals to infection remains unknown. We investigated person-to-person transmission by using a model of HFMD and encephalomyelitis based on EV-A71 oral infection of 2-week-old hamsters. Animals (index animals) infected with 104 50% cell culture infective doses of virus uniformly developed severe disease four days post-infection (dpi), whereas littermate contacts developed severe disease after six to seven days of exposure to index animals. Virus was detected in oral washes and feces at 3–4 dpi in index animals and at three to eight days after exposure to index animals in littermate contact animals. In a second experiment, non-littermate contact animals exposed for 8 or 12 h to index animals developed the disease six and four days post-exposure, respectively. Tissues from killed index and contact animals, studied by light microscopy, immunohistochemistry and in situ hybridization, exhibited mild inflammatory lesions and/or viral antigens/RNA in the squamous epithelia of the oral cavity, tongue, paws, skin, esophagus, gastric epithelium, salivary glands, lacrimal glands, central nervous system neurons, muscles (skeletal, cardiac and smooth muscles) and liver. Orally shed viruses were probably derived from infected oral mucosa and salivary glands, whereas fecal viruses may have derived from these sites as well as from esophageal and gastric epithelia. Asymptomatic seroconversion in exposed mother hamsters was demonstrated. Our hamster model should be useful in studying person-to-person EV-A71 transmission and how drugs and vaccines may interrupt transmission. PMID:28698666
Maroulakou, I G; Anver, M; Garrett, L; Green, J E
1994-01-01
A transgenic mouse model for prostate and mammary cancer has been developed in mice containing a recombinant gene expressing the simian virus 40 early-region transforming sequences under the regulatory control of the rat prostatic steroid binding protein [C3(1)] gene. Male transgenic mice develop prostatic hyperplasia in early life that progresses to adenoma or adenocarcinoma in most animals surviving to longer than 7 months of age. Prostate cancer metastases to lung have been observed. Female animals from the same founder lines generally develop mammary hyperplasia by 3 months of age with subsequent development of mammary adenocarcinoma by 6 months of age in 100% of the animals. The development of tumors correlates with the expression of the transgene as determined by Northern blot and immunohistochemical analyses. The results of these experiments demonstrate that the C3(1) regulatory region used in these experiments is useful for targeting expression to the prostate and mammary gland. To our knowledge, this experimental system is the first reported transgenic mouse model for prostate cancer. These transgenic animals offer the opportunity to study hormone response elements in vivo and the multistage progression from normal tissue to carcinoma in the prostate and mammary glands. Images PMID:7972041
GPR Imaging of Prehistoric Animal Bone-beds
NASA Astrophysics Data System (ADS)
Schneider, Blair Benson
This research investigates the detection capabilities of Ground-penetrating radar for imaging prehistoric animal bone-beds. The first step of this investigation was to determine the dielectric properties of modern animal bone as a proxy for applying non-invasive ground-penetrating radar (GPR) for detecting prehistoric animal remains. Over 90 thin section samples were cut from four different modern faunal skeleton remains: bison, cow, deer, and elk. One sample of prehistoric mammoth core was also analyzed. Sample dielectric properties (relative permittivity, loss factor, and loss-tangent values) were measured with an impedance analyzer over frequencies ranging from 10 MHz to 1 GHz. The results reveal statistically significant dielectric-property differences among different animal fauna, as well as variation as a function of frequency. The measured sample permittivity values were then compared to modeled sample permittivity values using common dielectric-mixing models. The dielectric mixing models were used to report out new reported values of dry bone mineral of 3-5 in the frequency range of 10 MHz to 1 GHz. The second half of this research collected controlled GPR experiments over a sandbox containing buried bison bone elements to evaluate GPR detection capabilities of buried animal bone. The results of the controlled GPR sandbox tests were then compared to numerical models in order to predict the ability of GPR to detect buried animal bone given a variety of different depositional factors, the size and orientation of the bone target and the degree of bone weathering. The radar profiles show that GPR is an effective method for imaging the horizontal and vertical extent of buried animal bone. However, increased bone weathering and increased bone dip were both found to affect GPR reflection signal strength. Finally, the controlled sandbox experiments were also utilized to investigate the impact of survey design for imaging buried animal bone. In particular, the effects of GPR antenna orientation relative to the survey line (broad-side mode versus end-fire mode) and polarization effects of the buried bone targets were investigated. The results reveal that animal bone does exhibit polarization effects. However, the polarization results are greatly affected by the irregular shape and size of the bone, which ultimately limits the potential usefulness of trying to utilize polarization data to determine the orientation of buried bone targets. In regard to antenna orientation, end-fire mode was found to have little difference in amplitude response as compared to the more commonly used broad-side mode and in fact sometimes outperformed the broad-side mode. Future GPR investigations should consider utilizing multiple antenna orientations during data collection.
O'Collins, Victoria E; Macleod, Malcolm R; Cox, Susan F; Van Raay, Leena; Aleksoska, Elena; Donnan, Geoffrey A; Howells, David W
2011-01-01
There is some evidence that in animal models of acute ischaemic stroke, combinations of neuroprotective agents might be more efficacious than the same agents administered alone. Hence, we developed pragmatic, empirical criteria based on therapeutic target, cost, availability, efficacy, administration, and safety to select drugs for testing in combination in animal models of acute stroke. Magnesium sulphate, melatonin, and minocycline were chosen from a library of neuroprotective agents, and were tested in a more ‘realistic' model favoured by the STAIR (Stroke Therapy Academic Industry Roundtable). Outcome was assessed with infarct volume, neurologic score, and two newly developed scales measuring general health and physiologic homeostasis. Owing to the failure to achieve neuroprotection in aged, hypertensive animals with drug delivery at 3 hours, the bar was lowered in successive experiments to determine whether neuroprotection could be achieved under conditions more conducive to recovery. Testing in younger animals showed more favourable homeostasis and general health scores than did testing in older animals, but infarct volume and neurologic scores did not differ with age, and treatment efficacy was again not shown. Testing with shorter occlusions resulted in smaller infarct volumes; nevertheless, treatment efficacy was still not observed. It was concluded that this combination, in these stroke models, was not effective. PMID:20978519
Morsink, Maarten C; Dukers, Danny F
2009-03-01
Animal models have been widely used for studying the physiology and pharmacology of psychiatric and neurological diseases. The concepts of face, construct, and predictive validity are used as indicators to estimate the extent to which the animal model mimics the disease. Currently, we used these three concepts to design a theoretical assignment to integrate the teaching of neurophysiology, neuropharmacology, and experimental design. For this purpose, seven case studies were developed in which animal models for several psychiatric and neurological diseases were described and in which neuroactive drugs used to treat or study these diseases were introduced. Groups of undergraduate students were assigned to one of these case studies and asked to give a classroom presentation in which 1) the disease and underlying pathophysiology are described, 2) face and construct validity of the animal model are discussed, and 3) a pharmacological experiment with the associated neuroactive drug to assess predictive validity is presented. After evaluation of the presentations, we found that the students had gained considerable insight into disease phenomenology, its underlying neurophysiology, and the mechanism of action of the neuroactive drug. Moreover, the assignment was very useful in the teaching of experimental design, allowing an in-depth discussion of experimental control groups and the prediction of outcomes in these groups if the animal model were to display predictive validity. Finally, the highly positive responses in the student evaluation forms indicated that the assignment was of great interest to the students. Hence, the currently developed case studies constitute a very useful tool for teaching neurophysiology, neuropharmacology, and experimental design.
Status of Animal Experiments on International Space Station, and Animal Care Activities in Japan
NASA Astrophysics Data System (ADS)
Izumi, Ryutaro; Ishioka, Noriaki; Yumoto, Akane; Ito, Isao; Shirakawa, Masaki
We would like to introduce animal experiments status on International Space Station (ISS) of Japan. Aquatic Habitat (AQH) was launched at 2012 July, by H-II Transfer Vehicle (HTV, ‘Kounotori’) from Tanegashima island in Japan, which could house small fish (Medaka, or Zebrafish) at most three months. First experiment using AQH was carried out for two months from Oct. 26, 2012, and second experiment would start from February, 2014. Mice housing hardware is now under development. For animal care activities, current topic in Japan is self-estimation for animal experiment status by each institute, and to open the result for public. JAXA conducted self-estimation of fiscal year 2011 (from 2011 April until 2012 March) for the first time, and would continue every fiscal year. JAXA already have its own animal care regulation, under animal care law and policy in Japan, and also referred COSPAR animal care guideline. And this year, JAXA made handbook for animal experiments in space (only Japanese).
Parametric study of different contributors to tumor thermal profile
NASA Astrophysics Data System (ADS)
Tepper, Michal; Gannot, Israel
2014-03-01
Treating cancer is one of the major challenges of modern medicine. There is great interest in assessing tumor development in in vivo animal and human models, as well as in in vitro experiments. Existing methods are either limited by cost and availability or by their low accuracy and reproducibility. Thermography holds the potential of being a noninvasive, low-cost, irradiative and easy-to-use method for tumor monitoring. Tumors can be detected in thermal images due to their relatively higher or lower temperature compared to the temperature of the healthy skin surrounding them. Extensive research is performed to show the validity of thermography as an efficient method for tumor detection and the possibility of extracting tumor properties from thermal images, showing promising results. However, deducing from one type of experiment to others is difficult due to the differences in tumor properties, especially between different types of tumors or different species. There is a need in a research linking different types of tumor experiments. In this research, parametric analysis of possible contributors to tumor thermal profiles was performed. The effect of tumor geometric, physical and thermal properties was studied, both independently and together, in phantom model experiments and computer simulations. Theoretical and experimental results were cross-correlated to validate the models used and increase the accuracy of simulated complex tumor models. The contribution of different parameters in various tumor scenarios was estimated and the implication of these differences on the observed thermal profiles was studied. The correlation between animal and human models is discussed.
Engineering and simulation of life science Spacelab experiments
NASA Technical Reports Server (NTRS)
Bush, B.; Rummel, J.; Johnston, R. S.
1977-01-01
Approaches to the planning and realization of Spacelab life sciences experiments, which may involve as many as 16 Space Shuttle missions and 100 tests, are discussed. In particular, a Spacelab simulation program, designed to evaluate problems associated with the use of live animal specimens, the constraints imposed by zero gravity on equipment operation, training of investigators and data management, is described. The simulated facility approximates the hardware and support systems of a current European Space Agency Spacelab model. Preparations necessary for the experimental program, such as crew activity plans, payload documentation and inflight experimental procedures are developed; health problems of the crew, including human/animal microbial contamination, are also assessed.
Equilibrium and kinetic modelling of chromium(III) sorption by animal bones.
Chojnacka, Katarzyna
2005-04-01
The paper discusses sorption of Cr(III) ions from aqueous solutions by animal bones. Animal bones were found to be an efficient sorbent with the maximum experimentally determined sorption capacity in the range 29-194 mg g(-1) that depended on pH and temperature. The maximum experimentally determined sorption capacity was obtained at 50 degrees C, pH 5. Batch kinetics and equilibrium experiments were performed in order to investigate the influence of contact time, initial concentration of sorbate and sorbent, temperature and pH. It was found that sorption capacity increased with increase of Cr(III) concentration, temperature and initial pH of metal solution. Mathematical models describing kinetics and statics of sorption were proposed. It was found that process kinetics followed the pseudo-second-order pattern. The influence of sorbent concentration was described with Langmuir-type equation and the influence of sorbate concentration was described with empirical dependence. The models were positively verified.
Tumor immunology viewed from alternative animal models—the Xenopus story
Banach, Maureen; Robert, Jacques
2017-01-01
a) Purpose of review Nonmammalian comparative animal models are important not only to gain fundamental evolutionary understanding of the complex interactions of tumors with the immune system, but also to better predict the applicability of novel immunotherapeutic approaches to humans. After reviewing recent advances in developing alternative models, we focus on the amphibian Xenopus laevis and its usefulness in deciphering the perplexing roles of MHC class I-like molecules and innate (i)T cells in tumor immunity. b) Recent findings Experiments using MHC-defined inbred and cloned animals, tumor cell lines, effective reagents, sequenced genomes, and adapted gene editing techniques in Xenopus, have revealed that the critical involvement of class I-like molecules and iT cells in tumor immunity has been conserved during evolution. c) Summary Comparative studies with the X. laevis tumor immunity model can contribute to the development of better and more efficient cancer immunotherapies. PMID:28944105
Development of a laboratory model to assess fear and anxiety in cats.
de Rivera, Christina; Ley, Jacqui; Milgram, Bill; Landsberg, Gary
2017-06-01
Objectives The objectives of this study were: (1) to develop a laboratory-based model to assess fear and anxiety in cats using the feline open-field test (OFT) and the feline human interaction test (HIT); and (2) to validate the model using diazepam, a known anxiolytic. Methods Laboratory-housed cats (n = 41) were first classified as fearful, mildly fearful or non-fearful by a technician familiar with the cats and also by veterinary behaviorists (GL, JL), by assessing the cats' behavior in their home rooms. In experiment 1, each cat's behavior was assessed in an OFT and an HIT. In experiment 2, after administration of the anxiolytic diazepam, a subset of the cats was re-tested. Results In experiment 1, the OFT revealed significant group effects on two measures: duration of inactivity, and vocalization. Fearful animals had significantly longer periods of inactivity than non-fearful animals. Non-fearful and mildly fearful cats vocalized more frequently than fearful cats. In the HIT, fearful cats travelled less than non-fearful and mildly fearful cats. Fearful and mildly fearful animals had significantly longer durations of inactivity, and non-fearful and mildly fearful cats had a significantly higher frequency of vocalization compared with fearful cats. In experiment 2, in the OFT, treatment with diazepam caused an increase in distance travelled, shorter durations of inactivity, and more frequent inactivity and vocalization. In the HIT, diazepam increased distance travelled and decreased duration of inactivity. Fearful cats spent significantly less time near the human compared with non-fearful cats, and this persisted under diazepam. Conclusions and relevance The feline OFT and feline HIT can be used jointly to assess the effects of medications or other therapies on fear and anxiety in the domestic cat.
* Animal Models for Periodontal Tissue Engineering: A Knowledge-Generating Process.
Fawzy El-Sayed, Karim M; Dörfer, Christof E
2017-12-01
The human periodontium is a uniquely complex vital structure, supporting and anchoring the teeth in their alveolar sockets, thereby playing a decisive role in tooth homeostasis and function. Chronic periodontitis is a highly prevalent immune-inflammatory disease of the periodontium, affecting 15% of adult individuals, and is characterized by progressive destruction of the periodontal tooth-investing tissues, culminating in their irreversible damage. Current periodontal evidence-based treatment strategies achieve periodontal healing via repair processes, mostly combating the inflammatory component of the disease, to halt or reduce prospective periodontal tissue loss. However, complete periodontal tissue regeneration remains a hard fought-for goal in the field of periodontology and multiple in vitro and in vivo studies have been conducted, in the conquest to achieve a functional periodontal tissue regeneration in humans. The present review evaluates the current status of periodontal regeneration attempted through tissue-engineering concepts, ideal requirements for experimental animal models under investigation, the methods of induction and classification of the experimentally created periodontal defects, types of experimental defects employed in the diverse animal studies, as well as the current state of knowledge obtained from in vivo animal experiments, with special emphasis on large animal models.
Design of a Model of Knee Joint for Educational Purposes
ERIC Educational Resources Information Center
Jastaniah, Saddig; Alganmi, Ohud
2016-01-01
Uses of models play an important role by simulating the bone, obviating the need to experiment on humans or animals. The aim of the present study was to access local materials as gypsum and wax is to be tested for performing a knee model matching bone in the density also to explore how students can come to understand function through a model-based…
Amoxicillin-clavulanic acid and ciprofloxacin-treated SPF mice as gnotobiotic model.
Popper, Miroslav; Gancarčíková, Soňa; Maďar, Marián; Mudroňová, Dagmar; Hrčková, Gabriela; Nemcová, Radomíra
2016-11-01
The experiment was carried out on 24 SPF BALB/c female mice and lasted for 15 days with a 5-day antibiotic (ATB) treatment and then 10 days without ATB treatment. The aim of our study was to acquire an animal model with reduced and controlled microflora and, at the same time, to ensure that the good health of these animals is maintained. Per oral administration of amoxicillin and clavulanate potassium in Amoksiklav (Sandoz, Slovenia) at a dose of 387.11 mg/kg body weight (0.2 ml of dilution per mouse) and subcutaneous administration of ciprofloxacin in Ciloxan (Alcon, Spain) at a dose of 18.87 mg/kg body weight (0.1 ml of dilution per mouse) were performed every 12 h during first 5 days of experiment. Five-day treatment with ATB led to a reduced survivability of microorganisms in faeces (28.33 ± 0.43 % on day 2) and caecum content (28.10 ± 1.56 %), where no cultivable microorganisms in faeces were present. Ten-day convalescence of decontaminated animals under gnotobiotic conditions prevented recovery of species diversity in mice gut microflora. This was reduced to two detectable cultivable species, namely Escherichia coli (GenBank KX086704) and Enterococcus sp. (GenBank KX086705) which were capable to restore its metabolic (CRL 2012) and morphological potential (Baratta et al. Histochem Cell Biol 131:713-726, 2009) within physiological range. Animals obtained under this procedure can be used in further studies. As a result, we created a mouse gnoto model with reduced and controlled microflora without alteration of the overall health status of the respective animals.
Testing episodic memory in animals: a new approach.
Griffiths, D P; Clayton, N S
2001-08-01
Episodic memory involves the encoding and storage of memories concerned with unique personal experiences and their subsequent recall, and it has long been the subject of intensive investigation in humans. According to Tulving's classical definition, episodic memory "receives and stores information about temporally dated episodes or events and temporal-spatial relations among these events." Thus, episodic memory provides information about the 'what' and 'when' of events ('temporally dated experiences') and about 'where' they happened ('temporal-spatial relations'). The storage and subsequent recall of this episodic information was thought to be beyond the memory capabilities of nonhuman animals. Although there are many laboratory procedures for investigating memory for discrete past episodes, until recently there were no previous studies that fully satisfied the criteria of Tulving's definition: they can all be explained in much simpler terms than episodic memory. However, current studies of memory for cache sites in food-storing jays provide an ethologically valid model for testing episodic-like memory in animals, thereby bridging the gap between human and animal studies memory. There is now a pressing need to adapt these experimental tests of episodic memory for other animals. Given the potential power of transgenic and knock-out procedures for investigating the genetic and molecular bases of learning and memory in laboratory rodents, not to mention the wealth of knowledge about the neuroanatomy and neurophysiology of the rodent hippocampus (a brain area heavily implicated in episodic memory), an obvious next step is to develop a rodent model of episodic-like memory based on the food-storing bird paradigm. The development of a rodent model system could make an important contribution to our understanding of the neural, molecular, and behavioral mechanisms of mammalian episodic memory.
Prospective memory: A comparative perspective
Crystal, Jonathon D.; Wilson, A. George
2014-01-01
Prospective memory consists of forming a representation of a future action, temporarily storing that representation in memory, and retrieving it at a future time point. Here we review the recent development of animal models of prospective memory. We review experiments using rats that focus on the development of time-based and event-based prospective memory. Next, we review a number of prospective-memory approaches that have been used with a variety of non-human primates. Finally, we review selected approaches from the human literature on prospective memory to identify targets for development of animal models of prospective memory. PMID:25101562
NASA Astrophysics Data System (ADS)
Glanzmann, Thomas M.; Theumann, Jean-Francois; Forrer, Martin; Braichotte, Daniel; Wagnieres, Georges A.; van den Bergh, Hubert; Andrejevic-Blant, Snezana; Savary, Jean-Francois; Monnier, Philippe
1995-03-01
Golden Syrian hamsters are evaluated as an animal model for light induced fluorescence (LIF) photodetection and phototherapy of early squamous cell carcinomas of the upper aerodigestive tract, the esophagus, and the traecheo-bronchial tree. Carcinomas of this type are induced on the hamster cheek pouch mucosa by the application of the carcinogen 7,12-DMBA. For phototherapeutic experiments on the animals we utilized meso-(tetrahydoxyphenyl) chlorin (mTHPC). This drug is currently in phase I and II clinical trials for ENT patients presenting superficial `early' squamous cell carcinomas. By means of LIF we measured in vivo the kinetics of the uptake and removal of mTHPC in the normal and tumoral cheek mucosa and in the skin. The photodynamic therapy (PDT) reaction of the tissue after excitation of the photosensitizer with laser light at 652 nm was studied. Both pharmacokinetics and PDT efficacy are compared between animal model and clinical results with special emphasis on selectivity between normal and tumoral mucosa. These first experiments show that this tumor model in the hamster cheek pouch seems to be suitable for testing new photosensitizers preceding their clinical application as well as for optimization of the multiple parameters of clinical PDT.
Animals in biomedical space research
NASA Astrophysics Data System (ADS)
Phillips, Robert W.
The use of experimental animals has been a major component of biomedical research progress. Using animals in space presents special problems, but also provides special opportunities. Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalian function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertebrate development. Following these preliminary animals experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.
Bailey-Downs, Lora C; Thorpe, Jessica E; Disch, Bryan C; Bastian, Anja; Hauser, Paul J; Farasyn, Taleah; Berry, William L; Hurst, Robert E; Ihnat, Michael A
2014-01-01
Most cancer patients die with metastatic disease, thus, good models that recapitulate the natural process of metastasis including a dormancy period with micrometastatic cells would be beneficial in developing treatment strategies. Herein we report a model of natural metastasis that balances time to complete experiments with a reasonable dormancy period, which can be used to better study metastatic progression. The basis for the model is a 4T1 triple negative syngeneic breast cancer model without resection of the primary tumor. A cell titration from 500 to 15,000 GFP tagged 4T1 cells implanted into fat pad number four of immune proficient eight week female BALB/cJ mice optimized speed of the model while possessing metastatic processes including dormancy and beginning of reactivation. The frequency of primary tumors was less than 50% in animals implanted with 500-1500 cells. Although implantation with over 10,000 cells resulted in 100% primary tumor development, the tumors and macrometastases formed were highly aggressive, lacked dormancy, and offered no opportunity for treatment. Implantation of 7,500 cells resulted in >90% tumor take by 10 days; in 30-60 micrometastases in the lung (with many animals also having 2-30 brain micrometastases) two weeks post-implantation, with the first small macrometastases present at five weeks; many animals displaying macrometastases at five weeks and animals becoming moribund by six weeks post-implantation. Using the optimum of 7,500 cells the efficacy of a chemotherapeutic agent for breast cancer, doxorubicin, given at its maximal tolerated dose (MTD; 1 mg/kg weekly) was tested for an effect on metastasis. Doxorubicin treatment significantly reduced primary tumor growth and lung micrometastases but the number of macrometastases at experiment end was not significantly affected. This model should prove useful for development of drugs to target metastasis and to study the biology of metastasis.
Disch, Bryan C.; Bastian, Anja; Hauser, Paul J.; Farasyn, Taleah; Berry, William L.; Hurst, Robert E.; Ihnat, Michael A.
2014-01-01
Most cancer patients die with metastatic disease, thus, good models that recapitulate the natural process of metastasis including a dormancy period with micrometastatic cells would be beneficial in developing treatment strategies. Herein we report a model of natural metastasis that balances time to complete experiments with a reasonable dormancy period, which can be used to better study metastatic progression. The basis for the model is a 4T1 triple negative syngeneic breast cancer model without resection of the primary tumor. A cell titration from 500 to 15,000 GFP tagged 4T1 cells implanted into fat pad number four of immune proficient eight week female BALB/cJ mice optimized speed of the model while possessing metastatic processes including dormancy and beginning of reactivation. The frequency of primary tumors was less than 50% in animals implanted with 500–1500 cells. Although implantation with over 10,000 cells resulted in 100% primary tumor development, the tumors and macrometastases formed were highly aggressive, lacked dormancy, and offered no opportunity for treatment. Implantation of 7,500 cells resulted in >90% tumor take by 10 days; in 30–60 micrometastases in the lung (with many animals also having 2–30 brain micrometastases) two weeks post-implantation, with the first small macrometastases present at five weeks; many animals displaying macrometastases at five weeks and animals becoming moribund by six weeks post-implantation. Using the optimum of 7,500 cells the efficacy of a chemotherapeutic agent for breast cancer, doxorubicin, given at its maximal tolerated dose (MTD; 1 mg/kg weekly) was tested for an effect on metastasis. Doxorubicin treatment significantly reduced primary tumor growth and lung micrometastases but the number of macrometastases at experiment end was not significantly affected. This model should prove useful for development of drugs to target metastasis and to study the biology of metastasis. PMID:24878664
Autoshaping of ethanol drinking: an animal model of binge drinking.
Tomie, Arthur; di Poce, Jason; Derenzo, Christopher C; Pohorecky, Larissa A
2002-01-01
To examine the hypothesis that Pavlovian autoshaping provides an animal learning model of drug abuse, two studies evaluated the induction of ethanol drinking by autoshaping procedures. In Experiment 1, the sipper tube conditioned stimulus (CS) contained saccharin/ethanol solution and was repeatedly paired with food as an unconditioned stimulus (US). The CS-US paired group consumed more of the 0.1% saccharin-6% ethanol solution than did the CS-US random group, revealing that autoshaping conditioned responses (CR) induce ethanol drinking not attributable to pseudo-conditioning. Experiment 2 employed saccharin-fading procedures and showed that the paired vs random group differences in ethanol drinking were maintained, even as the saccharin was eliminated from the solution. The results show that Pavlovian autoshaping procedures induce high volumes of ethanol drinking when the presentation of a sipper tube containing an ethanol solution precedes the response-independent delivery of food. The high volume of ethanol consumed in a brief period of time suggests that Pavlovian autoshaping may be a model of binge drinking.
Animal models of Helicobacter-induced disease: methods to successfully infect the mouse.
Taylor, Nancy S; Fox, James G
2012-01-01
Animal models of microbial diseases in humans are an essential component for determining fulfillment of Koch's postulates and determining how the organism causes disease, host response(s), disease prevention, and treatment. In the case of Helicobacter pylori, establishing an animal model to fulfill Koch's postulates initially proved so challenging that out of frustration a human volunteer undertook an experiment to become infected with H. pylori and to monitor disease progression in order to determine if it did cause gastritis. For the discovery of the organism and his fulfillment of Koch's postulates he and a colleague were awarded the Nobel Prize in Medicine. After H. pylori was established as a gastric pathogen, it took several years before a model was developed in mice, opening the study of the organism and its pathogenicity to the general scientific community. However, while the model is widely utilized, there are a number of difficulties that can arise and need to be overcome. The purpose of this chapter is to raise awareness regarding the problems, and to offer reliable protocols for successfully establishing the H. pylori mouse model.
Reverse and Forward Translational Neuropharmacology in Psychiatric Drug Discovery.
Shaffer, Christopher L
2018-02-01
The probability of achieving marketing approval of a novel therapeutic for psychiatric indications is extremely low due largely to the inability to demonstrate durable and reproducible efficacy in phase II trials and beyond. These failures are often attributed to the lack of translation of the underlying neuropharmacology from animal model(s) to the disease population. However, how assured is such a conclusion considering the clinical efficacy path rarely meticulously parallels the preclinical experiment(s) that underwrote it? © 2017 American Society for Clinical Pharmacology and Therapeutics.
State-Dependent Decisions Cause Apparent Violations of Rationality in Animal Choice
Schuck-Paim, Cynthia; Pompilio, Lorena
2004-01-01
Normative models of choice in economics and biology usually expect preferences to be consistent across contexts, or “rational” in economic language. Following a large body of literature reporting economically irrational behaviour in humans, breaches of rationality by animals have also been recently described. If proven systematic, these findings would challenge long-standing biological approaches to behavioural theorising, and suggest that cognitive processes similar to those claimed to cause irrationality in humans can also hinder optimality approaches to modelling animal preferences. Critical differences between human and animal experiments have not, however, been sufficiently acknowledged. While humans can be instructed conceptually about the choice problem, animals need to be trained by repeated exposure to all contingencies. This exposure often leads to differences in state between treatments, hence changing choices while preserving rationality. We report experiments with European starlings demonstrating that apparent breaches of rationality can result from state-dependence. We show that adding an inferior alternative to a choice set (a “decoy”) affects choices, an effect previously interpreted as indicating irrationality. However, these effects appear and disappear depending on whether state differences between choice contexts are present or not. These results open the possibility that some expressions of maladaptive behaviour are due to oversights in the migration of ideas between economics and biology, and suggest that key differences between human and nonhuman research must be recognised if ideas are to safely travel between these fields. PMID:15550984
NASA Astrophysics Data System (ADS)
Glanzmann, Thomas M.; Theumann, Jean-Francois; Braichotte, Daniel; Forrer, Martin; Wagnieres, Georges A.; van den Bergh, Hubert; Andrejevic-Blant, Snezana; Savary, Jean-Francois; Monnier, Philippe
1995-01-01
Golden Syrian hamsters are evaluated as an animal model for phototherapy of early squamous cell carcinomas of the mucosa of the upper aerodigestive tract, the esophagus and the tracheobronchial tree. Carcinomas of this type are induced on the hamster cheek pouch mucosa by the application of the carcinogen 7,12 DMBA. For phototherapeutic experiments on the animals we utilized meso- (tetrahydoxyphenyl)chlorin (mTHPC). The same drug is currently in phase I, II clinical trials for ENT patients with superficial squamous cell carcinomas. By means of light induced fluorescence (LIF) we measured in vivo the kinetics of the uptake and removal of mTHPC in the normal and tumoral cheek mucosa and in the skin. The photodynamic therapy (PDT) reaction of the tissue after excitation of the photosensitizer by laser light at 652 nm was studied. Both pharmacokinetics and PDT efficacy are compared between animal model and clinical results with special emphasis on selectivity between normal and tumoral mucosa. These first experiments show that this tumor model in the hamster cheek pouch seems to be suitable for tests of a number of PDT variables of new photosensitizers preceding their clinical application as well as for optimization of the multiple parameters of clinical phototherapy.
Braue, Ernest H; Smith, Kelly H; Doxzon, Bryce F; Lumpkin, Horace L; Clarkson, Edward D
2011-03-01
This report, the second in a series of five, directly compares the efficacy of Reactive Skin Decontamination Lotion (RSDL), the M291 Skin Decontamination Kit (SDK), 0.5% bleach (sodium or calcium hypochlorite solution), 1% soapy water, and Skin Exposure Reduction Paste Against Chemical Warfare Agents (SERPACWA) in the haired guinea pig model following exposure to soman (GD). In all experiments, guinea pigs were close-clipped and given anesthesia. In the decontamination experiments, the animals were challenged with GD and decontaminated after a 2-minute delay for the standard procedure or at longer times for the delayed-decontamination experiments. Positive control animals were challenged with GD in the same manner as the treated animals, except that they received no treatment. All animals were observed during the first 4 hours and again at 24 hours after exposure for signs of toxicity and death. The protective ratio (PR, defined as the median lethal dose [LD(50)] of the treatment group divided by the LD(50) of the untreated positive control animals) was calculated from the derived probit dose-response curves established for each treatment group and nontreated control animals. SERPACWA was applied as a thin coating (0.1 mm thick), allowed to dry for 15 minutes, and challenged with GD. After a 2-hour challenge, any remaining GD was blotted off the animal, but no additional decontamination was done. Significance in this report is defined as p <.05. Neat (undiluted) GD was used to challenge all animals in these studies. In the standard 2-minute GD decontamination experiments, the calculated PRs for RSDL, 0.5% bleach, 1% soapy water, and M291 SDK were 14, 2.7, 2.2, and 2.6, respectively. RSDL was by far the most effective decontamination product tested and significantly better than any of the other products. Bleach, soapy water, and the M291 SDK provided equivalent and modest protection. Since only RSDL provided at least good protection (PR > 5), it was the only decontamination product evaluated for delayed decontamination. In the GD delayed-decontamination experiments, the calculated LT(50) (the delayed-decontamination time at which 50% of the animals die in the test population following a 5-LD(50) challenge) value for RSDL was only 4.0 minutes. Several conclusions can be drawn from this study: 1) Reactive Skin Decontamination Lotion provided superior protection against GD compared with the other products tested; 2) The 0.5% bleach solution, the 1% soapy water solution, and the M291 SDK were less effective than RSDL, but still provided modest (2 < PR < 5) protection against GD; 3) Reactive Skin Decontamination Lotion, the best product tested, did not provide significant protection against GD when decontamination was delayed for more than 3 minutes; 4) Skin Exposure Reduction Paste Against Chemical Warfare Agents provided significant, but modest, protection against GD; 5) There was good correlation between using the rabbit model and the guinea pig model for decontamination efficacy evaluations; and 6) Soman (GD) is an agent of real concern because it is very difficult to decontaminate and the effects of exposure are difficult to treat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrova, N.V.
1978-01-01
Rats in a ground-based model experiment, in which all flight conditions with the exception of weightlessness and accelerations and intact animals maintained under vivarium conditions served as a control. On the 10th day of flight and of the ground-based model experiments, the rats were exposed to 800 rad radiation for 24 h. Samples of soleus and plantaris muscles were taken for examination on the 2d and 27th days after landing and termination of the ground-based model experiment. Intact animals were sacrificed on the same days as experimental ones. Samples of muscle tissue were frozen in dry ice and stored formore » several days at a temperature of -70/sup 0/ before they were studied. This investigation of isozyme spectrum of LDH of skeletal muscles of rats from the Kosmos-690 satellite indicates that the changes in proportion of isozyme fractions of LDH on the 2d day after the flight are due to the effects of weightlessness; subsequent changes (27th day) in correlation between LDH fraction activity are related to the effects of radiation.« less
Offerman, Steven R; Barry, J David; Richardson, William H; Tong, Tri; Tanen, Dave; Bush, Sean P; Clark, Richard F
2009-01-01
This study was designed to investigate whether the local, subcutaneous injection of Crotaline Fab antivenom (CroFab) at the rattlesnake envenomation site would result in less extremity edema when compared to intravenous (i.v.) antivenom infusion alone. This is a randomized, three-arm laboratory experiment using a porcine model. Each animal was anesthetized, intubated, and maintained on mechanical ventilation. About 6 mg/kg of Crotalus atrox venom was injected subcutaneously at the hock of the right hind leg. Animals were then randomized to immediately receive subcutaneous and i.v. antivenom (SC/IV), i.v. antivenom only, or saline control. SC/IV animals received two vials of CroFab subcutaneously at the envenomation site and two vials intravenously. IV animals received four vials of CroFab intravenously. Limb edema was tracked by serial circumference and volumetric measurements over an 8-h period. Limb circumference was measured at four pre-determined locations hourly. Limb volume was measured by a water displacement method at baseline, 4, and 8 h. Twenty-six animals were randomized to the three treatment groups. The SC/IV and IV arms included nine animals each. Two animals in the SC/IV group died suddenly during the study, leaving seven animals for data analysis. There were eight controls. Increasing limb edema was observed in all groups. No differences were detected in limb circumferences or limb volumes between control and either treatment arms. In this porcine model of crotaline envenomation, no differences in limb edema were found between animals treated with SC/IV or IV CroFab when compared to saline controls.
The use of innovative gadolinium-based contrast agent for MR-diagnosis of cancer in the experiment
NASA Astrophysics Data System (ADS)
Chernov, V.; Medvedeva, A.; Sinilkin, I.; Zelchan, R.; Grigorev, E.; Frolova, I.; Nam, I.
2016-02-01
The present study of the functional suitability and specific activity of the contrast agent gadolinium-based for magnetic resonance imaging demonstrated that the investigated contrast agent intensively accumulates in organs and anatomical structures of the experimental animals. In the model of tumor lesions in animals, study have shown that investigational contrast agent accumulates in the tumor tissue and retained there in for a long enough time.
Interleukin-17 in veterinary animal species and its role in various diseases: a review.
Mensikova, Marketa; Stepanova, Hana; Faldyna, Martin
2013-10-01
Interleukin 17 (IL-17) as one of the pro-inflammatory cytokines is a very important player in the immune response to many pathogens and seems to play a role also in certain chronic and autoimmune diseases. Many studies showing the importance of this cytokine were conducted on murine models and human patients. In recent years, some experiments with other animals in which interleukin-17 was measured were carried out. This review is focused on the findings that have been observed and described in important veterinary species of animals. Copyright © 2013 Elsevier Ltd. All rights reserved.
Panksepp, Jaak
2011-06-01
Do we need to consider mental processes in our analysis of brain functions in other animals? Obviously we do, if such BrainMind functions exist in the animals we wish to understand. If so, how do we proceed, while still retaining materialistic-mechanistic perspectives? This essay outlines the historical forces that led to emotional feelings in animals being marginalized in behavioristic scientific discussions of why animals behave the way they do, and why mental constructs are generally disregarded in modern neuroscientific analyses. The roots of this problem go back to Cartesian dualism and the attempt of 19th century physician-scientists to ground a new type of medical curriculum on a completely materialistic approach to body functions. Thereby all vitalistic principles were discarded from the lexicon of science, and subjective experience in animals was put in that category and discarded as an invalid approach to animal behavior. This led to forms of rigid operationalism during the era of behaviorism and subsequently ruthless reductionism in brain research, leaving little room for mentalistic concepts such as emotional feelings in animal research. However, modern studies of the brain clearly indicate that artificially induced arousals of emotional networks, as with localized electrical and chemical brain stimulation, can serve as "rewards" and "punishments" in various learning tasks. This strongly indicates that animal brains elaborate various experienced states, with those having affective contents being easiest to study rigorously. However, in approaching emotional feelings empirically we must pay special attention to the difficulties and vagaries of human language and evolutionary levels of control in the brain. We need distinct nomenclatures from primary (unconditioned phenomenal experiences) to tertiary (reflective) levels of mind. The scientific pursuit of affective brain processes in other mammals can now reveal general BrainMind principles that also apply to human feelings, as with neurochemical predictions from preclinical animal models to self-reports of corresponding human experiences. In short, brain research has now repeatedly verified the existence of affective experience-various reward and punishment functions-during artificial arousal of emotional networks in our fellow animals. The implications for new conceptual schema for understanding human/primate affective feelings and how such knowledge can impact scientific advances in biological psychiatry are also addressed. © 2011 Wiley-Liss, Inc.
ERIC Educational Resources Information Center
Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva
2012-01-01
The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach.…
Chowdhury, Tara Gunkali; Chen, Yi-Wen; Aoki, Chiye
2015-10-22
Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive - running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals' wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity.
A Secure and High-Fidelity Live Animal Model for Off-Pump Coronary Bypass Surgery Training.
Liu, Xiaopeng; Yang, Yan; Meng, Qiang; Sun, Jiakang; Luo, Fuliang; Cui, Yongchun; Zhang, Hong; Zhang, Dong; Tang, Yue
2016-01-01
Existing simulators for off-pump coronary artery (CA) bypass grafting training are unable to provide cardiac surgery residents all necessary skills they need entering the operation room. In this study, we introduced a secure and high-fidelity live animal model to supplement the in vitro simulators for off-pump CA bypass grafting training. The left internal thoracic artery (ITA) of 3 Chinese miniature pigs was grafted to the left anterior descending CA using an end-to-side anastomosis. The free segment of the ITA was fixed on the ventricle surface, making it a simulative CA beating in synchrony with the heart. A total of 6 to 8 training anastomoses were made on each ITA. Animal Experiment Center in Fuwai Hospital. In total, 19 resident surgeons with at least 3 years of cardiac surgery work experience were trained using the new model. Their performances were recorded and reviewed. Simulative coronary arteries were successfully constructed in all 3 animals with no adverse event observed. A total of 19 anastomoses were then completed, 1 pig of 7 anastomoses and the other 2 animals of 6 anastomoses. Time consumption for the anastomosis was 782 ± 107 seconds. Anastomotic leakage was observed in 10/19 procedures. The most frequency site (7/10) was at the toe of the anastomosis. Further, the most common cause was uneven spacing or small margin of the stitches or both. Emergencies occurred during the training process included hypotension (7 procedures), tachyarrhythmia (4 procedures), and low blood oxygen saturation (1 procedure). This study demonstrated the safety and feasibility of our new live pig model in training resident surgeons. The simulative arteries can be easily accomplished and were long enough to place at least 6 anastomoses. Both on lumen diameter and motion status, they were proven to be a good substitution of the CA. Copyright © 2016. Published by Elsevier Inc.
Animal Models of Depression: Molecular Perspectives
Krishnan, Vaishnav; Nestler, Eric J.
2012-01-01
Much of the current understanding about the pathogenesis of altered mood, impaired concentration and neurovegetative symptoms in major depression has come from animal models. However, because of the unique and complex features of human depression, the generation of valid and insightful depression models has been less straightforward than modeling other disabling diseases like cancer or autoimmune conditions. Today’s popular depression models creatively merge ethologically valid behavioral assays with the latest technological advances in molecular biology and automated video-tracking. This chapter reviews depression assays involving acute stress (e.g., forced swim test), models consisting of prolonged physical or social stress (e.g., social defeat), models of secondary depression, genetic models, and experiments designed to elucidate the mechanisms of antidepressant action. These paradigms are critically evaluated in relation to their ease, validity and replicability, the molecular insights that they have provided, and their capacity to offer the next generation of therapeutics for depression. PMID:21225412
A novel modelling approach to energy transport in a respiratory system.
Nithiarasu, Perumal; Sazonov, Igor
2017-10-01
In this paper, energy transport in a respiratory tract is modelled using the finite element method for the first time. The upper and lower respiratory tracts are approximated as a 1-dimensional domain with varying cross-sectional and surface areas, and the radial heat conduction in the tissue is approximated using the 1-dimensional cylindrical coordinate system. The governing equations are solved using 1-dimensional linear finite elements with convective and evaporative boundary conditions on the wall. The results obtained for the exhalation temperature of the respiratory system have been compared with the available animal experiments. The study of a full breathing cycle indicates that evaporation is the main mode of heat transfer, and convection plays almost negligible role in the energy transport. This is in-line with the results obtained from animal experiments. Copyright © 2016 John Wiley & Sons, Ltd.
Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design.
Laukens, Debby; Brinkman, Brigitta M; Raes, Jeroen; De Vos, Martine; Vandenabeele, Peter
2016-01-01
Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host-microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments. © FEMS 2015.
Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design
Laukens, Debby; Brinkman, Brigitta M.; Raes, Jeroen; De Vos, Martine; Vandenabeele, Peter
2015-01-01
Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host–microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments. PMID:26323480
Yee, Benjamin K.; Singer, Philipp
2013-01-01
Schizophrenia is a chronic debilitating brain disorder characterized by a complex set of perceptual and behavioural symptoms that severely disrupt and undermine the patient’s psychological well-being and quality of life. Since the exact disease mechanisms remain essentially unknown, holistic animal models are indispensable tools for any serious investigation into the neurobiology of schizophrenia, including the search of remedies, prevention, and possible biological markers. This review provides some practical advice to those confronted with the task of evaluating their animal models for relevance to schizophrenia that inevitably involves behavioural tests with animals. To a novice, this challenge is not only a technical one, as it also entails attention to interpretative issues concerning validity and translational power. Here, we attempt to offer some guidance to help overcome these obstacles by drawing on our experience on diverse animal models of schizophrenia based on genetics, strain difference, brain lesions, pharmacological induction, and early life developmental manipulations. The review pays equal emphasis on the general (theoretical) considerations in experimental design and the illustration of the problematics related to test parameters and data analysis of selected exemplar behavioural tests. Finally, the individual difference of behavioural expression in relevant tests observed in wild type animals may offer an alternative approach to explore the mechanism of schizophrenia-related behavioural dysfunction at the molecular, cellular and structural levels that are of more immediate relevance to cell and tissue research. PMID:23579553
Ostrovskaya, R U; Romanova, G A; Trofimov, S S; Gudasheva, T A; Voronina, T A; Halikas, J A; Seredenin, S B
1997-06-01
The present study investigated the potential benefit of the ethyl ester of N-phenylacetylprolylglycine (GVS-111) on the model of bilateral frontal lobectomy (BFL) in rats. The animals in Experiment 1 were trained in an active avoidance task and subsequently underwent BFL. The animals in Experiment 2 were first assessed in an open field and in a passive avoidance test before the BFL was performed. BFL dramatically decreased performance in the active avoidance test, disturbed habituation of horizontal activity in the open field and diminished the latency to enter the dark compartment in the passive avoidance test. GVS-111, administered in a dose of 0.5 mg/kg/day i.p. for 9 days following the operation, was found to improve performance in both active avoidance and passive avoidance and restored habituation of horizontal activity in the lobectomized animals.
Using meta-differential evolution to enhance a calculation of a continuous blood glucose level.
Koutny, Tomas
2016-09-01
We developed a new model of glucose dynamics. The model calculates blood glucose level as a function of transcapillary glucose transport. In previous studies, we validated the model with animal experiments. We used analytical method to determine model parameters. In this study, we validate the model with subjects with type 1 diabetes. In addition, we combine the analytic method with meta-differential evolution. To validate the model with human patients, we obtained a data set of type 1 diabetes study that was coordinated by Jaeb Center for Health Research. We calculated a continuous blood glucose level from continuously measured interstitial fluid glucose level. We used 6 different scenarios to ensure robust validation of the calculation. Over 96% of calculated blood glucose levels fit A+B zones of the Clarke Error Grid. No data set required any correction of model parameters during the time course of measuring. We successfully verified the possibility of calculating a continuous blood glucose level of subjects with type 1 diabetes. This study signals a successful transition of our research from an animal experiment to a human patient. Researchers can test our model with their data on-line at https://diabetes.zcu.cz. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.
Stress, trauma and PTSD: translational insights into the core synaptic circuitry and its modulation.
Bennett, Maxwell R; Hatton, Sean N; Lagopoulos, Jim
2016-06-01
Evidence is considered as to whether behavioral criteria for diagnosis of post-traumatic stress disorder (PTSD) are applicable to that of traumatized animals and whether the phenomena of acquisition, extinction and reactivation of fear behavior in animals are also successfully applicable to humans. This evidence suggests an affirmative answer in both cases. Furthermore, the deficits in gray matter found in PTSD, determined with magnetic resonance imaging, are also observed in traumatized animals, lending neuropsychological support to the use of animals to probe what has gone awry in PTSD. Such animal experiments indicate that the core synaptic circuitry mediating behavior following trauma consists of the amygdala, ventral-medial prefrontal cortex and hippocampus, all of which are modulated by the basal ganglia. It is not clear if this is the case in PTSD as the observations using fMRI are equivocal and open to technical objections. Nevertheless, the effects of the basal ganglia in controlling glutamatergic synaptic transmission through dopaminergic and serotonergic synaptic mechanisms in the core synaptic circuitry provides a ready explanation for why modifying these mechanisms delays extinction in animal models and predisposes towards PTSD. In addition, changes of brain-derived neurotrophic factor (BDNF) in the core synaptic circuitry have significant effects on acquisition and extinction in animal experiments with single nucleotide polymorphisms in the BDNF gene predisposing to PTSD.
Animal models of post-ischemic forced use rehabilitation: methods, considerations, and limitations
2013-01-01
Many survivors of stroke experience arm impairments, which can severely impact their quality of life. Forcing use of the impaired arm appears to improve functional recovery in post-stroke hemiplegic patients, however the mechanisms underlying improved recovery remain unclear. Animal models of post-stroke rehabilitation could prove critical to investigating such mechanisms, however modeling forced use in animals has proven challenging. Potential problems associated with reported experimental models include variability between stroke methods, rehabilitation paradigms, and reported outcome measures. Herein, we provide an overview of commonly used stroke models, including advantages and disadvantages of each with respect to studying rehabilitation. We then review various forced use rehabilitation paradigms, and highlight potential difficulties and translational problems. Lastly, we discuss the variety of functional outcome measures described by experimental researchers. To conclude, we outline ongoing challenges faced by researchers, and the importance of translational communication. Many stroke patients rely critically on rehabilitation of post-stroke impairments, and continued effort toward progression of rehabilitative techniques is warranted to ensure best possible treatment of the devastating effects of stroke. PMID:23343500
Morphometric analysis of small intestine of BALB/c mice in models developed for food allergy study.
Coura Oliveira, Tatiana; Gouveia Pelúzio, Maria do Carmo; da Matta, Sérgio Luis Pinto; da Silveira Mezêncio, Jose Mário; Bressan, Josefina
2013-01-01
Although some animal models of food allergy in have already have been described, none of them uses the allergen in the animals' diet. This work describes the comparison between two developed models of food allergy in BALB/c mice, based in the administration of the allergen in the diet or by intragastric way. The experiment last for 28 days and the animals had been sensitized by means of subcutaneous injection in 1st and 14th days with in natura extract milk, bovine extract meat or frog extract meat. The experimental model that uses the allergen in the unbroken form presented morphometric alterations when compared with the one that used the heat treat allergen. It was noticed the existence of some more resistant proteins than others related to the denaturation, once compared the results of the two models; the differences had been more prominent for the milk and frog allergens. These results confirm the epidemiologic data of allergy incidence in the world's population. Copyright © AULA MEDICA EDICIONES 2013. Published by AULA MEDICA. All rights reserved.
Gong, Yingge; Liu, Ying; Zhou, Ling; Di, Xin; Li, Wei; Li, Qing; Bi, Kaishun
2015-11-10
A metabonomic method was established to find potential biomarkers and study the metabolism disturbance in Alzheimer disease animal model. Total ginsenosides, as potential agent in neuroprotection and anti-inflammation, was also studied to learn the regulation mechanism to plasma metabolites in model animals. In experiment, amyloid beta 1-42 was occupied to form Alzheimer disease animal model. After drug administration, animals were evaluated by Morris water maze behavior test and sacrificed. Plasma samples were then analyzed using UHPLC-TOF/MS method to determine the endogenous metabolites. Behavior test results revealed that the spatial learning and memory abilities were deficit in model mice, and total ginsenosides could improve cognition abilities in dose-dependent manners. Principal component analysis showed that model and sham were divided into two groups, which means the metabolic network of mice was disturbed after modeling. Accordingly, 19 biomarkers were found and identified. In model group, the levels of proline, valine, tryptophan, LPC (14:0), LPC (15:0), LPC (15:1), LPC (17:0), LPC (18:2), LPC (18:3) and LPC (20:4) were up-regulated, while the levels of acetylcarnitine, palmitoylcarnitine, vaccenylcarnitine, phytosphingosine, N-eicosanoylethanolamine, hexadecenoic acid, docosahexaenoic acid, docosapentaenoic acid and octadecadienoic acid were down-regulated. The levels of these metabolites were recovered in different degrees after total ginsenosides administration. Combining with behavior study results, total ginsenosides could ameliorate both cognition symptoms and metabolic changes in model animals. This metabonomic approach provided a feasible way to understand the endogenous alterations of AD and to study the pharmacodynamic activity of novel agents. Copyright © 2015 Elsevier B.V. All rights reserved.
The challenges of implementing pathogen control strategies for fishes used in biomedical research
Lawrence, C.; Ennis, D.G.; Harper, C.; Kent, M.L.; Murray, K.; Sanders, G.E.
2012-01-01
Over the past several decades, a number of fish species, including the zebrafish, medaka, and platyfish/swordtail, have become important models for human health and disease. Despite the increasing prevalence of these and other fish species in research, methods for health maintenance and the management of diseases in laboratory populations of these animals are underdeveloped. There is a growing realization that this trend must change, especially as the use of these species expands beyond developmental biology and more towards experimental applications where the presence of underlying disease may affect the physiology animals used in experiments and potentially compromise research results. Therefore, there is a critical need to develop, improve, and implement strategies for managing health and disease in aquatic research facilities. The purpose of this review is to report the proceedings of a workshop entitled "Animal Health and Disease Management in Research Animals" that was recently held at the 5th Aquatic Animal Models for Human Disease in September 2010 at Corvallis, Oregon to discuss the challenges involved with moving the field forward on this front. ?? 2011 Elsevier Inc. All rights reserved.
Management and care of African dormice (Graphiurus kelleni).
Kastenmayer, Robin J; Moak, Hannah B; Jeffress, Erin J; Elkins, William R
2010-03-01
African dormice (Graphiurus spp.) are small nocturnal rodents that currently are uncommon in laboratory settings. Their use may increase as they have recently been shown to develop an infection with monkeypox virus and may prove to be a valuable animal model for infectious disease research. Because African dormice are not commercially available, an extensive breeding colony is required to produce the animals needed for research use. Husbandry modifications that increased the production of offspring were the use of a high-protein diet, increased cage enrichment, and decreased animal density. To optimize consumption of a high-protein diet, we tested the palatability of several high-protein foods in a series of preference trials. Dormice preferred wax worm larva, cottage cheese, roasted soy nuts, and canned chicken. Issues related to medical management of Graphiurus kelleni include potential complications from traumatic injury. The development of a program for the husbandry and care of African dormice at our institution typifies the experiences of many laboratory animal facilities that are asked to support the development of animal models using novel species.
Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system.
Heppert, Jennifer K; Dickinson, Daniel J; Pani, Ariel M; Higgins, Christopher D; Steward, Annette; Ahringer, Julie; Kuhn, Jeffrey R; Goldstein, Bob
2016-11-07
Fluorescent protein tags are fundamental tools used to visualize gene products and analyze their dynamics in vivo. Recent advances in genome editing have expedited the precise insertion of fluorescent protein tags into the genomes of diverse organisms. These advances expand the potential of in vivo imaging experiments and facilitate experimentation with new, bright, photostable fluorescent proteins. Most quantitative comparisons of the brightness and photostability of different fluorescent proteins have been made in vitro, removed from biological variables that govern their performance in cells or organisms. To address the gap, we quantitatively assessed fluorescent protein properties in vivo in an animal model system. We generated transgenic Caenorhabditis elegans strains expressing green, yellow, or red fluorescent proteins in embryos and imaged embryos expressing different fluorescent proteins under the same conditions for direct comparison. We found that mNeonGreen was not as bright in vivo as predicted based on in vitro data but is a better tag than GFP for specific kinds of experiments, and we report on optimal red fluorescent proteins. These results identify ideal fluorescent proteins for imaging in vivo in C. elegans embryos and suggest good candidate fluorescent proteins to test in other animal model systems for in vivo imaging experiments. © 2016 Heppert et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
[Polish legal terms of animal-based research - selected aspects].
Poznański, Paweł; Niedźwiecki, Sławomir
2014-01-01
Animal-based models used in biomedical sciences allow to perform research that, conducted on humans, would be highly problematic because of bioethical and technical issues. Contemporary researchers race can lead to abuse, hence the need for special law regulations regarding this subject. This necessity reflected both in the EU and Polish legislation, and is rooted in the philosophical and moral achievements of Europe. EU legislation in this case takes the form of directives implemented in the legal systems of the member states. Polish tradition of legislative approach to animal-based research is long. In 1959 the wide attempt to regulate this matter was undertaken. Until 2005, the nature of the matter had been regulated by the Polish animal protection law. Currently, details concerning animal-based-research are regulated by the animal experiments law (2005). The elapsed time since enactment allowed doctrine and judicature to reveal capabilities and vulnerabilities of the law.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrycushko, B; Medin, P
Purpose: The incidence of peripheral neuropathy has risen with increased utilization of SAbR. There is no consensus regarding the dose-tolerance of the peripheral nervous system. In 2015, we commenced an investigation to test the hypotheses that single-session irradiation to the pig spinal nerves exhibit a similar dose-tolerance as that of the spinal cord and that a dose-length effect exists. This work evaluates the direct application of small animal NTCP models to both large animal spinal cord and preliminary peripheral nerve data. Methods: To date, 16 of 25 Yucatan minipigs have received single-session SAbR to a 1.5cm length and 4 ofmore » 25 have received irradiation to a 0.5cm length of left-sided C6-C8 spinal nerves. Toxicity related gait change has been observed in 13 animals (9 from the long length group and 4 from the short). This preliminary data is overlaid on several dose-response models which have been fit to rodent spinal cord tolerance experiments. Model parameters define a toxicity profile between a completely serial or parallel behaving organ. Adequacy of model application, including how length effects are handled, to published minipig spinal cord dose-response data and to preliminary peripheral nerve response data was evaluated through residual analysis. Results: No rodent-derived dose-response models were directly applicable to all pig data for the different lengths irradiated. Several models fit the long-length irradiated spinal cord data well, with the more serial-like models fitting best. Preliminary data on the short-length irradiation suggests no length effect exists, disproving our hypothesis. Conclusion: Direct application of small-animal NTCP models to pig data suggests dose-length effect predictions from small animal data may not translate clinically. However, the small animal models used have not considered dose heterogeneity and it is expected that including the low-to-mid dose levels in the penumbral region will improve this match. This work was funded by the Cancer Prevention Research Institute of Texas (CPRIT).« less
Tsaltas, Eleftheria; Kontis, Dimitris; Chrysikakou, Sofia; Giannou, Haralambos; Biba, Angeliki; Pallidi, Stella; Christodoulou, Angeliki; Maillis, Antonis; Rabavilas, Andreas
2005-05-15
This study introduces a laboratory model of compulsive behavior based on persistence in the context of rewarded spatial alternation. Rats were screened for spontaneous persistence during T-maze reinforced alternation. Experiment 1: One high and one low spontaneous persistence group (n = 8) received 20 injections of fluoxetine, a matched pair saline, both followed by 4 days of meta-chlorophenylpiperazine (mCPP) challenge. Experiment 2: Five matched groups of rats (n = 9) received pretreatment (20 injections) with fluoxetine, mCPP, desipramine, diazepam or saline, followed by 4 days of mCPP challenge (fluoxetine in mCPP group). After washout, animals received 2 days of naratriptan, followed by another 2-day mCPP challenge. In both experiments mCPP significantly increased persistence in saline controls. Fluoxetine also acutely increased persistence scores: after a gradual return to baseline, these scores showed tolerance to mCPP. Experiment 1: This pattern was significant in high but not low initial persistence groups. Experiment 2: Fluoxetine and mCPP showed cross-tolerance. Neither desipramine nor diazepam protected against mCPP challenge. Persistence scores returned to baseline during washout and naratriptan and were thereafter increased by another mCPP challenge in all but the fluoxetine and mCPP groups, suggesting 5-HT2C receptor mediation. This model is based on spontaneous persistence behavior showing pharmacological responses concordant with those of compulsive symptomatology.
Meyer, Jerrold S; Piper, Brian J; Vancollie, Valerie E
2008-10-01
Adult animals treated with high doses of MDMA ("ecstasy") either on a single day or for several consecutive days show numerous behavioral changes as well as persistent reductions in brain serotonin (5-HT) concentrations and 5-HT transporter (SERT) protein expression. However, such dosing regimens do not adequately mimic the intermittent use patterns commonly seen in adolescent recreational ecstasy users. We have developed and characterized a rat model of intermittent adolescent MDMA exposure that simulates many of the features of human weekend use. Animals treated with our dosing regimen experience only small increases in core body temperature, and their plasma MDMA levels compare favorably with the levels reported for heavy ecstasy users under naturalistic conditions when species differences in drug clearance rates are taken into account. Intermittent adolescent MDMA exposure causes later deficits in object-recognition memory, increased impulsivity in the elevated plus-maze, and reduced sensitivity to a 5-HT(1A) agonist challenge. SERT-immunoreactive fiber density is significantly reduced in the hippocampus but not the neocortex, suggesting that the hippocampus may be particularly vulnerable to moderate MDMA exposure during adolescence. Finally, adolescent MDMA-treated animals are protected (i.e., show tolerance) against the neurotoxic and depressant effects of a subsequent MDMA "binge" challenge. We believe that the present animal model has important clinical relevance based on the similarities between the model and the reported effects of regular ecstasy use.
Flint, Robert W.; Hill, Jonathan E.; Sandusky, Leslie A.; Marino, Christina L.
2007-01-01
Undergraduate neuroscience laboratory activities frequently focus on exercises that build student’s wet/dry laboratory skills, foster critical thinking, and provide opportunities for hands-on experiences. Such activities are, without a doubt, extremely important, but sometimes fall short of modeling actual research and often lack the ‘unknown’ hypothetical nature accompanying empirical studies. In this article we report a series of research activities using an animal model of Korsakoff’s syndrome in a Physiological Psychology course. The activities involve testing hypotheses regarding performance of animals with experimentally-induced Korsakoff’s syndrome and the effectiveness of glucose as a memory-enhancer in this model. Students were given a set of 24 articles for use in answering a series of laboratory report questions regarding the activities. At the conclusion of the course, students were asked to complete a questionnaire designed to assess the effectiveness of the laboratory activities. Results of the laboratory exercises indicated that locomotor activity, environmental habituation, and anxiety were unaffected in the Korsakoff condition, and glucose had no effect. Results of performance in the T-maze indicated that Korsakoff animals had significantly fewer spontaneous alternations than controls, but Korsakoff animals given glucose did not reveal this difference. Results of the student assessments indicated that the activities were considered educational, challenging, and more interesting than standard laboratory activities designed to reproduce reliable phenomena. PMID:23494173
Kieslichová, E; Ryska, M; Pantoflícek, T; Ryska, O; Zazula, R; Skobová, J
2005-01-01
Animal models of fulminant hepatic failure (FHF) are important for studying the pathophysiology of this process and for evaluation of the efficacy of artificial and bioartificial liver support systems. In experiments, hemodynamic parameters were monitored in a group of minipigs with FHF induced by surgical devascularization, and compared with those in a control group. During the experiment, animals were analgosedated and were on mechanical lung ventilation. Crystalloid and colloidal solutions were administered and norepinephrine in continuous infusion was applied if mean arterial pressure (MAP) decreased below 60 mm Hg despite adequate intravascular volumes. An increase in heart rate, and decreases in MAP and systemic vascular resistance, compared with the baseline, occurred in the FHF group from 6 h after surgery. A comparison of FHF and control groups revealed no significant differences in systemic vascular resistance and MAP until after 12 h after surgery (systemic vascular resistance index: 953 FHF vs. 1658 controls; p < 0.05; MAP: 58.1 FHF vs. 76 controls; p < 0.05). No significant differences in CI were seen between the FHF group and controls. FHF animals survived for about 13 h after surgery, i.e. a period, which we consider long enough to test a support device. The parameters are believed to be quite adequate, as we were able to maintain satisfactory hemodynamic stability in all experimental animals with induced acute hepatic failure.
NASA Astrophysics Data System (ADS)
Guidetti, Roberto; Rizzo, Angela Maria; Altiero, Tiziana; Rebecchi, Lorena
2012-12-01
Space missions of long duration required a series of preliminary experiments on living organisms, validated by a substantial phase of ground simulation experiments, in the field of micro- and inter-mediate gravities, radiobiology, and, for planetary explorations, related to risks deriving from regolith and dust exposure. In this review, we present the tardigrades, whose characteristics that recommend them as an emerging model for space biology. They are microscopic animals but are characterized by a complex structural organization similar to that of larger animals; they can be cultured in lab in small facilities, having small size; they are able to produce clonal lineages by means of parthenogenesis; they can completely suspend their metabolism when entering in dormant states (anhydrobiosis induced by dehydration and cryobiosis induced by freezing); desiccated anhydrobiotic tardigrades are able to withstand chemical and physical extremes, but a large tolerance is showed also by active animals; they can be stored in dry state for many years without loss of viability. Tardigrades have already been exposed to space stressors on Low Earth Orbit several times. The relevance of ground-based and space studies on tardigrades rests on the presumption that results could suggest strategies to protect organisms, also humans, when exposed to the space and lunar environments.
Chaos-order transition in foraging behavior of ants.
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-06-10
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants' physical abilities, and ants' knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal.
Chaos–order transition in foraging behavior of ants
Li, Lixiang; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian; Schellnhuber, Hans Joachim
2014-01-01
The study of the foraging behavior of group animals (especially ants) is of practical ecological importance, but it also contributes to the development of widely applicable optimization problem-solving techniques. Biologists have discovered that single ants exhibit low-dimensional deterministic-chaotic activities. However, the influences of the nest, ants’ physical abilities, and ants’ knowledge (or experience) on foraging behavior have received relatively little attention in studies of the collective behavior of ants. This paper provides new insights into basic mechanisms of effective foraging for social insects or group animals that have a home. We propose that the whole foraging process of ants is controlled by three successive strategies: hunting, homing, and path building. A mathematical model is developed to study this complex scheme. We show that the transition from chaotic to periodic regimes observed in our model results from an optimization scheme for group animals with a home. According to our investigation, the behavior of such insects is not represented by random but rather deterministic walks (as generated by deterministic dynamical systems, e.g., by maps) in a random environment: the animals use their intelligence and experience to guide them. The more knowledge an ant has, the higher its foraging efficiency is. When young insects join the collective to forage with old and middle-aged ants, it benefits the whole colony in the long run. The resulting strategy can even be optimal. PMID:24912159
Stressor controllability modulates fear extinction in humans
Hartley, Catherine A.; Gorun, Alyson; Reddan, Marianne C.; Ramirez, Franchesca; Phelps, Elizabeth A.
2014-01-01
Traumatic events are proposed to play a role in the development of anxiety disorders, however not all individuals exposed to extreme stress experience a pathological increase in fear. Recent studies in animal models suggest that the degree to which one is able to control an aversive experience is a critical factor determining its behavioral consequences. In this study, we examined whether stressor controllability modulates subsequent conditioned fear expression in humans. Participants were randomly assigned to an escapable stressor condition, a yoked inescapable stressor condition, or a control condition involving no stress exposure. One week later, all participants underwent fear conditioning, fear extinction, and a test of extinction retrieval the following day. Participants exposed to inescapable stress showed impaired fear extinction learning and increased fear expression the following day. In contrast, escapable stress improved fear extinction and prevented the spontaneous recovery of fear. Consistent with the bidirectional controllability effects previously reported in animal models, these results suggest that one's degree of control over aversive experiences may be an important factor influencing the development of psychological resilience or vulnerability in humans. PMID:24333646
Conlan, Andrew J. K.; Line, John E.; Hiett, Kelli; Coward, Chris; Van Diemen, Pauline M.; Stevens, Mark P.; Jones, Michael A.; Gog, Julia R.; Maskell, Duncan J.
2011-01-01
Dose–response experiments characterize the relationship between infectious agents and their hosts. These experiments are routinely used to estimate the minimum effective infectious dose for an infectious agent, which is most commonly characterized by the dose at which 50 per cent of challenged hosts become infected—the ID50. In turn, the ID50 is often used to compare between different agents and quantify the effect of treatment regimes. The statistical analysis of dose–response data typically makes the assumption that hosts within a given dose group are independent. For social animals, in particular avian species, hosts are routinely housed together in groups during experimental studies. For experiments with non-infectious agents, this poses no practical or theoretical problems. However, transmission of infectious agents between co-housed animals will modify the observed dose–response relationship with implications for the estimation of the ID50 and the comparison between different agents and treatments. We derive a simple correction to the likelihood for standard dose–response models that allows us to estimate dose–response and transmission parameters simultaneously. We use this model to show that: transmission between co-housed animals reduces the apparent value of the ID50 and increases the variability between replicates leading to a distinctive all-or-nothing response; in terms of the total number of animals used, individual housing is always the most efficient experimental design for ascertaining dose–response relationships; estimates of transmission from previously published experimental data for Campylobacter spp. in chickens suggest that considerable transmission occurred, greatly increasing the uncertainty in the estimates of dose–response parameters reported in the literature. Furthermore, we demonstrate that accounting for transmission in the analysis of dose–response data for Campylobacter spp. challenges our current understanding of the differing response of chickens with respect to host-age and in vivo passage of bacteria. Our findings suggest that the age-dependence of transmissibility between hosts—rather than their susceptibility to colonization—is the mechanism behind the ‘lag-phase’ reported in commercial flocks, which are typically found to be Campylobacter free for the first 14–21 days of life. PMID:21593028
Considering our methods: Methodological issues with rodent models of appetite and obesity research.
Lutz, Thomas A
2018-08-01
A large number of animal models are currently used in appetite and obesity research. Because the worldwide incidence of obesity continues to climb, it is imperative that animal models sharing characteristics of human obesity and its co-morbidities be used appropriately in the quest for novel preventions or treatments. There is probably no animal model, at least in rodents, that recapitulates all aspects of "common" human obesity and its comorbidities, but rodent models allow insight into specific mechanisms of disease or its consequences. Frequently used obesity models can be partitioned into different categories, the major ones being a) based on mutations or manipulations of one or a few individual genes or b) those in genetically intact animals exposed to obesogenic environments such as, e.g., being maintained on high-fat diets or being raised in small litters. Characteristics of these models include distinct phenotypes of obesity, hyperphagia or changes in energy metabolism, and frequent comorbidities of obesity, like hyperglycemia, insulin resistance or diabetes-like syndromes. This review which is based on a presentation given during the Annual Meeting of the Society for the Study of Ingestive Behavior in July 2017 points out some observations and characteristics of rodent models in obesity and diabetes research. The choice of rodent models discussed here is subjective and based on the author's own experience or on fruitful discussions with colleagues about the pros and cons of specific models. Hence, this review, by no means, is meant to give a complete picture of rodent models used in this type of research, but the review tries to bring up some issues which, in the author's mind, may also be relevant for models not discussed here. For example, by discussing specific mouse and rat models, similarities and differences between mice and rats will be discussed that need to be considered to interpret experimental findings cautiously and in the context of the respective animal model. Knowing which animal model to use means, knowing its limitations. Copyright © 2018 Elsevier Inc. All rights reserved.
Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano
2017-09-01
The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
ERIC Educational Resources Information Center
Plant, E. Ashby; Baylor, Amy L.; Doerr, Celeste E.; Rosenberg-Kima, Rinat B.
2009-01-01
Women's under-representation in fields such as engineering may result in part from female students' negative beliefs regarding these fields and their low self-efficacy for these fields. In this experiment, we investigated the use of animated interface agents as social models for changing male and female middle-school students' attitudes toward…
Adaptive memory: Animacy enhances free recall but impairs cued recall.
Popp, Earl Y; Serra, Michael J
2016-02-01
Recent research suggests that human memory systems evolved to remember animate things better than inanimate things. In the present experiments, we examined whether these effects occur for both free recall and cued recall. In Experiment 1, we directly compared the effect of animacy on free recall and cued recall. Participants studied lists of objects and lists of animals for free-recall tests, and studied sets of animal-animal pairs and object-object pairs for cued-recall tests. In Experiment 2, we compared participants' cued recall for English-English, Swahili-English, and English-Swahili word pairs involving either animal or object English words. In Experiment 3, we compared participants' cued recall for animal-animal, object-object, animal-object, and object-animal pairs. Although we were able to replicate past effects of animacy aiding free recall, animacy typically impaired cued recall in the present experiments. More importantly, given the interactions found in the present experiments, we conclude that some factor associated with animacy (e.g., attention capture or mental arousal) is responsible for the present patterns of results. This factor seems to moderate the relationship between animacy and memory, producing a memory advantage for animate stimuli in scenarios where the moderator leads to enhanced target retrievability but a memory disadvantage for animate stimuli in scenarios where the moderator leads to impaired association memory. (c) 2016 APA, all rights reserved).
Lymphocyte roles in metabolic dysfunction: of men and mice
Ip, Blanche C.; Hogan, Andrew E.; Nikolajczyk, Barbara S.
2015-01-01
Type 2 diabetes (T2D) is a metabolic disease associated with obesity-related insulin resistance (IR) and chronic inflammation. Animal studies indicate IR can be caused and/or exacerbated by systemic/tissue-specific alterations in lymphocyte differentiation and function. Human studies also indicate obesity and/or inflammation promotes IR. Nevertheless, clinical trials with anti-inflammatory therapies have yielded modest impacts on established T2D. Unlike mouse models where obesity is predominantly associated with IR, 20–25% of obese people are metabolically healthy with high insulin sensitivity. The uncoupling of obesity from IR in humans but not in animal models advocates for a more comprehensive understanding of mediators/mechanisms in human obesity-promoted IR, and better integration of knowledge from human studies into animal experiments to efficiently pursue T2D prevention and treatment. PMID:25573740
Measuring normal and pathological anxiety-like behaviour in mice: a review.
Belzung, C; Griebel, G
2001-11-01
Measuring anxiety-like behaviour in mice has been mostly undertaken using a few classical animal models of anxiety such as the elevated plus-maze, the light/dark choice or the open-field tests. All these procedures are based upon the exposure of subjects to unfamiliar aversive places. Anxiety can also be elicited by a range of threats such as predator exposure. Furthermore, the concepts of "state" and "trait" anxiety have been proposed to differentiate anxiety that the subject experiences at a particular moment of time and that is increased by the presence of an anxiogenic stimulus, and anxiety that does not vary from moment to moment and is considered to be an "enduring feature of an individual". Thus, when assessing the behaviour of mice, it is necessary to increase the range of behavioural paradigms used, including animal models of "state" and "trait" anxiety. In the last few years, many mice with targeted mutations have been generated. Among them some have been proposed as animal models of pathological anxiety, since they display high level of anxiety-related behaviours in classical tests. However, it is important to emphasise that such mice are animal models of a single gene dysfunction, rather than models of anxiety, per se. Inbred strains of mice, such as the BALB/c line, which exhibits spontaneously elevated anxiety appear to be a more suitable model of pathological anxiety.
Feitosa, Matheus Levi Tajra; Fadel, Leandro; Beltrão-Braga, Patrícia Cristina Baleeiro; Wenceslau, Cristiane Valverde; Kerkis, Irina; Kerkis, Alexandre; Birgel Júnior, Eduardo Harry; Martins, João Flávio Panattoni; Martins, Daniele dos Santos; Miglino, Maria Angélica; Ambrósio, Carlos Eduardo
2010-10-01
Evaluate the bone tissue recovery following transplantation of ovine mesenchymal stem cells (MSC) from bone marrow and human immature dental-pulp stem cells (hIDPSC) in ovine model of induced osteonecrosis of femoral head (ONFH). Eight sheep were divided in three experimental groups. First group was composed by four animals with ONFH induced by ethanol through central decompression (CD), for control group without any treatment. The second and third group were compose by two animals, six weeks after ONFH induction received transplantation of heterologous ovine MSC (CD + oMSC), and hIDPSC (CD + hIDPSC), respectively. In both experiments the cells were transplanted without application of any type of immunosupression protocol. Our data indicate that both cell types used in experiments were able to proliferate within injured site providing bone tissue recovery. The histological results obtained from CD+hIDPSC suggested that the bone regeneration in such animals was better than that observed in CD animals. Mesenchymal stem cell transplant in induced ovine osteonecrosis of femoral head by central decompression technique is safe, and apparently favors bone regeneration of damaged tissues.
Experiences with sheep as an animal model for shoulder surgery: strengths and shortcomings.
Turner, A Simon
2007-01-01
Sheep (and goats) are a convenient large-animal model for rotator cuff repair because of availability, ease of handling and housing, animal cost, and acceptance to society as a research animal. Tenotomy of the infraspinatus tendon and subsequent reattachment to the proximal humerus is useful to address the biomechanical, histologic, and biochemical processes of rotator cuff repair. Detaching this tendon and immediately reattaching it does not represent the clinical picture but serves as a relatively rapid way to screen different suture anchors, suture patterns, scaffolds, growth factors, and other biologics or a combination of these treatments to enhance the healing process. To minimize spontaneous reattachment and reproduce a chronic rotator cuff injury, the end of the tendon can be covered and then reattached 4 weeks later if bone-to-tendon healing is to be evaluated. This chronic model is useful to understand the biology (degree of muscle atrophy and fatty infiltration) of rotator cuff muscles as well as innovative methods of repair. Close-stall confinement is required during the convalescence in acute and chronic studies. Ultrasound in the awake animal can be used to monitor gap formation and tissue organization. Sheep have also been used to determine whether capsular healing after plication is equivalent to open capsular shift.
Vergara-Alert, Júlia; Vidal, Enric; Bensaid, Albert; Segalés, Joaquim
2017-06-01
Emerging and re-emerging pathogens represent a substantial threat to public health, as demonstrated with numerous outbreaks over the past years, including the 2013-2016 outbreak of Ebola virus in western Africa. Coronaviruses are also a threat for humans, as evidenced in 2002/2003 with infection by the severe acute respiratory syndrome coronavirus (SARS-CoV), which caused more than 8000 human infections with 10% fatality rate in 37 countries. Ten years later, a novel human coronavirus (Middle East respiratory syndrome coronavirus, MERS-CoV), associated with severe pneumonia, arose in the Kingdom of Saudi Arabia. Until December 2016, MERS has accounted for more than 1800 cases and 35% fatality rate. Finding an animal model of disease is key to develop vaccines or antivirals against such emerging pathogens and to understand its pathogenesis. Knowledge of the potential role of domestic livestock and other animal species in the transmission of pathogens is of importance to understand the epidemiology of the disease. Little is known about MERS-CoV animal host range. In this paper, experimental data on potential hosts for MERS-CoV is reviewed. Advantages and limitations of different animal models are evaluated in relation to viral pathogenesis and transmission studies. Finally, the relevance of potential new target species is discussed.
Modeling Warfare in Social Animals: A "Chemical" Approach
Santarlasci, Alisa; Martelloni, Gianluca; Frizzi, Filippo; Santini, Giacomo; Bagnoli, Franco
2014-01-01
We present here a general method for modelling the dynamics of battles among social animals. The proposed method exploits the procedures widely used to model chemical reactions, but still uncommon in behavioural studies. We applied this methodology to the interpretation of experimental observations of battles between two species of ants (Lasius neglectus and Lasius paralienus), but this scheme may have a wider applicability and can be extended to other species as well. We performed two types of experiment labelled as interaction and mortality. The interaction experiments are designed to obtain information on the combat dynamics and lasted one hour. The mortality ones provide information on the casualty rates of the two species and lasted five hours. We modelled the interactions among ants using a chemical model which considers the single ant individuals and fighting groups analogously to atoms and molecules. The mean-field behaviour of the model is described by a set of non-linear differential equations. We also performed stochastic simulations of the corresponding agent-based model by means of the Gillespie event-driven integration scheme. By fitting the stochastic trajectories with the deterministic model, we obtained the probability distribution of the reaction parameters. The main result that we obtained is a dominance phase diagram, that gives the average trajectory of a generic battle, for an arbitrary number of opponents. This phase diagram was validated with some extra experiments. With respect to other war models (e.g., Lanchester's ones), our chemical model considers all phases of the battle and not only casualties. This allows a more detailed description of the battle (with a larger number of parameters), allowing the development of more sophisticated models (e.g., spatial ones), with the goal of distinguishing collective effects from the strategic ones. PMID:25369269
Modeling warfare in social animals: a "chemical" approach.
Santarlasci, Alisa; Martelloni, Gianluca; Frizzi, Filippo; Santini, Giacomo; Bagnoli, Franco
2014-01-01
We present here a general method for modelling the dynamics of battles among social animals. The proposed method exploits the procedures widely used to model chemical reactions, but still uncommon in behavioural studies. We applied this methodology to the interpretation of experimental observations of battles between two species of ants (Lasius neglectus and Lasius paralienus), but this scheme may have a wider applicability and can be extended to other species as well. We performed two types of experiment labelled as interaction and mortality. The interaction experiments are designed to obtain information on the combat dynamics and lasted one hour. The mortality ones provide information on the casualty rates of the two species and lasted five hours. We modelled the interactions among ants using a chemical model which considers the single ant individuals and fighting groups analogously to atoms and molecules. The mean-field behaviour of the model is described by a set of non-linear differential equations. We also performed stochastic simulations of the corresponding agent-based model by means of the Gillespie event-driven integration scheme. By fitting the stochastic trajectories with the deterministic model, we obtained the probability distribution of the reaction parameters. The main result that we obtained is a dominance phase diagram, that gives the average trajectory of a generic battle, for an arbitrary number of opponents. This phase diagram was validated with some extra experiments. With respect to other war models (e.g., Lanchester's ones), our chemical model considers all phases of the battle and not only casualties. This allows a more detailed description of the battle (with a larger number of parameters), allowing the development of more sophisticated models (e.g., spatial ones), with the goal of distinguishing collective effects from the strategic ones.
Spontaneous behavioral responses in the orofacial region: A model of trigeminal pain in mouse
Romero-Reyes, Marcela; Akerman, Simon; Nguyen, Elaine; Vijjeswarapu, Alice; Hom, Betty; Dong, Hong-Wei; Charles, Andrew C.
2012-01-01
OBJECTIVES To develop a translational mouse model for the study and measurement of non-evoked pain in the orofacial region by establishing markers of nociceptive-specific grooming behaviors in the mouse. BACKGROUND Some of the most prevalent and debilitating conditions involve pain in the trigeminal distribution. Although there are current therapies for these pain conditions, for many patients they are far from optimal. Understanding the pathophysiology of pain disorders arising from structures innervated by the trigeminal nerve is still limited and most animal behavioral models focus on the measurement of evoked pain. In patients, spontaneous (non-evoked) pain responses provide a more accurate representation of the pain experience than do responses that are evoked by an artificial stimulus. Therefore, the development of animal models that measure spontaneous nociceptive behaviors may provide a significant translational tool for a better understanding of pain neurobiology. METHODS C57BL/6 mice received either an injection of 0.9% Saline solution or complete Freund’s adjuvant (CFA) into the right masseter muscle. Animals were video recorded and then analyzed by an observer blind to the experiment group. The duration of different facial grooming patterns performed in the area of injection were measured. After 2 hrs, mice were euthanized, perfused and the brainstem was removed. Fos protein expression in the trigeminal nucleus caudalis was quantified using immunohistochemistry to investigate nociceptive-specific neuronal activation. A separate group of animals was treated with morphine sulfate, to determine the nociceptive-specific nature of their behaviors. RESULTS We characterized and quantified 3 distinct patterns of acute grooming behaviors: fore-paw rubbing, lower lip skin/cheek rubbing against enclosure floor and hind paw scratching. These behaviors occurred with a reproducible frequency and time course, and were inhibited by the analgesic morphine. CFA-injected animals also showed Fos labeling consistent with neuronal activation in nociceptive-specific pathways of the trigeminal nucleus after two hours. CONCLUSIONS These behaviors and their correlated cellular responses represent a model of trigeminal pain that can be used to better understand basic mechanisms of orofacial pain and identify new therapeutic approaches to this common and challenging condition. PMID:22830495
Peterson, Daniel J; Gill, W Drew; Dose, John M; Hoover, Donald B; Pauly, James R; Cummins, Elizabeth D; Burgess, Katherine C; Brown, Russell W
2017-05-15
Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal's lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1mg/kg) or saline from postnatal days (P)1-21. Animals were given ip injections of either saline or nicotine (0.5mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not α7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking. Copyright © 2017. Published by Elsevier B.V.
Excessive Aggression as Model of Violence: A Critical Evaluation of Current Preclinical Methods
Miczek, Klaus A.; de Boer, Sietse F.; Haller, Jozsef
2013-01-01
Rationale Preclinical experimental models of pathological aggressive behavior are a sorely understudied and difficult research area. Objectives How valid, reliable, productive and informative are the most frequently used animal models of excessive aggressive behavior? Methods The rationale, key methodological features, supporting data and arguments as well as their disadvantages and limitations of the most frequently used animal models for excessive aggressive behavior are summarized and their validity and reliability are evaluated. Results Excessive aggressive behavior is validly and reliably seen in (1) a proportion of feral-derived rats and selectively bred mice, (2) rats with compromised adrenal function resulting in a hypoglucocorticoid state, (3) a significant minority of mice, rats and monkeys after consumption of a moderate dose of alcohol, and (4) resident animals of various species after social instigation. Limitations of these procedures include restrictive animal research regulations, the requirement of expertise in surgical, pharmacological and behavioral techniques, and the behaviorally impoverished mouse strains that are used in molecular genetics research. Promising recent initiatives for novel experimental models include aggressive behaviors that are evoked by optogenetic stimulation and induced by the manipulation of early social experiences such as isolation rearing or social stress. Conclusions One of the most significant challenges for animal models of excessive, potentially abnormal aggressive behavior is the characterization of distinctive neurobiological mechanisms that differ from those governing species-typical aggressive behavior. Identifying novel targets for effective intervention requires increased understanding of the distinctive molecular, cellular and circuit mechanisms for each type of abnormal aggressive behavior. PMID:23430160
Animals in biomedical space research
NASA Technical Reports Server (NTRS)
Phillips, R. W.
1986-01-01
Rat and squirrel monkeys experiments have been planned in concert with human experiments to help answer fundamental questions concerning the effect of weightlessness on mammalism function. For the most part, these experiments focus on identified changes noted in humans during space flight. Utilizing space laboratory facilities, manipulative experiments can be completed while animals are still in orbit. Other experiments are designed to study changes in gravity receptor structure and function and the effect of weightlessness on early vertibrate development. Following these preliminary animal experiments on Spacelab Shuttle flights, longer term programs of animal investigation will be conducted on Space Station.
Kay, Helle; Murrell, K Darwin; Hansen, Axel Kornerup; Madsen, Henry; Trang, Nguyen Thi Thu; Hung, Nguyen Manh; Dalsgaard, Anders
2009-06-01
Recent studies in Vietnam and other Asian countries have shown that fish-borne zoonotic intestinal trematodes (FZT) occur very frequently in humans. The dominant intestinal FZT in Vietnamese fish are species of Haplorchis, in particular H. pumilio. However, basic studies on the biology and pathology of adult H. pumilio are difficult because of the lack of a standardized experimental animal model. The objective of this study was to establish and optimize such an animal-infection model for H. pumilio. Using metacercariae isolated from naturally infected fish, experiments were conducted to identify a suitable experimental animal host species, as well as the optimum metacercariae infection dose, and to determine the post-infection interval for patency. In a series of experiments, mice (Mus musculus) and chickens (Gallus gallus dom.) were infected with different numbers of metacercariae, and worm recoveries were made at varying intervals post-infection (PI). Based on the mean number of adult flukes recovered/number of metacercariae inoculated and the percent of hosts infected, mice were significantly more susceptible to infection than were chickens. The proportion of metacercariae developing to the adult stage increased with dose size. The peak worm recovery (geometric mean) was found to be day 7, although not all recovered flukes were gravid until day 9 PI. These results describe a mouse infection model with good predictability for intestinal flukes, such as H. pumilio, results which could facilitate investigations on important biological and pathological aspects of intestinal fluke infections.
ERIC Educational Resources Information Center
Judge, Sarah; Delgaty, Laura; Broughton, Mark; Dyter, Laura; Grimes, Callum; Metcalf, James; Nicholson, Rose; Pennock, Erin; Jankowski, Karl
2017-01-01
A team of six children (13-14 years old) developed and conducted an experiment to assess the behaviour of the planarian flatworm, an invertebrate animal model, before, during and after exposure to chemicals. The aim of the project was to engage children in pharmacology and toxicology research. First, the concept that exposure to chemicals can…
The Challenges of Using Horses for Practical Teaching Purposes in Veterinary Programmes
Gronqvist, Gabriella; Rogers, Chris; Gee, Erica; Bolwell, Charlotte; Gordon, Stuart
2016-01-01
Simple Summary Veterinary students often lack previous experience in handling horses and other large animals. This article discusses the challenges of using horses for veterinary teaching purposes and the potential consequences to student and equine welfare. The article proposes a conceptual model to optimise equine welfare, and subsequently student safety, during practical equine handling classes. Abstract Students enrolled in veterinary degrees often come from an urban background with little previous experience in handling horses and other large animals. Many veterinary degree programmes place importance on the teaching of appropriate equine handling skills, yet within the literature it is commonly reported that time allocated for practical classes often suffers due to time constraint pressure from other elements of the curriculum. The effect of this pressure on animal handling teaching time is reflected in the self-reported low level of animal handling competency, particularly equine, in students with limited prior experience with horses. This is a concern as a naive student is potentially at higher risk of injury to themselves when interacting with horses. Additionally, a naive student with limited understanding of equine behaviour may, through inconsistent or improper handling, increase the anxiety and compromise the welfare of these horses. There is a lack of literature investigating the welfare of horses in university teaching facilities, appropriate handling procedures, and student safety. This article focuses on the importance for students to be able to interpret equine behaviour and the potential consequences of poor handling skills to equine and student welfare. Lastly, the authors suggest a conceptual model to optimise equine welfare, and subsequently student safety, during practical equine handling classes. PMID:27845702
[Non-animal toxicology in the safety testing of chemicals].
Heinonen, Tuula; Tähti, Hanna
2013-01-01
There is an urgent need to develop predictive test methods better than animal experiments for assessing the safety of chemical substances to man. According to today's vision this is achieved by using human cell based tissue and organ models. In the new testing strategy the toxic effects are assessed by the changes in the critical parameters of the cellular biochemical routes (AOP, adverse toxic outcome pathway-principle) in the target tissues. In vitro-tests are rapid and effective, and with them automation can be applied. The change in the testing paradigm is supported by all stakeholders: scientists, regulators and people concerned on animal welfare.
Freshwater Planarians as an Alternative Animal Model for Neurotoxicology.
Hagstrom, Danielle; Cochet-Escartin, Olivier; Zhang, Siqi; Khuu, Cindy; Collins, Eva-Maria S
2015-09-01
Traditional toxicology testing has relied on low-throughput, expensive mammalian studies; however, timely testing of the large number of environmental toxicants requires new in vitro and in vivo platforms for inexpensive medium- to high-throughput screening. Herein, we describe the suitability of the asexual freshwater planarian Dugesia japonica as a new animal model for the study of developmental neurotoxicology. As these asexual animals reproduce by binary fission, followed by regeneration of missing body structures within approximately 1 week, development and regeneration occur through similar processes allowing us to induce neurodevelopment "at will" through amputation. This short time scale and the comparable sizes of full and regenerating animals enable parallel experiments in adults and developing worms to determine development-specific aspects of toxicity. Because the planarian brain, despite its simplicity, is structurally and molecularly similar to the mammalian brain, we are able to ascertain neurodevelopmental toxicity that is relevant to humans. As a proof of concept, we developed a 5-step semiautomatic screening platform to characterize the toxicity of 9 known neurotoxicants (consisting of common solvents, pesticides, and detergents) and a neutral agent, glucose, and quantified effects on viability, stimulated and unstimulated behavior, regeneration, and brain structure. Comparisons of our findings with other alternative toxicology animal models, such as zebrafish larvae and nematodes, demonstrated that planarians are comparably sensitive to the tested chemicals. In addition, we found that certain compounds induced adverse effects specifically in developing animals. We thus conclude that planarians offer new complementary opportunities for developmental neurotoxicology animal models. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sparo, M; Urbizu, L; Solana, M V; Pourcel, G; Delpech, G; Confalonieri, A; Ceci, M; Sánchez Bruni, S F
2012-02-01
To investigate the in vivo gene transfer of high-level gentamicin resistance (HLRG) from Enterococcus faecalis isolated from the food of animal origin to a human isolate, using a mouse model of intestinally colonized human microbiota. In vitro study: The presence of plasmids involved in HLRG coding was investigated. After the conjugation experiment, the recipient strain, Ent. faecalis JH2-SS, acquired a plasmid responsible for HLRG [minimal inhibitory concentration (MIC) >800 μg ml(-1) ], in a similar position to the donor cells. In vivo study: Seven BALB/c mice were dosed with ceftriaxone (400 mg kg(-1) ) and then inoculated with a dilution of 1/100 of human faeces (HFc). After 72 h, Ent. faecalis JH2-SS (recipient) was inoculated and then, after a further 72 h, the animals were given Ent. faecalis CS19, isolated from the food of animal origin, involved in HLRG (donor). The presence of transconjugant strains in HFc was subsequently recorded on a daily basis until the end of the experiment. The clonal relationship between Ent. faecalis and Escherichia coli in faeces was assessed by RAPD-PCR. Both the in vitro and in vivo studies showed that the receptor strain acquired a plasmid responsible for HLRG (MICs >800 μg ml(-1) ), which migrated with a similar relative mobility value. Transconjugant strains were detected from 24 h after the donor strain inoculation and persisted until the end of the experiment. The in vivo gene transfer of HLRG from Ent. faecalis strains, isolated from the food of animal origin, to human microbiota has been demonstrated in a mouse model. The complexity found on the therapeutic responses of invasive infectious diseases caused by Ent. faecalis facilitates the assessment of food of animal origin as a resistant pathogen reservoir. In addition, this study may contribute to the understanding of antimicrobials' resistance gene transfer between Ent. faecalis strains from food and human GI tract. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides
NASA Astrophysics Data System (ADS)
Xie, Tianwu; Zaidi, Habib
2013-01-01
In addition to being a powerful clinical tool, Positron emission tomography (PET) is also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. However, dosimetric characteristics in small animal PET imaging are usually overlooked, though the radiation dose may not be negligible. In this work, we constructed 17 mouse models of different body mass and size based on the realistic four-dimensional MOBY mouse model. Particle (photons, electrons and positrons) transport using the Monte Carlo method was performed to calculate the absorbed fractions and S-values for eight positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Y-86 and I-124). Among these radionuclides, O-15 emits positrons with high energy and frequency and produces the highest self-absorbed S-values in each organ, while Y-86 emits γ-rays with high energy and frequency which results in the highest cross-absorbed S-values for non-neighbouring organs. Differences between S-values for self-irradiated organs were between 2% and 3%/g difference in body weight for most organs. For organs irradiating other organs outside the splanchnocoele (i.e. brain, testis and bladder), differences between S-values were lower than 1%/g. These appealing results can be used to assess variations in small animal dosimetry as a function of total-body mass. The generated database of S-values for various radionuclides can be used in the assessment of radiation dose to mice from different radiotracers in small animal PET experiments, thus offering quantitative figures for comparative dosimetry research in small animal models.
Real-time physics-based 3D biped character animation using an inverted pendulum model.
Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee
2010-01-01
We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.
1986-06-01
Experiments-The Animal Model Plasticity in animals during a "critical period" has been well demonstrated by Hubel and Wiesel and many other authors. (23...the cortical cells are "utterly plastic". Hubel and Wiesel (1970) suggested an analagous critical period for man which could be signifi- cantly longer...in their ju- venile macaque monkeys, Hubel , Wiesel , and Levay (1977) noted a significant change in the ocular dominance columns in lay- er IV C of
Gantenbein, Benjamin; Illien-Jünger, Svenja; Chan, Samantha C W; Walser, Jochen; Haglund, Lisbet; Ferguson, Stephen J; Iatridis, James C; Grad, Sibylle
2015-01-01
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of "smart" biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments.
The contribution of animal models to the study of obesity.
Speakman, John; Hambly, Catherine; Mitchell, Sharon; Król, Elzbieta
2008-10-01
Obesity results from prolonged imbalance of energy intake and energy expenditure. Animal models have provided a fundamental contribution to the historical development of understanding the basic parameters that regulate the components of our energy balance. Five different types of animal model have been employed in the study of the physiological and genetic basis of obesity. The first models reflect single gene mutations that have arisen spontaneously in rodent colonies and have subsequently been characterized. The second approach is to speed up the random mutation rate artificially by treating rodents with mutagens or exposing them to radiation. The third type of models are mice and rats where a specific gene has been disrupted or over-expressed as a deliberate act. Such genetically-engineered disruptions may be generated through the entire body for the entire life (global transgenic manipulations) or restricted in both time and to certain tissue or cell types. In all these genetically-engineered scenarios, there are two types of situation that lead to insights: where a specific gene hypothesized to play a role in the regulation of energy balance is targeted, and where a gene is disrupted for a different purpose, but the consequence is an unexpected obese or lean phenotype. A fourth group of animal models concern experiments where selective breeding has been utilized to derive strains of rodents that differ in their degree of fatness. Finally, studies have been made of other species including non-human primates and dogs. In addition to studies of the physiological and genetic basis of obesity, studies of animal models have also informed us about the environmental aspects of the condition. Studies in this context include exploring the responses of animals to high fat or high fat/high sugar (Cafeteria) diets, investigations of the effects of dietary restriction on body mass and fat loss, and studies of the impact of candidate pharmaceuticals on components of energy balance. Despite all this work, there are many gaps in our understanding of how body composition and energy storage are regulated, and a continuing need for the development of pharmaceuticals to treat obesity. Accordingly, reductions in the use of animal models, while ethically desirable, will not be feasible in the short to medium term, and indeed an expansion in activity using animal models is anticipated as the epidemic continues and spreads geographically.
Niazi, Muaz A
2014-01-01
The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems.
Niazi, Muaz A.
2014-01-01
The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems. PMID:24701135
Traumatic Brain Injury – Modeling Neuropsychiatric Symptoms in Rodents
Malkesman, Oz; Tucker, Laura B.; Ozl, Jessica; McCabe, Joseph T.
2013-01-01
Each year in the US, ∼1.5 million people sustain a traumatic brain injury (TBI). Victims of TBI can suffer from chronic post-TBI symptoms, such as sensory and motor deficits, cognitive impairments including problems with memory, learning, and attention, and neuropsychiatric symptoms such as depression, anxiety, irritability, aggression, and suicidal rumination. Although partially associated with the site and severity of injury, the biological mechanisms associated with many of these symptoms – and why some patients experience differing assortments of persistent maladies – are largely unknown. The use of animal models is a promising strategy for elucidation of the mechanisms of impairment and treatment, and learning, memory, sensory, and motor tests have widespread utility in rodent models of TBI and psychopharmacology. Comparatively, behavioral tests for the evaluation of neuropsychiatric symptomatology are rarely employed in animal models of TBI and, as determined in this review, the results have been inconsistent. Animal behavioral studies contribute to the understanding of the biological mechanisms by which TBI is associated with neurobehavioral symptoms and offer a powerful means for pre-clinical treatment validation. Therefore, further exploration of the utility of animal behavioral tests for the study of injury mechanisms and therapeutic strategies for the alleviation of emotional symptoms are relevant and essential. PMID:24109476
NASA Astrophysics Data System (ADS)
Lee, Victor R.
2015-04-01
Biomechanics, and specifically the biomechanics associated with human movement, is a potentially rich backdrop against which educators can design innovative science teaching and learning activities. Moreover, the use of technologies associated with biomechanics research, such as high-speed cameras that can produce high-quality slow-motion video, can be deployed in such a way to support students' participation in practices of scientific modeling. As participants in classroom design experiment, fifteen fifth-grade students worked with high-speed cameras and stop-motion animation software (SAM Animation) over several days to produce dynamic models of motion and body movement. The designed series of learning activities involved iterative cycles of animation creation and critique and use of various depictive materials. Subsequent analysis of flipbooks of human jumping movements created by the students at the beginning and end of the unit revealed a significant improvement in both the epistemic fidelity of students' representations. Excerpts from classroom observations highlight the role that the teacher plays in supporting students' thoughtful reflection of and attention to slow-motion video. In total, this design and research intervention demonstrates that the combination of technologies, activities, and teacher support can lead to improvements in some of the foundations associated with students' modeling.
Moustafa, Ahmed A.; Gilbertson, Mark W.; Orr, Scott P.; Herzallah, Mohammad M.; Servatius, Richard. J.; Myers, Catherine E.
2012-01-01
Empirical research has shown that the amygdala, hippocampus, and ventromedial prefrontal cortex (vmPFC) are involved in fear conditioning. However, the functional contribution of each brain area and the nature of their interactions are not clearly understood. Here, we extend existing neural network models of the functional roles of the hippocampus in classical conditioning to include interactions with the amygdala and prefrontal cortex. We apply the model to fear conditioning, in which animals learn physiological (e.g. heart rate) and behavioral (e.g. freezing) responses to stimuli that have been paired with a highly aversive event (e.g. electrical shock). The key feature of our model is that learning of these conditioned responses in the central nucleus of the amygdala is modulated by two separate processes, one from basolateral amygdala and signaling a positive prediction error, and one from the vmPFC, via the intercalated cells of the amygdala, and signaling a negative prediction error. In addition, we propose that hippocampal input to both vmPFC and basolateral amygdala is essential for contextual modulation of fear acquisition and extinction. The model is sufficient to account for a body of data from various animal fear conditioning paradigms, including acquisition, extinction, reacquisition, and context specificity effects. Consistent with studies on lesioned animals, our model shows that damage to the vmPFC impairs extinction, while damage to the hippocampus impairs extinction in a different context (e.g., a different conditioning chamber from that used in initial training in animal experiments). We also discuss model limitations and predictions, including the effects of number of training trials on fear conditioning. PMID:23164732
Sidorova, Yu S; Shipelin, V A; Zorin, S N; Mazo, V K; Petrov, N A; Kochetkova, A A
2015-01-01
The aim of the study was to evaluate type 2 diabetes medicamental biomodel in 70-days experiment. Control group animals were provided with water ad libitum throughout the experiment, experimental group animals for the first two weeks were provided with 20% solution of fructose ad libitum instead of water. On the 15th day, experimental group animals (average body weight 257±8 g) were injected abdominally with streptozotocin (STZ) in dosage 40 mg/kg of body weight. For the next three weeks on the 22nd, 28th and 36th days, glucose level in blood taken from the tail vein was measured using portable electrochemical glucometer. On the 37th day animals with blood glucose level 11.0 mmol/L or higher were included in experimental group for further research. On the 44th and 60th day control measurements of glucose level were conducted. On the 70th day animals were taken out of experiment by decapitation under ether anesthesia. The concentration of glucose, glycosylated hemoglobin, triglycerides, cholesterine, HLD and LDL were measured in blood serum. Additionally anxiety level of animals was evaluated before and after STZ injection using Elevated plusmaze. The comparison of physical fatigue of control and experimental groups was performed using treadmill. On the 37th day blood glucose concentration of control group animals was 6.6±0.4 mmol/L. 33% of animals (13 of 40) with glucose level 11.0 mmol/L or higher formed the experimental group (average glucose level 16.2±1.3 mmol/L), other 27 rats had normal glucose level. The anxiety level of diabetic rats was higher than in control group. Diabetic rats showed significantly lower physical fatigue than control rats. On the 44th and 60th day of experiment glucose level in experimental rats from group 2 (15.5±1.4 и 14.8±1.2 mmol/L) was significantly higher than of control animals (7.0±0.5 и 6.8±0.3 mmol/L). Glycated hemoglobin level in blood serum of diabetic group (7.2±0.7%) was significantly higher than of control group (3.3±0.2%). This proves the progression of stable long-term hyperglycemia. According to results represented model can be used for initial experimental evaluation of tested antidiabetic biologically active substances.
Mental Stress from Animal Experiments: a Survey with Korean Researchers.
Kang, Minji; Han, AhRam; Kim, Da-Eun; Seidle, Troy; Lim, Kyung-Min; Bae, SeungJin
2018-01-01
Animal experiments have been widely conducted in the life sciences for more than a century, and have long been a subject of ethical and societal controversy due to the deliberate infliction of harm upon sentient animals. However, the harmful use of animals may also negatively impact the mental health of researchers themselves. We sought to evaluate the anxiety level of researchers engaged in animal use to analyse the mental stress from animal testing. The State Anxiety Scale of the State-Trait Anxiety Inventory (STAI) was used to evaluate how researchers feel when they conduct animal, as opposed to non-animal, based experiments (95 non-animal and 98 animal testing researchers). The Trait Anxiety Scale of STAI was employed to measure proneness to anxiety, namely the base trait of the researchers. Additionally, the information on sex, age, education, income, and total working periods was collected. While the Trait Anxiety scores were comparable (41.5 ± 10.9 versus 42.9 ± 10.1, p = 0.3682, t- test), the State Anxiety scores were statistically significantly higher for animal users than non-animal users (45.1 ± 10.7 versus 41.3 ± 9.4, p = 0.011). This trend was consistent for both male and female. Notably, younger animal testers (≤ 30 years of age) with less work experience (≤ 2 years) and lower income level (≤ 27,000 USD) exhibited higher anxiety scores, whereas these factors did not affect the anxiety level of non-animal users. The present study demonstrated that participation in animal experiments can negatively impact the mental health of researchers.
Cardiovascular system simulation in biomedical engineering education.
NASA Technical Reports Server (NTRS)
Rideout, V. C.
1972-01-01
Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.
Monakhova, Yulia B; Fareed, Jawed; Yao, Yiming; Diehl, Bernd W K
2018-05-10
Nuclear magnetic resonance (NMR) spectroscopy is regarded as one of the most powerful and versatile analytical approaches to assure the quality of heparin preparations. In particular, it was recently demonstrated that by using 1 H NMR coupled with chemometrics heparin and low molecular weight heparin (LMWH) samples derived from three major animal species (porcine, ovine and bovine) can be differentiated [Y.B. Monakhova et al. J. Pharm. Anal. 149 (2018) 114-119]. In this study, significant improvement of existing chemometric models was achieved by switching to 2D NMR experiments (heteronuclear multiple-quantum correlation (HMQC) and diffusion-ordered spectroscopy (DOSY)). Two representative data sets (sixty-nine heparin and twenty-two LMWH) belonged to different batches and distributed by different commercial companies were investigated. A trend for animal species differentiation was observed in the principal component analysis (PCA) score plot built based on the DOSY data. A superior model was constructed using HMQC experiments, where individual heparin (LMWH) clusters as well as their blends were clearly differentiated. The predictive power of different classification methods as well as unsupervised techniques (independent components analysis, ICA) clearly proved applicability of the model for routine heparin and LMWH analysis. The switch from 1D to 2D NMR techniques provides a wealth of additional information, which is beneficial for multivariate modeling of NMR spectroscopic data for heparin preparations. Copyright © 2018 Elsevier B.V. All rights reserved.
Thurnheer, T; Giertsen, E; Gmür, R; Guggenheim, B
2008-09-01
Common belief suggests that starch is less cariogenic than sugar; however, the related literature is quite controversial. We aimed to compare cariogenic and microbiological effects of soluble starch in both a standard animal model and an oral biofilm system, and to assess the possible substitution of the animal model. Six-species biofilms were grown anaerobically on enamel discs in saliva and medium with glucose/sucrose, starch (average molecular weight of 5000, average polymerization grade of 31), or mixtures thereof. After 64.5 h of biofilm formation, the microbiota were quantitated by cultivation and demineralization was measured by quantitative light-induced fluorescence. To assess caries incidence in rats, the same microbiota as in the biofilm experiments were applied. The animals were fed diets containing either glucose, glucose/sucrose, glucose/sucrose/starch or starch alone. Results with both models show that demineralization was significantly smaller with starch than sucrose. The data demonstrate that soluble starch is substantially less cariogenic than glucose/sucrose. By leading to the same scientific evidence as its in vivo counterpart, the described in vitro biofilm system provides an interesting and valuable tool in the quest to reduce experimentation with animals.
Wu, Yingcheng; Xu, Ran; Jia, Keren; Shi, Hui
2017-01-01
Most recently, an emerging theme in the field of tumor immunology predominates: chimeric antigen receptor (CAR) therapy in treating solid tumors. The number of related preclinical trials was surging. However, an evaluation of the effects of preclinical studies remained absent. Hence, a meta-analysis was conducted on the efficacy of CAR in animal models for solid tumors. The authors searched PubMed/Medline, Embase, and Google scholar up to April 2017. HR for survival was extracted based on the survival curve. The authors used fixed effect models to combine the results of all the trials. Heterogeneity was assessed by I-square statistic. Quality assessment was conducted following the Stroke Therapy Academic Industry Roundtable standard. Publication bias was assessed using Egger's test. Eleven trials were included, including 54 experiments with a total of 362 animals involved. CAR immunotherapy significantly improved the survival of animals (HR: 0.25, 95% CI: 0.13-0.37, P < 0.001). The quality assessment revealed that no study reported whether allocation concealment and blinded outcome assessment were conducted, and only five studies implemented randomization. This meta-analysis indicated that CAR therapy may be a potential clinical strategy in treating solid tumors.
[Animal experimentation in Israel].
Epstein, Yoram; Leshem, Micah
2002-04-01
In 1994 the Israeli parliament (Knesset) amended the Cruelty to Animals Act to regulate the use of experimental animals. Accordingly, animal experiments can only be carried out for the purposes of promoting health and medical science, reducing suffering, advancing scientific research, testing or production of materials and products (excluding cosmetics and cleaning products) and education. Animal experiments are only permitted if alternative methods are not possible. The National Board for Animal Experimentation was established to implement the law. Its members are drawn from government ministries, representatives of doctors, veterinarians, and industry organizations, animal rights groups, and academia. In order to carry out an animal experiment, the institution, researchers involved, and the specific experiment, all require approval by the Board. To date the Board has approved some 35 institutions, about half are public institutions (universities, hospitals and colleges) and the rest industrial firms in biotechnology and pharmaceutics. In 2000, 250,000 animals were used in research, 85% were rodents, 11% fowls, 1,000 other farm animals, 350 dogs and cats, and 39 monkeys. Academic institutions used 74% of the animals and industry the remainder. We also present summarized data on the use of animals in research in other countries.
NASDA aquatic animal experiment facilities for Space Shuttle and ISS.
Uchida, Satoko; Masukawa, Mitsuyo; Kamigaichi, Shigeki
2002-01-01
National Space Development Agency of Japan (NASDA) has developed aquatic animal experiment facilities for NASA Space Shuttle use. Vestibular Function Experiment Unit (VFEU) was firstly designed and developed for physiological research using carp in Spacelab-J (SL-J, STS-47) mission. It was modified as Aquatic Animal Experiment Unit (AAEU) to accommodate small aquatic animals, such as medaka and newt, for second International Microgravity Laboratory (IML-2, STS-65) mission. Then, VFEU was improved to accommodate marine fish and to perform neurobiological experiment for Neurolab (STS-90) and STS-95 missions. We have also developed and used water purification system which was adapted to each facility. Based on these experiences of Space Shuttle missions, we are studying to develop advanced aquatic animal experiment facility for both Space Shuttle and International Space Station (ISS). c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Kellum, John A; Song, Mingchen; Venkataraman, Ramesh
2004-03-01
Previous studies have shown that inflammatory mediators can be removed from the circulation with hemofiltration and that adsorption plays an important role. Because adsorptive capacity of hollow-fiber dialyzers is limited, we sought to determine whether hemoadsorption using high surface area beads would result in greater mediator removal and improved survival in experimental sepsis. Randomized controlled laboratory experiment. University laboratory. Sixty-six adult Sprague-Dawley rats. We conducted two ex vivo and two in vivo experiments. For in vivo experiments, we administered Escherichia coli endotoxin (20 mg/kg) by intravenous infusion and then randomized each animal to receive either hemoadsorption or a sham circuit for 4 hrs. Hemoadsorption was performed for 4 hrs using an arterial-venous circuit and a CytoSorb cartridge containing 10 g of polystyrene divinyl benzene copolymer beads with a biocompatible polyvinylpyrrolidone coating. Survival time was measured to a maximum of 12 hrs. In a separate set of experiments, we studied 12 animals using the same protocol except that we killed all animals at 4 hrs and removed standardized sections of liver for analysis of nuclear factor-kappaB DNA binding. Mean survival time among hemoadsorption-treated animals was 629+/-114 vs. 518+/-120 mins for sham-treated animals (p <.01). Overall survival (defined at 12 hrs) was also significantly better in the hemoadsorption group, seven of 20 vs. one of 20 (p <.05). Plasma interleukin-6 and interleukin-10 concentrations and liver nuclear factor-kappaB DNA binding were significantly reduced by hemoadsorption. Ex vivo experiments showed no endotoxin adsorption but strengthened our in vivo observations by showing rapid adsorption of tumor necrosis factor, interleukin-6, and interleukin-10. Hemoadsorption was associated with reduced inflammation and improved survival in this murine model of septic shock.
Kirschvink, Joseph L.; Winklhofer, Michael; Walker, Michael M.
2010-01-01
The first demonstrations of magnetic effects on the behaviour of migratory birds and homing pigeons in laboratory and field experiments, respectively, provided evidence for the longstanding hypothesis that animals such as birds that migrate and home over long distances would benefit from possession of a magnetic sense. Subsequent identification of at least two plausible biophysical mechanisms for magnetoreception in animals, one based on biogenic magnetite and another on radical-pair biochemical reactions, led to major efforts over recent decades to test predictions of the two models, as well as efforts to understand the ultrastructure and function of the possible magnetoreceptor cells. Unfortunately, progress in understanding the magnetic sense has been challenged by: (i) the availability of a relatively small number of techniques for analysing behavioural responses to magnetic fields by animals; (ii) difficulty in achieving reproducible results using the techniques; and (iii) difficulty in development and implementation of new techniques that might bring greater experimental power. As a consequence, laboratory and field techniques used to study the magnetic sense today remain substantially unchanged, despite the huge developments in technology and instrumentation since the techniques were developed in the 1950s. New methods developed for behavioural study of the magnetic sense over the last 30 years include the use of laboratory conditioning techniques and tracking devices based on transmission of radio signals to and from satellites. Here we consider methodological developments in the study of the magnetic sense and present suggestions for increasing the reproducibility and ease of interpretation of experimental studies. We recommend that future experiments invest more effort in automating control of experiments and data capture, control of stimulation and full blinding of experiments in the rare cases where automation is impossible. We also propose new experiments to confirm whether or not animals can detect magnetic fields using the radical-pair effect together with an alternate hypothesis that may explain the dependence on light of responses by animals to magnetic field stimuli. PMID:20071390
Checa, Sara; Prendergast, Patrick J; Duda, Georg N
2011-04-29
Inter-species differences in regeneration exist in various levels. One aspect is the dynamics of bone regeneration and healing, e.g. small animals show a faster healing response when compared to large animals. Mechanical as well as biological factors are known to play a key role in the process. However, it remains so far unknown whether different animals follow at all comparable mechano-biological rules during tissue regeneration, and in particular during bone healing. In this study, we investigated whether differences observed in vivo in the dynamics of bone healing between rat and sheep are only due to differences in the animal size or whether these animals have a different mechano-biological response during the healing process. Histological sections from in vivo experiments were compared to in silico predictions of a mechano-biological computer model for the simulation of bone healing. Investigations showed that the healing processes in both animal models occur under significantly different levels of mechanical stimuli within the callus region, which could explain histological observations of early intramembranous ossification at the endosteal side. A species-specific adaptation of a mechano-biological model allowed a qualitative match of model predictions with histological observations. Specifically, when keeping cell activity processes at the same rate, the amount of tissue straining defining favorable mechanical conditions for the formation of bone had to be increased in the large animal model, with respect to the small animal, to achieve a qualitative agreement of model predictions with histological data. These findings illustrate that geometrical (size) differences alone cannot explain the distinctions seen in the histological appearance of secondary bone healing in sheep and rat. It can be stated that significant differences in the mechano-biological regulation of the healing process exist between these species. Future investigations should aim towards understanding whether these differences are due to differences in cell behavior, material properties of the newly formed tissues within the callus and/or differences in response to the mechanical environment. Copyright © 2011 Elsevier Ltd. All rights reserved.
Animal and non-animal experiments in nanotechnology - the results of a critical literature survey.
Sauer, Ursula G
2009-01-01
A literature survey funded by the Foundation Animalfree Research was performed to obtain an overview on animal experiments in nanotechnology. Scientific articles from Germany, France, the United Kingdom, Italy, the Netherlands and Switzerland published between 2004 and 2007 were collected. A total of 164 articles was retrieved covering in vivo nanotechnological research. The majority of animal experiments were conducted in "nanomedicine", i.e. nanotechnology in the health care area, to study targeted drug, vaccine or gene delivery. Further areas of research relate to nanotechnology-based imaging technologies, the toxicity of nanomaterials, tissue engineering for regenerative treatments, and magnetic tumour thermotherapy. Many experiments were classified as moderately and even severely distressful to the animals. Due to the significance of the scientific topics pursued, the possible scientific benefit of the research depicted in the articles is also assigned to be moderate to high. Nevertheless, it has to be asked whether such animal experiments are truly the only means to answer the scientific questions addressed in nanotechnology. An overview on non-animal test methods used in nanotechnological research revealed a broad spectrum of methodologies applied in a broad spectrum of scientific areas, including those for which animal experiments are being performed. Explicit incentives to avoid animal experiments in nanotechnology currently can only be found in the area of nanotoxicology, but not in the area of nanomedicine. From the point of view of animal welfare, not least because of the new technologies that arise due to nanotechnology, it is time for a paradigm change both in fundamental and applied biomedical research to found research strategies on non-animal test methods.
Modeling liver physiology: combining fractals, imaging and animation.
Lin, Debbie W; Johnson, Scott; Hunt, C Anthony
2004-01-01
Physiological modeling of vascular and microvascular networks in several key human organ systems is critical for a deeper understanding of pharmacology and the effect of pharmacotherapies on disease. Like the lung and the kidney, the morphology of its vascular and microvascular system plays a major role in its functional capability. To understand liver function in absorption and metabolism of food and drugs, one must examine the morphology and physiology at both higher and lower level liver function. We have developed validated virtualized dynamic three dimensional (3D) models of liver secondary units and primary units by combining a number of different methods: three-dimensional rendering, fractals, and animation. We have simulated particle dynamics in the liver secondary unit. The resulting models are suitable for use in helping researchers easily visualize and gain intuition on results of in silico liver experiments.
Animal models for studying homeopathy and high dilutions: conceptual critical review.
Bonamin, Leoni Villano; Endler, Peter Christian
2010-01-01
This is a systematic review of the animal models used in studies of high dilutions. The objectives are to analyze methodological quality of papers and reported results, and to highlight key conceptual aspects of high dilution to suggest clues concerning putative mechanisms of action. Papers for inclusion were identified systematically, from the Pubmed-Medline database, using 'Homeopathy' and 'Animal' as keywords. Only original full papers in English published between January 1999 and June 2009 were included, reviews, scientific reports, thesis, older papers, papers extracted from Medline using similar keywords, papers about mixed commercial formulas and books were also considered for discussion only. 31 papers describing 33 experiments were identified for the main analysis and a total of 89 items cited. Systematic analysis of the selected papers yielded evidence of some important intrinsic features of high dilution studies performed in animal models: a) methodological quality was generally adequate, some aspects could be improved; b) convergence between results and materia medica is seen in some studies, pointing toward to the possibility of systematic study of the Similia principle c) both isopathic and Similia models seem useful to understand some complex biological phenomena, such as parasite-host interactions; d) the effects of high dilutions seem to stimulate restoration of a 'stable state', as seen in several experimental models from both descriptive and mathematical points of view. Copyright 2009 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.
Bilateral cochlear implantation in the ferret: A novel animal model for behavioral studies
Hartley, Douglas E.H.; Vongpaisal, Tara; Xu, Jin; Shepherd, Robert K.; King, Andrew J.; Isaiah, Amal
2010-01-01
Bilateral cochlear implantation has recently been introduced with the aim of improving both speech perception in background noise and sound localization. Although evidence suggests that binaural perception is possible with two cochlear implants, results in humans are variable. To explore potential contributing factors to these variable outcomes, we have developed a behavioral animal model of bilateral cochlear implantation in a novel species, the ferret. Although ferrets are ideally suited to psychophysical and physiological assessments of binaural hearing, cochlear implantation has not been previously described in this species. This paper describes the techniques of deafening with aminoglycoside administration, surgical implantation of an intracochlear array and chronic intracochlear electrical stimulation with monitoring for electrode integrity and efficacy of stimulation. Experiments have been presented elsewhere to show that the model can be used to study behavioral and electrophysiological measures of binaural hearing in chronically implanted animals. This paper demonstrates that cochlear implantation and chronic intracochlear electrical stimulation are both safe and effective in ferrets, opening up the possibility of using this model to study potential protective effects of bilateral cochlear implantation on the developing central auditory pathway. Since ferrets can be used to assess psychophysical and physiological aspects of hearing along with the structure of the auditory pathway in the same animals, we anticipate that this model will help develop novel neuroprosthetic therapies for use in humans. PMID:20576507
Development of an Aotus nancymaae Model for Shigella Vaccine Immunogenicity and Efficacy Studies
Gregory, Michael; Lugo-Roman, Luis A.; Galvez Carrillo, Hugo; Tilley, Drake Hamilton; Baldeviano, Christian; Simons, Mark P.; Reynolds, Nathanael D.; Ranallo, Ryan T.; Suvarnapunya, Akamol E.; Venkatesan, Malabi M.; Oaks, Edwin V.
2014-01-01
Several animal models exist to evaluate the immunogenicity and protective efficacy of candidate Shigella vaccines. The two most widely used nonprimate models for vaccine development include a murine pulmonary challenge model and a guinea pig keratoconjunctivitis model. Nonhuman primate models exhibit clinical features and gross and microscopic colonic lesions that mimic those induced in human shigellosis. Challenge models for enterotoxigenic Escherichia coli (ETEC) and Campylobacter spp. have been successfully developed with Aotus nancymaae, and the addition of a Shigella-Aotus challenge model would facilitate the testing of combination vaccines. A series of experiments were designed to identify the dose of Shigella flexneri 2a strain 2457T that induces an attack rate of 75% in the Aotus monkey. After primary challenge, the dose required to induce an attack rate of 75% was calculated to be 1 × 1011 CFU. Shigella-specific immune responses were low after primary challenge and subsequently boosted upon rechallenge. However, preexisting immunity derived from the primary challenge was insufficient to protect against the homologous Shigella serotype. A successive study in A. nancymaae evaluated the ability of multiple oral immunizations with live-attenuated Shigella vaccine strain SC602 to protect against challenge. After three oral immunizations, animals were challenged with S. flexneri 2a 2457T. A 70% attack rate was demonstrated in control animals, whereas animals immunized with vaccine strain SC602 were protected from challenge (efficacy of 80%; P = 0.05). The overall study results indicate that the Shigella-Aotus nancymaae challenge model may be a valuable tool for evaluating vaccine efficacy and investigating immune correlates of protection. PMID:24595138
A rat uterine horn model of genital tract wound healing.
Schlaff, W D; Cooley, B C; Shen, W; Gittlesohn, A M; Rock, J A
1987-11-01
A rat uterine horn model of genital tract wound healing is described. Healing was reflected by acquisition of strength and elasticity, measured by burst strength (BS) and extensibility (EX), respectively. A tensiometer (Instron Corp., Canton, MA) was used to assess these characteristics in castrated and estrogen-supplemented or nonsupplemented animals. While the horn weights (HW), BS, and EX of contralateral horns were not significantly different, the intra-animal variation of HW was 7.2%, BS was 17.7% and EX was 38.2%. In a second experiment, one uterine horn was divided and anastomosed, and the animal given estrogen supplementation or a placebo pellet. Estrogen administration was found to increase BS and EX of anastomosed horns prior to 14 days, but had no beneficial effect at 21 or 42 days. The data suggest that estrogen may be required for optimal early healing of genital tract wounds.
Animates are better remembered than inanimates: further evidence from word and picture stimuli.
Bonin, Patrick; Gelin, Margaux; Bugaiska, Aurélia
2014-04-01
In three experiments, we showed that animate entities are remembered better than inanimate entities. Experiment 1 revealed better recall for words denoting animate than inanimate items. Experiment 2 replicated this finding with the use of pictures. In Experiment 3, we found better recognition for animate than for inanimate words. Importantly, we also found a higher recall rate of “remember” than of “know” responses for animates, whereas the recall rates were similar for the two types of responses for inanimate items. This finding suggests that animacy enhances not only the quantity but also the quality of memory traces, through the recall of contextual details of previous experiences (i.e., episodic memory). Finally, in Experiment 4, we tested whether the animacy effect was due to animate items being richer in terms of sensory features than inanimate items. The findings provide further evidence for the functionalist view of memory championed by Nairne and coworkers (Nairne, 2010; Nairne & Pandeirada, Cognitive Psychology, 61 :1–22, 2010a, 2010b).
Schwabe, C W
1986-01-01
The importance of animal experimentation to human and animal health is not well understood by an increasingly articulate segment of the public. This could have very unfortunate consequences for man and his domestic animals. Even veterinarians and physicians are not as conversant as they need be about the great extent to which advances in human health have depended upon animal observations and experiments. Some believe that resort to "animal models" of biomedical phenomena, including diseases--a comparative or analogical approach to medical studies--is a relatively recent event. Even medical historians often treat these subjects as occasionally recurring aberrations which began with the Greeks, thus largely overlooking the historical meaning and continuing importance of "one medicine" irrespective of species. In fact, comparative medicine has probably been basic to medical progress ever since the dawn of a medical science. Recent research indicates that this approach to biomedical mysteries began to evolve in the minds of Egypt's healer-priests long before Aristotle and the later Alexandrian Greeks made the whole process explicit. Here we examine the origins of what were possibly the first two biomedical theories profounded from inferences based upon dissections, confirmed in at least one instance by experiment, and then applied to medical practice. PMID:3530413
Biomedical engineering support. Final report, June 15, 1971--June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolff, W.J.; Sandquist, G.; Olsen, D.B.
On June 15, 1971 the Institute for Biomedical Engineering at the University of Utah contracted with the USAEC to provide biomedical support for an Artificial Heart Program. The goal of the program was to conceive, design, construct and test a prototype artificial heart system powered by an implantable radioisotope heat source. The system would serve as a total artificial heart for animal experiments and for studies directed at developing a total heart replacement system for humans. The major responsibilities of the Institute during the eight year contract period were to design, construct and test all blood handling components of themore » system and prove in vivo accommodation, performance and adequacy of the system in experimental animals. Upon completion of development of the Implantable Version of the Bench Model Blood Pump, a long series of comprehensive in vitro and in vivo experiments were conducted. In vivo experiments with the system conducted in calves demonstrated the general accommodation, adequate performance and good capacity to sustain the calf as a heart model for up to 36 days. During the more successful in vivo experiments the implanted calves were able to eat, drink, stand, exercise on a treadmill, and exhibited normal blood chemistry and pulmonary function.« less
Electrical resistivity measurements in the mammalian cochlea after neural degeneration.
Micco, Alan G; Richter, Claus-Peter
2006-08-01
In the present series of experiments, the effect of neural degeneration on the cochlear structure electrical resistivities was evaluated to test if it alters the current flow in the cochlea and if increased current levels are needed to stimulate the impaired cochlea. In cochlear implants, frequency information is encoded in part by stimulating discrete populations of spiral ganglion cells along the cochlea. However, electrical properties of the cochlear structures result in shunting of the current away from the auditory neurons. This consumes energy, makes cochlear implants less efficient, and drastically reduces battery life. Models of the electrically stimulated cochlea serve to make predictions on current paths using modified and improved cochlear implant electrodes. However, one of the model's shortcomings is that most of the values for tissue impedances are not direct measurements. They are derived from bulk impedance measurements, which are fitted to lumped-element models. The four-electrode reflection-coefficient technique was used to measure resistivities in the gerbil cochlea. In vivo and in vitro (the hemicochlea) models were used. Measurements were made in normal and in deafened animals. Cochlear damage was induced by neomycin injection into the animals' middle ears. Neural degeneration was allowed to occur over 2 months before performing the measurements in the deafened animals. The resistivity values in deafened animals were smaller than in the normal-hearing animals, thus altering the current flow within the cochlea. Resistivity changes and subsequent changes in current path should be considered in future designs of cochlear implants.
Use of three-dimensional computer graphic animation to illustrate cleft lip and palate surgery.
Cutting, C; Oliker, A; Haring, J; Dayan, J; Smith, D
2002-01-01
Three-dimensional (3D) computer animation is not commonly used to illustrate surgical techniques. This article describes the surgery-specific processes that were required to produce animations to teach cleft lip and palate surgery. Three-dimensional models were created using CT scans of two Chinese children with unrepaired clefts (one unilateral and one bilateral). We programmed several custom software tools, including an incision tool, a forceps tool, and a fat tool. Three-dimensional animation was found to be particularly useful for illustrating surgical concepts. Positioning the virtual "camera" made it possible to view the anatomy from angles that are impossible to obtain with a real camera. Transparency allows the underlying anatomy to be seen during surgical repair while maintaining a view of the overlaying tissue relationships. Finally, the representation of motion allows modeling of anatomical mechanics that cannot be done with static illustrations. The animations presented in this article can be viewed on-line at http://www.smiletrain.org/programs/virtual_surgery2.htm. Sophisticated surgical procedures are clarified with the use of 3D animation software and customized software tools. The next step in the development of this technology is the creation of interactive simulators that recreate the experience of surgery in a safe, digital environment. Copyright 2003 Wiley-Liss, Inc.
A Materials Approach to Collective Behavior
NASA Astrophysics Data System (ADS)
Ouellette, Nicholas
Aggregations of social animals, such as flocks of birds, schools of fish, or swarms of insects, are beautiful, natural examples of self-organized behavior far from equilibrium. Understanding these systems, however, has proved to be quite challenging. Determining the rules of interaction from empirical measurements of animals is a difficult inverse problem. Thus, researchers tend to focus on the macroscopic behavior of the group instead. Because so many of these systems display large-scale ordered patterns, it has become the norm in modeling animal aggregations to focus on this order. Large-scale patterns alone, however, are not sufficient information to characterize all the dynamics of animal aggregations, and do not provide stringent enough conditions to benchmark models. Instead, I will argue that we should borrow ideas from materials characterization to describe the macroscopic state of an animal group in terms of its response to external stimuli. I will illustrate these ideas with recent experiments on mating swarms of the non-biting midge Chironomus riparius, where we have developed methods to apply controlled perturbations and measure the detailed swarm response. Our results allow us to begin to describe swarms in terms of state variables and response functions, bringing them into the purview of theories of active matter. These results also point towards new, more detailed ways of characterizing and hopefully comparing collective behavior in animal groups.
Frauenknecht, Katrin; Katzav, Aviva; Weiss Lavi, Ronen; Sabag, Avishag; Otten, Susanne; Chapman, Joab; Sommer, Clemens J
2015-08-01
The antiphospholipid syndrome (APS) is an autoimmune disease characterized by high titres of auto-antibodies (aPL) leading to thrombosis and consequent infarcts. However, many affected patients develop neurological symptoms in the absence of stroke. Similarly, in a mouse model of this disease (eAPS), animals consistently develop behavioural abnormalities despite lack of ischemic brain injury. Therefore, the present study was designed to identify structural alterations of hippocampal neurones underlying the neurological symptoms in eAPS. Adult female Balb/C mice were subjected to either induction of eAPS by immunization with β2-Glycoprotein 1 or to a control group. After sixteen weeks animals underwent behavioural and cognitive testing using Staircase test (experiment 1 and 2) and Y-maze alternation test (experiment 1) and were tested for serum aPL levels (both experiments). Animals of experiment 1 (n = 7/group) were used for hippocampal neurone analysis using Golgi-Cox staining. Animals of experiment 2 (n = 7/group) were used to analyse molecular markers of total dendritic integrity (MAP2), presynaptic plasticity (synaptobrevin 2/VAMP2) and dendritic spines (synaptopodin) using immunohistochemistry. eAPS mice developed increased aPL titres and presented with abnormal behaviour and impaired short term memory. Further, they revealed a reduction of dendritic complexity of hippocampal CA1 neurones as reflected by decreased dendritic length, arborization and spine density, respectively. Additional decrease of the spine-associated protein expression of Synaptopodin points to dendritic spines as major targets in the pathological process. Reduction of hippocampal dendritic complexity may represent the structural basis for the behavioural and cognitive abnormalities of eAPS mice. © 2014 British Neuropathological Society.
Lewis, Debra A; Ding, Yong Hong; Dai, Daying; Kadirvel, Ramanathan; Danielson, Mark A; Cloft, Harry J; Kallmes, David F
2008-01-01
Background and Purpose Elastase-induced aneurysms in rabbits have been proposed as a useful preclinical tool for device development. The object of this study is to report rates of morbidity and mortality associated with creation and embolization of the elastase-induced rabbit aneurysm, and to assess the impact of operator experience on these rates. Methods Elastase-induced model aneurysms were created in New Zealand White rabbits (n=700). One neuroradiologist/investigator, naïve to the aneurysm creation procedure at the outset of the experiments, performed all surgeries. All morbidity and deaths related to aneurysm creation (n=700) and embolization procedures (n=529) were categorized into acute and chronic deaths. Data were analyzed with single regression analysis and ANOVA. To assess the impact of increasing operator experience, the number of animals was broken into 50 animal increments. Results There were 121 (17%) deaths among 700 subjects. Among 700 aneurysm creation procedures, 59 deaths (8.4%) were noted. Among 529 aneurysm embolization procedures, 43 deaths (8.1%) were noted. Nineteen additional deaths (2.7% of 700 subjects) were unrelated to procedures. Simple regression indicated mortality associated with procedures diminished with increasing operator experience (R2=0.38; p=0.0180) and that for each 50 rabbit increment mortality is reduced on average by 0.6 percent. Conclusions Mortality rates of approximately 8% are associated with both experimental aneurysm creation and with embolization in the rabbit, elastase-induced aneurysm model. Increasing operator experience is inversely correlated with mortality and the age of the rabbit is positively associated with morbidity. PMID:19001536
Chowdhury, Tara Gunkali; Chen, Yi-Wen; Aoki, Chiye
2015-01-01
Anorexia nervosa (AN) is a psychiatric illness characterized by excessively restricted caloric intake and abnormally high levels of physical activity. A challenging illness to treat, due to the lack of understanding of the underlying neurobiology, AN has the highest mortality rate among psychiatric illnesses. To address this need, neuroscientists are using an animal model to study how neural circuits may contribute toward vulnerability to AN and may be affected by AN. Activity-based anorexia (ABA) is a bio-behavioral phenomenon described in rodents that models the key symptoms of anorexia nervosa. When rodents with free access to voluntary exercise on a running wheel experience food restriction, they become hyperactive – running more than animals with free access to food. Here, we describe the procedures by which ABA is induced in adolescent female C57BL/6 mice. On postnatal day 36 (P36), the animal is housed with access to voluntary exercise on a running wheel. After 4 days of acclimation to the running wheel, on P40, all food is removed from the cage. For the next 3 days, food is returned to the cage (allowing animals free food access) for 2 hr daily. After the fourth day of food restriction, free access to food is returned and the running wheel is removed from the cage to allow the animals to recover. Continuous multi-day analysis of running wheel activity shows that mice become hyperactive within 24 hr following the onset of food restriction. The mice run even during the limited time during which they have access to food. Additionally, the circadian pattern of wheel running becomes disrupted by the experience of food restriction. We have been able to correlate neurobiological changes with various aspects of the animals’ wheel running behavior to implicate particular brain regions and neurochemical changes with resilience and vulnerability to food-restriction induced hyperactivity. PMID:26555618
Maccari, Stefania; Polese, Daniela; Reynaert, Marie-Line; Amici, Tiziana; Morley-Fletcher, Sara; Fagioli, Francesca
2017-02-07
In mammals, early adverse experiences, including mother-pup interactions, shape the response of an individual to chronic stress or to stress-related diseases during adult life. This has led to the elaboration of the theory of the developmental origins of health and disease, in particular adult diseases such as cardiovascular and metabolic disorders. In addition, in humans, as stated by Massimo Fagioli's Human Birth Theory, birth is healthy and equal for all individuals, so that mental illness develop exclusively in the postnatal period because of the quality of the relationship in the first year of life. Thus, this review focuses on the importance of programming during the early developmental period on the manifestation of adult diseases in both animal models and humans. Considering the obvious differences between animals and humans we cannot systematically move from animal models to humans. Consequently, in the first part of this review, we will discuss how animal models can be used to dissect the influence of adverse events occurring during the prenatal and postnatal periods on the developmental trajectories of the offspring, and in the second part, we will discuss the role of postnatal critical periods on the development of mental diseases in humans. Epigenetic mechanisms that cause reversible modifications in gene expression, driving the development of a pathological phenotype in response to a negative early postnatal environment, may lie at the core of this programming, thereby providing potential new therapeutic targets. The concept of the Human Birth Theory leads to a comprehension of the mental illness as a pathology of the human relationship immediately after birth and during the first year of life. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Pérez de Val, Bernat; López-Soria, Sergio; Nofrarías, Miquel; Martín, Maite; Vordermeier, H. Martin; Villarreal-Ramos, Bernardo; Romera, Nadine; Escobar, Manel; Solanes, David; Cardona, Pere-Joan; Domingo, Mariano
2011-01-01
Caprine tuberculosis (TB) has increased in recent years, highlighting the need to address the problem the infection poses in goats. Moreover, goats may represent a cheaper alternative for testing of prototype vaccines in large ruminants and humans. With this aim, a Mycobacterium caprae infection model has been developed in goats. Eleven 6-month-old goats were infected by the endobronchial route with 1.5 × 103 CFU, and two other goats were kept as noninfected controls. The animals were monitored for clinical and immunological parameters throughout the experiment. After 14 weeks, the goats were euthanized, and detailed postmortem analysis of lung lesions was performed by multidetector computed tomography (MDCT) and direct observation. The respiratory lymph nodes were also evaluated and cultured for bacteriological analysis. All infected animals were positive in a single intradermal comparative cervical tuberculin (SICCT) test at 12 weeks postinfection (p.i.). Gamma interferon (IFN-γ) antigen-specific responses were detected from 4 weeks p.i. until the end of the experiment. The humoral response to MPB83 was especially strong at 14 weeks p.i. (13 days after SICCT boost). All infected animals presented severe TB lesions in the lungs and associated lymph nodes. M. caprae was recovered from pulmonary lymph nodes in all inoculated goats. MDCT allowed a precise quantitative measure of TB lesions. Lesions in goats induced by M. caprae appeared to be more severe than those induced in cattle by M. bovis over a similar period of time. The present work proposes a reliable new experimental animal model for a better understanding of caprine tuberculosis and future development of vaccine trials in this and other species. PMID:21880849
West Nile virus surveillance in Europe: moving towards an integrated animal-human-vector approach
Gossner, Céline M; Marrama, Laurence; Carson, Marianne; Allerberger, Franz; Calistri, Paolo; Dilaveris, Dimitrios; Lecollinet, Sylvie; Morgan, Dilys; Nowotny, Norbert; Paty, Marie-Claire; Pervanidou, Danai; Rizzo, Caterina; Roberts, Helen; Schmoll, Friedrich; Van Bortel, Wim; Gervelmeyer, Andrea
2017-01-01
This article uses the experience of five European countries to review the integrated approaches (human, animal and vector) for surveillance and monitoring of West Nile virus (WNV) at national and European levels. The epidemiological situation of West Nile fever in Europe is heterogeneous. No model of surveillance and monitoring fits all, hence this article merely encourages countries to implement the integrated approach that meets their needs. Integration of surveillance and monitoring activities conducted by the public health authorities, the animal health authorities and the authorities in charge of vector surveillance and control should improve efficiency and save resources by implementing targeted measures. The creation of a formal interagency working group is identified as a crucial step towards integration. Blood safety is a key incentive for public health authorities to allocate sufficient resources for WNV surveillance, while the facts that an effective vaccine is available for horses and that most infected animals remain asymptomatic make the disease a lesser priority for animal health authorities. The examples described here can support other European countries wishing to strengthen their WNV surveillance or preparedness, and also serve as a model for surveillance and monitoring of other (vector-borne) zoonotic infections. PMID:28494844
Kaufman, Michael G.; Pelz-Stelinski, Kirsten S.; Yee, Donald A.; Juliano, Steven A.; Ostrom, Peggy H.; Walker, Edward D.
2010-01-01
1. Detritus that forms the basis for mosquito production in tree hole ecosystems can vary in type and timing of input. We investigated the contributions of plant- and animal-derived detritus to the biomass of Aedes triseriatus (Say) pupae and adults by using stable isotope (15N and 13C) techniques in lab experiments and field collections. 2. Lab-reared mosquito isotope values reflected their detrital resource base, providing a clear distinction between mosquitoes reared on plant or animal detritus. 3. Isotope values from field-collected pupae were intermediate between what would be expected if a single (either plant or animal) detrital source dominated the resource base. However, mosquito isotope values clustered most closely with plant-derived values, and a mixed feeding model analysis indicated tree floral parts contributed approximately 80% of mosquito biomass. The mixed model also indicated that animal detritus contributed approximately 30% of mosquito tissue nitrogen. 4. Pupae collected later in the season generally had isotope values that were consistent with an increased contribution from animal detritus, suggesting this resource became more nutritionally important for mosquitoes as plant inputs declined over the summer. PMID:21132121
Hooijmans, Carlijn R; de Vries, Rob; Leenaars, Marlies; Curfs, Jo; Ritskes-Hoitinga, Merel
2011-03-01
Several studies have demonstrated serious omissions in the way research that use animals is reported. In order to improve the quality of reporting of animal experiments, the Animals in research: reporting in vivo experiments (ARRIVE) Guidelines were published in the British Journal of Pharmacology in August 2010. However, not only the quality of reporting of completed animal studies needs to be improved, but also the design and execution of new experiments. With both these goals in mind, we published the Gold Standard Publication Checklist (GSPC) in May 2010, a few months before the ARRIVE guidelines appeared. In this letter, we compare the GSPC checklist with the ARRIVE Guidelines. The GSPC describes certain items in more detail, which makes it both easier to use when designing and conducting an experiment and particularly suitable for making systematic reviews of animal studies more feasible. In order to improve not only the reporting but also the planning, design, execution and thereby, the scientific quality of animal experiments, we strongly recommend to all scientists involved in animal experimentation and to editors of journals publishing animal studies to take a closer look at the contents of both the ARRIVE guidelines and GSPC, and select the set of guidelines which is most appropriate for their particular situation. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Erbe, C
2000-07-01
This article examines the masking by anthropogenic noise of beluga whale calls. Results from human masking experiments and a software backpropagation neural network are compared to the performance of a trained beluga whale. The goal was to find an accurate, reliable, and fast model to replace lengthy and expensive animal experiments. A beluga call was masked by three types of noise, an icebreaker's bubbler system and propeller noise, and ambient arctic ice-cracking noise. Both the human experiment and the neural network successfully modeled the beluga data in the sense that they classified the noises in the same order from strongest to weakest masking as the whale and with similar call-detection thresholds. The neural network slightly outperformed the humans. Both models were then used to predict the masking of a fourth type of noise, Gaussian white noise. Their prediction ability was judged by returning to the aquarium to measure masked-hearing thresholds of a beluga in white noise. Both models and the whale identified bubbler noise as the strongest masker, followed by ramming, then white noise. Natural ice-cracking noise masked the least. However, the humans and the neural network slightly overpredicted the amount of masking for white noise. This is neglecting individual variation in belugas, because only one animal could be trained. Comparing the human model to the neural network model, the latter has the advantage of objectivity, reproducibility of results, and efficiency, particularly if the interference of a large number of signals and noise is to be examined.
Phantom auditory sensation in rats: an animal model for tinnitus.
Jastreboff, P J; Brennan, J F; Coleman, J K; Sasaki, C T
1988-12-01
In order to measure tinnitus induced by sodium salicylate injections, 84 pigmented rats, distributed among 14 groups in five experiments, were used in a conditioned suppression paradigm. In Experiment 1, all groups were trained with a conditioned stimulus (CS) consisting of the offset of a continuous background noise. One group began salicylate injections before Pavlovian training, a second group started injections after training, and a control group received daily saline injections. Resistance to extinction was profound when injections started before training, but minimal when initiated after training, which suggests that salicylate-induced effects acquired differential conditioned value. In Experiment 2 we mimicked the salicylate treatments by substituting a 7 kHz tone in place of respective injections, resulting in effects equivalent to salicylate-induced behavior. In a third experiment we included a 3 kHz CS, and again replicated the salicylate findings. In Experiment 4 we decreased the motivational level, and the sequential relation between salicylate-induced effects and suppression training was retained. Finally, no salicylate effects emerged when the visual modality was used. These findings support the demonstration of phantom auditory sensations in animals.
Blaze, Jennifer; Roth, Tania L.
2015-01-01
While it is well-known that stress during development and adulthood can confer long-term neurobiological and behavioral consequences, investigators have only recently begun to assess epigenetic modifications associated with these consequences. In this review, we highlight clinical research and work with animal models that provide evidence of the impact of stressful experiences either during the perinatal period or adulthood on DNA methylation and behavior. Additionally, we explore the more controversial concept of transgenerational inheritance, including that associated with preconception stress experienced by the mother or father. Finally, we discuss challenges associated with the idea of transgenerational epigenetics and for the field of epigenetics in general. PMID:25917771
Rodent Auditory Perception: Critical Band Limitations and Plasticity
King, Julia; Insanally, Michele; Jin, Menghan; Martins, Ana Raquel O.; D'amour, James A.; Froemke, Robert C.
2015-01-01
What do animals hear? While it remains challenging to adequately assess sensory perception in animal models, it is important to determine perceptual abilities in model systems to understand how physiological processes and plasticity relate to perception, learning, and cognition. Here we discuss hearing in rodents, reviewing previous and recent behavioral experiments querying acoustic perception in rats and mice, and examining the relation between behavioral data and electrophysiological recordings from the central auditory system. We focus on measurements of critical bands, which are psychoacoustic phenomena that seem to have a neural basis in the functional organization of the cochlea and the inferior colliculus. We then discuss how behavioral training, brain stimulation, and neuropathology impact auditory processing and perception. PMID:25827498
NASA Astrophysics Data System (ADS)
Yang, T. D.; Pei, J. S.; Yang, S. L.; Liu, Z. Q.; Sun, R. L.
Space motion sickness (MS) is one of the most important problems in the field of space medicine. In order to prevent space MS, a new medicine, PMPA, has been prepared by means of synthesizing in our laboratory. The purposes of this study were to set up animal models of PMPA against MS, and to observe its effects on anti-MS, and to prove its function of antagonism to choline. Eight cats, forty rabbits and two hundred and ten rats were selected as animal subjects. The parallel swing stimulus, a method causing the reversal syndromes and tests of anti-choline function were used in our experiments. The results are as follows: (1) The score of MS symptoms in cats with PMPA or scopolamine (SCOP) is significantly lower than that in cats with placebo (p<0.01), while the incidences of efficiency and prevention of PMPA (87.5%, 75%) are higher than those of SCOP (75.0%, 50%) in cats. (2) PMPA of 1.6 mg/kg or 0.8 mg/kg could antagonize the reversal syndromes and repress reversal rotation significantly in rabbits like SCOP in comparison with placebo (p<0.01). (3) PMPA could inhibit tremor evoked by oxotremorine or by nicotine-procaine in rats like SCOP, and play an important role in the antagonism to central M-choline and N-choline receptors. The animal experiments demonstrate that PMPA is an effective medicine against MS with antagonism function to choline.
The occupational physician's point of view: the model of man-made vitreous fibers.
Brochard, P; Pairon, J C; Bignon, J
1994-01-01
This article gives a detailed description of the procedure the occupational physician uses in interpreting the available scientific data to provide useful information for prevention of pulmonary diseases related to man-made mineral fibers, particularly lung cancer and mesothelioma. As it is difficult to reach definite conclusions from human data on the toxicity of specific fibers, an experimental approach is needed. Concerning animal data, we emphasize that adequate inhalation studies are the "gold standard" for extrapolating to humans. However, experiments using intracavitary injection or cells in vitro may represent indicative tests for a possible carcinogenic effect. Such tests should be used to assess the intrinsic carcinogenicity of fibers, but they must be confirmed by adequate inhalation models. Despite the present uncertainties, a proposal is made that could make it possible to classify fibers according to their toxicologic potential, grading them in accordance with physicochemical parameters, in vitro testing, and animal experiments. This procedure may be applicable to nonvitreous fibers and to organic fibers. PMID:7882952
Implementation of ICARE learning model using visualization animation on biotechnology course
NASA Astrophysics Data System (ADS)
Hidayat, Habibi
2017-12-01
ICARE is a learning model that directly ensure the students to actively participate in the learning process using animation media visualization. ICARE have five key elements of learning experience from children and adult that is introduction, connection, application, reflection and extension. The use of Icare system to ensure that participants have opportunity to apply what have been they learned. So that, the message delivered by lecture to students can be understood and recorded by students in a long time. Learning model that was deemed capable of improving learning outcomes and interest to learn in following learning process Biotechnology with applying the ICARE learning model using visualization animation. This learning model have been giving motivation to participate in the learning process and learning outcomes obtained becomes more increased than before. From the results of student learning in subjects Biotechnology by applying the ICARE learning model using Visualization Animation can improving study results of student from the average value of middle test amounted to 70.98 with the percentage of 75% increased value of final test to be 71.57 with the percentage of 68.63%. The interest to learn from students more increasing visits of student activities at each cycle, namely the first cycle obtained average value by 33.5 with enough category. The second cycle is obtained an average value of 36.5 to good category and third cycle the average value of 36.5 with a student activity to good category.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Records and reports concerning experience with animal feeds bearing or containing new animal drugs for which an approved medicated feed mill license... containing new animal drugs for which an approved medicated feed mill license application is in effect...
Cortical representations of communication sounds.
Heiser, Marc A; Cheung, Steven W
2008-10-01
This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.
The case from animal studies for balanced binocular treatment strategies for human amblyopia.
Mitchell, Donald E; Duffy, Kevin R
2014-03-01
Although amblyopia typically manifests itself as a monocular condition, its origin has long been linked to unbalanced neural signals from the two eyes during early postnatal development, a view confirmed by studies conducted on animal models in the last 50 years. Despite recognition of its binocular origin, treatment of amblyopia continues to be dominated by a period of patching of the non-amblyopic eye that necessarily hinders binocular co-operation. This review summarizes evidence from three lines of investigation conducted on an animal model of deprivation amblyopia to support the thesis that treatment of amblyopia should instead focus upon procedures that promote and enhance binocular co-operation. First, experiments with mixed daily visual experience in which episodes of abnormal visual input were pitted against normal binocular exposure revealed that short exposures of the latter offset much longer periods of abnormal input to allow normal development of visual acuity in both eyes. Second, experiments on the use of part-time patching revealed that purposeful introduction of episodes of binocular vision each day could be very beneficial. Periods of binocular exposure that represented 30-50% of the daily visual exposure included with daily occlusion of the non-amblyopic could allow recovery of normal vision in the amblyopic eye. Third, very recent experiments demonstrate that a short 10 day period of total darkness can promote very fast and complete recovery of visual acuity in the amblyopic eye of kittens and may represent an example of a class of artificial environments that have similar beneficial effects. Finally, an approach is described to allow timing of events in kitten and human visual system development to be scaled to optimize the ages for therapeutic interventions. © 2014 The Authors Ophthalmic & Physiological Optics © 2014 The College of Optometrists.
Animal use in pharmacology education and research: The changing scenario
Badyal, Dinesh K.; Desai, Chetna
2014-01-01
The use of animals in research and education dates back to the period when humans started to look for ways to prevent and cure ailments. Most of present day's drug discoveries were possible because of the use of animals in research. The dilemma to continue animal experiments in education and research continues with varied and confusing guidelines. However, the animal use and their handling vary in each laboratory and educational institution. It has been reported that the animals are being subjected to painful procedures in education and training unnecessarily. The extensive use of animals in toxicity studies and testing dermatological preparations has raised concerns about the ways animals are sacrificed for these “irrelevant experiments”. On the other side of the coin are scientists who advocate the relevant and judicious use of animals in research so that new discoveries can continue. In this review, we discuss the evolution of the use of animals in education and research and how these have been affected in recent times owing to concerns from animal lovers and government regulations. A number of computer simulation and other models have been recommended for use as alternatives to use of animals for pharmacology education. In this review we also discuss some of these alternatives. PMID:24987170
McNamara, J P
2015-12-01
A major role of the dairy cow is to convert low-quality plant materials into high-quality protein and other nutrients for humans. We must select and manage cows with the goal of having animals of the greatest efficiency matched to their environment. We have increased efficiency tremendously over the years, yet the variation in productive and reproductive efficiency among animals is still large. In part, this is because of a lack of full integration of genetic, nutritional, and reproductive biology into management decisions. However, integration across these disciplines is increasing as the biological research findings show specific control points at which genetics, nutrition, and reproduction interact. An ordered systems biology approach that focuses on why and how cells regulate energy and N use and on how and why organs interact through endocrine and neurocrine mechanisms will speed improvements in efficiency. More sophisticated dairy managers will demand better information to improve the efficiency of their animals. Using genetic improvement and animal management to improve milk productive and reproductive efficiency requires a deeper understanding of metabolic processes throughout the life cycle. Using existing metabolic models, we can design experiments specifically to integrate data from global transcriptional profiling into models that describe nutrient use in farm animals. A systems modeling approach can help focus our research to make faster and larger advances in efficiency and determine how this knowledge can be applied on the farms.
Laczó, Jan; Markova, Hana; Lobellova, Veronika; Gazova, Ivana; Parizkova, Martina; Cerman, Jiri; Nekovarova, Tereza; Vales, Karel; Klovrzova, Sylva; Harrison, John; Windisch, Manfred; Vlcek, Kamil; Svoboda, Jan; Hort, Jakub; Stuchlik, Ales
2017-02-01
Development of new drugs for treatment of Alzheimer's disease (AD) requires valid paradigms for testing their efficacy and sensitive tests validated in translational research. We present validation of a place-navigation task, a Hidden Goal Task (HGT) based on the Morris water maze (MWM), in comparable animal and human protocols. We used scopolamine to model cognitive dysfunction similar to that seen in AD and donepezil, a symptomatic medication for AD, to assess its potential reversible effect on this scopolamine-induced cognitive dysfunction. We tested the effects of scopolamine and the combination of scopolamine and donepezil on place navigation and compared their effects in human and rat versions of the HGT. Place navigation testing consisted of 4 sessions of HGT performed at baseline, 2, 4, and 8 h after dosing in humans or 1, 2.5, and 5 h in rats. Scopolamine worsened performance in both animals and humans. In the animal experiment, co-administration of donepezil alleviated the negative effect of scopolamine. In the human experiment, subjects co-administered with scopolamine and donepezil performed similarly to subjects on placebo and scopolamine, indicating a partial ameliorative effect of donepezil. In the task based on the MWM, scopolamine impaired place navigation, while co-administration of donepezil alleviated this effect in comparable animal and human protocols. Using scopolamine and donepezil to challenge place navigation testing can be studied concurrently in animals and humans and may be a valid and reliable model for translational research, as well as for preclinical and clinical phases of drug trials.
Application of physics engines in virtual worlds
NASA Astrophysics Data System (ADS)
Norman, Mark; Taylor, Tim
2002-03-01
Dynamic virtual worlds potentially can provide a much richer and more enjoyable experience than static ones. To realize such worlds, three approaches are commonly used. The first of these, and still widely applied, involves importing traditional animations from a modeling system such as 3D Studio Max. This approach is therefore limited to predefined animation scripts or combinations/blends thereof. The second approach involves the integration of some specific-purpose simulation code, such as car dynamics, and is thus generally limited to one (class of) application(s). The third approach involves the use of general-purpose physics engines, which promise to enable a range of compelling dynamic virtual worlds and to considerably speed up development. By far the largest market today for real-time simulation is computer games, revenues exceeding those of the movie industry. Traditionally, the simulation is produced by game developers in-house for specific titles. However, off-the-shelf middleware physics engines are now available for use in games and related domains. In this paper, we report on our experiences of using middleware physics engines to create a virtual world as an interactive experience, and an advanced scenario where artificial life techniques generate controllers for physically modeled characters.
Adaptive Focusing For Ultrasonic Transcranial Brain Therapy: First In Vivo Investigation On 22 Sheep
NASA Astrophysics Data System (ADS)
Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickael; Boch, Anne Laure; Kujas, Michelle; Fink, Mathias
2005-03-01
A high power prototype dedicated to trans-skull therapy has been tested in vivo on 22 sheep. The array is made of 300 high power transducers working at 1MHz central frequency and is able to achieve 400 bars at focus in water during five seconds with a 50% percent duty cycle. In the first series of experiments, 10 sheep were treated and sacrificed immediately after treatment. A complete craniotomy was performed on half of the treated animal models in order to get a reference model. On the other half, minimally invasive surgery has been performed: a hydrophone was inserted at a given target location inside the brain through a craniotomy of a few mm2. A time reversal experiment was then conducted through the skull bone with the therapeutic array to treat the targeted point. Thanks to the high power technology of the prototype, trans-skull adaptive treatment could be achieved. In a second series of experiments, 12 animals were divided into three groups and sacrificed respectively one, two or three weeks after treatment. Finally, Magnetic Resonance Imaging and histological examination were performed to confirm tissue damage.
Non-Invasive Cell-Based Therapy for Traumatic Optic Neuropathy
2013-10-01
Morgans, Sergey Girman, Raymond Lund and Shaomei Wang Retinal Morphological and Functional Changes in an Animal Model of Retinitis Pigmentosa . Vis...model was created. 2. Rat MSC and M-Sch were reliable produced for experiments. 3. Systemic administration of MSC significantly preserved retinal ...TON also promote retinal ganglion cell survival. From the first year study, we have shown that systemic administration of MSC can significantly
The fate of homograft tracheal transplants in sheep.
Behrend, Matthias; Kluge, Eva
2008-08-01
An established method of tracheal substitution is not yet available, but homograft tracheal transplantation might provide a realistic tracheal replacement. With the objective of sequentially examining the healing of tracheal homografts, we have established a suitable large-animal model. Five sheep received orthotopic tracheal transplantation of a 4-cm cervical tracheal homograft. The trachea was supported for 6 weeks with a self-expanding polyester stent. The plan was to euthanize the animals after 2, 4, 8, 12 and 16 weeks, or whenever complications occurred. The implantation itself was performed without complications. After 2 weeks the homograft was firmly encapsulated by connective tissue, without signs of necrosis or abscess. The original mucous membrane no longer existed; the cartilage rings were exposed. In all animals that were euthanized at the later dates, the homografts were completely absorbed and replaced by inflammatory scar tissue. This, in turn, was covered with a shiny cellular surface layer. The results from this animal experiment reveal-contrary to data published to date-that tracheal homografts are not incorporated but absorbed. They are replaced by scar/granulation tissue that cannot secure the stability of the trachea. Therefore, further experiments with respect to the biocompatability of homografts appear to be necessary.
Manzano-Szalai, Krisztina; Pali-Schöll, Isabella; Krishnamurthy, Durga; Stremnitzer, Caroline; Flaschberger, Ingo; Jensen-Jarolim, Erika
2016-01-01
In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i) milk allergy, ii) peanut allergy and iii) egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour. PMID:26963393
3D animation model with augmented reality for natural science learning in elementary school
NASA Astrophysics Data System (ADS)
Hendajani, F.; Hakim, A.; Lusita, M. D.; Saputra, G. E.; Ramadhana, A. P.
2018-05-01
Many opinions from primary school students' on Natural Science are a difficult lesson. Many subjects are not easily understood by students, especially on materials that teach some theories about natural processes. Such as rain process, condensation and many other processes. The difficulty that students experience in understanding it is that students cannot imagine the things that have been taught in the material. Although there is material to practice some theories but is actually quite limited. There is also a video or simulation material in the form of 2D animated images. Understanding concepts in natural science lessons are also poorly understood by students. Natural Science learning media uses 3-dimensional animation models (3D) with augmented reality technology, which offers some visualization of science lessons. This application was created to visualize a process in Natural Science subject matter. The hope of making this application is to improve student's concept. This app is made to run on a personal computer that comes with a webcam with augmented reality. The app will display a 3D animation if the camera can recognize the marker.
Kim, K B; Shanyfelt, L M; Hahn, D W
2006-01-01
Dense-medium scattering is explored in the context of providing a quantitative measurement of turbidity, with specific application to corneal haze. A multiple-wavelength scattering technique is proposed to make use of two-color scattering response ratios, thereby providing a means for data normalization. A combination of measurements and simulations are reported to assess this technique, including light-scattering experiments for a range of polystyrene suspensions. Monte Carlo (MC) simulations were performed using a multiple-scattering algorithm based on full Mie scattering theory. The simulations were in excellent agreement with the polystyrene suspension experiments, thereby validating the MC model. The MC model was then used to simulate multiwavelength scattering in a corneal tissue model. Overall, the proposed multiwavelength scattering technique appears to be a feasible approach to quantify dense-medium scattering such as the manifestation of corneal haze, although more complex modeling of keratocyte scattering, and animal studies, are necessary.
Gantenbein, Benjamin; Illien-Jünger, Svenja; Chan, Samantha CW; Walser, Jochen; Haglund, Lisbet; Ferguson, Stephen J; Iatridis, James C; Grad, Sibylle
2015-01-01
In recent decades the application of bioreactors has revolutionized the concept of culturing tissues and organs that require mechanical loading. In intervertebral disc (IVD) research, collaborative efforts of biomedical engineering, biology and mechatronics have led to the innovation of new loading devices that can maintain viable IVD organ explants from large animals and human cadavers in precisely defined nutritional and mechanical environments over extended culture periods. Particularly in spine and IVD research, these organ culture models offer appealing alternatives, as large bipedal animal models with naturally occurring IVD degeneration and a genetic background similar to the human condition do not exist. Latest research has demonstrated important concepts including the potential of homing of mesenchymal stem cells to nutritionally or mechanically stressed IVDs, and the regenerative potential of “smart” biomaterials for nucleus pulposus or annulus fibrosus repair. In this review, we summarize the current knowledge about cell therapy, injection of cytokines and short peptides to rescue the degenerating IVD. We further stress that most bioreactor systems simplify the real in vivo conditions providing a useful proof of concept. Limitations are that certain aspects of the immune host response and pain assessments cannot be addressed with ex vivo systems. Coccygeal animal disc models are commonly used because of their availability and similarity to human IVDs. Although in vitro loading environments are not identical to the human in vivo situation, 3D ex vivo organ culture models of large animal coccygeal and human lumbar IVDs should be seen as valid alternatives for screening and feasibility testing to augment existing small animal, large animal, and human clinical trial experiments. PMID:25764196
Sex Differences in Animal Models: Focus on Addiction
Becker, Jill B.
2016-01-01
The purpose of this review is to discuss ways to think about and study sex differences in preclinical animal models. We use the framework of addiction, in which animal models have excellent face and construct validity, to illustrate the importance of considering sex differences. There are four types of sex differences: qualitative, quantitative, population, and mechanistic. A better understanding of the ways males and females can differ will help scientists design experiments to characterize better the presence or absence of sex differences in new phenomena that they are investigating. We have outlined major quantitative, population, and mechanistic sex differences in the addiction domain using a heuristic framework of the three established stages of the addiction cycle: binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. Female rats, in general, acquire the self-administration of drugs and alcohol more rapidly, escalate their drug taking with extended access more rapidly, show more motivational withdrawal, and (where tested in animal models of “craving”) show greater reinstatement. The one exception is that female rats show less motivational withdrawal to alcohol. The bases for these quantitative sex differences appear to be both organizational, in that estradiol-treated neonatal animals show the male phenotype, and activational, in that the female phenotype depends on the effects of gonadal hormones. In animals, differences within the estrous cycle can be observed but are relatively minor. Such hormonal effects seem to be most prevalent during the acquisition of drug taking and less influential once compulsive drug taking is established and are linked largely to progesterone and estradiol. This review emphasizes not only significant differences in the phenotypes of females and males in the domain of addiction but emphasizes the paucity of data to date in our understanding of those differences. PMID:26772794
The risk of bias of animal experiments in implant dentistry: a methodological study.
Faggion, Clovis Mariano; Diaz, Karla Tatiana; Aranda, Luisiana; Gabel, Frank; Listl, Stefan; Alarcón, Marco Antonio
2017-07-01
To evaluate the risk of bias (ROB) in reports of randomised controlled trials (RCTs) of animal experiments published in implant dentistry, and to explore the association between animal experiment characteristics and ROB. We searched the MEDLINE (via PubMed), SCOPUS and SciELO databases from 2010 to March 2015 for reports of RCTs of animal experiments published in implant dentistry. We evaluated independently and in duplicate the ROB of these experiments by the use of a tool specifically developed to evaluate ROB in animal studies, the SYRCLE's tool. ROB was judged as low, high or unclear (when there was not enough information to judge ROB). We used univariate and multivariate logistic regression analyses to evaluate the association of specific study characteristics and extent of ROB. We initially selected 850 publications and 161 reports of animal experiments were included. For a total of 1449 entries (records), 486 (34%) were rated as low ROB. High ROB was attributed to 80 (6%) of entries, and 883 (60%) entries were rated as unclear ROB. The characteristics "impact factor" (IF), reporting of standard error (SE) and reporting of confidence interval (CI) were significantly associated with low ROB in some SYRCLE domains. A substantial number of items with unclear ROB were observed in this sample of animal experiments in implant dentistry. Furthermore, the present findings suggest that implant dentistry animal experiments published in journals with higher IF and better report of measures of precision; that is, CI and SE may have lower ROB than those not having these characteristics. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Faggion, Clovis Mariano; Aranda, Luisiana; Diaz, Karla Tatiana; Shih, Ming-Chieh; Tu, Yu-Kang; Alarcón, Marco Antonio
2016-01-01
Information on precision of treatment-effect estimates is pivotal for understanding research findings. In animal experiments, which provide important information for supporting clinical trials in implant dentistry, inaccurate information may lead to biased clinical trials. The aim of this methodological study was to determine whether sample size calculation, standard errors, and confidence intervals for treatment-effect estimates are reported accurately in publications describing animal experiments in implant dentistry. MEDLINE (via PubMed), Scopus, and SciELO databases were searched to identify reports involving animal experiments with dental implants published from September 2010 to March 2015. Data from publications were extracted into a standardized form with nine items related to precision of treatment estimates and experiment characteristics. Data selection and extraction were performed independently and in duplicate, with disagreements resolved by discussion-based consensus. The chi-square and Fisher exact tests were used to assess differences in reporting according to study sponsorship type and impact factor of the journal of publication. The sample comprised reports of 161 animal experiments. Sample size calculation was reported in five (2%) publications. P values and confidence intervals were reported in 152 (94%) and 13 (8%) of these publications, respectively. Standard errors were reported in 19 (12%) publications. Confidence intervals were better reported in publications describing industry-supported animal experiments (P = .03) and with a higher impact factor (P = .02). Information on precision of estimates is rarely reported in publications describing animal experiments in implant dentistry. This lack of information makes it difficult to evaluate whether the translation of animal research findings to clinical trials is adequate.
Chemotherapy administration directly into the fourth ventricle in a nonhuman primate model.
Sandberg, David I; Peet, M Melissa; Johnson, Mark D; Cole, Phaedra; Koru-Sengul, Tulay; Luqman, Ali W
2012-05-01
The authors hypothesized that chemotherapy infusions directly into the fourth ventricle might potentially play a role in treating malignant fourth ventricular tumors. The study tested the safety and pharmacokinetics of short- and long-term infusions of methotrexate into the fourth ventricle in a new nonhuman primate model. Six rhesus monkeys underwent posterior fossa craniectomy and catheter insertion into the fourth ventricle. In Group I (3 animals), catheters were externalized, and lumbar drain catheters were placed simultaneously to assess CSF distribution after short-term methotrexate infusions. In 2 animals, methotrexate (0.5 mg) was infused into the fourth ventricle daily for 5 days. Serial CSF and serum methotrexate levels were measured. The third animal had a postoperative neurological deficit, and the experiment was aborted prior to methotrexate administration. In Group II (3 animals), catheters were connected to a subcutaneously placed port for subsequent long-term methotrexate infusions. In 2 animals, 4 cycles of intraventricular methotrexate, each consisting of 4 daily infusions (0.5 mg), were administered over 8 weeks. The third animal received 3 cycles, and then the experiment was terminated due to self-inflicted wound breakdown. All animals underwent detailed neurological evaluations, MRI, and postmortem histological analysis. No neurological deficits were noted after intraventricular methotrexate infusions. Magnetic resonance images demonstrated catheter placement within the fourth ventricle and no signal changes in the brainstem or cerebellum. Histologically, two Group I animals, one of which did not receive methotrexate, had several small focal areas of brainstem injury. Two Group II animals had a small (≤ 1-mm) focus of axonal degeneration in the midbrain. Intraventricular and meningeal inflammation was noted in 4 animals after methotrexate infusions (one from Group I and all three from Group II). In all Group II animals, inflammation extended minimally into brainstem parenchyma. Serum methotrexate levels were undetectable or negligible in both groups, ranging from 0.00 to 0.06 μmol/L. In Group I, the mean peak methotrexate level in fourth ventricle CSF exceeded that in the lumbar CSF by greater than 10-fold. Statistically significant differences between fourth ventricle and lumbar AUC (area under the concentration-time curve) were detected at peaks (p = 0.04) but not at troughs (p = 0.50) or at all time collection points (p = 0.12). In Group II, peak fourth ventricle CSF methotrexate levels ranged from 84.62 to 167.89 μmol/L (mean 115.53 ± 15.95 μmol/L [SD]). Trough levels ranged from 0.06 to 0.55 μmol/L (mean 0.22 ± 0.13 μmol/L). Methotrexate can be infused into the fourth ventricle in nonhuman primates without clinical or radiographic evidence of injury. Observed inflammatory and other histological changes had no clinical correlate. This approach may have pharmacokinetic advantages over current treatment paradigms. Further experiments are warranted to determine if fourth ventricular chemotherapy infusions may benefit patients with malignant fourth ventricular tumors.
An Evaporative Cooling Model for Teaching Applied Psychrometrics
ERIC Educational Resources Information Center
Johnson, Donald M.
2004-01-01
Evaporative cooling systems are commonly used in controlled environment plant and animal production. These cooling systems operate based on well defined psychrometric principles. However, students often experience considerable difficulty in learning these principles when they are taught in an abstract, verbal manner. This article describes an…
Effect of Neonatal Clomipramine Treatment on Consummatory Successive Negative Contrast
ERIC Educational Resources Information Center
Ruetti, Eliana; Burgueno, Adriana L.; Justel, Nadia R.; Pirola, Carlos J.; Mustaca, Alba E.
2013-01-01
Neonatal administration of clomipramine (CLI) produces physiological, neuroendocrinal and behavioral abnormalities in rats when they reach adulthood, which are similar to those observed in animal models of depression. In consummatory successive negative contrast (cSNC), rats that have had experience drinking 32% sucrose solution drink…
ERIC Educational Resources Information Center
Angier, Natalie
1983-01-01
Scientists are designing computer models of biological systems, and of compounds with complex molecules, that can be used to get answers once obtainable only by sacrificing laboratory animals. Although most programs are still under development, some are in use by industrial/pharmaceutical companies. The programs and experiments they simulate are…
Arsenic Metabolism by Human Gut Microbiota upon In Vitro Digestion of Contaminated Soils
Background: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with ...
Corley, Michael J; Caruso, Michael J; Takahashi, Lorey K
2012-01-18
Posttraumatic stress disorder (PTSD) is characterized by stress-induced symptoms including exaggerated fear memories, hypervigilance and hyperarousal. However, we are unaware of an animal model that investigates these hallmarks of PTSD especially in relation to fear extinction and habituation. Therefore, to develop a valid animal model of PTSD, we exposed rats to different intensities of footshock stress to determine their effects on either auditory predator odor fear extinction or habituation of fear sensitization. In Experiment 1, rats were exposed to acute footshock stress (no shock control, 0.4 mA, or 0.8 mA) immediately prior to auditory fear conditioning training involving the pairing of auditory clicks with a cloth containing cat odor. When presented to the conditioned auditory clicks in the next 5 days of extinction testing conducted in a runway apparatus with a hide box, rats in the two shock groups engaged in higher levels of freezing and head out vigilance-like behavior from the hide box than the no shock control group. This increase in fear behavior during extinction testing was likely due to auditory activation of the conditioned fear state because Experiment 2 demonstrated that conditioned fear behavior was not broadly increased in the absence of the conditioned auditory stimulus. Experiment 3 was then conducted to determine whether acute exposure to stress induces a habituation resistant sensitized fear state. We found that rats exposed to 0.8 mA footshock stress and subsequently tested for 5 days in the runway hide box apparatus with presentations of nonassociative auditory clicks exhibited high initial levels of freezing, followed by head out behavior and culminating in the occurrence of locomotor hyperactivity. In addition, Experiment 4 indicated that without delivery of nonassociative auditory clicks, 0.8 mA footshock stressed rats did not exhibit robust increases in sensitized freezing and locomotor hyperactivity, albeit head out vigilance-like behavior continued to be observed. In summary, our animal model provides novel information on the effects of different intensities of footshock stress, auditory-predator odor fear conditioning, and their interactions on facilitating either extinction-resistant or habituation-resistant fear-related behavior. These results lay the foundation for exciting new investigations of the hallmarks of PTSD that include the stress-induced formation and persistence of traumatic memories and sensitized fear. Copyright © 2011 Elsevier Inc. All rights reserved.
Holfeld, Johannes; Zimpfer, Daniel; Albrecht-Schgoer, Karin; Stojadinovic, Alexander; Paulus, Patrick; Dumfarth, Julia; Thomas, Anita; Lobenwein, Daniela; Tepeköylü, Can; Rosenhek, Raphael; Schaden, Wolfgang; Kirchmair, Rudolf; Aharinejad, Seyedhossein; Grimm, Michael
2016-12-01
Previously we have shown that epicardial shock-wave therapy improves left ventricular ejection fraction (LVEF) in a rat model of myocardial infarction. In the present experiments we aimed to address the safety and efficacy of epicardial shock-wave therapy in a preclinical large animal model and to further evaluate mechanisms of action of this novel therapy. Four weeks after left anterior descending (LAD) artery ligation in pigs, the animals underwent re-thoracotomy with (shock-wave group, n = 6) or without (control group, n = 5) epicardial shock waves (300 impulses at 0.38 mJ/mm 2 ) applied to the infarcted anterior wall. Efficacy endpoints were improvement of LVEF and induction of angiogenesis 6 weeks after shock-wave therapy. Safety endpoints were haemodynamic stability during treatment and myocardial damage. Four weeks after LAD ligation, LVEF decreased in both the shock-wave (43 ± 3%, p < 0.001) and control (41 ± 4%, p = 0.012) groups. LVEF markedly improved in shock-wave animals 6 weeks after treatment (62 ± 9%, p = 0.006); no improvement was observed in controls (41 ± 4%, p = 0.36), yielding a significant difference. Quantitative histology revealed significant angiogenesis 6 weeks after treatment (controls 2 ± 0.4 arterioles/high-power field vs treatment group 9 ± 3; p = 0.004). No acute or chronic adverse effects were observed. As a potential mechanism of action in vitro experiments showed stimulation of VEGF receptors after shock-wave treatment in human coronary artery endothelial cells. Epicardial shock-wave treatment in a large animal model of ischaemic heart failure exerted a positive effect on LVEF improvement and did not show any adverse effects. Angiogenesis was induced by stimulation of VEGF receptors. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Effect of acarbose on acute acidosis.
McLaughlin, C L; Thompson, A; Greenwood, K; Sherington, J; Bruce, C
2009-06-01
A challenge model was used to evaluate a new approach to controlling acute acidosis. Acute acidosis reduces performance in both dairy and beef cattle and most often occurs as a consequence of ingestion of large amounts of readily fermentable starch, resulting in increased production of volatile fatty acids (VFA) and lactic acid and a reduction in ruminal pH. Acarbose is an alpha-amylase and glucosidase inhibitor that slows the rate of degradation of starch to glucose, thereby reducing the rate of VFA production and maintaining rumen pH at a more stable level. It is commercially available (Glucobay, Bayer, Wuppertal, Germany) and indicated for the control of blood glucose in diabetic patients. The ability of acarbose to reduce the incidence of acidosis and the comparative efficacies of acarbose, sodium bicarbonate, and monensin were tested in 3 acute acidosis challenge experiments in cattle. Rumen-cannulated Holstein steers were challenged with a mixture of 48.4% cornstarch, 48.4% ground corn, 2.1% sodium caseinate, and 1.1% urea with or without test substance. The challenge was administered at a rate of 12.5 g/kg of body weight (BW) as a slurry through the cannula directly into the rumen. Ruminal pH was monitored at 10-min intervals throughout the study. Animals were removed from study and rumen contents replaced if they exhibited acute acidosis as defined as pH <4.5. If acidosis was not observed within 24 h, animals were subjected to a second challenge. Ruminal fluid samples were taken for measurement of VFA and lactate concentrations at various intervals after the challenge. In experiment 1, the carbohydrate challenge induced acidosis in 4 of 4 control animals and 0 of 4 animals treated with 2.14 or 21.4 mg of acarbose/kg of BW in the challenge based on the criterion of pH <4.5. In experiment 2, the carbohydrate challenge induced acidosis in 4 of 7 control animals and 1 of 7 animals when 1.07 mg of acarbose/kg of BW was included in the challenge. In experiment 3, acidosis was induced in 7 of 7 animals in the control, 1% sodium bicarbonate, and 12 mg of monensin/kg of dry matter intake groups and in 3 of 8 steers administered 1.07 mg of acarbose/kg of BW in the challenge. Increases in lactate concentrations and decreases in total VFA associated with acute acidosis were mitigated by acarbose. Thus, acarbose, an amylase and glucosidase inhibitor, prevented or reduced the incidence of acidosis in an acute challenge model in steers and was more effective than monensin or sodium bicarbonate.
Animal Research on Effects of Experience on Brain and Behavior: Implications for Rehabilitation.
ERIC Educational Resources Information Center
Rosenzweig, Mark R.
2002-01-01
This article first considers how plasticity of the brain in response to differential experience was discovered in research with laboratory rats around 1960. Animal research soon followed on effects of enriched experience as therapy for brain dysfunction. Relations between animal research and some human therapies are considered. (Contains…
Vandeleest, Jessica J; McCowan, Brenda; Capitanio, John P
2011-06-01
Laboratory and zoo housed non-human primates sometimes exhibit abnormal behaviors that are thought to reflect reduced wellbeing. Previous research attempted to identify risk factors to aid in the prevention and treatment of these behaviors, and focused on demographic (e.g. sex or age) and experience-related (e.g. single housing or nursery rearing) factors. However, not all animals that display abnormal behavior possess these risk factors and some individuals that possess a risk factor do not show behavioral abnormalities. We hypothesized that other aspects of early experience and individual characteristics might identify animals that were more likely to display one specific abnormal behavior, motor stereotypy (MS). Using logistic regression we explored the influence of early rearing (involving four different types of rearing conditions), and variation in temperament, on likelihood of displaying MS while controlling for previously identified risk factors. Analyses indicated that having a greater proportion of life lived indoors, a greater proportion of life-indoors singly-housed, and a greater number of anesthesias and blood draws significantly increased the risk of displaying MS (P < 0.001). Rearing condition failed to independently predict the display of MS; however significant interactions indicated that single housing had a greater impact on risk for indoor-reared animals versus outdoor-reared animals, and for indoor mother-reared animals versus nursery-reared animals. There were no main effects of temperament, although interactions with rearing were evident: scoring high on Gentle or Nervous was a risk factor for indoor-reared animals but not outdoor-reared animals. The final model accounted for approximately 69.3 % of the variance in the display of MS, and correctly classified 90.6% of animals. These results indicate that previously identified risk factors may impact animals differently depending on the individual's early rearing condition. These results are also the first in non-human primates to demonstrate that individual difference factors, like temperament, could be additional tools to identify animals at highest risk for motor stereotypy.
Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology
Leung, Maxwell C. K.; Williams, Phillip L.; Benedetto, Alexandre; Au, Catherine; Helmcke, Kirsten J.; Aschner, Michael; Meyer, Joel N.
2008-01-01
The nematode Caenorhabditis elegans has emerged as an important animal model in various fields including neurobiology, developmental biology, and genetics. Characteristics of this animal model that have contributed to its success include its genetic manipulability, invariant and fully described developmental program, well-characterized genome, ease of maintenance, short and prolific life cycle, and small body size. These same features have led to an increasing use of C. elegans in toxicology, both for mechanistic studies and high-throughput screening approaches. We describe some of the research that has been carried out in the areas of neurotoxicology, genetic toxicology, and environmental toxicology, as well as high-throughput experiments with C. elegans including genome-wide screening for molecular targets of toxicity and rapid toxicity assessment for new chemicals. We argue for an increased role for C. elegans in complementing other model systems in toxicological research. PMID:18566021
Kusner, Linda L.; Losen, Mario; Vincent, Angela; Lindstrom, Jon; Tzartos, Socrates; Lazaridis, Konstantinos; Martinez-Martinez, Pilar
2015-01-01
Antibodies against the muscle acetylcholine receptor (AChR) are the most common cause of myasthenia gravis (MG). Passive transfer of AChR antibodies from MG patients into animals reproduces key features of human disease, including antigenic modulation of the AChR, complement-mediated damage of the neuromuscular junction, and muscle weakness. Similarly, AChR antibodies generated by active immunization in experimental autoimmune MG models can subsequently be passively transferred to other animals and induce weakness. The passive transfer model is useful to test therapeutic strategies aimed at the effector mechanism of the autoantibodies. Here we summarize published and unpublished experience using the AChR passive transfer MG model in mice, rats and rhesus monkeys, and give recommendations for the design of preclinical studies in order to facilitate translation of positive and negative results to improve MG therapies. PMID:25743217
The taboo against group contact: Hypothesis of Gypsy ontologization.
Pérez, Juan A; Moscovici, Serge; Chulvi, Berta
2007-06-01
The concept of this article is that the symbolic relationships between human beings and animals serve as a model for the relationships between the majority and the ethnic minority. We postulate that there are two representations that serve to organize these relationships between human beings and animals: a domestic and a wild one. If the domestic animal is an index of human culture, the wild animal is an index of nature which man considers himself to share with the animal. With the wild representation, contact with the animal will be taboo, as it constitutes a threat to the anthropological difference. We offer the hypothesis that ontologization of the minority, that is, the substitution of a human category with an animal category, and thus its exclusion from the human species, is a method the majority use when the taboo against contact with the wild nature is necessary. Three experiments confirm the hypothesis that the Gypsy minority (as compared with the Gadje majority) is more ontologized when the context (a monkey or a clothed dog) threatens the anthropological differentiation of the Gadje participants.
Sex differences associated with intermittent swim stress.
Warner, Timothy A; Libman, Matthew K; Wooten, Katherine L; Drugan, Robert C
2013-11-01
Various animal models of depression have been used to seek a greater understanding of stress-related disorders. However, there is still a great need for novel research in this area, as many individuals suffering from depression are resistant to current treatment methods. Women have a higher rate of depression, highlighting the need to investigate mechanisms of sex differences. Therefore, we employed a new animal model to assess symptoms of depression, known as intermittent swim stress (ISS). In this model, the animal experiences 100 trials of cold water swim stress. ISS has already been shown to cause signs of behavioral depression in males, but has yet to be assessed in females. Following ISS exposure, we looked at sex differences in the Morris water maze and forced swim test. The results indicated a spatial learning effect only in the hidden platform task between male and female controls, and stressed and control males. A consistent spatial memory effect was only seen for males exposed to ISS. In the forced swim test, both sexes exposed to ISS exhibited greater immobility, and the same males and females also showed attenuated climbing and swimming, respectively. The sex differences could be due to different neural substrates for males and females. The goal of this study was to provide the first behavioral examination of sex differences following ISS exposure, so the stage of estrous cycle was not assessed for the females. This is a necessary future direction for subsequent experiments. The current article highlights the importance of sex differences in response to stress.
Musk, Gabrielle C; Collins, Teresa; Hosgood, Giselle
In veterinary medical education, reduction, replacement, and refinement (the three Rs) must be considered. Three clinical skills in anesthesia were identified as challenging to students: endotracheal intubation, intravenous catheterization, and drug dose calculations. The aims of this project were to evaluate students' perception of their level of confidence in performing these three clinical skills in veterinary anesthesia, to document the extent of students' previous experience in performing these three tasks, and to describe students' emotional states during this training. Veterinary students completed a series of four surveys over the period of their pre-clinical training to evaluate the usefulness of high-fidelity models for skill acquisition in endotracheal intubation and intravenous catheterization. In addition, practice and ongoing assessment in drug dose calculations were performed. The curriculum during this period of training progressed from lectures and non-animal training, to anesthesia of pigs undergoing surgery from which they did not recover, and finally to anesthesia of dogs and cats in a neutering clinic. The level of confidence for each of the three clinical skills increased over the study period. For each skill, the number of students with no confidence decreased to zero and the proportion of students with higher levels of confidence increased. The high-fidelity models for endotracheal intubation and intravenous catheterization used to complement the live-animal teaching were considered a useful adjunct to the teaching of clinical skills in veterinary anesthesia. With practice, students became more confident performing drug dose calculations.
System design and animal experiment study of a novel minimally invasive surgical robot.
Wang, Wei; Li, Jianmin; Wang, Shuxin; Su, He; Jiang, Xueming
2016-03-01
Robot-assisted minimally invasive surgery has shown tremendous advances over the traditional technique. However, currently commercialized systems are large and complicated, which vastly raises the system cost and operation room requirements. A MIS robot named 'MicroHand' was developed over the past few years. The basic principle and the key technologies are analyzed in this paper. Comparison between the proposed robot and the da Vinci system is also presented. Finally, animal experiments were carried out to test the performance of MicroHand. Fifteen animal experiments were carried out from July 2013 to December 2013. All animal experiments were finished successfully. The proposed design method is an effective way to resolve the drawbacks of previous generations of the da Vinci surgical system. The animal experiment results confirmed the feasibility of the design. Copyright © 2015 John Wiley & Sons, Ltd.
[The effect of nitrates on the outcome of acute experimental ischemic stroke].
Kuzenkov, V S; Krushinskiĭ, A L; Reutov, V P
2012-01-01
Effects of nitrates NaNO(3), KNO(3), Mg(NO(3)) 2 on animals (Wistar rats) were studied on the basis of the experimental model of ischemic stroke induced by the occlusion of two carotid arteries. The animals were divided into two groups: the main group (n=60) and the control group (n=30). Three series of experiments were conducted. In each experiment, the rats of the main group were treated with one of nitrates and the control group was treated with physiological solution. It has been shown that nitrates exert either positive or negative effect depending on the cation type, nitrate concentration and the duration of their action on the dynamics of neurologic disturbances. Conditions of the development of neuroprotective effect of nitrates are discussed.
Spacelab Life Sciences 1 results
NASA Technical Reports Server (NTRS)
Seddon, Rhea
1992-01-01
Results are presented from the experiments conducted by the first Shuttle/Spacelab mission dedicated entirely to the life sciences, the Spacelab Life Sciences 1, launched on June 5, 1991. The experiments carried out during the 9-day flight included investigations of changes in the human cardiovascular, pulmonary, renal/endocrine, blood, and vestibular systems that were brought about by microgravity. Results were also obtained from the preflight and postflight complementary experiments performed on rats, which assessed the suitability of rodents as animal models for humans. Most results verified, or expanded on, the accepted theories of adaptation to zero gravity.
Scientific assessment of animal welfare.
Hemsworth, P H; Mellor, D J; Cronin, G M; Tilbrook, A J
2015-01-01
Animal welfare is a state within the animal and a scientific perspective provides methodologies for evidence-based assessment of an animal's welfare. A simplistic definition of animal welfare might be how the animal feels now. Affective experiences including emotions, are subjective states so cannot be measured directly in animals, but there are informative indirect physiological and behavioural indices that can be cautiously used to interpret such experiences. This review enunciates several key science-based frameworks for understanding animal welfare. The biological functioning and affective state frameworks were initially seen as competing, but a recent more unified approach is that biological functioning is taken to include affective experiences and affective experiences are recognised as products of biological functioning, and knowledge of the dynamic interactions between the two is considered to be fundamental to managing and improving animal welfare. The value of these two frameworks in understanding the welfare of group-housed sows is reviewed. The majority of studies of the welfare of group-housed sows have employed the biological functioning framework to infer compromised sow welfare, on the basis that suboptimal biological functioning accompanies negative affective states such as sow hunger, pain, fear, helplessness, frustration and anger. Group housing facilitates social living, but group housing of gestating sows raises different welfare considerations to stall housing, such as high levels of aggression, injuries and stress, at least for several days after mixing, as well as subordinate sows being underfed due to competition at feeding. This paper highlights the challenges and potential opportunities for the continued improvement in sow management through well-focused research and multidisciplinary assessment of animal welfare. In future the management of sentient animals will require the promotion of positive affective experiences in animals and this is likely to be a major focus for animal welfare science activity in the early twenty-first century.
[The significance of animals in biomedical research].
Pawlik, W W
1998-01-01
The mission of medicine is maintenance of health, elimination of suffering and prolongation of life. These aims can be achieved by medicine based on experimental determination, because only then it becomes a real science. The nature of human mind has led the man since the beginning of humanity on the earth to the cognition of his environment and himself. Being intellectually superior than other living creatures, the man got power over them. In his endless efforts to expand knowledge about living organisms, including his own, he started to use animals. The man has used animals for cognitive purposes for ages and is still doing it, however his motivation has changed and is still changing. Cognition of functions of living organisms on the basis of observation solely, without any interference into the living body gave a lot of important information, yet, generally, this method was of little use for the development of science. Only the use of animals could give information about this what was earlier unknown and impossible. The long-lasting evolution of experimental studies of living functions of higher organisms resulted in achieving a perfect level in biomedical studies. Vivisection, as it was understood years ago, has become history. For a chronic experiment, an animal is surgically prepared according to the researcher's intention. The surgery and the postoperative period follow the principles used in human surgery. After the convalesce period, the animal is used for further experiments. On such prepared animals, the investigations in experimental cardiology, neurophysiology, gastroenterology and other medical disciplines are performed. The animal prepared for longlasting experiments do not suffer from pain during both the experiments and intervals between them. Another important achievement in chronic experiments is considerable reduction of the number of animals used in experimental medicine. Undoubtedly, the greatest achievements in medicine in the 19th and 20th centuries were possible due to the use of animals. There is a strong relationship between a rapid progress in experiments on animals and evident progress in clinical medicine. In the second half of the 20th century the man left the globe for the first time and reached another planet. Tis unusual event in the history of humanity was possible due to space medicine based on biomedical experiments with the use of animals. Also, the man's ability to reach the depths of oceans cost the lives of many experimental animals. Despite advances that have already been made, we are still in the early stages of understanding the complex workings of the body. This makes the replacement of animal experiments a slow process. At the same time, our increasing knowledge is opening up whole new areas of medical research which in turn give rise to a need for further animal use. While it may be difficult to envisage total replacement, the proposition of work that can be done without animals is increasing all the time. Many efforts are being made to find alternatives to animal experiments, to increase the usefulness of those that already exist, and to refine animal research methods. But at present days biomedicine, with its experiments on animals, reveals the laws of nature which the clinical and his patient can use to improve the life quality, prolong the life span and eliminate suffering. We all want to lead a healthy and enjoyable life. Most of us want the benefits of modern medical research-benefits that we would not have without the contribution of animal research. Yet, the health and well being of animals is important too. Clearly, those involved in this research have a moral and legal obligation to ensure that laboratory animals are well housed and cared for, any distress is kept to a minimum and that as few animals as possible are used. In the end, the question of whether animals should be used in medicines research is one everyone must answer for themselves, but the decision is more c
Ethical implications of using the minipig in regulatory toxicology studies.
Webster, John; Bollen, Peter; Grimm, Herwig; Jennings, Maggy
2010-01-01
Two key questions are addressed in this article. What are the potential harms to minipigs relative to the harms for dogs and non-human primates and can these harms be reduced more easily in minipigs than in other species? Are there potential benefits resulting from the use of minipigs relative to dogs and non-human primates? In considering the answers to these questions, we present an ethical framework which was developed taking into account the viewpoint of all concerned parties. This ethical matrix provides a framework upon which to identify and explore issues raised by the moral imperative to seek a fair compromise between the differing needs of different interest groups, which includes both the moral agents and the moral patients. The moral agents are the different groups of human stakeholders including society at large, regulatory bodies, industrialists and animal care staff. The moral patients are the laboratory animals, both breeding stock held by the animal supplier, and experimental animals in laboratories. In considering these animals it cannot be assumed that dogs, monkeys and minipigs differ with regard to the pain and suffering that they may experience and undergo when treated in studies designed for safety assessment. On this basis we rejected the argument that minipigs are more acceptable experimental animals than dogs or monkeys despite the fact that their use may prove less offensive to some groups within society at large. Species selection must be made on a case-by-case basis where the benefits are assessed by weighing the scientific evidence relating to the predictivity of the animal model, against the harm that may accrue to the animals both from the test procedures and their lifetime experience within the laboratory environment. Copyright © 2010 Elsevier Inc. All rights reserved.
Live animals for preclinical medical student surgical training
DeMasi, Stephanie C.; Katsuta, Eriko; Takabe, Kazuake
2016-01-01
Aims The use of live animals for surgical training is a well-known, deliberated topic. However, medical students who use live animals rate the experience high not only in improving their surgical techniques, but also positively influencing their confidence levels in the operating room later in their careers. Therefore, we hypothesized that the use of live animal models is a unique and influential component of preclinical medical education. Materials and Methods Medical student performed the following surgical procedures using mice; surgical orthotopic implantation of cancer cells into fat pad and subsequently a radical mastectomy. The improvement of skill was then analyzed. Results All cancer cell inoculations were performed successfully. Improvement of surgical skills during the radical mastectomy procedure was documented in all parameters. All wounds healed without breakdown or dehiscence. The appropriate interval between interrupted sutures was ascertained after fifth wound closure. The speed of interrupted sutures was doubled by last wound closure. The time required to complete a radical mastectomy decreased by almost half. A single animal died immediately following the operation due to inappropriate anesthesia, which was attributed to the lack of understanding of the overall operative management. Conclusion Surgical training using live animals for preclinical medical students provides a unique learning experience, not only in improving surgical skills but also and arguably most importantly, to introduce the student to the complexities of the perioperative environment in a way that most closely resembles the stress and responsibility that the operating room demands. PMID:28713875
Nelson, Andrew J. D.; Killcross, Simon
2013-01-01
Repeated exposure to the psychostimulant amphetamine has been shown to disrupt goal-directed instrumental actions and promote the early and abnormal development of goal-insensitive habitual responding (Nelson and Killcross, 2006). To investigate the neuropharmacological specificity of this effect as well as restore goal-directed responding in animals with pre-training amphetamine exposure, animals were treated with the non-selective dopamine antagonist α-flupenthixol, the selective D1 antagonist SCH 23390 or the selective D2 antagonist eticlopride, prior to instrumental training (three sessions). Subsequently, the reinforcer was paired with LiCL-induced gastric-malaise and animals were given a test of goal-sensitivity both in extinction and reacquisition. The effect of these dopaminergic antagonists on the sensitivity of lever press performance to outcome devaluation was assessed in animals with pre-training exposure to amphetamine (Experiments 1A–C) or in non-sensitized animals (Experiment 2). Both α-flupenthixol and SCH23390 reversed accelerated habit formation following amphetamine sensitization. However, eticlopride appeared to enhance this effect and render instrumental performance compulsive as these animals were unable to inhibit responding both in extinction and reacquisition, even though a consumption test confirmed they had acquired an aversion to the reinforcer. These findings demonstrate that amphetamine induced-disruption of goal-directed behavior is mediated by activity at distinct dopamine receptor subtypes and may represent a putative model of the neurochemical processes involved in the loss of voluntary control over behavior. PMID:23720609
The ethics of animal experimentation.
Lane-Petter, W.
1976-01-01
Animal experimentation arouses great emotion in many people, perhaps more especially in Britain, and this has increased as more sophisticated medical and non-medical animal experiments are demanded by modern research. The Cruelty to Animals Act of 1876 is the only legal regulation of experiments in animals, and many of its clauses are ambiguous. So in 1963 a committee of enquiry - the Littlewood Committee - was set up. Dr Lane-Petter examines the emotional and factual background to the enquiry, and discusses in an ethical context the usefulness and positive advantages of animal experiments compared with those of possible substitutes and in some detail three of the questions left unanswered by the Littlewood Committee. PMID:966259
Animal models of transcranial direct current stimulation: Methods and mechanisms.
Jackson, Mark P; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C; Bikson, Marom
2016-11-01
The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: (1) transcranial stimulation; (2) direct cortical stimulation in vivo and (3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching "quasi-uniform" assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding "functional targeting" suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Animal Models of transcranial Direct Current Stimulation: Methods and Mechanisms
Jackson, Mark P.; Rahman, Asif; Lafon, Belen; Kronberg, Gregory; Ling, Doris; Parra, Lucas C.; Bikson, Marom
2016-01-01
The objective of this review is to summarize the contribution of animal research using direct current stimulation (DCS) to our understanding of the physiological effects of transcranial direct current stimulation (tDCS). We comprehensively address experimental methodology in animal studies, broadly classified as: 1) transcranial stimulation; 2) direct cortical stimulation in vivo and 3) in vitro models. In each case advantages and disadvantages for translational research are discussed including dose translation and the overarching “quasi-uniform” assumption, which underpins translational relevance in all animal models of tDCS. Terminology such as anode, cathode, inward current, outward current, current density, electric field, and uniform are defined. Though we put key animal experiments spanning decades in perspective, our goal is not simply an exhaustive cataloging of relevant animal studies, but rather to put them in context of ongoing efforts to improve tDCS. Cellular targets, including excitatory neuronal somas, dendrites, axons, interneurons, glial cells, and endothelial cells are considered. We emphasize neurons are always depolarized and hyperpolarized such that effects of DCS on neuronal excitability can only be evaluated within subcellular regions of the neuron. Findings from animal studies on the effects of DCS on plasticity (LTP/LTD) and network oscillations are reviewed extensively. Any endogenous phenomena dependent on membrane potential changes are, in theory, susceptible to modulation by DCS. The relevance of morphological changes (galvanotropy) to tDCS is also considered, as we suggest microscopic migration of axon terminals or dendritic spines may be relevant during tDCS. A majority of clinical studies using tDCS employ a simplistic dose strategy where excitability is singularly increased or decreased under the anode and cathode, respectively. We discuss how this strategy, itself based on classic animal studies, cannot account for the complexity of normal and pathological brain function, and how recent studies have already indicated more sophisticated approaches are necessary. One tDCS theory regarding “functional targeting” suggests the specificity of tDCS effects are possible by modulating ongoing function (plasticity). Use of animal models of disease are summarized including pain, movement disorders, stroke, and epilepsy. PMID:27693941
Gutierrez, Eric; Quinn, Daniel B; Chin, Diana D; Lentink, David
2016-12-06
There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift generation with flapping wings.
Hąc-Wydro, Katarzyna; Flasiński, Michał
2015-06-01
This paper concerns the studies towards membrane-damage effect of two auxins: indole-3-acetic acid - IAA and 1-naphthaleneacetic acid - NAA on plant (Arabidopsis thaliana) and animal (rat liver) model membranes. The foregoing auxins are plant growth regulators widely used in agriculture to control the quality of the crop. However, their accumulation in the environment makes them hazardous for the living organisms. The aim of our investigations was to compare the effect of natural (IAA) vs. synthetic (NAA) auxin on the organization of plant and animal model membranes and find a possible correlation between membrane-disturbing effect of these compounds and their toxicity. The collected data evidenced that auxins cause destabilization of membranes, decrease their condensation and weakens interactions of molecules. The alterations in the morphology of model systems were also noticed. The foregoing effects of auxins are concentration-dependent and additionally NAA was found to act on animal vs. plant membranes more selectively than IAA. Interestingly, both IAA and NAA induce the strongest disordering in model lipid system at the concentration, which is frequently reported as toxic to animal and plants. Based on the above findings it was proposed that membrane-damage effect induced by IAA and NAA may be important from the point of view of the mechanism of toxicity of these compounds and cannot be ignored in further investigations in this area. Copyright © 2015 Elsevier B.V. All rights reserved.
Linking neuroscience with modern concepts of impulse control disorders in Parkinson’s disease
Napier, T. Celeste; Corvol, Jean-Christophe; Grace, Anthony A.; Roitman, Jamie D.; Rowe, James; Voon, Valerie; Strafella, Antonio P.
2014-01-01
Patients with Parkinson’s disease (PD) may experience impulse control disorders (ICDs) when on dopamine agonist therapy for their motor symptoms. In the last few years, there has been a rapid growth of interest for the recognition of these aberrant behaviors and their neurobiological correlates. Recent advances in neuroimaging are helping to identify the neuroanatomical networks responsible for these ICDs, and together with psychopharmacological assessments are providing new insights into the brain status of impulsive behavior. The genetic associations that may be unique to ICDs in PD are also being identified. Complementing human studies, electrophysiological and biochemical studies in animal models are providing insights into neuropathological mechanisms associated with these disorders. New animal models of ICDs in PD patients are being implemented that should provide critical means to identify efficacious therapies for PD-related motor deficits while avoiding ICD side effects. Here, we provide an overview of these recent advances, with a particular emphasis on the neurobiological correlates reported in animal models and patients along with their genetic underpinnings. PMID:25476402
NASA Astrophysics Data System (ADS)
Cowan, Noah; Sefati, Shahin; Neveln, Izaak; Roth, Eatai; Mitchell, Terence; Snyder, James; Maciver, Malcolm; Fortune, Eric
A surprising feature of animal locomotion is that organisms typically produce substantial forces in directions other than what is necessary to move the animal through its environment, such as perpendicular to, or counter to, the direction of travel. The effect of these forces has been difficult to observe because they are often mutually opposing and therefore cancel out. Using a combination of robotic physical modeling, computational modeling, and biological experiments, we discovered that these forces serve an important role: to simplify and enhance the control of locomotion. Specifically, we examined a well-suited model system, the glass knifefish Eigenmannia virescens, which produces mutually opposing forces during a hovering behavior. By systematically varying the locomotor parameters of our biomimetic robot, and measuring the resulting forces and kinematics, we demonstrated that the production and differential control of mutually opposing forces is a strategy that generates passive stabilization while simultaneously enhancing maneuverability. Mutually opposing forces during locomotion are widespread across animal taxa, and these results indicate that such forces can eliminate the tradeoff between stability and maneuverability, thereby simplifying robotic and neural control.
Kolar, Roman
2006-01-01
Millions of animals are used every year in often times extremely painful and distressing scientific procedures. Legislation of animal experimentation in modern societies is based on the supposition that this is ethically acceptable when certain more or less defined formal (e.g. logistical, technical) demands and ethical principles are met. The main parameters in this context correspond to the "3Rs" concept as defined by Russel and Burch in 1959, i.e. that all efforts to replace, reduce and refine experiments must be undertaken. The licensing of animal experiments normally requires an ethical evaluation process, often times undertaken by ethics committees. The serious problems in putting this idea into practice include inter alia unclear conditions and standards for ethical decisions, insufficient management of experiments undertaken for specific (e.g. regulatory) purposes, and conflicts of interest of ethics committees' members. There is an ongoing societal debate about ethical issues of animal use in science. Existing EU legislation on animal experimentation for cosmetics testing is an example of both the public will for setting clear limits to animal experiments and the need to further critically examine other fields and aspects of animal experimentation.
A New Tool to Facilitate Learning Reading for Early Childhood
ERIC Educational Resources Information Center
Puspitasari, Cita; Subiyanto
2017-01-01
This paper proposes a new android application for early childhood learning reading. The description includes a design, development, and an evaluation experiment of an educational game for learning reading on android. Before developing the game, Unified Modeling Language (UML) diagrams, interfaces, animation, narrative or audio were designed.…
Efficacy of a Fescue Seed Extract in Inducing Toxicosis in Cattle
USDA-ARS?s Scientific Manuscript database
Tall fescue (Lolium arundinaceum) toxicosis research is often complicated by a reduction in intake. This study was conducted to develop a repeatable model that would prevent a reduction in intake altering the quantity of alkaloids present in the animal over the course of the experiment. A tall fes...
Habitat loss is the leading cause of decline in wildlife diversity and abundance throughout the world, and understanding its impacts on animal populations is a critical challenge facing conservation biologists. Population viability analysis (PVA) is a commonly used tool for pred...
NASA Technical Reports Server (NTRS)
Rumbaugh, Duane M.; Washburn, David A.; Richardson, W. K.
1996-01-01
The results of several experiments were disseminated during this semiannual period. These publications and presented papers represent investigations of the continuity in psychological processes between monkeys and humans. Thus, each serves to support the animal model of behavior and performance research.
Two Attentional Models of Classical Conditioning: Variations in CS Effectiveness Revisited.
1987-04-03
probability is in closer agreement with empirical expectations, tending to lie on a line with slope equal to 1. Experiments in pigeon autoshaping have shown...Gibbon, J., Farrell, L., Locurto, C.M., Duncan, H., & Terrace, H.S. (1980). Partial reinforcement in autoshaping with pigeons. Animal Learning and
Thiel, A; Etheve, S; Fabian, E; Leeman, W R; Plautz, J R
2015-10-01
Consumer health risk assessment for feed additives is based on the estimated human exposure to the additive that may occur in livestock edible tissues compared to its hazard. We present an approach using alternative methods for consumer health risk assessment. The aim was to use the fewest possible number of animals to estimate its hazard and human exposure without jeopardizing the safety upon use. As an example we selected the feed flavoring substance piperine and applied in silico modeling for residue estimation, results from literature surveys, and Read-Across to assess metabolism in different species. Results were compared to experimental in vitro metabolism data in rat and chicken, and to quantitative analysis of residues' levels from the in vivo situation in livestock. In silico residue modeling showed to be a worst case: the modeled residual levels were considerably higher than the measured residual levels. The in vitro evaluation of livestock versus rodent metabolism revealed no major differences in metabolism between the species. We successfully performed a consumer health risk assessment without performing additional animal experiments. As shown, the use and combination of different alternative methods supports animal welfare consideration and provides future perspective to reducing the number of animals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Impact of Host Age and Parity on Susceptibility to Severe Urinary Tract Infection in a Murine Model
Kline, Kimberly A.; Schwartz, Drew J.; Gilbert, Nicole M.; Lewis, Amanda L.
2014-01-01
The epidemiology and bacteriology of urinary tract infection (UTI) varies across the human lifespan, but the reasons for these differences are poorly understood. Using established monomicrobial and polymicrobial murine UTI models caused by uropathogenic Escherichia coli (UPEC) and/or Group B Streptococcus (GBS), we demonstrate age and parity as inter-related factors contributing to UTI susceptibility. Young nulliparous animals exhibited 10–100-fold higher bacterial titers compared to older animals. In contrast, multiparity was associated with more severe acute cystitis in older animals compared to age-matched nulliparous controls, particularly in the context of polymicrobial infection where UPEC titers were ∼1000-fold higher in the multiparous compared to the nulliparous host. Multiparity was also associated with significantly increased risk of chronic high titer UPEC cystitis and ascending pyelonephritis. Further evidence is provided that the increased UPEC load in multiparous animals required TLR4-signaling. Together, these data strongly suggest that the experience of childbearing fundamentally and permanently changes the urinary tract and its response to pathogens in a manner that increases susceptibility to severe UTI. Moreover, this murine model provides a system for dissecting these and other lifespan-associated risk factors contributing to severe UTI in at-risk groups. PMID:24835885
Animal Study on Primary Dysmenorrhoea Treatment at Different Administration Times
Pu, Bao-Chan; Fang, Ling; Gao, Li-Na; Liu, Rui; Li, Ai-zhu
2015-01-01
The new methods of different administration times for the treatment of primary dysmenorrhea are more widely used clinically; however, no obvious mechanism has been reported. Therefore, an animal model which is closer to clinical evaluation is indispensable. A novel animal experiment with different administration times, based on the mice oestrous cycle, for primary dysmenorrhoea treatment was explored in this study. Mice were randomly divided into two parts (one-cycle and three-cycle part) and each part includes five groups (12 mice per group), namely, Jingqian Zhitong Fang (JQF) 6-day group, JQF last 3-day group, Yuanhu Zhitong tablet group, model control group, and normal control group. According to the one-way ANOVAs, results (writhing reaction, and PGF2α, PGE2, NO, and calcium ions analysis by ELISA) of the JQF cycle group were in accordance with those of JQF last 3-day group. Similarly, results of three-cycle continuous administration were consistent with those of one-cycle treatment. In conclusion, the consistency of the experimental results illustrated that the novel animal model based on mice oestrous cycle with different administration times is more reasonable and feasible and can be used to explore in-depth mechanism of drugs for the treatment of primary dysmenorrhoea in future. PMID:25705236
Hahne, Matthias; Zorn-Kruppa, Michaela; Guzman, Gustavo; Brandner, Johanna M; Haltner-Ukomado, Eleonore; Wätzig, Hermann; Reichl, Stephan
2012-08-01
The use of ophthalmic drugs has increased consistently over the past few decades. Currently, most research is conducted using in vivo and ex vivo animal experiments; however, they have many disadvantages, including ethical concerns, high costs, the questionable extension of animal results to humans, and poor standardization. Although several cell culture-based cornea models have been developed, none have been validated and accepted for general use. In this study, a standardized, three-dimensional model of the human cornea (Hemicornea, HC) based on immortalized human corneal cells and cultivated in serum-free conditions was developed for drug absorption studies and prevalidated using compounds with a wide range of molecular characteristics (sodium fluorescein, rhodamine B, fluorescein isothiocyanate-labeled dextran, aciclovir, bimatoprost, dexamethasone, and timolol maleate). The HC model was independently cultured in three different laboratories, and the intralaboratory and interlaboratory reproducibility was analyzed and compared with the rabbit cornea. This analysis showed that the HC has a barrier in the same range as excised animal corneas, although with a higher reproducibility and lower variability. Because of the demonstrated transferability, the HC represents a promising in vitro alternative to the use of ex vivo tissue and offers a well-defined and standardized system for drug absorption studies. Copyright © 2012 Wiley Periodicals, Inc.
Impact of host age and parity on susceptibility to severe urinary tract infection in a murine model.
Kline, Kimberly A; Schwartz, Drew J; Gilbert, Nicole M; Lewis, Amanda L
2014-01-01
The epidemiology and bacteriology of urinary tract infection (UTI) varies across the human lifespan, but the reasons for these differences are poorly understood. Using established monomicrobial and polymicrobial murine UTI models caused by uropathogenic Escherichia coli (UPEC) and/or Group B Streptococcus (GBS), we demonstrate age and parity as inter-related factors contributing to UTI susceptibility. Young nulliparous animals exhibited 10-100-fold higher bacterial titers compared to older animals. In contrast, multiparity was associated with more severe acute cystitis in older animals compared to age-matched nulliparous controls, particularly in the context of polymicrobial infection where UPEC titers were ∼1000-fold higher in the multiparous compared to the nulliparous host. Multiparity was also associated with significantly increased risk of chronic high titer UPEC cystitis and ascending pyelonephritis. Further evidence is provided that the increased UPEC load in multiparous animals required TLR4-signaling. Together, these data strongly suggest that the experience of childbearing fundamentally and permanently changes the urinary tract and its response to pathogens in a manner that increases susceptibility to severe UTI. Moreover, this murine model provides a system for dissecting these and other lifespan-associated risk factors contributing to severe UTI in at-risk groups.
NASA Technical Reports Server (NTRS)
Almeida, E. A.; Roden, C.; Phillips, J. A.; Globus, R. K.; Searby, N.; Vercoutere, W.; Morey-Holton, E.; Gulimova, V.; Saveliev, S.; Tairbekov, M.;
2006-01-01
Terrestrial organisms exposed to microgravity during spaceflight experience degeneration in bone, muscle, and possibly other tissues that require gravity-mediated mechanical stimulation for normal regenerative growth. In the Gecko experiment aboard Foton M-2, we flew for the first time, five terrestrial Pachydactylus turneri specimens to develop a model of microgravity effects comparable to the newt Pleurodeles waltl, a well-established model organism for spaceflight. These lower vertebrate species have similar body plans and size, are poikilothermic, have tissue regenerative ability, and are adapted to moderate periods of fasting. Furthermore the gecko (Pachydactylus) can also survive prolonged periods without water. In pre-flight control experiments and after a 16-day Foton M-2 spaceflight without food or water, the geckos were recovered and showed no apparent negative health effects. However, detailed analysis of bone mass and architecture by micro Computed Tomography { pCT), showed that both synchronous control and spaceflight animals lost significant amounts of cancellous bone in the distal femur and humerus relative to basal controls. In addition, cell cycle analysis of 30h post-flight liver tissue reveals a shift of DNA content from G2 and S to G1, both in spaceflight and synchronous controls. Together, these results suggest that housing conditions alone induce rapid catabolism of cancellous bone and reduced normal tissue regeneration. Further use of the gecko Puchydactylus turneri as a spaceflight model requires modification of housing conditions, possibly by including water and food, or changing other factors such as eliminating housing stresses to obtain stable bone structure and tissue regeneration during spaceflight experiments.
Modeling the role of environment in addiction.
Caprioli, Daniele; Celentano, Michele; Paolone, Giovanna; Badiani, Aldo
2007-11-15
The aim of this review is to provide an overview of the main types of animal models used to investigate the modulatory role of environment on drug addiction. The environment can alter the responsiveness to addictive drugs in at least three major ways. First, adverse life experiences can make an individual more vulnerable to develop drug addiction or to relapse into drug seeking. Second, neutral environmental cues can acquire, through Pavlovian conditioning, the ability to trigger drug seeking even after long periods of abstinence. Third, the environment immediately surrounding drug taking can alter the behavioral, subjective, and rewarding effects of a given drug, thus influencing the propensity to use the same drug again. We have focused in particular on the results obtained using an animal model we have developed to study the latter type of drug-environment interaction.
Using Bayesian analysis in repeated preclinical in vivo studies for a more effective use of animals.
Walley, Rosalind; Sherington, John; Rastrick, Joe; Detrait, Eric; Hanon, Etienne; Watt, Gillian
2016-05-01
Whilst innovative Bayesian approaches are increasingly used in clinical studies, in the preclinical area Bayesian methods appear to be rarely used in the reporting of pharmacology data. This is particularly surprising in the context of regularly repeated in vivo studies where there is a considerable amount of data from historical control groups, which has potential value. This paper describes our experience with introducing Bayesian analysis for such studies using a Bayesian meta-analytic predictive approach. This leads naturally either to an informative prior for a control group as part of a full Bayesian analysis of the next study or using a predictive distribution to replace a control group entirely. We use quality control charts to illustrate study-to-study variation to the scientists and describe informative priors in terms of their approximate effective numbers of animals. We describe two case studies of animal models: the lipopolysaccharide-induced cytokine release model used in inflammation and the novel object recognition model used to screen cognitive enhancers, both of which show the advantage of a Bayesian approach over the standard frequentist analysis. We conclude that using Bayesian methods in stable repeated in vivo studies can result in a more effective use of animals, either by reducing the total number of animals used or by increasing the precision of key treatment differences. This will lead to clearer results and supports the "3Rs initiative" to Refine, Reduce and Replace animals in research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Domestic Pig (Sus scrofa) as an Animal Model for Experimental Trypanosoma cruzi Infection
Yauri, Verónica; Castro-Sesquen, Yagahira E.; Verastegui, Manuela; Angulo, Noelia; Recuenco, Fernando; Cabello, Ines; Malaga, Edith; Bern, Caryn; Gavidia, Cesar M.; Gilman, Robert H.
2016-01-01
Pigs were infected with a Bolivian strain of Trypanosoma cruzi (genotype I) and evaluated up to 150 days postinoculation (dpi) to determine the use of pigs as an animal model of Chagas disease. Parasitemia was observed in the infected pigs during the acute phase (15–40 dpi). Anti-T.cruzi immunoglobulin M was detected during 15–75 dpi; high levels of anti-T.cruzi immunoglobulin G were detected in all infected pigs from 75 to 150 dpi. Parasitic DNA was observed by western blot (58%, 28/48) and polymerase chain reaction (27%, 13/48) in urine samples, and in the brain (75%, 3/4), spleen (50%, 2/4), and duodenum (25%, 1/4), but no parasitic DNA was found in the heart, colon, and kidney. Parasites were not observed microscopically in tissues samples, but mild inflammation, vasculitis, and congestion was observed in heart, brain, kidney, and spleen. This pig model was useful for the standardization of the urine test because of the higher volume that can be obtained as compared with other small animal models. However, further experiments are required to observe pathological changes characteristic of Chagas disease in humans. PMID:26928841
Memory Effects on Movement Behavior in Animal Foraging
Bracis, Chloe; Gurarie, Eliezer; Van Moorter, Bram; Goodwin, R. Andrew
2015-01-01
An individual’s choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems. PMID:26288228
Memory Effects on Movement Behavior in Animal Foraging.
Bracis, Chloe; Gurarie, Eliezer; Van Moorter, Bram; Goodwin, R Andrew
2015-01-01
An individual's choices are shaped by its experience, a fundamental property of behavior important to understanding complex processes. Learning and memory are observed across many taxa and can drive behaviors, including foraging behavior. To explore the conditions under which memory provides an advantage, we present a continuous-space, continuous-time model of animal movement that incorporates learning and memory. Using simulation models, we evaluate the benefit memory provides across several types of landscapes with variable-quality resources and compare the memory model within a nested hierarchy of simpler models (behavioral switching and random walk). We find that memory almost always leads to improved foraging success, but that this effect is most marked in landscapes containing sparse, contiguous patches of high-value resources that regenerate relatively fast and are located in an otherwise devoid landscape. In these cases, there is a large payoff for finding a resource patch, due to size, value, or locational difficulty. While memory-informed search is difficult to differentiate from other factors using solely movement data, our results suggest that disproportionate spatial use of higher value areas, higher consumption rates, and consumption variability all point to memory influencing the movement direction of animals in certain ecosystems.
Frost, James D; Le, John T; Lee, Chong L; Ballester-Rosado, Carlos; Hrachovy, Richard A; Swann, John W
2015-10-01
Abnormal high frequency oscillations (HFOs) in EEG recordings are thought to be reflections of mechanisms responsible for focal seizure generation in the temporal lobe and neocortex. HFOs have also been recorded in patients and animal models of infantile spasms. If HFOs are important contributors to infantile spasms then anticonvulsant drugs that suppress these seizures should decrease the occurrence of HFOs. In experiments reported here, we used long-term video/EEG recordings with digital sampling rates capable of capturing HFOs. We tested the effectiveness of vigabatrin (VGB) in the TTX animal model of infantile spasms. VGB was found to be quite effective in suppressing spasms. In 3 of 5 animals, spasms ceased after a daily two week treatment. In the other 2 rats, spasm frequency dramatically decreased but gradually increased following treatment cessation. In all animals, hypsarrhythmia was abolished by the last treatment day. As VGB suppressed the frequency of spasms, there was a decrease in the intensity of the behavioral spasms and the duration of the ictal EEG event. Analysis showed that there was a burst of high frequency activity at ictal onset, followed by a later burst of HFOs. VGB was found to selectively suppress the late HFOs of ictal complexes. VGB also suppressed abnormal HFOs recorded during the interictal periods. Thus VGB was found to be effective in suppressing both the generation of spasms and hypsarrhythmia in the TTX model. Vigabatrin also appears to preferentially suppress the generation of abnormal HFOs, thus implicating neocortical HFOs in the infantile spasms disease state. Copyright © 2015 Elsevier Inc. All rights reserved.
Frost, James D.; Le, John T.; Lee, Chong L.; Ballester-Rosado, Carlos; Hrachovy, Richard A.; Swann, John W.
2015-01-01
Abnormal high frequency oscillations (HFOs) in EEG recordings are thought to be reflections of mechanisms responsible for focal seizure generation in the temporal lobe and neocortex. HFOs have also been recorded in patients and animal models of infantile spasms. If HFOs are important contributors to infantile spasms then anticonvulsant drugs that suppress these seizures should decrease the occurrence of HFOs. In experiments reported here, we used long-term video/EEG recordings with digital sampling rates capable of capturing HFOs. We tested the effectiveness of vigabatrin (VGB) in the TTX animal model of infantile spasms. VGB was found to be quite effective in suppressing spasms. In 3 of 5 animals, spasms ceased after a daily two week treatment. In the other 2 rats, spasm frequency dramatically decreased but gradually increased following treatment cessation. In all animals, hypsarrhythmia was abolished by the last treatment day. As VGB suppressed the frequency of spasms, there was a decrease in the intensity of the behavioral spasms and the duration of the ictal EEG event. Analysis showed that there was a burst of high frequency activity at ictal onset, followed by a later burst of HFOs. VGB was found to selectively suppress the late HFOs of ictal complexes. VGB also suppressed abnormal HFOs recorded during the interictal periods. Thus VGB was found to be effective in suppressing both the generation of spasms and hypsarrhythmia in the TTX model. Vigabatrin also appears to preferentially suppress the generation of abnormal HFOs, thus implicating neocortical HFOs in the infantile spasms disease state. PMID:26026423
3D geospatial visualizations: Animation and motion effects on spatial objects
NASA Astrophysics Data System (ADS)
Evangelidis, Konstantinos; Papadopoulos, Theofilos; Papatheodorou, Konstantinos; Mastorokostas, Paris; Hilas, Constantinos
2018-02-01
Digital Elevation Models (DEMs), in combination with high quality raster graphics provide realistic three-dimensional (3D) representations of the globe (virtual globe) and amazing navigation experience over the terrain through earth browsers. In addition, the adoption of interoperable geospatial mark-up languages (e.g. KML) and open programming libraries (Javascript) makes it also possible to create 3D spatial objects and convey on them the sensation of any type of texture by utilizing open 3D representation models (e.g. Collada). One step beyond, by employing WebGL frameworks (e.g. Cesium.js, three.js) animation and motion effects are attributed on 3D models. However, major GIS-based functionalities in combination with all the above mentioned visualization capabilities such as for example animation effects on selected areas of the terrain texture (e.g. sea waves) as well as motion effects on 3D objects moving in dynamically defined georeferenced terrain paths (e.g. the motion of an animal over a hill, or of a big fish in an ocean etc.) are not widely supported at least by open geospatial applications or development frameworks. Towards this we developed and made available to the research community, an open geospatial software application prototype that provides high level capabilities for dynamically creating user defined virtual geospatial worlds populated by selected animated and moving 3D models on user specified locations, paths and areas. At the same time, the generated code may enhance existing open visualization frameworks and programming libraries dealing with 3D simulations, with the geospatial aspect of a virtual world.
Performance-based comparison of neonatal intubation training outcomes: simulator and live animal.
Andreatta, Pamela B; Klotz, Jessica J; Dooley-Hash, Suzanne L; Hauptman, Joe G; Biddinger, Bea; House, Joseph B
2015-02-01
The purpose of this article was to establish psychometric validity evidence for competency assessment instruments and to evaluate the impact of 2 forms of training on the abilities of clinicians to perform neonatal intubation. To inform the development of assessment instruments, we conducted comprehensive task analyses including each performance domain associated with neonatal intubation. Expert review confirmed content validity. Construct validity was established using the instruments to differentiate between the intubation performance abilities of practitioners (N = 294) with variable experience (novice through expert). Training outcomes were evaluated using a quasi-experimental design to evaluate performance differences between 294 subjects randomly assigned to 1 of 2 training groups. The training intervention followed American Heart Association Pediatric Advanced Life Support and Neonatal Resuscitation Program protocols with hands-on practice using either (1) live feline or (2) simulated feline models. Performance assessment data were captured before and directly following the training. All data were analyzed using analysis of variance with repeated measures and statistical significance set at P < .05. Content validity, reliability, and consistency evidence were established for each assessment instrument. Construct validity for each assessment instrument was supported by significantly higher scores for subjects with greater levels of experience, as compared with those with less experience (P = .000). Overall, subjects performed significantly better in each assessment domain, following the training intervention (P = .000). After controlling for experience level, there were no significant differences among the cognitive, performance, and self-efficacy outcomes between clinicians trained with live animal model or simulator model. Analysis of retention scores showed that simulator trained subjects had significantly higher performance scores after 18 weeks (P = .01) and 52 weeks (P = .001) and cognitive scores after 52 weeks (P = .001). The results of this study demonstrate the feasibility of using valid, reliable assessment instruments to assess clinician competency and self-efficacy in the performance of neonatal intubation. We demonstrated the relative equivalency of live animal and simulation-based models as tools to support acquisition of neonatal intubation skills. Retention of performance abilities was greater for subjects trained using the simulator, likely because it afforded greater opportunity for repeated practice. Outcomes in each assessment area were influenced by the previous intubation experience of participants. This suggests that neonatal intubation training programs could be tailored to the level of provider experience to make efficient use of time and educational resources. Future research focusing on the uses of assessment in the applied clinical environment, as well as identification of optimal training cycles for performance retention, is merited.
Webster, John
2014-12-03
Ethical principles governing the conduct of experiments with animals are reviewed, especially those relating to the choice of species. Legislation requires that the potential harm to animals arising from any procedure should be assessed in advance and justified in terms of its possible benefit to society. Potential harms may arise both from the procedures and the quality of the animals' lifetime experience. The conventional approach to species selection is to use animals with the "lowest degree of neurophysiological sensitivity". However; this concept should be applied with extreme caution in the light of new knowledge. The capacity to experience pain may be similar in mammals, birds and fish. The capacity to suffer from fear is governed more by sentience than cognitive ability, so it cannot be assumed that rodents or farm animals suffer less than dogs or primates. I suggest that it is unethical to base the choice of species for animal experimentation simply on the basis that it will cause less distress within society. A set of responsibilities is outlined for each category of moral agent. These include regulators, operators directly concerned with the conduct of scientific experiments and toxicology trials, veterinarians and animal care staff; and society at large.
Yamamoto, Nobuyuki; Miyamoto, Koji; Katoh, Masakazu
2010-08-01
Alcohol-based hand rubs are widely used for infection control in clinical practice. However, it is known that frequent use of the alcohol-based hand rubs may cause skin irritation. To predict the skin irritation in human, animal experiments are quite useful. Especially, the Draize Test using rabbits is suitable for this purpose because their skin is highly sensitive. On the other hand, the development of alternative to animal experiments is important not only from the viewpoint of ethical aspects but also from the efficient research and development. Reconstructed human epidermis (RhE) was developed as a human skin equivalent model in vitro, and has been applied to the evaluation of skin irritation. But the RhE has not been utilized for the evaluation of alcohol-based hand rubs because of the high skin permeability and cytotoxicity of alcohols. The aim of this study was to develop a new method using the RhE in evaluation of skin irritation caused by alcohol-based hand rubs. The authors propose an experimental technique named "Skin model blowing method (SMBM)" consisting of the sequential procedure as follows; applying small amount of testing sample on RhE, blow-dry, post incubation, and cell viability measurement. According to the SMBM, the skin irritation caused by alcohol-based hand rubs could be evaluated under the similar condition of their actual use. It was found that a high correlation existed between the cell viability obtained from SMBM and the skin irritation index in rabbit which had been reported previously.
Ménoret, Séverine; Ouisse, Laure-Hélène; Tesson, Laurent; Delbos, Frédéric; Garnier, Delphine; Remy, Séverine; Usal, Claire; Concordet, Jean-Paul; Giovannangeli, Carine; Chenouard, Vanessa; Brusselle, Lucas; Merieau, Emmanuel; Nerrière-Daguin, Véronique; Duteille, Franck; Bellier-Waast, Frédérique; Fraichard, Alexandre; Nguyen, Tuan H; Anegon, Ignacio
2018-04-24
Immunodeficient mice are invaluable tools to analyze the long-term effects of potentially immunogenic molecules in the absence of adaptive immune responses. Nevertheless, there are models and experimental situations that would beneficiate of larger immunodeficient recipients. Rats are ideally suited to perform experiments in which larger size is needed and are still a small animal model suitable for rodent facilities. Additionally, rats reproduce certain human diseases better than mice, such as ankylosing spondylitis and Duchenne disease and these disease models would greatly benefit of immunodeficient rats to test different immunogenic treatments. We describe the generation of Il2rg-deficient rats and their crossing with previously described Rag1-deficient rats to generate double-mutant RRG animals. As compared to Rag1-deficient rats, Il2rg-deficient rats were more immunodeficient since partially lacked not only T and B cells but also NK cells. RRG animals showed a more profound immunossuppressed phenotype since they displayed undetectable levels of T, B and NK cells. Similarly, all immunoglobulin isotypes in sera were decreased in Rag1 or Il2rg-deficient rats and undetectable in RRG animals. Rag1 or Il2rg-deficient rats rejected allogeneic skin transplants and human tumors whereas RRG animals not only accepted allogeneic rat skin but also xenogeneic human tumors, skin and hepatocytes. Immune humanization of RRG animals was unsuccessful. Thus, immunodeficient RRG animals are useful recipients for long term studies in which immune responses could be an obstacle, including tissue humanization of different tissues.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
Tremorolytic effects of safinamide in animal models of drug-induced parkinsonian tremor.
Podurgiel, Samantha; Collins-Praino, Lyndsey E; Yohn, Samantha; Randall, Patrick A; Roach, Arthur; Lobianco, Christophe; Salamone, John D
2013-04-01
Safinamide is an α-aminoamide derivative that is currently in Phase III clinical trial development as an add-on therapy to levodopa or dopamine agonists for patients with Parkinson's disease. Safinamide is a monoamine oxidase B inhibitor with additional non-dopaminergic actions. The present experiments were performed to evaluate the ability of safinamide to attenuate parkinsonian motor impairments using the tremulous jaw movement model, an animal model of parkinsonian tremor. In rats, tremulous jaw movements can be induced with dopamine (DA) antagonists, DA depletion, and cholinomimetics, and can be reversed by various antiparkinsonian drugs, including L-DOPA, DA agonists, anticholinergics and adenosine A2A antagonists. In these present experiments, tremulous jaw movements were induced with the anticholinesterase galantamine (3.0mg/kg IP), the muscarinic agonist pilocarpine (0.5mg/kg IP), and the dopamine D2 antagonist pimozide (1.0mg/kg IP). Safinamide significantly reduced the number of tremulous jaw movements induced by galantamine, pilocarpine, and pimozide, with consistent effects across all three drugs at a dose range of 5.0-10.0mg/kg. The results of this study support the use of safinamide as a treatment for parkinsonian tremor. Copyright © 2013 Elsevier Inc. All rights reserved.
Peppermint (Mentha piperita) and albendazole against anisakiasis in an animal model.
Romero, Ma Carmen; Navarro, Ma Concepción; Martín-Sánchez, Joaquina; Valero, Adela
2014-12-01
Therapy against anisakiasis requires invasive techniques to extract L3 , and an effective drug against this nematode is needed. The aim of this study was to determine the efficacy of peppermint essential oil (EO) and its main components against the parasite in comparison to albendazole, a drug currently prescribed to treat anisakiasis. We conducted in vitro experiments and studied an experimental model simulating the human infection in Wistar rats. We used polymerase chain reaction restriction fragment length polymorphism to identify A. simplex s.s. and A. pegreffii and determine any differences in their pathogenicity and susceptibility to the treatments. The in vitro and in vivo experiments both showed that the larvicidal activity of peppermint EO, menthol, menthone and menthyl acetate is higher than that of albendazole. Large stomach lesions were observed in 46.7% of the albendazole-treated rats, whereas no gastrointestinal lesions were detected in those treated with peppermint EO, menthol, menthyl acetate or menthone. In this animal model, treatment with peppermint EO or its main components was more effective than was treatment with albendazole. Lesions were more frequently produced by A. simplex s.s. larvae than by A. pegreffii larvae. © 2014 John Wiley & Sons Ltd.
An Artistic Exploration of Inattention Blindness†
Levy, Ellen K.
2012-01-01
An experiment about inattention blindness was conducted within the context of an art exhibition as opposed to a laboratory context in order to investigate the potential of art as a vehicle to study attention and its disorders. The project utilized a flash animation, Stealing Attention, that was modeled after the movie by Simons and Chabris (1999) but with significant experimental differences, involving context and staging, the emotional salience of the objects depicted, and the prior art viewing experience of participants. The study involved two components: observing if viewers watching an animation in a gallery could be distracted from noticing the disappearance of stolen museum antiquities (the targets) by the overlaid flashing images of a card game (the distractors) and then observing whether repetition of the depicted targets throughout the gallery installation could facilitate a re-direction of attention that allowed viewers to perceive the targets not initially noted in the animation. My findings were that, after viewing the entire installation and then re-viewing the animation, 64% of the viewers who did not initially remark on the targets in the animation were then able to see them. The discussion elaborates on these findings and then considers ways in which the implications of inattention blindness paradigms might be more fully rendered by uniting insights from the two disciplines of art and neuroscience than by either alone. PMID:22232588
Dual energy CT at the synchrotron: a piglet model for neurovascular research.
Schültke, Elisabeth; Kelly, Michael E; Nemoz, Christian; Fiedler, Stefan; Ogieglo, Lissa; Crawford, Paul; Paterson, Jessica; Beavis, Cole; Esteve, Francois; Brochard, Thierry; Renier, Michel; Requardt, Herwig; Dallery, Dominique; Le Duc, Geraldine; Meguro, Kotoo
2011-08-01
Although the quality of imaging techniques available for neurovascular angiography in the hospital environment has significantly improved over the last decades, the equipment used for clinical work is not always suited for neurovascular research in animal models. We have previously investigated the suitability of synchrotron-based K-edge digital subtraction angiography (KEDSA) after intravenous injection of iodinated contrast agent for neurovascular angiography in radiography mode in both rabbit and pig models. We now have used the KEDSA technique for the acquisition of three-dimensional images and dual energy CT. All experiments were conducted at the biomedical beamline ID 17 of the European Synchrotron Radiation Facility (ESRF). A solid state germanium (Ge) detector was used for the acquisition of image pairs at 33.0 and 33.3 keV. Three-dimensional images were reconstructed from an image series containing 60 single images taken throughout a full rotation of 360°. CT images were reconstructed from two half-acquisitions with 720 projections each. The small detector field of view was a limiting factor in our experiments. Nevertheless, we were able to show that dual energy CT using the KEDSA technique available at ID 17 is suitable for neurovascular research in animal models. Copyright © 2010. Published by Elsevier Ireland Ltd.
Corrias, A.; Jie, X.; Romero, L.; Bishop, M. J.; Bernabeu, M.; Pueyo, E.; Rodriguez, B.
2010-01-01
In this paper, we illustrate how advanced computational modelling and simulation can be used to investigate drug-induced effects on cardiac electrophysiology and on specific biomarkers of pro-arrhythmic risk. To do so, we first perform a thorough literature review of proposed arrhythmic risk biomarkers from the ionic to the electrocardiogram levels. The review highlights the variety of proposed biomarkers, the complexity of the mechanisms of drug-induced pro-arrhythmia and the existence of significant animal species differences in drug-induced effects on cardiac electrophysiology. Predicting drug-induced pro-arrhythmic risk solely using experiments is challenging both preclinically and clinically, as attested by the rise in the cost of releasing new compounds to the market. Computational modelling and simulation has significantly contributed to the understanding of cardiac electrophysiology and arrhythmias over the last 40 years. In the second part of this paper, we illustrate how state-of-the-art open source computational modelling and simulation tools can be used to simulate multi-scale effects of drug-induced ion channel block in ventricular electrophysiology at the cellular, tissue and whole ventricular levels for different animal species. We believe that the use of computational modelling and simulation in combination with experimental techniques could be a powerful tool for the assessment of drug safety pharmacology. PMID:20478918
NASA Astrophysics Data System (ADS)
Sachs, Helmut G.; Schanze, Thomas; Brunner, Ursula; Sailer, Heiko; Wiesenack, Christoph
2005-03-01
Loss of photoreceptor function is responsible for a variety of blinding diseases, including retinitis pigmentosa. Advances in microtechnology have led to the development of electronic visual prostheses which are currently under investigation for the treatment of human blindness. The design of a subretinal prosthesis requires that the stimulation device should be implantable in the subretinal space of the eye. Current limitations in eye surgery have to be overcome to demonstrate the feasibility of this approach and to determine basic stimulation parameters. Therefore, polyimide film-bound electrodes were implanted in the subretinal space in anaesthetized domestic pigs as a prelude to electrical stimulation in acute experiments. Eight eyes underwent surgery to demonstrate the transscleral implantability of the device. Four of the eight eyes were stimulated electrically. In these four animals the cranium was prepared for epidural recording of evoked visual cortex responses, and stimulation was performed with sequences of current impulses. All eight subretinal implantation procedures were carried out successfully with polyimide film electrodes and each electrode was implanted beneath the outer retina of the posterior pole of the operated eyes. Four eyes were used for neurophysiological testing, involving recordings of epidural cortical responses to light and electrical stimulation. A light stimulus response, which occurred 40 ms after stimulation, proved the integrity of the operated eye. The electrical stimuli occurred about 20 ms after the onset of stimulation. The stimulation threshold was approximately 100 µA. Both the threshold and the cortical responses depended on the correspondence between retinal stimulation and cortical recording sites and on the number of stimulation electrodes used simultaneously. The subretinal implantation of complex stimulation devices using the transscleral procedure with consecutive subretinal stimulation is feasible in acute experiments in an animal model approximating to the situation in humans. The domestic pig is an appropriate animal model for basic testing of subretinal implants. Animal experiments with chronically implanted devices and long-term stimulation are advisable to prepare the field for successful human experiments. The first two authors (H G Sachs and Th Schanze) contributed equally to this paper.
Ding, Ming; Cheng, Liming; Bollen, Peter; Schwarz, Peter; Overgaard, Søren
2010-02-15
Glucocorticoid with low calcium and phosphorus intake induces osteopenia in cancellous bone of sheep. To validate a large animal model for spine fusion and biomaterial research. A variety of ovariectomized animals has been used to study osteoporosis. Most experimental spine fusions were based on normal animals, and there is a great need for suitable large animal models with adequate bone size that closely resemble osteoporosis in humans. Eighteen female skeletal mature sheep were randomly allocated into 3 groups, 6 each. Group 1 (GC-1) received prednisolone (GC) treatment (0.60 mg/kg/day, 5 times weekly) for 7 months. Group 2 (GC-2) received the same treatment as GC-1 for 7 months followed by 3 months without treatment. Group 3 was left untreated and served as the controls. All sheep received restricted diet with low calcium and phosphorus during experiment. After killing the animals, cancellous bone specimens from the vertebra, femurs, and tibias were micro-CT scanned and tested mechanically. Serum biomarkers were determined. In lumbar vertebra, the GC treatment resulted in significant decrease of cancellous bone volume fraction and trabecular thickness, and bone strength. However, the microarchitecture and bone strength of GC-2 recovered to a similar level of the controls. A similar trend of microarchitectural changes was also observed in the distal femur and proximal tibia of both GC treated sheep. The bone formation marker serum-osteocalcin was largely reduced in GC-1 compared to the controls, but recovered with a rebound increase at month 10 in GC-2. The current investigation demonstrates that the changes in microarchitecture and mechanical properties were comparable with those observed in humans after long-term GC treatment. A prolonged GC treatment is needed for a long-term observation to keep osteopenic bone. This model resembles long-term glucocorticoid treated osteoporotic model, and is useful in preclinical studies.
McOmish, Caitlin E; Burrows, Emma L; Hannan, Anthony J
2014-10-01
Psychiatric disorders affect a substantial proportion of the population worldwide. This high prevalence, combined with the chronicity of the disorders and the major social and economic impacts, creates a significant burden. As a result, an important priority is the development of novel and effective interventional strategies for reducing incidence rates and improving outcomes. This review explores the progress that has been made to date in establishing valid animal models of psychiatric disorders, while beginning to unravel the complex factors that may be contributing to the limitations of current methodological approaches. We propose some approaches for optimizing the validity of animal models and developing effective interventions. We use schizophrenia and autism spectrum disorders as examples of disorders for which development of valid preclinical models, and fully effective therapeutics, have proven particularly challenging. However, the conclusions have relevance to various other psychiatric conditions, including depression, anxiety and bipolar disorders. We address the key aspects of construct, face and predictive validity in animal models, incorporating genetic and environmental factors. Our understanding of psychiatric disorders is accelerating exponentially, revealing extraordinary levels of genetic complexity, heterogeneity and pleiotropy. The environmental factors contributing to individual, and multiple, disorders also exhibit breathtaking complexity, requiring systematic analysis to experimentally explore the environmental mediators and modulators which constitute the 'envirome' of each psychiatric disorder. Ultimately, genetic and environmental factors need to be integrated via animal models incorporating the spatiotemporal complexity of gene-environment interactions and experience-dependent plasticity, thus better recapitulating the dynamic nature of brain development, function and dysfunction. © 2014 The British Pharmacological Society.
The Effect of Toxic Cyanobacteria on Human and Animal Health
The study of environmental health typically focuses on human populations. However, companion animals, livestock and wildlife also experience adverse health effects from environmental pollutants. Animals may experience direct exposure to pollutants unlike people in most ambient ex...
Young Children's Interest in Live Animals
ERIC Educational Resources Information Center
LoBue, Vanessa; Bloom Pickard, Megan; Sherman, Kathleen; Axford, Chrystal; DeLoache, Judy S.
2013-01-01
Animals are important stimuli for humans, and for children in particular. In three experiments, we explored children's affinity for animals. In Experiment 1, 11- to 40-month-old children were presented with a free-play session in which they were encouraged to interact with several interesting toys and two live animals--a fish and a hamster.…
Refining animal experiments: the first Brazilian regulation on animal experimentation.
de A e Tréz, Thales
2010-06-01
The very first law on animal experimentation has been approved recently in Brazil, and now is part of a set of the legal instruments that profile the Brazilian government's attitude toward the use of animals in experiments. Law 11794/08 establishes a new legal instrument that will guide new methods of conduct for ethics committees, researchers and representatives of animal protection societies. This comment aims to analyse critically the implications that this law brings to Brazilian reality. The link between it and the Russell and Burch's Three Rs concept is defined, and certain problems are identified. The conclusion is that the body of the law emphasises the refinement of animal experiments, but gives little importance to the principles of reduction and replacement.
Dynamic traversal of high bumps and large gaps by a small legged robot
NASA Astrophysics Data System (ADS)
Gart, Sean; Winey, Nastasia; de La Tijera Obert, Rafael; Li, Chen
Small animals encounter and negotiate diverse obstacles comparable in size or larger than themselves. In recent experiments, we found that cockroaches can dynamically traverse bumps up to 4 times hip height and gaps up to 1 body length. To better understand the physics that governs these locomotor transitions, we studied a small six-legged robot negotiating high bumps and large gaps and compared it to animal observations. We found that the robot was able to traverse bumps as large as 1 hip height and gaps as wide as 0.5 body length. For the bump, the robot often climbed over to traverse when initial body yaw was small, but was often deflected laterally and failed to traverse when initial body yaw was large. A simple locomotion energy landscape model explained these observations. For the gap, traversal probability decreased with gap width, which was well explained by a simple Lagrangian model of a forward-moving rigid body falling over the gap edge. For both the bump and the gap, animal performance far exceeded that of the robot, likely due to their relatively higher running speeds and larger rotational oscillations prior to and during obstacle traversal. Differences between animal and robot obstacle negotiation behaviors revealed that animals used active strategies to overcome potential energy barriers.
West Nile virus surveillance in Europe: moving towards an integrated animal-human-vector approach.
Gossner, Céline M; Marrama, Laurence; Carson, Marianne; Allerberger, Franz; Calistri, Paolo; Dilaveris, Dimitrios; Lecollinet, Sylvie; Morgan, Dilys; Nowotny, Norbert; Paty, Marie-Claire; Pervanidou, Danai; Rizzo, Caterina; Roberts, Helen; Schmoll, Friedrich; Van Bortel, Wim; Gervelmeyer, Andrea
2017-05-04
This article uses the experience of five European countries to review the integrated approaches (human, animal and vector) for surveillance and monitoring of West Nile virus (WNV) at national and European levels. The epidemiological situation of West Nile fever in Europe is heterogeneous. No model of surveillance and monitoring fits all, hence this article merely encourages countries to implement the integrated approach that meets their needs. Integration of surveillance and monitoring activities conducted by the public health authorities, the animal health authorities and the authorities in charge of vector surveillance and control should improve efficiency and save resources by implementing targeted measures. The creation of a formal interagency working group is identified as a crucial step towards integration. Blood safety is a key incentive for public health authorities to allocate sufficient resources for WNV surveillance, while the facts that an effective vaccine is available for horses and that most infected animals remain asymptomatic make the disease a lesser priority for animal health authorities. The examples described here can support other European countries wishing to strengthen their WNV surveillance or preparedness, and also serve as a model for surveillance and monitoring of other (vector-borne) zoonotic infections. This article is copyright of The Authors, 2017.
Peterson, Daniel J.; Gill, W. Drew; Dose, John M.; Hoover, Donald B.; Pauly, James R.; Cummins, Elizabeth D.; Burgess, Katherine C.; Brown, Russell W.
2017-01-01
Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal’s lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1 mg/kg) or saline from postnatal days (P)1–21. Animals were given ip injections of either saline or nicotine (0.5 mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4 mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3 mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not 7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking. PMID:28235586
Rudin, M; Beckmann, N; Sauter, A
1997-01-01
Determination of tissue perfusion rates by MRI bolus tracking methods relies on the central volume principle which states that tissue blood flow is given by the tissue blood volume divided by the mean tracer transit time (MTT). Accurate determination of the MTT requires knowledge of the arterial input function which in MRI experiments is usually not known, especially when using small animals. The problem of unknown arterial input can be circumvented in animal experiments by directly injecting the contrast agent into a feeding artery of the tissue of interest. In the present article the passage of magnetite nanoparticles through the rat cerebral cortex is analyzed after injection into the internal carotid artery. The results are discussed in the framework of linear system theory using a one-compartment model for brain tissue and by using the well characterized gamma-variate function to describe the tissue concentration profile of the contrast agent. The results obtained from the intra-arterial tracer administration experiments are then compared with the commonly used intra-venous injection of the contrast agent in order to estimate the contribution of the peripheral circulation to the MTT values in the latter case. The experiments were analyzed using a two-compartment model and the gamma-variate function. As an application perfusion rates in normal and ischemic cerebral cortex of hypertensive rats were estimated in a model of focal cerebral ischemia. The results indicate that peripheral circulation has a significant influence on the MTT values and thus on the perfusion rates, which cannot be neglected.
Talbot, Prue; Lin, Sabrina
2011-01-01
Numerous studies have repeatedly shown that women who smoke experience problems establishing and maintaining pregnancies, and recent work has further demonstrated that the in utero effects of smoke may not be manifested until months or even years after birth. The purpose of this review is to examine the recent literature dealing with the effects of cigarette smoke on the earliest stages of human prenatal development. Studies in this area have included the use of animal models, patients undergoing in vitro fertilization, and embryonic stem cell models. Events leading to fertilization, such as cumulus expansion, hyperactivation of sperm motility, and oocyte pick-up by the oviduct are all impaired by smoke exposure in animal models. Steps crucial to fertilization such as the acrosome reaction and sperm binding to the zona pellucida are likewise inhibited by cigarette smoke. Preimplantation embryos and stem cells that model embryos show a number of adverse responses to smoke exposure, including poor adhesion to extracellular matrices, diminished survival and proliferation, and increased apoptosis. The current literature demonstrates that the earliest stages of prenatal development are sensitive to smoke exposure and indicates that pregnant women should be advised not to smoke during this time.
Rago, Adam P; Marini, John; Duggan, Michael J; Beagle, John; Runyan, Gem; Sharma, Upma; Peev, Miroslav; King, David R
2015-03-01
We have previously described the hemostatic efficacy of a self-expanding polyurethane foam in lethal venous and arterial hemorrhage models. A number of critical translational questions remain, including prehospital diagnosis of hemorrhage, use with diaphragmatic injury, effects on spontaneous respiration, the role of omentum, and presence of a laparotomy on foam properties. In Experiment 1, diagnostic blood aspiration was attempted through a Veress needle before foam deployment during exsanguination (n = 53). In Experiment 2: a lethal hepatoportal injury/diaphragmatic laceration was created followed by foam (n = 6) or resuscitation (n = 10). In Experiment 3, the foam was deployed in naïve, spontaneously breathing animals (n = 7), and respiration was monitored. In Experiments 4 and 5, the foam was deployed above (n = 6) and below the omentum (n = 6) and in naïve animals (n = 6). Intra-abdominal pressure and organ contact were assessed. In Experiment 1, blood was successfully aspirated from a Veress needle in 70% of lethal iliac artery injuries and 100% of lethal hepatoportal injuries. In Experiment 2, in the presence of a diaphragm injury, between 0 cc and 110 cc of foam was found within the pleural space. Foam treatment resulted in a survival benefit relative to the control group at 1 hour (p = 0.03). In Experiment 3, hypercarbia was observed: mean (SD) Pco2 was 48 (9.4) mm Hg at baseline and 65 (14) mm Hg at 60 minutes. In Experiment 4, abdominal omentum seemed to influence organ contact and transport in two foam deployments. In Experiment 5, there was no difference in intra-abdominal pressure following foam deployment in the absence of a midline laparotomy. In a series of large animal studies, we addressed key translational issues surrounding safe use of foam treatment. These additional data, from diagnosis to deployment, will guide human experiences with foam treatment for massive abdominal exsanguination where no other treatments are available.
A Machine Learning Approach to Automated Gait Analysis for the Noldus Catwalk System.
Frohlich, Holger; Claes, Kasper; De Wolf, Catherine; Van Damme, Xavier; Michel, Anne
2018-05-01
Gait analysis of animal disease models can provide valuable insights into in vivo compound effects and thus help in preclinical drug development. The purpose of this paper is to establish a computational gait analysis approach for the Noldus Catwalk system, in which footprints are automatically captured and stored. We present a - to our knowledge - first machine learning based approach for the Catwalk system, which comprises a step decomposition, definition and extraction of meaningful features, multivariate step sequence alignment, feature selection, and training of different classifiers (gradient boosting machine, random forest, and elastic net). Using animal-wise leave-one-out cross validation we demonstrate that with our method we can reliable separate movement patterns of a putative Parkinson's disease animal model and several control groups. Furthermore, we show that we can predict the time point after and the type of different brain lesions and can even forecast the brain region, where the intervention was applied. We provide an in-depth analysis of the features involved into our classifiers via statistical techniques for model interpretation. A machine learning method for automated analysis of data from the Noldus Catwalk system was established. Our works shows the ability of machine learning to discriminate pharmacologically relevant animal groups based on their walking behavior in a multivariate manner. Further interesting aspects of the approach include the ability to learn from past experiments, improve with more data arriving and to make predictions for single animals in future studies.
A video, text, and speech-driven realistic 3-d virtual head for human-machine interface.
Yu, Jun; Wang, Zeng-Fu
2015-05-01
A multiple inputs-driven realistic facial animation system based on 3-D virtual head for human-machine interface is proposed. The system can be driven independently by video, text, and speech, thus can interact with humans through diverse interfaces. The combination of parameterized model and muscular model is used to obtain a tradeoff between computational efficiency and high realism of 3-D facial animation. The online appearance model is used to track 3-D facial motion from video in the framework of particle filtering, and multiple measurements, i.e., pixel color value of input image and Gabor wavelet coefficient of illumination ratio image, are infused to reduce the influence of lighting and person dependence for the construction of online appearance model. The tri-phone model is used to reduce the computational consumption of visual co-articulation in speech synchronized viseme synthesis without sacrificing any performance. The objective and subjective experiments show that the system is suitable for human-machine interaction.
Modeling Information Content Via Dirichlet-Multinomial Regression Analysis.
Ferrari, Alberto
2017-01-01
Shannon entropy is being increasingly used in biomedical research as an index of complexity and information content in sequences of symbols, e.g. languages, amino acid sequences, DNA methylation patterns and animal vocalizations. Yet, distributional properties of information entropy as a random variable have seldom been the object of study, leading to researchers mainly using linear models or simulation-based analytical approach to assess differences in information content, when entropy is measured repeatedly in different experimental conditions. Here a method to perform inference on entropy in such conditions is proposed. Building on results coming from studies in the field of Bayesian entropy estimation, a symmetric Dirichlet-multinomial regression model, able to deal efficiently with the issue of mean entropy estimation, is formulated. Through a simulation study the model is shown to outperform linear modeling in a vast range of scenarios and to have promising statistical properties. As a practical example, the method is applied to a data set coming from a real experiment on animal communication.
3D animation in three dimensions: the rocky road to the obvious
NASA Astrophysics Data System (ADS)
Murray, Hugh
2006-02-01
That animation created using CG modeling and animation tools is inherently three-dimensional is well known. In the middle to late nineties IMAX Corporation began actively exploring CG animated features as a possible source of economically viable content for its rapidly growing network of stereoscopic IMAX® 3D theatres. The journey from there to the spectacular success of the IMAX® 3D version of The Polar Express is an interesting mix of technical, creative and production challenges. For example 3D animations often have 2D elements and include many sequences that have framing, composition and lens choices that a stereographer would have avoided had 3D been part of the recipe at the outset. And of course the decision to ask for a second set of deliverables from an already stressed production takes nerve. The talk will cover several of these issues and explain why the unique viewing experience enabled by the wideangle geometry of IMAX® 3D theatres makes it worth all the pain.
Modeling human diseases: an education in interactions and interdisciplinary approaches.
Zon, Leonard
2016-06-01
Traditionally, most investigators in the biomedical arena exploit one model system in the course of their careers. Occasionally, an investigator will switch models. The selection of a suitable model system is a crucial step in research design. Factors to consider include the accuracy of the model as a reflection of the human disease under investigation, the numbers of animals needed and ease of husbandry, its physiology and developmental biology, and the ability to apply genetics and harness the model for drug discovery. In my lab, we have primarily used the zebrafish but combined it with other animal models and provided a framework for others to consider the application of developmental biology for therapeutic discovery. Our interdisciplinary approach has led to many insights into human diseases and to the advancement of candidate drugs to clinical trials. Here, I draw on my experiences to highlight the importance of combining multiple models, establishing infrastructure and genetic tools, forming collaborations, and interfacing with the medical community for successful translation of basic findings to the clinic. © 2016. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Toyoda, Masahiro; Nishida, Masahiro; Maruyama, Osamu; Yamane, Takashi; Tsutsui, Tatsuo; Sankai, Yoshiyuki
A monopivot centrifugal blood pump, whose impeller is supported with a pivot bearing and a passive magnetic bearing, is under development for implantable artificial heart. The hemolysis level is less than that of commercial centrifugal pumps and the pump size is as small as 160 mL in volume. To solve a problem of thrombus caused by fluid dynamics, flow visualization experiments and animal experiments have been undertaken. For flow visualization a three-fold scale-up model, high-speed video system, and particle tracking velocimetry software were used. To verify non-thrombogenicity one-week animal experiments were conducted with sheep. The initially observed thrombus around the pivot was removed through unifying the separate washout holes to a small centered hole to induce high shear around the pivot. It was found that the thrombus contours corresponded to the shear rate of 300s-1 for red thrombus and 1300-1700s-1 for white thrombus, respectively. Thus flow visualization technique was found to be a useful tool to predict thrombus location.
Gulin, Julián Ernesto Nicolás; Rocco, Daniela Marisa; García-Bournissen, Facundo
2015-11-01
Publication of accurate and detailed descriptions of methods in research articles involving animals is essential for health scientists to accurately interpret published data, evaluate results and replicate findings. Inadequate reporting of key aspects of experimental design may reduce the impact of studies and could act as a barrier to translation of research findings. Reporting of animal use must be as comprehensive as possible in order to take advantage of every study and every animal used. Animal models are essential to understanding and assessing new chemotherapy candidates for Chagas disease pathology, a widespread parasitic disease with few treatment options currently available. A systematic review was carried out to compare ARRIVE guidelines recommendations with information provided in publications of preclinical studies for new anti-Trypanosoma cruzi compounds. A total of 83 publications were reviewed. Before ARRIVE guidelines, 69% of publications failed to report any macroenvironment information, compared to 57% after ARRIVE publication. Similar proportions were observed when evaluating reporting of microenvironmental information (56% vs. 61%). Also, before ARRIVE guidelines publication, only 13% of papers described animal gender, only 18% specified microbiological status and 13% reported randomized treatment assignment, among other essential information missing or incomplete. Unfortunately, publication of ARRIVE guidelines did not seem to enhance reporting quality, compared to papers appeared before ARRIVE publication. Our results suggest that there is a strong need for the scientific community to improve animal use description, animal models employed, transparent reporting and experiment design to facilitate its transfer and application to the affected human population. Full compliance with ARRIVE guidelines, or similar animal research reporting guidelines, would be an excellent start in this direction.
Gulin, Julián Ernesto Nicolás; Rocco, Daniela Marisa; García-Bournissen, Facundo
2015-01-01
Publication of accurate and detailed descriptions of methods in research articles involving animals is essential for health scientists to accurately interpret published data, evaluate results and replicate findings. Inadequate reporting of key aspects of experimental design may reduce the impact of studies and could act as a barrier to translation of research findings. Reporting of animal use must be as comprehensive as possible in order to take advantage of every study and every animal used. Animal models are essential to understanding and assessing new chemotherapy candidates for Chagas disease pathology, a widespread parasitic disease with few treatment options currently available. A systematic review was carried out to compare ARRIVE guidelines recommendations with information provided in publications of preclinical studies for new anti-Trypanosoma cruzi compounds. A total of 83 publications were reviewed. Before ARRIVE guidelines, 69% of publications failed to report any macroenvironment information, compared to 57% after ARRIVE publication. Similar proportions were observed when evaluating reporting of microenvironmental information (56% vs. 61%). Also, before ARRIVE guidelines publication, only 13% of papers described animal gender, only 18% specified microbiological status and 13% reported randomized treatment assignment, among other essential information missing or incomplete. Unfortunately, publication of ARRIVE guidelines did not seem to enhance reporting quality, compared to papers appeared before ARRIVE publication. Our results suggest that there is a strong need for the scientific community to improve animal use description, animal models employed, transparent reporting and experiment design to facilitate its transfer and application to the affected human population. Full compliance with ARRIVE guidelines, or similar animal research reporting guidelines, would be an excellent start in this direction. PMID:26587586
Assessing the effect, on animal model, of mixture of food additives, on the water balance.
Friedrich, Mariola; Kuchlewska, Magdalena
2013-01-01
The purpose of this study was to determine, on the animal model, the effect of modification of diet composition and administration of selected food additives on water balance in the body. The study was conducted with 48 males and 48 females (separately for each sex) of Wistar strain rats divided into four groups. For drinking, the animals from groups I and III were receiving water, whereas the animals from groups II and IV were administered 5 ml of a solution of selected food additives (potassium nitrate - E 252, sodium nitrite - E 250, benzoic acid - E 210, sorbic acid - E 200, and monosodium glutamate - E 621). Doses of the administered food additives were computed taking into account the average intake by men, expressed per body mass unit. Having drunk the solution, the animals were provided water for drinking. The mixture of selected food additives applied in the experiment was found to facilitate water retention in the body both in the case of both male and female rats, and differences observed between the volume of ingested fluids and the volume of excreted urine were statistically significant in the animals fed the basal diet. The type of feed mixture provided to the animals affected the site of water retention - in the case of animals receiving the basal diet analyses demonstrated a significant increase in water content in the liver tissue, whereas in the animals fed the modified diet water was observed to accumulate in the vascular bed. Taking into account the fact of water retention in the vascular bed, the effects of food additives intake may be more adverse in the case of females.
Calovi, Daniel S.; Litchinko, Alexandra; Lopez, Ugo; Chaté, Hugues; Sire, Clément
2018-01-01
The development of tracking methods for automatically quantifying individual behavior and social interactions in animal groups has open up new perspectives for building quantitative and predictive models of collective behavior. In this work, we combine extensive data analyses with a modeling approach to measure, disentangle, and reconstruct the actual functional form of interactions involved in the coordination of swimming in Rummy-nose tetra (Hemigrammus rhodostomus). This species of fish performs burst-and-coast swimming behavior that consists of sudden heading changes combined with brief accelerations followed by quasi-passive, straight decelerations. We quantify the spontaneous stochastic behavior of a fish and the interactions that govern wall avoidance and the reaction to a neighboring fish, the latter by exploiting general symmetry constraints for the interactions. In contrast with previous experimental works, we find that both attraction and alignment behaviors control the reaction of fish to a neighbor. We then exploit these results to build a model of spontaneous burst-and-coast swimming and interactions of fish, with all parameters being estimated or directly measured from experiments. This model quantitatively reproduces the key features of the motion and spatial distributions observed in experiments with a single fish and with two fish. This demonstrates the power of our method that exploits large amounts of data for disentangling and fully characterizing the interactions that govern collective behaviors in animals groups. PMID:29324853
Neisewander, J L; Peartree, N A; Pentkowski, N S
2012-11-01
Social factors are important determinants of drug dependence and relapse. We reviewed pre-clinical literature examining the role of social experiences from early life through the development of drug dependence and relapse, emphasizing two aspects of these experiences: (1) whether the social interaction is appetitive or aversive and (2) whether the social interaction occurs within or outside of the drug-taking context. The models reviewed include neonatal care, isolation, social defeat, chronic subordination, and prosocial interactions. We review results from these models in regard to effects on self-administration and conditioned place preference established with alcohol, psychostimulants, and opiates. We suggest that in general, when the interactions occur outside of the drug-taking context, prosocial interactions are protective against drug abuse-related behaviors, whereas social stressors facilitate these behaviors. By contrast, positive or negative social interactions occurring within the drug-taking context may interact with other risk factors to enhance or inhibit these behaviors. Despite differences in the nature and complexity of human social behavior compared to other species, the evolving animal literature provides useful models for understanding social influences on drug abuse-related behavior that will allow for research on the behavioral and biological mechanisms involved. The models have contributed to understanding social influences on initiation and maintenance of drug use, but more research is needed to understand social influences on drug relapse.
Tretinoin: a review of the nonclinical developmental toxicology experience.
Kochhar, D M; Christian, M S
1997-03-01
Tretinoin has been thoroughly evaluated for its potential as an embryofetal developmental toxicant. Oral tretinoin produces developmental anomalies in animal models; the minimal teratogenic dose is consistently 2.5 to 10 mg/kg. In contrast, topical application does not induce developmental malformations in laboratory animals. A structurally related compound, isotretinoin, is a potent toxicant in humans and animals; the lowest systemic dose that induces fetal anomalies varies more than 100-fold depending on the model. Oral isotretinoin is a more potent developmental toxicant than oral tretinoin in monkeys. Between-drug differences in the metabolism and transplacental transfer of the two retinoids account for the differences in toxicant potency. Pharmacokinetic studies reveal that absorption of tretinoin from the skin is poor and yields maternal plasma concentrations below the developmentally toxic threshold established after oral administration. Analysis of outcomes of developmental toxicology and pharmacokinetic studies suggests that the human risk of fetal anomalies is negligible after therapeutic application of topical tretinoin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labatiuk, C.W.; Finch, G.R.; Belosevic, M.
1991-11-01
Giardia muris cyst viability after ozonation was compared by using fluorescein diacetate-ethidium bromide staining, the C3H/HeN mouse-G. muris model, and in vitro excystation. Bench-scale batch experiments were conducted under laboratory conditions (pH 6.7, 22C) in ozone-demand-free phosphate buffer. There was a significant difference between fluorogenic staining and infectivity with fluorogenic staining overestimating viability compared with infectivity estimates of viability. This suggests that viable cysts as indicated by fluorogenic dyes may not be able to complete the life cycle and produce an infection. No significant differences between infectivity and excystation and between fluorogenic staining and excystation were detected for inactivations upmore » to 99.9%. Only animal infectivity had the sensitivity to detect inactivations greater than 99.9%. Therefore, the animal model is the best method currently available for detecting high levels of G. muris cyst inactivation.« less
NASA Astrophysics Data System (ADS)
Märk, Julia; Ruschke, Karen; Dortay, Hakan; Schreiber, Isabelle; Sass, Andrea; Qazi, Taimoor; Pumberger, Matthias; Laufer, Jan
2014-03-01
The capability to image stem cells in vivo in small animal models over extended periods of time is important to furthering our understanding of the processes involved in tissue regeneration. Photoacoustic imaging is suited to this application as it can provide high resolution (tens of microns) absorption-based images of superficial tissues (cm depths). However, stem cells are rare, highly migratory, and can divide into more specialised cells. Genetic labelling strategies are therefore advantageous for their visualisation. In this study, methods for the transfection and viral transduction of mesenchymal stem cells with reporter genes for the co-expression of tyrosinase and a fluorescent protein (mCherry). Initial photoacoustic imaging experiments of tyrosinase expressing cells in small animal models of tissue regeneration were also conducted. Lentiviral transduction methods were shown to result in stable expression of tyrosinase and mCherry in mesenchymal stem cells. The results suggest that photoacoustic imaging using reporter genes is suitable for the study of stem cell driven tissue regeneration in small animals.
Fujii, Yutaka; Shirai, Mikiyasu; Inamori, Shuji; Takewa, Yoshiaki; Tatsumi, Eisuke
2015-03-01
Extracorporeal circulation (ECC) is indispensable for cardiac surgery. Despite the fact that ECCcauses damage to blood components and is non-physiologic, its pathophysiology has not been fully elucidated. This is because difficulty in clinical research and animal experiments keeps the knowledge insufficient. Therefore, it is desirable to have a miniature ECC model for small animals, which enables repetitive experiments, to study the mechanism of pathophysiological changes during ECC. We developed a miniature ECC system and applied it to the rat. We measured changes in hemodynamics, blood gases and hemoglobin (Hb) concentration, serum cytokines (TNF-α, IL-6, IL-10), biochemical markers (LDH, AST, ALT), and the wet-to-dry weight (W/D) ratio of the lung for assessing whether the rat ECC model is comparable to the human ECC. The ECC system consisted of a membranous oxygenator (polypropylene, 0.03 m(2)), tubing line (polyvinyl chloride), and roller pump. Priming volume of this system is only 8 ml. Rats (400-450 g) were divided into the SHAM group (n = 7) and the ECC group (n = 7). Blood samples were collected before, 60 and 120 min after initiation of ECC. During ECC, blood pressure and Hb were maintained around 80 mmHg and 10 g/dL, respectively. The levels of the inflammatory and biochemical markers and the W/D ratio were significantly elevated in the ECC group, indicating some organ damages and systemic inflammatory responses during ECC. We successfully established the ECC for the rat. This miniature ECC model could be a useful approach for studying the mechanism of pathophysiology during ECC and basic assessment of the ECC devices.
Predicting impaired extinction of traumatic memory and elevated startle.
Nalloor, Rebecca; Bunting, Kristopher; Vazdarjanova, Almira
2011-01-01
Emotionally traumatic experiences can lead to debilitating anxiety disorders, such as phobias and Post-Traumatic Stress Disorder (PTSD). Exposure to such experiences, however, is not sufficient to induce pathology, as only up to one quarter of people exposed to such events develop PTSD. These statistics, combined with findings that smaller hippocampal size prior to the trauma is associated with higher risk of developing PTSD, suggest that there are pre-disposing factors for such pathology. Because prospective studies in humans are limited and costly, investigating such pre-dispositions, and thus advancing understanding of the genesis of such pathologies, requires the use of animal models where predispositions are identified before the emotional trauma. Most existing animal models are retrospective: they classify subjects as those with or without a PTSD-like phenotype long after experiencing a traumatic event. Attempts to create prospective animal models have been largely unsuccessful. Here we report that individual predispositions to a PTSD-like phenotype, consisting of impaired rate and magnitude of extinction of an emotionally traumatic event coupled with long-lasting elevation of acoustic startle responses, can be revealed following exposure to a mild stressor, but before experiencing emotional trauma. We compare, in rats, the utility of several classification criteria and report that a combination of criteria based on acoustic startle responses and behavior in an anxiogenic environment is a reliable predictor of a PTSD-like phenotype. There are individual predispositions to developing impaired extinction and elevated acoustic startle that can be identified after exposure to a mildly stressful event, which by itself does not induce such a behavioral phenotype. The model presented here is a valuable tool for studying the etiology and pathophysiology of anxiety disorders and provides a platform for testing behavioral and pharmacological interventions that can reduce the probability of developing pathologic behaviors associated with such disorders.
Nitta, Naotaka; Ishiguro, Yasunao; Sasanuma, Hideki; Taniguchi, Nobuyuki; Akiyama, Iwaki
2015-01-01
Acoustic radiation force impulse (ARFI) has recently been used for tissue elasticity measurement and imaging. On the other hand, it is predicted that a rise in temperature occurs. In-situ measurement of temperature rise in animal experiments is important, yet measurement using thermocouples has some problems such as position mismatch of the temperature measuring junction of the thermocouple and the focal point of ultrasound. Therefore, an in-situ measurement system for solving the above problems was developed in this study. The developed system is composed mainly of an ultrasound irradiation unit including a custom-made focused transducer with a through hole for inserting a thin-wire thermocouple, and a temperature measurement unit including the thermocouple. The feasibility of the developed system was evaluated by means of experiments using a tissue-mimicking material (TMM), a TMM containing a bone model or a chicken bone, and an extracted porcine liver. The similarity between the experimental results and the results of simulation using a finite element method (FEM) implied the reasonableness of in-situ temperature rise measured by the developed system. The developed system will become a useful tool for measuring in-situ temperature rise in animal experiments and obtaining findings with respect to the relationship between ultrasound irradiation conditions and in-situ temperature rise.
Luo, Feng; Rustay, Nathan R; Ebert, Ulrich; Hradil, Vincent P; Cole, Todd B; Llano, Daniel A; Mudd, Sarah R; Zhang, Yumin; Fox, Gerard B; Day, Mark
2012-05-01
With 90% of neuroscience clinical trials failing to see efficacy, there is a clear need for the development of disease biomarkers that can improve the ability to predict human Alzheimer's disease (AD) trial outcomes from animal studies. Several lines of evidence, including genetic susceptibility and disease studies, suggest the utility of fluorodeoxyglucose positron emission tomography (FDG-PET) as a potential biomarker with congruency between humans and animal models. For example, early in AD, patients present with decreased glucose metabolism in the entorhinal cortex and several regions of the brain associated with disease pathology and cognitive decline. While several of the commonly used AD mouse models fail to show all the hallmarks of the disease or the limbic to cortical trajectory, there has not been a systematic evaluation of imaging-derived biomarkers across animal models of AD, contrary to what has been achieved in recent years in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (Miller, 2009). If animal AD models were found to mimic endpoints that correlate with the disease onset, progression, and relapse, then the identification of such markers in animal models could afford the field a translational tool to help bridge the preclinical-clinical gap. Using a combination of FDG-PET and functional magnetic resonance imaging (fMRI), we examined the Tg2576 mouse for global and regional measures of brain glucose metabolism at 7 and 19 months of age. In experiment 1 we observed that at younger ages, when some plaque burden and cognitive deficits have been reported, Tg2576 mice showed hypermetabolism as assessed with FDG-PET. This hypermetabolism decreased with age to levels similar to wild type (WT) counterparts such that the 19-month-old transgenic (Tg) mice did not differ from age matched WTs. In experiment 2, using cerebral blood volume (CBV) fMRI, we demonstrated that the hypermetabolism observed in Tg mice at 7 months could not be explained by changes in hemodynamic parameters as no differences were observed when compared with WTs. Taken together, these data identify brain hypermetabolism in Tg2576 mice which cannot be accounted for by changes in vascular compliance. Instead, the hypermetabolism may reflect a neuronal compensatory mechanism. Our data are discussed in the context of disease biomarker identification and target validation, suggesting little or no utility for translational based studies using Tg2576 mice. Copyright © 2012 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-04-01
... application is in effect. 510.301 Section 510.301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... and Reports § 510.301 Records and reports concerning experience with animal feeds bearing or...
Testing flow diversion in animal models: a systematic review.
Fahed, Robert; Raymond, Jean; Ducroux, Célina; Gentric, Jean-Christophe; Salazkin, Igor; Ziegler, Daniela; Gevry, Guylaine; Darsaut, Tim E
2016-04-01
Flow diversion (FD) is increasingly used to treat intracranial aneurysms. We sought to systematically review published studies to assess the quality of reporting and summarize the results of FD in various animal models. Databases were searched to retrieve all animal studies on FD from 2000 to 2015. Extracted data included species and aneurysm models, aneurysm and neck dimensions, type of flow diverter, occlusion rates, and complications. Articles were evaluated using a checklist derived from the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. Forty-two articles reporting the results of FD in nine different aneurysm models were included. The rabbit elastase-induced aneurysm model was the most commonly used, with 3-month occlusion rates of 73.5%, (95%CI [61.9-82.6%]). FD of surgical sidewall aneurysms, constructed in rabbits or canines, resulted in high occlusion rates (100% [65.5-100%]). FD resulted in modest occlusion rates (15.4% [8.9-25.1%]) when tested in six complex canine aneurysm models designed to reproduce more difficult clinical contexts (large necks, bifurcation, or fusiform aneurysms). Adverse events, including branch occlusion, were rarely reported. There were no hemorrhagic complications. Articles complied with 20.8 ± 3.9 of 41 ARRIVE items; only a small number used randomization (3/42 articles [7.1%]) or a control group (13/42 articles [30.9%]). Preclinical studies on FD have shown various results. Occlusion of elastase-induced aneurysms was common after FD. The model is not challenging but standardized in many laboratories. Failures of FD can be reproduced in less standardized but more challenging surgical canine constructions. The quality of reporting could be improved.
PhenoWorld: addressing animal welfare in a new paradigm to house and assess rat behaviour.
Castelhano-Carlos, Magda J; Baumans, Vera; Sousa, Nuno
2017-02-01
The use of animals is essential in biomedical research. The laboratory environment where the animals are housed has a major impact on them throughout their lives and influences the outcome of animal experiments. Therefore, there has been an increased effort in the refinement of laboratory housing conditions which is explicitly reflected in international regulations and recommendations. Since housing conditions affect behaviour and brain function as well as well-being, the validation of an animal model or paradigm to study the brain and central nervous system disorders is not complete without an evaluation of its implication on animal welfare. Here we discuss several aspects of animal welfare, comparing groups of six rats living in the PhenoWorld (PhW), a recently developed and validated paradigm for studying rodent behaviour, with standard-housed animals (in cages of six rats or pair-housed). In this study we present new data on home-cage behaviour showing that PhW animals have a clearer circadian pattern of sleep and social interaction. We conclude that, by promoting good basic health and functioning, together with the performance of natural behaviours, and maintaining animals' control over some of their environment but still keeping some physical and social challenges, the PhW stimulates positive affective states and higher motivation in rats, which might contribute to an increased welfare for animals living in the PhW.
Cardiovascular applications of magnetic resonance imaging
Pflugfelder, Peter W.; Wisenberg, Gerald; Prato, Frank S.
1985-01-01
Magnetic resonance (MR) imaging is a unique imaging modality that is gaining rapid acceptance for a variety of medical indications. Diagnostic information is obtained noninvasively, without the potential hazards of ionizing radiation. The spatial resolution and anatomic detail of MR imaging rival those of other currently available imaging methods. By gating to an electrocardiographic signal cardiac imaging is possible. Since March 1983 the authors have had experience with cardiac MR imaging in both animals and humans. Cardiac anatomy is well shown by this technique, which allows detection and characterization of intracardiac masses, congenital heart disease and anomalies of the great vessels. Myocardial infarction has been detected in both animals and humans without the use of contrast agents, and acute cardiac transplant rejection has been visualized in an animal model. Limitations of MR imaging primarily have been lengthy imaging times and the sensitivity of the images to motion. With further investigation and experience this technique may become useful for studying a wide variety of cardiovascular disorders. ImagesFig. 2Fig. 3Fig. 4Fig. 5Fig. 6 PMID:3904969
Animal evolution during domestication: the domesticated fox as a model.
Trut, Lyudmila; Oskina, Irina; Kharlamova, Anastasiya
2009-03-01
We review the evolution of domestic animals, emphasizing the effect of the earliest steps of domestication on its course. Using the first domesticated species, the dog (Canis familiaris), for illustration, we describe the evolutionary peculiarities during the historical domestication, such as the high level and wide range of diversity. We suggest that the process of earliest domestication via unconscious and later conscious selection of human-defined behavioral traits may accelerate phenotypic variations. The review is based on the results of a long-term experiment designed to reproduce early mammalian domestication in the silver fox (Vulpes vulpes) selected for tameability or amenability to domestication. We describe changes in behavior, morphology and physiology that appeared in the fox during its selection for tameability, which were similar to those observed in the domestic dog. Based on the data of the fox experiment and survey of relevant data, we discuss the developmental, genetic and possible molecular genetic mechanisms underlying these changes. We ascribe the causative role in evolutionary transformation of domestic animals to the selection for behavior and to the neurospecific regulatory genes it affects.
Neuroengineering control and regulation of behavior
NASA Astrophysics Data System (ADS)
Wróbel, A.; Radzewicz, C.; Mankiewicz, L.; Hottowy, P.; Knapska, E.; Konopka, W.; Kublik, E.; Radwańska, K.; Waleszczyk, W. J.; Wójcik, D. K.
2014-11-01
To monitor neuronal circuits involved in emotional modulation of sensory processing we proposed a plan to establish novel research techniques combining recent biological, technical and analytical discoveries. The project was granted by National Science Center and we started to build a new experimental model for studying the selected circuits of genetically marked and behaviorally activated neurons. To achieve this goal we will combine the pioneering, interdisciplinary expertise of four Polish institutions: (i) the Nencki Institute of Experimental Biology (Polish Academy of Sciences) will deliver the expertise on genetically modified mice and rats, mapping of the neuronal circuits activated by behavior, monitoring complex behaviors measured in the IntelliCage system, electrophysiological brain activity recordings by multielectrodes in behaving animals, analysis and modeling of behavioral and electrophysiological data; (ii) the AGH University of Science and Technology (Faculty of Physics and Applied Computer Sciences) will use its experience in high-throughput electronics to build multichannel systems for recording the brain activity of behaving animals; (iii) the University of Warsaw (Faculty of Physics) and (iv) the Center for Theoretical Physics (Polish Academy of Sciences) will construct optoelectronic device for remote control of opto-animals produced in the Nencki Institute based on the unique experience in laser sources, studies of light propagation and its interaction with condensed media, wireless medical robotic systems, fast readout opto-electronics with control software and micromechanics.
Tar, Moses; Cabrales, Pedro; Navati, Mahantesh; Adler, Brandon; Nacharaju, Parimala; Friedman, Adam J; Friedman, Joel; Davies, Kelvin P
2014-12-01
Patients undergoing radical prostatectomy (RP) suffer from erectile dysfunction (ED) refractory to phosphodiesterase 5 inhibitors, which act downstream of cavernous nerve (CN)-mediated release of nitric oxide (NO). Direct delivery of NO to the penis could potentially circumvent this limitation. This study aimed to determine if topically applied NO-releasing nanoparticles (NO-NPs) could elicit erections in a rat model of RP through increased blood flow. Twenty-six Sprague Dawley rats underwent bilateral transection of the CN. One week later, NO-NPs were applied topically to the penile shaft in dimethylsulfoxide (DMSO) gel (10 animals) or coconut oil (6 animals). Control animals were treated with empty NPs. Erectile function was determined through the intracorporal pressure/blood pressure ratio (ICP/BP). The effect of the NO-NPs on blood flow was determined using a hamster dorsal window chamber. Animals were investigated for spontaneous erections, onset and duration of erectile response, and basal ICP/BP ratio. Microcirculatory blood flow was determined through measurements of arteriolar and venular diameter and red blood cell velocity. Eight of 10 animals treated with NO-NPs suspended in DMSO gel had significant increases in basal ICP/BP, and 6 out of these 10 animals demonstrated spontaneous erections of approximately 1 minute in duration. Time to onset of spontaneous erections ranged from 5 to 37 minutes, and they occurred for at least 45 minutes. Similar results were observed with NO-NPs applied in coconut oil. No erectile response was observed in control animal models treated with empty NPs. The hamster dorsal window chamber experiment demonstrated that NO-NPs applied as a suspension in coconut oil caused a significant increase in the microcirculatory blood flow, sustained over 90 minutes. Topically applied NO-NPs induced spontaneous erections and increased basal ICP in an animal model of RP. These effects are most likely due to increased microcirculatory blood flow. These characteristics suggest that NO-NPs would be useful in penile rehabilitation of patients following RP. © 2014 International Society for Sexual Medicine.
Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging
NASA Astrophysics Data System (ADS)
Donnelley, Martin; Parsons, David; Morgan, Kaye; Siu, Karen
2010-07-01
Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mm×1.2 mm at a pixel resolution of 0.45 μm and are performed with live, intact, anaesthetized mice. There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, and deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging. Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the Imaging and Medical Beamline at the Australian Synchrotron. Overcoming these challenges has permitted increasingly sophisticated imaging of animals with synchrotron X-rays, and we expect a bright future for these techniques.
Animals In Synchrotrons: Overcoming Challenges For High-Resolution, Live, Small-Animal Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelley, Martin; Parsons, David; Women's and Children's Health Research Institute, Adelaide, South Australia
Physiological studies in small animals can be complicated, but the complexity is increased dramatically when performing live-animal synchrotron X-ray imaging studies. Our group has extensive experience in high-resolution live-animal imaging at the Japanese SPring-8 synchrotron, primarily examining airways in two-dimensions. These experiments normally image an area of 1.8 mmx1.2 mm at a pixel resolution of 0.45 {mu}m and are performed with live, intact, anaesthetized mice.There are unique challenges in this experimental setting. Importantly, experiments must be performed in an isolated imaging hutch not specifically designed for small-animal imaging. This requires equipment adapted to remotely monitor animals, maintain their anesthesia, andmore » deliver test substances while collecting images. The horizontal synchrotron X-ray beam has a fixed location and orientation that limits experimental flexibility. The extremely high resolution makes locating anatomical regions-of-interest slow and can result in a high radiation dose, and at this level of magnification small animal movements produce motion-artifacts that can render acquired images unusable. Here we describe our experimental techniques and how we have overcome several challenges involved in performing live mouse synchrotron imaging.Experiments have tested different mouse strains, with hairless strains minimizing overlying skin and hair artifacts. Different anesthetics have also be trialed due to the limited choices available at SPring-8. Tracheal-intubation methods have been refined and controlled-ventilation is now possible using a specialized small-animal ventilator. With appropriate animal restraint and respiratory-gating, motion-artifacts have been minimized. The animal orientation (supine vs. head-high) also appears to affect animal physiology, and can alter image quality. Our techniques and image quality at SPring-8 have dramatically improved and in the near future we plan to translate this experience to the Imaging and Medical Beamline at the Australian Synchrotron.Overcoming these challenges has permitted increasingly sophisticated imaging of animals with synchrotron X-rays, and we expect a bright future for these techniques.« less
ERIC Educational Resources Information Center
Chapman, Dane M.; And Others
Three critical procedural skills in emergency medicine were evaluated using three assessment modalities--written, computer, and animal model. The effects of computer practice and previous procedure experience on skill competence were also examined in an experimental sequential assessment design. Subjects were six medical students, six residents,…
NASA Technical Reports Server (NTRS)
Rumbaugh, Duane M.; Washburn, David A.; Richardson, W. K.
1995-01-01
The results of several experiments were disseminated during this semiannual period. This publication and each of these presented papers represent investigations of the continuity in psychological processes between monkeys and humans. Thus, each serves to support the animal model of behavior and performance research.
Exploring Quarks, Gluons and the Higgs Boson
ERIC Educational Resources Information Center
Johansson, K. Erik
2013-01-01
With real particle collision data available on the web, the amazing dynamics of the fundamental particles of the standard model can be explored in classrooms. Complementing the events from the ATLAS experiment with animations of the fundamental processes on the quark and gluon level makes it possible to better understand the invisible world of…
Turbulence in the trachea and its effect on micro-particle deposition
NASA Astrophysics Data System (ADS)
Geisler, Taylor; Shaqfeh, Eric; Iaccarino, Gianluca
2017-11-01
The health effects of inhaled aerosols are often predicted by extrapolating experimental data taken using nonhuman primate animal studies to humans. While the existence of a laminar-to-turbulent flow transition in the human larynx is widely reported in the literature, it was previously unknown, to our knowledge, whether a similar flow behavior exists in the airways of rhesus monkeys. By using Large Eddy Simulation (LES) in the CT-based airway models of rhesus monkeys we demonstrate the existence of such a flow transition at elevated inspiratory flow rates. The geometries comprise the nasal cavity, larynx, and trachea. We observe turbulence intensity values that peak after the larynx and decay throughout the trachea similar to that of humans. Deposition of inhaled micro-particles is also computed and validated using experiments in 3D-printed model airways with excellent agreement. Deposition in the turbulent regions of the airway (larynx and trachea) is shown to be substantial at elevated flow rates and to depend on the flow unsteadiness. These results provide insight into the fate of inhaled particles in rhesus monkey animal experiments and their connection to human inhalation.
Integrated, multi-scale, spatial-temporal cell biology--A next step in the post genomic era.
Horwitz, Rick
2016-03-01
New microscopic approaches, high-throughput imaging, and gene editing promise major new insights into cellular behaviors. When coupled with genomic and other 'omic information and "mined" for correlations and associations, a new breed of powerful and useful cellular models should emerge. These top down, coarse-grained, and statistical models, in turn, can be used to form hypotheses merging with fine-grained, bottom up mechanistic studies and models that are the back bone of cell biology. The goal of the Allen Institute for Cell Science is to develop the top down approach by developing a high throughput microscopy pipeline that is integrated with modeling, using gene edited hiPS cell lines in various physiological and pathological contexts. The output of these experiments and models will be an "animated" cell, capable of integrating and analyzing image data generated from experiments and models. Copyright © 2015 Elsevier Inc. All rights reserved.
Retrospective revaluation in sequential decision making: a tale of two systems.
Gershman, Samuel J; Markman, Arthur B; Otto, A Ross
2014-02-01
Recent computational theories of decision making in humans and animals have portrayed 2 systems locked in a battle for control of behavior. One system--variously termed model-free or habitual--favors actions that have previously led to reward, whereas a second--called the model-based or goal-directed system--favors actions that causally lead to reward according to the agent's internal model of the environment. Some evidence suggests that control can be shifted between these systems using neural or behavioral manipulations, but other evidence suggests that the systems are more intertwined than a competitive account would imply. In 4 behavioral experiments, using a retrospective revaluation design and a cognitive load manipulation, we show that human decisions are more consistent with a cooperative architecture in which the model-free system controls behavior, whereas the model-based system trains the model-free system by replaying and simulating experience.
NASA Astrophysics Data System (ADS)
Jindra, Nichole M.; Imholte, Michelle L.
2008-02-01
The Yucatan mini-pig (Sus scrofa) is one of the most widely used animal models for skin damage studies because it shares many of the same physical properties as human skin. While the Yucatan is ideal for laser exposure studies using a large spot size, its size and cost are excessive for projects using smaller beams. This experiment performed histological analysis of skin biopsies from pigmented Hairless Guinea Pigs (Cavia porcellus) for epidermal thickness and melanin concentration. That data was then compared to similar information on the Yucatan.
Quinine-induced tinnitus in rats.
Jastreboff, P J; Brennan, J F; Sasaki, C T
1991-10-01
Quinine ingestion reportedly induces tinnitus in humans. To expand our salicylate-based animal model of tinnitus, a series of conditioned suppression experiments was performed on 54 male-pigmented rats using quinine injections to induce tinnitus. Quinine induced changes in both the extent of suppression and recovery of licking, which followed a pattern that paralleled those produced after salicylate injections, and which may be interpreted as the result of tinnitus perception in animals. These changes depended on the dose and time schedule of quinine administration. Additionally, the calcium channel blocker, nimodipine, abolished the quinine-induced effect in a dose-dependent manner.
Perception of mind and dehumanization: Human, animal, or machine?
Morera, María D; Quiles, María N; Correa, Ana D; Delgado, Naira; Leyens, Jacques-Philippe
2016-08-02
Dehumanization is reached through several approaches, including the attribute-based model of mind perception and the metaphor-based model of dehumanization. We performed two studies to find different (de)humanized images for three targets: Professional people, Evil people, and Lowest of the low. In Study 1, we examined dimensions of mind, expecting the last two categories to be dehumanized through denial of agency (Lowest of the low) or experience (Evil people), compared with humanized targets (Professional people). Study 2 aimed to distinguish these targets using metaphors. We predicted that Evil and Lowest of the low targets would suffer mechanistic and animalistic dehumanization, respectively; our predictions were confirmed, but the metaphor-based model nuanced these results: animalistic and mechanistic dehumanization were shown as overlapping rather than independent. Evil persons were perceived as "killing machines" and "predators." Finally, Lowest of the low were not animalized but considered human beings. We discuss possible interpretations. © 2016 International Union of Psychological Science.
Mylonakis, Eleftherios; Casadevall, Arturo; Ausubel, Frederick M
2007-07-27
Experiments with insects, protozoa, nematodes, and slime molds have recently come to the forefront in the study of host-fungal interactions. Many of the virulence factors required for pathogenicity in mammals are also important for fungal survival during interactions with non-vertebrate hosts, suggesting that fungal virulence may have evolved, and been maintained, as a countermeasure to environmental predation by amoebae and nematodes and other small non-vertebrates that feed on microorganisms. Host innate immune responses are also broadly conserved across many phyla. The study of the interaction between invertebrate model hosts and pathogenic fungi therefore provides insights into the mechanisms underlying pathogen virulence and host immunity, and complements the use of mammalian models by enabling whole-animal high throughput infection assays. This review aims to assist researchers in identifying appropriate invertebrate systems for the study of particular aspects of fungal pathogenesis.
Brain systems underlying susceptibility to helplessness and depression.
Shumake, J; Gonzalez-Lima, F
2003-09-01
There has been a relative lack of research into the neurobiological predispositions that confer vulnerability to depression. This article reviews functional brain mappings from a genetic animal model, the congenitally helpless rat, which is predisposed to develop learned helplessness. Neurometabolic findings from this model are integrated with the neuroscientific literature from other animal models of depression as well as depressed humans. Changes in four major brain systems are suggested to underlie susceptibility to helplessness and possibly depression: (a) an unbalanced prefrontal-cingulate cortical system, (b) a dissociated hypothalamic-pituitary-adrenal axis, (c) a dissociated septal-hippocampal system, and (d) a hypoactive brain reward system, as exemplified by a hypermetabolic habenula-interpeduncular nucleus pathway and a hypometabolic ventral tegmental area-striatum pathway. Functional interconnections and causal relationships among these systems are considered and further experiments are suggested, with theoretical attention to how an abnormality in any one system could affect the others.
Infectious disease transmission and contact networks in wildlife and livestock.
Craft, Meggan E
2015-05-26
The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Infectious disease transmission and contact networks in wildlife and livestock
Craft, Meggan E.
2015-01-01
The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. PMID:25870393
Alterations of reward mechanisms in bulbectomised rats.
Grecksch, Gisela; Becker, Axel
2015-06-01
The positive association between alcoholism and depression is a common clinical observation. We investigated the relationship between depression and reward mechanisms using a validated animal model for depressive-like behaviour, the olfactory bulbectomy in rats. The effects of bilateral olfactory bulbectomy on reward mechanisms were studied in two different experimental paradigms - the voluntary self-administration of ethanol and the conditioned place preference to alcohol injection and compared to the effects of ethanol on locomotor activity and body core temperature. The voluntary ethanol intake was increased significantly in bulbectomised rats in a drinking experiment and also after a period of abstinence. Conditioned place preference (CPP) was induced in all animals. However, bulbectomised rats needed a higher dose of alcohol to produce CPP. The sedative effect of ethanol on locomotor activity was reduced in bulbectomised animals. Measurement of body temperature revealed a dose-dependent hypothermic effect of ethanol in both groups. These results suggest that the reward mechanisms may be altered in this animal model as a common phenomenon associated with depression. Furthermore, they support the hypothesis that the addictive and/or rewarding properties of some drugs of abuse may be modified in depression. Copyright © 2015 Elsevier B.V. All rights reserved.
An attentional bias for LEGO® people using a change detection task: Are LEGO® people animate?
LaPointe, Mitchell R P; Cullen, Rachael; Baltaretu, Bianca; Campos, Melissa; Michalski, Natalie; Sri Satgunarajah, Suja; Cadieux, Michelle L; Pachai, Matthew V; Shore, David I
2016-09-01
Animate objects have been shown to elicit attentional priority in a change detection task. This benefit has been seen for both human and nonhuman animals compared with inanimate objects. One explanation for these results has been based on the importance animate objects have served over the course of our species' history. In the present set of experiments, we present stimuli, which could be perceived as animate, but with which our distant ancestors would have had no experience, and natural selection could have no direct pressure on their prioritization. In the first experiment, we compared LEGO® "people" with LEGO "nonpeople" in a change detection task. In a second experiment, we attempt to control the heterogeneity of the nonanimate objects by using LEGO blocks, matched in size and colour to LEGO people. In the third experiment, we occlude the faces of the LEGO people to control for facial pattern recognition. In the final 2 experiments, we attempt to obscure high-level categorical information processing of the stimuli by inverting and blurring the scenes. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
What, if anything, can monkeys tell us about human amnesia when they can’t say anything at all?
Murray, Elisabeth A.; Wise, Steven P.
2010-01-01
Despite a half century of development, the orthodox monkey model of human amnesia needs improvement, in part because of two problems inherent in animal models of advanced human cognition. First, animal models are perforce comparative, but the principles of comparative and evolutionary biology have not featured prominently in developing the orthodox model. Second, no one understands the relationship between human consciousness and cognition in other animals, but the orthodox model implicitly assumes a close correspondence. If we treat these two difficulties with the deference they deserve, monkeys can tell us a lot about human amnesia and memory. Three future contributions seem most likely: (1) an improved monkey model, one refocused on the hippocampus rather than on the medial temporal lobe as a whole; (2) a better understanding of cortical areas unique to primates, especially the granular prefrontal cortex; and (3), taking the two together, insight into prefrontal-hippocampal interactions. We propose that interactions among the granular prefrontal areas create the kind of cross-domain, analogical and self-referential knowledge that underlies advanced cognition in modern humans. When these products of frontal-lobe function interact with the hippocampus, and its ancestral function in navigation, what emerges is the human ability to embed ourselves in scenarios — real and imagined, self-generated and received — thereby creating a coherent, conscious life experience. PMID:20097215
McDonald, Shelby Elaine; Collins, Elizabeth A; Maternick, Anna; Nicotera, Nicole; Graham-Bermann, Sandra; Ascione, Frank R; Williams, James Herbert
2017-01-01
Children living in households where intimate partner violence (IPV) is present are at increased risk of being exposed to concomitant maltreatment of companion animals. Recent research suggests that childhood exposure to maltreatment of companion animals is associated with compromised socioemotional well-being in childhood and adulthood. To date, there is a dearth of qualitative research examining how children experience animal maltreatment in the context of IPV. The current qualitative study explored the following research question in an ethnically diverse sample of IPV survivors: How do maternal caregivers convey the ways in which their children experience animal maltreatment in IPV-affected households? Sixty-five women with at least one child (age 7-12 years) were recruited from domestic violence agencies and described their child(ren)'s experiences of animal maltreatment in the home. Template analysis was used to analyze interview data (KALPHA = .90). Three themes emerged related to children's experiences of animal maltreatment: (a) direct exposure to animal maltreatment and related threats, (b) emotional and behavioral responses to animal maltreatment exposure, and (c) animal maltreatment as coercive control of the child. Results suggest that children's exposure to animal maltreatment is multifaceted and may exacerbate children's risk of negative psychosocial outcomes in the context of co-occurring IPV. Intervention programs designed to assist children exposed to IPV should consider the extent of children's awareness of the abuse of their pets and their strong and deleterious reactions to it.
ASAS centennial paper: Farm animal welfare science in the United States.
Johnson, A K
2009-06-01
Compared with the more traditional sciences of nutrition, physiology, and reproduction, the acceptance of animal welfare science in its own right is still relatively new. Seven colleagues, who had an average of 10 yr experience with beef (n = 5), swine (n = 5), dairy (n = 2), poultry (n = 1), and sheep (n = 1) were asked several questions on the opportunities and challenges facing the field. The information collected was pooled for anonymity. General challenges identified by the group were (1) are we making progress and how can this be defined, (2) demand for information has outpaced the science, and (3) pressures from stakeholders. Solutions were (1) to continue providing sound science that has been validated, measured objectively, and is reliable; and (2) to continue to have animal science and veterinary medicine departments employ faculty trained in farm animal welfare. Highlights for the future were willingness for animal welfare scientists to work across disciplines and across departments, within the same institution, and enthusiastically across state lines, and expansion of new teaching models. In conclusion, new and innovative tools, personalities, and dedication to the field of animal welfare will continue to provide scientific information and direction for farm animal welfare science.
Chukwuma, Chika Ifeanyi; Mopuri, Ramgopal; Nagiah, Savania; Chuturgoon, Anil Amichund; Islam, Md Shahidul
2017-08-02
Studies have reported that erythritol, a low or non-glycemic sugar alcohol possesses anti-hyperglycemic and anti-diabetic potentials but the underlying mode of actions is not clear. This study investigated the underlying mode of actions behind the anti-hyperglycemic and anti-diabetic potentials of erythritol using different experimental models (experiment 1, 2 and 3). Experiment 1 examined the effects of increasing concentrations (2.5-20%) of erythritol on glucose absorption and uptake in isolated rat jejunum and psoas muscle, respectively. Experiments 2 and 3 examined the effects of a single oral dose of erythritol (1 g/kg bw) on intestinal glucose absorption, gastric emptying and postprandial blood glucose increase, glucose tolerance, serum insulin level, muscle/liver hexokinase and liver glucose-6 phosphatase activities, liver and muscle glycogen contents and mRNA and protein expression of muscle Glut-4 and IRS-1 in normal and type 2 diabetic animals. Experiment 1 revealed that erythritol dose dependently enhanced muscle glucose ex vivo. Experiment 2 demonstrated that erythritol feeding delayed gastric emptying and reduced small intestinal glucose absorption as well as postprandial blood glucose rise, especially in diabetic animals. Experiment 3 showed that erythritol feeding improved glucose tolerance, muscle/liver hexokinase and liver glucose-6 phosphatase activities, glycogen storage and also modulated expression of muscle Glut-4 and IRS-1 in diabetic animals. Data suggest that erythritol may exert anti-hyperglycemic effects not only via reducing small intestinal glucose absorption, but also by increasing muscle glucose uptake, improving glucose metabolic enzymes activity and modulating muscle Glut-4 and IRS-1 mRNA and protein expression. Hence, erythritol may be a useful dietary supplement for managing hyperglycemia, particularly for T2D.
Drea, Christine M
2006-03-01
Learning commonly refers to the modification of behavior through experience, whereby an animal gains information about stimulus-response contingencies from interacting with its physical environment. Social learning, on the other hand, occurs when the same information originates, not from the animal's personal experience, but from the actions of others. Socially biased learning is the 'collective outcome of interacting physical, social, and individual factors' [D. Fragaszy, E. Visalberghi, Learn. Behav. 32 (2004) 24-35.] (see p. 24). Mounting interest in animal social learning has brought with it certain innovations in animal testing procedures. Variants of the observer-demonstrator and cooperation paradigms, for instance, have been used widely in captive settings to examine the transmission or coordination of behavior, respectively, between two animals. Relatively few studies, however, have examined social learning in more complex group settings and even fewer have manipulated the social environment to empirically test the effect of group dynamics on problem solving. The present paper outlines procedures for group testing captive non-human primates, in spacious arenas, to evaluate the social modulation of learning and performance. These methods are illustrated in the context of (1) naturalistic social foraging problems, modeled after traditional visual discrimination paradigms, (2) response to novel objects and novel extractive foraging tasks, and (3) cooperative problem solving. Each example showcases the benefits of experimentally manipulating social context to compare an animal's performance in intact groups (or even pairs) against its performance under different social circumstances. Broader application of group testing procedures and manipulation of group composition promise to provide meaningful insight into socially biased learning.
Chronic and acute effects of stress on energy balance: are there appropriate animal models?
2014-01-01
Stress activates multiple neural and endocrine systems to allow an animal to respond to and survive in a threatening environment. The corticotropin-releasing factor system is a primary initiator of this integrated response, which includes activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal (HPA) axis. The energetic response to acute stress is determined by the nature and severity of the stressor, but a typical response to an acute stressor is inhibition of food intake, increased heat production, and increased activity with sustained changes in body weight, behavior, and HPA reactivity. The effect of chronic psychological stress is more variable. In humans, chronic stress may cause weight gain in restrained eaters who show increased HPA reactivity to acute stress. This phenotype is difficult to replicate in rodent models where chronic psychological stress is more likely to cause weight loss than weight gain. An exception may be hamsters subjected to repeated bouts of social defeat or foot shock, but the data are limited. Recent reports on the food intake and body composition of subordinate members of group-housed female monkeys indicate that these animals have a similar phenotype to human stress-induced eaters, but there are a limited number of investigators with access to the model. Few stress experiments focus on energy balance, but more information on the phenotype of both humans and animal models during and after exposure to acute or chronic stress may provide novel insight into mechanisms that normally control body weight. PMID:25519732
Levetiracetam: the preclinical profile of a new class of antiepileptic drugs?
Klitgaard, H
2001-01-01
Levetiracetam is a new antiepileptic drug (AED) devoid of anticonvulsant activity in the two classic screening models for AEDs, the maximal electroshock and pentylenetetrazol seizure tests in both mice and rats. This contrasts a potent seizure suppression in genetic and kindled mice and rats and against chemoconvulsants inducing partial seizures in rats. The highly selective action in "epileptic" animals distinguishes levetiracetam from classic and other new AEDs that have nearly equipotent effects in normal and "epileptic" animals. Levetiracetam induces minor behavioral alterations in normal and in kindled mice and rats. This results in an unusually high safety margin in animal models reflecting both partial and primary generalized epilepsy. Furthermore, experiments in the kindling model suggest that levetiracetam may possess antiepileptogenic properties due to a potent ability to prevent the development of kindling in mice and rats at doses devoid of adverse effects. Electrophysiologic recordings from different experimental models suggest that levetiracetam exerts a selective action against abnormal patterns of neuronal activity, which probably explains its selective protection in epileptic animals and its unique tolerability. This effect appears to derive from one or more novel mechanisms of action that do not involve a conventional interaction with traditional drug targets implicated in the modulation of inhibitory and excitatory neurotransmission. Instead, ligand-binding assays have disclosed a brain-specific binding site for levetiracetam. These studies reveal a unique preclinical profile of levetiracetam, distinct from that of all known AEDs, suggesting that levetiracetam could represent the first agent in a new class of AEDs.
Laboratory animals and the art of empathy
Thomas, D
2005-01-01
Consistency is the hallmark of a coherent ethical philosophy. When considering the morality of particular behaviour, one should look to identify comparable situations and test one's approach to the former against one's approach to the latter. The obvious comparator for animal experiments is non-consensual experiments on people. In both cases, suffering and perhaps death is knowingly caused to the victim, the intended beneficiary is someone else, and the victim does not consent. Animals suffer just as people do. As we condemn non-consensual experiments on people, we should, if we are to be consistent, condemn non-consensual experiments on animals. The alleged differences between the two practices often put forward do not stand up to scrutiny. The best guide to ethical behaviour is empathy—putting oneself in the potential victim's shoes. Again to be consistent, we should empathise with all who may be adversely affected by our behaviour. By this yardstick, too, animal experiments fail the ethical test. PMID:15800357
Modelling ammonia volatilization from animal slurry applied with trail hoses to cereals
NASA Astrophysics Data System (ADS)
Sommer, S. G.; Olesen, J. E.
In Europe ammonia (NH 3), volatilization from animal manure is the major source of NH 3 in the atmosphere. From March to July 1997, NH 3 volatilization from trail hose applied slurry was measured for seven days after application in six experiments. A statistical analysis of data showed that NH 3 volatilization rate during the first 4-5 h after slurry application increased significantly ( P<5%) with wind speed and soil slurry surface water content. NH 3 volatilization in the six measuring periods during the experiments increased significantly ( P<5%) with relative water content of the soil slurry surface, global radiation, pH, and decreased with increasing rainfall during each measuring period and rainfall accumulated from onset of each experiment. A mechanistic model of NH 3 volatilization was developed. Model inputs are climate variables, soil characteristics and total ammoniacal nitrogen (TAN=ammonium+ammonia) in the soil surface layer. A pH submodel for predicting pH at the surface of the soil slurry liquid was developed. The measured NH 3 volatilization was compared with model simulations. The simulated results explained 27% of the variation in measured NH 3 volatilization rates during all seven days, but 48% of measured volatilization rates during the first 24 h. Calculations with the model showed that applying slurry in the morning or in the afternoon reduced volatilization by 50% compared with a noon application. Spreading the slurry with trail hoses to a 60 cm high crop reduced losses by 75% compared with a spreading onto bare soil. Ammonia volatilization was 50% lower when the soil had dried out after slurry application compared with a wet slurry surface.
Gopinath, Deepa; McGreevy, Paul D; Zuber, Richard M; Klupiec, Corinna; Baguley, John; Barrs, Vanessa R
2012-01-01
This article discusses recent developments in soft-tissue surgery teaching at the University of Sydney, Faculty of Veterinary Science. An integrated teaching program was developed for Bachelor of Veterinary Science (BVSc) students with the aim of providing them with optimal learning opportunities to meet "Day One" small-animal soft-tissue surgical competencies. Didactic lectures and tutorials were introduced earlier into the curriculum to prepare students for live-animal surgery practical. In addition to existing clinics, additional spay/neuter clinics were established in collaboration with animal welfare organizations to increase student exposure to live-animal surgery. A silicon-based, life-like canine ovariohysterectomy model was developed with the assistance of a model-making and special effects company. The model features elastic ovarian pedicles and suspensory ligaments, which can be stretched and broken like those of an actual dog. To monitor the volume and type of student surgical experience, an E-portfolio resource was established. This resource allows for the tracking of numbers of live, student-performed desexing surgeries and incorporates competency-based assessments and reflective tasks to be completed by students. Student feedback on the integrated surgical soft-tissue teaching program was assessed. Respondents were assessed in the fourth year of the degree and will have further opportunities to develop Day One small-animal soft-tissue surgical competencies in the fifth year. Ninety-four percent of respondents agreed or strongly agreed that they were motivated to participate in all aspects of the program, while 78% agreed or strongly agreed that they received an adequate opportunity to develop their skills and confidence in ovariohysterectomy or castration procedures through the fourth-year curriculum.
Enhancement of organ regeneration in animal models by a stem cell-stimulating plant mixture.
Kiss, István; Tibold, Antal; Halmosi, Róbert; Bartha, Eva; Koltai, Katalin; Orsós, Zsuzsanna; Bujdosó, László; Ember, István
2010-06-01
Adult stem cells play an important role in the regeneration of damaged organs. Attempts have already been made to enhance stem cell production by cytokines, in order to increase the improvement of cardiac functions after myocardial infarction. In our present study we investigated the possibility whether instead of cytokine injection dietary stimulation of stem cell production accelerates the organ regeneration in animals. A dietary supplement, Olimpiq StemXCell (Crystal Institute Ltd., Eger, Hungary), containing plant extracts (previously proved to increase the number of circulating CD34(+) cells) was consumed in human equivalent doses by the experimental animals. In the first experiment carbon tetrachloride was applied to CBA/Ca mice, to induce liver damage, and liver weights between StemXCell-fed and control animals were compared 10 days after the treatment. In the second model experimental diabetes was induced in F344 rats by alloxan. Blood sugar levels were measured for 5 weeks in the control and StemXCell-fed groups. The third part of the study investigated the effect of StemXCell on cardiac functions. Eight weeks after causing a myocardial infarction in Wistar rats by isoproterenol, left ventricular ejection fraction was determined as a functional parameter of myocardial regeneration. In all three animal models StemXCell consumption statistically significantly improved the organ regeneration (relative liver weights, 4.78 +/-0.06 g/100 g vs. 4.97 +/- 0.07 g/100 g; blood sugar levels at week 5, 16 +/- 1.30 mmol/L vs. 10.2 +/- 0.92 mmol/L; ejection fraction, 57.5 +/- 2.23 vs. 68.2 +/- 4.94; controls vs. treated animals, respectively). Our study confirms the hypothesis that dietary enhancement of stem cell production may protect against organ injuries and helps in the regeneration.
Analysis of Animal Research Ethics Committee Membership at American Institutions.
Hansen, Lawrence A; Goodman, Justin R; Chandna, Alka
2012-02-22
Institutional Animal Care and Use Committees (IACUCs) were created to review, approve and oversee animal experiments and to balance the interests of researchers, animals, institutions and the general public. This study analyzed the overall membership of IACUCs at leading U.S. research institutions. We found that these committees and their leadership are comprised of a preponderance of animal researchers, as well as other members who are affiliated with each institution; some of whom also work in animal laboratories. This overwhelming presence of animal research and institutional interests may dilute input from the few IACUC members representing animal welfare and the general public, contribute to previously-documented committee bias in favor of approving animal experiments and reduce the overall objectivity and effectiveness of the oversight system.
Animal Models of Fetal Alcohol Spectrum Disorders: Impact of the Social Environment
Kelly, Sandra J.; Goodlett, Charles R.; Hannigan, John H.
2013-01-01
Animal models of fetal alcohol spectrum disorder (FASD) have been used to demonstrate the specificity of alcohol’s teratogenic effects and some of the underlying changes in the central nervous system (CNS) and, more recently, to explore ways to ameliorate the effects of alcohol. The main point of this review is to highlight research findings from the animal literature which point to the impact of the social context or social behavior on the effect(s) of alcohol exposure during development, and also to point to research questions about the social environment and effects of prenatal alcohol exposure that remain to be answered. Alcohol exposure during early development alters maternal responding to the exposed pup in a variety of ways and the alteration in maternal responding could alter later stress responsivity and adult maternal and social behavior of the exposed offspring. Environmental enrichment and voluntary exercise have been shown to ameliorate some of alcohol’s impact during development, but the roles of enhanced social interactions in the case of enrichment and of social housing during voluntary exercise need to be more fully delineated. Similarly, the role of social context across the lifespan, such as social housing, social experiences, and contact with siblings, needs further study. Because of findings that alcohol during development alters DNA methylation patterns and that there are alterations in the maternal care of the alcohol-exposed offspring, epigenetic effects and their relationship to social behavior in animal models of FASD are likely to become a fruitful area of research. Because of the simpler social behavior and the short lifespan of rodents, animal models of FASD can be useful in determining how the social context impacts the effects of alcohol exposure during development. PMID:19731387
Reisbig, Allison M J; Hafen, McArthur; Siqueira Drake, Adryanna A; Girard, Destiny; Breunig, Zachary B
2017-06-01
Human-animal relationships are increasingly incorporated into families as a normal part of family life. Despite this, relationships with animals are often viewed as inferior to human relationships. This becomes problematic during times of loss and grief when members of a grieving companion animal owner's support system do not understand the salience of the relationship with the animal. Veterinary and other helping professionals need basic information about the experience of companion animal loss in order to help support and normalize the experiences of grieving companion animal owners. The present study qualitatively describes human-animal relationships and the subsequent loss and coping experienced by owners of beloved companion animals. Comparison with human and other types of loss and factors unique to companion animal loss are discussed, and practical applications for veterinary and other helping professionals are provided.
The Utility, Limitations, and Promise of Proteomics in Animal Science
USDA-ARS?s Scientific Manuscript database
Proteomics experiments have the ability to simultaneously identify and quantify potentially thousands of proteins in one experiment. The use of this technology in animal science is still in its infancy, yet it holds significant promise as a method for advancing animal science research. Examples of...
Utility, Limitations, and Promise of Proteomics in Animal Science
USDA-ARS?s Scientific Manuscript database
Proteomics experiments have the ability to simultaneously identify and quantify thousands of proteins in one experiment. The use of this technology in veterinary/animal science is still in its infancy, yet it holds significant promise as a method for advancing veterinary/animal science research. E...