Sample records for animations computer simulations

  1. Computer animation challenges for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine

    2012-07-01

    Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.

  2. [Animal experimentation, computer simulation and surgical research].

    PubMed

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  3. Development of computational small animal models and their applications in preclinical imaging and therapy research.

    PubMed

    Xie, Tianwu; Zaidi, Habib

    2016-01-01

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and the development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.

  4. Computer Simulation of a Hardwood Processing Plant

    Treesearch

    D. Earl Kline; Philip A. Araman

    1990-01-01

    The overall purpose of this paper is to introduce computer simulation as a decision support tool that can be used to provide managers with timely information. A simulation/animation modeling procedure is demonstrated for wood products manufacuring systems. Simulation modeling techniques are used to assist in identifying and solving problems. Animation is used for...

  5. Development of computational small animal models and their applications in preclinical imaging and therapy research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Zaidi, Habib, E-mail: habib.zaidi@hcuge.ch; Geneva Neuroscience Center, Geneva University, Geneva CH-1205

    The development of multimodality preclinical imaging techniques and the rapid growth of realistic computer simulation tools have promoted the construction and application of computational laboratory animal models in preclinical research. Since the early 1990s, over 120 realistic computational animal models have been reported in the literature and used as surrogates to characterize the anatomy of actual animals for the simulation of preclinical studies involving the use of bioluminescence tomography, fluorescence molecular tomography, positron emission tomography, single-photon emission computed tomography, microcomputed tomography, magnetic resonance imaging, and optical imaging. Other applications include electromagnetic field simulation, ionizing and nonionizing radiation dosimetry, and themore » development and evaluation of new methodologies for multimodality image coregistration, segmentation, and reconstruction of small animal images. This paper provides a comprehensive review of the history and fundamental technologies used for the development of computational small animal models with a particular focus on their application in preclinical imaging as well as nonionizing and ionizing radiation dosimetry calculations. An overview of the overall process involved in the design of these models, including the fundamental elements used for the construction of different types of computational models, the identification of original anatomical data, the simulation tools used for solving various computational problems, and the applications of computational animal models in preclinical research. The authors also analyze the characteristics of categories of computational models (stylized, voxel-based, and boundary representation) and discuss the technical challenges faced at the present time as well as research needs in the future.« less

  6. Cardiovascular Physiology Teaching: Computer Simulations vs. Animal Demonstrations.

    ERIC Educational Resources Information Center

    Samsel, Richard W.; And Others

    1994-01-01

    At the introductory level, the computer provides an effective alternative to using animals for laboratory teaching. Computer software can simulate the operation of multiple organ systems. Advantages of software include alteration of variables that are not easily changed in vivo, repeated interventions, and cost-effective hands-on student access.…

  7. Modelling and Simulation as a Recognizing Method in Education

    ERIC Educational Resources Information Center

    Stoffa, Veronika

    2004-01-01

    Computer animation-simulation models of complex processes and events, which are the method of instruction, can be an effective didactic device. Gaining deeper knowledge about objects modelled helps to plan simulation experiments oriented on processes and events researched. Animation experiments realized on multimedia computers can aid easier…

  8. Application of computer virtual simulation technology in 3D animation production

    NASA Astrophysics Data System (ADS)

    Mo, Can

    2017-11-01

    In the continuous development of computer technology, the application system of virtual simulation technology has been further optimized and improved. It also has been widely used in various fields of social development, such as city construction, interior design, industrial simulation and tourism teaching etc. This paper mainly introduces the virtual simulation technology used in 3D animation. Based on analyzing the characteristics of virtual simulation technology, the application ways and means of this technology in 3D animation are researched. The purpose is to provide certain reference for the 3D effect promotion days after.

  9. Animal-Related Computer Simulation Programs for Use in Education and Research. AWIC Series Number 1.

    ERIC Educational Resources Information Center

    Engler, Kevin P.

    Computer models have definite limitations regarding the representation of biological systems, but they do have useful applications in reducing the number of animals used to study physiological systems, especially for educational purposes. This guide lists computer models that simulate living systems and can be used to demonstrate physiological,…

  10. Developing Educational Computer Animation Based on Human Personality Types

    ERIC Educational Resources Information Center

    Musa, Sajid; Ziatdinov, Rushan; Sozcu, Omer Faruk; Griffiths, Carol

    2015-01-01

    Computer animation in the past decade has become one of the most noticeable features of technology-based learning environments. By its definition, it refers to simulated motion pictures showing movement of drawn objects, and is often defined as the art in movement. Its educational application known as educational computer animation is considered…

  11. SIGMA--A Graphical Approach to Teaching Simulation.

    ERIC Educational Resources Information Center

    Schruben, Lee W.

    1992-01-01

    SIGMA (Simulation Graphical Modeling and Analysis) is a computer graphics environment for building, testing, and experimenting with discrete event simulation models on personal computers. It uses symbolic representations (computer animation) to depict the logic of large, complex discrete event systems for easier understanding and has proven itself…

  12. Interactive Computer Simulation and Animation for Improving Student Learning of Particle Kinetics

    ERIC Educational Resources Information Center

    Fang, N.; Guo, Y.

    2016-01-01

    Computer simulation and animation (CSA) has been receiving growing attention and wide application in engineering education in recent years. A new interactive CSA module was developed in the present study to improve student learning of particle kinetics in an undergraduate engineering dynamics course. The unique feature of this CSA module is that…

  13. The Socioemotional Effects of a Computer-Simulated Animal on Children's Empathy and Humane Attitudes

    ERIC Educational Resources Information Center

    Tsai, Yueh-Feng Lily; Kaufman, David M.

    2009-01-01

    This study investigated the potential of using a computer-simulated animal in a handheld virtual pet videogame to improve children's empathy and humane attitudes. Also investigated was whether sex differences existed in children's development of empathy and humane attitudes resulting from play, as well as their feelings for a virtual pet. The…

  14. Consider a non-spherical elephant: computational fluid dynamics simulations of heat transfer coefficients and drag verified using wind tunnel experiments.

    PubMed

    Dudley, Peter N; Bonazza, Riccardo; Porter, Warren P

    2013-07-01

    Animal momentum and heat transfer analysis has historically used direct animal measurements or approximations to calculate drag and heat transfer coefficients. Research can now use modern 3D rendering and computational fluid dynamics software to simulate animal-fluid interactions. Key questions are the level of agreement between simulations and experiments and how superior they are to classical approximations. In this paper we compared experimental and simulated heat transfer and drag calculations on a scale model solid aluminum African elephant casting. We found good agreement between experimental and simulated data and large differences from classical approximations. We used the simulation results to calculate coefficients for heat transfer and drag of the elephant geometry. Copyright © 2013 Wiley Periodicals, Inc.

  15. A heterogeneous computing environment for simulating astrophysical fluid flows

    NASA Technical Reports Server (NTRS)

    Cazes, J.

    1994-01-01

    In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.

  16. An Educational MONTE CARLO Simulation/Animation Program for the Cosmic Rays Muons and a Prototype Computer-Driven Hardware Display.

    ERIC Educational Resources Information Center

    Kalkanis, G.; Sarris, M. M.

    1999-01-01

    Describes an educational software program for the study of and detection methods for the cosmic ray muons passing through several light transparent materials (i.e., water, air, etc.). Simulates muons and Cherenkov photons' paths and interactions and visualizes/animates them on the computer screen using Monte Carlo methods/techniques which employ…

  17. The science of rotator cuff tears: translating animal models to clinical recommendations using simulation analysis.

    PubMed

    Mannava, Sandeep; Plate, Johannes F; Tuohy, Christopher J; Seyler, Thorsten M; Whitlock, Patrick W; Curl, Walton W; Smith, Thomas L; Saul, Katherine R

    2013-07-01

    The purpose of this article is to review basic science studies using various animal models for rotator cuff research and to describe structural, biomechanical, and functional changes to muscle following rotator cuff tears. The use of computational simulations to translate the findings from animal models to human scale is further detailed. A comprehensive review was performed of the basic science literature describing the use of animal models and simulation analysis to examine muscle function following rotator cuff injury and repair in the ageing population. The findings from various studies of rotator cuff pathology emphasize the importance of preventing permanent muscular changes with detrimental results. In vivo muscle function, electromyography, and passive muscle-tendon unit properties were studied before and after supraspinatus tenotomy in a rodent rotator cuff injury model (acute vs chronic). Then, a series of simulation experiments were conducted using a validated computational human musculoskeletal shoulder model to assess both passive and active tension of rotator cuff repairs based on surgical positioning. Outcomes of rotator cuff repair may be improved by earlier surgical intervention, with lower surgical repair tensions and fewer electromyographic neuromuscular changes. An integrated approach of animal experiments, computer simulation analyses, and clinical studies may allow us to gain a fundamental understanding of the underlying pathology and interpret the results for clinical translation.

  18. Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow

    NASA Astrophysics Data System (ADS)

    Gerszewski, Daniel James

    Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies. Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.

  19. The Effects of Computer Simulation and Animation (CSA) on Students' Cognitive Processes: A Comparative Case Study in an Undergraduate Engineering Course

    ERIC Educational Resources Information Center

    Fang, N.; Tajvidi, M.

    2018-01-01

    This study focuses on the investigation of the effects of computer simulation and animation (CSA) on students' cognitive processes in an undergraduate engineering course. The revised Bloom's taxonomy, which consists of six categories in the cognitive process domain, was employed in this study. Five of the six categories were investigated,…

  20. Computer Center: It's Time to Take Inventory.

    ERIC Educational Resources Information Center

    Spain, James D.

    1984-01-01

    Describes typical instructional applications of computers. Areas considered include: (1) instructional simulations and animations; (2) data analysis; (3) drill and practice; (4) student evaluation; (5) development of computer models and simulations; (6) biometrics or biostatistics; and (7) direct data acquisition and analysis. (JN)

  1. Computer Modeling of Microbiological Experiments in the Teaching Laboratory: Animation Techniques.

    ERIC Educational Resources Information Center

    Tritz, Gerald J.

    1987-01-01

    Discusses the use of computer assisted instruction in the medical education program of the Kirksville College of Osteopathic Medicine (Missouri). Describes the animation techniques used in a series of simulations for microbiology. (TW)

  2. Crash Simulation and Animation: 'A New Approach for Traffic Safety Analysis'

    DOT National Transportation Integrated Search

    2001-02-01

    This researchs objective is to present a methodology to supplement the conventional traffic safety analysis techniques. This methodology aims at using computer simulation to animate and visualize crash occurrence at high-risk locations. This methodol...

  3. Qualitative Assessment of a 3D Simulation Program: Faculty, Students, and Bio-Organic Reaction Animations

    ERIC Educational Resources Information Center

    Günersel, Adalet B.; Fleming, Steven A.

    2013-01-01

    Research shows that computer-based simulations and animations are especially helpful in fields such as chemistry where concepts are abstract and cannot be directly observed. Bio-Organic Reaction Animations (BioORA) is a freely available 3D visualization software program developed to help students understand the chemistry of biomolecular events.…

  4. Communication in red fox dyads: a computer simulation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montgomery, Gerald Gene

    1973-06-01

    For any two animals, three major factors limit communication. These are (1) whether appropriate signal mechanisms are available to them, (2) whether the animals are motivated to communicate, and (3) whether their movements and locations are such that signal can pass between them. In this study, signal mechanisms and motivation were not considered as variables, but the role of animal movement in limiting communication was. A computer simulation study of amounts of communication which occur in red fox (Vulpes vulpes) dyads when various means of signalling are used, and when. the animals move about and signal with - various emissionmore » intensities and at various time intervals is reported.« less

  5. Facial Animations: Future Research Directions & Challenges

    NASA Astrophysics Data System (ADS)

    Alkawaz, Mohammed Hazim; Mohamad, Dzulkifli; Rehman, Amjad; Basori, Ahmad Hoirul

    2014-06-01

    Nowadays, computer facial animation is used in a significant multitude fields that brought human and social to study the computer games, films and interactive multimedia reality growth. Authoring the computer facial animation, complex and subtle expressions are challenging and fraught with problems. As a result, the current most authored using universal computer animation techniques often limit the production quality and quantity of facial animation. With the supplement of computer power, facial appreciative, software sophistication and new face-centric methods emerging are immature in nature. Therefore, this paper concentrates to define and managerially categorize current and emerged surveyed facial animation experts to define the recent state of the field, observed bottlenecks and developing techniques. This paper further presents a real-time simulation model of human worry and howling with detail discussion about their astonish, sorrow, annoyance and panic perception.

  6. Learning English with "The Sims": Exploiting Authentic Computer Simulation Games for L2 Learning

    ERIC Educational Resources Information Center

    Ranalli, Jim

    2008-01-01

    With their realistic animation, complex scenarios and impressive interactivity, computer simulation games might be able to provide context-rich, cognitively engaging virtual environments for language learning. However, simulation games designed for L2 learners are in short supply. As an alternative, could games designed for the mass-market be…

  7. Animals in Science Education--Ethics and Alternatives.

    ERIC Educational Resources Information Center

    Langley, G. R.

    1991-01-01

    Summarizes the animal rights argument that objects to the use or killing of animals for educational purposes. Reviews and evaluates alternative approaches that include the nonanimal options of videotaped experiments, self-experimentation, and computer simulations. (MDH)

  8. Huntington II Simulation Program - TAG. Student Workbook, Teacher's Guide, and Resource Handbook.

    ERIC Educational Resources Information Center

    Friedland, James

    Presented are instructions for the use of "TAG," a model for estimating animal population in a given area. The computer program asks the student to estimate the number of bass in a simulated farm pond using the technique of tagging and recovery. The objective of the simulation is to teach principles for estimating animal populations when they…

  9. Learner Perceptions of Realism and Magic in Computer Simulations.

    ERIC Educational Resources Information Center

    Hennessy, Sara; O'Shea, Tim

    1993-01-01

    Discusses the possible lack of credibility in educational interactive computer simulations. Topics addressed include "Shopping on Mars," a collaborative adventure game for arithmetic calculation that uses direct manipulation in the microworld; the Alternative Reality Kit, a graphical animated environment for creating interactive…

  10. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  11. Teaching Animal Physiology: A 12-Year Experience Transitioning from a Classical to Interactive Approach with Continual Assessment and Computer Alternatives

    ERIC Educational Resources Information Center

    Kaisarevic, Sonja N.; Andric, Silvana A.; Kostic, Tatjana S.

    2017-01-01

    In response to the Bologna Declaration and contemporary trends in Animal Physiology education, the Animal Physiology course at the Faculty of Sciences, University of Novi Sad, Serbia, has evolved over a 12-year period (2001-2012): from a classical two-semester course toward a one-semester course utilizing computer simulations of animal…

  12. Vehicle Animation Software (VAS) to Animate Results Obtained from Vehicle Handling and Rollover Simulations and Tests

    DOT National Transportation Integrated Search

    1991-04-01

    Results from vehicle computer simulations usually take the form of numeric data or graphs. While these graphs provide the investigator with the insight into vehicle behavior, it may be difficult to use these graphs to assess complex vehicle motion. C...

  13. SRS Computer Animation and Drive Train System

    NASA Technical Reports Server (NTRS)

    Arthun, Daniel; Schachner, Christian

    2001-01-01

    The spinning rocket simulator (SRS) is an ongoing project at Oral Roberts University. The goal of the SRS is to gather crucial data concerning a spinning rocket under thrust for the purpose of analysis and correction of the coning motion experienced by this type of spacecraft maneuver. The computer animation simulates a virtual, scale model of the component of the SRS that represents the spacecraft itself. This component is known as the (VSM), or virtual spacecraft model. During actual physical simulation, this component of the SRS will experience a coning. The goal of the animation is to cone the VSM within that range to accurately represent the motion of the actual simulator. The drive system of the SRS is the apparatus that turns the actual simulator. It consists of a drive motor, motor mount and chain to power the simulator into motion. The motor mount is adjustable and rigid for high torque application. A digital stepper motor controller actuates the main drive motor for linear acceleration. The chain transfers power from the motor to the simulator via sprockets on both ends.

  14. Effective Parallel Algorithm Animation

    DTIC Science & Technology

    1994-03-01

    parallel computer. The system incorporates the 14 Parallel Processing System us" r User User UMe PMwuM Progra Propu Plropm ýData Dots Data Daft...that produce meaningful animations. The following sections outline characteristics 146 Animation 0 71 r 40 02 I 5 * *2! 4 Idle Bu~sy Send Recv 7...Event Simulation. Technical Report, Georgia Institute of Technology, 1992. 22. Garey, Michael R . and David S. Johnson. Computers and Intractability: A

  15. Arrhythmic risk biomarkers for the assessment of drug cardiotoxicity: from experiments to computer simulations

    PubMed Central

    Corrias, A.; Jie, X.; Romero, L.; Bishop, M. J.; Bernabeu, M.; Pueyo, E.; Rodriguez, B.

    2010-01-01

    In this paper, we illustrate how advanced computational modelling and simulation can be used to investigate drug-induced effects on cardiac electrophysiology and on specific biomarkers of pro-arrhythmic risk. To do so, we first perform a thorough literature review of proposed arrhythmic risk biomarkers from the ionic to the electrocardiogram levels. The review highlights the variety of proposed biomarkers, the complexity of the mechanisms of drug-induced pro-arrhythmia and the existence of significant animal species differences in drug-induced effects on cardiac electrophysiology. Predicting drug-induced pro-arrhythmic risk solely using experiments is challenging both preclinically and clinically, as attested by the rise in the cost of releasing new compounds to the market. Computational modelling and simulation has significantly contributed to the understanding of cardiac electrophysiology and arrhythmias over the last 40 years. In the second part of this paper, we illustrate how state-of-the-art open source computational modelling and simulation tools can be used to simulate multi-scale effects of drug-induced ion channel block in ventricular electrophysiology at the cellular, tissue and whole ventricular levels for different animal species. We believe that the use of computational modelling and simulation in combination with experimental techniques could be a powerful tool for the assessment of drug safety pharmacology. PMID:20478918

  16. Biology Students Building Computer Simulations Using StarLogo TNG

    ERIC Educational Resources Information Center

    Smith, V. Anne; Duncan, Ishbel

    2011-01-01

    Confidence is an important issue for biology students in handling computational concepts. This paper describes a practical in which honours-level bioscience students simulate complex animal behaviour using StarLogo TNG, a freely-available graphical programming environment. The practical consists of two sessions, the first of which guides students…

  17. High fidelity simulations of infrared imagery with animated characters

    NASA Astrophysics Data System (ADS)

    Näsström, F.; Persson, A.; Bergström, D.; Berggren, J.; Hedström, J.; Allvar, J.; Karlsson, M.

    2012-06-01

    High fidelity simulations of IR signatures and imagery tend to be slow and do not have effective support for animation of characters. Simplified rendering methods based on computer graphics methods can be used to overcome these limitations. This paper presents a method to combine these tools and produce simulated high fidelity thermal IR data of animated people in terrain. Infrared signatures for human characters have been calculated using RadThermIR. To handle multiple character models, these calculations use a simplified material model for the anatomy and clothing. Weather and temperature conditions match the IR-texture used in the terrain model. The calculated signatures are applied to the animated 3D characters that, together with the terrain model, are used to produce high fidelity IR imagery of people or crowds. For high level animation control and crowd simulations, HLAS (High Level Animation System) has been developed. There are tools available to create and visualize skeleton based animations, but tools that allow control of the animated characters on a higher level, e.g. for crowd simulation, are usually expensive and closed source. We need the flexibility of HLAS to add animation into an HLA enabled sensor system simulation framework.

  18. Enriching Triangle Mesh Animations with Physically Based Simulation.

    PubMed

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  19. Tools for 3D scientific visualization in computational aerodynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    Hardware, software, and techniques used by the Fluid Dynamics Division (NASA) for performing visualization of computational aerodynamics, which can be applied to the visualization of flow fields from computer simulations of fluid dynamics about the Space Shuttle, are discussed. Three visualization techniques applied, post-processing, tracking, and steering, are described, as well as the post-processing software packages used, PLOT3D, SURF (Surface Modeller), GAS (Graphical Animation System), and FAST (Flow Analysis software Toolkit). Using post-processing methods a flow simulation was executed on a supercomputer and, after the simulation was complete, the results were processed for viewing. It is shown that the high-resolution, high-performance three-dimensional workstation combined with specially developed display and animation software provides a good tool for analyzing flow field solutions obtained from supercomputers.

  20. Software systems for modeling articulated figures

    NASA Technical Reports Server (NTRS)

    Phillips, Cary B.

    1989-01-01

    Research in computer animation and simulation of human task performance requires sophisticated geometric modeling and user interface tools. The software for a research environment should present the programmer with a powerful but flexible substrate of facilities for displaying and manipulating geometric objects, yet insure that future tools have a consistent and friendly user interface. Jack is a system which provides a flexible and extensible programmer and user interface for displaying and manipulating complex geometric figures, particularly human figures in a 3D working environment. It is a basic software framework for high-performance Silicon Graphics IRIS workstations for modeling and manipulating geometric objects in a general but powerful way. It provides a consistent and user-friendly interface across various applications in computer animation and simulation of human task performance. Currently, Jack provides input and control for applications including lighting specification and image rendering, anthropometric modeling, figure positioning, inverse kinematics, dynamic simulation, and keyframe animation.

  1. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review.

    PubMed

    Norton, Tomás; Sun, Da-Wen; Grant, Jim; Fallon, Richard; Dodd, Vincent

    2007-09-01

    The application of computational fluid dynamics (CFD) in the agricultural industry is becoming ever more important. Over the years, the versatility, accuracy and user-friendliness offered by CFD has led to its increased take-up by the agricultural engineering community. Now CFD is regularly employed to solve environmental problems of greenhouses and animal production facilities. However, due to a combination of increased computer efficacy and advanced numerical techniques, the realism of these simulations has only been enhanced in recent years. This study provides a state-of-the-art review of CFD, its current applications in the design of ventilation systems for agricultural production systems, and the outstanding challenging issues that confront CFD modellers. The current status of greenhouse CFD modelling was found to be at a higher standard than that of animal housing, owing to the incorporation of user-defined routines that simulate crop biological responses as a function of local environmental conditions. Nevertheless, the most recent animal housing simulations have addressed this issue and in turn have become more physically realistic.

  2. Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect.

    PubMed

    Feng, Zhihong; Zhao, Jinlong; Zhou, Libin; Dong, Yan; Zhao, Yimin

    2009-10-01

    The purpose of this report is to show the establishment of an animal model with a unilateral maxilla defect, application of virtual reality and rapid prototyping in the surgical planning for dentoalveolar distraction osteogenesis (DO). Two adult dogs were used to develop an animal model with a unilateral maxillary defect. The 3-dimensional model of the canine craniofacial skeleton was reconstructed with computed tomography data using the software Mimics, version 12.0 (Materialise Group, Leuven, Belgium). A virtual individual distractor was designed and transferred onto the model with the defect, and the osteotomies and distraction processes were simulated. A precise casting technique and numeric control technology were applied to produce the titanium distraction device, which was installed on the physical model with the defect, which was generated using Selective Laser Sintering technology, and the in vitro simulation of osteotomies and DO was done. The 2 dogs survived the operation and were lively. The osteotomies and distraction process were simulated successfully whether on the virtual or the physical model. The bone transport could be distracted to the desired position both in the virtual environment and on the physical model. The novel method to develop an animal model with a unilateral maxillary defect was feasible, and the animal model was suitable to develop the reconstruction method for unilateral maxillary defect cases with dentoalveolar DO. Computer-assisted surgical planning and simulation improved the reliability of the maxillofacial surgery, especially for the complex cases. The novel idea to reconstruct the unilateral maxillary defect with dentoalveolar DO was proved through the model experiment.

  3. A New Java Animation in Peer-Reviewed "JCE" Webware

    ERIC Educational Resources Information Center

    Coleman, William F.; Fedosky, Edward W.

    2006-01-01

    "Computer Simulations of Salt Solubility" by Victor M. S. Gil provides an animated, visual interpretation of the different solubilities of related salts based on simple entropy changes associated with dissolution such as configurational disorder and thermal disorder. This animation can help improve students' conceptual understanding of…

  4. 'Towers in the Tempest' Computer Animation Submission

    NASA Technical Reports Server (NTRS)

    Shirah, Greg

    2008-01-01

    The following describes a computer animation that has been submitted to the ACM/SIGGRAPH 2008 computer graphics conference: 'Towers in the Tempest' clearly communicates recent scientific research into how hurricanes intensify. This intensification can be caused by a phenomenon called a 'hot tower.' For the first time, research meteorologists have run complex atmospheric simulations at a very fine temporal resolution of 3 minutes. Combining this simulation data with satellite observations enables detailed study of 'hot towers.' The science of 'hot towers' is described using: satellite observation data, conceptual illustrations, and a volumetric atmospheric simulation data. The movie starts by showing a 'hot tower' observed by NASA's Tropical Rainfall Measuring Mission (TRMM) spacecraft's three dimensional precipitation radar data of Hurricane Bonnie. Next, the dynamics of a hurricane and the formation of 'hot towers' are briefly explained using conceptual illustrations. Finally, volumetric cloud, wind, and vorticity data from a supercomputer simulation of Hurricane Bonnie are shown using volume techniques such as ray marching.

  5. AnimatLab: a 3D graphics environment for neuromechanical simulations.

    PubMed

    Cofer, David; Cymbalyuk, Gennady; Reid, James; Zhu, Ying; Heitler, William J; Edwards, Donald H

    2010-03-30

    The nervous systems of animals evolved to exert dynamic control of behavior in response to the needs of the animal and changing signals from the environment. To understand the mechanisms of dynamic control requires a means of predicting how individual neural and body elements will interact to produce the performance of the entire system. AnimatLab is a software tool that provides an approach to this problem through computer simulation. AnimatLab enables a computational model of an animal's body to be constructed from simple building blocks, situated in a virtual 3D world subject to the laws of physics, and controlled by the activity of a multicellular, multicompartment neural circuit. Sensor receptors on the body surface and inside the body respond to external and internal signals and then excite central neurons, while motor neurons activate Hill muscle models that span the joints and generate movement. AnimatLab provides a common neuromechanical simulation environment in which to construct and test models of any skeletal animal, vertebrate or invertebrate. The use of AnimatLab is demonstrated in a neuromechanical simulation of human arm flexion and the myotactic and contact-withdrawal reflexes. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Simulation and animation of sensor-driven robots.

    PubMed

    Chen, C; Trivedi, M M; Bidlack, C R

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.

  7. Instructional authoring by direct manipulation of simulations: Exploratory applications of RAPIDS. RAPIDS 2 authoring manual

    NASA Technical Reports Server (NTRS)

    1990-01-01

    RAPIDS II is a simulation-based intelligent tutoring system environment. It is a system for producing computer-based training courses that are built on the foundation of graphical simulations. RAPIDS II simulations can be animated and they can have continuously updating elements.

  8. Use of Animation in Teaching Cell Biology

    PubMed Central

    2004-01-01

    To address the different learning styles of students, and because students can access animation from off-campus computers, the use of digital animation in teaching cell biology has become increasingly popular. Sample processes from cell biology that are more clearly presented in animation than in static illustrations are identified. The value of animation is evaluated on whether the process being taught involves motion, cellular location, or sequential order of numerous events. Computer programs for developing animation and animations associated with cell biology textbooks are reviewed, and links to specific examples of animation are given. Finally, future teaching tools for all fields of biology will increasingly benefit from an expansion of animation to the use of simulation. One purpose of this review is to encourage the widespread use of animations in biology teaching by discussing the nature of digital animation. PMID:15526065

  9. Real time animation of space plasma phenomena

    NASA Technical Reports Server (NTRS)

    Jordan, K. F.; Greenstadt, E. W.

    1987-01-01

    In pursuit of real time animation of computer simulated space plasma phenomena, the code was rewritten for the Massively Parallel Processor (MPP). The program creates a dynamic representation of the global bowshock which is based on actual spacecraft data and designed for three dimensional graphic output. This output consists of time slice sequences which make up the frames of the animation. With the MPP, 16384, 512 or 4 frames can be calculated simultaneously depending upon which characteristic is being computed. The run time was greatly reduced which promotes the rapid sequence of images and makes real time animation a foreseeable goal. The addition of more complex phenomenology in the constructed computer images is now possible and work proceeds to generate these images.

  10. Computer-Based Alternatives to Using Animals in Teaching Physiology.

    ERIC Educational Resources Information Center

    Dewhurst, David

    1990-01-01

    Three interactive computer-assisted learning programs are described. The use of tissues from freshly killed frogs is simulated, including the isolated sciatic nerve, the sciatic nerve-gastrocnemius muscle, and the in situ heart. (KR)

  11. Interacting with a Computer-Simulated Pet: Factors Influencing Children's Humane Attitudes and Empathy

    ERIC Educational Resources Information Center

    Tsai, Yueh-Feng; Kaufman, David

    2014-01-01

    Previous research by Tsai and Kaufman (2010a, 2010b) has suggested that computer-simulated virtual pet dogs can be used as a potential medium to enhance children's development of empathy and humane attitudes toward animals. To gain a deeper understanding of how and why interacting with a virtual pet dog might influence children's social and…

  12. Using Live Tissue Laboratories to Promote Clinical Reasoning in Doctor of Physical Therapy Students

    ERIC Educational Resources Information Center

    Moore, W. Allen; Noonan, Ann Cassidy

    2010-01-01

    Recently, the use of animal laboratories has decreased in medical and basic science programs due to lack of trained faculty members, student concerns about animal welfare, and the increased availability of inexpensive alternatives such as computer simulations and videos. Animal laboratories, however, have several advantages over alternative forms…

  13. Computing Life

    ERIC Educational Resources Information Center

    National Institute of General Medical Sciences (NIGMS), 2009

    2009-01-01

    Computer advances now let researchers quickly search through DNA sequences to find gene variations that could lead to disease, simulate how flu might spread through one's school, and design three-dimensional animations of molecules that rival any video game. By teaming computers and biology, scientists can answer new and old questions that could…

  14. Real-time physics-based 3D biped character animation using an inverted pendulum model.

    PubMed

    Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee

    2010-01-01

    We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.

  15. New Focus on Replacing Animals in the Lab.

    ERIC Educational Resources Information Center

    Holden, Constance

    1982-01-01

    Reviews the pros and cons of using animals or alternatives in scientific research. Such alternatives (as indicated in congressional bill HR 556) include mathematical models, isolated organs, tissue and cell cultures, computer simulations, mechanical models, and "lower" organisms among others. (SK)

  16. New Features in the Computational Infrastructure for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Smith, M. S.; Lingerfelt, E. J.; Scott, J. P.; Hix, W. R.; Nesaraja, C. D.; Koura, H.; Roberts, L. F.

    2006-04-01

    The Computational Infrastructure for Nuclear Astrophysics is a suite of computer codes online at nucastrodata.org that streamlines the incorporation of recent nuclear physics results into astrophysical simulations. The freely-available, cross- platform suite enables users to upload cross sections and s-factors, convert them into reaction rates, parameterize the rates, store the rates in customizable libraries, setup and run custom post-processing element synthesis calculations, and visualize the results. New features include the ability for users to comment on rates or libraries using an email-type interface, a nuclear mass model evaluator, enhanced techniques for rate parameterization, better treatment of rate inverses, and creation and exporting of custom animations of simulation results. We also have online animations of r- process, rp-process, and neutrino-p process element synthesis occurring in stellar explosions.

  17. They See a Rat, We Seek a Cure for Diseases: The Current Status of Animal Experimentation in Medical Practice

    PubMed Central

    Kehinde, Elijah O.

    2013-01-01

    The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. PMID:24217224

  18. They see a rat, we seek a cure for diseases: the current status of animal experimentation in medical practice.

    PubMed

    Kehinde, Elijah O

    2013-01-01

    The objective of this review article was to examine current and prospective developments in the scientific use of laboratory animals, and to find out whether or not there are still valid scientific benefits of and justification for animal experimentation. The PubMed and Web of Science databases were searched using the following key words: animal models, basic research, pharmaceutical research, toxicity testing, experimental surgery, surgical simulation, ethics, animal welfare, benign, malignant diseases. Important relevant reviews, original articles and references from 1970 to 2012 were reviewed for data on the use of experimental animals in the study of diseases. The use of laboratory animals in scientific research continues to generate intense public debate. Their use can be justified today in the following areas of research: basic scientific research, use of animals as models for human diseases, pharmaceutical research and development, toxicity testing and teaching of new surgical techniques. This is because there are inherent limitations in the use of alternatives such as in vitro studies, human clinical trials or computer simulation. However, there are problems of transferability of results obtained from animal research to humans. Efforts are on-going to find suitable alternatives to animal experimentation like cell and tissue culture and computer simulation. For the foreseeable future, it would appear that to enable scientists to have a more precise understanding of human disease, including its diagnosis, prognosis and therapeutic intervention, there will still be enough grounds to advocate animal experimentation. However, efforts must continue to minimize or eliminate the need for animal testing in scientific research as soon as possible. © 2013 S. Karger AG, Basel.

  19. Modeling Behavior and Variation for Crowd Animation

    DTIC Science & Technology

    2009-08-01

    Understanding Motion Capture for Computer Animation and Video Games . Morgan Kaufmann Publishers Inc., 1999. ISBN 0124906303. 2.2 [69] Mark Mizuguchi, John...simulation of crowds of virtual characters is needed for applications such as films, games , and virtual reality environments. These simulations are...Discussion and Future Work 95 Bibliography 99 viii List of Figures 1.1 Films and games are applications that motivate our work. Left: A scene from

  20. Computers for Interactive Learning.

    ERIC Educational Resources Information Center

    Grabowski, Barbara; Aggen, William

    1984-01-01

    Analyzes features of computer-based interactive video including sophisticated answer judging, diagnostic feedback, simulation, animation, audible tones, touch sensitive screen, function keys, and video enhancements, and matches these to the characteristics and pedagogical styles of learners. The learner characteristics discussed include internal…

  1. A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2004-01-01

    This paper presents a new physically-based 3D facial model based on anatomical knowledge which provides high fidelity for facial expression animation while optimizing the computation. Our facial model has a multilayer biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators, and underlying skull structure. In contrast to existing mass-spring-damper (MSD) facial models, our dynamic skin model uses the nonlinear springs to directly simulate the nonlinear visco-elastic behavior of soft tissue and a new kind of edge repulsion spring is developed to prevent collapse of the skin model. Different types of muscle models have been developed to simulate distribution of the muscle force applied on the skin due to muscle contraction. The presence of the skull advantageously constrain the skin movements, resulting in more accurate facial deformation and also guides the interactive placement of facial muscles. The governing dynamics are computed using a local semi-implicit ODE solver. In the dynamic simulation, an adaptive refinement automatically adapts the local resolution at which potential inaccuracies are detected depending on local deformation. The method, in effect, ensures the required speedup by concentrating computational time only where needed while ensuring realistic behavior within a predefined error threshold. This mechanism allows more pleasing animation results to be produced at a reduced computational cost.

  2. Simulation and animation of sensor-driven robots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C.; Trivedi, M.M.; Bidlack, C.R.

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aide the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the usersmore » visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.« less

  3. A prototype of behavior selection mechanism based on emotion

    NASA Astrophysics Data System (ADS)

    Zhang, Guofeng; Li, Zushu

    2007-12-01

    In bionic methodology rather than in design methodology more familiar with, summarizing the psychological researches of emotion, we propose the biologic mechanism of emotion, emotion selection role in creature evolution and a anima framework including emotion similar to the classical control structure; and consulting Prospect Theory, build an Emotion Characteristic Functions(ECF) that computer emotion; two more emotion theories are added to them that higher emotion is preferred and middle emotion makes brain run more efficiently, emotional behavior mechanism comes into being. A simulation of proposed mechanism are designed and carried out on Alife Swarm software platform. In this simulation, a virtual grassland ecosystem is achieved where there are two kinds of artificial animals: herbivore and preyer. These artificial animals execute four types of behavior: wandering, escaping, finding food, finding sex partner in their lives. According the theories of animal ethnology, escaping from preyer is prior to other behaviors for its existence, finding food is secondly important behavior, rating is third one and wandering is last behavior. In keeping this behavior order, based on our behavior characteristic function theory, the specific functions of emotion computing are built of artificial autonomous animals. The result of simulation confirms the behavior selection mechanism.

  4. Proposed standards for peer-reviewed publication of computer code

    USDA-ARS?s Scientific Manuscript database

    Computer simulation models are mathematical abstractions of physical systems. In the area of natural resources and agriculture, these physical systems encompass selected interacting processes in plants, soils, animals, or watersheds. These models are scientific products and have become important i...

  5. Sound field simulation and acoustic animation in urban squares

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  6. Pharmacology Experiments on the Computer.

    ERIC Educational Resources Information Center

    Keller, Daniel

    1990-01-01

    A computer program that replaces a set of pharmacology and physiology laboratory experiments on live animals or isolated organs is described and illustrated. Five experiments are simulated: dose-effect relationships on smooth muscle, blood pressure and catecholamines, neuromuscular signal transmission, acetylcholine and the circulation, and…

  7. Alternatives in Medical Education: Non-Animal Methods.

    ERIC Educational Resources Information Center

    Carlson, Peggy, Ed.

    The technology explosion in medical education has led to the use of computer models, videotapes, interactive videos, and state-of-the-art simulators in medical training. This booklet describes alternatives to using animals in medical education. Although it is mainly intended to describe products applicable to medical school courses, high-quality,…

  8. Aeroelastic, CFD, and Dynamics Computation and Optimization for Buffet and Flutter Applications

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1997-01-01

    Accomplishments achieved during the reporting period are listed. These accomplishments included 6 papers published in various journals or presented at various conferences; 1 abstract submitted to a technical conference; production of 2 animated movies; and a proposal for use of the National Aerodynamic Simulation Facility at NASA Ames Research Center for further research. The published and presented papers and animated movies addressed the following topics: aeroelasticity, computational fluid dynamics, structural dynamics, wing and tail buffet, vortical flow interactions, and delta wings.

  9. An Object-Oriented Graphical User Interface for a Reusable Rocket Engine Intelligent Control System

    NASA Technical Reports Server (NTRS)

    Litt, Jonathan S.; Musgrave, Jeffrey L.; Guo, Ten-Huei; Paxson, Daniel E.; Wong, Edmond; Saus, Joseph R.; Merrill, Walter C.

    1994-01-01

    An intelligent control system for reusable rocket engines under development at NASA Lewis Research Center requires a graphical user interface to allow observation of the closed-loop system in operation. The simulation testbed consists of a real-time engine simulation computer, a controls computer, and several auxiliary computers for diagnostics and coordination. The system is set up so that the simulation computer could be replaced by the real engine and the change would be transparent to the control system. Because of the hard real-time requirement of the control computer, putting a graphical user interface on it was not an option. Thus, a separate computer used strictly for the graphical user interface was warranted. An object-oriented LISP-based graphical user interface has been developed on a Texas Instruments Explorer 2+ to indicate the condition of the engine to the observer through plots, animation, interactive graphics, and text.

  10. Teaching Cardiovascular Integrations with Computer Laboratories.

    ERIC Educational Resources Information Center

    Peterson, Nils S.; Campbell, Kenneth B.

    1985-01-01

    Describes a computer-based instructional unit in cardiovascular physiology. The program (which employs simulated laboratory experimental techniques with a problem-solving format is designed to supplement an animal laboratory and to offer students an integrative approach to physiology through use of microcomputers. Also presents an overview of the…

  11. Proceedings of the 14th International Conference on the Numerical Simulation of Plasmas

    NASA Astrophysics Data System (ADS)

    Partial Contents are as follows: Numerical Simulations of the Vlasov-Maxwell Equations by Coupled Particle-Finite Element Methods on Unstructured Meshes; Electromagnetic PIC Simulations Using Finite Elements on Unstructured Grids; Modelling Travelling Wave Output Structures with the Particle-in-Cell Code CONDOR; SST--A Single-Slice Particle Simulation Code; Graphical Display and Animation of Data Produced by Electromagnetic, Particle-in-Cell Codes; A Post-Processor for the PEST Code; Gray Scale Rendering of Beam Profile Data; A 2D Electromagnetic PIC Code for Distributed Memory Parallel Computers; 3-D Electromagnetic PIC Simulation on the NRL Connection Machine; Plasma PIC Simulations on MIMD Computers; Vlasov-Maxwell Algorithm for Electromagnetic Plasma Simulation on Distributed Architectures; MHD Boundary Layer Calculation Using the Vortex Method; and Eulerian Codes for Plasma Simulations.

  12. Attitude guidance and simulation with animation of a land-survey satellite motion

    NASA Astrophysics Data System (ADS)

    Somova, Tatyana

    2017-01-01

    We consider problems of synthesis of the vector spline attitude guidance laws for a land-survey satellite and an in-flight support of the satellite attitude control system with the use of computer animation of its motion. We have presented the results on the efficiency of the developed algorithms.

  13. Education Calls for a New Philosophy.

    ERIC Educational Resources Information Center

    Scheidlinger, Zygmunt

    1999-01-01

    Highlights changes brought on by computers and technological advancement and notes that only those with a vision of the future can direct and participate in the evolution of education. Suggests that virtual reality, simulation, animation and other computer-based features will render traditional class learning futile and that computerized education…

  14. Crowd Simulation Incorporating Agent Psychological Models, Roles and Communication

    DTIC Science & Technology

    2005-01-01

    system (PMFserv) that implements human behavior models from a range of ability, stress, emotion , decision theoretic and motivation sources. An...autonomous agents, human behavior models, culture and emotions 1. Introduction There are many applications of computer animation and simulation where...We describe a new architecture to integrate a psychological model into a crowd simulation system in order to obtain believable emergent behaviors

  15. Zero-gravity movement studies

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  16. An ABC estimate of pedigree error rate: application in dog, sheep and cattle breeds.

    PubMed

    Leroy, G; Danchin-Burge, C; Palhiere, I; Baumung, R; Fritz, S; Mériaux, J C; Gautier, M

    2012-06-01

    On the basis of correlations between pairwise individual genealogical kinship coefficients and allele sharing distances computed from genotyping data, we propose an approximate Bayesian computation (ABC) approach to assess pedigree file reliability through gene-dropping simulations. We explore the features of the method using simulated data sets and show precision increases with the number of markers. An application is further made with five dog breeds, four sheep breeds and one cattle breed raised in France and displaying various characteristics and population sizes, using microsatellite or SNP markers. Depending on the breeds, pedigree error estimations range between 1% and 9% in dog breeds, 1% and 10% in sheep breeds and 4% in cattle breeds. © 2011 The Authors, Animal Genetics © 2011 Stichting International Foundation for Animal Genetics.

  17. Virtual reality computer simulation.

    PubMed

    Grantcharov, T P; Rosenberg, J; Pahle, E; Funch-Jensen, P

    2001-03-01

    Objective assessment of psychomotor skills should be an essential component of a modern surgical training program. There are computer systems that can be used for this purpose, but their wide application is not yet generally accepted. The aim of this study was to validate the role of virtual reality computer simulation as a method for evaluating surgical laparoscopic skills. The study included 14 surgical residents. On day 1, they performed two runs of all six tasks on the Minimally Invasive Surgical Trainer, Virtual Reality (MIST VR). On day 2, they performed a laparoscopic cholecystectomy on living pigs; afterward, they were tested again on the MIST VR. A group of experienced surgeons evaluated the trainees' performance on the animal operation, giving scores for total performance error and economy of motion. During the tasks on the MIST VR, errors and noneconomy of movements for the left and right hand were also recorded. There were significant correlations between error scores in vivo and three of the six in vitro tasks (p < 0.05). In vivo economy scores correlated significantly with non-economy right-hand scores for five of the six tasks and with non-economy left-hand scores for one of the six tasks (p < 0.05). In this study, laparoscopic performance in the animal model correlated significantly with performance on the computer simulator. Thus, the computer model seems to be a promising objective method for the assessment of laparoscopic psychomotor skills.

  18. D Animation Reconstruction from Multi-Camera Coordinates Transformation

    NASA Astrophysics Data System (ADS)

    Jhan, J. P.; Rau, J. Y.; Chou, C. M.

    2016-06-01

    Reservoir dredging issues are important to extend the life of reservoir. The most effective and cost reduction way is to construct a tunnel to desilt the bottom sediment. Conventional technique is to construct a cofferdam to separate the water, construct the intake of tunnel inside and remove the cofferdam afterwards. In Taiwan, the ZengWen reservoir dredging project will install an Elephant-trunk Steel Pipe (ETSP) in the water to connect the desilting tunnel without building the cofferdam. Since the installation is critical to the whole project, a 1:20 model was built to simulate the installation steps in a towing tank, i.e. launching, dragging, water injection, and sinking. To increase the construction safety, photogrammetry technic is adopted to record images during the simulation, compute its transformation parameters for dynamic analysis and reconstruct the 4D animations. In this study, several Australiscoded targets are fixed on the surface of ETSP for auto-recognition and measurement. The cameras orientations are computed by space resection where the 3D coordinates of coded targets are measured. Two approaches for motion parameters computation are proposed, i.e. performing 3D conformal transformation from the coordinates of cameras and relative orientation computation by the orientation of single camera. Experimental results show the 3D conformal transformation can achieve sub-mm simulation results, and relative orientation computation shows the flexibility for dynamic motion analysis which is easier and more efficiency.

  19. Voyager Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA JPL (Jet Propulsion Laboratory) video presents a collection of the best videos that have been published of the Voyager mission. Computer animation/simulations comprise the largest portion of the video and include outer planetary magnetic fields, outer planetary lunar surfaces, and the Voyager spacecraft trajectory. Voyager visited the four outer planets: Jupiter, Saturn, Uranus, and Neptune. The video contains some live shots of Jupiter (actual), the Earth's moon (from orbit), Saturn (actual), Neptune (actual) and Uranus (actual), but is mainly comprised of computer animations of these planets and their moons. Some of the individual short videos that are compiled are entitled: The Solar System; Voyage to the Outer Planets; A Tour of the Solar System; and the Neptune Encounter. Computerized simulations of Viewing Neptune from Triton, Diving over Neptune to Meet Triton, and Catching Triton in its Retrograde Orbit are included. Several animations of Neptune's atmosphere, rotation and weather features as well as significant discussion of the planet's natural satellites are also presented.

  20. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  1. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    NASA Astrophysics Data System (ADS)

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-10-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach. This study describes and evaluates a computer-based simulation to train advanced placement high school science students in laboratory protocols, a transgenic mouse model was produced. A simulation module on preparing a gene construct in the molecular biology lab was evaluated using a randomized clinical control design with advanced placement high school biology students in Mercedes, Texas ( n = 44). Pre-post tests assessed procedural and declarative knowledge, time on task, attitudes toward computers for learning and towards science careers. Students who used the simulation increased their procedural and declarative knowledge regarding molecular biology compared to those in the control condition (both p < 0.005). Significant increases continued to occur with additional use of the simulation ( p < 0.001). Students in the treatment group became more positive toward using computers for learning ( p < 0.001). The simulation did not significantly affect attitudes toward science in general. Computer simulation of complex transgenic protocols have potential to provide a "virtual" laboratory experience as an adjunct to conventional educational approaches.

  2. Chemical Computer Man: Chemical Agent Response Simulation (CARS). Technical report, January 1983-September 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, E.G.; Mioduszewski, R.J.

    The Chemical Computer Man: Chemical Agent Response Simulation (CARS) is a computer model and simulation program for estimating the dynamic changes in human physiological dysfunction resulting from exposures to chemical-threat nerve agents. The newly developed CARS methodology simulates agent exposure effects on the following five indices of human physiological function: mental, vision, cardio-respiratory, visceral, and limbs. Mathematical models and the application of basic pharmacokinetic principles were incorporated into the simulation so that for each chemical exposure, the relationship between exposure dosage, absorbed dosage (agent blood plasma concentration), and level of physiological response are computed as a function of time. CARS,more » as a simulation tool, is designed for the users with little or no computer-related experience. The model combines maximum flexibility with a comprehensive user-friendly interactive menu-driven system. Users define an exposure problem and obtain immediate results displayed in tabular, graphical, and image formats. CARS has broad scientific and engineering applications, not only in technology for the soldier in the area of Chemical Defense, but also in minimizing animal testing in biomedical and toxicological research and the development of a modeling system for human exposure to hazardous-waste chemicals.« less

  3. Galileo Outreach Compilation

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This NASA JPL (Jet Propulsion Laboratory) video production is a compilation of the best short movies and computer simulation/animations of the Galileo spacecraft's journey to Jupiter. A limited number of actual shots are presented of Jupiter and its natural satellites. Most of the video is comprised of computer animations of the spacecraft's trajectory, encounters with the Galilean satellites Io, Europa and Ganymede, as well as their atmospheric and surface structures. Computer animations of plasma wave observations of Ganymede's magnetosphere, a surface gravity map of Io, the Galileo/Io flyby, the Galileo space probe orbit insertion around Jupiter, and actual shots of Jupiter's Great Red Spot are presented. Panoramic views of our Earth (from orbit) and moon (from orbit) as seen from Galileo as well as actual footage of the Space Shuttle/Galileo liftoff and Galileo's space probe separation are also included.

  4. Virtual Transgenics: Using a Molecular Biology Simulation to Impact Student Academic Achievement and Attitudes

    ERIC Educational Resources Information Center

    Shegog, Ross; Lazarus, Melanie M.; Murray, Nancy G.; Diamond, Pamela M.; Sessions, Nathalie; Zsigmond, Eva

    2012-01-01

    The transgenic mouse model is useful for studying the causes and potential cures for human genetic diseases. Exposing high school biology students to laboratory experience in developing transgenic animal models is logistically prohibitive. Computer-based simulation, however, offers this potential in addition to advantages of fidelity and reach.…

  5. Computation in Classical Mechanics with Easy Java Simulations (EJS)

    NASA Astrophysics Data System (ADS)

    Cox, Anne J.

    2006-12-01

    Let your students enjoy creating animations and incorporating some computational physics into your Classical Mechanics course. This talk will demonstrate the use of an Open Source Physics package, Easy Java Simulations (EJS), in an already existing sophomore/junior level Classical Mechanics course. EJS allows for incremental introduction of computational physics into existing courses because it is easy to use (for instructors and students alike) and it is open source. Students can use this tool for numerical solutions to problems (as they can with commercial systems: Mathcad and Mathematica), but they can also generate their own animations. For example, students in Classical Mechanics use Lagrangian mechanics to solve a problem, and then use EJS not only to numerically solve the differential equations, but to show the associated motion (and check their answers). EJS, developed by Francisco Esquembre (http://fem.um.es/Ejs/), is built on the OpenSource Physics framework (http://www.opensourcephysics.org/) supported through NSF DUE0442581.

  6. Trialability, observability and risk reduction accelerating individual innovation adoption decisions.

    PubMed

    Hayes, Kathryn J; Eljiz, Kathy; Dadich, Ann; Fitzgerald, Janna-Anneke; Sloan, Terry

    2015-01-01

    The purpose of this paper is to provide a retrospective analysis of computer simulation's role in accelerating individual innovation adoption decisions. The process innovation examined is Lean Systems Thinking, and the organizational context is the imaging department of an Australian public hospital. Intrinsic case study methods including observation, interviews with radiology and emergency personnel about scheduling procedures, mapping patient appointment processes and document analysis were used over three years and then complemented with retrospective interviews with key hospital staff. The multiple data sources and methods were combined in a pragmatic and reflexive manner to explore an extreme case that provides potential to act as an instructive template for effective change. Computer simulation of process change ideas offered by staff to improve patient-flow accelerated the adoption of the process changes, largely because animated computer simulation permitted experimentation (trialability), provided observable predictions of change results (observability) and minimized perceived risk. The difficulty of making accurate comparisons between time periods in a health care setting is acknowledged. This work has implications for policy, practice and theory, particularly for inducing the rapid diffusion of process innovations to address challenges facing health service organizations and national health systems. Originality/value - The research demonstrates the value of animated computer simulation in presenting the need for change, identifying options, and predicting change outcomes and is the first work to indicate the importance of trialability, observability and risk reduction in individual adoption decisions in health services.

  7. Applications of CFD and visualization techniques

    NASA Technical Reports Server (NTRS)

    Saunders, James H.; Brown, Susan T.; Crisafulli, Jeffrey J.; Southern, Leslie A.

    1992-01-01

    In this paper, three applications are presented to illustrate current techniques for flow calculation and visualization. The first two applications use a commercial computational fluid dynamics (CFD) code, FLUENT, performed on a Cray Y-MP. The results are animated with the aid of data visualization software, apE. The third application simulates a particulate deposition pattern using techniques inspired by developments in nonlinear dynamical systems. These computations were performed on personal computers.

  8. Effects of using visualization and animation in presentations to communities about forest succession and fire behavior potential

    Treesearch

    Jane Kapler Smith; Donald E. Zimmerman; Carol Akerelrea; Garrett O' Keefe

    2008-01-01

    Natural resource managers use a variety of computer-mediated presentation methods to communicate management practices to the public. We explored the effects of using the Stand Visualization System to visualize and animate predictions from the Forest Vegetation Simulator-Fire and Fuels Extension in presentations explaining forest succession (forest growth and change...

  9. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.

    PubMed

    Ahn, Hyung Soo; DiAngelo, Denis J

    2007-05-15

    This article describes a computer model of the cadaver cervical spine specimen and virtual biomechanical testing. To develop a graphics-oriented, multibody model of a cadaver cervical spine and to build a virtual laboratory simulator for the biomechanical testing using physics-based dynamic simulation techniques. Physics-based computer simulations apply the laws of physics to solid bodies with defined material properties. This technique can be used to create a virtual simulator for the biomechanical testing of a human cadaver spine. An accurate virtual model and simulation would complement tissue-based in vitro studies by providing a consistent test bed with minimal variability and by reducing cost. The geometry of cervical vertebrae was created from computed tomography images. Joints linking adjacent vertebrae were modeled as a triple-joint complex, comprised of intervertebral disc joints in the anterior region, 2 facet joints in the posterior region, and the surrounding ligament structure. A virtual laboratory simulation of an in vitro testing protocol was performed to evaluate the model responses during flexion, extension, and lateral bending. For kinematic evaluation, the rotation of motion segment unit, coupling behaviors, and 3-dimensional helical axes of motion were analyzed. The simulation results were in correlation with the findings of in vitro tests and published data. For kinetic evaluation, the forces of the intervertebral discs and facet joints of each segment were determined and visually animated. This methodology produced a realistic visualization of in vitro experiment, and allowed for the analyses of the kinematics and kinetics of the cadaver cervical spine. With graphical illustrations and animation features, this modeling technique has provided vivid and intuitive information.

  10. Using 3D computer simulations to enhance ophthalmic training.

    PubMed

    Glittenberg, C; Binder, S

    2006-01-01

    To develop more effective methods of demonstrating and teaching complex topics in ophthalmology with the use of computer aided three-dimensional (3D) animation and interactive multimedia technologies. We created 3D animations and interactive computer programmes demonstrating the neuroophthalmological nature of the oculomotor system, including the anatomy, physiology and pathophysiology of the extra-ocular eye muscles and the oculomotor cranial nerves, as well as pupillary symptoms of neurological diseases. At the University of Vienna we compared their teaching effectiveness to conventional teaching methods in a comparative study involving 100 medical students, a multiple choice exam and a survey. The comparative study showed that our students achieved significantly better test results (80%) than the control group (63%) (diff. = 17 +/- 5%, p = 0.004). The survey showed a positive reaction to the software and a strong preference to have more subjects and techniques demonstrated in this fashion. Three-dimensional computer animation technology can significantly increase the quality and efficiency of the education and demonstration of complex topics in ophthalmology.

  11. FORBEEF: A Forage-Livestock System Computer Model Used as a Teaching Aid for Decision Making.

    ERIC Educational Resources Information Center

    Stringer, W. C.; And Others

    1987-01-01

    Describes the development of a computer simulation model of forage-beef production systems, which is intended to incorporate soil, forage, and animal decisions into an enterprise scenario. Produces a summary of forage production and livestock needs. Cites positive assessment of the program's value by participants in inservice training workshops.…

  12. Applications of Computer Graphics in Engineering

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Various applications of interactive computer graphics to the following areas of science and engineering were described: design and analysis of structures, configuration geometry, animation, flutter analysis, design and manufacturing, aircraft design and integration, wind tunnel data analysis, architecture and construction, flight simulation, hydrodynamics, curve and surface fitting, gas turbine engine design, analysis, and manufacturing, packaging of printed circuit boards, spacecraft design.

  13. Algorithms for Haptic Rendering of 3D Objects

    NASA Technical Reports Server (NTRS)

    Basdogan, Cagatay; Ho, Chih-Hao; Srinavasan, Mandayam

    2003-01-01

    Algorithms have been developed to provide haptic rendering of three-dimensional (3D) objects in virtual (that is, computationally simulated) environments. The goal of haptic rendering is to generate tactual displays of the shapes, hardnesses, surface textures, and frictional properties of 3D objects in real time. Haptic rendering is a major element of the emerging field of computer haptics, which invites comparison with computer graphics. We have already seen various applications of computer haptics in the areas of medicine (surgical simulation, telemedicine, haptic user interfaces for blind people, and rehabilitation of patients with neurological disorders), entertainment (3D painting, character animation, morphing, and sculpting), mechanical design (path planning and assembly sequencing), and scientific visualization (geophysical data analysis and molecular manipulation).

  14. Introducing Seismic Tomography with Computational Modeling

    NASA Astrophysics Data System (ADS)

    Neves, R.; Neves, M. L.; Teodoro, V.

    2011-12-01

    Learning seismic tomography principles and techniques involves advanced physical and computational knowledge. In depth learning of such computational skills is a difficult cognitive process that requires a strong background in physics, mathematics and computer programming. The corresponding learning environments and pedagogic methodologies should then involve sets of computational modelling activities with computer software systems which allow students the possibility to improve their mathematical or programming knowledge and simultaneously focus on the learning of seismic wave propagation and inverse theory. To reduce the level of cognitive opacity associated with mathematical or programming knowledge, several computer modelling systems have already been developed (Neves & Teodoro, 2010). Among such systems, Modellus is particularly well suited to achieve this goal because it is a domain general environment for explorative and expressive modelling with the following main advantages: 1) an easy and intuitive creation of mathematical models using just standard mathematical notation; 2) the simultaneous exploration of images, tables, graphs and object animations; 3) the attribution of mathematical properties expressed in the models to animated objects; and finally 4) the computation and display of mathematical quantities obtained from the analysis of images and graphs. Here we describe virtual simulations and educational exercises which enable students an easy grasp of the fundamental of seismic tomography. The simulations make the lecture more interactive and allow students the possibility to overcome their lack of advanced mathematical or programming knowledge and focus on the learning of seismological concepts and processes taking advantage of basic scientific computation methods and tools.

  15. 3D animation of facial plastic surgery based on computer graphics

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  16. Biological exhaust air treatment systems as a potential microbial risk for farm animals assessed with a computer simulation.

    PubMed

    Seedorf, Jens

    2013-09-01

    Livestock operations are under increasing pressure to fulfil minimum environmental requirements and avoid polluting the atmosphere. In regions with high farm animal densities, new farm buildings receive building permission only when biological exhaust air treatment systems (BEATS) are in place, such as biofilters. However, it is currently unknown whether BEATS can harbour pathogens such as zoonotic agents, which are potentially emitted via the purified gas. Because BEATS are located very close to the livestock building, it is assumed that BEATS-related microorganisms are aerially transported to farm animals via the inlet system of the ventilation system. To support this hypothesis, a computer simulation was applied to calculate the wind field around a facility consisting of a virtual livestock house and an adjacent biofilter. Under the chosen wind conditions (speed and direction), it can be shown that turbulences and eddies may occur in the near surrounding of a livestock building with an adjacent biofilter. Consequently, this might cause the entry of the released biofilter's purified gas into the barn, including possible microorganisms within this purified gas. If field investigations verify the results of the simulations, counter-measures must be taken to ensure biosecurity on farms with BEATS. © 2013 Society of Chemical Industry.

  17. The effectiveness of interactive computer simulations on college engineering student conceptual understanding and problem-solving ability related to circular motion

    NASA Astrophysics Data System (ADS)

    Chien, Cheng-Chih

    In the past thirty years, the effectiveness of computer assisted learning was found varied by individual studies. Today, with drastic technical improvement, computers have been widely spread in schools and used in a variety of ways. In this study, a design model involving educational technology, pedagogy, and content domain is proposed for effective use of computers in learning. Computer simulation, constructivist and Vygotskian perspectives, and circular motion are the three elements of the specific Chain Model for instructional design. The goal of the physics course is to help students remove the ideas which are not consistent with the physics community and rebuild new knowledge. To achieve the learning goal, the strategies of using conceptual conflicts and using language to internalize specific tasks into mental functions were included. Computer simulations and accompanying worksheets were used to help students explore their own ideas and to generate questions for discussions. Using animated images to describe the dynamic processes involved in the circular motion may reduce the complexity and possible miscommunications resulting from verbal explanations. The effectiveness of the instructional material on student learning is evaluated. The results of problem solving activities show that students using computer simulations had significantly higher scores than students not using computer simulations. For conceptual understanding, on the pretest students in the non-simulation group had significantly higher score than students in the simulation group. There was no significant difference observed between the two groups in the posttest. The relations of gender, prior physics experience, and frequency of computer uses outside the course to student achievement were also studied. There were fewer female students than male students and fewer students using computer simulations than students not using computer simulations. These characteristics affect the statistical power for detecting differences. For the future research, more intervention of simulations may be introduced to explore the potential of computer simulation in helping students learning. A test for conceptual understanding with more problems and appropriate difficulty level may be needed.

  18. Simulating Scenes In Outer Space

    NASA Technical Reports Server (NTRS)

    Callahan, John D.

    1989-01-01

    Multimission Interactive Picture Planner, MIP, computer program for scientifically accurate and fast, three-dimensional animation of scenes in deep space. Versatile, reasonably comprehensive, and portable, and runs on microcomputers. New techniques developed to perform rapidly calculations and transformations necessary to animate scenes in scientifically accurate three-dimensional space. Written in FORTRAN 77 code. Primarily designed to handle Voyager, Galileo, and Space Telescope. Adapted to handle other missions.

  19. Emerging technologies in education and training: applications for the laboratory animal science community.

    PubMed

    Ketelhut, Diane Jass; Niemi, Steven M

    2007-01-01

    This article examines several new and exciting communication technologies. Many of the technologies were developed by the entertainment industry; however, other industries are adopting and modifying them for their own needs. These new technologies allow people to collaborate across distance and time and to learn in simulated work contexts. The article explores the potential utility of these technologies for advancing laboratory animal care and use through better education and training. Descriptions include emerging technologies such as augmented reality and multi-user virtual environments, which offer new approaches with different capabilities. Augmented reality interfaces, characterized by the use of handheld computers to infuse the virtual world into the real one, result in deeply immersive simulations. In these simulations, users can access virtual resources and communicate with real and virtual participants. Multi-user virtual environments enable multiple participants to simultaneously access computer-based three-dimensional virtual spaces, called "worlds," and to interact with digital tools. They allow for authentic experiences that promote collaboration, mentoring, and communication. Because individuals may learn or train differently, it is advantageous to combine the capabilities of these technologies and applications with more traditional methods to increase the number of students who are served by using current methods alone. The use of these technologies in animal care and use programs can create detailed training and education environments that allow students to learn the procedures more effectively, teachers to assess their progress more objectively, and researchers to gain insights into animal care.

  20. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation

    PubMed Central

    Müller, Klaus; Smielik, Ievgen; Hütwohl, Jan-Marco; Kuhnert, Klaus-Dieter; Witte, Klaudia

    2017-01-01

    Abstract The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a “swimming” box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies. PMID:29491964

  1. The virtual lover: variable and easily guided 3D fish animations as an innovative tool in mate-choice experiments with sailfin mollies-II. Validation.

    PubMed

    Gierszewski, Stefanie; Müller, Klaus; Smielik, Ievgen; Hütwohl, Jan-Marco; Kuhnert, Klaus-Dieter; Witte, Klaudia

    2017-02-01

    The use of computer animation in behavioral research is a state-of-the-art method for designing and presenting animated animals to live test animals. The major advantages of computer animations are: (1) the creation of animated animal stimuli with high variability of morphology and even behavior; (2) animated stimuli provide highly standardized, controlled and repeatable testing procedures; and (3) they allow a reduction in the number of live test animals regarding the 3Rs principle. But the use of animated animals should be attended by a thorough validation for each test species to verify that behavior measured with live animals toward virtual animals can also be expected with natural stimuli. Here we present results on the validation of a custom-made simulation for animated 3D sailfin mollies Poecilia latipinna and show that responses of live test females were as strong to an animated fish as to a video or a live male fish. Movement of an animated stimulus was important but female response was stronger toward a swimming 3D fish stimulus than to a "swimming" box. Moreover, male test fish were able to discriminate between animated male and female stimuli; hence, rendering the animated 3D fish a useful tool in mate-choice experiments with sailfin mollies.

  2. Training of perceptual-cognitive skills in offside decision making.

    PubMed

    Catteeuw, Peter; Gilis, Bart; Jaspers, Arne; Wagemans, Johan; Helsen, Werner

    2010-12-01

    This study investigates the effect of two off-field training formats to improve offside decision making. One group trained with video simulations and another with computer animations. Feedback after every offside situation allowed assistant referees to compensate for the consequences of the flash-lag effect and to improve their decision-making accuracy. First, response accuracy improved and flag errors decreased for both training groups implying that training interventions with feedback taught assistant referees to better deal with the flash-lag effect. Second, the results demonstrated no effect of format, although assistant referees rated video simulations higher for fidelity than computer animations. This implies that a cognitive correction to a perceptual effect can be learned also when the format does not correspond closely with the original perceptual situation. Off-field offside decision-making training should be considered as part of training because it is a considerable help to gain more experience and to improve overall decision-making performance.

  3. Using Computational and Mechanical Models to Study Animal Locomotion

    PubMed Central

    Miller, Laura A.; Goldman, Daniel I.; Hedrick, Tyson L.; Tytell, Eric D.; Wang, Z. Jane; Yen, Jeannette; Alben, Silas

    2012-01-01

    Recent advances in computational methods have made realistic large-scale simulations of animal locomotion possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles moving through air and water and on land. This work has also motivated the development of improved numerical methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates, and structures. Despite the large body of recent work in this area, the application of mathematical and numerical methods to improve our understanding of organisms in the context of their environment and physiology has remained relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to ultimately answer the questions posed in one of the grand challenges in organismal biology: “Integrating living and physical systems.” PMID:22988026

  4. Evaluating Computer-Based Simulations, Multimedia and Animations that Help Integrate Blended Learning with Lectures in First Year Statistics

    ERIC Educational Resources Information Center

    Neumann, David L.; Neumann, Michelle M.; Hood, Michelle

    2011-01-01

    The discipline of statistics seems well suited to the integration of technology in a lecture as a means to enhance student learning and engagement. Technology can be used to simulate statistical concepts, create interactive learning exercises, and illustrate real world applications of statistics. The present study aimed to better understand the…

  5. Comparison of Monte Carlo simulated and measured performance parameters of miniPET scanner

    NASA Astrophysics Data System (ADS)

    Kis, S. A.; Emri, M.; Opposits, G.; Bükki, T.; Valastyán, I.; Hegyesi, Gy.; Imrek, J.; Kalinka, G.; Molnár, J.; Novák, D.; Végh, J.; Kerek, A.; Trón, L.; Balkay, L.

    2007-02-01

    In vivo imaging of small laboratory animals is a valuable tool in the development of new drugs. For this purpose, miniPET, an easy to scale modular small animal PET camera has been developed at our institutes. The system has four modules, which makes it possible to rotate the whole detector system around the axis of the field of view. Data collection and image reconstruction are performed using a data acquisition (DAQ) module with Ethernet communication facility and a computer cluster of commercial PCs. Performance tests were carried out to determine system parameters, such as energy resolution, sensitivity and noise equivalent count rate. A modified GEANT4-based GATE Monte Carlo software package was used to simulate PET data analogous to those of the performance measurements. GATE was run on a Linux cluster of 10 processors (64 bit, Xeon with 3.0 GHz) and controlled by a SUN grid engine. The application of this special computer cluster reduced the time necessary for the simulations by an order of magnitude. The simulated energy spectra, maximum rate of true coincidences and sensitivity of the camera were in good agreement with the measured parameters.

  6. Numerical study of the SSME nozzle flow fields during transient operations: A comparison of the animated results with test

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Dumas, Catherine

    1993-01-01

    A computational fluid dynamics (CFD) model has been applied to study the transient flow phenomena of the nozzle and exhaust plume of the Space Shuttle Main Engine (SSME), fired at sea level. The CFD model is a time accurate, pressure based, reactive flow solver. A six-species hydrogen/oxygen equilibrium chemistry is used to describe the chemical-thermodynamics. An adaptive upwinding scheme is employed for the spatial discretization, and a predictor, multiple corrector method is used for the temporal solution. Both engine start-up and shut-down processes were simulated. The elapse time is approximately five seconds for both cases. The computed results were animated and compared with the test. The images for the animation were created with PLOT3D and FAST and then animated with ABEKAS. The hysteresis effects, and the issues of free-shock separation, restricted-shock separation and the end-effects were addressed.

  7. Extending self-organizing particle systems to problem solving.

    PubMed

    Rodríguez, Alejandro; Reggia, James A

    2004-01-01

    Self-organizing particle systems consist of numerous autonomous, purely reflexive agents ("particles") whose collective movements through space are determined primarily by local influences they exert upon one another. Inspired by biological phenomena (bird flocking, fish schooling, etc.), particle systems have been used not only for biological modeling, but also increasingly for applications requiring the simulation of collective movements such as computer-generated animation. In this research, we take some first steps in extending particle systems so that they not only move collectively, but also solve simple problems. This is done by giving the individual particles (agents) a rudimentary intelligence in the form of a very limited memory and a top-down, goal-directed control mechanism that, triggered by appropriate conditions, switches them between different behavioral states and thus different movement dynamics. Such enhanced particle systems are shown to be able to function effectively in performing simulated search-and-collect tasks. Further, computational experiments show that collectively moving agent teams are more effective than similar but independently moving ones in carrying out such tasks, and that agent teams of either type that split off members of the collective to protect previously acquired resources are most effective. This work shows that the reflexive agents of contemporary particle systems can readily be extended to support goal-directed problem solving while retaining their collective movement behaviors. These results may prove useful not only for future modeling of animal behavior, but also in computer animation, coordinated movement control in robotic teams, particle swarm optimization, and computer games.

  8. Selection of core animals in the Algorithm for Proven and Young using a simulation model.

    PubMed

    Bradford, H L; Pocrnić, I; Fragomeni, B O; Lourenco, D A L; Misztal, I

    2017-12-01

    The Algorithm for Proven and Young (APY) enables the implementation of single-step genomic BLUP (ssGBLUP) in large, genotyped populations by separating genotyped animals into core and non-core subsets and creating a computationally efficient inverse for the genomic relationship matrix (G). As APY became the choice for large-scale genomic evaluations in BLUP-based methods, a common question is how to choose the animals in the core subset. We compared several core definitions to answer this question. Simulations comprised a moderately heritable trait for 95,010 animals and 50,000 genotypes for animals across five generations. Genotypes consisted of 25,500 SNP distributed across 15 chromosomes. Genotyping errors and missing pedigree were also mimicked. Core animals were defined based on individual generations, equal representation across generations, and at random. For a sufficiently large core size, core definitions had the same accuracies and biases, even if the core animals had imperfect genotypes. When genotyped animals had unknown parents, accuracy and bias were significantly better (p ≤ .05) for random and across generation core definitions. © 2017 The Authors. Journal of Animal Breeding and Genetics Published by Blackwell Verlag GmbH.

  9. Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors.

    PubMed

    Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis

    2010-05-01

    The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.

  10. Virtual reality neurosurgery: a simulator blueprint.

    PubMed

    Spicer, Mark A; van Velsen, Martin; Caffrey, John P; Apuzzo, Michael L J

    2004-04-01

    This article details preliminary studies undertaken to integrate the most relevant advancements across multiple disciplines in an effort to construct a highly realistic neurosurgical simulator based on a distributed computer architecture. Techniques based on modified computational modeling paradigms incorporating finite element analysis are presented, as are current and projected efforts directed toward the implementation of a novel bidirectional haptic device. Patient-specific data derived from noninvasive magnetic resonance imaging sequences are used to construct a computational model of the surgical region of interest. Magnetic resonance images of the brain may be coregistered with those obtained from magnetic resonance angiography, magnetic resonance venography, and diffusion tensor imaging to formulate models of varying anatomic complexity. The majority of the computational burden is encountered in the presimulation reduction of the computational model and allows realization of the required threshold rates for the accurate and realistic representation of real-time visual animations. Intracranial neurosurgical procedures offer an ideal testing site for the development of a totally immersive virtual reality surgical simulator when compared with the simulations required in other surgical subspecialties. The material properties of the brain as well as the typically small volumes of tissue exposed in the surgical field, coupled with techniques and strategies to minimize computational demands, provide unique opportunities for the development of such a simulator. Incorporation of real-time haptic and visual feedback is approached here and likely will be accomplished soon.

  11. Fast animation of lightning using an adaptive mesh.

    PubMed

    Kim, Theodore; Lin, Ming C

    2007-01-01

    We present a fast method for simulating, animating, and rendering lightning using adaptive grids. The "dielectric breakdown model" is an elegant algorithm for electrical pattern formation that we extend to enable animation of lightning. The simulation can be slow, particularly in 3D, because it involves solving a large Poisson problem. Losasso et al. recently proposed an octree data structure for simulating water and smoke, and we show that this discretization can be applied to the problem of lightning simulation as well. However, implementing the incomplete Cholesky conjugate gradient (ICCG) solver for this problem can be daunting, so we provide an extensive discussion of implementation issues. ICCG solvers can usually be accelerated using "Eisenstat's trick," but the trick cannot be directly applied to the adaptive case. Fortunately, we show that an "almost incomplete Cholesky" factorization can be computed so that Eisenstat's trick can still be used. We then present a fast rendering method based on convolution that is competitive with Monte Carlo ray tracing but orders of magnitude faster, and we also show how to further improve the visual results using jittering.

  12. Improvement of Parameter Estimations in Tumor Growth Inhibition Models on Xenografted Animals: Handling Sacrifice Censoring and Error Caused by Experimental Measurement on Larger Tumor Sizes.

    PubMed

    Pierrillas, Philippe B; Tod, Michel; Amiel, Magali; Chenel, Marylore; Henin, Emilie

    2016-09-01

    The purpose of this study was to explore the impact of censoring due to animal sacrifice on parameter estimates and tumor volume calculated from two diameters in larger tumors during tumor growth experiments in preclinical studies. The type of measurement error that can be expected was also investigated. Different scenarios were challenged using the stochastic simulation and estimation process. One thousand datasets were simulated under the design of a typical tumor growth study in xenografted mice, and then, eight approaches were used for parameter estimation with the simulated datasets. The distribution of estimates and simulation-based diagnostics were computed for comparison. The different approaches were robust regarding the choice of residual error and gave equivalent results. However, by not considering missing data induced by sacrificing the animal, parameter estimates were biased and led to false inferences in terms of compound potency; the threshold concentration for tumor eradication when ignoring censoring was 581 ng.ml(-1), but the true value was 240 ng.ml(-1).

  13. Multidisciplinary Approaches in Evolutionary Linguistics

    ERIC Educational Resources Information Center

    Gong, Tao; Shuai, Lan; Wu, Yicheng

    2013-01-01

    Studying language evolution has become resurgent in modern scientific research. In this revival field, approaches from a number of disciplines other than linguistics, including (paleo)anthropology and archaeology, animal behaviors, genetics, neuroscience, computer simulation, and psychological experimentation, have been adopted, and a wide scope…

  14. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  15. Computational Control Workstation: Users' perspectives

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Straube, Timothy M.; Tave, Jeffrey S.

    1993-01-01

    A Workstation has been designed and constructed for rapidly simulating motions of rigid and elastic multibody systems. We examine the Workstation from the point of view of analysts who use the machine in an industrial setting. Two aspects of the device distinguish it from other simulation programs. First, one uses a series of windows and menus on a computer terminal, together with a keyboard and mouse, to provide a mathematical and geometrical description of the system under consideration. The second hallmark is a facility for animating simulation results. An assessment of the amount of effort required to numerically describe a system to the Workstation is made by comparing the process to that used with other multibody software. The apparatus for displaying results as a motion picture is critiqued as well. In an effort to establish confidence in the algorithms that derive, encode, and solve equations of motion, simulation results from the Workstation are compared to answers obtained with other multibody programs. Our study includes measurements of computational speed.

  16. Using computer agents to explain medical documents to patients with low health literacy.

    PubMed

    Bickmore, Timothy W; Pfeifer, Laura M; Paasche-Orlow, Michael K

    2009-06-01

    Patients are commonly presented with complex documents that they have difficulty understanding. The objective of this study was to design and evaluate an animated computer agent to explain research consent forms to potential research participants. Subjects were invited to participate in a simulated consent process for a study involving a genetic repository. Explanation of the research consent form by the computer agent was compared to explanation by a human and a self-study condition in a randomized trial. Responses were compared according to level of health literacy. Participants were most satisfied with the consent process and most likely to sign the consent form when it was explained by the computer agent, regardless of health literacy level. Participants with adequate health literacy demonstrated the highest level of comprehension with the computer agent-based explanation compared to the other two conditions. However, participants with limited health literacy showed poor comprehension levels in all three conditions. Participants with limited health literacy reported several reasons, such as lack of time constraints, ability to re-ask questions, and lack of bias, for preferring the computer agent-based explanation over a human-based one. Animated computer agents can perform as well as or better than humans in the administration of informed consent. Animated computer agents represent a viable method for explaining health documents to patients.

  17. Engineering visualization utilizing advanced animation

    NASA Technical Reports Server (NTRS)

    Sabionski, Gunter R.; Robinson, Thomas L., Jr.

    1989-01-01

    Engineering visualization is the use of computer graphics to depict engineering analysis and simulation in visual form from project planning through documentation. Graphics displays let engineers see data represented dynamically which permits the quick evaluation of results. The current state of graphics hardware and software generally allows the creation of two types of 3D graphics. The use of animated video as an engineering visualization tool is presented. The engineering, animation, and videography aspects of animated video production are each discussed. Specific issues include the integration of staffing expertise, hardware, software, and the various production processes. A detailed explanation of the animation process reveals the capabilities of this unique engineering visualization method. Automation of animation and video production processes are covered and future directions are proposed.

  18. Interactive Media and Simulation Tools for Technical Training

    NASA Technical Reports Server (NTRS)

    Gramoll, Kurt

    1997-01-01

    Over the last several years, integration of multiple media sources into a single information system has been rapidly developing. It has been found that when sound, graphics, text, animations, and simulations are skillfully integrated, the sum of the parts exceeds the individual parts for effective learning. In addition, simulations can be used to design and understand complex engineering processes. With the recent introduction of many high-level authoring, animation, modeling, and rendering programs for personal computers, significant multimedia programs can be developed by practicing engineers, scientists and even managers for both training and education. However, even with these new tools, a considerable amount of time is required to produce an interactive multimedia program. The development of both CD-ROM and Web-based programs are discussed in addition to the use of technically oriented animations. Also examined are various multimedia development tools and how they are used to develop effective engineering education courseware. Demonstrations of actual programs in engineering mechanics are shown.

  19. Validation of GPU-accelerated superposition-convolution dose computations for the Small Animal Radiation Research Platform.

    PubMed

    Cho, Nathan; Tsiamas, Panagiotis; Velarde, Esteban; Tryggestad, Erik; Jacques, Robert; Berbeco, Ross; McNutt, Todd; Kazanzides, Peter; Wong, John

    2018-05-01

    The Small Animal Radiation Research Platform (SARRP) has been developed for conformal microirradiation with on-board cone beam CT (CBCT) guidance. The graphics processing unit (GPU)-accelerated Superposition-Convolution (SC) method for dose computation has been integrated into the treatment planning system (TPS) for SARRP. This paper describes the validation of the SC method for the kilovoltage energy by comparing with EBT2 film measurements and Monte Carlo (MC) simulations. MC data were simulated by EGSnrc code with 3 × 10 8 -1.5 × 10 9 histories, while 21 photon energy bins were used to model the 220 kVp x-rays in the SC method. Various types of phantoms including plastic water, cork, graphite, and aluminum were used to encompass the range of densities of mouse organs. For the comparison, percentage depth dose (PDD) of SC, MC, and film measurements were analyzed. Cross beam (x,y) dosimetric profiles of SC and film measurements are also presented. Correction factors (CFz) to convert SC to MC dose-to-medium are derived from the SC and MC simulations in homogeneous phantoms of aluminum and graphite to improve the estimation. The SC method produces dose values that are within 5% of film measurements and MC simulations in the flat regions of the profile. The dose is less accurate at the edges, due to factors such as geometric uncertainties of film placement and difference in dose calculation grids. The GPU-accelerated Superposition-Convolution dose computation method was successfully validated with EBT2 film measurements and MC calculations. The SC method offers much faster computation speed than MC and provides calculations of both dose-to-water in medium and dose-to-medium in medium. © 2018 American Association of Physicists in Medicine.

  20. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model.

    PubMed

    Hyde, W T; Crowley, T J; Baum, S K; Peltier, W R

    2000-05-25

    Ice sheets may have reached the Equator in the late Proterozoic era (600-800 Myr ago), according to geological and palaeomagnetic studies, possibly resulting in a 'snowball Earth'. But this period was a critical time in the evolution of multicellular animals, posing the question of how early life survived under such environmental stress. Here we present computer simulations of this unusual climate stage with a coupled climate/ice-sheet model. To simulate a snowball Earth, we use only a reduction in the solar constant compared to present-day conditions and we keep atmospheric CO2 concentrations near present levels. We find rapid transitions into and out of full glaciation that are consistent with the geological evidence. When we combine these results with a general circulation model, some of the simulations result in an equatorial belt of open water that may have provided a refugium for multicellular animals.

  1. Process Simulation of Gas Metal Arc Welding Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Paul E.

    2005-09-06

    ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer ofmore » droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.« less

  2. Application of cellular automata approach for cloud simulation and rendering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher Immanuel, W.; Paul Mary Deborrah, S.; Samuel Selvaraj, R.

    Current techniques for creating clouds in games and other real time applications produce static, homogenous clouds. These clouds, while viable for real time applications, do not exhibit an organic feel that clouds in nature exhibit. These clouds, when viewed over a time period, were able to deform their initial shape and move in a more organic and dynamic way. With cloud shape technology we should be able in the future to extend to create even more cloud shapes in real time with more forces. Clouds are an essential part of any computer model of a landscape or an animation ofmore » an outdoor scene. A realistic animation of clouds is also important for creating scenes for flight simulators, movies, games, and other. Our goal was to create a realistic animation of clouds.« less

  3. Selection of an appropriate animal model for study of bone loss in weightlessness

    NASA Technical Reports Server (NTRS)

    Wolinsky, I.

    1986-01-01

    Prolonged weightlessness in space flight results in a slow progressive demineralization of bone accompanied by an increased calcium output in the urine resulting in negative calcium balances. This possibly irreversible bone loss may constitute a serious limiting factor to long duration manned space flight. A number of preventative measures have been suggested, i.e., exercise during flight, dietary calcium supplements, use of specific prophylactic drugs. In order to facilitate research in these areas it is necessary to develop appropriate ground-based animal models that simulate the human condition of osteoporsis. An appropriate animal model would permit bone density studies, calcium balance studies, biochemical analyses, ground-based simulation models of weightlessness (bed rest, restraint, immobilization) and the planning of inflight experiments. Several animal models have been proposed in the biomedical research literature, but have inherent deficiencies. The purpose of this project was to evaluate models in the literature and determine which of these most closely simulates the phenomenon of bone loss in humans with regard to growth, bone remodeling, structural, chemical and mineralization similarities to human. This was accomplished by a comprehensive computer assisted literature search and report. Three animal models were examined closely for their relative suitability: the albino rat, monkey, and Beagle.

  4. Computer Simulations Improve University Instructional Laboratories1

    PubMed Central

    2004-01-01

    Laboratory classes are commonplace and essential in biology departments but can sometimes be cumbersome, unreliable, and a drain on time and resources. As university intakes increase, pressure on budgets and staff time can often lead to reduction in practical class provision. Frequently, the ability to use laboratory equipment, mix solutions, and manipulate test animals are essential learning outcomes, and “wet” laboratory classes are thus appropriate. In others, however, interpretation and manipulation of the data are the primary learning outcomes, and here, computer-based simulations can provide a cheaper, easier, and less time- and labor-intensive alternative. We report the evaluation of two computer-based simulations of practical exercises: the first in chromosome analysis, the second in bioinformatics. Simulations can provide significant time savings to students (by a factor of four in our first case study) without affecting learning, as measured by performance in assessment. Moreover, under certain circumstances, performance can be improved by the use of simulations (by 7% in our second case study). We concluded that the introduction of these simulations can significantly enhance student learning where consideration of the learning outcomes indicates that it might be appropriate. In addition, they can offer significant benefits to teaching staff. PMID:15592599

  5. Computer simulation of the classical entanglement of U-shaped particles in three dimensions

    NASA Astrophysics Data System (ADS)

    Maddock, Brian; Lindner, John

    2014-03-01

    Classical entanglement is important in a wide range of phenomena, such as velcro hook-and-loop-fasteners, seed dispersal by animal fur, and bent liquid crystal molecules. We present a computer simulation of the entanglement of U-shaped particles in three dimensions. We represent the particles by phenomenological potentials and evolve them by integrating Newton's laws of motion. We drop them into a virtual cylinder, shake them, and ultimately release the cylinder. As the particle piles relax, we quantify their entanglement by the exponential decay times of their heights, which we correlate to the particles' height-to-length ratios.

  6. Control Theory and Statistical Generalizations.

    ERIC Educational Resources Information Center

    Powers, William T.

    1990-01-01

    Contrasts modeling methods in control theory to the methods of statistical generalizations in empirical studies of human or animal behavior. Presents a computer simulation that predicts behavior based on variables (effort and rewards) determined by the invariable (desired reward). Argues that control theory methods better reflect relationships to…

  7. Developmental Systems Toxicology: computer simulation in a ‘Virtual Embryo’ prototype (SEURAT-1 Progress Meeting)

    EPA Science Inventory

    Evaluating and assessing impacts to development is an Agency priority (EPA’s Children’s Environmental Health Research Roadmap); however, the quantity of chemicals needing assessment and challenges of species extrapolation require alternative approaches to traditional animal studi...

  8. High-quality animation of 2D steady vector fields.

    PubMed

    Lefer, Wilfrid; Jobard, Bruno; Leduc, Claire

    2004-01-01

    Simulators for dynamic systems are now widely used in various application areas and raise the need for effective and accurate flow visualization techniques. Animation allows us to depict direction, orientation, and velocity of a vector field accurately. This paper extends a former proposal for a new approach to produce perfectly cyclic and variable-speed animations for 2D steady vector fields (see [1] and [2]). A complete animation of an arbitrary number of frames is encoded in a single image. The animation can be played using the color table animation technique, which is very effective even on low-end workstations. A cyclic set of textures can be produced as well and then encoded in a common animation format or used for texture mapping on 3D objects. As compared to other approaches, the method presented in this paper produces smoother animations and is more effective, both in memory requirements to store the animation, and in computation time.

  9. The simulated air flow pattern around a moving animal transport vehicle as the basis for a prospective biosecurity risk assessment.

    PubMed

    Seedorf, Jens; Schmidt, Ralf-Gunther

    2017-08-01

    Research that investigates bioaerosol emissions from animal transport vehicles (ATVs) and their importance in the spread of harmful airborne agents while the ATVs travel on roads is limited. To investigate the dynamical behaviour of theoretically released particles from a moving ATV, the open-source computational fluid dynamics (CFD) software OpenFOAM was used to calculate the external and internal air flow fields with passive and forced ventilated openings of a common ATV moving at a speed of 80 km/h. In addition to a computed flow rate of approximately 40,000 m 3 /h crossing the interior of the ATV, the visualization of the trajectories has demonstrated distinct patterns of the spatial distribution of potentially released bioaerosols in the vicinity of the ATV. Although the front openings show the highest air flow to the outside, the recirculations of air masses between the interior of the ATV and the atmosphere also occur, which complicate the emission and the dispersion characterizations. To specify the future emission rates of ATVs, a database of bioaerosol concentrations within the ATV is necessary in conjunction with high-performance computing resources to simulate the potential dispersion of bioaerosols in the environment.

  10. Animation of multi-flexible body systems and its use in control system design

    NASA Technical Reports Server (NTRS)

    Juengst, Carl; Stahlberg, Ron

    1993-01-01

    Animation can greatly assist the structural dynamicist and control system analyst with better understanding of how multi-flexible body systems behave. For multi-flexible body systems, the structural characteristics (mode frequencies, mode shapes, and damping) change, sometimes dramatically with large angles of rotation between bodies. With computer animation, the analyst can visualize these changes and how the system responds to active control forces and torques. A characterization of the type of system we wish to animate is presented. The lack of clear understanding of the above effects was a key element leading to the development of a multi-flexible body animation software package. The resulting animation software is described in some detail here, followed by its application to the control system analyst. Other applications of this software can be determined on an individual need basis. A number of software products are currently available that make the high-speed rendering of rigid body mechanical system simulation possible. However, such options are not available for use in rendering flexible body mechanical system simulations. The desire for a high-speed flexible body visualization tool led to the development of the Flexible Or Rigid Mechanical System (FORMS) software. This software was developed at the Center for Simulation and Design Optimization of Mechanical Systems at the University of Iowa. FORMS provides interactive high-speed rendering of flexible and/or rigid body mechanical system simulations, and combines geometry and motion information to produce animated output. FORMS is designed to be both portable and flexible, and supports a number of different user interfaces and graphical display devices. Additional features have been added to FORMS that allow special visualization results related to the nature of the flexible body geometric representations.

  11. The role of simulation in surgical training.

    PubMed Central

    Torkington, J.; Smith, S. G.; Rees, B. I.; Darzi, A.

    2000-01-01

    Surgical training has undergone many changes in the last decade. One outcome of these changes is the interest that has been generated in the possibility of training surgical skills outside the operating theatre. Simulation of surgical procedures and human tissue, if perfect, would allow complete transfer of techniques learnt in a skills laboratory directly to the operating theatre. Several techniques of simulation are available including artificial tissues, animal models and virtual reality computer simulation. Each is discussed in this article and their advantages and disadvantages considered. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10743423

  12. Bio-Inspired Controller on an FPGA Applied to Closed-Loop Diaphragmatic Stimulation

    PubMed Central

    Zbrzeski, Adeline; Bornat, Yannick; Hillen, Brian; Siu, Ricardo; Abbas, James; Jung, Ranu; Renaud, Sylvie

    2016-01-01

    Cervical spinal cord injury can disrupt connections between the brain respiratory network and the respiratory muscles which can lead to partial or complete loss of ventilatory control and require ventilatory assistance. Unlike current open-loop technology, a closed-loop diaphragmatic pacing system could overcome the drawbacks of manual titration as well as respond to changing ventilation requirements. We present an original bio-inspired assistive technology for real-time ventilation assistance, implemented in a digital configurable Field Programmable Gate Array (FPGA). The bio-inspired controller, which is a spiking neural network (SNN) inspired by the medullary respiratory network, is as robust as a classic controller while having a flexible, low-power and low-cost hardware design. The system was simulated in MATLAB with FPGA-specific constraints and tested with a computational model of rat breathing; the model reproduced experimentally collected respiratory data in eupneic animals. The open-loop version of the bio-inspired controller was implemented on the FPGA. Electrical test bench characterizations confirmed the system functionality. Open and closed-loop paradigm simulations were simulated to test the FPGA system real-time behavior using the rat computational model. The closed-loop system monitors breathing and changes in respiratory demands to drive diaphragmatic stimulation. The simulated results inform future acute animal experiments and constitute the first step toward the development of a neuromorphic, adaptive, compact, low-power, implantable device. The bio-inspired hardware design optimizes the FPGA resource and time costs while harnessing the computational power of spike-based neuromorphic hardware. Its real-time feature makes it suitable for in vivo applications. PMID:27378844

  13. Natural Language Description of Emotion

    ERIC Educational Resources Information Center

    Kazemzadeh, Abe

    2013-01-01

    This dissertation studies how people describe emotions with language and how computers can simulate this descriptive behavior. Although many non-human animals can express their current emotions as social signals, only humans can communicate about emotions symbolically. This symbolic communication of emotion allows us to talk about emotions that we…

  14. The Electronic Guinea Pig.

    ERIC Educational Resources Information Center

    Angier, Natalie

    1983-01-01

    Scientists are designing computer models of biological systems, and of compounds with complex molecules, that can be used to get answers once obtainable only by sacrificing laboratory animals. Although most programs are still under development, some are in use by industrial/pharmaceutical companies. The programs and experiments they simulate are…

  15. Progress in modeling and simulation.

    PubMed

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeure, I.M.

    The research presented here is concerned with representation techniques and tools to support the design, prototyping, simulation, and evaluation of message-based parallel, distributed computations. The author describes ParaDiGM-Parallel, Distributed computation Graph Model-a visual representation technique for parallel, message-based distributed computations. ParaDiGM provides several views of a computation depending on the aspect of concern. It is made of two complementary submodels, the DCPG-Distributed Computing Precedence Graph-model, and the PAM-Process Architecture Model-model. DCPGs are precedence graphs used to express the functionality of a computation in terms of tasks, message-passing, and data. PAM graphs are used to represent the partitioning of a computationmore » into schedulable units or processes, and the pattern of communication among those units. There is a natural mapping between the two models. He illustrates the utility of ParaDiGM as a representation technique by applying it to various computations (e.g., an adaptive global optimization algorithm, the client-server model). ParaDiGM representations are concise. They can be used in documenting the design and the implementation of parallel, distributed computations, in describing such computations to colleagues, and in comparing and contrasting various implementations of the same computation. He then describes VISA-VISual Assistant, a software tool to support the design, prototyping, and simulation of message-based parallel, distributed computations. VISA is based on the ParaDiGM model. In particular, it supports the editing of ParaDiGM graphs to describe the computations of interest, and the animation of these graphs to provide visual feedback during simulations. The graphs are supplemented with various attributes, simulation parameters, and interpretations which are procedures that can be executed by VISA.« less

  17. Integration of SimSET photon history generator in GATE for efficient Monte Carlo simulations of pinhole SPECT.

    PubMed

    Chen, Chia-Lin; Wang, Yuchuan; Lee, Jason J S; Tsui, Benjamin M W

    2008-07-01

    The authors developed and validated an efficient Monte Carlo simulation (MCS) workflow to facilitate small animal pinhole SPECT imaging research. This workflow seamlessly integrates two existing MCS tools: simulation system for emission tomography (SimSET) and GEANT4 application for emission tomography (GATE). Specifically, we retained the strength of GATE in describing complex collimator/detector configurations to meet the anticipated needs for studying advanced pinhole collimation (e.g., multipinhole) geometry, while inserting the fast SimSET photon history generator (PHG) to circumvent the relatively slow GEANT4 MCS code used by GATE in simulating photon interactions inside voxelized phantoms. For validation, data generated from this new SimSET-GATE workflow were compared with those from GATE-only simulations as well as experimental measurements obtained using a commercial small animal pinhole SPECT system. Our results showed excellent agreement (e.g., in system point response functions and energy spectra) between SimSET-GATE and GATE-only simulations, and, more importantly, a significant computational speedup (up to approximately 10-fold) provided by the new workflow. Satisfactory agreement between MCS results and experimental data were also observed. In conclusion, the authors have successfully integrated SimSET photon history generator in GATE for fast and realistic pinhole SPECT simulations, which can facilitate research in, for example, the development and application of quantitative pinhole and multipinhole SPECT for small animal imaging. This integrated simulation tool can also be adapted for studying other preclinical and clinical SPECT techniques.

  18. Multiple Teaching Approaches, Teaching Sequence and Concept Retention in High School Physics Education

    ERIC Educational Resources Information Center

    Fogarty, Ian; Geelan, David

    2013-01-01

    Students in 4 Canadian high school physics classes completed instructional sequences in two key physics topics related to motion--Straight Line Motion and Newton's First Law. Different sequences of laboratory investigation, teacher explanation (lecture) and the use of computer-based scientific visualizations (animations and simulations) were…

  19. Web-Based Learning and Instruction Support System for Pneumatics

    ERIC Educational Resources Information Center

    Yen, Chiaming; Li, Wu-Jeng

    2003-01-01

    This research presents a Web-based learning and instructional system for Pneumatics. The system includes course material, remote data acquisition modules, and a pneumatic laboratory set. The course material is in the HTML format accompanied with text, still and animated images, simulation programs, and computer aided design tools. The data…

  20. Artificial pigs in space: using artificial intelligence and artificial life techniques to design animal housing.

    PubMed

    Stricklin, W R; de Bourcier, P; Zhou, J Z; Gonyou, H W

    1998-10-01

    Computer simulations have been used by us since the early 1970s to gain an understanding of the spacing and movement patterns of confined animals. The work has progressed from the early stages, in which we used randomly positioned points, to current investigations of animats (computer-simulated animals), which show low levels of learning via artificial neural networks. We have determined that 1) pens of equal floor area but of different shape result in different spatial and movement patterns for randomly positioned and moving animats; 2) when group size increases under constant density, freedom of movement approaches an asymptote at approximately six animats; 3) matching the number of animats with the number of corners results in optimal freedom of movement for small groups of animats; and 4) perimeter positioning occurs in groups of animats that maximize their distance to first- and second-nearest neighbors. Recently, we developed animats that move, compete for social dominance, and are motivated to obtain resources (food, resting sites, etc.). We are currently developing an animat that learns its behavior from the spatial and movement data collected on live pigs. The animat model is then used to pretest pen designs, followed by new pig spatial data fed into the animat model, resulting in a new pen design to be tested, and the steps are repeated. We believe that methodologies from artificial-life and artificial intelligence can contribute to the understanding of basic animal behavior principles, as well as to the solving of problems in production agriculture in areas such as animal housing design.

  1. Using spatiotemporal statistical models to estimate animal abundance and infer ecological dynamics from survey counts

    USGS Publications Warehouse

    Conn, Paul B.; Johnson, Devin S.; Ver Hoef, Jay M.; Hooten, Mevin B.; London, Joshua M.; Boveng, Peter L.

    2015-01-01

    Ecologists often fit models to survey data to estimate and explain variation in animal abundance. Such models typically require that animal density remains constant across the landscape where sampling is being conducted, a potentially problematic assumption for animals inhabiting dynamic landscapes or otherwise exhibiting considerable spatiotemporal variation in density. We review several concepts from the burgeoning literature on spatiotemporal statistical models, including the nature of the temporal structure (i.e., descriptive or dynamical) and strategies for dimension reduction to promote computational tractability. We also review several features as they specifically relate to abundance estimation, including boundary conditions, population closure, choice of link function, and extrapolation of predicted relationships to unsampled areas. We then compare a suite of novel and existing spatiotemporal hierarchical models for animal count data that permit animal density to vary over space and time, including formulations motivated by resource selection and allowing for closed populations. We gauge the relative performance (bias, precision, computational demands) of alternative spatiotemporal models when confronted with simulated and real data sets from dynamic animal populations. For the latter, we analyze spotted seal (Phoca largha) counts from an aerial survey of the Bering Sea where the quantity and quality of suitable habitat (sea ice) changed dramatically while surveys were being conducted. Simulation analyses suggested that multiple types of spatiotemporal models provide reasonable inference (low positive bias, high precision) about animal abundance, but have potential for overestimating precision. Analysis of spotted seal data indicated that several model formulations, including those based on a log-Gaussian Cox process, had a tendency to overestimate abundance. By contrast, a model that included a population closure assumption and a scale prior on total abundance produced estimates that largely conformed to our a priori expectation. Although care must be taken to tailor models to match the study population and survey data available, we argue that hierarchical spatiotemporal statistical models represent a powerful way forward for estimating abundance and explaining variation in the distribution of dynamical populations.

  2. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    PubMed

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  3. Agent-based modeling for the landuse change of hunter-gather societies and the impacts on biodiversity in Guyana

    NASA Astrophysics Data System (ADS)

    Iwamura, T.; Fragoso, J.; Lambin, E.

    2012-12-01

    The interactions with animals are vital to the Amerindian, indigenous people, of Rupunini savannah-forest in Guyana. Their connections extend from basic energy and protein resource to spiritual bonding through "paring" to a certain animal in the forest. We collected extensive dataset of 23 indigenous communities for 3.5 years, consisting 9900 individuals from 1307 households, as well as animal observation data in 8 transects per communities (47,000 data entries). In this presentation, our research interest is to model the driver of land use change of the indigenous communities and its impacts on the ecosystem in the Rupunini area under global change. Overarching question we would like to answer with this program is to find how and why "tipping-point" from hunting gathering society to the agricultural society occurs in the future. Secondary question is what is the implication of the change to agricultural society in terms of biodiversity and carbon stock in the area, and eventually the well-being of Rupunini people. To answer the questions regarding the society shift in agriculture activities, we built as simulation with Agent-Based Modeling (Multi Agents Simulation). We developed this simulation by using Netlogo, the programming environment specialized for spatially explicit agent-based modeling (ABM). This simulation consists of four different process in the Rupunini landscape; forest succession, animal population growth, hunting of animals, and land clearing for agriculture. All of these processes are carried out by a set of computational unit, called "agents". In this program, there are four types of agents - patches, villages, households, and animals. Here, we describe the impacts of hunting on the biodiversity based on actual demographic data from one village named Crush Water. Animal population within the hunting territory of the village stabilized but Agouti/Paca dominates the landscape with little population of armadillos and peccaries. White-tailed deers, Tapirs, Capybara exist but very low. This finding is well aligned with the hunting dataset - Agouti/Paca consists 27% of total hunting. Based on our simulation, it seems the dominance of Agouti/Paca among hunted animals shown in the field data can be explained solely by their high carrying capacity against human extraction (population density of the Paca/Agouti = 60 per square km, whereas other animals ranges 0.63 to 7). When we incorporate agriculture, the "rodentation" of the animal population toward Agouti/Paca becomes more obvious. This simulation shows the interactions of people and animals through land change and hunting, which were observed in our fields.

  4. Movie magic in the clinic: computer-generated characters for automated health counseling.

    PubMed

    Bickmore, Timothy

    2008-11-06

    In this presentation, I demonstrate how many of the technologies used in movie special effects and games have been successfully used in health education and behavior change interventions. Computer-animated health counselors simulate human face-to-face dialogue as a computer interface medium, including not only verbal behavior but nonverbal conversational behavior such as hand gesture, body posture shifts, and facial display of emotion. This technology has now been successfully used in a wide range of health interventions for education and counseling of patients and consumers, including applications in physical activity promotion, medication adherence, and hospital discharge. These automated counselors have been deployed on home computers, hospital-based touch screen kiosks, and mobile devices with integrated health behavior sensing capability. Development of these agents is an interdisciplinary endeavor spanning the fields of character modeling and animation, computational linguistics, artificial intelligence, health communication and behavioral medicine. I will give demonstrations of several fielded systems, describe the technologies and methodologies underlying their development, and present results from five randomized controlled trials that have been completed or are in progress.

  5. Emergence of a snake-like structure in mobile distributed agents: an exploratory agent-based modeling approach.

    PubMed

    Niazi, Muaz A

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems.

  6. Emergence of a Snake-Like Structure in Mobile Distributed Agents: An Exploratory Agent-Based Modeling Approach

    PubMed Central

    Niazi, Muaz A.

    2014-01-01

    The body structure of snakes is composed of numerous natural components thereby making it resilient, flexible, adaptive, and dynamic. In contrast, current computer animations as well as physical implementations of snake-like autonomous structures are typically designed to use either a single or a relatively smaller number of components. As a result, not only these artificial structures are constrained by the dimensions of the constituent components but often also require relatively more computationally intensive algorithms to model and animate. Still, these animations often lack life-like resilience and adaptation. This paper presents a solution to the problem of modeling snake-like structures by proposing an agent-based, self-organizing algorithm resulting in an emergent and surprisingly resilient dynamic structure involving a minimal of interagent communication. Extensive simulation experiments demonstrate the effectiveness as well as resilience of the proposed approach. The ideas originating from the proposed algorithm can not only be used for developing self-organizing animations but can also have practical applications such as in the form of complex, autonomous, evolvable robots with self-organizing, mobile components with minimal individual computational capabilities. The work also demonstrates the utility of exploratory agent-based modeling (EABM) in the engineering of artificial life-like complex adaptive systems. PMID:24701135

  7. The Effect of a Prior Dissection Simulation on Middle School Students' Dissection Performance and Understanding of the Anatomy and Morphology of the Frog

    NASA Astrophysics Data System (ADS)

    Akpan, Joseph Paul; Andre, Thomas

    1999-06-01

    Science teachers, school administrators, educators, and the scientific community are faced with ethical controversies over animal dissection in classrooms. Simulation has been proposed as a way of dealing with this issue. One intriguing previous finding was that use of an interactive videodisc dissection facilitated performance on a subsequent actual dissection. This study examined the prior use of simulation of frog dissection in improving students' actual dissection performance and learning of frog anatomy and morphology. There were three experimental conditions: simulation before dissection (SBD); dissection before simulation (DBS); or dissection-only (DO). Results of the study indicated that students receiving SBD performed significantly better than students receiving DBS or DO on both actual dissection and knowledge of the anatomy and morphology. Students' attitudes toward the use of animals for dissection did not change significantly from pretest to posttest and did not interact with treatment. The genders did not differ in achievement, but males were more favorable towards dissection and computers than were females.

  8. Development and Validation of a Monte Carlo Simulation Tool for Multi-Pinhole SPECT

    PubMed Central

    Mok, Greta S. P.; Du, Yong; Wang, Yuchuan; Frey, Eric C.; Tsui, Benjamin M. W.

    2011-01-01

    Purpose In this work, we developed and validated a Monte Carlo simulation (MCS) tool for investigation and evaluation of multi-pinhole (MPH) SPECT imaging. Procedures This tool was based on a combination of the SimSET and MCNP codes. Photon attenuation and scatter in the object, as well as penetration and scatter through the collimator detector, are modeled in this tool. It allows accurate and efficient simulation of MPH SPECT with focused pinhole apertures and user-specified photon energy, aperture material, and imaging geometry. The MCS method was validated by comparing the point response function (PRF), detection efficiency (DE), and image profiles obtained from point sources and phantom experiments. A prototype single-pinhole collimator and focused four- and five-pinhole collimators fitted on a small animal imager were used for the experimental validations. We have also compared computational speed among various simulation tools for MPH SPECT, including SimSET-MCNP, MCNP, SimSET-GATE, and GATE for simulating projections of a hot sphere phantom. Results We found good agreement between the MCS and experimental results for PRF, DE, and image profiles, indicating the validity of the simulation method. The relative computational speeds for SimSET-MCNP, MCNP, SimSET-GATE, and GATE are 1: 2.73: 3.54: 7.34, respectively, for 120-view simulations. We also demonstrated the application of this MCS tool in small animal imaging by generating a set of low-noise MPH projection data of a 3D digital mouse whole body phantom. Conclusions The new method is useful for studying MPH collimator designs, data acquisition protocols, image reconstructions, and compensation techniques. It also has great potential to be applied for modeling the collimator-detector response with penetration and scatter effects for MPH in the quantitative reconstruction method. PMID:19779896

  9. "The Virtual Patient"--Development, Implementation and Evaluation of an Innovative Computer Simulation for Postgraduate Nursing Students

    ERIC Educational Resources Information Center

    Kiegaldie, Debra; White, Geoff

    2006-01-01

    The Virtual Patient, an interactive multimedia learning resource using a critical care clinical scenario for postgraduate nursing students, was developed to enhance flexible access to learning experiences and improve learning outcomes in the management of critically ill patients. Using real-time physiological animations, authentic content design…

  10. Using Interactive Multimedia to Teach Pedestrian Safety: An Exploratory Study

    ERIC Educational Resources Information Center

    Glang, Ann; Noell, John; Ary, Dennis; Swartz, Lynne

    2005-01-01

    Objectives: To evaluate an interactive multimedia (IMM) program that teaches young children safe pedestrian skills. Methods: The program uses IMM (animation and video) to teach children critical skills for crossing streets safely. A computer-delivered video assessment and a real-life street simulation were used to measure the effectiveness of the…

  11. Computer simulation of wolf-removal strategies for animal damage control

    Treesearch

    Robert G. Haight; Laurel E. Travis; Kevin Nimerfro; L. David Mech

    2002-01-01

    Because of the sustained growth of the gray wolf (Canis lupus) population in the western Great Lakes region of the United States, management agencies are anticipating gray wolf removal from the federal endangered species list and are proposing strategies for wolf management. Strategies are needed that would balance conflicting public demands for wolf...

  12. The Role of Agent Age and Gender for Middle-Grade Girls

    ERIC Educational Resources Information Center

    Kim, Yanghee

    2016-01-01

    Compared to boys, many girls are more aware of a social context in the learning process and perform better when the environment supports frequent interactions and social relationships. For these girls, embodied agents (animated on-screen characters acting as tutors) could afford simulated social interactions in computer-based learning and thereby…

  13. Using postural synergies to animate a low-dimensional hand avatar in haptic simulation.

    PubMed

    Mulatto, Sara; Formaglio, Alessandro; Malvezzi, Monica; Prattichizzo, Domenico

    2013-01-01

    A technique to animate a realistic hand avatar with 20 DoFs based on the biomechanics of the human hand is presented. The animation does not use any sensor glove or advanced tracker with markers. The proposed approach is based on the knowledge of a set of kinematic constraints on the model of the hand, referred to as postural synergies, which allows to represent the hand posture using a number of variables lower than the number of joints of the hand model. This low-dimensional set of parameters is estimated from direct measurement of the motion of thumb and index finger tracked using two haptic devices. A kinematic inversion algorithm has been developed, which takes synergies into account and estimates the kinematic configuration of the whole hand, i.e., also of the fingers whose end tips are not directly tracked by the two haptic devices. The hand skin is deformable and its deformation is computed using a linear vertex blending technique. The proposed synergy-based animation of the hand avatar involves only algebraic computations and is suitable for real-time implementation as required in haptics.

  14. Magnetic resonance: Using computer simulations and visualizations to connect quantum theory with classical concepts

    NASA Astrophysics Data System (ADS)

    Engelhardt, Larry

    2015-12-01

    We discuss how computers can be used to solve the ordinary differential equations that provide a quantum mechanical description of magnetic resonance. By varying the parameters in these equations and visually exploring how these parameters affect the results, students can quickly gain insights into the nature of magnetic resonance that go beyond the standard presentation found in quantum mechanics textbooks. The results were generated using an IPython notebook, which we provide as an online supplement with interactive plots and animations.

  15. An object-oriented computational model to study cardiopulmonary hemodynamic interactions in humans.

    PubMed

    Ngo, Chuong; Dahlmanns, Stephan; Vollmer, Thomas; Misgeld, Berno; Leonhardt, Steffen

    2018-06-01

    This work introduces an object-oriented computational model to study cardiopulmonary interactions in humans. Modeling was performed in object-oriented programing language Matlab Simscape, where model components are connected with each other through physical connections. Constitutive and phenomenological equations of model elements are implemented based on their non-linear pressure-volume or pressure-flow relationship. The model includes more than 30 physiological compartments, which belong either to the cardiovascular or respiratory system. The model considers non-linear behaviors of veins, pulmonary capillaries, collapsible airways, alveoli, and the chest wall. Model parameters were derisved based on literature values. Model validation was performed by comparing simulation results with clinical and animal data reported in literature. The model is able to provide quantitative values of alveolar, pleural, interstitial, aortic and ventricular pressures, as well as heart and lung volumes during spontaneous breathing and mechanical ventilation. Results of baseline simulation demonstrate the consistency of the assigned parameters. Simulation results during mechanical ventilation with PEEP trials can be directly compared with animal and clinical data given in literature. Object-oriented programming languages can be used to model interconnected systems including model non-linearities. The model provides a useful tool to investigate cardiopulmonary activity during spontaneous breathing and mechanical ventilation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Shuttle Systems 3-D Applications: Application of 3-D Graphics in Engineering Training for Shuttle Ground Processing

    NASA Technical Reports Server (NTRS)

    Godfrey, Gary S.

    2003-01-01

    This project illustrates an animation of the orbiter mate to the external tank, an animation of the OMS POD installation to the orbiter, and a simulation of the landing gear mechanism at the Kennedy Space Center. A detailed storyboard was created to reflect each animation or simulation. Solid models were collected and translated into Pro/Engineer's prt and asm formats. These solid models included computer files of the: orbiter, external tank, solid rocket booster, mobile launch platform, transporter, vehicle assembly building, OMS POD fixture, and landing gear. A depository of the above solid models was established. These solid models were translated into several formats. This depository contained the following files: stl for sterolithography, stp for neutral file work, shrinkwrap for compression, tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. Solid models were created of the material handling sling, bay 3 platforms, and orbiter contact points. Animations were developed using mechanisms to reflect each storyboard. Every effort was made to build all models technically correct for engineering use. The result was an animated routine that could be used by NASA for training material handlers and uncovering engineering safety issues.

  17. Use of three-dimensional computer graphic animation to illustrate cleft lip and palate surgery.

    PubMed

    Cutting, C; Oliker, A; Haring, J; Dayan, J; Smith, D

    2002-01-01

    Three-dimensional (3D) computer animation is not commonly used to illustrate surgical techniques. This article describes the surgery-specific processes that were required to produce animations to teach cleft lip and palate surgery. Three-dimensional models were created using CT scans of two Chinese children with unrepaired clefts (one unilateral and one bilateral). We programmed several custom software tools, including an incision tool, a forceps tool, and a fat tool. Three-dimensional animation was found to be particularly useful for illustrating surgical concepts. Positioning the virtual "camera" made it possible to view the anatomy from angles that are impossible to obtain with a real camera. Transparency allows the underlying anatomy to be seen during surgical repair while maintaining a view of the overlaying tissue relationships. Finally, the representation of motion allows modeling of anatomical mechanics that cannot be done with static illustrations. The animations presented in this article can be viewed on-line at http://www.smiletrain.org/programs/virtual_surgery2.htm. Sophisticated surgical procedures are clarified with the use of 3D animation software and customized software tools. The next step in the development of this technology is the creation of interactive simulators that recreate the experience of surgery in a safe, digital environment. Copyright 2003 Wiley-Liss, Inc.

  18. Research and implementation of group animation based on normal cloud model

    NASA Astrophysics Data System (ADS)

    Li, Min; Wei, Bin; Peng, Bao

    2011-12-01

    Group Animation is a difficult technology problem which always has not been solved in computer Animation technology, All current methods have their limitations. This paper put forward a method: the Motion Coordinate and Motion Speed of true fish group was collected as sample data, reverse cloud generator was designed and run, expectation, entropy and super entropy are gotten. Which are quantitative value of qualitative concept. These parameters are used as basis, forward cloud generator was designed and run, Motion Coordinate and Motion Speed of two-dimensional fish group animation are produced, And two spirit state variable about fish group : the feeling of hunger, the feeling of fear are designed. Experiment is used to simulated the motion state of fish Group Animation which is affected by internal cause and external cause above, The experiment shows that the Group Animation which is designed by this method has strong Realistic.

  19. A Kenyan perspective on the use of animals in science education and scientific research in Africa and prospects for improvement

    PubMed Central

    Kimwele, Charles; Matheka, Duncan; Ferdowsian, Hope

    2011-01-01

    Introduction Animal experimentation is common in Africa, a region that accords little priority on animal protection in comparison to economic and social development. The current study aimed at investigating the prevalence of animal experimentation in Kenya, and to review shortfalls in policy, legislation, implementation and enforcement that result in inadequate animal care in Kenya and other African nations. Methods Data was collected using questionnaires, administered at 39 highly ranked academic and research institutions aiming to identify those that used animals, their sources of animals, and application of the three Rs. Perceived challenges to the use of non-animal alternatives and common methods of euthanasia were also queried. Data was analyzed using Epidata, SPSS 16.0 and Microsoft Excel. Results Thirty-eight (97.4%) of thirty-nine institutions reported using animals for education and/or research. Thirty (76.9%) institutions reported using analgesics or anesthetics on a regular basis. Thirteen (33.3%) institutions regularly used statistical methods to minimize the use of animals. Overall, sixteen (41.0%) institutions explored the use of alternatives to animals such as cell cultures and computer simulation techniques, with one (2.6%) academic institution having completely replaced animals with computer modeling, manikins and visual illustrations. The commonest form of euthanasia employed was chloroform administration, reportedly in fourteen (29.8%) of 47 total methods (some institutions used more than one method). Twenty-eight (71.8%) institutions had no designated ethics committee to review or monitor protocols using animals. Conclusion Animals are commonly used in academic and research institutions in Kenya. The relative lack of ethical guidance and oversight regarding the use of animals in research and education presents significant concerns. PMID:22355442

  20. A Kenyan perspective on the use of animals in science education and scientific research in Africa and prospects for improvement.

    PubMed

    Kimwele, Charles; Matheka, Duncan; Ferdowsian, Hope

    2011-01-01

    Animal experimentation is common in Africa, a region that accords little priority on animal protection in comparison to economic and social development. The current study aimed at investigating the prevalence of animal experimentation in Kenya, and to review shortfalls in policy, legislation, implementation and enforcement that result in inadequate animal care in Kenya and other African nations. Data was collected using questionnaires, administered at 39 highly ranked academic and research institutions aiming to identify those that used animals, their sources of animals, and application of the three Rs. Perceived challenges to the use of non-animal alternatives and common methods of euthanasia were also queried. Data was analyzed using Epidata, SPSS 16.0 and Microsoft Excel. Thirty-eight (97.4%) of thirty-nine institutions reported using animals for education and/or research. Thirty (76.9%) institutions reported using analgesics or anesthetics on a regular basis. Thirteen (33.3%) institutions regularly used statistical methods to minimize the use of animals. Overall, sixteen (41.0%) institutions explored the use of alternatives to animals such as cell cultures and computer simulation techniques, with one (2.6%) academic institution having completely replaced animals with computer modeling, manikins and visual illustrations. The commonest form of euthanasia employed was chloroform administration, reportedly in fourteen (29.8%) of 47 total methods (some institutions used more than one method). Twenty-eight (71.8%) institutions had no designated ethics committee to review or monitor protocols using animals. Animals are commonly used in academic and research institutions in Kenya. The relative lack of ethical guidance and oversight regarding the use of animals in research and education presents significant concerns.

  1. A framework for optimizing micro-CT in dual-modality micro-CT/XFCT small-animal imaging system

    NASA Astrophysics Data System (ADS)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew; Cho, Sang Hyun

    2017-09-01

    Dual-modality Computed Tomography (CT)/X-ray Fluorescence Computed Tomography (XFCT) can be a valuable tool for imaging and quantifying the organ and tissue distribution of small concentrations of high atomic number materials in small-animal system. In this work, the framework for optimizing the micro-CT imaging system component of the dual-modality system is described, either when the micro-CT images are concurrently acquired with XFCT and using the x-ray spectral conditions for XFCT, or when the micro-CT images are acquired sequentially and independently of XFCT. This framework utilizes the cascaded systems analysis for task-specific determination of the detectability index using numerical observer models at a given radiation dose, where the radiation dose is determined using Monte Carlo simulations.

  2. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Möckel, M.; Wiedemann, C.; Flegel, S.; Gelhaus, J.; Vörsmann, P.; Klinkrad, H.; Krag, H.

    2011-07-01

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction to OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.

  3. Using parallel computing for the display and simulation of the space debris environment

    NASA Astrophysics Data System (ADS)

    Moeckel, Marek; Wiedemann, Carsten; Flegel, Sven Kevin; Gelhaus, Johannes; Klinkrad, Heiner; Krag, Holger; Voersmann, Peter

    Parallelism is becoming the leading paradigm in today's computer architectures. In order to take full advantage of this development, new algorithms have to be specifically designed for parallel execution while many old ones have to be upgraded accordingly. One field in which parallel computing has been firmly established for many years is computer graphics. Calculating and displaying three-dimensional computer generated imagery in real time requires complex numerical operations to be performed at high speed on a large number of objects. Since most of these objects can be processed independently, parallel computing is applicable in this field. Modern graphics processing units (GPUs) have become capable of performing millions of matrix and vector operations per second on multiple objects simultaneously. As a side project, a software tool is currently being developed at the Institute of Aerospace Systems that provides an animated, three-dimensional visualization of both actual and simulated space debris objects. Due to the nature of these objects it is possible to process them individually and independently from each other. Therefore, an analytical orbit propagation algorithm has been implemented to run on a GPU. By taking advantage of all its processing power a huge performance increase, compared to its CPU-based counterpart, could be achieved. For several years efforts have been made to harness this computing power for applications other than computer graphics. Software tools for the simulation of space debris are among those that could profit from embracing parallelism. With recently emerged software development tools such as OpenCL it is possible to transfer the new algorithms used in the visualization outside the field of computer graphics and implement them, for example, into the space debris simulation environment. This way they can make use of parallel hardware such as GPUs and Multi-Core-CPUs for faster computation. In this paper the visualization software will be introduced, including a comparison between the serial and the parallel method of orbit propagation. Ways of how to use the benefits of the latter method for space debris simulation will be discussed. An introduction of OpenCL will be given as well as an exemplary algorithm from the field of space debris simulation.

  4. Cardiovascular system simulation in biomedical engineering education.

    NASA Technical Reports Server (NTRS)

    Rideout, V. C.

    1972-01-01

    Use of complex cardiovascular system models, in conjunction with a large hybrid computer, in biomedical engineering courses. A cardiovascular blood pressure-flow model, driving a compartment model for the study of dye transport, was set up on the computer for use as a laboratory exercise by students who did not have the computer experience or skill to be able to easily set up such a simulation involving some 27 differential equations running at 'real time' rate. The students were given detailed instructions regarding the model, and were then able to study effects such as those due to septal and valve defects upon the pressure, flow, and dye dilution curves. The success of this experiment in the use of involved models in engineering courses was such that it seems that this type of laboratory exercise might be considered for use in physiology courses as an adjunct to animal experiments.

  5. The Great Red Spot Plunge (animation)

    NASA Image and Video Library

    2017-12-11

    This frame from an animation takes the viewer on a simulated flight into, and then out of, Jupiter's upper atmosphere at the location of the Great Red Spot. The perspective begins about 2,000 miles (3,000 kilometers) above the cloud tops of the planet's southern hemisphere. The bar at far left indicates altitude during the quick descent; a second gauge next to that depicts the dramatic increase in temperature that occurs as the perspective dives deeper down. The clouds turn crimson as the perspective passes through the Great Red Spot. Finally, the view ascends out of the spot. This video was created by combining an image from the JunoCam imager on NASA's Juno spacecraft with a computer-generated animation. The animation is available at https://photojournal.jpl.nasa.gov/catalog/PIA22176

  6. Homogeneous Canine Chest Phantom Construction: A Tool for Image Quality Optimization.

    PubMed

    Pavan, Ana Luiza Menegatti; Rosa, Maria Eugênia Dela; Giacomini, Guilherme; Bacchim Neto, Fernando Antonio; Yamashita, Seizo; Vulcano, Luiz Carlos; Duarte, Sergio Barbosa; Miranda, José Ricardo de Arruda; de Pina, Diana Rodrigues

    2016-01-01

    Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air). Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05) quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures.

  7. Homogeneous Canine Chest Phantom Construction: A Tool for Image Quality Optimization

    PubMed Central

    2016-01-01

    Digital radiographic imaging is increasing in veterinary practice. The use of radiation demands responsibility to maintain high image quality. Low doses are necessary because workers are requested to restrain the animal. Optimizing digital systems is necessary to avoid unnecessary exposure, causing the phenomenon known as dose creep. Homogeneous phantoms are widely used to optimize image quality and dose. We developed an automatic computational methodology to classify and quantify tissues (i.e., lung tissue, adipose tissue, muscle tissue, and bone) in canine chest computed tomography exams. The thickness of each tissue was converted to simulator materials (i.e., Lucite, aluminum, and air). Dogs were separated into groups of 20 animals each according to weight. Mean weights were 6.5 ± 2.0 kg, 15.0 ± 5.0 kg, 32.0 ± 5.5 kg, and 50.0 ± 12.0 kg, for the small, medium, large, and giant groups, respectively. The one-way analysis of variance revealed significant differences in all simulator material thicknesses (p < 0.05) quantified between groups. As a result, four phantoms were constructed for dorsoventral and lateral views. In conclusion, the present methodology allows the development of phantoms of the canine chest and possibly other body regions and/or animals. The proposed phantom is a practical tool that may be employed in future work to optimize veterinary X-ray procedures. PMID:27101001

  8. Spatial interpretation of NASA's Marshall Space Flight Center Payload Operations Control Center using virtual reality technology

    NASA Technical Reports Server (NTRS)

    Lindsey, Patricia F.

    1993-01-01

    In its search for higher level computer interfaces and more realistic electronic simulations for measurement and spatial analysis in human factors design, NASA at MSFC is evaluating the functionality of virtual reality (VR) technology. Virtual reality simulation generates a three dimensional environment in which the participant appears to be enveloped. It is a type of interactive simulation in which humans are not only involved, but included. Virtual reality technology is still in the experimental phase, but it appears to be the next logical step after computer aided three-dimensional animation in transferring the viewer from a passive to an active role in experiencing and evaluating an environment. There is great potential for using this new technology when designing environments for more successful interaction, both with the environment and with another participant in a remote location. At the University of North Carolina, a VR simulation of a the planned Sitterson Hall, revealed a flaw in the building's design that had not been observed during examination of the more traditional building plan simulation methods on paper and on computer aided design (CAD) work station. The virtual environment enables multiple participants in remote locations to come together and interact with one another and with the environment. Each participant is capable of seeing herself and the other participants and of interacting with them within the simulated environment.

  9. The three-dimensional Event-Driven Graphics Environment (3D-EDGE)

    NASA Technical Reports Server (NTRS)

    Freedman, Jeffrey; Hahn, Roger; Schwartz, David M.

    1993-01-01

    Stanford Telecom developed the Three-Dimensional Event-Driven Graphics Environment (3D-EDGE) for NASA GSFC's (GSFC) Communications Link Analysis and Simulation System (CLASS). 3D-EDGE consists of a library of object-oriented subroutines which allow engineers with little or no computer graphics experience to programmatically manipulate, render, animate, and access complex three-dimensional objects.

  10. Understanding the dynamical control of animal movement

    NASA Astrophysics Data System (ADS)

    Edwards, Donald

    2008-03-01

    Over the last 50 years, neurophysiologists have described many neural circuits that transform sensory input into motor commands, while biomechanicians and behavioral biologists have described many patterns of animal movement that occur in response to sensory input. Attempts to link these two have been frustrated by our technical inability to record from the necessary neurons in a freely behaving animal. As a result, we don't know how these neural circuits function in the closed loop context of free behavior, where the sensory and motor context changes on a millisecond time-scale. To address this problem, we have developed a software package, AnimatLab (www.AnimatLab.com), that enables users to reconstruct an animal's body and its relevant neural circuits, to link them at the sensory and motor ends, and through simulation, to test their ability to reproduce appropriate patterns of the animal's movements in a simulated Newtonian world. A Windows-based program, AnimatLab consists of a neural editor, a body editor, a world editor, stimulus and recording facilities, neural and physics engines, and an interactive 3-D graphical display. We have used AnimatLab to study three patterns of behavior: the grasshopper jump, crayfish escape, and crayfish leg movements used in postural control, walking, reaching and grasping. In each instance, the simulation helped identify constraints on both nervous function and biomechanical performance that have provided the basis for new experiments. Colleagues elsewhere have begun to use AnimatLab to study control of paw movements in cats and postural control in humans. We have also used AnimatLab simulations to guide the development of an autonomous hexapod robot in which the neural control circuitry is downloaded to the robot from the test computer.

  11. A potential mechanism for allometric trabecular bone scaling in terrestrial mammals.

    PubMed

    Christen, Patrik; Ito, Keita; van Rietbergen, Bert

    2015-03-01

    Trabecular bone microstructural parameters, including trabecular thickness, spacing, and number, have been reported to scale with animal size with negative allometry, whereas bone volume fraction is animal size-invariant in terrestrial mammals. As for the majority of scaling patterns described in animals, its underlying mechanism is unknown. However, it has also been found that osteocyte density is inversely related to animal size, possibly adapted to metabolic rate, which shows a negative relationship as well. In addition, the signalling reach of osteocytes is limited by the extent of the lacuno-canalicular network, depending on trabecular dimensions and thus also on animal size. Here we propose animal size-dependent variations in osteocyte density and their signalling influence distance as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. Using an established and tested computational model of bone modelling and remodelling, we run simulations with different osteocyte densities and influence distances mimicking six terrestrial mammals covering a large range of body masses. Simulated trabecular structures revealed negative allometric scaling for trabecular thickness, spacing, and number, constant bone volume fraction, and bone turnover rates inversely related to animal size. These results are in agreement with previous observations supporting our proposal of osteocyte density and influence distance variation as a potential mechanism for negative allometric trabecular bone scaling in terrestrial mammals. The inverse relationship between bone turnover rates and animal size further indicates that trabecular bone scaling may be linked to metabolic rather than mechanical adaptations. © 2015 Anatomical Society.

  12. Monte Carlo simulations of the dose from imaging with GE eXplore 120 micro-CT using GATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bretin, Florian; Bahri, Mohamed Ali; Luxen, André

    Purpose: Small animals are increasingly used as translational models in preclinical imaging studies involving microCT, during which the subjects can be exposed to large amounts of radiation. While the radiation levels are generally sublethal, studies have shown that low-level radiation can change physiological parameters in mice. In order to rule out any influence of radiation on the outcome of such experiments, or resulting deterministic effects in the subjects, the levels of radiation involved need to be addressed. The aim of this study was to investigate the radiation dose delivered by the GE eXplore 120 microCT non-invasively using Monte Carlo simulationsmore » in GATE and to compare results to previously obtained experimental values. Methods: Tungsten X-ray spectra were simulated at 70, 80, and 97 kVp using an analytical tool and their half-value layers were simulated for spectra validation against experimentally measured values of the physical X-ray tube. A Monte Carlo model of the microCT system was set up and four protocols that are regularly applied to live animal scanning were implemented. The computed tomography dose index (CTDI) inside a PMMA phantom was derived and multiple field of view acquisitions were simulated using the PMMA phantom, a representative mouse and rat. Results: Simulated half-value layers agreed with experimentally obtained results within a 7% error window. The CTDI ranged from 20 to 56 mGy and closely matched experimental values. Derived organ doses in mice reached 459 mGy in bones and up to 200 mGy in soft tissue organs using the highest energy protocol. Dose levels in rats were lower due to the increased mass of the animal compared to mice. The uncertainty of all dose simulations was below 14%. Conclusions: Monte Carlo simulations proved a valuable tool to investigate the 3D dose distribution in animals from microCT. Small animals, especially mice (due to their small volume), receive large amounts of radiation from the GE eXplore 120 microCT, which might alter physiological parameters in a longitudinal study setup.« less

  13. A 3D visualization and simulation of the individual human jaw.

    PubMed

    Muftić, Osman; Keros, Jadranka; Baksa, Sarajko; Carek, Vlado; Matković, Ivo

    2003-01-01

    A new biomechanical three-dimensional (3D) model for the human mandible based on computer-generated virtual model is proposed. Using maps obtained from the special kinds of photos of the face of the real subject, it is possible to attribute personality to the virtual character, while computer animation offers movements and characteristics within the confines of space and time of the virtual world. A simple two-dimensional model of the jaw cannot explain the biomechanics, where the muscular forces through occlusion and condylar surfaces are in the state of 3D equilibrium. In the model all forces are resolved into components according to a selected coordinate system. The muscular forces act on the jaw, along with the necessary force level for chewing as some kind of mandible balance, preventing dislocation and loading of nonarticular tissues. In the work is used new approach to computer-generated animation of virtual 3D characters (called "Body SABA"), using in one object package of minimal costs and easy for operation.

  14. Scattered Dose Calculations and Measurements in a Life-Like Mouse Phantom

    PubMed Central

    Welch, David; Turner, Leah; Speiser, Michael; Randers-Pehrson, Gerhard; Brenner, David J.

    2017-01-01

    Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models. PMID:28140787

  15. Incorporation of causative quantitative trait nucleotides in single-step GBLUP.

    PubMed

    Fragomeni, Breno O; Lourenco, Daniela A L; Masuda, Yutaka; Legarra, Andres; Misztal, Ignacy

    2017-07-26

    Much effort is put into identifying causative quantitative trait nucleotides (QTN) in animal breeding, empowered by the availability of dense single nucleotide polymorphism (SNP) information. Genomic selection using traditional SNP information is easily implemented for any number of genotyped individuals using single-step genomic best linear unbiased predictor (ssGBLUP) with the algorithm for proven and young (APY). Our aim was to investigate whether ssGBLUP is useful for genomic prediction when some or all QTN are known. Simulations included 180,000 animals across 11 generations. Phenotypes were available for all animals in generations 6 to 10. Genotypes for 60,000 SNPs across 10 chromosomes were available for 29,000 individuals. The genetic variance was fully accounted for by 100 or 1000 biallelic QTN. Raw genomic relationship matrices (GRM) were computed from (a) unweighted SNPs, (b) unweighted SNPs and causative QTN, (c) SNPs and causative QTN weighted with results obtained with genome-wide association studies, (d) unweighted SNPs and causative QTN with simulated weights, (e) only unweighted causative QTN, (f-h) as in (b-d) but using only the top 10% causative QTN, and (i) using only causative QTN with simulated weight. Predictions were computed by pedigree-based BLUP (PBLUP) and ssGBLUP. Raw GRM were blended with 1 or 5% of the numerator relationship matrix, or 1% of the identity matrix. Inverses of GRM were obtained directly or with APY. Accuracy of breeding values for 5000 genotyped animals in the last generation with PBLUP was 0.32, and for ssGBLUP it increased to 0.49 with an unweighted GRM, 0.53 after adding unweighted QTN, 0.63 when QTN weights were estimated, and 0.89 when QTN weights were based on true effects known from the simulation. When the GRM was constructed from causative QTN only, accuracy was 0.95 and 0.99 with blending at 5 and 1%, respectively. Accuracies simulating 1000 QTN were generally lower, with a similar trend. Accuracies using the APY inverse were equal or higher than those with a regular inverse. Single-step GBLUP can account for causative QTN via a weighted GRM. Accuracy gains are maximum when variances of causative QTN are known and blending is at 1%.

  16. Fast Multipole Methods for Three-Dimensional N-body Problems

    NASA Technical Reports Server (NTRS)

    Koumoutsakos, P.

    1995-01-01

    We are developing computational tools for the simulations of three-dimensional flows past bodies undergoing arbitrary motions. High resolution viscous vortex methods have been developed that allow for extended simulations of two-dimensional configurations such as vortex generators. Our objective is to extend this methodology to three dimensions and develop a robust computational scheme for the simulation of such flows. A fundamental issue in the use of vortex methods is the ability of employing efficiently large numbers of computational elements to resolve the large range of scales that exist in complex flows. The traditional cost of the method scales as Omicron (N(sup 2)) as the N computational elements/particles induce velocities at each other, making the method unacceptable for simulations involving more than a few tens of thousands of particles. In the last decade fast methods have been developed that have operation counts of Omicron (N log N) or Omicron (N) (referred to as BH and GR respectively) depending on the details of the algorithm. These methods are based on the observation that the effect of a cluster of particles at a certain distance may be approximated by a finite series expansion. In order to exploit this observation we need to decompose the element population spatially into clusters of particles and build a hierarchy of clusters (a tree data structure) - smaller neighboring clusters combine to form a cluster of the next size up in the hierarchy and so on. This hierarchy of clusters allows one to determine efficiently when the approximation is valid. This algorithm is an N-body solver that appears in many fields of engineering and science. Some examples of its diverse use are in astrophysics, molecular dynamics, micro-magnetics, boundary element simulations of electromagnetic problems, and computer animation. More recently these N-body solvers have been implemented and applied in simulations involving vortex methods. Koumoutsakos and Leonard (1995) implemented the GR scheme in two dimensions for vector computer architectures allowing for simulations of bluff body flows using millions of particles. Winckelmans presented three-dimensional, viscous simulations of interacting vortex rings, using vortons and an implementation of a BH scheme for parallel computer architectures. Bhatt presented a vortex filament method to perform inviscid vortex ring interactions, with an alternative implementation of a BH scheme for a Connection Machine parallel computer architecture.

  17. Replacement of harmful animal use in life science education: the approach and activities of InterNICHE.

    PubMed

    Jukes, Nick

    2004-06-01

    Harmful animal use in undergraduate education is increasingly being replaced by alternatives, such as computer software, manikins and simulators, ethically sourced animal cadavers, apprentice work with animal patients, and student self-experimentation. Combinations of such alternatives can better meet teaching objectives, reduce costs and avoid the negative pedagogical and social impact of animal experimentation. Since 1988, the International Network for Humane Education (InterNICHE, formerly EuroNICHE) has been working with teachers to replace harmful animal use and has been supporting students' right to conscientious objection. This paper presents the approach, history and current activities of InterNICHE. With a vision of 100% replacement, the network aims for empowerment by networking information and providing support. It works with the belief that most teachers want investment in the best quality and most humane education possible. The forthcoming second edition of the InterNICHE book, from Guinea Pig to Computer Mouse,1 includes practical details of progressive teaching aids and approaches, as well as case studies from teachers who employ such alternatives. In 1999, InterNICHE produced the film Alternatives in Education, now available in 20 languages. Such resources are complemented by outreach trips and conferences and an Alternatives Loan System, which offers products for familiarisation and assessment. The InterNICHE website (www.interniche.org) was launched in 2001.

  18. Implemented a wireless communication system for VGA capsule endoscope.

    PubMed

    Moon, Yeon-Kwan; Lee, Jyung Hyun; Park, Hee-Joon; Cho, Jin-Ho; Choi, Hyun-Chul

    2014-01-01

    Recently, several medical devices that use wireless communication are under development. In this paper, the small size frequency shift keying (FSK) transmitter and a monofilar antenna for the capsule endoscope, enabling the medical device to transmit VGA-size images of the intestine. To verify the functionality of the proposed wireless communication system, computer simulations and animal experiments were performed with the implemented capsule endoscope that includes the proposed wireless communication system. Several fundamental experiments are carried out using the implemented transmitter and antenna, and animal in-vivo experiments were performed to verify VGA image transmission.

  19. Realistic facial expression of virtual human based on color, sweat, and tears effects.

    PubMed

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.

  20. Realistic Facial Expression of Virtual Human Based on Color, Sweat, and Tears Effects

    PubMed Central

    Alkawaz, Mohammed Hazim; Basori, Ahmad Hoirul; Mohamad, Dzulkifli; Mohamed, Farhan

    2014-01-01

    Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics. PMID:25136663

  1. What's the Technology For? Teacher Attention and Pedagogical Goals in a Modeling-Focused Professional Development Workshop

    ERIC Educational Resources Information Center

    Wilkerson, Michelle Hoda; Andrews, Chelsea; Shaban, Yara; Laina, Vasiliki; Gravel, Brian E.

    2016-01-01

    This paper explores the role that technology can play in engaging pre-service teachers with the iterative, "messy" nature of model-based inquiry. Over the course of 5 weeks, 11 pre-service teachers worked in groups to construct models of diffusion using a computational animation and simulation toolkit, and designed lesson plans for the…

  2. Direct Visuo-Haptic 4D Volume Rendering Using Respiratory Motion Models.

    PubMed

    Fortmeier, Dirk; Wilms, Matthias; Mastmeyer, Andre; Handels, Heinz

    2015-01-01

    This article presents methods for direct visuo-haptic 4D volume rendering of virtual patient models under respiratory motion. Breathing models are computed based on patient-specific 4D CT image data sequences. Virtual patient models are visualized in real-time by ray casting based rendering of a reference CT image warped by a time-variant displacement field, which is computed using the motion models at run-time. Furthermore, haptic interaction with the animated virtual patient models is provided by using the displacements computed at high rendering rates to translate the position of the haptic device into the space of the reference CT image. This concept is applied to virtual palpation and the haptic simulation of insertion of a virtual bendable needle. To this aim, different motion models that are applicable in real-time are presented and the methods are integrated into a needle puncture training simulation framework, which can be used for simulated biopsy or vessel puncture in the liver. To confirm real-time applicability, a performance analysis of the resulting framework is given. It is shown that the presented methods achieve mean update rates around 2,000 Hz for haptic simulation and interactive frame rates for volume rendering and thus are well suited for visuo-haptic rendering of virtual patients under respiratory motion.

  3. Fabrication and evaluation of novel rabbit model cardiovascular simulator with 3D printer

    NASA Astrophysics Data System (ADS)

    Jang, Min; Lee, Min-Woo; Seo, See-Yoon; Shin, Sang-Hoon

    2017-03-01

    Simulators allow researchers to study the hemodynamics of the cardiovascular system in a reproducible way without using complicated equations. Previous simulators focused on heart functions. However, a detailed model of the vessels is required to replicate the pulse wave of the arterial system. A computer simulation was used to simplify the arterial branch because producing every small artery is neither possible nor necessary. A 3D-printed zig was used to make a hand-made arterial tree. The simulator that was developed was evaluated by comparing its results to in-vivo data, in terms of the hemodynamic parameters (waveform, augmentation index, impedance, etc.) that were measured at three points: the ascending aorta, the thoracic aorta, and the brachiocephalic artery. The results from the simulator showed good agreement with the in-vivo data. Therefore, this simulator can be used as a research tool for the cardiovascular study of animal models, specifically rabbits.

  4. Self-motion perception: assessment by real-time computer-generated animations

    NASA Technical Reports Server (NTRS)

    Parker, D. E.; Phillips, J. O.

    2001-01-01

    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  5. Investigating the effect of cardiac oscillations and deadspace gas mixing during apnea using computer simulation.

    PubMed

    Laviola, Marianna; Das, Anup; Chikhani, Marc; Bates, Declan G; Hardman, Jonathan G

    2017-07-01

    Gaseous mixing in the anatomical deadspace with stimulation of respiratory ventilation through cardiogenic oscillations is an important physiological mechanism at the onset of apnea, which has been credited with various beneficial effects, e.g. reduction of hypercapnia during the use of low flow ventilation techniques. In this paper, a novel method is proposed to investigate the effect of these mechanisms in silico. An existing computational model of cardio-pulmonary physiology is extended to include the apneic state, gas mixing within the anatomical deadspace, insufflation into the trachea and cardiogenic oscillations. The new model is validated against data published in an experimental animal (dog) study that reported an increase in arterial partial pressure of carbon dioxide (PaCO 2 ) during apnea. Computational simulations confirm that the model outputs accurately reproduce the available experimental data. This new model can be used to investigate the physiological mechanisms underlying clearance of carbon dioxide during apnea, and hence to develop more effective ventilation strategies for apneic patients.

  6. A Computer Graphics Human Figure Application Of Biostereometrics

    NASA Astrophysics Data System (ADS)

    Fetter, William A.

    1980-07-01

    A study of improved computer graphic representation of the human figure is being conducted under a National Science Foundation grant. Special emphasis is given biostereometrics as a primary data base from which applications requiring a variety of levels of detail may be prepared. For example, a human figure represented by a single point can be very useful in overview plots of a population. A crude ten point figure can be adequate for queuing theory studies and simulated movement of groups. A one hundred point figure can usefully be animated to achieve different overall body activities including male and female figures. A one thousand point figure si-milarly animated, begins to be useful in anthropometrics and kinesiology gross body movements. Extrapolations of this order-of-magnitude approach ultimately should achieve very complex data bases and a program which automatically selects the correct level of detail for the task at hand. See Summary Figure 1.

  7. Computational characterization of fracture healing under reduced gravity loading conditions.

    PubMed

    Gadomski, Benjamin C; Lerner, Zachary F; Browning, Raymond C; Easley, Jeremiah T; Palmer, Ross H; Puttlitz, Christian M

    2016-07-01

    The literature is deficient with regard to how the localized mechanical environment of skeletal tissue is altered during reduced gravitational loading and how these alterations affect fracture healing. Thus, a finite element model of the ovine hindlimb was created to characterize the local mechanical environment responsible for the inhibited fracture healing observed under experimental simulated hypogravity conditions. Following convergence and verification studies, hydrostatic pressure and strain within a diaphyseal fracture of the metatarsus were evaluated for models under both 1 and 0.25 g loading environments and compared to results of a related in vivo study. Results of the study suggest that reductions in hydrostatic pressure and strain of the healing fracture for animals exposed to reduced gravitational loading conditions contributed to an inhibited healing process, with animals exposed to the simulated hypogravity environment subsequently initiating an intramembranous bone formation process rather than the typical endochondral ossification healing process experienced by animals healing in a 1 g gravitational environment. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1206-1215, 2016. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Modeling Early Galaxies Using Radiation Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This simulation uses a flux-limited diffusion solver to explore the radiation hydrodynamics of early galaxies, in particular, the ionizing radiation created by Population III stars. At the time of this rendering, the simulation has evolved to a redshift of 3.5. The simulation volume is 11.2 comoving megaparsecs, and has a uniform grid of 10243 cells, with over 1 billion dark matter and star particles. This animation shows a combined view of the baryon density, dark matter density, radiation energy and emissivity from this simulation. The multi-variate rendering is particularly useful because is shows both the baryonic matter ("normal") and darkmore » matter, and the pressure and temperature variables are properties of only the baryonic matter. Visible in the gas density are "bubbles", or shells, created by the radiation feedback from young stars. Seeing the bubbles from feedback provides confirmation of the physics model implemented. Features such as these are difficult to identify algorithmically, but easily found when viewing the visualization. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less

  9. Mobility analysis, simulation, and scale model testing for the design of wheeled planetary rovers

    NASA Technical Reports Server (NTRS)

    Lindemann, Randel A.; Eisen, Howard J.

    1993-01-01

    The use of computer based techniques to model and simulate wheeled rovers on rough natural terrains is considered. Physical models of a prototype vehicle can be used to test the correlation of the simulations in scaled testing. The computer approaches include a quasi-static planar or two dimensional analysis and design tool based on the traction necessary for the vehicle to have imminent mobility. The computer program modeled a six by six wheel drive vehicle of original kinematic configuration, called the Rocker Bogie. The Rocker Bogie was optimized using the quasi-static software with respect to its articulation parameters prior to fabrication of a prototype. In another approach used, the dynamics of the Rocker Bogie vehicle in 3-D space was modeled on an engineering workstation using commercial software. The model included the complex and nonlinear interaction of the tire and terrain. The results of the investigation yielded numerical and graphical results of the rover traversing rough terrain on the earth, moon, and Mars. In addition, animations of the rover excursions were also generated. A prototype vehicle was then used in a series of testbed and field experiments. Correspondence was then established between the computer models and the physical model. The results indicated the utility of the quasi-static tool for configurational design, as well as the predictive ability of the 3-D simulation to model the dynamic behavior of the vehicle over short traverses.

  10. Efficient computation of the genomic relationship matrix and other matrices used in single-step evaluation.

    PubMed

    Aguilar, I; Misztal, I; Legarra, A; Tsuruta, S

    2011-12-01

    Genomic evaluations can be calculated using a unified procedure that combines phenotypic, pedigree and genomic information. Implementation of such a procedure requires the inverse of the relationship matrix based on pedigree and genomic relationships. The objective of this study was to investigate efficient computing options to create relationship matrices based on genomic markers and pedigree information as well as their inverses. SNP maker information was simulated for a panel of 40 K SNPs, with the number of genotyped animals up to 30 000. Matrix multiplication in the computation of the genomic relationship was by a simple 'do' loop, by two optimized versions of the loop, and by a specific matrix multiplication subroutine. Inversion was by a generalized inverse algorithm and by a LAPACK subroutine. With the most efficient choices and parallel processing, creation of matrices for 30 000 animals would take a few hours. Matrices required to implement a unified approach can be computed efficiently. Optimizations can be either by modifications of existing code or by the use of efficient automatic optimizations provided by open source or third-party libraries. © 2011 Blackwell Verlag GmbH.

  11. Visualization Methods for Viability Studies of Inspection Modules for the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Mobasher, Amir A.

    2005-01-01

    An effective simulation of an object, process, or task must be similar to that object, process, or task. A simulation could consist of a physical device, a set of mathematical equations, a computer program, a person, or some combination of these. There are many reasons for the use of simulators. Although some of the reasons are unique to a specific situation, there are many general reasons and purposes for using simulators. Some are listed but not limited to (1) Safety, (2) Scarce resources, (3) Teaching/education, (4) Additional capabilities, (5) Flexibility and (6) Cost. Robot simulators are in use for all of these reasons. Virtual environments such as simulators will eliminate physical contact with humans and hence will increase the safety of work environment. Corporations with limited funding and resources may utilize simulators to accomplish their goals while saving manpower and money. A computer simulation is safer than working with a real robot. Robots are typically a scarce resource. Schools typically don t have a large number of robots, if any. Factories don t want the robots not performing useful work unless absolutely necessary. Robot simulators are useful in teaching robotics. A simulator gives a student hands-on experience, if only with a simulator. The simulator is more flexible. A user can quickly change the robot configuration, workcell, or even replace the robot with a different one altogether. In order to be useful, a robot simulator must create a model that accurately performs like the real robot. A powerful simulator is usually thought of as a combination of a CAD package with simulation capabilities. Computer Aided Design (CAD) techniques are used extensively by engineers in virtually all areas of engineering. Parts are designed interactively aided by the graphical display of both wireframe and more realistic shaded renderings. Once a part s dimensions have been specified to the CAD package, designers can view the part from any direction to examine how it will look and perform in relation to other parts. If changes are deemed necessary, the designer can easily make the changes and view the results graphically. However, a complex process of moving parts intended for operation in a complex environment can only be fully understood through the process of animated graphical simulation. A CAD package with simulation capabilities allows the designer to develop geometrical models of the process being designed, as well as the environment in which the process will be used, and then test the process in graphical animation much as the actual physical system would be run . By being able to operate the system of moving and stationary parts, the designer is able to see in simulation how the system will perform under a wide variety of conditions. If, for example, undesired collisions occur between parts of the system, design changes can be easily made without the expense or potential danger of testing the physical system.

  12. The effectiveness of humane teaching methods in veterinary education.

    PubMed

    Knight, Andrew

    2007-01-01

    Animal use resulting in harm or death has historically played an integral role in veterinary education, in disciplines such as surgery, physiology, biochemistry, anatomy, pharmacology, and parasitology. However, many non-harmful alternatives now exist, including computer simulations, high quality videos, ''ethically-sourced cadavers'' such as from animals euthanased for medical reasons, preserved specimens, models and surgical simulators, non-invasive self-experimentation, and supervised clinical experiences. Veterinary students seeking to use such methods often face strong opposition from faculty members, who usually cite concerns about their teaching efficacy. Consequently, studies of veterinary students were reviewed comparing learning outcomes generated by non-harmful teaching methods with those achieved by harmful animal use. Of eleven published from 1989 to 2006, nine assessed surgical training--historically the discipline involving greatest harmful animal use. 45.5% (5/11) demonstrated superior learning outcomes using more humane alternatives. Another 45.5% (5/11) demonstrated equivalent learning outcomes, and 9.1% (1/11) demonstrated inferior learning outcomes. Twenty one studies of non-veterinary students in related academic disciplines were also published from 1968 to 2004. 38.1% (8/21) demonstrated superior, 52.4% (11/21) demonstrated equivalent, and 9.5% (2/21) demonstrated inferior learning outcomes using humane alternatives. Twenty nine papers in which comparison with harmful animal use did not occur illustrated additional benefits of humane teaching methods in veterinary education, including: time and cost savings, enhanced potential for customisation and repeatability of the learning exercise, increased student confidence and satisfaction, increased compliance with animal use legislation, elimination of objections to the use of purpose-killed animals, and integration of clinical perspectives and ethics early in the curriculum. The evidence demonstrates that veterinary educators can best serve their students and animals, while minimising financial and time burdens, by introducing well-designed teaching methods not reliant on harmful animal use.

  13. Using RGB displays to portray color realistic imagery to animal eyes

    PubMed Central

    Johnsen, Sönke

    2017-01-01

    Abstract RGB displays effectively simulate millions of colors in the eyes of humans by modulating the relative amount of light emitted by 3 differently colored juxtaposed lights (red, green, and blue). The relationship between the ratio of red, green, and blue light and the perceptual experience of that light has been well defined by psychophysical experiments in humans, but is unknown in animals. The perceptual experience of an animal looking at an RGB display of imagery designed for humans is likely to poorly represent an animal’s experience of the same stimulus in the real world. This is due, in part, to the fact that many animals have different numbers of photoreceptor classes than humans do and that their photoreceptor classes have peak sensitivities centered over different parts of the ultraviolet and visible spectrum. However, it is sometimes possible to generate videos that accurately mimic natural stimuli in the eyes of another animal, even if that animal’s sensitivity extends into the ultraviolet portion of the spectrum. How independently each RGB phosphor stimulates each of an animal’s photoreceptor classes determines the range of colors that can be simulated for that animal. What is required to determine optimal color rendering for another animal is a device capable of measuring absolute or relative quanta of light across the portion of the spectrum visible to the animal (i.e., a spectrometer), and data on the spectral sensitivities of the animal’s photoreceptor classes. In this article, we outline how to use such equipment and information to generate video stimuli that mimic, as closely as possible, an animal’s color perceptual experience of real-world objects. Key words: color vision, computer animation, perception, video playback, virtual reality. PMID:29491960

  14. Dosimetry in small-animal CT using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Lee, C.-L.; Park, S.-J.; Jeon, P.-H.; Jo, B.-D.; Kim, H.-J.

    2016-01-01

    Small-animal computed tomography (micro-CT) imaging devices are increasingly being used in biological research. While investigators are mainly interested in high-contrast, low-noise, and high-resolution anatomical images, relatively large radiation doses are required, and there is also growing concern over the radiological risk from preclinical experiments. This study was conducted to determine the radiation dose in a mouse model for dosimetric estimates using the GEANT4 application for tomographic emission simulations (GATE) and to extend its techniques to various small-animal CT applications. Radiation dose simulations were performed with the same parameters as those for the measured micro-CT data, using the MOBY phantom, a pencil ion chamber and an electrometer with a CT detector. For physical validation of radiation dose, absorbed dose of brain and liver in mouse were evaluated to compare simulated results with physically measured data using thermoluminescent dosimeters (TLDs). The mean difference between simulated and measured data was less than 2.9% at 50 kVp X-ray source. The absorbed doses of 37 brain tissues and major organs of the mouse were evaluated according to kVp changes. The absorbed dose over all of the measurements in the brain (37 types of tissues) consistently increased and ranged from 42.4 to 104.0 mGy. Among the brain tissues, the absorbed dose of the hypothalamus (157.8-414.30 mGy) was the highest for the beams at 50-80 kVp, and that of the corpus callosum (11.2-26.6 mGy) was the lowest. These results can be used as a dosimetric database to control mouse doses and preclinical targeted radiotherapy experiments. In addition, to accurately calculate the mouse-absorbed dose, the X-ray spectrum, detector alignment, and uncertainty in the elemental composition of the simulated materials must be accurately modeled.

  15. Validation of a low dose simulation technique for computed tomography images.

    PubMed

    Muenzel, Daniela; Koehler, Thomas; Brown, Kevin; Zabić, Stanislav; Fingerle, Alexander A; Waldt, Simone; Bendik, Edgar; Zahel, Tina; Schneider, Armin; Dobritz, Martin; Rummeny, Ernst J; Noël, Peter B

    2014-01-01

    Evaluation of a new software tool for generation of simulated low-dose computed tomography (CT) images from an original higher dose scan. Original CT scan data (100 mAs, 80 mAs, 60 mAs, 40 mAs, 20 mAs, 10 mAs; 100 kV) of a swine were acquired (approved by the regional governmental commission for animal protection). Simulations of CT acquisition with a lower dose (simulated 10-80 mAs) were calculated using a low-dose simulation algorithm. The simulations were compared to the originals of the same dose level with regard to density values and image noise. Four radiologists assessed the realistic visual appearance of the simulated images. Image characteristics of simulated low dose scans were similar to the originals. Mean overall discrepancy of image noise and CT values was -1.2% (range -9% to 3.2%) and -0.2% (range -8.2% to 3.2%), respectively, p>0.05. Confidence intervals of discrepancies ranged between 0.9-10.2 HU (noise) and 1.9-13.4 HU (CT values), without significant differences (p>0.05). Subjective observer evaluation of image appearance showed no visually detectable difference. Simulated low dose images showed excellent agreement with the originals concerning image noise, CT density values, and subjective assessment of the visual appearance of the simulated images. An authentic low-dose simulation opens up opportunity with regard to staff education, protocol optimization and introduction of new techniques.

  16. Using an instrumented manikin for Space Station Freedom analysis

    NASA Technical Reports Server (NTRS)

    Orr, Linda; Hill, Richard

    1989-01-01

    One of the most intriguing and complex areas of current computer graphics research is animating human figures to behave in a realistic manner. Believable, accurate human models are desirable for many everyday uses including industrial and architectural design, medical applications, and human factors evaluations. For zero-gravity (0-g) spacecraft design and mission planning scenarios, they are particularly valuable since 0-g conditions are difficult to simulate in a one-gravity Earth environment. At NASA/JSC, an in-house human modeling package called PLAID is currently being used to produce animations for human factors evaluation of Space Station Freedom design issues. Presented here is an introductory background discussion of problems encountered in existing techniques for animating human models and how an instrumented manikin can help improve the realism of these models.

  17. Animating climate model data

    NASA Astrophysics Data System (ADS)

    DaPonte, John S.; Sadowski, Thomas; Thomas, Paul

    2006-05-01

    This paper describes a collaborative project conducted by the Computer Science Department at Southern Connecticut State University and NASA's Goddard Institute for Space Science (GISS). Animations of output from a climate simulation math model used at GISS to predict rainfall and circulation have been produced for West Africa from June to September 2002. These early results have assisted scientists at GISS in evaluating the accuracy of the RM3 climate model when compared to similar results obtained from satellite imagery. The results presented below will be refined to better meet the needs of GISS scientists and will be expanded to cover other geographic regions for a variety of time frames.

  18. Data Cube Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.; Gárate, Matías

    2017-06-01

    With the increasing data acquisition rates from observational and computational astrophysics, new tools are needed to study and visualize data. We present a methodology for rendering 3D data cubes using the open-source 3D software Blender. By importing processed observations and numerical simulations through the Voxel Data format, we are able use the Blender interface and Python API to create high-resolution animated visualizations. We review the methods for data import, animation, and camera movement, and present examples of this methodology. The 3D rendering of data cubes gives scientists the ability to create appealing displays that can be used for both scientific presentations as well as public outreach.

  19. VCSim3: a VR simulator for cardiovascular interventions.

    PubMed

    Korzeniowski, Przemyslaw; White, Ruth J; Bello, Fernando

    2018-01-01

    Effective and safe performance of cardiovascular interventions requires excellent catheter/guidewire manipulation skills. These skills are currently mainly gained through an apprenticeship on real patients, which may not be safe or cost-effective. Computer simulation offers an alternative for core skills training. However, replicating the physical behaviour of real instruments navigated through blood vessels is a challenging task. We have developed VCSim3-a virtual reality simulator for cardiovascular interventions. The simulator leverages an inextensible Cosserat rod to model virtual catheters and guidewires. Their mechanical properties were optimized with respect to their real counterparts scanned in a silicone phantom using X-ray CT imaging. The instruments are manipulated via a VSP haptic device. Supporting solutions such as fluoroscopic visualization, contrast flow propagation, cardiac motion, balloon inflation, and stent deployment, enable performing a complete angioplasty procedure. We present detailed results of simulation accuracy of the virtual instruments, along with their computational performance. In addition, the results of a preliminary face and content validation study conveyed on a group of 17 interventional radiologists are given. VR simulation of cardiovascular procedure can contribute to surgical training and improve the educational experience without putting patients at risk, raising ethical issues or requiring expensive animal or cadaver facilities. VCSim3 is still a prototype, yet the initial results indicate that it provides promising foundations for further development.

  20. Animal use in pharmacology education and research: The changing scenario

    PubMed Central

    Badyal, Dinesh K.; Desai, Chetna

    2014-01-01

    The use of animals in research and education dates back to the period when humans started to look for ways to prevent and cure ailments. Most of present day's drug discoveries were possible because of the use of animals in research. The dilemma to continue animal experiments in education and research continues with varied and confusing guidelines. However, the animal use and their handling vary in each laboratory and educational institution. It has been reported that the animals are being subjected to painful procedures in education and training unnecessarily. The extensive use of animals in toxicity studies and testing dermatological preparations has raised concerns about the ways animals are sacrificed for these “irrelevant experiments”. On the other side of the coin are scientists who advocate the relevant and judicious use of animals in research so that new discoveries can continue. In this review, we discuss the evolution of the use of animals in education and research and how these have been affected in recent times owing to concerns from animal lovers and government regulations. A number of computer simulation and other models have been recommended for use as alternatives to use of animals for pharmacology education. In this review we also discuss some of these alternatives. PMID:24987170

  1. Animal use in pharmacology education and research: the changing scenario.

    PubMed

    Badyal, Dinesh K; Desai, Chetna

    2014-01-01

    The use of animals in research and education dates back to the period when humans started to look for ways to prevent and cure ailments. Most of present day's drug discoveries were possible because of the use of animals in research. The dilemma to continue animal experiments in education and research continues with varied and confusing guidelines. However, the animal use and their handling vary in each laboratory and educational institution. It has been reported that the animals are being subjected to painful procedures in education and training unnecessarily. The extensive use of animals in toxicity studies and testing dermatological preparations has raised concerns about the ways animals are sacrificed for these "irrelevant experiments". On the other side of the coin are scientists who advocate the relevant and judicious use of animals in research so that new discoveries can continue. In this review, we discuss the evolution of the use of animals in education and research and how these have been affected in recent times owing to concerns from animal lovers and government regulations. A number of computer simulation and other models have been recommended for use as alternatives to use of animals for pharmacology education. In this review we also discuss some of these alternatives.

  2. Constructing an Educational Mars Simulation

    NASA Technical Reports Server (NTRS)

    Henke, Stephen A.

    2004-01-01

    January 14th 2004, President George Bush announces his plans to catalyst the space program into a new era of space exploration and discovery. His vision encompasses a robotics program to explore our solar system, a return to the moon, the human exploration of Mars, and to promote international prosperity towards our endeavors. We at NASA now have the task of constructing this vision in a very real timeframe. I have been chosen to begin phase 1 of making this vision a reality. I will be working on creating an Educational Mars Simulation of human exploration of Mars to stimulate interest and involvement with the project from investors and the community. GRC s Computer Services Division (CSD) in collaboration with the Office of Education Programs will be designing models, constructing terrain, and programming this simulation to create a realistic portrayal of human exploration on mars. With recent and past technological breakthroughs in computing, my primary goal can be accomplished with only the aid of 3-4 software packages. Lightwave 3D is the modeling package we have selected to use for the creation of our digital objects. This includes a Mars pressurized rover, rover cockpit, landscape/terrain, and habitat. Once we have the models completed they need textured so Photoshop and Macromedia Fireworks are handy for bringing these objects to life. Before directly importing all of this data into a simulation environment, it is necessary to first render a stunning animation of the desired final product. This animation with represent what we hope to capture out of the simulation and it will include all of the accessories like ray-tracing, fog effects, shadows, anti-aliasing, particle effects, volumetric lighting, and lens flares. Adobe Premier will more than likely be used for video editing and adding ambient noises and music. Lastly, V-Tree is the real-time 3D graphics engine which will facilitate our realistic simulation. Additional information is included in the original extended abstract.

  3. Hybrid pairwise likelihood analysis of animal behavior experiments.

    PubMed

    Cattelan, Manuela; Varin, Cristiano

    2013-12-01

    The study of the determinants of fights between animals is an important issue in understanding animal behavior. For this purpose, tournament experiments among a set of animals are often used by zoologists. The results of these tournament experiments are naturally analyzed by paired comparison models. Proper statistical analysis of these models is complicated by the presence of dependence between the outcomes of fights because the same animal is involved in different contests. This paper discusses two different model specifications to account for between-fights dependence. Models are fitted through the hybrid pairwise likelihood method that iterates between optimal estimating equations for the regression parameters and pairwise likelihood inference for the association parameters. This approach requires the specification of means and covariances only. For this reason, the method can be applied also when the computation of the joint distribution is difficult or inconvenient. The proposed methodology is investigated by simulation studies and applied to real data about adult male Cape Dwarf Chameleons. © 2013, The International Biometric Society.

  4. Imputation approaches for animal movement modeling

    USGS Publications Warehouse

    Scharf, Henry; Hooten, Mevin B.; Johnson, Devin S.

    2017-01-01

    The analysis of telemetry data is common in animal ecological studies. While the collection of telemetry data for individual animals has improved dramatically, the methods to properly account for inherent uncertainties (e.g., measurement error, dependence, barriers to movement) have lagged behind. Still, many new statistical approaches have been developed to infer unknown quantities affecting animal movement or predict movement based on telemetry data. Hierarchical statistical models are useful to account for some of the aforementioned uncertainties, as well as provide population-level inference, but they often come with an increased computational burden. For certain types of statistical models, it is straightforward to provide inference if the latent true animal trajectory is known, but challenging otherwise. In these cases, approaches related to multiple imputation have been employed to account for the uncertainty associated with our knowledge of the latent trajectory. Despite the increasing use of imputation approaches for modeling animal movement, the general sensitivity and accuracy of these methods have not been explored in detail. We provide an introduction to animal movement modeling and describe how imputation approaches may be helpful for certain types of models. We also assess the performance of imputation approaches in two simulation studies. Our simulation studies suggests that inference for model parameters directly related to the location of an individual may be more accurate than inference for parameters associated with higher-order processes such as velocity or acceleration. Finally, we apply these methods to analyze a telemetry data set involving northern fur seals (Callorhinus ursinus) in the Bering Sea. Supplementary materials accompanying this paper appear online.

  5. Spectral discrimination in color blind animals via chromatic aberration and pupil shape.

    PubMed

    Stubbs, Alexander L; Stubbs, Christopher W

    2016-07-19

    We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide "color-blind" animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins.

  6. Automated real-time data acquisition and analysis of cardiorespiratory function.

    PubMed

    Moorman, R C; Mackenzie, C F; Ho, G H; Barnas, G M; Wilson, P D; Matjasko, M J

    1991-01-01

    Microcomputer generation of an automated record without complexity or operator intervention is desirable in many circumstances. We developed a microcomputer system specifically designed for simplified automated collection of cardiorespiratory data in research and clinical environments. We tested the system during possible extreme clinical conditions by comparison with a patient simulator. Ranges used were heart rate of 35-182 beats per minute, systemic blood pressures of 65-147 mmHg and venous blood pressures of 14-37 mmHg, all with superimposed respiratory variation of 0-24 mmHg. We also tested multiple electrocardiographic dysrhythmias. The results showed that there were no clinically relevant differences in vascular pressures, heart rate, and other variables between computer processed and simulator values. Manually and computer recorded physiological variables were compared to simulator values and the results show that computer values were more accurate. The system was used routinely in 21 animal research experiments over a 4 month period employing a total of 270 collection periods. The file system integrity was tested and found to be satisfactory, even during power failures. Unlike other data collection systems this one (1) requires little or no operator intervention and training, (2) has been rigorously tested for accuracy using a wide variety of extreme patient conditions, (3) has had computer derived values measured against a standardized reference, (4) is reliable against external sources of computer failure, and (5) has screen and printout presentations with quick and easily understandable formats.

  7. Use of direct and iterative solvers for estimation of SNP effects in genome-wide selection

    PubMed Central

    2010-01-01

    The aim of this study was to compare iterative and direct solvers for estimation of marker effects in genomic selection. One iterative and two direct methods were used: Gauss-Seidel with Residual Update, Cholesky Decomposition and Gentleman-Givens rotations. For resembling different scenarios with respect to number of markers and of genotyped animals, a simulated data set divided into 25 subsets was used. Number of markers ranged from 1,200 to 5,925 and number of animals ranged from 1,200 to 5,865. Methods were also applied to real data comprising 3081 individuals genotyped for 45181 SNPs. Results from simulated data showed that the iterative solver was substantially faster than direct methods for larger numbers of markers. Use of a direct solver may allow for computing (co)variances of SNP effects. When applied to real data, performance of the iterative method varied substantially, depending on the level of ill-conditioning of the coefficient matrix. From results with real data, Gentleman-Givens rotations would be the method of choice in this particular application as it provided an exact solution within a fairly reasonable time frame (less than two hours). It would indeed be the preferred method whenever computer resources allow its use. PMID:21637627

  8. A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES).

    PubMed

    Campos, Marcelino; Llorens, Carlos; Sempere, José M; Futami, Ricardo; Rodriguez, Irene; Carrasco, Purificación; Capilla, Rafael; Latorre, Amparo; Coque, Teresa M; Moya, Andres; Baquero, Fernando

    2015-08-05

    Antibiotic resistance is a major biomedical problem upon which public health systems demand solutions to construe the dynamics and epidemiological risk of resistant bacteria in anthropogenically-altered environments. The implementation of computable models with reciprocity within and between levels of biological organization (i.e. essential nesting) is central for studying antibiotic resistances. Antibiotic resistance is not just the result of antibiotic-driven selection but more properly the consequence of a complex hierarchy of processes shaping the ecology and evolution of the distinct subcellular, cellular and supra-cellular vehicles involved in the dissemination of resistance genes. Such a complex background motivated us to explore the P-system standards of membrane computing an innovative natural computing formalism that abstracts the notion of movement across membranes to simulate antibiotic resistance evolution processes across nested levels of micro- and macro-environmental organization in a given ecosystem. In this article, we introduce ARES (Antibiotic Resistance Evolution Simulator) a software device that simulates P-system model scenarios with five types of nested computing membranes oriented to emulate a hierarchy of eco-biological compartments, i.e. a) peripheral ecosystem; b) local environment; c) reservoir of supplies; d) animal host; and e) host's associated bacterial organisms (microbiome). Computational objects emulating molecular entities such as plasmids, antibiotic resistance genes, antimicrobials, and/or other substances can be introduced into this framework and may interact and evolve together with the membranes, according to a set of pre-established rules and specifications. ARES has been implemented as an online server and offers additional tools for storage and model editing and downstream analysis. The stochastic nature of the P-system model implemented in ARES explicitly links within and between host dynamics into a simulation, with feedback reciprocity among the different units of selection influenced by antibiotic exposure at various ecological levels. ARES offers the possibility of modeling predictive multilevel scenarios of antibiotic resistance evolution that can be interrogated, edited and re-simulated if necessary, with different parameters, until a correct model description of the process in the real world is convincingly approached. ARES can be accessed at http://gydb.org/ares.

  9. Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.

    PubMed

    Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik

    2018-03-01

    Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.

  10. Computational Properties of the Hippocampus Increase the Efficiency of Goal-Directed Foraging through Hierarchical Reinforcement Learning

    PubMed Central

    Chalmers, Eric; Luczak, Artur; Gruber, Aaron J.

    2016-01-01

    The mammalian brain is thought to use a version of Model-based Reinforcement Learning (MBRL) to guide “goal-directed” behavior, wherein animals consider goals and make plans to acquire desired outcomes. However, conventional MBRL algorithms do not fully explain animals' ability to rapidly adapt to environmental changes, or learn multiple complex tasks. They also require extensive computation, suggesting that goal-directed behavior is cognitively expensive. We propose here that key features of processing in the hippocampus support a flexible MBRL mechanism for spatial navigation that is computationally efficient and can adapt quickly to change. We investigate this idea by implementing a computational MBRL framework that incorporates features inspired by computational properties of the hippocampus: a hierarchical representation of space, “forward sweeps” through future spatial trajectories, and context-driven remapping of place cells. We find that a hierarchical abstraction of space greatly reduces the computational load (mental effort) required for adaptation to changing environmental conditions, and allows efficient scaling to large problems. It also allows abstract knowledge gained at high levels to guide adaptation to new obstacles. Moreover, a context-driven remapping mechanism allows learning and memory of multiple tasks. Simulating dorsal or ventral hippocampal lesions in our computational framework qualitatively reproduces behavioral deficits observed in rodents with analogous lesions. The framework may thus embody key features of how the brain organizes model-based RL to efficiently solve navigation and other difficult tasks. PMID:28018203

  11. Evaluation of a cone beam computed tomography geometry for image guided small animal irradiation.

    PubMed

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-07-07

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal ('tubular' geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal ('pancake' geometry). The small animal radiation research platform developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Not withstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e. pancake and tubular geometry, respectively.

  12. Evaluation of a Cone Beam Computed Tomography Geometry for Image Guided Small Animal Irradiation

    PubMed Central

    Yang, Yidong; Armour, Michael; Wang, Ken Kang-Hsin; Gandhi, Nishant; Iordachita, Iulian; Siewerdsen, Jeffrey; Wong, John

    2015-01-01

    The conventional imaging geometry for small animal cone beam computed tomography (CBCT) is that a detector panel rotates around the head-to-tail axis of an imaged animal (“tubular” geometry). Another unusual but possible imaging geometry is that the detector panel rotates around the anterior-to-posterior axis of the animal (“pancake” geometry). The small animal radiation research platform (SARRP) developed at Johns Hopkins University employs the pancake geometry where a prone-positioned animal is rotated horizontally between an x-ray source and detector panel. This study is to assess the CBCT image quality in the pancake geometry and investigate potential methods for improvement. We compared CBCT images acquired in the pancake geometry with those acquired in the tubular geometry when the phantom/animal was placed upright simulating the conventional CBCT geometry. Results showed signal-to-noise and contrast-to-noise ratios in the pancake geometry were reduced in comparison to the tubular geometry at the same dose level. But the overall spatial resolution within the transverse plane of the imaged cylinder/animal was better in the pancake geometry. A modest exposure increase to two folds in the pancake geometry can improve image quality to a level close to the tubular geometry. Image quality can also be improved by inclining the animal, which reduces streak artifacts caused by bony structures. The major factor resulting in the inferior image quality in the pancake geometry is the elevated beam attenuation along the long axis of the phantom/animal and consequently increased scatter-to-primary ratio in that orientation. Notwithstanding, the image quality in the pancake-geometry CBCT is adequate to support image guided animal positioning, while providing unique advantages of non-coplanar and multiple mice irradiation. This study also provides useful knowledge about the image quality in the two very different imaging geometries, i.e., pancake and tubular geometry, respectively. PMID:26083659

  13. The Overgrid Interface for Computational Simulations on Overset Grids

    NASA Technical Reports Server (NTRS)

    Chan, William M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Computational simulations using overset grids typically involve multiple steps and a variety of software modules. A graphical interface called OVERGRID has been specially designed for such purposes. Data required and created by the different steps include geometry, grids, domain connectivity information and flow solver input parameters. The interface provides a unified environment for the visualization, processing, generation and diagnosis of such data. General modules are available for the manipulation of structured grids and unstructured surface triangulations. Modules more specific for the overset approach include surface curve generators, hyperbolic and algebraic surface grid generators, a hyperbolic volume grid generator, Cartesian box grid generators, and domain connectivity: pre-processing tools. An interface provides automatic selection and viewing of flow solver boundary conditions, and various other flow solver inputs. For problems involving multiple components in relative motion, a module is available to build the component/grid relationships and to prescribe and animate the dynamics of the different components.

  14. Interactive Display of Surfaces Using Subdivision Surfaces and Wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchaineau, M A; Bertram, M; Porumbescu, S

    2001-10-03

    Complex surfaces and solids are produced by large-scale modeling and simulation activities in a variety of disciplines. Productive interaction with these simulations requires that these surfaces or solids be viewable at interactive rates--yet many of these surfaced solids can contain hundreds of millions of polygondpolyhedra. Interactive display of these objects requires compression techniques to minimize storage, and fast view-dependent triangulation techniques to drive the graphics hardware. In this paper, we review recent advances in subdivision-surface wavelet compression and optimization that can be used to provide a framework for both compression and triangulation. These techniques can be used to produce suitablemore » approximations of complex surfaces of arbitrary topology, and can be used to determine suitable triangulations for display. The techniques can be used in a variety of applications in computer graphics, computer animation and visualization.« less

  15. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach

    PubMed Central

    Senior, Alistair M.; Lihoreau, Mathieu; Buhl, Jerome; Raubenheimer, David; Simpson, Stephen J.

    2016-01-01

    Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. PMID:26858671

  16. A Review of Endoscopic Simulation: Current Evidence on Simulators and Curricula.

    PubMed

    King, Neil; Kunac, Anastasia; Merchant, Aziz M

    2016-01-01

    Upper and lower endoscopy is an important tool that is being utilized more frequently by general surgeons. Training in therapeutic endoscopic techniques has become a mandatory requirement for general surgery residency programs in the United States. The Fundamentals of Endoscopic Surgery has been developed to train and assess competency in these advanced techniques. Simulation has been shown to increase the skill and learning curve of trainees in other surgical disciplines. Several types of endoscopy simulators are commercially available; mechanical trainers, animal based, and virtual reality or computer-based simulators all have their benefits and limitations. However they have all been shown to improve trainee's endoscopic skills. Endoscopic simulators will play a critical role as part of a comprehensive curriculum designed to train the next generation of surgeons. We reviewed recent literature related to the various types of endoscopic simulators and their use in an educational curriculum, and discuss the relevant findings. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  17. eLoom and Flatland: specification, simulation and visualization engines for the study of arbitrary hierarchical neural architectures.

    PubMed

    Caudell, Thomas P; Xiao, Yunhai; Healy, Michael J

    2003-01-01

    eLoom is an open source graph simulation software tool, developed at the University of New Mexico (UNM), that enables users to specify and simulate neural network models. Its specification language and libraries enables users to construct and simulate arbitrary, potentially hierarchical network structures on serial and parallel processing systems. In addition, eLoom is integrated with UNM's Flatland, an open source virtual environments development tool to provide real-time visualizations of the network structure and activity. Visualization is a useful method for understanding both learning and computation in artificial neural networks. Through 3D animated pictorially representations of the state and flow of information in the network, a better understanding of network functionality is achieved. ART-1, LAPART-II, MLP, and SOM neural networks are presented to illustrate eLoom and Flatland's capabilities.

  18. Validation of a Low Dose Simulation Technique for Computed Tomography Images

    PubMed Central

    Muenzel, Daniela; Koehler, Thomas; Brown, Kevin; Žabić, Stanislav; Fingerle, Alexander A.; Waldt, Simone; Bendik, Edgar; Zahel, Tina; Schneider, Armin; Dobritz, Martin; Rummeny, Ernst J.; Noël, Peter B.

    2014-01-01

    Purpose Evaluation of a new software tool for generation of simulated low-dose computed tomography (CT) images from an original higher dose scan. Materials and Methods Original CT scan data (100 mAs, 80 mAs, 60 mAs, 40 mAs, 20 mAs, 10 mAs; 100 kV) of a swine were acquired (approved by the regional governmental commission for animal protection). Simulations of CT acquisition with a lower dose (simulated 10–80 mAs) were calculated using a low-dose simulation algorithm. The simulations were compared to the originals of the same dose level with regard to density values and image noise. Four radiologists assessed the realistic visual appearance of the simulated images. Results Image characteristics of simulated low dose scans were similar to the originals. Mean overall discrepancy of image noise and CT values was −1.2% (range −9% to 3.2%) and −0.2% (range −8.2% to 3.2%), respectively, p>0.05. Confidence intervals of discrepancies ranged between 0.9–10.2 HU (noise) and 1.9–13.4 HU (CT values), without significant differences (p>0.05). Subjective observer evaluation of image appearance showed no visually detectable difference. Conclusion Simulated low dose images showed excellent agreement with the originals concerning image noise, CT density values, and subjective assessment of the visual appearance of the simulated images. An authentic low-dose simulation opens up opportunity with regard to staff education, protocol optimization and introduction of new techniques. PMID:25247422

  19. TH-EF-207A-05: Feasibility of Applying SMEIR Method On Small Animal 4D Cone Beam CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong, Y; Zhang, Y; Shao, Y

    Purpose: Small animal cone beam CT imaging has been widely used in preclinical research. Due to the higher respiratory rate and heat beats of small animals, motion blurring is inevitable and needs to be corrected in the reconstruction. Simultaneous motion estimation and image reconstruction (SMEIR) method, which uses projection images of all phases, proved to be effective in motion model estimation and able to reconstruct motion-compensated images. We demonstrate the application of SMEIR for small animal 4D cone beam CT imaging by computer simulations on a digital rat model. Methods: The small animal CBCT imaging system was simulated with themore » source-to-detector distance of 300 mm and the source-to-object distance of 200 mm. A sequence of rat phantom were generated with 0.4 mm{sup 3} voxel size. The respiratory cycle was taken as 1.0 second and the motions were simulated with a diaphragm motion of 2.4mm and an anterior-posterior expansion of 1.6 mm. The projection images were calculated using a ray-tracing method, and 4D-CBCT were reconstructed using SMEIR and FDK methods. The SMEIR method iterates over two alternating steps: 1) motion-compensated iterative image reconstruction by using projections from all respiration phases and 2) motion model estimation from projections directly through a 2D-3D deformable registration of the image obtained in the first step to projection images of other phases. Results: The images reconstructed using SMEIR method reproduced the features in the original phantom. Projections from the same phase were also reconstructed using FDK method. Compared with the FDK results, the images from SMEIR method substantially improve the image quality with minimum artifacts. Conclusion: We demonstrate that it is viable to apply SMEIR method to reconstruct small animal 4D-CBCT images.« less

  20. How do field of view and resolution affect the information content of panoramic scenes for visual navigation? A computational investigation.

    PubMed

    Wystrach, Antoine; Dewar, Alex; Philippides, Andrew; Graham, Paul

    2016-02-01

    The visual systems of animals have to provide information to guide behaviour and the informational requirements of an animal's behavioural repertoire are often reflected in its sensory system. For insects, this is often evident in the optical array of the compound eye. One behaviour that insects share with many animals is the use of learnt visual information for navigation. As ants are expert visual navigators it may be that their vision is optimised for navigation. Here we take a computational approach in asking how the details of the optical array influence the informational content of scenes used in simple view matching strategies for orientation. We find that robust orientation is best achieved with low-resolution visual information and a large field of view, similar to the optical properties seen for many ant species. A lower resolution allows for a trade-off between specificity and generalisation for stored views. Additionally, our simulations show that orientation performance increases if different portions of the visual field are considered as discrete visual sensors, each giving an independent directional estimate. This suggests that ants might benefit by processing information from their two eyes independently.

  1. Geographic profiling applied to testing models of bumble-bee foraging.

    PubMed

    Raine, Nigel E; Rossmo, D Kim; Le Comber, Steven C

    2009-03-06

    Geographic profiling (GP) was originally developed as a statistical tool to help police forces prioritize lists of suspects in investigations of serial crimes. GP uses the location of related crime sites to make inferences about where the offender is most likely to live, and has been extremely successful in criminology. Here, we show how GP is applicable to experimental studies of animal foraging, using the bumble-bee Bombus terrestris. GP techniques enable us to simplify complex patterns of spatial data down to a small number of parameters (2-3) for rigorous hypothesis testing. Combining computer model simulations and experimental observation of foraging bumble-bees, we demonstrate that GP can be used to discriminate between foraging patterns resulting from (i) different hypothetical foraging algorithms and (ii) different food item (flower) densities. We also demonstrate that combining experimental and simulated data can be used to elucidate animal foraging strategies: specifically that the foraging patterns of real bumble-bees can be reliably discriminated from three out of nine hypothetical foraging algorithms. We suggest that experimental systems, like foraging bees, could be used to test and refine GP model predictions, and that GP offers a useful technique to analyse spatial animal behaviour data in both the laboratory and field.

  2. Sound transmission in the chest under surface excitation - An experimental and computational study with diagnostic applications

    PubMed Central

    Peng, Ying; Dai, Zoujun; Mansy, Hansen A.; Sandler, Richard H.; Balk, Robert A; Royston, Thomas. J

    2014-01-01

    Chest physical examination often includes performing chest percussion, which involves introducing sound stimulus to the chest wall and detecting an audible change. This approach relies on observations that underlying acoustic transmission, coupling, and resonance patterns can be altered by chest structure changes due to pathologies. More accurate detection and quantification of these acoustic alterations may provide further useful diagnostic information. To elucidate the physical processes involved, a realistic computer model of sound transmission in the chest is helpful. In the present study, a computational model was developed and validated by comparing its predictions with results from animal and human experiments which involved applying acoustic excitation to the anterior chest while detecting skin vibrations at the posterior chest. To investigate the effect of pathology on sound transmission, the computational model was used to simulate the effects of pneumothorax on sounds introduced at the anterior chest and detected at the posterior. Model predictions and experimental results showed similar trends. The model also predicted wave patterns inside the chest, which may be used to assess results of elastography measurements. Future animal and human tests may expand the predictive power of the model to include acoustic behavior for a wider range of pulmonary conditions. PMID:25001497

  3. Teaching Animal Physiology: a 12-year experience transitioning from a classical to interactive approach with continual assessment and computer alternatives.

    PubMed

    Kaisarevic, Sonja N; Andric, Silvana A; Kostic, Tatjana S

    2017-09-01

    In response to the Bologna Declaration and contemporary trends in Animal Physiology education, the Animal Physiology course at the Faculty of Sciences, University of Novi Sad, Serbia, has evolved over a 12-yr period (2001-2012): from a classical two-semester course toward a one-semester course utilizing computer simulations of animal experiments, continual assessment, lectures, and an optional oral exam. This paper presents an overview of student achievement, the impact of reforms on learning outcomes, and lessons that we as educators learned during this process. The reforms had a positive impact on the percentage of students who completed the course within the same academic year. In addition, the percentage of students who completed the practical exam increased from 54% to >95% following the transition to a Bologna-based approach. However, average final grades declined from 8.0 to 6.8 over the same period. Students also appear reluctant to take the optional oral exam, and 82-91% of students were satisfied with the lower final grade obtained from only assessments and tests administered during the semester. In our endeavor to achieve learning outcomes set during the pre-Bologna period, while adopting contemporary teaching approaches, we sought to increase students' motivation to strive toward better performance, while ensuring that the increased quantity of students who complete the course is coupled with increased quality of education and a more in-depth understanding of animal physiology. Copyright © 2017 the American Physiological Society.

  4. Simulation as an Engine of Physical Scene Understanding

    DTIC Science & Technology

    2013-11-05

    critical to the origins of intelligence : Researchers in developmental psychology, language, animal cognition, and artificial intelligence (2–6) con- sider...implemented computationally in classic artificial intelligence systems (18–20). However, these systems have not attempted to engage with physical scene un...N00014-09-0124, N00014-07-1-0937, and 1015GNA126; by Qualcomm; and by Intelligence Advanced Research Project Activity Grant D10PC20023. 1. Marr D (1982

  5. The Role of Rendering in the Competence Project in Measurement Science for Optical Reflection and Scattering

    PubMed Central

    Westlund, Harold B.; Meyer, Gary W.; Hunt, Fern Y.

    2002-01-01

    Computer rendering is used to simulate the appearance of lighted objects for applications in architectural design, for animation and simulation in the entertainment industry, and for display and design in the automobile industry. Rapid advances in computer graphics technology suggest that in the near future it will be possible to produce photorealistic images of coated surfaces from scattering data. This could enable the identification of important parameters in the coatings manufacturing process that lead to desirable appearance, and to the design of virtual surfaces by visualizing prospective coating formulations once their optical properties are known. Here we report the results of our work to produce visually and radiometrically accurate renderings of selected appearance attributes of sample coated surfaces. It required changes in the rendering programs, which in general are not designed to accept high quality optical and material measurements, and changes in the optical measurement protocols. An outcome of this research is that some current ASTM standards can be replaced or enhanced by computer based standards of appearance. PMID:27446729

  6. Use of genomic recursions and algorithm for proven and young animals for single-step genomic BLUP analyses--a simulation study.

    PubMed

    Fragomeni, B O; Lourenco, D A L; Tsuruta, S; Masuda, Y; Aguilar, I; Misztal, I

    2015-10-01

    The purpose of this study was to examine accuracy of genomic selection via single-step genomic BLUP (ssGBLUP) when the direct inverse of the genomic relationship matrix (G) is replaced by an approximation of G(-1) based on recursions for young genotyped animals conditioned on a subset of proven animals, termed algorithm for proven and young animals (APY). With the efficient implementation, this algorithm has a cubic cost with proven animals and linear with young animals. Ten duplicate data sets mimicking a dairy cattle population were simulated. In a first scenario, genomic information for 20k genotyped bulls, divided in 7k proven and 13k young bulls, was generated for each replicate. In a second scenario, 5k genotyped cows with phenotypes were included in the analysis as young animals. Accuracies (average for the 10 replicates) in regular EBV were 0.72 and 0.34 for proven and young animals, respectively. When genomic information was included, they increased to 0.75 and 0.50. No differences between genomic EBV (GEBV) obtained with the regular G(-1) and the approximated G(-1) via the recursive method were observed. In the second scenario, accuracies in GEBV (0.76, 0.51 and 0.59 for proven bulls, young males and young females, respectively) were also higher than those in EBV (0.72, 0.35 and 0.49). Again, no differences between GEBV with regular G(-1) and with recursions were observed. With the recursive algorithm, the number of iterations to achieve convergence was reduced from 227 to 206 in the first scenario and from 232 to 209 in the second scenario. Cows can be treated as young animals in APY without reducing the accuracy. The proposed algorithm can be implemented to reduce computing costs and to overcome current limitations on the number of genotyped animals in the ssGBLUP method. © 2015 Blackwell Verlag GmbH.

  7. Directable weathering of concave rock using curvature estimation.

    PubMed

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  8. A fast mass spring model solver for high-resolution elastic objects

    NASA Astrophysics Data System (ADS)

    Zheng, Mianlun; Yuan, Zhiyong; Zhu, Weixu; Zhang, Guian

    2017-03-01

    Real-time simulation of elastic objects is of great importance for computer graphics and virtual reality applications. The fast mass spring model solver can achieve visually realistic simulation in an efficient way. Unfortunately, this method suffers from resolution limitations and lack of mechanical realism for a surface geometry model, which greatly restricts its application. To tackle these problems, in this paper we propose a fast mass spring model solver for high-resolution elastic objects. First, we project the complex surface geometry model into a set of uniform grid cells as cages through *cages mean value coordinate method to reflect its internal structure and mechanics properties. Then, we replace the original Cholesky decomposition method in the fast mass spring model solver with a conjugate gradient method, which can make the fast mass spring model solver more efficient for detailed surface geometry models. Finally, we propose a graphics processing unit accelerated parallel algorithm for the conjugate gradient method. Experimental results show that our method can realize efficient deformation simulation of 3D elastic objects with visual reality and physical fidelity, which has a great potential for applications in computer animation.

  9. Radio frequency coil technology for small-animal MRI.

    PubMed

    Doty, F David; Entzminger, George; Kulkarni, Jatin; Pamarthy, Kranti; Staab, John P

    2007-05-01

    A review of the theory, technology, and use of radio frequency (RF) coils for small-animal MRI is presented. It includes a brief overview of MR signal-to-noise (S/N) analysis and discussions of the various coils commonly used in small-animal MR: surface coils, linear volume coils, birdcages, and their derivatives. The scope is limited to mid-range coils, i.e. coils where the product (fd) of the frequency f and the coil diameter d is in the range 2-30 MHz-m. Common applications include mouse brain and body coils from 125 to 750 MHz, rat body coils up to 500 MHz, and small surface coils at all fields. In this regime, all the sources of loss (coil, capacitor, sample, shield, and transmission lines) are important. All such losses may be accurately captured in some modern full-wave 3D electromagnetics software, and new simulation results are presented for a selection of surface coils using Microwave Studio 2006 by Computer Simulation Technology, showing the dramatic importance of the "lift-off effect". Standard linear circuit simulators have been shown to be useful in optimization of complex coil tuning and matching circuits. There appears to be considerable potential for trading S/N for speed using phased arrays, especially for a larger field of view. Circuit simulators are shown to be useful for optimal mismatching of ultra-low-noise preamps based on the enhancement-mode pseudomorphic high-electron-mobility transistor for optimal coil decoupling in phased arrays. Cryogenically cooled RF coils are shown to offer considerable opportunity for future gains in S/N in smaller samples.

  10. Intravenous catheter training system: computer-based education versus traditional learning methods.

    PubMed

    Engum, Scott A; Jeffries, Pamela; Fisher, Lisa

    2003-07-01

    Virtual reality simulators allow trainees to practice techniques without consequences, reduce potential risk associated with training, minimize animal use, and help to develop standards and optimize procedures. Current intravenous (IV) catheter placement training methods utilize plastic arms, however, the lack of variability can diminish the educational stimulus for the student. This study compares the effectiveness of an interactive, multimedia, virtual reality computer IV catheter simulator with a traditional laboratory experience of teaching IV venipuncture skills to both nursing and medical students. A randomized, pretest-posttest experimental design was employed. A total of 163 participants, 70 baccalaureate nursing students and 93 third-year medical students beginning their fundamental skills training were recruited. The students ranged in age from 20 to 55 years (mean 25). Fifty-eight percent were female and 68% percent perceived themselves as having average computer skills (25% declaring excellence). The methods of IV catheter education compared included a traditional method of instruction involving a scripted self-study module which involved a 10-minute videotape, instructor demonstration, and hands-on-experience using plastic mannequin arms. The second method involved an interactive multimedia, commercially made computer catheter simulator program utilizing virtual reality (CathSim). The pretest scores were similar between the computer and the traditional laboratory group. There was a significant improvement in cognitive gains, student satisfaction, and documentation of the procedure with the traditional laboratory group compared with the computer catheter simulator group. Both groups were similar in their ability to demonstrate the skill correctly. CONCLUSIONS; This evaluation and assessment was an initial effort to assess new teaching methodologies related to intravenous catheter placement and their effects on student learning outcomes and behaviors. Technology alone is not a solution for stand alone IV catheter placement education. A traditional learning method was preferred by students. The combination of these two methods of education may further enhance the trainee's satisfaction and skill acquisition level.

  11. In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions

    NASA Astrophysics Data System (ADS)

    Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2017-01-01

    Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering.

  12. In-silico experiments of zebrafish behaviour: modeling swimming in three dimensions

    PubMed Central

    Mwaffo, Violet; Butail, Sachit; Porfiri, Maurizio

    2017-01-01

    Zebrafish is fast becoming a species of choice in biomedical research for the investigation of functional and dysfunctional processes coupled with their genetic and pharmacological modulation. As with mammals, experimentation with zebrafish constitutes a complicated ethical issue that calls for the exploration of alternative testing methods to reduce the number of subjects, refine experimental designs, and replace live animals. Inspired by the demonstrated advantages of computational studies in other life science domains, we establish an authentic data-driven modelling framework to simulate zebrafish swimming in three dimensions. The model encapsulates burst-and-coast swimming style, speed modulation, and wall interaction, laying the foundations for in-silico experiments of zebrafish behaviour. Through computational studies, we demonstrate the ability of the model to replicate common ethological observables such as speed and spatial preference, and anticipate experimental observations on the correlation between tank dimensions on zebrafish behaviour. Reaching to other experimental paradigms, our framework is expected to contribute to a reduction in animal use and suffering. PMID:28071731

  13. What's the Technology For? Teacher Attention and Pedagogical Goals in a Modeling-Focused Professional Development Workshop

    NASA Astrophysics Data System (ADS)

    Wilkerson, Michelle Hoda; Andrews, Chelsea; Shaban, Yara; Laina, Vasiliki; Gravel, Brian E.

    2016-02-01

    This paper explores the role that technology can play in engaging pre-service teachers with the iterative, "messy" nature of model-based inquiry. Over the course of 5 weeks, 11 pre-service teachers worked in groups to construct models of diffusion using a computational animation and simulation toolkit, and designed lesson plans for the toolkit. Content analyses of group discussions and lesson plans document attention to content, representation, revision, and evaluation as interwoven aspects of modeling over the course of the workshop. When animating, only content and representation were heavily represented in group discussions. When simulating, all four aspects were represented to different extents across groups. Those differences corresponded with different planned uses for the technology during lessons: to teach modeling, to engage learners with one another's ideas, or to reveal student ideas. We identify specific ways in which technology served an important role in eliciting teachers' knowledge and goals related to scientific modeling in the classroom.

  14. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes.

    PubMed

    Kovatchev, Boris P; Breton, Marc; Man, Chiara Dalla; Cobelli, Claudio

    2009-01-01

    Arguably, a minimally invasive system using subcutaneous (s.c.) continuous glucose monitoring (CGM) and s.c. insulin delivery via insulin pump would be a most feasible step to closed-loop control in type 1 diabetes mellitus (T1DM). Consequently, diabetes technology is focusing on developing an artificial pancreas using control algorithms to link CGM with s.c. insulin delivery. The future development of the artificial pancreas will be greatly accelerated by employing mathematical modeling and computer simulation. Realistic computer simulation is capable of providing invaluable information about the safety and the limitations of closed-loop control algorithms, guiding clinical studies, and out-ruling ineffective control scenarios in a cost-effective manner. Thus computer simulation testing of closed-loop control algorithms is regarded as a prerequisite to clinical trials of the artificial pancreas. In this paper, we present a system for in silico testing of control algorithms that has three principal components: (1) a large cohort of n=300 simulated "subjects" (n=100 adults, 100 adolescents, and 100 children) based on real individuals' data and spanning the observed variability of key metabolic parameters in the general population of people with T1DM; (2) a simulator of CGM sensor errors representative of Freestyle Navigator™, Guardian RT, or Dexcom™ STS™, 7-day sensor; and (3) a simulator of discrete s.c. insulin delivery via OmniPod Insulin Management System or Deltec Cozmo(®) insulin pump. The system has been shown to represent adequate glucose fluctuations in T1DM observed during meal challenges, and has been accepted by the Food and Drug Administration as a substitute to animal trials in the preclinical testing of closed-loop control strategies. © Diabetes Technology Society

  15. Spectral discrimination in color blind animals via chromatic aberration and pupil shape

    PubMed Central

    Stubbs, Alexander L.; Stubbs, Christopher W.

    2016-01-01

    We present a mechanism by which organisms with only a single photoreceptor, which have a monochromatic view of the world, can achieve color discrimination. An off-axis pupil and the principle of chromatic aberration (where different wavelengths come to focus at different distances behind a lens) can combine to provide “color-blind” animals with a way to distinguish colors. As a specific example, we constructed a computer model of the visual system of cephalopods (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. We compute a quantitative image quality budget for this visual system and show how chromatic blurring dominates the visual acuity in these animals in shallow water. We quantitatively show, through numerical simulations, how chromatic aberration can be exploited to obtain spectral information, especially through nonaxial pupils that are characteristic of coleoid cephalopods. We have also assessed the inherent ambiguity between range and color that is a consequence of the chromatic variation of best focus with wavelength. This proposed mechanism is consistent with the extensive suite of visual/behavioral and physiological data that has been obtained from cephalopod studies and offers a possible solution to the apparent paradox of vivid chromatic behaviors in color blind animals. Moreover, this proposed mechanism has potential applicability in organisms with limited photoreceptor complements, such as spiders and dolphins. PMID:27382180

  16. V-Man Generation for 3-D Real Time Animation. Chapter 5

    NASA Technical Reports Server (NTRS)

    Nebel, Jean-Christophe; Sibiryakov, Alexander; Ju, Xiangyang

    2007-01-01

    The V-Man project has developed an intuitive authoring and intelligent system to create, animate, control and interact in real-time with a new generation of 3D virtual characters: The V-Men. It combines several innovative algorithms coming from Virtual Reality, Physical Simulation, Computer Vision, Robotics and Artificial Intelligence. Given a high-level task like "walk to that spot" or "get that object", a V-Man generates the complete animation required to accomplish the task. V-Men synthesise motion at runtime according to their environment, their task and their physical parameters, drawing upon its unique set of skills manufactured during the character creation. The key to the system is the automated creation of realistic V-Men, not requiring the expertise of an animator. It is based on real human data captured by 3D static and dynamic body scanners, which is then processed to generate firstly animatable body meshes, secondly 3D garments and finally skinned body meshes.

  17. Computer-Generated, Three-Dimensional Character Animation: A Report and Analysis.

    ERIC Educational Resources Information Center

    Kingsbury, Douglas Lee

    This master's thesis details the experience gathered in the production "Snoot and Muttly," a short character animation with 3-D computer generated images, and provides an analysis of the computer-generated 3-D character animation system capabilities. Descriptions are provided of the animation environment at the Ohio State University…

  18. Cochlear microdialysis for quantification of dexamethasone and fluorescein entry into scala tympani during round window administration.

    PubMed

    Hahn, Hartmut; Kammerer, Bernd; DiMauro, Andre; Salt, Alec N; Plontke, Stefan K

    2006-02-01

    Before new drugs for the treatment of inner ear disorders can be studied in controlled clinical trials, it is important that their pharmacokinetics be established in inner ear fluids. Microdialysis allows drug levels to be measured in perilymph without the volume disturbances and potential cerebrospinal fluid contamination associated with fluid sampling. The aims of this study were to show: (i) that despite low recovery rates from miniature dialysis probes, significant amounts of drug are removed from small fluid compartments, (ii) that dialysis sampling artifacts can be accounted for using computer simulations and (iii) that microdialysis allows quantification of the entry rates through the round window membrane (RWM) into scala tympani (ST). Initial experiments used microdialysis probes in small compartments in vitro containing sodium fluorescein. Stable concentrations were observed in large compartments (1000 microl) but significant concentration declines were observed in smaller compartments (100, 10 and 5.6 microl) comparable to the size of the inner ear. Computer simulations of these experiments closely approximated the experimental data. In in vivo experiments, sodium fluorescein 10 mg/ml and dexamethasone-dihydrogen-phosphate disodium salt 8 mg/ml were simultaneously applied to the RWM of guinea pigs. Perilymph concentration in the basal turn of ST was monitored using microdialysis. The fluorescein concentration reached after 200 min application (585+/-527 microg/ml) was approximately twice that of dexamethasone phosphate (291+/-369 microg/ml). Substantial variation in concentrations was found between animals by approximately a factor of 34 for fluorescein and at least 41 for dexamethasone phosphate. This is, to a large extent, thought to be the result of the RWM permeability varying in different animals. It was not caused by substance analysis variations, because two different analytic methods were used and the concentration ratio between the two substances remained nearly constant across the experiments and because differences were apparent for the repeated samples obtained in each animal. Interpretation of the results using computer simulations allowed RWM permeability to be quantified. It also demonstrated, however, that cochlear clearance values could not be reliably obtained with microdialysis because of the significant contribution of dialysis to clearance. The observed interanimal variation, e.g., in RWM permeability, is likely to be clinically relevant to the local application of drugs in patients.

  19. Cochlear Microdialysis for Quantification of Dexamethasone and Fluorescein Entry into Scala Tympani During Round Window Administration

    PubMed Central

    Hahn, Hartmut; Kammerer, Bernd; DiMauro, Andre; Salt, Alec N.; Plontke, Stefan K.

    2006-01-01

    Before new drugs for the treatment of inner ear disorders can be studied in controlled clinical trials, it is important that their pharmacokinetics be established in inner ear fluids. Microdialysis allows drug levels to be measured in perilymph without the volume disturbances and potential cerebrospinal fluid contamination associated with fluid sampling. The aims of this study were to show: (i) that despite low recovery rates from miniature dialysis probes, significant amounts of drug are removed from small fluid compartments, (ii) that dialysis sampling artifacts can be accounted for using computer simulations and (iii) that microdialysis allows quantification of the entry rates through the round window membrane (RWM) into scala tympani (ST). Initial experiments used microdialysis probes in small compartments in vitro containing sodium fluorescein. Stable concentrations were observed in large compartments (1000 μl) but significant concentration declines were observed in smaller compartments (100, 10 and 5.6 μl) comparable to the size of the inner ear. Computer simulations of these experiments closely approximated the experimental data. In in vivo experiments, sodium fluorescein 10 mg/ml and dexamethasone-dihydrogen-phosphate disodium salt 8 mg/ml were simultaneously applied to the RWM of guinea pigs. Perilymph concentration in the basal turn of ST was monitored using microdialysis. The fluorescein concentration reached after 200 min application (585 ± 527 μg/ml) was approximately twice that of dexamethasone phosphate (291 ± 369 μg/ml). Substantial variation in concentrations was found between animals by approximately a factor of 34 for fluorescein and at least 41 for dexamethasone phosphate. This is, to a large extent, thought to be the result of the RWM permeability varying in different animals. It was not caused by substance analysis variations, because two different analytic methods were used and the concentration ratio between the two substances remained nearly constant across the experiments and because differences were apparent for the repeated samples obtained in each animal. Interpretation of the results using computer simulations allowed RWM permeability to be quantified. It also demonstrated, however, that cochlear clearance values could not be reliably obtained with microdialysis because of the significant contribution of dialysis to clearance. The observed interanimal variation, e.g., in RWM permeability, is likely to be clinically relevant to the local application of drugs in patients. PMID:16442251

  20. Can Computer Animations Affect College Biology Students' Conceptions about Diffusion and Osmosis?

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Brecheisen, Dorothy M.; Hynek, Brian M.

    2001-01-01

    Investigates whether viewing computer animations representing the process of diffusion and osmosis affects students' conceptions. Discusses the difficulties of implementing computer animations in the classroom. (Contains 27 references.) (YDS)

  1. Application of physics engines in virtual worlds

    NASA Astrophysics Data System (ADS)

    Norman, Mark; Taylor, Tim

    2002-03-01

    Dynamic virtual worlds potentially can provide a much richer and more enjoyable experience than static ones. To realize such worlds, three approaches are commonly used. The first of these, and still widely applied, involves importing traditional animations from a modeling system such as 3D Studio Max. This approach is therefore limited to predefined animation scripts or combinations/blends thereof. The second approach involves the integration of some specific-purpose simulation code, such as car dynamics, and is thus generally limited to one (class of) application(s). The third approach involves the use of general-purpose physics engines, which promise to enable a range of compelling dynamic virtual worlds and to considerably speed up development. By far the largest market today for real-time simulation is computer games, revenues exceeding those of the movie industry. Traditionally, the simulation is produced by game developers in-house for specific titles. However, off-the-shelf middleware physics engines are now available for use in games and related domains. In this paper, we report on our experiences of using middleware physics engines to create a virtual world as an interactive experience, and an advanced scenario where artificial life techniques generate controllers for physically modeled characters.

  2. GPU-Accelerated Molecular Modeling Coming Of Age

    PubMed Central

    Stone, John E.; Hardy, David J.; Ufimtsev, Ivan S.

    2010-01-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. PMID:20675161

  3. GPU-accelerated molecular modeling coming of age.

    PubMed

    Stone, John E; Hardy, David J; Ufimtsev, Ivan S; Schulten, Klaus

    2010-09-01

    Graphics processing units (GPUs) have traditionally been used in molecular modeling solely for visualization of molecular structures and animation of trajectories resulting from molecular dynamics simulations. Modern GPUs have evolved into fully programmable, massively parallel co-processors that can now be exploited to accelerate many scientific computations, typically providing about one order of magnitude speedup over CPU code and in special cases providing speedups of two orders of magnitude. This paper surveys the development of molecular modeling algorithms that leverage GPU computing, the advances already made and remaining issues to be resolved, and the continuing evolution of GPU technology that promises to become even more useful to molecular modeling. Hardware acceleration with commodity GPUs is expected to benefit the overall computational biology community by bringing teraflops performance to desktop workstations and in some cases potentially changing what were formerly batch-mode computational jobs into interactive tasks. (c) 2010 Elsevier Inc. All rights reserved.

  4. Pulse!!: a model for research and development of virtual-reality learning in military medical education and training.

    PubMed

    Dunne, James R; McDonald, Claudia L

    2010-07-01

    Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.

  5. Procedural wound geometry and blood flow generation for medical training simulators

    NASA Astrophysics Data System (ADS)

    Aras, Rifat; Shen, Yuzhong; Li, Jiang

    2012-02-01

    Efficient application of wound treatment procedures is vital in both emergency room and battle zone scenes. In order to train first responders for such situations, physical casualty simulation kits, which are composed of tens of individual items, are commonly used. Similar to any other training scenarios, computer simulations can be effective means for wound treatment training purposes. For immersive and high fidelity virtual reality applications, realistic 3D models are key components. However, creation of such models is a labor intensive process. In this paper, we propose a procedural wound geometry generation technique that parameterizes key simulation inputs to establish the variability of the training scenarios without the need of labor intensive remodeling of the 3D geometry. The procedural techniques described in this work are entirely handled by the graphics processing unit (GPU) to enable interactive real-time operation of the simulation and to relieve the CPU for other computational tasks. The visible human dataset is processed and used as a volumetric texture for the internal visualization of the wound geometry. To further enhance the fidelity of the simulation, we also employ a surface flow model for blood visualization. This model is realized as a dynamic texture that is composed of a height field and a normal map and animated at each simulation step on the GPU. The procedural wound geometry and the blood flow model are applied to a thigh model and the efficiency of the technique is demonstrated in a virtual surgery scene.

  6. Computer animations stimulate contagious yawning in chimpanzees

    PubMed Central

    Campbell, Matthew W.; Carter, J. Devyn; Proctor, Darby; Eisenberg, Michelle L.; de Waal, Frans B. M.

    2009-01-01

    People empathize with fictional displays of behaviour, including those of cartoons and computer animations, even though the stimuli are obviously artificial. However, the extent to which other animals also may respond empathetically to animations has yet to be determined. Animations provide a potentially useful tool for exploring non-human behaviour, cognition and empathy because computer-generated stimuli offer complete control over variables and the ability to program stimuli that could not be captured on video. Establishing computer animations as a viable tool requires that non-human subjects identify with and respond to animations in a way similar to the way they do to images of actual conspecifics. Contagious yawning has been linked to empathy and poses a good test of involuntary identification and motor mimicry. We presented 24 chimpanzees with three-dimensional computer-animated chimpanzees yawning or displaying control mouth movements. The apes yawned significantly more in response to the yawn animations than to the controls, implying identification with the animations. These results support the phenomenon of contagious yawning in chimpanzees and suggest an empathic response to animations. Understanding how chimpanzees connect with animations, to both empathize and imitate, may help us to understand how humans do the same. PMID:19740888

  7. Nonuniform update for sparse target recovery in fluorescence molecular tomography accelerated by ordered subsets.

    PubMed

    Zhu, Dianwen; Li, Changqing

    2014-12-01

    Fluorescence molecular tomography (FMT) is a promising imaging modality and has been actively studied in the past two decades since it can locate the specific tumor position three-dimensionally in small animals. However, it remains a challenging task to obtain fast, robust and accurate reconstruction of fluorescent probe distribution in small animals due to the large computational burden, the noisy measurement and the ill-posed nature of the inverse problem. In this paper we propose a nonuniform preconditioning method in combination with L (1) regularization and ordered subsets technique (NUMOS) to take care of the different updating needs at different pixels, to enhance sparsity and suppress noise, and to further boost convergence of approximate solutions for fluorescence molecular tomography. Using both simulated data and phantom experiment, we found that the proposed nonuniform updating method outperforms its popular uniform counterpart by obtaining a more localized, less noisy, more accurate image. The computational cost was greatly reduced as well. The ordered subset (OS) technique provided additional 5 times and 3 times speed enhancements for simulation and phantom experiments, respectively, without degrading image qualities. When compared with the popular L (1) algorithms such as iterative soft-thresholding algorithm (ISTA) and Fast iterative soft-thresholding algorithm (FISTA) algorithms, NUMOS also outperforms them by obtaining a better image in much shorter period of time.

  8. Mechanical performance of aquatic rowing and flying.

    PubMed

    Walker, J A; Westneat, M W

    2000-09-22

    Aquatic flight, performed by rowing or flapping fins, wings or limbs, is a primary locomotor mechanism for many animals. We used a computer simulation to compare the mechanical performance of rowing and flapping appendages across a range of speeds. Flapping appendages proved to be more mechanically efficient than rowing appendages at all swimming speeds, suggesting that animals that frequently engage in locomotor behaviours that require energy conservation should employ a flapping stroke. The lower efficiency of rowing appendages across all speeds begs the question of why rowing occurs at all. One answer lies in the ability of rowing fins to generate more thrust than flapping fins during the power stroke. Large forces are necessary for manoeuvring behaviours such as accelerations, turning and braking, which suggests that rowing should be found in slow-swimming animals that frequently manoeuvre. The predictions of the model are supported by observed patterns of behavioural variation among rowing and flapping vertebrates.

  9. Interactive computer simulations of knee-replacement surgery.

    PubMed

    Gunther, Stephen B; Soto, Gabriel E; Colman, William W

    2002-07-01

    Current surgical training programs in the United States are based on an apprenticeship model. This model is outdated because it does not provide conceptual scaffolding, promote collaborative learning, or offer constructive reinforcement. Our objective was to create a more useful approach by preparing students and residents for operative cases using interactive computer simulations of surgery. Total-knee-replacement surgery (TKR) is an ideal procedure to model on the computer because there is a systematic protocol for the procedure. Also, this protocol is difficult to learn by the apprenticeship model because of the multiple instruments that must be used in a specific order. We designed an interactive computer tutorial to teach medical students and residents how to perform knee-replacement surgery. We also aimed to reinforce the specific protocol of the operative procedure. Our final goal was to provide immediate, constructive feedback. We created a computer tutorial by generating three-dimensional wire-frame models of the surgical instruments. Next, we applied a surface to the wire-frame models using three-dimensional modeling. Finally, the three-dimensional models were animated to simulate the motions of an actual TKR. The tutorial is a step-by-step tutorial that teaches and tests the correct sequence of steps in a TKR. The student or resident must select the correct instruments in the correct order. The learner is encouraged to learn the stepwise surgical protocol through repetitive use of the computer simulation. Constructive feedback is acquired through a grading system, which rates the student's or resident's ability to perform the task in the correct order. The grading system also accounts for the time required to perform the simulated procedure. We evaluated the efficacy of this teaching technique by testing medical students who learned by the computer simulation and those who learned by reading the surgical protocol manual. Both groups then performed TKR on manufactured bone models using real instruments. Their technique was graded with the standard protocol. The students who learned on the computer simulation performed the task in a shorter time and with fewer errors than the control group. They were also more engaged in the learning process. Surgical training programs generally lack a consistent approach to preoperative education related to surgical procedures. This interactive computer tutorial has allowed us to make a quantum leap in medical student and resident teaching in our orthopedic department because the students actually participate in the entire process. Our technique provides a linear, sequential method of skill acquisition and direct feedback, which is ideally suited for learning stepwise surgical protocols. Since our initial evaluation has shown the efficacy of this program, we have implemented this teaching tool into our orthopedic curriculum. Our plans for future work with this simulator include modeling procedures involving other anatomic areas of interest, such as the hip and shoulder.

  10. Just-in-time Time Data Analytics and Visualization of Climate Simulations using the Bellerophon Framework

    NASA Astrophysics Data System (ADS)

    Anantharaj, V. G.; Venzke, J.; Lingerfelt, E.; Messer, B.

    2015-12-01

    Climate model simulations are used to understand the evolution and variability of earth's climate. Unfortunately, high-resolution multi-decadal climate simulations can take days to weeks to complete. Typically, the simulation results are not analyzed until the model runs have ended. During the course of the simulation, the output may be processed periodically to ensure that the model is preforming as expected. However, most of the data analytics and visualization are not performed until the simulation is finished. The lengthy time period needed for the completion of the simulation constrains the productivity of climate scientists. Our implementation of near real-time data visualization analytics capabilities allows scientists to monitor the progress of their simulations while the model is running. Our analytics software executes concurrently in a co-scheduling mode, monitoring data production. When new data are generated by the simulation, a co-scheduled data analytics job is submitted to render visualization artifacts of the latest results. These visualization output are automatically transferred to Bellerophon's data server located at ORNL's Compute and Data Environment for Science (CADES) where they are processed and archived into Bellerophon's database. During the course of the experiment, climate scientists can then use Bellerophon's graphical user interface to view animated plots and their associated metadata. The quick turnaround from the start of the simulation until the data are analyzed permits research decisions and projections to be made days or sometimes even weeks sooner than otherwise possible! The supercomputer resources used to run the simulation are unaffected by co-scheduling the data visualization jobs, so the model runs continuously while the data are visualized. Our just-in-time data visualization software looks to increase climate scientists' productivity as climate modeling moves into exascale era of computing.

  11. Dynamic analysis of astronaut motions in microgravity: Applications for Extravehicular Activity (EVA)

    NASA Technical Reports Server (NTRS)

    Newman, Dava J.

    1995-01-01

    Simulations of astronaut motions during extravehicular activity (EVA) tasks were performed using computational multibody dynamics methods. The application of computational dynamic simulation to EVA was prompted by the realization that physical microgravity simulators have inherent limitations: viscosity in neutral buoyancy tanks; friction in air bearing floors; short duration for parabolic aircraft; and inertia and friction in suspension mechanisms. These limitations can mask critical dynamic effects that later cause problems during actual EVA's performed in space. Methods of formulating dynamic equations of motion for multibody systems are discussed with emphasis on Kane's method, which forms the basis of the simulations presented herein. Formulation of the equations of motion for a two degree of freedom arm is presented as an explicit example. The four basic steps in creating the computational simulations were: system description, in which the geometry, mass properties, and interconnection of system bodies are input to the computer; equation formulation based on the system description; inverse kinematics, in which the angles, velocities, and accelerations of joints are calculated for prescribed motion of the endpoint (hand) of the arm; and inverse dynamics, in which joint torques are calculated for a prescribed motion. A graphical animation and data plotting program, EVADS (EVA Dynamics Simulation), was developed and used to analyze the results of the simulations that were performed on a Silicon Graphics Indigo2 computer. EVA tasks involving manipulation of the Spartan 204 free flying astronomy payload, as performed during Space Shuttle mission STS-63 (February 1995), served as the subject for two dynamic simulations. An EVA crewmember was modeled as a seven segment system with an eighth segment representing the massive payload attached to the hand. For both simulations, the initial configuration of the lower body (trunk, upper leg, and lower leg) was a neutral microgravity posture. In the first simulation, the payload was manipulated around a circular trajectory of 0.15 m radius in 10 seconds. It was found that the wrist joint theoretically exceeded its ulnal deviation limit by as much as 49. 8 deg and was required to exert torques as high as 26 N-m to accomplish the task, well in excess of the wrist physiological limit of 12 N-m. The largest torque in the first simulation, 52 N-m, occurred in the ankle joint. To avoid these problems, the second simulation placed the arm in a more comfortable initial position and the radius and speed of the circular trajectory were reduced by half. As a result, the joint angles and torques were reduced to values well within their physiological limits. In particular, the maximum wrist torque for the second simulation was only 3 N-m and the maximum ankle torque was only 6 N-m.

  12. From the track to the ocean: Using flow control to improve marine bio-logging tags for cetaceans

    PubMed Central

    Fiore, Giovani; Anderson, Erik; Garborg, C. Spencer; Murray, Mark; Johnson, Mark; Moore, Michael J.; Howle, Laurens

    2017-01-01

    Bio-logging tags are an important tool for the study of cetaceans, but superficial tags inevitably increase hydrodynamic loading. Substantial forces can be generated by tags on fast-swimming animals, potentially affecting behavior and energetics or promoting early tag removal. Streamlined forms have been used to reduce loading, but these designs can accelerate flow over the top of the tag. This non-axisymmetric flow results in large lift forces (normal to the animal) that become the dominant force component at high speeds. In order to reduce lift and minimize total hydrodynamic loading this work presents a new tag design (Model A) that incorporates a hydrodynamic body, a channel to reduce fluid speed differences above and below the housing and wing to redirect flow to counter lift. Additionally, three derivatives of the Model A design were used to examine the contribution of individual flow control features to overall performance. Hydrodynamic loadings of four models were compared using computational fluid dynamics (CFD). The Model A design eliminated all lift force and generated up to ~30 N of downward force in simulated 6 m/s aligned flow. The simulations were validated using particle image velocimetry (PIV) to experimentally characterize the flow around the tag design. The results of these experiments confirm the trends predicted by the simulations and demonstrate the potential benefit of flow control elements for the reduction of tag induced forces on the animal. PMID:28196148

  13. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  14. Effects of Computer Animation Exercises on Student Cognitive Processes.

    ERIC Educational Resources Information Center

    Fowler, Will

    A study examining the effects of computer animation exercises on cognitive development asked two groups of seventh graders to create computer animations, working from a simple mythic text. The ability of students to create narrative scenarios from this mythic text was analyzed. These scenarios were then recreated in the school computer lab, using…

  15. Flexible Animation Computer Program

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.

    1990-01-01

    FLEXAN (Flexible Animation), computer program animating structural dynamics on Evans and Sutherland PS300-series graphics workstation with VAX/VMS host computer. Typical application is animation of spacecraft undergoing structural stresses caused by thermal and vibrational effects. Displays distortions in shape of spacecraft. Program displays single natural mode of vibration, mode history, or any general deformation of flexible structure. Written in FORTRAN 77.

  16. High-speed real-time animated displays on the ADAGE (trademark) RDS 3000 raster graphics system

    NASA Technical Reports Server (NTRS)

    Kahlbaum, William M., Jr.; Ownbey, Katrina L.

    1989-01-01

    Techniques which may be used to increase the animation update rate of real-time computer raster graphic displays are discussed. They were developed on the ADAGE RDS 3000 graphic system in support of the Advanced Concepts Simulator at the NASA Langley Research Center. These techniques involve the use of a special purpose parallel processor, for high-speed character generation. The description of the parallel processor includes the Barrel Shifter which is part of the hardware and is the key to the high-speed character rendition. The final result of this total effort was a fourfold increase in the update rate of an existing primary flight display from 4 to 16 frames per second.

  17. The virtual craniofacial patient: 3D jaw modeling and animation.

    PubMed

    Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James

    2003-01-01

    In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).

  18. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    NASA Technical Reports Server (NTRS)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  19. Application of advanced virtual reality and 3D computer assisted technologies in tele-3D-computer assisted surgery in rhinology.

    PubMed

    Klapan, Ivica; Vranjes, Zeljko; Prgomet, Drago; Lukinović, Juraj

    2008-03-01

    The real-time requirement means that the simulation should be able to follow the actions of the user that may be moving in the virtual environment. The computer system should also store in its memory a three-dimensional (3D) model of the virtual environment. In that case a real-time virtual reality system will update the 3D graphic visualization as the user moves, so that up-to-date visualization is always shown on the computer screen. Upon completion of the tele-operation, the surgeon compares the preoperative and postoperative images and models of the operative field, and studies video records of the procedure itself Using intraoperative records, animated images of the real tele-procedure performed can be designed. Virtual surgery offers the possibility of preoperative planning in rhinology. The intraoperative use of computer in real time requires development of appropriate hardware and software to connect medical instrumentarium with the computer and to operate the computer by thus connected instrumentarium and sophisticated multimedia interfaces.

  20. Improving the mixing performances of rice straw anaerobic digestion for higher biogas production by computational fluid dynamics (CFD) simulation.

    PubMed

    Shen, Fei; Tian, Libin; Yuan, Hairong; Pang, Yunzhi; Chen, Shulin; Zou, Dexun; Zhu, Baoning; Liu, Yanping; Li, Xiujin

    2013-10-01

    As a lignocellulose-based substrate for anaerobic digestion, rice straw is characterized by low density, high water absorbability, and poor fluidity. Its mixing performances in digestion are completely different from traditional substrates such as animal manures. Computational fluid dynamics (CFD) simulation was employed to investigate mixing performances and determine suitable stirring parameters for efficient biogas production from rice straw. The results from CFD simulation were applied in the anaerobic digestion tests to further investigate their reliability. The results indicated that the mixing performances could be improved by triple impellers with pitched blade, and complete mixing was easily achieved at the stirring rate of 80 rpm, as compared to 20-60 rpm. However, mixing could not be significantly improved when the stirring rate was further increased from 80 to 160 rpm. The simulation results agreed well with the experimental results. The determined mixing parameters could achieve the highest biogas yield of 370 mL (g TS)(-1) (729 mL (g TS(digested))(-1)) and 431 mL (g TS)(-1) (632 mL (g TS(digested))(-1)) with the shortest technical digestion time (T 80) of 46 days. The results obtained in this work could provide useful guides for the design and operation of biogas plants using rice straw as substrates.

  1. Non-iterative distance constraints enforcement for cloth drapes simulation

    NASA Astrophysics Data System (ADS)

    Hidajat, R. L. L. G.; Wibowo, Arifin, Z.; Suyitno

    2016-03-01

    A cloth simulation represents the behavior of cloth objects such as flag, tablecloth, or even garments has application in clothing animation for games and virtual shops. Elastically deformable models have widely used to provide realistic and efficient simulation, however problem of overstretching is encountered. We introduce a new cloth simulation algorithm that replaces iterative distance constraint enforcement steps with non-iterative ones for preventing over stretching in a spring-mass system for cloth modeling. Our method is based on a simple position correction procedure applied at one end of a spring. In our experiments, we developed a rectangle cloth model which is initially at a horizontal position with one point is fixed, and it is allowed to drape by its own weight. Our simulation is able to achieve a plausible cloth drapes as in reality. This paper aims to demonstrate the reliability of our approach to overcome overstretches while decreasing the computational cost of the constraint enforcement process due to an iterative procedure that is eliminated.

  2. Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    PubMed Central

    Sutton, Rebecca; Sposito, Garrison

    2002-01-01

    Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs+ formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs+ within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs+ for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs+ and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output.

  3. Virtual Interactive Musculoskeletal System (VIMS) in orthopaedic research, education and clinical patient care.

    PubMed

    Chao, Edmund Y S; Armiger, Robert S; Yoshida, Hiroaki; Lim, Jonathan; Haraguchi, Naoki

    2007-03-08

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation.

  4. Virtual interactive musculoskeletal system (VIMS) in orthopaedic research, education and clinical patient care

    PubMed Central

    Chao, Edmund YS; Armiger, Robert S; Yoshida, Hiroaki; Lim, Jonathan; Haraguchi, Naoki

    2007-01-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the "Virtual Human" reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of these unique database and simulation technology. This integrated system, model library and database will impact on orthopaedic education, basic research, device development and application, and clinical patient care related to musculoskeletal joint system reconstruction, trauma management, and rehabilitation. PMID:17343764

  5. The AAHA Computer Program. American Animal Hospital Association.

    PubMed

    Albers, J W

    1986-07-01

    The American Animal Hospital Association Computer Program should benefit all small animal practitioners. Through the availability of well-researched and well-developed certified software, veterinarians will have increased confidence in their purchase decisions. With the expansion of computer applications to improve practice management efficiency, veterinary computer systems will further justify their initial expense. The development of the Association's veterinary computer network will provide a variety of important services to the profession.

  6. Computational representation of the aponeuroses as NURBS surfaces in 3D musculoskeletal models.

    PubMed

    Wu, Florence T H; Ng-Thow-Hing, Victor; Singh, Karan; Agur, Anne M; McKee, Nancy H

    2007-11-01

    Computational musculoskeletal (MSK) models - 3D graphics-based models that accurately simulate the anatomical architecture and/or the biomechanical behaviour of organ systems consisting of skeletal muscles, tendons, ligaments, cartilage and bones - are valued biomedical tools, with applications ranging from pathological diagnosis to surgical planning. However, current MSK models are often limited by their oversimplifications in anatomical geometries, sometimes lacking discrete representations of connective tissue components entirely, which ultimately affect their accuracy in biomechanical simulation. In particular, the aponeuroses - the flattened fibrous connective sheets connecting muscle fibres to tendons - have never been geometrically modeled. The initiative was thus to extend Anatomy3D - a previously developed software bundle for reconstructing muscle fibre architecture - to incorporate aponeurosis-modeling capacity. Two different algorithms for aponeurosis reconstruction were written in the MEL scripting language of the animation software Maya 6.0, using its NURBS (non-uniform rational B-splines) modeling functionality for aponeurosis surface representation. Both algorithms were validated qualitatively against anatomical and functional criteria.

  7. Modelling the propagation of smoke from a tanker fire in a built-up area.

    PubMed

    Brzozowska, Lucyna

    2014-02-15

    The paper presents the application of a Lagrangian particle model to problems connected with safety in road transport. Numerical simulations were performed for a hypothetical case of smoke emission from a tanker fire in a built-up area. Propagation of smoke was analysed for three wind directions. A diagnostic model was used to determine the air velocity field, whereas the dispersion of pollutants was analysed by means of a Lagrangian particle model (Brzozowska, 2013). The Idrisi Andes geographic information system was used to provide data on landforms and on their aerodynamic roughness. The presented results of computations and their analysis exemplify a possible application of the Lagrangian particle model: evaluation of mean (averaged over time) concentrations of pollutants and their distribution in the considered area (especially important due to the protection of people, animals and plants) and simulation of the propagation of harmful compounds in time as well as performing computations for cases of the potential effects of road incidents. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Visualizing a silicon quantum computer

    NASA Astrophysics Data System (ADS)

    Sanders, Barry C.; Hollenberg, Lloyd C. L.; Edmundson, Darran; Edmundson, Andrew

    2008-12-01

    Quantum computation is a fast-growing, multi-disciplinary research field. The purpose of a quantum computer is to execute quantum algorithms that efficiently solve computational problems intractable within the existing paradigm of 'classical' computing built on bits and Boolean gates. While collaboration between computer scientists, physicists, chemists, engineers, mathematicians and others is essential to the project's success, traditional disciplinary boundaries can hinder progress and make communicating the aims of quantum computing and future technologies difficult. We have developed a four minute animation as a tool for representing, understanding and communicating a silicon-based solid-state quantum computer to a variety of audiences, either as a stand-alone animation to be used by expert presenters or embedded into a longer movie as short animated sequences. The paper includes a generally applicable recipe for successful scientific animation production.

  9. From Lévy to Brownian: a computational model based on biological fluctuation.

    PubMed

    Nurzaman, Surya G; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi

    2011-02-03

    Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.

  10. Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Her, Y. G.

    2017-12-01

    Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological observations such as soil moisture and radar rainfall depth and by sharing the model and its codes in public domain, respectively.

  11. A new approach to tag design in dolphin telemetry: Computer simulations to minimise deleterious effects

    NASA Astrophysics Data System (ADS)

    Pavlov, V. V.; Wilson, R. P.; Lucke, K.

    2007-02-01

    Remote-sensors and transmitters are powerful devices for studying cetaceans at sea. However, despite substantial progress in microelectronics and miniaturisation of systems, dolphin tags are imperfectly designed; additional drag from tags increases swim costs, compromises swimming capacity and manoeuvrability, and leads to extra loads on the animal's tissue. We propose a new approach to tag design, elaborating basic principles and incorporating design stages to minimise device effects by using computer-aided design. Initially, the operational conditions of the device are defined by quantifying the shape, hydrodynamics and range of the natural deformation of the dolphin body at the tag attachment site (such as close to the dorsal fin). Then, parametric models of both of the dorsal fin and a tag are created using the derived data. The link between parameters of the fin and a tag model allows redesign of tag models according to expected changes of fin geometry (difference in fin shape related with species, sex, and age peculiarities, simulation of the bend of the fin during manoeuvres). A final virtual modelling stage uses iterative improvement of a tag model in a computer fluid dynamics (CFD) environment to enhance tag performance. This new method is considered as a suitable tool of tag design before creation of the physical model of a tag and testing with conventional wind/water tunnel technique. Ultimately, tag materials are selected to conform to the conditions identified by the modelling process and thus help create a physical model of a tag, which should minimise its impact on the animal carrier and thus increase the reliability and quality of the data obtained.

  12. Improving Patient Access by Determining Appropriate Staff Mix in the Family Practice Clinic of Bayne-Jones Army Community Hospital at Fort Polk, Louisiana Using an Animated Computer Simulation Model

    DTIC Science & Technology

    1997-07-01

    result of customer dissatisfaction due to problems associated with access into Bayne-Jones Army community Hospital (BJACH). On a recent Military Health ...Training Center (JRTC) by delivering quality, accessible, patient oriented health care, while maintaining our preparedness to support the Army mission...family practice clinic at Bayne-Jones Army Community hospital has as its mission: To provide accessible, quality and customer oriented health care to

  13. Using Animated Computer Simulation to Determine the Optimal Resource Support for the Endodontic Specialty Practice at Fort Lewis.

    DTIC Science & Technology

    1998-03-01

    Series Pt Endo Tx 114 Time Series Pt Perio Ex 114 None Pt Perio Tx 114 None Pt Perio Sx 114 None Pt Perio Pot 114 None Pt Exam 114 None Pt Other...prevention, diagnosis, and treatment of diseases and injuries that affect the dental pulp, tooth root, and periapical tissue" (Jablonski, 1982...Time Priority Scheduled Disable Logic Entrance 1 480 99 Yes No wait 180 * Entities * Name Speed (fpm) Stats Pt Endo Ex 114 Time

  14. Experimental task-based optimization of a four-camera variable-pinhole small-animal SPECT system

    NASA Astrophysics Data System (ADS)

    Hesterman, Jacob Y.; Kupinski, Matthew A.; Furenlid, Lars R.; Wilson, Donald W.

    2005-04-01

    We have previously utilized lumpy object models and simulated imaging systems in conjunction with the ideal observer to compute figures of merit for hardware optimization. In this paper, we describe the development of methods and phantoms necessary to validate or experimentally carry out these optimizations. Our study was conducted on a four-camera small-animal SPECT system that employs interchangeable pinhole plates to operate under a variety of pinhole configurations and magnifications (representing optimizable system parameters). We developed a small-animal phantom capable of producing random backgrounds for each image sequence. The task chosen for the study was the detection of a 2mm diameter sphere within the phantom-generated random background. A total of 138 projection images were used, half of which included the signal. As our observer, we employed the channelized Hotelling observer (CHO) with Laguerre-Gauss channels. The signal-to-noise (SNR) of this observer was used to compare different system configurations. Results indicate agreement between experimental and simulated data with higher detectability rates found for multiple-camera, multiple-pinhole, and high-magnification systems, although it was found that mixtures of magnifications often outperform systems employing a single magnification. This work will serve as a basis for future studies pertaining to system hardware optimization.

  15. Evaluation of strategies for the eradication of Pseudorabies virus (Aujeszky's disease) in commercial swine farms in Chiang-Mai and Lampoon Provinces, Thailand, using a simulation disease spread model.

    PubMed

    Ketusing, N; Reeves, A; Portacci, K; Yano, T; Olea-Popelka, F; Keefe, T; Salman, M

    2014-04-01

    Several strategies for eradicating Pseudorabies virus (Aujeszky's disease) in Chiang-Mai and Lampoon Provinces, Thailand, were compared using a computer simulation model, the North American Animal Disease Spread Model (NAADSM). The duration of the outbreak, the number of affected herds and the number of destroyed herds were compared during these simulated outbreaks. Depopulation, zoning for restricted movement and improved detection and vaccination strategies were assessed. The most effective strategies to eradicate Pseudorabies as per the findings from this study are applying depopulation strategies with MOVEMENT RESTRICTIONS in 3-, 8- and 16-km ZONES surrounding infected herds and enhancing the eradication with vaccination campaign on 16-km radius surrounding infected herds. © 2012 Blackwell Verlag GmbH.

  16. Dynamic Simulation on the Installation Process of HGIS in Transformer Substation

    NASA Astrophysics Data System (ADS)

    Lin, Tao; Li, Shaohua; Wang, Hu; Che, Deyong; Qi, Guangcai; Yao, Jianfeng; Zhang, Qingzhe

    The technological requirements of Hypid Gas Insulated Switchgear (HGIS) installation in transformer substation is high and the control points of quality is excessive. Most of the engineers and technicians in the construction enterprises are not familiar with equipments of HGIS. In order to solve these problem, equipments of HGIS is modeled on the computer by SolidWorks software. Installation process of civil foundation and closed-type equipments is optimized dynamically with virtual assemble technology. Announcements and application work are composited into animation file. Skills of modeling and simulation is tidied classify as well. The result of the visual dynamic simulation can instruct the actual construction process of HGIS to a certain degree and can promote reasonable construction planning and management. It can also improve the method and quality of staff training for electric power construction enterprises.

  17. Initial Reading through Computer Animation.

    ERIC Educational Resources Information Center

    Geoffrion, Leo D.; Bergeron, R. Daniel

    The Computer Animated Reading Instruction System (CARIS) was developed to introduce reading to children with varied sensory, cognitive, and physical handicaps. CARIS employs an exploratory learning approach which encourages children to experiment with the reading and writing of words and sentences. Brief computer-animated cartoons provide the…

  18. Recent Developments in the VISRAD 3-D Target Design and Radiation Simulation Code

    NASA Astrophysics Data System (ADS)

    Macfarlane, Joseph; Golovkin, Igor; Sebald, James

    2017-10-01

    The 3-D view factor code VISRAD is widely used in designing HEDP experiments at major laser and pulsed-power facilities, including NIF, OMEGA, OMEGA-EP, ORION, Z, and LMJ. It simulates target designs by generating a 3-D grid of surface elements, utilizing a variety of 3-D primitives and surface removal algorithms, and can be used to compute the radiation flux throughout the surface element grid by computing element-to-element view factors and solving power balance equations. Target set-up and beam pointing are facilitated by allowing users to specify positions and angular orientations using a variety of coordinates systems (e.g., that of any laser beam, target component, or diagnostic port). Analytic modeling for laser beam spatial profiles for OMEGA DPPs and NIF CPPs is used to compute laser intensity profiles throughout the grid of surface elements. VISRAD includes a variety of user-friendly graphics for setting up targets and displaying results, can readily display views from any point in space, and can be used to generate image sequences for animations. We will discuss recent improvements to conveniently assess beam capture on target and beam clearance of diagnostic components, as well as plans for future developments.

  19. Simulating Nationwide Pandemics: Applying the Multi-scale Epidemiologic Simulation and Analysis System to Human Infectious Diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dombroski, M; Melius, C; Edmunds, T

    2008-09-24

    This study uses the Multi-scale Epidemiologic Simulation and Analysis (MESA) system developed for foreign animal diseases to assess consequences of nationwide human infectious disease outbreaks. A literature review identified the state of the art in both small-scale regional models and large-scale nationwide models and characterized key aspects of a nationwide epidemiological model. The MESA system offers computational advantages over existing epidemiological models and enables a broader array of stochastic analyses of model runs to be conducted because of those computational advantages. However, it has only been demonstrated on foreign animal diseases. This paper applied the MESA modeling methodology to humanmore » epidemiology. The methodology divided 2000 US Census data at the census tract level into school-bound children, work-bound workers, elderly, and stay at home individuals. The model simulated mixing among these groups by incorporating schools, workplaces, households, and long-distance travel via airports. A baseline scenario with fixed input parameters was run for a nationwide influenza outbreak using relatively simple social distancing countermeasures. Analysis from the baseline scenario showed one of three possible results: (1) the outbreak burned itself out before it had a chance to spread regionally, (2) the outbreak spread regionally and lasted a relatively long time, although constrained geography enabled it to eventually be contained without affecting a disproportionately large number of people, or (3) the outbreak spread through air travel and lasted a long time with unconstrained geography, becoming a nationwide pandemic. These results are consistent with empirical influenza outbreak data. The results showed that simply scaling up a regional small-scale model is unlikely to account for all the complex variables and their interactions involved in a nationwide outbreak. There are several limitations of the methodology that should be explored in future work including validating the model against reliable historical disease data, improving contact rates, spread methods, and disease parameters through discussions with epidemiological experts, and incorporating realistic behavioral assumptions.« less

  20. Computer program for maintenance of individual animal records in a nonhuman primate colony.

    PubMed

    Kuehl, T J; Dukelow, W R

    1977-06-01

    A computer program was developed to maintain animal records for a nonhuman primate colony used in research. The program was designed for use with an existing laboratory notebook system. The computer program identifies each notebook entry containing information about each animal and keeps other information, including animal name, sex, species, projects to which the animal is assigned, location of the animal, dates and body weights. The program is interactive and easy to use. Information stored in the system is readily accessible to all investigators using the animals. In 17 months of use, 1382 master file entries were developed for 113 monkeys.

  1. A Virtual Look at Epstein–Barr Virus Infection: Biological Interpretations

    PubMed Central

    Delgado-Eckert, Edgar; Hadinoto, Vey; Jarrah, Abdul S; Laubenbacher, Reinhard; Lee, Kichol; Luzuriaga, Katherine; Polys, Nicholas F; Thorley-Lawson, David A

    2007-01-01

    The possibility of using computer simulation and mathematical modeling to gain insight into biological and other complex systems is receiving increased attention. However, it is as yet unclear to what extent these techniques will provide useful biological insights or even what the best approach is. Epstein–Barr virus (EBV) provides a good candidate to address these issues. It persistently infects most humans and is associated with several important diseases. In addition, a detailed biological model has been developed that provides an intricate understanding of EBV infection in the naturally infected human host and accounts for most of the virus' diverse and peculiar properties. We have developed an agent-based computer model/simulation (PathSim, Pathogen Simulation) of this biological model. The simulation is performed on a virtual grid that represents the anatomy of the tonsils of the nasopharyngeal cavity (Waldeyer ring) and the peripheral circulation—the sites of EBV infection and persistence. The simulation is presented via a user friendly visual interface and reproduces quantitative and qualitative aspects of acute and persistent EBV infection. The simulation also had predictive power in validation experiments involving certain aspects of viral infection dynamics. Moreover, it allows us to identify switch points in the infection process that direct the disease course towards the end points of persistence, clearance, or death. Lastly, we were able to identify parameter sets that reproduced aspects of EBV-associated diseases. These investigations indicate that such simulations, combined with laboratory and clinical studies and animal models, will provide a powerful approach to investigating and controlling EBV infection, including the design of targeted anti-viral therapies. PMID:17953479

  2. Hierarchical animal movement models for population-level inference

    USGS Publications Warehouse

    Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.

    2016-01-01

    New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.

  3. Leatherbacks swimming in silico: modeling and verifying their momentum and heat balance using computational fluid dynamics.

    PubMed

    Dudley, Peter N; Bonazza, Riccardo; Jones, T Todd; Wyneken, Jeanette; Porter, Warren P

    2014-01-01

    As global temperatures increase throughout the coming decades, species ranges will shift. New combinations of abiotic conditions will make predicting these range shifts difficult. Biophysical mechanistic niche modeling places bounds on an animal's niche through analyzing the animal's physical interactions with the environment. Biophysical mechanistic niche modeling is flexible enough to accommodate these new combinations of abiotic conditions. However, this approach is difficult to implement for aquatic species because of complex interactions among thrust, metabolic rate and heat transfer. We use contemporary computational fluid dynamic techniques to overcome these difficulties. We model the complex 3D motion of a swimming neonate and juvenile leatherback sea turtle to find power and heat transfer rates during the stroke. We combine the results from these simulations and a numerical model to accurately predict the core temperature of a swimming leatherback. These results are the first steps in developing a highly accurate mechanistic niche model, which can assists paleontologist in understanding biogeographic shifts as well as aid contemporary species managers about potential range shifts over the coming decades.

  4. 3D animation model with augmented reality for natural science learning in elementary school

    NASA Astrophysics Data System (ADS)

    Hendajani, F.; Hakim, A.; Lusita, M. D.; Saputra, G. E.; Ramadhana, A. P.

    2018-05-01

    Many opinions from primary school students' on Natural Science are a difficult lesson. Many subjects are not easily understood by students, especially on materials that teach some theories about natural processes. Such as rain process, condensation and many other processes. The difficulty that students experience in understanding it is that students cannot imagine the things that have been taught in the material. Although there is material to practice some theories but is actually quite limited. There is also a video or simulation material in the form of 2D animated images. Understanding concepts in natural science lessons are also poorly understood by students. Natural Science learning media uses 3-dimensional animation models (3D) with augmented reality technology, which offers some visualization of science lessons. This application was created to visualize a process in Natural Science subject matter. The hope of making this application is to improve student's concept. This app is made to run on a personal computer that comes with a webcam with augmented reality. The app will display a 3D animation if the camera can recognize the marker.

  5. The Roles of Mental Animations and External Animations in Understanding Mechanical Systems

    ERIC Educational Resources Information Center

    Hegarty, Mary; Kriz, Sarah; Cate, Christina

    2003-01-01

    The effects of computer animations and mental animation on people's mental models of a mechanical system are examined. In 3 experiments, students learned how a mechanical system works from various instructional treatments including viewing a static diagram of the machine, predicting motion from static diagrams, viewing computer animations, and…

  6. Monte Carlo simulation of the risk of contamination of apples with Escherichia coli O157:H7.

    PubMed

    Duffy, Siobain; Schaffner, Donald W

    2002-10-25

    Quantitative descriptions of the frequency and extent of contamination of apple cider with pathogenic bacteria were obtained using literature data and computer simulation. Probability distributions were chosen to describe the risk of apple contamination by each suspected pathway. Tree-picked apples may be contaminated by birds infected with Escherichia coli O157:H7 when orchards were located near a sewage source (ocean or landfill). Dropped apples could become contaminated from either infected animal droppings or from contaminated manure if used as fertilizer. A risk assessment model was created in Analytica. The results of worst-case simulations revealed that 6-9 log CFU E. coli O157:H7 might be found on a harvest of 1000 dropped apples, while 3-4 log CFU contamination could be present on 1000 tree-picked apples. This model confirms that practices such as using dropped apples and using animal waste as fertilizer increase risk in the production of apple cider, and that pasteurization may not eliminate all contamination in juice from heavily contaminated fruit. Recently published FDA regulations for juices requiring a 5-log CFU/ml reduction of pathogenic bacteria in fresh juices should be a fail-safe measure for apples harvested in all but the worst-case scenarios.

  7. Results and applications of a space suit range-of-motion study

    NASA Technical Reports Server (NTRS)

    Reinhardt, AL

    1989-01-01

    The range of motion of space suits has traditionally been described using limited 2-D mapping of limb, torso, or arm movements performed in front of an orthogonal grid. A new technique for recovering extra-vehicular (EVA) space suit range-of-motion data during underwater testing was described in a paper presented by the author at the 1988 conference. The new technique uses digitized data which is automatically acquired from video images of the subject. Three-dimensional trajectories are recovered from these data, and can be displayed using 2-D computer graphics. Results of using this technique for the current shuttle EVA suit during underwater simulated weightlessness testing are discussed. Application of the data for use in animating anthropometric computer models is highlighted.

  8. G4DARI: Geant4/GATE based Monte Carlo simulation interface for dosimetry calculation in radiotherapy.

    PubMed

    Slimani, Faiçal A A; Hamdi, Mahdjoub; Bentourkia, M'hamed

    2018-05-01

    Monte Carlo (MC) simulation is widely recognized as an important technique to study the physics of particle interactions in nuclear medicine and radiation therapy. There are different codes dedicated to dosimetry applications and widely used today in research or in clinical application, such as MCNP, EGSnrc and Geant4. However, such codes made the physics easier but the programming remains a tedious task even for physicists familiar with computer programming. In this paper we report the development of a new interface GEANT4 Dose And Radiation Interactions (G4DARI) based on GEANT4 for absorbed dose calculation and for particle tracking in humans, small animals and complex phantoms. The calculation of the absorbed dose is performed based on 3D CT human or animal images in DICOM format, from images of phantoms or from solid volumes which can be made from any pure or composite material to be specified by its molecular formula. G4DARI offers menus to the user and tabs to be filled with values or chemical formulas. The interface is described and as application, we show results obtained in a lung tumor in a digital mouse irradiated with seven energy beams, and in a patient with glioblastoma irradiated with five photon beams. In conclusion, G4DARI can be easily used by any researcher without the need to be familiar with computer programming, and it will be freely available as an application package. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jordan N.; Hinderliter, Paul M.; Timchalk, Charles

    Sensitivity to chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to computationally predict disposition of CPF and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, age-dependent body weight was calculated from a generalized Gompertz function, and compartments (liver, brain, fat, blood, diaphragm, rapid, and slow) were scaled based on body weight from polynomial functions on a fractional body weight basis. Bloodmore » flows among compartments were calculated as a constant flow per compartment volume. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Model simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ≥ 0.55 mg/kg of chlorpyrifos (significantly higher than environmental exposure levels), 6 mo old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent oral doses of chlorpyrifos. At lower doses that are more relevant to environmental exposures, the model predicts that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict CPF disposition and biological response over various postnatal life-stages.« less

  10. Knowledge Integration to Make Decisions About Complex Systems: Sustainability of Energy Production from Agriculture

    ScienceCinema

    Danuso, Francesco

    2017-12-22

    A major bottleneck for improving the governance of complex systems, rely on our ability to integrate different forms of knowledge into a decision support system (DSS). Preliminary aspects are the classification of different types of knowledge (a priori or general, a posteriori or specific, with uncertainty, numerical, textual, algorithmic, complete/incomplete, etc.), the definition of ontologies for knowledge management and the availability of proper tools like continuous simulation models, event driven models, statistical approaches, computational methods (neural networks, evolutionary optimization, rule based systems etc.) and procedure for textual documentation. Following these views at University of Udine, a computer language (SEMoLa, Simple, Easy Modelling Language) for knowledge integration has been developed.  SEMoLa can handle models, data, metadata and textual knowledge; it implements and extends the system dynamics ontology (Forrester, 1968; Jørgensen, 1994) in which systems are modelled by the concepts of material, group, state, rate, parameter, internal and external events and driving variables. As an example, a SEMoLa model to improve management and sustainability (economical, energetic, environmental) of the agricultural farms is presented. The model (X-Farm) simulates a farm in which cereal and forage yield, oil seeds, milk, calves and wastes can be sold or reused. X-Farm is composed by integrated modules describing fields (crop and soil), feeds and materials storage, machinery management, manpower  management, animal husbandry, economic and energetic balances, seed oil extraction, manure and wastes management, biogas production from animal wastes and biomasses.

  11. Is This Real Life? Is This Just Fantasy?: Realism and Representations in Learning with Technology

    NASA Astrophysics Data System (ADS)

    Sauter, Megan Patrice

    Students often engage in hands-on activities during science learning; however, financial and practical constraints often limit the availability of these activities. Recent advances in technology have led to increases in the use of simulations and remote labs, which attempt to recreate hands-on science learning via computer. Remote labs and simulations are interesting from a cognitive perspective because they allow for different relations between representations and their referents. Remote labs are unique in that they provide a yoked representation, meaning that the representation of the lab on the computer screen is actually linked to that which it represents: a real scientific device. Simulations merely represent the lab and are not connected to any real scientific devices. However, the type of visual representations used in the lab may modify the effects of the lab technology. The purpose of this dissertation is to examine the relation between representation and technology and its effects of students' psychological experiences using online science labs. Undergraduates participated in two studies that investigated the relation between technology and representation. In the first study, participants performed either a remote lab or a simulation incorporating one of two visual representations, either a static image or a video of the equipment. Although participants in both lab conditions learned, participants in the remote lab condition had more authentic experiences. However, effects were moderated by the realism of the visual representation. Participants who saw a video were more invested and felt the experience was more authentic. In a second study, participants performed a remote lab and either saw the same video as in the first study, an animation, or the video and an animation. Most participants had an authentic experience because both representations evoked strong feelings of presence. However, participants who saw the video were more likely to believe the remote technology was real. Overall, the findings suggest that participants' experiences with technology were shaped by representation. Students had more authentic experiences using the remote lab than the simulation. However, incorporating visual representations that enhance presence made these experiences even more authentic and meaningful than afforded by the technology alone.

  12. Using a Computer Animation to Teach High School Molecular Biology

    ERIC Educational Resources Information Center

    Rotbain, Yosi; Marbach-Ad, Gili; Stavy, Ruth

    2008-01-01

    We present an active way to use a computer animation in secondary molecular genetics class. For this purpose we developed an activity booklet that helps students to work interactively with a computer animation which deals with abstract concepts and processes in molecular biology. The achievements of the experimental group were compared with those…

  13. Robot Design

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Martin Marietta Aero and Naval Systems has advanced the CAD art to a very high level at its Robotics Laboratory. One of the company's major projects is construction of a huge Field Material Handling Robot for the Army's Human Engineering Lab. Design of FMR, intended to move heavy and dangerous material such as ammunition, was a triumph in CAD Engineering. Separate computer problems modeled the robot's kinematics and dynamics, yielding such parameters as the strength of materials required for each component, the length of the arms, their degree of freedom and power of hydraulic system needed. The Robotics Lab went a step further and added data enabling computer simulation and animation of the robot's total operational capability under various loading and unloading conditions. NASA computer program (IAC), integrated Analysis Capability Engineering Database was used. Program contains a series of modules that can stand alone or be integrated with data from sensors or software tools.

  14. Building foundations for transcatheter intervascular anastomoses: 3D anatomy of the great vessels in large experimental animals.

    PubMed

    Sizarov, Aleksander; de Bakker, Bernadette S; Klein, Karina; Ohlerth, Stefanie

    2014-10-01

    To provide comprehensive illustrations of anatomy of the relevant vessels in large experimental animals in an interactive format as preparation for developing an effective and safe transcatheter technique of aortopulmonary and bidirectional cavopulmonary intervascular anastomoses. Computed tomographic angiographic studies in two calves and two sheep were used to prepare 3D reconstructions of the aorta, pulmonary arteries, and caval and pulmonary veins. Based on these reconstructions, computer simulations of the creation of stent-enhanced aortopulmonary and bidirectional cavopulmonary anastomoses were made. We observed the following major anatomical features: (i) caudal course of the main pulmonary artery and its branches with the proximal right pulmonary artery located immediately caudal to the aortic arch, and with the central left pulmonary artery lying at a substantial distance from the descending aorta; and (ii) the distal right pulmonary artery is located dorsal to the right atrium and inferior caval vein at a substantial distance from the superior caval vein. Animations showed creation of transcatheter analogues of Waterston's and Potts' aortopulmonary shunts through placement of a covered spool-shaped stent, and the transcatheter creation of bidirectional Glenn's cavopulmonary anastomosis, by placement of a long covered trumpet-shaped stent. There are considerable differences in vascular anatomy between large experimental animals and humans. Given the need to elaborate new transcatheter techniques for intervascular anastomoses in suitable animal models before application to human, it is crucial to take these anatomical differences into account during testing and optimization of the proposed procedures. © The Author 2014. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  15. Open surgical simulation--a review.

    PubMed

    Davies, Jennifer; Khatib, Manaf; Bello, Fernando

    2013-01-01

    Surgical simulation has benefited from a surge in interest over the last decade as a result of the increasing need for a change in the traditional apprentice model of teaching surgery. However, despite the recent interest in surgical simulation as an adjunct to surgical training, most of the literature focuses on laparoscopic, endovascular, and endoscopic surgical simulation with very few studies scrutinizing open surgical simulation and its benefit to surgical trainees. The aim of this review is to summarize the current standard of available open surgical simulators and to review the literature on the benefits of open surgical simulation. Open surgical simulators currently used include live animals, cadavers, bench models, virtual reality, and software-based computer simulators. In the current literature, there are 18 different studies (including 6 randomized controlled trials and 12 cohort studies) investigating the efficacy of open surgical simulation using live animal, bench, and cadaveric models in many surgical specialties including general, cardiac, trauma, vascular, urologic, and gynecologic surgery. The current open surgical simulation studies show, in general, a significant benefit of open surgical simulation in developing the surgical skills of surgical trainees. However, these studies have their limitations including a low number of participants, variable assessment standards, and a focus on short-term results often with no follow-up assessment. The skills needed for open surgical procedures are the essential basis that a surgical trainee needs to grasp before attempting more technical procedures such as laparoscopic procedures. In this current climate of medical practice with reduced hours of surgical exposure for trainees and where the patient's safety and outcome is key, open surgical simulation is a promising adjunct to modern surgical training, filling the void between surgeons being trained in a technique and a surgeon achieving fluency in that open surgical procedure. Better quality research is needed into the benefits of open surgical simulation, and this would hopefully stimulate further development of simulators with more accurate and objective assessment tools. © 2013 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  16. Voxel Datacubes for 3D Visualization in Blender

    NASA Astrophysics Data System (ADS)

    Gárate, Matías

    2017-05-01

    The growth of computational astrophysics and the complexity of multi-dimensional data sets evidences the need for new versatile visualization tools for both the analysis and presentation of the data. In this work, we show how to use the open-source software Blender as a three-dimensional (3D) visualization tool to study and visualize numerical simulation results, focusing on astrophysical hydrodynamic experiments. With a datacube as input, the software can generate a volume rendering of the 3D data, show the evolution of a simulation in time, and do a fly-around camera animation to highlight the points of interest. We explain the process to import simulation outputs into Blender using the voxel data format, and how to set up a visualization scene in the software interface. This method allows scientists to perform a complementary visual analysis of their data and display their results in an appealing way, both for outreach and science presentations.

  17. Visualizing the ground motions of the 1906 San Francisco earthquake

    USGS Publications Warehouse

    Chourasia, A.; Cutchin, S.; Aagaard, Brad T.

    2008-01-01

    With advances in computational capabilities and refinement of seismic wave-propagation models in the past decade large three-dimensional simulations of earthquake ground motion have become possible. The resulting datasets from these simulations are multivariate, temporal and multi-terabyte in size. Past visual representations of results from seismic studies have been largely confined to static two-dimensional maps. New visual representations provide scientists with alternate ways of viewing and interacting with these results potentially leading to new and significant insight into the physical phenomena. Visualizations can also be used for pedagogic and general dissemination purposes. We present a workflow for visual representation of the data from a ground motion simulation of the great 1906 San Francisco earthquake. We have employed state of the art animation tools for visualization of the ground motions with a high degree of accuracy and visual realism. ?? 2008 Elsevier Ltd.

  18. A review of simulation modelling approaches used for the spread of zoonotic influenza viruses in animal and human populations.

    PubMed

    Dorjee, S; Poljak, Z; Revie, C W; Bridgland, J; McNab, B; Leger, E; Sanchez, J

    2013-09-01

    Increasing incidences of emerging and re-emerging diseases that are mostly zoonotic (e.g. severe acute respiratory syndrome, avian influenza H5N1, pandemic influenza) has led to the need for a multidisciplinary approach to tackling these threats to public and animal health. Accordingly, a global movement of 'One-Health/One-Medicine' has been launched to foster collaborative efforts amongst animal and human health officials and researchers to address these problems. Historical evidence points to the fact that pandemics caused by influenza A viruses remain a major zoonotic threat to mankind. Recently, a range of mathematical and computer simulation modelling methods and tools have increasingly been applied to improve our understanding of disease transmission dynamics, contingency planning and to support policy decisions on disease outbreak management. This review provides an overview of methods, approaches and software used for modelling the spread of zoonotic influenza viruses in animals and humans, particularly those related to the animal-human interface. Modelling parameters used in these studies are summarized to provide references for future work. This review highlights the limited application of modelling research to influenza in animals and at the animal-human interface, in marked contrast to the large volume of its research in human populations. Although swine are widely recognized as a potential host for generating novel influenza viruses, and that some of these viruses, including pandemic influenza A/H1N1 2009, have been shown to be readily transmissible between humans and swine, only one study was found related to the modelling of influenza spread at the swine-human interface. Significant gaps in the knowledge of frequency of novel viral strains evolution in pigs, farm-level natural history of influenza infection, incidences of influenza transmission between farms and between swine and humans are clearly evident. Therefore, there is a need to direct additional research to the study of influenza transmission dynamics in animals and at the animal-human interface. © 2012 Blackwell Verlag GmbH.

  19. Computer-Generated, Three-Dimensional Character Animation.

    ERIC Educational Resources Information Center

    Van Baerle, Susan Lynn

    This master's thesis begins by discussing the differences between 3-D computer animation of solid three-dimensional, or monolithic, objects, and the animation of characters, i.e., collections of movable parts with soft pliable surfaces. Principles from two-dimensional character animation that can be transferred to three-dimensional character…

  20. The influence of anesthesia and fluid-structure interaction on simulated shear stress patterns in the carotid bifurcation of mice.

    PubMed

    De Wilde, David; Trachet, Bram; De Meyer, Guido; Segers, Patrick

    2016-09-06

    Low and oscillatory wall shear stresses (WSS) near aortic bifurcations have been linked to the onset of atherosclerosis. In previous work, we calculated detailed WSS patterns in the carotid bifurcation of mice using a Fluid-structure interaction (FSI) approach. We subsequently fed the animals a high-fat diet and linked the results of the FSI simulations to those of atherosclerotic plaque location on a within-subject basis. However, these simulations were based on boundary conditions measured under anesthesia, while active mice might experience different hemodynamics. Moreover, the FSI technique for mouse-specific simulations is both time- and labor-intensive, and might be replaced by simpler and easier Computational Fluid Dynamics (CFD) simulations. The goal of the current work was (i) to compare WSS patterns based on anesthesia conditions to those representing active resting and exercising conditions; and (ii) to compare WSS patterns based on FSI simulations to those based on steady-state and transient CFD simulations. For each of the 3 computational techniques (steady state CFD, transient CFD, FSI) we performed 5 simulations: 1 for anesthesia, 2 for conscious resting conditions and 2 more for conscious active conditions. The inflow, pressure and heart rate were scaled according to representative in vivo measurements obtained from literature. When normalized by the maximal shear stress value, shear stress patterns were similar for the 3 computational techniques. For all activity levels, steady state CFD led to an overestimation of WSS values, while FSI simulations yielded a clear increase in WSS reversal at the outer side of the sinus of the external carotid artery that was not visible in transient CFD-simulations. Furthermore, the FSI simulations in the highest locomotor activity state showed a flow recirculation zone in the external carotid artery that was not present under anesthesia. This recirculation went hand in hand with locally increased WSS reversal. Our data show that FSI simulations are not necessary to obtain normalized WSS patterns, but indispensable to assess the oscillatory behavior of the WSS in mice. Flow recirculation and WSS reversal at the external carotid artery may occur during high locomotor activity while they are not present under anesthesia. These phenomena might thus influence plaque formation to a larger extent than what was previously assumed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Reinforcement learning and decision making in monkeys during a competitive game.

    PubMed

    Lee, Daeyeol; Conroy, Michelle L; McGreevy, Benjamin P; Barraclough, Dominic J

    2004-12-01

    Animals living in a dynamic environment must adjust their decision-making strategies through experience. To gain insights into the neural basis of such adaptive decision-making processes, we trained monkeys to play a competitive game against a computer in an oculomotor free-choice task. The animal selected one of two visual targets in each trial and was rewarded only when it selected the same target as the computer opponent. To determine how the animal's decision-making strategy can be affected by the opponent's strategy, the computer opponent was programmed with three different algorithms that exploited different aspects of the animal's choice and reward history. When the computer selected its targets randomly with equal probabilities, animals selected one of the targets more often, violating the prediction of probability matching, and their choices were systematically influenced by the choice history of the two players. When the computer exploited only the animal's choice history but not its reward history, animal's choice became more independent of its own choice history but was still related to the choice history of the opponent. This bias was substantially reduced, but not completely eliminated, when the computer used the choice history of both players in making its predictions. These biases were consistent with the predictions of reinforcement learning, suggesting that the animals sought optimal decision-making strategies using reinforcement learning algorithms.

  2. The 'upstream wake' of swimming and flying animals and its correlation with propulsive efficiency.

    PubMed

    Peng, Jifeng; Dabiri, John O

    2008-08-01

    The interaction between swimming and flying animals and their fluid environments generates downstream wake structures such as vortices. In most studies, the upstream flow in front of the animal is neglected. In this study, we demonstrate the existence of upstream fluid structures even though the upstream flow is quiescent or possesses a uniform incoming velocity. Using a computational model, the flow generated by a swimmer (an oscillating flexible plate) is simulated and a new fluid mechanical analysis is applied to the flow to identify the upstream fluid structures. These upstream structures show the exact portion of fluid that is going to interact with the swimmer. A mass flow rate is then defined based on the upstream structures, and a metric for propulsive efficiency is established using the mass flow rate and the kinematics of the swimmer. We propose that the unsteady mass flow rate defined by the upstream fluid structures can be used as a metric to measure and objectively compare the efficiency of locomotion in water and air.

  3. Using Animation to Support the Teaching of Computer Game Development Techniques

    ERIC Educational Resources Information Center

    Taylor, Mark John; Pountney, David C.; Baskett, M.

    2008-01-01

    In this paper, we examine the potential use of animation for supporting the teaching of some of the mathematical concepts that underlie computer games development activities, such as vector and matrix algebra. An experiment was conducted with a group of UK undergraduate computing students to compare the perceived usefulness of animated and static…

  4. The Representation of Anatomical Structures through Computer Animation for Scientific, Educational and Artistic Applications.

    ERIC Educational Resources Information Center

    Stredney, Donald Larry

    An overview of computer animation and the techniques involved in its creation is provided in the introduction to this masters thesis, which focuses on the problems encountered by students in learning the forms and functions of complex anatomical structures and ways in which computer animation can address these problems. The objectives for,…

  5. An Assessment of the Impact of a Collaborative Didactic Approach and Students' Background in Teaching Computer Animation

    ERIC Educational Resources Information Center

    Sanna, Andrea; Valpreda, Fabrizio

    2017-01-01

    The purpose of this study was to compare different students' backgrounds and two different didactic methodologies to profitably teach computer animation in Italian schools of design and engineering. Teachers and instructors have long been engaged in discussions to define effective curricula for teaching computer animation. Various…

  6. How Does Viewing One Computer Animation Affect Students' Interpretations of Another Animation Depicting the Same Oxidation-Reduction Reaction?

    ERIC Educational Resources Information Center

    Rosenthal, Deborah P.; Sanger, Michael J.

    2013-01-01

    Two groups of students were shown unnarrated versions of two different particulate-level computer animations of varying complexity depicting the oxidation-reduction reaction of aqueous silver nitrate and solid copper metal; one group saw the more simplified animation first and the more complex animation second while the other group saw these…

  7. Dry coupling for whole-body small-animal photoacoustic computed tomography

    NASA Astrophysics Data System (ADS)

    Yeh, Chenghung; Li, Lei; Zhu, Liren; Xia, Jun; Li, Chiye; Chen, Wanyi; Garcia-Uribe, Alejandro; Maslov, Konstantin I.; Wang, Lihong V.

    2017-04-01

    We have enhanced photoacoustic computed tomography with dry acoustic coupling that eliminates water immersion anxiety and wrinkling of the animal and facilitates incorporating complementary modalities and procedures. The dry acoustic coupler is made of a tubular elastic membrane enclosed by a closed transparent water tank. The tubular membrane ensures water-free contact with the animal, and the closed water tank allows pressurization for animal stabilization. The dry coupler was tested using a whole-body small-animal ring-shaped photoacoustic computed tomography system. Dry coupling was found to provide image quality comparable to that of conventional water coupling.

  8. Model-Independent Phenotyping of C. elegans Locomotion Using Scale-Invariant Feature Transform

    PubMed Central

    Koren, Yelena; Sznitman, Raphael; Arratia, Paulo E.; Carls, Christopher; Krajacic, Predrag; Brown, André E. X.; Sznitman, Josué

    2015-01-01

    To uncover the genetic basis of behavioral traits in the model organism C. elegans, a common strategy is to study locomotion defects in mutants. Despite efforts to introduce (semi-)automated phenotyping strategies, current methods overwhelmingly depend on worm-specific features that must be hand-crafted and as such are not generalizable for phenotyping motility in other animal models. Hence, there is an ongoing need for robust algorithms that can automatically analyze and classify motility phenotypes quantitatively. To this end, we have developed a fully-automated approach to characterize C. elegans’ phenotypes that does not require the definition of nematode-specific features. Rather, we make use of the popular computer vision Scale-Invariant Feature Transform (SIFT) from which we construct histograms of commonly-observed SIFT features to represent nematode motility. We first evaluated our method on a synthetic dataset simulating a range of nematode crawling gaits. Next, we evaluated our algorithm on two distinct datasets of crawling C. elegans with mutants affecting neuromuscular structure and function. Not only is our algorithm able to detect differences between strains, results capture similarities in locomotory phenotypes that lead to clustering that is consistent with expectations based on genetic relationships. Our proposed approach generalizes directly and should be applicable to other animal models. Such applicability holds promise for computational ethology as more groups collect high-resolution image data of animal behavior. PMID:25816290

  9. From Lévy to Brownian: A Computational Model Based on Biological Fluctuation

    PubMed Central

    Nurzaman, Surya G.; Matsumoto, Yoshio; Nakamura, Yutaka; Shirai, Kazumichi; Koizumi, Satoshi; Ishiguro, Hiroshi

    2011-01-01

    Background Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. Methodology/Principal Findings We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. Conclusions/Significance Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior. PMID:21304911

  10. PTS performance by flight- and control-group macaques

    NASA Technical Reports Server (NTRS)

    Washburn, D. A.; Rumbaugh, D. M.; Richardson, W. K.; Gulledge, J. P.; Shlyk, G. G.; Vasilieva, O. N.

    2000-01-01

    A total of 25 young monkeys (Macaca mulatta) were trained with the Psychomotor Test System, a package of software tasks and computer hardware developed for spaceflight research with nonhuman primates. Two flight monkeys and two control monkeys were selected from this pool and performed a psychomotor task before and after the Bion 11 flight or a ground-control period. Monkeys from both groups showed significant disruption in performance after the 14-day flight or simulation (plus one anesthetized day of biopsies and other tests), and this disruption appeared to be magnified for the flight animal.

  11. Bias of animal population trend estimates

    USGS Publications Warehouse

    Geissler, P.H.; Link, W.A.; Wegman, E.J.; Gantz, D.T.; Miller, J.J.

    1988-01-01

    A computer simulation study of the population trend estimator used for the Mourning Dove Call-Count Survey, Woodcock Singing Ground Survey, Breeding Bird Survey and other surveys concluded that the estimator had negligible bias in most situations but that observer covariables should not be used with less than five years of data. With rare species (e.g. two birds per route), at least five years should be used. The estimator is seriously biased towards not detecting population changes with very rare species (e.g. 0.3 birds per route). Other technical recommendations are made.

  12. Estimation of tissue optical parameters with hyperspectral imaging and spectral unmixing

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Qin, Xulei; Wang, Dongsheng; Chen, Zhuo G.; Fei, Baowei

    2015-03-01

    Early detection of oral cancer and its curable precursors can improve patient survival and quality of life. Hyperspectral imaging (HSI) holds the potential for noninvasive early detection of oral cancer. The quantification of tissue chromophores by spectral unmixing of hyperspectral images could provide insights for evaluating cancer progression. In this study, non-negative matrix factorization has been applied for decomposing hyperspectral images into physiologically meaningful chromophore concentration maps. The approach has been validated by computer-simulated hyperspectral images and in vivo tumor hyperspectral images from a head and neck cancer animal model.

  13. Computer Simulation and Digital Resources for Plastic Surgery Psychomotor Education.

    PubMed

    Diaz-Siso, J Rodrigo; Plana, Natalie M; Stranix, John T; Cutting, Court B; McCarthy, Joseph G; Flores, Roberto L

    2016-10-01

    Contemporary plastic surgery residents are increasingly challenged to learn a greater number of complex surgical techniques within a limited period. Surgical simulation and digital education resources have the potential to address some limitations of the traditional training model, and have been shown to accelerate knowledge and skills acquisition. Although animal, cadaver, and bench models are widely used for skills and procedure-specific training, digital simulation has not been fully embraced within plastic surgery. Digital educational resources may play a future role in a multistage strategy for skills and procedures training. The authors present two virtual surgical simulators addressing procedural cognition for cleft repair and craniofacial surgery. Furthermore, the authors describe how partnerships among surgical educators, industry, and philanthropy can be a successful strategy for the development and maintenance of digital simulators and educational resources relevant to plastic surgery training. It is our responsibility as surgical educators not only to create these resources, but to demonstrate their utility for enhanced trainee knowledge and technical skills development. Currently available digital resources should be evaluated in partnership with plastic surgery educational societies to guide trainees and practitioners toward effective digital content.

  14. Preclinical evaluation of implantable cardioverter-defibrillator developed for magnetic resonance imaging use.

    PubMed

    Gold, Michael R; Kanal, Emanuel; Schwitter, Juerg; Sommer, Torsten; Yoon, Hyun; Ellingson, Michael; Landborg, Lynn; Bratten, Tara

    2015-03-01

    Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5 V and 1.0 V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI. Copyright © 2015 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  15. Computational Fluid Dynamics of Developing Avian Outflow Tract Heart Valves

    PubMed Central

    Bharadwaj, Koonal N.; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C.; Butcher, Jonathan T.

    2012-01-01

    Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16 to 30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm2 at HH16 to 671.24 dynes/cm2 at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm2 at HH16 to 136.50 dynes/cm2 at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research. PMID:22535311

  16. Turbomachinery computational fluid dynamics: asymptotes and paradigm shifts.

    PubMed

    Dawes, W N

    2007-10-15

    This paper reviews the development of computational fluid dynamics (CFD) specifically for turbomachinery simulations and with a particular focus on application to problems with complex geometry. The review is structured by considering this development as a series of paradigm shifts, followed by asymptotes. The original S1-S2 blade-blade-throughflow model is briefly described, followed by the development of two-dimensional then three-dimensional blade-blade analysis. This in turn evolved from inviscid to viscous analysis and then from steady to unsteady flow simulations. This development trajectory led over a surprisingly small number of years to an accepted approach-a 'CFD orthodoxy'. A very important current area of intense interest and activity in turbomachinery simulation is in accounting for real geometry effects, not just in the secondary air and turbine cooling systems but also associated with the primary path. The requirements here are threefold: capturing and representing these geometries in a computer model; making rapid design changes to these complex geometries; and managing the very large associated computational models on PC clusters. Accordingly, the challenges in the application of the current CFD orthodoxy to complex geometries are described in some detail. The main aim of this paper is to argue that the current CFD orthodoxy is on a new asymptote and is not in fact suited for application to complex geometries and that a paradigm shift must be sought. In particular, the new paradigm must be geometry centric and inherently parallel without serial bottlenecks. The main contribution of this paper is to describe such a potential paradigm shift, inspired by the animation industry, based on a fundamental shift in perspective from explicit to implicit geometry and then illustrate this with a number of applications to turbomachinery.

  17. In Vitro Simulation and Validation of the Circulation with Congenital Heart Defects

    PubMed Central

    Figliola, Richard S.; Giardini, Alessandro; Conover, Tim; Camp, Tiffany A.; Biglino, Giovanni; Chiulli, John; Hsia, Tain-Yen

    2010-01-01

    Despite the recent advances in computational modeling, experimental simulation of the circulation with congenital heart defect using mock flow circuits remains an important tool for device testing, and for detailing the probable flow consequences resulting from surgical and interventional corrections. Validated mock circuits can be applied to qualify the results from novel computational models. New mathematical tools, coupled with advanced clinical imaging methods, allow for improved assessment of experimental circuit performance relative to human function, as well as the potential for patient-specific adaptation. In this review, we address the development of three in vitro mock circuits specific for studies of congenital heart defects. Performance of an in vitro right heart circulation circuit through a series of verification and validation exercises is described, including correlations with animal studies, and quantifying the effects of circuit inertiance on test results. We present our experience in the design of mock circuits suitable for investigations of the characteristics of the Fontan circulation. We use one such mock circuit to evaluate the accuracy of Doppler predictions in the presence of aortic coarctation. PMID:21218147

  18. Building Synthetic Sterols Computationally – Unlocking the Secrets of Evolution?

    PubMed Central

    Róg, Tomasz; Pöyry, Sanja; Vattulainen, Ilpo

    2015-01-01

    Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, its fluorescent analogs in studies of cholesterol transport in cells and tissues, etc. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols non-existent in nature can be used to elucidate the roles of cholesterol’s structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments. PMID:26347865

  19. A computational method for analysis of underwater dolphin kick hydrodynamics in human swimming.

    PubMed

    von Loebbecke, Alfred; Mittal, Rajat; Mark, Russell; Hahn, James

    2009-03-01

    We present a new method that combines the use of laser body scans, underwater video footage, software-based animation, and a fully unsteady computational fluid dynamics technique to simulate and examine the hydrodynamics of the dolphin kick. The focus of the current work is to model this particular stroke in all its complexity with minimal ad-hoc assumptions or simplifications. Simulations of one female and one male swimmer (both at about 1.7 m beneath the water surface) at velocities of 0.95 and 1.31 m/s and Strouhal numbers of 1.21 and 1.06 respectively are presented. Vorticity and fluid velocity profiles in the wake are examined in detail for both swimmers. A three-dimensional vortex ring is clearly identified in the wake for one of the cases and a two-dimensional slice through the ring corroborates previous experiments of Miwa et al. (2006). We also find that most of the thrust is produced by the feet and in both cases the down-kick produces much larger thrust than the up-kick.

  20. Blood Flow: Multi-scale Modeling and Visualization (July 2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2011-01-01

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations. This animation presents early results of two studies used in the development of a multi-scale visualization methodology. The fisrt illustrates a flow of healthy (red) and diseased (blue) blood cells with a Dissipative Particle Dynamics (DPD) method. Each bloodmore » cell is represented by a mesh, small spheres show a sub-set of particles representing the blood plasma, while instantaneous streamlines and slices represent the ensemble average velocity. In the second we investigate the process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of an aneruysm. Simulation was performed on Kraken at the National Institute for Computational Sciences. Visualization was produced using resources of the Argonne Leadership Computing Facility at Argonne National Laboratory.« less

  1. Comparison of gray-scale contrast-enhanced ultrasonography with contrast-enhanced computed tomography in different grading of blunt hepatic and splenic trauma: an animal experiment.

    PubMed

    Tang, Jie; Li, Wenxiu; Lv, Faqin; Zhang, Huiqin; Zhang, Lihai; Wang, Yuexiang; Li, Junlai; Yang, Li

    2009-04-01

    To compare the diagnostic value of contrast-enhanced ultrasonography (CEUS) with contrast-enhanced computed tomography (CECT) for the detection of different grading of solid organ injuries in blunt abdominal trauma in animals. A self-made miniature tools were used as models to simulate a blunt hepatic or splenic trauma in 16 and 14 anesthetized dogs, respectively. Baseline ultrasound, CEUS and CECT were used to detect traumatic injuries of livers and spleens. The degree of injuries was determined by CEUS according to the American Association for the Surgery of Trauma (AAST) scale and the results compared with injury scale based on CECT evaluation. CEUS showed 22 hepatic injury sites in 16 animals and 17 splenic injury sites in other 14 animals. According to AAST scale, 2 grade I, 4 grade II, 3 grade III, 5 grade IV and 2 grade V hepatic lesions were present in 16 animals; 2 grade I, 4 grade II, 6 grade III and 2 grade IV splenic lesions in 14 animals. On CECT scan, 21 hepatic and 17 splenic injuries were demonstrated. According to Becker CT scaling for hepatic injury, 1 grade I, 2 grade II, 4 grade III, 5 grade IV and 2 grade V hepatic injuries were present. On the basis of Buntain spleen scaling, 2 grade I, 5 grade II, 5 grade III, 2 grade IV splenic injuries were showed. After Spearman rank correlation analysis, the agreement of CEUS with CECT on the degree of hepatic and splenic injury is 93.3% and 92.9%, respectively. CT is currently considered as the reference method for grading blunt abdominal trauma, according to experiment results, CEUS grading showed high levels of concordance with CECT. CEUS can accurately determine the degree of injury and will play an important role in clinical application.

  2. Virtual reality in radiology: virtual intervention

    NASA Astrophysics Data System (ADS)

    Harreld, Michael R.; Valentino, Daniel J.; Duckwiler, Gary R.; Lufkin, Robert B.; Karplus, Walter J.

    1995-04-01

    Intracranial aneurysms are the primary cause of non-traumatic subarachnoid hemorrhage. Morbidity and mortality remain high even with current endovascular intervention techniques. It is presently impossible to identify which aneurysms will grow and rupture, however hemodynamics are thought to play an important role in aneurysm development. With this in mind, we have simulated blood flow in laboratory animals using three dimensional computational fluid dynamics software. The data output from these simulations is three dimensional, complex and transient. Visualization of 3D flow structures with standard 2D display is cumbersome, and may be better performed using a virtual reality system. We are developing a VR-based system for visualization of the computed blood flow and stress fields. This paper presents the progress to date and future plans for our clinical VR-based intervention simulator. The ultimate goal is to develop a software system that will be able to accurately model an aneurysm detected on clinical angiography, visualize this model in virtual reality, predict its future behavior, and give insight into the type of treatment necessary. An associated database will give historical and outcome information on prior aneurysms (including dynamic, structural, and categorical data) that will be matched to any current case, and assist in treatment planning (e.g., natural history vs. treatment risk, surgical vs. endovascular treatment risks, cure prediction, complication rates).

  3. Abnormal motor patterns in the framework of the equilibrium-point hypothesis: a cause for dystonic movements?

    PubMed

    Latash, M L; Gutman, S R

    1994-01-01

    Until now, the equilibrium-point hypothesis (lambda model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed.

  4. Image processing methods used to simulate flight over remotely sensed data

    NASA Technical Reports Server (NTRS)

    Mortensen, H. B.; Hussey, K. J.; Mortensen, R. A.

    1988-01-01

    It has been demonstrated that image processing techniques can provide an effective means of simulating flight over remotely sensed data (Hussey et al. 1986). This paper explains the methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery. The preprocessing techniques used on the input data, the selection of the animation sequence, the generation of the animation frames, and the recording of the animation is covered. The software used for all steps is discussed.

  5. Human motion planning based on recursive dynamics and optimal control techniques

    NASA Technical Reports Server (NTRS)

    Lo, Janzen; Huang, Gang; Metaxas, Dimitris

    2002-01-01

    This paper presents an efficient optimal control and recursive dynamics-based computer animation system for simulating and controlling the motion of articulated figures. A quasi-Newton nonlinear programming technique (super-linear convergence) is implemented to solve minimum torque-based human motion-planning problems. The explicit analytical gradients needed in the dynamics are derived using a matrix exponential formulation and Lie algebra. Cubic spline functions are used to make the search space for an optimal solution finite. Based on our formulations, our method is well conditioned and robust, in addition to being computationally efficient. To better illustrate the efficiency of our method, we present results of natural looking and physically correct human motions for a variety of human motion tasks involving open and closed loop kinematic chains.

  6. A computer vision for animal ecology.

    PubMed

    Weinstein, Ben G

    2018-05-01

    A central goal of animal ecology is to observe species in the natural world. The cost and challenge of data collection often limit the breadth and scope of ecological study. Ecologists often use image capture to bolster data collection in time and space. However, the ability to process these images remains a bottleneck. Computer vision can greatly increase the efficiency, repeatability and accuracy of image review. Computer vision uses image features, such as colour, shape and texture to infer image content. I provide a brief primer on ecological computer vision to outline its goals, tools and applications to animal ecology. I reviewed 187 existing applications of computer vision and divided articles into ecological description, counting and identity tasks. I discuss recommendations for enhancing the collaboration between ecologists and computer scientists and highlight areas for future growth of automated image analysis. © 2017 The Author. Journal of Animal Ecology © 2017 British Ecological Society.

  7. EM-ANIMATE: A Computer Program for Displaying and Animating Electromagnetic Near-Field and Surface-Current Solutions: Video Supplement to NASA Technical Memorandum 4539

    NASA Technical Reports Server (NTRS)

    Hom, Kam W.

    1994-01-01

    In this video, several examples of electromagnetic field and surface-current animation sequences are shown to demonstrate the visualization capabilities of the EM-ANIMATE computer program. These examples show the animation of total and scattered electric near fields from test bodies of a flat plate, a corner reflector, and a sphere. These test cases show the electric-field behavior caused by different scattering mechanisms through the animation of electromagnetic data from the EM-ANIMATE routine.

  8. A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: development and validation.

    PubMed

    Smith, Jordan Ned; Hinderliter, Paul M; Timchalk, Charles; Bartels, Michael J; Poet, Torka S

    2014-08-01

    Sensitivity to some chemicals in animals and humans are known to vary with age. Age-related changes in sensitivity to chlorpyrifos have been reported in animal models. A life-stage physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model was developed to predict disposition of chlorpyrifos and its metabolites, chlorpyrifos-oxon (the ultimate toxicant) and 3,5,6-trichloro-2-pyridinol (TCPy), as well as B-esterase inhibition by chlorpyrifos-oxon in humans. In this model, previously measured age-dependent metabolism of chlorpyrifos and chlorpyrifos-oxon were integrated into age-related descriptions of human anatomy and physiology. The life-stage PBPK/PD model was calibrated and tested against controlled adult human exposure studies. Simulations suggest age-dependent pharmacokinetics and response may exist. At oral doses ⩾0.6mg/kg of chlorpyrifos (100- to 1000-fold higher than environmental exposure levels), 6months old children are predicted to have higher levels of chlorpyrifos-oxon in blood and higher levels of red blood cell cholinesterase inhibition compared to adults from equivalent doses. At lower doses more relevant to environmental exposures, simulations predict that adults will have slightly higher levels of chlorpyrifos-oxon in blood and greater cholinesterase inhibition. This model provides a computational framework for age-comparative simulations that can be utilized to predict chlorpyrifos disposition and biological response over various postnatal life stages. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Mechanisms of social avoidance learning can explain the emergence of adaptive and arbitrary behavioral traditions in humans.

    PubMed

    Lindström, Björn; Olsson, Andreas

    2015-06-01

    Many nonhuman animals preferentially copy the actions of others when the environment contains predation risk or other types of danger. In humans, the role of social learning in avoidance of danger is still unknown, despite the fundamental importance of social learning for complex social behaviors. Critically, many social behaviors, such as cooperation and adherence to religious taboos, are maintained by threat of punishment. However, the psychological mechanisms allowing threat of punishment to generate such behaviors, even when actual punishment is rare or absent, are largely unknown. To address this, we used both computer simulations and behavioral experiments. First, we constructed a model where simulated agents interacted under threat of punishment and showed that mechanisms' (a) tendency to copy the actions of others through social learning, together with (b) the rewarding properties of avoiding a threatening punishment, could explain the emergence, maintenance, and transmission of large-scale behavioral traditions, both when punishment is common and when it is rare or nonexistent. To provide empirical support for our model, including the 2 mechanisms, we conducted 4 experiments, showing that humans, if threatened with punishment, are exceptionally prone to copy and transmit the behavior observed in others. Our results show that humans, similar to many nonhuman animals, use social learning if the environment is perceived as dangerous. We provide a novel psychological and computational basis for a range of human behaviors characterized by the threat of punishment, such as the adherence to cultural norms and religious taboos. (c) 2015 APA, all rights reserved).

  10. Emergent Properties of Patch Shapes Affect Edge Permeability to Animals

    PubMed Central

    Nams, Vilis O.

    2011-01-01

    Animal travel between habitat patches affects populations, communities and ecosystems. There are three levels of organization of edge properties, and each of these can affect animals. At the lowest level are the different habitats on each side of an edge, then there is the edge itself, and finally, at the highest level of organization, is the geometry or structure of the edge. This study used computer simulations to (1) find out whether effects of edge shapes on animal behavior can arise as emergent properties solely due to reactions to edges in general, without the animals reacting to the shapes of the edges, and to (2) generate predictions to allow field and experimental studies to test mechanisms of edge shape response. Individual animals were modeled traveling inside a habitat patch that had different kinds of edge shapes (convex, concave and straight). When animals responded edges of patches, this created an emergent property of responding to the shape of the edge. The response was mostly to absolute width of the shapes, and not the narrowness of them. When animals were attracted to edges, then they tended to collect in convexities and disperse from concavities, and the opposite happened when animals avoided edges. Most of the responses occurred within a distance of 40% of the perceptual range from the tip of the shapes. Predictions were produced for directionality at various locations and combinations of treatments, to be used for testing edge behavior mechanisms. These results suggest that edge shapes tend to either concentrate or disperse animals, simply because the animals are either attracted to or avoid edges, with an effect as great as 3 times the normal density. Thus edge shape could affect processes like pollination, seed predation and dispersal and predator abundance. PMID:21747965

  11. Infectious disease transmission and contact networks in wildlife and livestock.

    PubMed

    Craft, Meggan E

    2015-05-26

    The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Infectious disease transmission and contact networks in wildlife and livestock

    PubMed Central

    Craft, Meggan E.

    2015-01-01

    The use of social and contact networks to answer basic and applied questions about infectious disease transmission in wildlife and livestock is receiving increased attention. Through social network analysis, we understand that wild animal and livestock populations, including farmed fish and poultry, often have a heterogeneous contact structure owing to social structure or trade networks. Network modelling is a flexible tool used to capture the heterogeneous contacts of a population in order to test hypotheses about the mechanisms of disease transmission, simulate and predict disease spread, and test disease control strategies. This review highlights how to use animal contact data, including social networks, for network modelling, and emphasizes that researchers should have a pathogen of interest in mind before collecting or using contact data. This paper describes the rising popularity of network approaches for understanding transmission dynamics in wild animal and livestock populations; discusses the common mismatch between contact networks as measured in animal behaviour and relevant parasites to match those networks; and highlights knowledge gaps in how to collect and analyse contact data. Opportunities for the future include increased attention to experiments, pathogen genetic markers and novel computational tools. PMID:25870393

  13. Individual Pause-and-Go Motion Is Instrumental to the Formation and Maintenance of Swarms of Marching Locust Nymphs

    PubMed Central

    Ariel, Gil; Ophir, Yotam; Levi, Sagi; Ben-Jacob, Eshel; Ayali, Amir

    2014-01-01

    The principal interactions leading to the emergence of order in swarms of marching locust nymphs was studied both experimentally, using small groups of marching locusts in the lab, and using computer simulations. We utilized a custom tracking algorithm to reveal fundamental animal-animal interactions leading to collective motion. Uncovering this behavior introduced a new agent-based modeling approach in which pause-and-go motion is pivotal. The behavioral and modeling findings are largely based on motion-related visual sensory inputs obtained by the individual locust. Results suggest a generic principle, in which intermittent animal motion can be considered as a sequence of individual decisions as animals repeatedly reassess their situation and decide whether or not to swarm. This interpretation implies, among other things, some generic characteristics regarding the build-up and emergence of collective order in swarms: in particular, that order and disorder are generic meta-stable states of the system, suggesting that the emergence of order is kinetic and does not necessarily require external environmental changes. This work calls for further experimental as well as theoretical investigation of the neural mechanisms underlying locust coordinative behavior. PMID:24988464

  14. A theoretical and computational framework for mechanics of the cortex

    NASA Astrophysics Data System (ADS)

    Torres-SáNchez, Alejandro; Arroyo, Marino

    The cell cortex is a thin network of actin filaments lying beneath the cell surface of animal cells. Myosin motors exert contractile forces in this network leading to active stresses, which play a key role in processes such as cytokinesis or cell migration. Thus, understanding the mechanics of the cortex is fundamental to understand the mechanics of animal cells. Due to the dynamic remodeling of the actin network, the cortex behaves as a viscoelastic fluid. Furthermore, due to the difference between its thickness (tens of nanometers) and its dimensions (tens of microns), the cortex can be regarded a surface. Thus, we can model the cortex as a viscoelastic fluid, confined to a surface, that generates active stresses. Interestingly, geometric confinement results in the coupling between shape generation and material flows. In this work we present a theoretical framework to model the mechanics of the cortex that couples elasticity, hydrodynamics and force generation. We complement our theoretical description with a computational setting to simulate the resulting non-linear equations. We use this methodology to understand different processes such as asymmetric cell division or experimental probing of the rheology of the cortex We acknowledge the support of the Europen Research Council through Grant ERC CoG-681434.

  15. Systems Approach to Understanding Electromechanical Activity in the Human Heart

    PubMed Central

    Rudy, Yoram; Ackerman, Michael J.; Bers, Donald M.; Clancy, Colleen E.; Houser, Steven R.; London, Barry; McCulloch, Andrew D.; Przywara, Dennis A.; Rasmusson, Randall L.; Solaro, R. John; Trayanova, Natalia A.; Van Wagoner, David R.; Varró, András; Weiss, James N.; Lathrop, David A.

    2010-01-01

    The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of cardiologists, cardiac electrophysiologists, cell biophysicists, and computational modelers on August 20 and 21, 2007, in Washington, DC, to advise the NHLBI on new research directions needed to develop integrative approaches to elucidate human cardiac function. The workshop strove to identify limitations in the use of data from nonhuman animal species for elucidation of human electromechanical function/activity and to identify what specific information on ion channel kinetics, calcium handling, and dynamic changes in the intracellular/extracellular milieu is needed from human cardiac tissues to develop more robust computational models of human cardiac electromechanical activity. This article summarizes the workshop discussions and recommendations on the following topics: (1) limitations of animal models and differences from human electrophysiology, (2) modeling ion channel structure/function in the context of whole-cell electrophysiology, (3) excitation–contraction coupling and regulatory pathways, (4) whole-heart simulations of human electromechanical activity, and (5) what human data are currently needed and how to obtain them. The recommendations can be found on the NHLBI Web site at http://www.nhlbi.nih.gov/meetings/workshops/electro.htm. PMID:18779456

  16. Presentation Extensions of the SOAP

    NASA Technical Reports Server (NTRS)

    Carnright, Robert; Stodden, David; Coggi, John

    2009-01-01

    A set of extensions of the Satellite Orbit Analysis Program (SOAP) enables simultaneous and/or sequential presentation of information from multiple sources. SOAP is used in the aerospace community as a means of collaborative visualization and analysis of data on planned spacecraft missions. The following definitions of terms also describe the display modalities of SOAP as now extended: In SOAP terminology, View signifies an animated three-dimensional (3D) scene, two-dimensional still image, plot of numerical data, or any other visible display derived from a computational simulation or other data source; a) "Viewport" signifies a rectangular portion of a computer-display window containing a view; b) "Palette" signifies a collection of one or more viewports configured for simultaneous (split-screen) display in the same window; c) "Slide" signifies a palette with a beginning and ending time and an animation time step; and d) "Presentation" signifies a prescribed sequence of slides. For example, multiple 3D views from different locations can be crafted for simultaneous display and combined with numerical plots and other representations of data for both qualitative and quantitative analysis. The resulting sets of views can be temporally sequenced to convey visual impressions of a sequence of events for a planned mission.

  17. A high-quality high-fidelity visualization of the September 11 attack on the World Trade Center.

    PubMed

    Rosen, Paul; Popescu, Voicu; Hoffmann, Christoph; Irfanoglu, Ayhan

    2008-01-01

    In this application paper, we describe the efforts of a multidisciplinary team towards producing a visualization of the September 11 Attack on the North Tower of New York's World Trade Center. The visualization was designed to meet two requirements. First, the visualization had to depict the impact with high fidelity, by closely following the laws of physics. Second, the visualization had to be eloquent to a nonexpert user. This was achieved by first designing and computing a finite-element analysis (FEA) simulation of the impact between the aircraft and the top 20 stories of the building, and then by visualizing the FEA results with a state-of-the-art commercial animation system. The visualization was enabled by an automatic translator that converts the simulation data into an animation system 3D scene. We built upon a previously developed translator. The translator was substantially extended to enable and control visualization of fire and of disintegrating elements, to better scale with the number of nodes and number of states, to handle beam elements with complex profiles, and to handle smoothed particle hydrodynamics liquid representation. The resulting translator is a powerful automatic and scalable tool for high-quality visualization of FEA results.

  18. SimGen: A General Simulation Method for Large Systems.

    PubMed

    Taylor, William R

    2017-02-03

    SimGen is a stand-alone computer program that reads a script of commands to represent complex macromolecules, including proteins and nucleic acids, in a structural hierarchy that can then be viewed using an integral graphical viewer or animated through a high-level application programming interface in C++. Structural levels in the hierarchy range from α-carbon or phosphate backbones through secondary structure to domains, molecules, and multimers with each level represented in an identical data structure that can be manipulated using the application programming interface. Unlike most coarse-grained simulation approaches, the higher-level objects represented in SimGen can be soft, allowing the lower-level objects that they contain to interact directly. The default motion simulated by SimGen is a Brownian-like diffusion that can be set to occur across all levels of representation in the hierarchy. Links can also be defined between objects, which, when combined with large high-level random movements, result in an effective search strategy for constraint satisfaction, including structure prediction from predicted pairwise distances. The implementation of SimGen makes use of the hierarchic data structure to avoid unnecessary calculation, especially for collision detection, allowing it to be simultaneously run and viewed on a laptop computer while simulating large systems of over 20,000 objects. It has been used previously to model complex molecular interactions including the motion of a myosin-V dimer "walking" on an actin fibre, RNA stem-loop packing, and the simulation of cell motion and aggregation. Several extensions to this original functionality are described. Copyright © 2016 The Francis Crick Institute. Published by Elsevier Ltd.. All rights reserved.

  19. Dynamic simulation and preliminary finite element analysis of gunshot wounds to the human mandible.

    PubMed

    Tang, Zhen; Tu, Wenbing; Zhang, Gang; Chen, Yubin; Lei, Tao; Tan, Yinghui

    2012-05-01

    Due to the complications arising from gunshot wounds to the maxillofacial region, traditional models of gunshot wounds cannot meet our research needs. In this study, we established a finite element model and conducted preliminary simulation and analysis to determine the injury mechanism and degree of damage for gunshot wounds to the human mandible. Based on a previously developed modelling method that used animal experiments and internal parameters, digital computed tomography data for the human mandible were used to establish a three-dimensional finite element model of the human mandible. The mechanism by which a gunshot injures the mandible was dynamically simulated under different shot conditions. First, the residual velocities of the shootings using different projectiles at varying entry angles and impact velocities were calculated. Second, the energy losses of the projectiles and the rates of energy loss after exiting the mandible were calculated. Finally, the data were compared and analysed. The dynamic processes involved in gunshot wounds to the human mandible were successfully simulated using two projectiles, three impact velocities, and three entry angles. The stress distributions in different parts of mandible after injury were also simulated. Based on the computation and analysis of the modelling data, we found that the injury severity of the mandible and the injury efficiency of the projectiles differ under different injury conditions. The finite element model has many advantages for the analysis of ballistic wounds, and is expected to become an improved model for studying maxillofacial gunshot wounds. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. FLEXAN (version 2.0) user's guide

    NASA Technical Reports Server (NTRS)

    Stallcup, Scott S.

    1989-01-01

    The FLEXAN (Flexible Animation) computer program, Version 2.0 is described. FLEXAN animates 3-D wireframe structural dynamics on the Evans and Sutherland PS300 graphics workstation with a VAX/VMS host computer. Animation options include: unconstrained vibrational modes, mode time histories (multiple modes), delta time histories (modal and/or nonmodal deformations), color time histories (elements of the structure change colors through time), and rotational time histories (parts of the structure rotate through time). Concurrent color, mode, delta, and rotation, time history animations are supported. FLEXAN does not model structures or calculate the dynamics of structures; it only animates data from other computer programs. FLEXAN was developed to aid in the study of the structural dynamics of spacecraft.

  1. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors

    NASA Astrophysics Data System (ADS)

    Allen, John M.; Elbasiouny, Sherif M.

    2018-06-01

    Objective. Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. Approach. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Main results. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Significance. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  2. The effects of model composition design choices on high-fidelity simulations of motoneuron recruitment and firing behaviors.

    PubMed

    Allen, John M; Elbasiouny, Sherif M

    2018-06-01

    Computational models often require tradeoffs, such as balancing detail with efficiency; yet optimal balance should incorporate sound design features that do not bias the results of the specific scientific question under investigation. The present study examines how model design choices impact simulation results. We developed a rigorously-validated high-fidelity computational model of the spinal motoneuron pool to study three long-standing model design practices which have yet to be examined for their impact on motoneuron recruitment, firing rate, and force simulations. The practices examined were the use of: (1) generic cell models to simulate different motoneuron types, (2) discrete property ranges for different motoneuron types, and (3) biological homogeneity of cell properties within motoneuron types. Our results show that each of these practices accentuates conditions of motoneuron recruitment based on the size principle, and minimizes conditions of mixed and reversed recruitment orders, which have been observed in animal and human recordings. Specifically, strict motoneuron orderly size recruitment occurs, but in a compressed range, after which mixed and reverse motoneuron recruitment occurs due to the overlap in electrical properties of different motoneuron types. Additionally, these practices underestimate the motoneuron firing rates and force data simulated by existing models. Our results indicate that current modeling practices increase conditions of motoneuron recruitment based on the size principle, and decrease conditions of mixed and reversed recruitment order, which, in turn, impacts the predictions made by existing models on motoneuron recruitment, firing rate, and force. Additionally, mixed and reverse motoneuron recruitment generated higher muscle force than orderly size motoneuron recruitment in these simulations and represents one potential scheme to increase muscle efficiency. The examined model design practices, as well as the present results, are applicable to neuronal modeling throughout the nervous system.

  3. The advanced role of computational mechanics and visualization in science and technology: analysis of the Germanwings Flight 9525 crash

    NASA Astrophysics Data System (ADS)

    Chen, Goong; Wang, Yi-Ching; Perronnet, Alain; Gu, Cong; Yao, Pengfei; Bin-Mohsin, Bandar; Hajaiej, Hichem; Scully, Marlan O.

    2017-03-01

    Computational mathematics, physics and engineering form a major constituent of modern computational science, which now stands on an equal footing with the established branches of theoretical and experimental sciences. Computational mechanics solves problems in science and engineering based upon mathematical modeling and computing, bypassing the need for expensive and time-consuming laboratory setups and experimental measurements. Furthermore, it allows the numerical simulations of large scale systems, such as the formation of galaxies that could not be done in any earth bound laboratories. This article is written as part of the 21st Century Frontiers Series to illustrate some state-of-the-art computational science. We emphasize how to do numerical modeling and visualization in the study of a contemporary event, the pulverizing crash of the Germanwings Flight 9525 on March 24, 2015, as a showcase. Such numerical modeling and the ensuing simulation of aircraft crashes into land or mountain are complex tasks as they involve both theoretical study and supercomputing of a complex physical system. The most tragic type of crash involves ‘pulverization’ such as the one suffered by this Germanwings flight. Here, we show pulverizing airliner crashes by visualization through video animations from supercomputer applications of the numerical modeling tool LS-DYNA. A sound validation process is challenging but essential for any sophisticated calculations. We achieve this by validation against the experimental data from a crash test done in 1993 of an F4 Phantom II fighter jet into a wall. We have developed a method by hybridizing two primary methods: finite element analysis and smoothed particle hydrodynamics. This hybrid method also enhances visualization by showing a ‘debris cloud’. Based on our supercomputer simulations and the visualization, we point out that prior works on this topic based on ‘hollow interior’ modeling can be quite problematic and, thus, not likely to be correct. We discuss the effects of terrain on pulverization using the information from the recovered flight-data-recorder and show our forensics and assessments of what may have happened during the final moments of the crash. Finally, we point out that our study has potential for being made into real-time flight crash simulators to help the study of crashworthiness and survivability for future aviation safety. Some forward-looking statements are also made.

  4. Visualization Tools for Teaching Computer Security

    ERIC Educational Resources Information Center

    Yuan, Xiaohong; Vega, Percy; Qadah, Yaseen; Archer, Ricky; Yu, Huiming; Xu, Jinsheng

    2010-01-01

    Using animated visualization tools has been an important teaching approach in computer science education. We have developed three visualization and animation tools that demonstrate various information security concepts and actively engage learners. The information security concepts illustrated include: packet sniffer and related computer network…

  5. Pre- and postprocessing for reservoir simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, W.L.; Ingalls, L.J.; Prasad, S.J.

    1991-05-01

    This paper describes the functionality and underlying programing paradigms of Shell's simulator-related reservoir-engineering graphics system. THis system includes the simulation postprocessing programs Reservoir Display System (RDS) and Fast Reservoir Engineering Displays (FRED), a hypertext-like on-line documentation system (DOC), and a simulator input preprocessor (SIMPLSIM). RDS creates displays of reservoir simulation results. These displays represent the areal or cross-section distribution of computer reservoir parameters, such as pressure, phase saturation, or temperature. Generation of these images at real-time animation rates is discussed. FRED facilitates the creation of plot files from reservoir simulation output. The use of dynamic memory allocation, asynchronous I/O, amore » table-driven screen manager, and mixed-language (FORTRAN and C) programming are detailed. DOC is used to create and access on-line documentation for the pre-and post-processing programs and the reservoir simulators. DOC can be run by itself or can be accessed from within any other graphics or nongraphics application program. DOC includes a text editor, which is that basis for a reservoir simulation tutorial and greatly simplifies the preparation of simulator input. The use of sharable images, graphics, and the documentation file network are described. Finally, SIMPLSIM is a suite of program that uses interactive graphics in the preparation of reservoir description data for input into reservoir simulators. The SIMPLSIM user-interface manager (UIM) and its graphic interface for reservoir description are discussed.« less

  6. Computer-based simulation training to improve learning outcomes in mannequin-based simulation exercises.

    PubMed

    Curtin, Lindsay B; Finn, Laura A; Czosnowski, Quinn A; Whitman, Craig B; Cawley, Michael J

    2011-08-10

    To assess the impact of computer-based simulation on the achievement of student learning outcomes during mannequin-based simulation. Participants were randomly assigned to rapid response teams of 5-6 students and then teams were randomly assigned to either a group that completed either computer-based or mannequin-based simulation cases first. In both simulations, students used their critical thinking skills and selected interventions independent of facilitator input. A predetermined rubric was used to record and assess students' performance in the mannequin-based simulations. Feedback and student performance scores were generated by the software in the computer-based simulations. More of the teams in the group that completed the computer-based simulation before completing the mannequin-based simulation achieved the primary outcome for the exercise, which was survival of the simulated patient (41.2% vs. 5.6%). The majority of students (>90%) recommended the continuation of simulation exercises in the course. Students in both groups felt the computer-based simulation should be completed prior to the mannequin-based simulation. The use of computer-based simulation prior to mannequin-based simulation improved the achievement of learning goals and outcomes. In addition to improving participants' skills, completing the computer-based simulation first may improve participants' confidence during the more real-life setting achieved in the mannequin-based simulation.

  7. A deterministic computer simulation model of life-cycle lamb and wool production.

    PubMed

    Wang, C T; Dickerson, G E

    1991-11-01

    A deterministic mathematical computer model was developed to simulate effects on life-cycle efficiency of lamb and wool production from genetic improvement of performance traits under alternative management systems. Genetic input parameters can be varied for age at puberty, length of anestrus, fertility, precocity of fertility, number born, milk yield, mortality, growth rate, body fat, and wool growth. Management options include mating systems, lambing intervals, feeding levels, creep feeding, weaning age, marketing age or weight, and culling policy. Simulated growth of animals is linear from birth to inflection point, then slows asymptotically to specified mature empty BW and fat content when nutrition is not limiting. The ME intake requirement to maintain normal condition is calculated daily or weekly for maintenance, protein and fat deposition, wool growth, gestation, and lactation. Simulated feed intake is the minimum of availability, DM physical limit, or ME physiological limit. Tissue catabolism occurs when intake is below the requirement for essential functions. Mortality increases when BW is depressed. Equations developed for calculations of biological functions were validated with published and unpublished experimental data. Lifetime totals are accumulated for TDN, DM, and protein intake and for market lamb equivalent output values of empty body or carcass lean and wool from both lambs and ewes. These measures of efficiency for combinations of genetic, management, and marketing variables can provide the relative economic weighting of traits needed to derive optimal criteria for genetic selection among and within breeds under defined industry production systems.

  8. Computerized approaches to enhance understanding of organic reaction mechanisms: CAN reaction mechanisms and CPLEX prelaboratory methodology

    NASA Astrophysics Data System (ADS)

    Al-Shammari, Abdulrahman G. Alhamzani

    2008-10-01

    Two approaches to enhance the understanding of organic reaction mechanisms are described. First, a new method for teaching organic reaction mechanisms that can be used in a Computer-Assisted Instruction (CAI) environment is proposed and tested (Chapter 1). The method concentrates upon the important intermediate structures, which are assumed to be on the reaction coordinate, and which can be evaluated and graded by currently available computer techniques. At the same time, the "curved arrows" that show the electron flow in a reaction mechanism are neglected, since they cannot be evaluated and graded with currently available computer techniques. By allowing student practice for learning organic reaction mechanisms using the Curved Arrow Neglect (CAN) method within a "Practice Makes Perfect" CAI method, student performance in the drawing of traditional reaction mechanisms, in which students had to include the "curved arrows" on their written classroom exams, was significantly enhanced. Second, computerized prelaboratory experiments (CPLEX) for organic chemistry laboratory 1 & 2 courses have been created, used, and evaluated (Chapters 2 and 3). These computerized prelabs are unique because they combine both "dry lab" actions with detailed animations of the actual chemistry occurring at the molecular level. The "dry lab" serves to simulate the actual physical manipulations of equipment and chemicals that occur in the laboratory experiment through the use of drag-and-drop computer technology. At the same time, these physical actions are accompanied on a separate part of the computer screen by animations showing the chemistry at the molecular level that is occurring in the experiment. These CPLEX modules were made into Internet accessible modules. The students were allowed to access the CPLEX modules prior to performing the actual laboratory experiment. A detailed evaluation of students' perception of the modules was accomplished via survey methodology during the entire implementation process over the course of three semesters. Results of the survey data indicate that students thought that they better understood the chemical principles and procedures of the laboratory experiment. Interestingly, students prefer the CPLEX prelaboratory materials, compared to the traditional textbooks, by a wide margin (Chapter 2). The utility of CPLEX was further demonstrated by enabling a study of the effectiveness of animated reaction mechanisms to promote student learning. While most instructors believe that animated mechanisms aid student understanding of reactions, there has been no quantitative data to-date to support this view. In this work, a quantitative study, using an experimental/control group study, was conducted to provide data on the effectiveness of animated reaction mechanisms to promote student learning. Analysis of student answers, using an appropriate rubric, demonstrated that there was a statistically significant improvement in students' scores in the mechanistic question of a pre-laboratory quiz in the post-treatment results of the experimental group which had had access to the animated reaction mechanisms (Chapter 3).

  9. MOAB: a spatially explicit, individual-based expert system for creating animal foraging models

    USGS Publications Warehouse

    Carter, J.; Finn, John T.

    1999-01-01

    We describe the development, structure, and corroboration process of a simulation model of animal behavior (MOAB). MOAB can create spatially explicit, individual-based animal foraging models. Users can create or replicate heterogeneous landscape patterns, and place resources and individual animals of a goven species on that landscape to simultaneously simulate the foraging behavior of multiple species. The heuristic rules for animal behavior are maintained in a user-modifiable expert system. MOAB can be used to explore hypotheses concerning the influence of landscape patttern on animal movement and foraging behavior. A red fox (Vulpes vulpes L.) foraging and nest predation model was created to test MOAB's capabilities. Foxes were simulated for 30-day periods using both expert system and random movement rules. Home range size, territory formation and other available simulation studies. A striped skunk (Mephitis mephitis L.) model also was developed. The expert system model proved superior to stochastic in respect to territory formation, general movement patterns and home range size.

  10. Quantum simulator review

    NASA Astrophysics Data System (ADS)

    Bednar, Earl; Drager, Steven L.

    2007-04-01

    Quantum information processing's objective is to utilize revolutionary computing capability based on harnessing the paradigm shift offered by quantum computing to solve classically hard and computationally challenging problems. Some of our computationally challenging problems of interest include: the capability for rapid image processing, rapid optimization of logistics, protecting information, secure distributed simulation, and massively parallel computation. Currently, one important problem with quantum information processing is that the implementation of quantum computers is difficult to realize due to poor scalability and great presence of errors. Therefore, we have supported the development of Quantum eXpress and QuIDD Pro, two quantum computer simulators running on classical computers for the development and testing of new quantum algorithms and processes. This paper examines the different methods used by these two quantum computing simulators. It reviews both simulators, highlighting each simulators background, interface, and special features. It also demonstrates the implementation of current quantum algorithms on each simulator. It concludes with summary comments on both simulators.

  11. Virtual Reality Modelling Simulation of the Re-entry Motion of an Axialsymmetric Vehicle

    NASA Astrophysics Data System (ADS)

    Guidi, A.; Chu, Q.. P.; Mulder, J. A.

    This work started during the stability analysis of the Delft Aerospace Re-entry Test demonstrator (DART) which is a small axisymmetric ballistic re-entry vehicle. The dynamic stability evaluation of an axisymmetric re-entry vehicle is especially concerned on the behaviour of its angle of attack during the flight through the atmosphere. The variation in the angle of attack is essential for prediction of the trajectory of the vehicle and for heating requirement of the structure of the vehicle. The concept of the total angle of attack and the windward meridian plane are introduced. The position of the centre of pressure can be a crucial point in the stability of the vehicle. Although the simpleness of an axisymmetric shape, the re-entry of such a vehicle is characterised by several complex phenomenologies that were analysed with the aid of the flight simulator and of a 3D virtual reality modeling simulator. Simulations were performed with a 25° AOA initial condition in order to simulate the response of the vehicle to a disturbance that may occur during the flight causing a variation in attitude from its Trim . Certain aspects of re-entry vehicle motion are conveniently described in the terms of Euler angles. Using the Eulerian angle it is possible to generate a tridimensional animation of the output of the Flight Simulator. This tridimensional analysis is of great importance in order to understand the mentioned complex motions. Furthermore with growing in computer power it is possible to generate online visualisation of the simulations. The output of the flight simulator was used in a software written in Virtual Reality Modelling Language (VRML). With VRML this software was possible the visualisation of the re-entry motion of the vehicle. With this option the animation can run on-line during the with the flight simulator and can be also easily published on the internet or send to other users in very small file size. (the VRLM simulation of the re-entry, can be seen at the official DART internet site: www.dart-project.com)

  12. The Use of Audio and Animation in Computer Based Instruction.

    ERIC Educational Resources Information Center

    Koroghlanian, Carol; Klein, James D.

    This study investigated the effects of audio, animation, and spatial ability in a computer-based instructional program for biology. The program presented instructional material via test or audio with lean text and included eight instructional sequences presented either via static illustrations or animations. High school students enrolled in a…

  13. Realization of masticatory movement by 3-dimensional simulation of the temporomandibular joint and the masticatory muscles.

    PubMed

    Park, Jong-Tae; Lee, Jae-Gi; Won, Sung-Yoon; Lee, Sang-Hee; Cha, Jung-Yul; Kim, Hee-Jin

    2013-07-01

    Masticatory muscles are closely involved in mastication, pronunciation, and swallowing, and it is therefore important to study the specific functions and dynamics of the mandibular and masticatory muscles. However, the shortness of muscle fibers and the diversity of movement directions make it difficult to study and simplify the dynamics of mastication. The purpose of this study was to use 3-dimensional (3D) simulation to observe the functions and movements of each of the masticatory muscles and the mandible while chewing. To simulate the masticatory movement, computed tomographic images were taken from a single Korean volunteer (30-year-old man), and skull image data were reconstructed in 3D (Mimics; Materialise, Leuven, Belgium). The 3D-reconstructed masticatory muscles were then attached to the 3D skull model. The masticatory movements were animated using Maya (Autodesk, San Rafael, CA) based on the mandibular motion path. During unilateral chewing, the mandible was found to move laterally toward the functional side by contracting the contralateral lateral pterygoid and ipsilateral temporalis muscles. During the initial mouth opening, only hinge movement was observed at the temporomandibular joint. During this period, the entire mandible rotated approximately 13 degrees toward the bicondylar horizontal plane. Continued movement of the mandible to full mouth opening occurred simultaneously with sliding and hinge movements, and the mandible rotated approximately 17 degrees toward the center of the mandibular ramus. The described approach can yield data for use in face animation and other simulation systems and for elucidating the functional components related to contraction and relaxation of muscles during mastication.

  14. Research on facial expression simulation based on depth image

    NASA Astrophysics Data System (ADS)

    Ding, Sha-sha; Duan, Jin; Zhao, Yi-wu; Xiao, Bo; Wang, Hao

    2017-11-01

    Nowadays, face expression simulation is widely used in film and television special effects, human-computer interaction and many other fields. Facial expression is captured by the device of Kinect camera .The method of AAM algorithm based on statistical information is employed to detect and track faces. The 2D regression algorithm is applied to align the feature points. Among them, facial feature points are detected automatically and 3D cartoon model feature points are signed artificially. The aligned feature points are mapped by keyframe techniques. In order to improve the animation effect, Non-feature points are interpolated based on empirical models. Under the constraint of Bézier curves we finish the mapping and interpolation. Thus the feature points on the cartoon face model can be driven if the facial expression varies. In this way the purpose of cartoon face expression simulation in real-time is came ture. The experiment result shows that the method proposed in this text can accurately simulate the facial expression. Finally, our method is compared with the previous method. Actual data prove that the implementation efficiency is greatly improved by our method.

  15. Literacity: A multimedia adult literacy package combining NASA technology, recursive ID theory, and authentic instruction theory

    NASA Technical Reports Server (NTRS)

    Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob

    1994-01-01

    An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'

  16. Lava Flow Simulation for the Disaster Area of the Volcano Eruption

    NASA Astrophysics Data System (ADS)

    Ishikawa, Tomoya; Muranaka, Noriaki; Ishida, Tkahiro; Hashimoto, Junichi; Tokumaru, Msataka; Imanishi, Shigeru

    Japan is the eminent volcanic country in the world, and Suwanose-jima in Kagoshima and Mt. Asama in Gunma are puffing out smoke vigorously at present. In the past, the large-scale eruptions occurred in Sakura-jima and Unzen-Fugendake, and 10 percent of the energy in the earthquake and the volcano eruption of the whole earth is released in Japan. Therefore the prediction for the flow area of lava is very important. Then, we try to develop the simulation system which predicts the flow area of lava and the people want to use it at their homes. Because of this, our system must be able to use on a PC becoming popular in the present time. Our simulation technique can reduce the computing time using the simple way without considering the viscosity dynamics and so on. Also this system can show the simulation result with the three dimensional image and the animation using OpenGL. The user can view the area of the lava flow from the various angles, and we think that this is useful for the improvement of their conscience for the disaster prevention.

  17. New NASA 3D Animation Shows Seven Days of Simulated Earth Weather

    NASA Image and Video Library

    2014-08-11

    This visualization shows early test renderings of a global computational model of Earth's atmosphere based on data from NASA's Goddard Earth Observing System Model, Version 5 (GEOS-5). This particular run, called Nature Run 2, was run on a supercomputer, spanned 2 years of simulation time at 30 minute intervals, and produced Petabytes of output. The visualization spans a little more than 7 days of simulation time which is 354 time steps. The time period was chosen because a simulated category-4 typhoon developed off the coast of China. The 7 day period is repeated several times during the course of the visualization. Credit: NASA's Scientific Visualization Studio Read more or download here: svs.gsfc.nasa.gov/goto?4180 NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  18. SimLife a new model of simulation using a pulsated revascularized and reventilated cadaver for surgical education.

    PubMed

    Delpech, P O; Danion, J; Oriot, D; Richer, J P; Breque, C; Faure, J P

    2017-02-01

    Alike becoming a pilot requires competences, acquisition of technical skills is essential to become a surgeon. Halsted's theory on surgical education "See one, do one, and teach one" is not currently compatible with the reality of socio-economic constraints of the operating room, the patient's safety demand and the reduction of residents' work hours. In all countries, this brings mandatory to simulation education for surgery resident's training. Many models are available: video trainers or pelvi-trainers, computed simulator, animal models or human cadaver… Human cadaveric dissection has long been used to teach surgical anatomy. Surgery on human cadaveric model brings greatest accuracy to the haptic characteristics of surgical procedures. Learning in an appropriate and realistic simulation context increases the level of acquisition of the residents' skills and reduces stress and anxiety when performing real procedures. We present a technique of perfusion and ventilation of a fresh human cadaver that restores pulsatile circulation and respiratory movements of the model. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.

    PubMed

    Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J

    2017-01-01

    To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.

  20. QSAR Methods.

    PubMed

    Gini, Giuseppina

    2016-01-01

    In this chapter, we introduce the basis of computational chemistry and discuss how computational methods have been extended to some biological properties and toxicology, in particular. Since about 20 years, chemical experimentation is more and more replaced by modeling and virtual experimentation, using a large core of mathematics, chemistry, physics, and algorithms. Then we see how animal experiments, aimed at providing a standardized result about a biological property, can be mimicked by new in silico methods. Our emphasis here is on toxicology and on predicting properties through chemical structures. Two main streams of such models are available: models that consider the whole molecular structure to predict a value, namely QSAR (Quantitative Structure Activity Relationships), and models that find relevant substructures to predict a class, namely SAR. The term in silico discovery is applied to chemical design, to computational toxicology, and to drug discovery. We discuss how the experimental practice in biological science is moving more and more toward modeling and simulation. Such virtual experiments confirm hypotheses, provide data for regulation, and help in designing new chemicals.

  1. Automatic inference of multicellular regulatory networks using informative priors.

    PubMed

    Sun, Xiaoyun; Hong, Pengyu

    2009-01-01

    To fully understand the mechanisms governing animal development, computational models and algorithms are needed to enable quantitative studies of the underlying regulatory networks. We developed a mathematical model based on dynamic Bayesian networks to model multicellular regulatory networks that govern cell differentiation processes. A machine-learning method was developed to automatically infer such a model from heterogeneous data. We show that the model inference procedure can be greatly improved by incorporating interaction data across species. The proposed approach was applied to C. elegans vulval induction to reconstruct a model capable of simulating C. elegans vulval induction under 73 different genetic conditions.

  2. Space Age Training

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Teledyne Brown developed a computer-based interactive multimedia training system for use with the Crystal Growth Furnace in the U.S. Microgravity Laboratory-2 mission on the Space Shuttle. Teledyne Brown commercialized the system and customized it for PPG Industries Aircraft Products. The system challenges learners with role-playing scenarios and software-driven simulations engaging all the senses using text, video, animation, voice, sounds and music. The transfer of this technology to commercial industrial process training has resulted in significant improvements in effectiveness, standardization, and quality control, as well as cost reductions over the usual classroom and on-the- job training approaches.

  3. Nature's crucible: Manufacturing optical nonlinearities for high resolution, high sensitivity encoding in the compound eye of the fly, Musca domestica

    NASA Technical Reports Server (NTRS)

    Wilcox, Mike

    1993-01-01

    The number of pixels per unit area sampling an image determines Nyquist resolution. Therefore, the highest pixel density is the goal. Unfortunately, as reduction in pixel size approaches the wavelength of light, sensitivity is lost and noise increases. Animals face the same problems and have achieved novel solutions. Emulating these solutions offers potentially unlimited sensitivity with detector size approaching the diffraction limit. Once an image is 'captured', cellular preprocessing of information allows extraction of high resolution information from the scene. Computer simulation of this system promises hyperacuity for machine vision.

  4. Three-dimensional temporomandibular joint modeling and animation.

    PubMed

    Cascone, Piero; Rinaldi, Fabrizio; Pagnoni, Mario; Marianetti, Tito Matteo; Tedaldi, Massimiliano

    2008-11-01

    The three-dimensional (3D) temporomandibular joint (TMJ) model derives from a study of the cranium by 3D virtual reality and mandibular function animation. The starting point of the project is high-fidelity digital acquisition of a human dry skull. The cooperation between the maxillofacial surgeon and the cartoonist enables the reconstruction of the fibroconnective components of the TMJ that are the keystone for comprehension of the anatomic and functional features of the mandible. The skeletal model is customized with the apposition of the temporomandibular ligament, the articular disk, the retrodiskal tissue, and the medial and the lateral ligament of the disk. The simulation of TMJ movement is the result of the integration of up-to-date data on the biomechanical restrictions. The 3D TMJ model is an easy-to-use application that may be run on a personal computer for the study of the TMJ and its biomechanics.

  5. Comparison of self-efficacy and its improvement after artificial simulator or live animal model emergency procedure training.

    PubMed

    Hall, Andrew B; Riojas, Ramon; Sharon, Danny

    2014-03-01

    The objective of this study is to compare post-training self-efficacy between artificial simulators and live animal training for the performance of emergency medical procedures. Volunteer airmen of the 81st Medical Group, without prior medical procedure training, were randomly assigned to two experimental arms consisting of identical lectures and training of diagnostic peritoneal lavage, thoracostomy (chest tube), and cricothyroidotomy on either the TraumaMan (Simulab Corp., Seattle, Washington) artificial simulator or a live pig (Sus scrofa domestica) model. Volunteers were given a postlecture and postskills training assessment of self-efficacy. Twenty-seven volunteers that initially performed artificial simulator training subsequently underwent live animal training and provided assessments comparing both modalities. The results were first, postskills training self-efficacy scores were significantly higher than postlecture scores for either training mode and for all procedures (p < 0.0001). Second, post-training self-efficacy scores were not statistically different between live animal and artificial simulator training for diagnostic peritoneal lavage (p = 0.555), chest tube (p = 0.486), and cricothyroidotomy (p = 0.329). Finally, volunteers undergoing both training modalities indicated preference for live animal training (p < 0.0001). We conclude that artificial simulator and live animal training produce equivalent levels of self-efficacy after initial training, but there is a preference in using a live animal model to achieve those skills. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.

  6. Virtual- and real-world operation of mobile robotic manipulators: integrated simulation, visualization, and control environment

    NASA Astrophysics Data System (ADS)

    Chen, ChuXin; Trivedi, Mohan M.

    1992-03-01

    This research is focused on enhancing the overall productivity of an integrated human-robot system. A simulation, animation, visualization, and interactive control (SAVIC) environment has been developed for the design and operation of an integrated robotic manipulator system. This unique system possesses the abilities for multisensor simulation, kinematics and locomotion animation, dynamic motion and manipulation animation, transformation between real and virtual modes within the same graphics system, ease in exchanging software modules and hardware devices between real and virtual world operations, and interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation, and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.

  7. New concept of a submillimetric pixellated Silicon detector for intracerebral application

    NASA Astrophysics Data System (ADS)

    Benoit, M.; Märk, J.; Weiss, P.; Benoit, D.; Clemens, J. C.; Fougeron, D.; Janvier, B.; Jevaud, M.; Karkar, S.; Menouni, M.; Pain, F.; Pinot, L.; Morel, C.; Laniece, P.

    2011-12-01

    A new beta+ radiosensitive microprobe implantable in rodent brain dedicated to in vivo and autonomous measurements of local time activity curves of beta radiotracers in a volume of brain tissue of a few mm3 has been developed recently. This project expands the concept of the previously designed beta microprobe, which has been validated extensively in neurobiological experiments performed on anesthetized animals. Due to its limitations considering recordings on awake and freely moving animals, we have proposed to develop a wireless setup that can be worn by an animal without constraining its movements. To that aim, we have chosen a highly beta sensitive Silicon-based detector to devise a compact pixellated probe. Miniaturized wireless electronics is used to read-out and transfer the measurement data. Initial Monte-Carlo simulations showed that high resistive Silicon pixels are appropriate for this purpose, with their dimensions to be adapted to our specific signals. More precisely, we demonstrated that 200 μm thick pixels with an area of 200 μm×500 μm are optimized in terms of beta+sensitivity versus relative transparency to the gamma background. Based on this theoretical study, we now present the development of the novel sensor, including the system simulations with technology computer-assisted design (TCAD) to investigate specific configurations of guard rings and their potential to increase the electrical isolation and stabilization of the pixel, as well as the corresponding physical tests to validate the particular geometries of this new sensor.

  8. Toward Quantitative Small Animal Pinhole SPECT: Assessment of Quantitation Accuracy Prior to Image Compensations

    PubMed Central

    Chen, Chia-Lin; Wang, Yuchuan; Lee, Jason J. S.; Tsui, Benjamin M. W.

    2011-01-01

    Purpose We assessed the quantitation accuracy of small animal pinhole single photon emission computed tomography (SPECT) under the current preclinical settings, where image compensations are not routinely applied. Procedures The effects of several common image-degrading factors and imaging parameters on quantitation accuracy were evaluated using Monte-Carlo simulation methods. Typical preclinical imaging configurations were modeled, and quantitative analyses were performed based on image reconstructions without compensating for attenuation, scatter, and limited system resolution. Results Using mouse-sized phantom studies as examples, attenuation effects alone degraded quantitation accuracy by up to −18% (Tc-99m or In-111) or −41% (I-125). The inclusion of scatter effects changed the above numbers to −12% (Tc-99m or In-111) and −21% (I-125), respectively, indicating the significance of scatter in quantitative I-125 imaging. Region-of-interest (ROI) definitions have greater impacts on regional quantitation accuracy for small sphere sources as compared to attenuation and scatter effects. For the same ROI, SPECT acquisitions using pinhole apertures of different sizes could significantly affect the outcome, whereas the use of different radii-of-rotation yielded negligible differences in quantitation accuracy for the imaging configurations simulated. Conclusions We have systematically quantified the influence of several factors affecting the quantitation accuracy of small animal pinhole SPECT. In order to consistently achieve accurate quantitation within 5% of the truth, comprehensive image compensation methods are needed. PMID:19048346

  9. Performance of a contact textile-based light diffuser for photodynamic therapy.

    PubMed

    Khan, Tania; Unternährer, Merthan; Buchholz, Julia; Kaser-Hotz, Barbara; Selm, Bärbel; Rothmaier, Markus; Walt, Heinrich

    2006-03-01

    Medical textiles offer a unique contact opportunity that could provide value-added comfort, reliability, and safety for light or laser-based applications. We investigated a luminous textile diffuser for use in photodynamic therapy. Textile diffusers are produced by an embroidery process. Plastic optical fibers are bent and sewn into textile to release light by macrobending. A reflective backing is incorporated to improve surface homogeneity, intensity, and safety. Clonogenic assay (MCF-7 cells) and trypan blue exclusion (NuTu19 cells) tests were performed in vitro using 0.1μg/ml m-THPC with three textile diffusers and a standard front lens diffuser. Heating effects were studied in solution and on human skin. PDT application in vivo was performed with the textile diffuser on equine sarcoids (three animals, 50mW/cm(2), 10-20J) and eight research animals. Lastly, computer simulations were performed to see how the textile diffuser might work on a curved object. At low fluency rate, there is a trend for the textile diffuser to have lower survival rates than the front lens diffuser for both cell lines. The textile diffuser was observed to retain more heat over a long period (>1min). All animals tolerated the treatments well and showed similar initial reactions. The simulations showed a likely focusing effect in a curved geometry. The initial feasibility and application using a textile-based optical diffuser has been demonstrated. Possibilities that provide additional practical advantages of the textile diffuser are discussed.

  10. Actions for productivity improvement in crew training

    NASA Technical Reports Server (NTRS)

    Miller, G. E.

    1985-01-01

    Improvement of the productivity of astronaut crew instructors in the Space Shuttle program and beyond is proposed. It is suggested that instructor certification plans should be established to shorten the time required for trainers to develop their skills and improve their ability to convey those skills. Members of the training cadre should be thoroughly cross trained in their task. This provides better understanding of the overall task and greater flexibility in instructor utilization. Improved facility access will give instructors the benefit of practical application experience. Former crews should be integrated into the training of upcoming crews to bridge some of the gap between simulated conditions and the real world. The information contained in lengthy and complex training manuals can be presented more clearly and efficiently as computer lessons. The illustration, animation and interactive capabilities of the computer combine an effective means of explanation.

  11. Toward Intraoperative Image-Guided Transoral Robotic Surgery

    PubMed Central

    Liu, Wen P.; Reaugamornrat, Sureerat; Deguet, Anton; Sorger, Jonathan M.; Siewerdsen, Jeffrey H.; Richmon, Jeremy; Taylor, Russell H.

    2014-01-01

    This paper presents the development and evaluation of video augmentation on the stereoscopic da Vinci S system with intraoperative image guidance for base of tongue tumor resection in transoral robotic surgery (TORS). Proposed workflow for image-guided TORS begins by identifying and segmenting critical oropharyngeal structures (e.g., the tumor and adjacent arteries and nerves) from preoperative computed tomography (CT) and/or magnetic resonance (MR) imaging. These preoperative planned data can be deformably registered to the intraoperative endoscopic view using mobile C-arm cone-beam computed tomography (CBCT) [1, 2]. Augmentation of TORS endoscopic video defining surgical targets and critical structures has the potential to improve navigation, spatial orientation, and confidence in tumor resection. Experiments in animal specimens achieved statistically significant improvement in target localization error when comparing the proposed image guidance system to simulated current practice. PMID:25525474

  12. Animation of Site of Seasonal Flows in Hale Crater, Mars

    NASA Image and Video Library

    2015-09-28

    This frame from an animation simulates a fly-around look at one of the places on Mars where dark streaks advance down slopes during warm seasons, possibly involving liquid water. The streaks are roughly the length of a football field. The imaging and topographical information used in this false-color animation come from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter. These dark features on the slopes are called "recurring slope lineae" or RSL. Planetary scientists using observations with the Compact Reconnaissance Imaging Spectrometer on the same orbiter detected hydrated salts on these slopes at Hale Crater, corroborating the hypothesis that the streaks are formed by briny liquid water. The image was produced by first creating a 3-D computer model (a digital terrain map) of the area based on stereo information from two HiRISE observations, and then draping a false-color image over the land-shape model. The vertical dimension is exaggerated by a factor of 1.5 compared to horizontal dimensions. http://photojournal.jpl.nasa.gov/catalog/PIA19919

  13. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 2: swell forecasting

    NASA Astrophysics Data System (ADS)

    Whitford, Dennis J.

    2002-05-01

    This paper, the second of a two-part series, introduces undergraduate students to ocean wave forecasting using interactive computer-generated visualization and animation. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Fortunately, the introduction of computers in the geosciences provides a tool for addressing this problem. Computer-generated visualization and animation, accompanied by oral explanation, have been shown to be a pedagogical improvement to more traditional methods of instruction. Cartographic science and other disciplines using geographical information systems have been especially aggressive in pioneering the use of visualization and animation, whereas oceanography has not. This paper will focus on the teaching of ocean swell wave forecasting, often considered a difficult oceanographic topic due to the mathematics and physics required, as well as its interdependence on time and space. Several MATLAB ® software programs are described and offered to visualize and animate group speed, frequency dispersion, angular dispersion, propagation, and wave height forecasting of deep water ocean swell waves. Teachers may use these interactive visualizations and animations without requiring an extensive background in computer programming.

  14. Development and validation of an improved mechanical thorax for simulating cardiopulmonary resuscitation with adjustable chest stiffness and simulated blood flow.

    PubMed

    Eichhorn, Stefan; Spindler, Johannes; Polski, Marcin; Mendoza, Alejandro; Schreiber, Ulrich; Heller, Michael; Deutsch, Marcus Andre; Braun, Christian; Lange, Rüdiger; Krane, Markus

    2017-05-01

    Investigations of compressive frequency, duty cycle, or waveform during CPR are typically rooted in animal research or computer simulations. Our goal was to generate a mechanical model incorporating alternate stiffness settings and an integrated blood flow system, enabling defined, reproducible comparisons of CPR efficacy. Based on thoracic stiffness data measured in human cadavers, such a model was constructed using valve-controlled pneumatic pistons and an artificial heart. This model offers two realistic levels of chest elasticity, with a blood flow apparatus that reflects compressive depth and waveform changes. We conducted CPR at opposing levels of physiologic stiffness, using a LUCAS device, a motor-driven plunger, and a group of volunteers. In high-stiffness mode, blood flow generated by volunteers was significantly less after just 2min of CPR, whereas flow generated by LUCAS device was superior by comparison. Optimal blood flow was obtained via motor-driven plunger, with trapezoidal waveform. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  15. A Neuro-Musculo-Skeletal Model for Insects With Data-driven Optimization.

    PubMed

    Guo, Shihui; Lin, Juncong; Wöhrl, Toni; Liao, Minghong

    2018-02-01

    Simulating the locomotion of insects is beneficial to many areas such as experimental biology, computer animation and robotics. This work proposes a neuro-musculo-skeletal model, which integrates the biological inspirations from real insects and reproduces the gait pattern on virtual insects. The neural system is a network of spiking neurons, whose spiking patterns are controlled by the input currents. The spiking pattern provides a uniform representation of sensory information, high-level commands and control strategy. The muscle models are designed following the characteristic Hill-type muscle with customized force-length and force-velocity relationships. The model parameters, including both the neural and muscular components, are optimized via an approach of evolutionary optimization, with the data captured from real insects. The results show that the simulated gait pattern, including joint trajectories, matches the experimental data collected from real ants walking in the free mode. The simulated character is capable of moving at different directions and traversing uneven terrains.

  16. Data representation for joint kinematics simulation of the lower limb within an educational context.

    PubMed

    Van Sint Jan, Serge; Hilal, Isam; Salvia, Patrick; Sholukha, Victor; Poulet, Pascal; Kirokoya, Ibrahim; Rooze, Marcel

    2003-04-01

    Three-dimensional (3D) visualization is becoming increasingly frequent in both qualitative and quantitative biomechanical studies of anatomical structures involving multiple data sources (e.g. morphological data and kinematics data). For many years, this kind of experiment was limited to the use of bi-dimensional images due to a lack of accurate 3D data. However, recent progress in medical imaging and computer graphics has forged new perspectives. Indeed, new techniques allow the development of an interactive interface for the simulation of human motions combining data from both medical imaging (i.e., morphology) and biomechanical studies (i.e., kinematics). Fields of application include medical education, biomechanical research and clinical research. This paper presents an experimental protocol for the development of anatomically realistic joint simulation within a pedagogical context. Results are shown for the lower limb. Extension to other joints is straightforward. This work is part of the Virtual Animation of the Kinematics of the Human project (VAKHUM) (http://www.ulb.ac.be/project/vakhum).

  17. Fluid Dynamics of Underwater Flight in Sea Butterflies: Insights from Computational Modeling

    NASA Astrophysics Data System (ADS)

    Zhou, Zhuoyu; Mittal, Rajat; Yen, Jeannette; Webster, Donald

    2014-11-01

    Sea butterflies such as Limacine helicina swim by flapping their wing-like parapodia, in a stroke that exhibits a clap-and-fling type kinematics as well as a strong interaction between the parapodia and the body of the animal at the end of downstroke. We used numerical simulations based on videogrammetric data to examine the fluid dynamics and force generation associated with this swimming motion. The unsteady lift-generating mechanism of clap-and-fling results in a sawtooth trajectory with a characteristic ``wobble'' in pitch. We employ coupled flow-body-dynamics simulations to model the free-swimming motion of the organism and explore the efficiency of propulsion as well the factors such as shell weight, that affect its sawtooth swimming trajectory. This work is funded by NSF Grant 1246317 from the Division of Polar Programs.

  18. Method for CFD Simulation of Propellant Slosh in a Spherical Tank

    NASA Technical Reports Server (NTRS)

    Benson, David J.; Mason, Paul A.

    2011-01-01

    Propellant sloshing can impart unwanted disturbances to spacecraft, especially if the spacecraft controller is driving the system at the slosh frequency. This paper describes the work performed by the authors in simulating propellant slosh in a spherical tank using computational fluid dynamics (CFD). ANSYS-CFX is the CFD package used to perform the analysis. A 42 in spherical tank is studied with various fill fractions. Results are provided for the forces on the walls and the frequency of the slosh. Snapshots of slosh animation give a qualitative understanding of the propellant slosh. The results show that maximum slosh forces occur at a tank fill fraction of 0.4 and 0.6 due to the amount of mass participating in the slosh and the room available for sloshing to occur. The slosh frequency increases as the tank fill fraction increases.

  19. Virtual reality and 3D animation in forensic visualization.

    PubMed

    Ma, Minhua; Zheng, Huiru; Lallie, Harjinder

    2010-09-01

    Computer-generated three-dimensional (3D) animation is an ideal media to accurately visualize crime or accident scenes to the viewers and in the courtrooms. Based upon factual data, forensic animations can reproduce the scene and demonstrate the activity at various points in time. The use of computer animation techniques to reconstruct crime scenes is beginning to replace the traditional illustrations, photographs, and verbal descriptions, and is becoming popular in today's forensics. This article integrates work in the areas of 3D graphics, computer vision, motion tracking, natural language processing, and forensic computing, to investigate the state-of-the-art in forensic visualization. It identifies and reviews areas where new applications of 3D digital technologies and artificial intelligence could be used to enhance particular phases of forensic visualization to create 3D models and animations automatically and quickly. Having discussed the relationships between major crime types and level-of-detail in corresponding forensic animations, we recognized that high level-of-detail animation involving human characters, which is appropriate for many major crime types but has had limited use in courtrooms, could be useful for crime investigation. © 2010 American Academy of Forensic Sciences.

  20. A breakthrough for experiencing and understanding simulated physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1988-01-01

    The use of computer simulation in physics research is discussed, focusing on improvements to graphic workstations. Simulation capabilities and applications of enhanced visualization tools are outlined. The elements of an ideal computer simulation are presented and the potential for improving various simulation elements is examined. The interface between the human and the computer and simulation models are considered. Recommendations are made for changes in computer simulation practices and applications of simulation technology in education.

  1. Quest for Cavities: A Hole-istic Simulation Game.

    ERIC Educational Resources Information Center

    Stabb, Mark

    1990-01-01

    Describes adaptation of children's Musical Chairs game, illustrating different animals'"quest for cavities." Game uses role play to simulate wildlife "cavity excavators" and secondary-user animals that compete for nesting holes. Classifies 44 animals according to nesting practice and gives hole sizes for 25. Promotes ecology, conservation studies.…

  2. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust behaviors. In addition, I introduce a temporal smoothing technique to eliminate the jagged effect caused by large simulation time. Several algorithms are used to speed up the simulation. For example, pre-calculated tables and display lists are created to replace some of the most commonly used functions, scripts and processes. The performance study shows that both time and space costs of the algorithms are linear in the number of particles in the system. On a Silicon Graphics Octane, three vehicles with 20,000 particles run at 6-8 frames per second on average. This speed does not include the extra calculations of convergence of the numerical integration for fluid dynamics which usually takes about 4-5 minutes to achieve steady state.

  3. An Approach to Effortless Construction of Program Animations

    ERIC Educational Resources Information Center

    Velazquez-Iturbide, J. Angel; Pareja-Flores, Cristobal; Urquiza-Fuentes, Jaime

    2008-01-01

    Program animation systems have not been as widely adopted by computer science educators as we might expect from the firm belief that they can help in enhancing computer science education. One of the most notable obstacles to their adoption is the considerable effort that the production of program animations represents for the instructor. We…

  4. Knowledge Acquisition with Static and Animated Pictures in Computer-Based Learning.

    ERIC Educational Resources Information Center

    Schnotz, Wolfgang; Grzondziel, Harriet

    In educational settings, computers provide specific possibilities of visualizing information for instructional purposes. Besides the use of static pictures, computers can present animated pictures which allow exploratory manipulation by the learner and display the dynamic behavior of a system. This paper develops a theoretical framework for…

  5. More Ideas for Monitoring Biological Experiments with the BBC Computer: Absorption Spectra, Yeast Growth, Enzyme Reactions and Animal Behaviour.

    ERIC Educational Resources Information Center

    Openshaw, Peter

    1988-01-01

    Presented are five ideas for A-level biology experiments using a laboratory computer interface. Topics investigated include photosynthesis, yeast growth, animal movements, pulse rates, and oxygen consumption and production by organisms. Includes instructions specific to the BBC computer system. (CW)

  6. Video-signal synchronizes registration of visual evoked responses.

    PubMed

    Vít, F; Kuba, M; Kremlácek, J; Kubová, Z; Horevaj, M

    1996-01-01

    Autodesk Animator software offers the suitable technique for visual stimulation in the registration of visual evoked responses (VERs). However, it is not possible to generate pulses that are synchronous with the animated sequences on any output port of the computer. These pulses are necessary for the synchronization of the computer that makes the registration of the VERs. The principle of the circuit is presented that is able to provide the synchronization of the analyzer with the stimulation computer using Autodesk Animator software.

  7. Symplectic molecular dynamics simulations on specially designed parallel computers.

    PubMed

    Borstnik, Urban; Janezic, Dusanka

    2005-01-01

    We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.

  8. Technology advancing the study of animal cognition: using virtual reality to present virtually simulated environments to investigate nonhuman primate spatial cognition.

    PubMed

    Dolins, Francine L; Schweller, Kenneth; Milne, Scott

    2017-02-01

    Virtual simulated environments provide multiple ways of testing cognitive function and evaluating problem solving with humans (e.g., Woollett et al. 2009). The use of such interactive technology has increasingly become an essential part of modern life (e.g., autonomously driving vehicles, global positioning systems (GPS), and touchscreen computers; Chinn and Fairlie 2007; Brown 2011). While many nonhuman animals have their own forms of "technology", such as chimpanzees who create and use tools, in captive animal environments the opportunity to actively participate with interactive technology is not often made available. Exceptions can be found in some state-of-the-art zoos and laboratory facilities (e.g., Mallavarapu and Kuhar 2005). When interactive technology is available, captive animals often selectively choose to engage with it. This enhances the animal's sense of control over their immediate surroundings (e.g., Clay et al. 2011; Ackerman 2012). Such self-efficacy may help to fulfill basic requirements in a species' daily activities using problem solving that can involve foraging and other goal-oriented behaviors. It also assists in fulfilling the strong underlying motivation for contrafreeloading and exploration expressed behaviorally by many species in captivity (Young 1999). Moreover, being able to present nonhuman primates virtual reality environments under experimental conditions provides the opportunity to gain insight into their navigational abilities and spatial cognition. It allows for insight into the generation and application of internal mental representations of landmarks and environments under multiple conditions (e.g., small- and large-scale space) and subsequent spatial behavior. This paper reviews methods using virtual reality developed to investigate the spatial cognitive abilities of nonhuman primates, and great apes in particular, in comparison with that of humans of multiple age groups. We make recommendations about training, best practices, and also pitfalls to avoid.

  9. Using modified fruit fly optimisation algorithm to perform the function test and case studies

    NASA Astrophysics Data System (ADS)

    Pan, Wen-Tsao

    2013-06-01

    Evolutionary computation is a computing mode established by practically simulating natural evolutionary processes based on the concept of Darwinian Theory, and it is a common research method. The main contribution of this paper was to reinforce the function of searching for the optimised solution using the fruit fly optimization algorithm (FOA), in order to avoid the acquisition of local extremum solutions. The evolutionary computation has grown to include the concepts of animal foraging behaviour and group behaviour. This study discussed three common evolutionary computation methods and compared them with the modified fruit fly optimization algorithm (MFOA). It further investigated the ability of the three mathematical functions in computing extreme values, as well as the algorithm execution speed and the forecast ability of the forecasting model built using the optimised general regression neural network (GRNN) parameters. The findings indicated that there was no obvious difference between particle swarm optimization and the MFOA in regards to the ability to compute extreme values; however, they were both better than the artificial fish swarm algorithm and FOA. In addition, the MFOA performed better than the particle swarm optimization in regards to the algorithm execution speed, and the forecast ability of the forecasting model built using the MFOA's GRNN parameters was better than that of the other three forecasting models.

  10. A phantom axon setup for validating models of action potential recordings.

    PubMed

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %.

  11. Using molecular simulation to explore the nanoscale dynamics of the plant kinome.

    PubMed

    Moffett, Alexander S; Shukla, Diwakar

    2018-03-09

    Eukaryotic protein kinases (PKs) are a large family of proteins critical for cellular response to external signals, acting as molecular switches. PKs propagate biochemical signals by catalyzing phosphorylation of other proteins, including other PKs, which can undergo conformational changes upon phosphorylation and catalyze further phosphorylations. Although PKs have been studied thoroughly across the domains of life, the structures of these proteins are sparsely understood in numerous groups of organisms, including plants. In addition to efforts towards determining crystal structures of PKs, research on human PKs has incorporated molecular dynamics (MD) simulations to study the conformational dynamics underlying the switching of PK function. This approach of experimental structural biology coupled with computational biophysics has led to improved understanding of how PKs become catalytically active and why mutations cause pathological PK behavior, at spatial and temporal resolutions inaccessible to current experimental methods alone. In this review, we argue for the value of applying MD simulation to plant PKs. We review the basics of MD simulation methodology, the successes achieved through MD simulation in animal PKs, and current work on plant PKs using MD simulation. We conclude with a discussion of the future of MD simulations and plant PKs, arguing for the importance of molecular simulation in the future of plant PK research. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Dynamic legged locomotion in robots and animals

    NASA Astrophysics Data System (ADS)

    Raibert, Marc; Playter, Robert; Ringrose, Robert; Bailey, Dave; Leeser, Karl

    1995-01-01

    This report documents our study of active legged systems that balance actively and move dynamically. The purpose of this research is to build a foundation of knowledge that can lead both to the construction of useful legged vehicles and to a better understanding of how animal locomotion works. In this report we provide an update on progress during the past year. Here are the topics covered in this report: (1) Is cockroach locomotion dynamic? To address this question we created three models of cockroaches, each abstracted at a different level. We provided each model with a control system and computer simulation. One set of results suggests that 'Groucho Running,' a type of dynamic walking, seems feasible at cockroach scale. (2) How do bipeds shift weight between the legs? We built a simple planar biped robot specifically to explore this question. It shifts its weight from one curved foot to the other, using a toe-off and toe-on strategy, in conjunction with dynamic tipping. (3) 3D biped gymnastics: The 3D biped robot has done front somersaults in the laboratory. The robot changes its leg length in flight to control rotation rate. This in turn provides a mechanism for controlling the landing attitude of the robot once airborne. (4) Passively stabilized layout somersault: We have found that the passive structure of a gymnast, the configuration of masses and compliances, can stabilize inherently unstable maneuvers. This means that body biomechanics could play a larger role in controlling behavior than is generally thought. We used a physical 'doll' model and computer simulation to illustrate the point. (5) Twisting: Some gymnastic maneuvers require twisting. We are studying how to couple the biomechanics of the system to its control to produce efficient, stable twisting maneuvers.

  13. The use of computed tomographic three-dimensional reconstructions to develop instructional models for equine pelvic ultrasonography.

    PubMed

    Whitcomb, Mary Beth; Doval, John; Peters, Jason

    2011-01-01

    Ultrasonography has gained increased utility to diagnose pelvic fractures in horses; however, internal pelvic contours can be difficult to appreciate from external palpable landmarks. We developed three-dimensional (3D) simulations of the pelvic ultrasonographic examination to assist with translation of pelvic contours into two-dimensional (2D) images. Contiguous 1mm transverse computed tomography (CT) images were acquired through an equine femur and hemipelvis using a single slice helical scanner. 3D surface models were created using a DICOM reader and imported into a 3D modeling and animation program. The bone models were combined with a purchased 3D horse model and the skin made translucent to visualize pelvic surface contours. 3D models of ultrasound transducers were made from reference photos, and a thin sector shape was created to depict the ultrasound beam. Ultrasonographic examinations were simulated by moving transducers on the skin surface and rectally to produce images of pelvic structures. Camera angles were manipulated to best illustrate the transducer-beam-bone interface. Fractures were created in multiple configurations. Animations were exported as QuickTime movie files for use in presentations coupled with corresponding ultrasound videoclips. 3D models provide a link between ultrasonographic technique and image generation by depicting the interaction of the transducer, ultrasound beam, and structure of interest. The horse model was important to facilitate understanding of the location of pelvic structures relative to the skin surface. While CT acquisition time was brief, manipulation within the 3D software program was time intensive. Results were worthwhile from an instructional standpoint based on user feedback. © 2011 Veterinary Radiology & Ultrasound.

  14. Computer-Based Graphical Displays for Enhancing Mental Animation and Improving Reasoning in Novice Learning of Probability

    ERIC Educational Resources Information Center

    Kaplan, Danielle E.; Wu, Erin Chia-ling

    2006-01-01

    Our research suggests static and animated graphics can lead to more animated thinking and more correct problem solving in computer-based probability learning. Pilot software modules were developed for graduate online statistics courses and representation research. A study with novice graduate student statisticians compared problem solving in five…

  15. Quantum analogue computing.

    PubMed

    Kendon, Vivien M; Nemoto, Kae; Munro, William J

    2010-08-13

    We briefly review what a quantum computer is, what it promises to do for us and why it is so hard to build one. Among the first applications anticipated to bear fruit is the quantum simulation of quantum systems. While most quantum computation is an extension of classical digital computation, quantum simulation differs fundamentally in how the data are encoded in the quantum computer. To perform a quantum simulation, the Hilbert space of the system to be simulated is mapped directly onto the Hilbert space of the (logical) qubits in the quantum computer. This type of direct correspondence is how data are encoded in a classical analogue computer. There is no binary encoding, and increasing precision becomes exponentially costly: an extra bit of precision doubles the size of the computer. This has important consequences for both the precision and error-correction requirements of quantum simulation, and significant open questions remain about its practicality. It also means that the quantum version of analogue computers, continuous-variable quantum computers, becomes an equally efficient architecture for quantum simulation. Lessons from past use of classical analogue computers can help us to build better quantum simulators in future.

  16. Effects of sample size on KERNEL home range estimates

    USGS Publications Warehouse

    Seaman, D.E.; Millspaugh, J.J.; Kernohan, Brian J.; Brundige, Gary C.; Raedeke, Kenneth J.; Gitzen, Robert A.

    1999-01-01

    Kernel methods for estimating home range are being used increasingly in wildlife research, but the effect of sample size on their accuracy is not known. We used computer simulations of 10-200 points/home range and compared accuracy of home range estimates produced by fixed and adaptive kernels with the reference (REF) and least-squares cross-validation (LSCV) methods for determining the amount of smoothing. Simulated home ranges varied from simple to complex shapes created by mixing bivariate normal distributions. We used the size of the 95% home range area and the relative mean squared error of the surface fit to assess the accuracy of the kernel home range estimates. For both measures, the bias and variance approached an asymptote at about 50 observations/home range. The fixed kernel with smoothing selected by LSCV provided the least-biased estimates of the 95% home range area. All kernel methods produced similar surface fit for most simulations, but the fixed kernel with LSCV had the lowest frequency and magnitude of very poor estimates. We reviewed 101 papers published in The Journal of Wildlife Management (JWM) between 1980 and 1997 that estimated animal home ranges. A minority of these papers used nonparametric utilization distribution (UD) estimators, and most did not adequately report sample sizes. We recommend that home range studies using kernel estimates use LSCV to determine the amount of smoothing, obtain a minimum of 30 observations per animal (but preferably a?Y50), and report sample sizes in published results.

  17. Microscopic transport model animation visualisation on KML base

    NASA Astrophysics Data System (ADS)

    Yatskiv, I.; Savrasovs, M.

    2012-10-01

    By reading classical literature devoted to the simulation theory it could be found that one of the greatest possibilities of simulation is the ability to present processes inside the system by animation. This gives to the simulation model additional value during presentation of simulation results for the public and authorities who are not familiar enough with simulation. That is why most of universal and specialised simulation tools have the ability to construct 2D and 3D representation of the model. Usually the development of such representation could take much time and there must be put a lot forces into creating an adequate 3D representation of the model. For long years such well-known microscopic traffic flow simulation software tools as VISSIM, AIMSUN and PARAMICS have had a possibility to produce 2D and 3D animation. But creation of realistic 3D model of the place where traffic flows are simulated, even in these professional software tools it is a hard and time consuming action. The goal of this paper is to describe the concepts of use the existing on-line geographical information systems for visualisation of animation produced by simulation software. For demonstration purposes the following technologies and tools have been used: PTV VISION VISSIM, KML and Google Earth.

  18. Student Ability, Confidence, and Attitudes Toward Incorporating a Computer into a Patient Interview.

    PubMed

    Ray, Sarah; Valdovinos, Katie

    2015-05-25

    To improve pharmacy students' ability to effectively incorporate a computer into a simulated patient encounter and to improve their awareness of barriers and attitudes towards and their confidence in using a computer during simulated patient encounters. Students completed a survey that assessed their awareness of, confidence in, and attitudes towards computer use during simulated patient encounters. Students were evaluated with a rubric on their ability to incorporate a computer into a simulated patient encounter. Students were resurveyed and reevaluated after instruction. Students improved in their ability to effectively incorporate computer usage into a simulated patient encounter. They also became more aware of and improved their attitudes toward barriers regarding such usage and gained more confidence in their ability to use a computer during simulated patient encounters. Instruction can improve pharmacy students' ability to incorporate a computer into simulated patient encounters. This skill is critical to developing efficiency while maintaining rapport with patients.

  19. 2-D Animation's Not Just for Mickey Mouse.

    ERIC Educational Resources Information Center

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  20. Internally generated hippocampal sequences as a vantage point to probe future-oriented cognition.

    PubMed

    Pezzulo, Giovanni; Kemere, Caleb; van der Meer, Matthijs A A

    2017-05-01

    Information processing in the rodent hippocampus is fundamentally shaped by internally generated sequences (IGSs), expressed during two different network states: theta sequences, which repeat and reset at the ∼8 Hz theta rhythm associated with active behavior, and punctate sharp wave-ripple (SWR) sequences associated with wakeful rest or slow-wave sleep. A potpourri of diverse functional roles has been proposed for these IGSs, resulting in a fragmented conceptual landscape. Here, we advance a unitary view of IGSs, proposing that they reflect an inferential process that samples a policy from the animal's generative model, supported by hippocampus-specific priors. The same inference affords different cognitive functions when the animal is in distinct dynamical modes, associated with specific functional networks. Theta sequences arise when inference is coupled to the animal's action-perception cycle, supporting online spatial decisions, predictive processing, and episode encoding. SWR sequences arise when the animal is decoupled from the action-perception cycle and may support offline cognitive processing, such as memory consolidation, the prospective simulation of spatial trajectories, and imagination. We discuss the empirical bases of this proposal in relation to rodent studies and highlight how the proposed computational principles can shed light on the mechanisms of future-oriented cognition in humans. © 2017 New York Academy of Sciences.

  1. Teaching 3D computer animation to illustrators: the instructor as translator and technical director.

    PubMed

    Koning, Wobbe F

    2012-01-01

    An art instructor discusses the difficulties he's encountered teaching computer graphics skills to undergraduate art students. To help the students, he introduced an automated-rigging script for character animation.

  2. Error in telemetry studies: Effects of animal movement on triangulation

    USGS Publications Warehouse

    Schmutz, Joel A.; White, Gary C.

    1990-01-01

    We used Monte Carlo simulations to investigate the effects of animal movement on error of estimated animal locations derived from radio-telemetry triangulation of sequentially obtained bearings. Simulated movements of 0-534 m resulted in up to 10-fold increases in average location error but <10% decreases in location precision when observer-to-animal distances were <1,000 m. Location error and precision were minimally affected by censorship of poor locations with Chi-square goodness-of-fit tests. Location error caused by animal movement can only be eliminated by taking simultaneous bearings.

  3. Development of simulation computer complex specification

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Training Simulation Computer Complex Study was one of three studies contracted in support of preparations for procurement of a shuttle mission simulator for shuttle crew training. The subject study was concerned with definition of the software loads to be imposed on the computer complex to be associated with the shuttle mission simulator and the development of procurement specifications based on the resulting computer requirements. These procurement specifications cover the computer hardware and system software as well as the data conversion equipment required to interface the computer to the simulator hardware. The development of the necessary hardware and software specifications required the execution of a number of related tasks which included, (1) simulation software sizing, (2) computer requirements definition, (3) data conversion equipment requirements definition, (4) system software requirements definition, (5) a simulation management plan, (6) a background survey, and (7) preparation of the specifications.

  4. Inferring brain-computational mechanisms with models of activity measurements

    PubMed Central

    Diedrichsen, Jörn

    2016-01-01

    High-resolution functional imaging is providing increasingly rich measurements of brain activity in animals and humans. A major challenge is to leverage such data to gain insight into the brain's computational mechanisms. The first step is to define candidate brain-computational models (BCMs) that can perform the behavioural task in question. We would then like to infer which of the candidate BCMs best accounts for measured brain-activity data. Here we describe a method that complements each BCM by a measurement model (MM), which simulates the way the brain-activity measurements reflect neuronal activity (e.g. local averaging in functional magnetic resonance imaging (fMRI) voxels or sparse sampling in array recordings). The resulting generative model (BCM-MM) produces simulated measurements. To avoid having to fit the MM to predict each individual measurement channel of the brain-activity data, we compare the measured and predicted data at the level of summary statistics. We describe a novel particular implementation of this approach, called probabilistic representational similarity analysis (pRSA) with MMs, which uses representational dissimilarity matrices (RDMs) as the summary statistics. We validate this method by simulations of fMRI measurements (locally averaging voxels) based on a deep convolutional neural network for visual object recognition. Results indicate that the way the measurements sample the activity patterns strongly affects the apparent representational dissimilarities. However, modelling of the measurement process can account for these effects, and different BCMs remain distinguishable even under substantial noise. The pRSA method enables us to perform Bayesian inference on the set of BCMs and to recognize the data-generating model in each case. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574316

  5. Conception et mises a l'essai d'un environnement d'apprentissage integrant l'experimentation assistee par ordinateur et la simulation assistee par ordinateur

    NASA Astrophysics Data System (ADS)

    Riopel, Martin

    To make science laboratory sessions more instructive, we have developed a learning environment that will allow students enrolled in a mechanics course at college or university level to engage in a scientific modelization process by combining computer-simulated experimentation and microcomputer-based laboratories. The main goal is to assist and facilitate both inductive and deductive reasoning. Within this computer application, each action can also be automatically recorded and identified while the student is using the software. The most original part of the environment is to let the student compare the simulated animation with the real video by superposing the images. We used the software with students and observed that they effectively engaged in a modelization process that included both inductive and deductive reasoning. We also observed that the students were able to use the software to produce adequate answers to questions concerning both previously taught and new theoretical concepts in physics. The students completed the experiment about twice as fast as usual and considered that using the software resulted in a better understanding of the phenomenon. We conclude that this use of the computer in science education can broaden the range of possibilities for learning and for teaching and can provide new avenues for researchers who can use it to record and study students' path of reasoning. We also believe that it would be interesting to investigate more some of the benefits associated with this environment, particularly the acceleration effect, the improvement of students' reasoning and the equilibrium between induction and deduction that we observed within this research.

  6. Self-tapping ability of carbon fibre reinforced polyetheretherketone suture anchors.

    PubMed

    Feerick, Emer M; Wilson, Joanne; Jarman-Smith, Marcus; Ó'Brádaigh, Conchur M; McGarry, J Patrick

    2014-10-01

    An experimental and computational investigation of the self-tapping ability of carbon fibre reinforced polyetheretherketone (CFR-PEEK) has been conducted. Six CFR-PEEK suture anchor designs were investigated using PEEK-OPTIMA® Reinforced, a medical grade of CFR-PEEK. Experimental tests were conducted to investigate the maximum axial force and torque required for self-taping insertion of each anchor design. Additional experimental tests were conducted for some anchor designs using pilot holes. Computational simulations were conducted to determine the maximum stress in each anchor design at various stages of insertion. Simulations also were performed to investigate the effect of wall thickness in the anchor head. The maximum axial force required to insert a self-tapping CFR-PEEK suture anchor did not exceed 150 N for any anchor design. The maximum torque required to insert a self-tapping CFR-PEEK suture anchor did not exceed 0.8 Nm. Computational simulations reveal significant stress concentrations in the region of the anchor tip, demonstrating that a re-design of the tip geometry should be performed to avoid fracture during self-tapping, as observed in the experimental component of this study. This study demonstrates the ability of PEEK-OPTIMA Reinforced suture anchors to self-tap polyurethane foam bone analogue. This provides motivation to further investigate the self-tapping ability of CFR-PEEK suture anchors in animal/cadaveric bone. An optimised design for CFR-PEEK suture anchors offers the advantages of radiolucency, and mechanical properties similar to bone with the ability to self-tap. This may have positive implications for reducing surgery times and the associated costs with the procedure. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Passive motion paradigm: an alternative to optimal control.

    PubMed

    Mohan, Vishwanathan; Morasso, Pietro

    2011-01-01

    IN THE LAST YEARS, OPTIMAL CONTROL THEORY (OCT) HAS EMERGED AS THE LEADING APPROACH FOR INVESTIGATING NEURAL CONTROL OF MOVEMENT AND MOTOR COGNITION FOR TWO COMPLEMENTARY RESEARCH LINES: behavioral neuroscience and humanoid robotics. In both cases, there are general problems that need to be addressed, such as the "degrees of freedom (DoFs) problem," the common core of production, observation, reasoning, and learning of "actions." OCT, directly derived from engineering design techniques of control systems quantifies task goals as "cost functions" and uses the sophisticated formal tools of optimal control to obtain desired behavior (and predictions). We propose an alternative "softer" approach passive motion paradigm (PMP) that we believe is closer to the biomechanics and cybernetics of action. The basic idea is that actions (overt as well as covert) are the consequences of an internal simulation process that "animates" the body schema with the attractor dynamics of force fields induced by the goal and task-specific constraints. This internal simulation offers the brain a way to dynamically link motor redundancy with task-oriented constraints "at runtime," hence solving the "DoFs problem" without explicit kinematic inversion and cost function computation. We argue that the function of such computational machinery is not only restricted to shaping motor output during action execution but also to provide the self with information on the feasibility, consequence, understanding and meaning of "potential actions." In this sense, taking into account recent developments in neuroscience (motor imagery, simulation theory of covert actions, mirror neuron system) and in embodied robotics, PMP offers a novel framework for understanding motor cognition that goes beyond the engineering control paradigm provided by OCT. Therefore, the paper is at the same time a review of the PMP rationale, as a computational theory, and a perspective presentation of how to develop it for designing better cognitive architectures.

  8. Computational simulation of concurrent engineering for aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1992-01-01

    Results are summarized of an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulations methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties - fundamental in developing such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering for propulsion systems and systems in general. Benefits and facets needing early attention in the development are outlined.

  9. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Singhal, S. N.

    1993-01-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  10. Computational simulation for concurrent engineering of aerospace propulsion systems

    NASA Astrophysics Data System (ADS)

    Chamis, C. C.; Singhal, S. N.

    1993-02-01

    Results are summarized for an investigation to assess the infrastructure available and the technology readiness in order to develop computational simulation methods/software for concurrent engineering. These results demonstrate that development of computational simulation methods for concurrent engineering is timely. Extensive infrastructure, in terms of multi-discipline simulation, component-specific simulation, system simulators, fabrication process simulation, and simulation of uncertainties--fundamental to develop such methods, is available. An approach is recommended which can be used to develop computational simulation methods for concurrent engineering of propulsion systems and systems in general. Benefits and issues needing early attention in the development are outlined.

  11. [COMPARATIVE CHARACTERISTIC OF VARIOUS METHODS OF SIMULATION OF BILIARY PERITONITIS IN EXPERIMENT].

    PubMed

    Nichitaylo, M Yu; Furmanov, Yu O; Gutsulyak, A I; Savytska, I M; Zagriychuk, M S; Goman, A V

    2016-02-01

    In experiment on rabbits a comparative analysis of various methods of a biliary peritonitis simulation was conducted. In 6 animals a biliary peritonitis was simulated, using perforation of a gallbladder, local serous-fibrinous peritonitis have occurred in 50% of them. In 7 animals biliary peritonitis was simulated, applying intraabdominal injection of medical sterile bile in a 5-40 ml volume. Diffuse peritonitis with exudates and stratification of fibrin was absent. Most effective method have appeared that, when intraabdominal injection of bile was done together with E. coli culture in the rate of 0.33 microbal bodies McF (1.0 x 10(8) CFU/ml) on 1 kg of the animal body mass. Diffuse biliary peritonitis have occurred in all 23 animals, including serous-fibrinous one--in 17 (76%), and purulent-fibrinous--in 6 (24%).

  12. Teaching Physics for Conceptual Understanding Exemplified for Einstein's Special Relativity

    NASA Astrophysics Data System (ADS)

    Undreiu, Lucian M.

    2006-12-01

    In most liberal arts colleges the prerequisites for College Physics, Introductory or Calculus based, are strictly related to Mathematics. As a state of fact, the majorities of the students perceive Physics as a conglomerate of mathematical equations, a collection of facts to be memorized and they regard Physics as one of the most difficult subjects. A change of this attitude towards Physics, and Science in general, is intrinsically connected with the promotion of conceptual understanding and stimulation of critical thinking. In such an environment, the educators are facilitators, rather than the source of knowledge. One good way of doing this is to challenge the students to think about what they see around them and to connect physics with the real world. Motivation occurs when students realize that what was learned is interesting and relevant. Visual teaching aids such as educational videos or computer simulations, as well as computer-assisted experiments, can greatly enhance the effectiveness of a science lecture or laboratory. Difficult topics can be discussed through animated analogies. Special Relativity is recognized as a challenging topic and is probably one of the most misunderstood theories of Physics. While understanding Special Relativity requires a detachment from ordinary perception and every day life notions, animated analogies can prove to be very successful in making difficult topics accessible.

  13. Computer-task testing of rhesus monkeys (Macaca mulatta) in the social milieu.

    PubMed

    Washburn, D A; Harper, S; Rumbaugh, D M

    1994-07-01

    Previous research has demonstrated that a behavior and performance testing paradigm, in which rhesus monkeys (Macaca mulatta) manipulate a joystick to respond to computer-generated stimuli, provides environmental enrichment and supports the psychological well-being of captive research animals. The present study was designed to determine whether computer-task activity would be affected by pair-housing animals that had previously been tested only in their single-animal home cages. No differences were observed in productivity or performance levels as a function of housing condition, even when the animals were required to "self-identify" prior to performing each trial. The data indicate that cognitive challenge and control are as preferred by the animals as social opportunities, and that, together with comfort/health considerations, each must be addressed for the assurance of psychological well-being.

  14. An Examination of the Impact of Computer-Based Animations and Visualization Sequence on Student Understanding of Hadley Cells in Atmospheric Circulation

    ERIC Educational Resources Information Center

    Harris, Daniel Wyatt

    2012-01-01

    Research examining animation use for student learning has been conducted in the last two decades across a multitude of instructional environments and content areas. The extensive construction and implementation of animations in learning resulted from the availability of powerful computing systems and the perceived advantages the novel medium…

  15. The Effects of Computer Animated Dissection versus Preserved Animal Dissection on the Student Achievement in a High School Biology Class.

    ERIC Educational Resources Information Center

    Kariuki, Patrick; Paulson, Ronda

    The purpose of this study was to examine the effectiveness of computer-animated dissection techniques versus the effectiveness of traditional dissection techniques as related to student achievement. The sample used was 104 general biology students from a small, rural high school in Northeast Tennessee. Random selection was used to separate the…

  16. Using Videos and 3D Animations for Conceptual Learning in Basic Computer Units

    ERIC Educational Resources Information Center

    Cakiroglu, Unal; Yilmaz, Huseyin

    2017-01-01

    This article draws on a one-semester study to investigate the effect of videos and 3D animations on students' conceptual understandings about basic computer units. A quasi-experimental design was carried out in two classrooms; videos and 3D animations were used in classroom activities in one group and those were used for homework in the other…

  17. Simulated Environments with Animated Agents: Effects on Visual Attention, Emotion, Performance, and Perception

    ERIC Educational Resources Information Center

    Romero-Hall, E.; Watson, G. S.; Adcock, A.; Bliss, J.; Adams Tufts, K.

    2016-01-01

    This research assessed how emotive animated agents in a simulation-based training affect the performance outcomes and perceptions of the individuals interacting in real time with the training application. A total of 56 participants consented to complete the study. The material for this investigation included a nursing simulation in which…

  18. Heterosis Is a Systemic Property Emerging From Non-linear Genotype-Phenotype Relationships: Evidence From in Vitro Genetics and Computer Simulations.

    PubMed

    Fiévet, Julie B; Nidelet, Thibault; Dillmann, Christine; de Vienne, Dominique

    2018-01-01

    Heterosis, the superiority of hybrids over their parents for quantitative traits, represents a crucial issue in plant and animal breeding as well as evolutionary biology. Heterosis has given rise to countless genetic, genomic and molecular studies, but has rarely been investigated from the point of view of systems biology. We hypothesized that heterosis is an emergent property of living systems resulting from frequent concave relationships between genotypic variables and phenotypes, or between different phenotypic levels. We chose the enzyme-flux relationship as a model of the concave genotype-phenotype (GP) relationship, and showed that heterosis can be easily created in the laboratory. First, we reconstituted in vitro the upper part of glycolysis. We simulated genetic variability of enzyme activity by varying enzyme concentrations in test tubes. Mixing the content of "parental" tubes resulted in "hybrids," whose fluxes were compared to the parental fluxes. Frequent heterotic fluxes were observed, under conditions that were determined analytically and confirmed by computer simulation. Second, to test this model in a more realistic situation, we modeled the glycolysis/fermentation network in yeast by considering one input flux, glucose, and two output fluxes, glycerol and acetaldehyde. We simulated genetic variability by randomly drawing parental enzyme concentrations under various conditions, and computed the parental and hybrid fluxes using a system of differential equations. Again we found that a majority of hybrids exhibited positive heterosis for metabolic fluxes. Cases of negative heterosis were due to local convexity between certain enzyme concentrations and fluxes. In both approaches, heterosis was maximized when the parents were phenotypically close and when the distributions of parental enzyme concentrations were contrasted and constrained. These conclusions are not restricted to metabolic systems: they only depend on the concavity of the GP relationship, which is commonly observed at various levels of the phenotypic hierarchy, and could account for the pervasiveness of heterosis.

  19. Production of Computer Animated Movies for Educational Purposes.

    ERIC Educational Resources Information Center

    Elberg, H. H.

    A detailed account is given in this paper of the procedures and the equipment used in producing six computer-animated instructional movies. First, the sequence of events were described in a script, which, together with the analytical expressions that were dealt with, formed the basis of a program. Then, the program was run on a computer and the…

  20. Teaching ocean wave forecasting using computer-generated visualization and animation—Part 1: sea forecasting

    NASA Astrophysics Data System (ADS)

    Whitford, Dennis J.

    2002-05-01

    Ocean waves are the most recognized phenomena in oceanography. Unfortunately, undergraduate study of ocean wave dynamics and forecasting involves mathematics and physics and therefore can pose difficulties with some students because of the subject's interrelated dependence on time and space. Verbal descriptions and two-dimensional illustrations are often insufficient for student comprehension. Computer-generated visualization and animation offer a visually intuitive and pedagogically sound medium to present geoscience, yet there are very few oceanographic examples. A two-part article series is offered to explain ocean wave forecasting using computer-generated visualization and animation. This paper, Part 1, addresses forecasting of sea wave conditions and serves as the basis for the more difficult topic of swell wave forecasting addressed in Part 2. Computer-aided visualization and animation, accompanied by oral explanation, are a welcome pedagogical supplement to more traditional methods of instruction. In this article, several MATLAB ® software programs have been written to visualize and animate development and comparison of wave spectra, wave interference, and forecasting of sea conditions. These programs also set the stage for the more advanced and difficult animation topics in Part 2. The programs are user-friendly, interactive, easy to modify, and developed as instructional tools. By using these software programs, teachers can enhance their instruction of these topics with colorful visualizations and animation without requiring an extensive background in computer programming.

  1. From chart tracking to workflow management.

    PubMed Central

    Srinivasan, P.; Vignes, G.; Venable, C.; Hazelwood, A.; Cade, T.

    1994-01-01

    The current interest in system-wide integration appears to be based on the assumption that an organization, by digitizing information and accepting a common standard for the exchange of such information, will improve the accessibility of this information and automatically experience benefits resulting from its more productive use. We do not dispute this reasoning, but assert that an organization's capacity for effective change is proportional to the understanding of the current structure among its personnel. Our workflow manager is based on the use of a Parameterized Petri Net (PPN) model which can be configured to represent an arbitrarily detailed picture of an organization. The PPN model can be animated to observe the model organization in action, and the results of the animation analyzed. This simulation is a dynamic ongoing process which changes with the system and allows members of the organization to pose "what if" questions as a means of exploring opportunities for change. We present, the "workflow management system" as the natural successor to the tracking program, incorporating modeling, scheduling, reactive planning, performance evaluation, and simulation. This workflow management system is more than adequate for meeting the needs of a paper chart tracking system, and, as the patient record is computerized, will serve as a planning and evaluation tool in converting the paper-based health information system into a computer-based system. PMID:7950051

  2. Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis

    PubMed Central

    Williams, Alex H.; Kwiatkowski, Molly A.; Mortimer, Adam L.; Marder, Eve; Zeeman, Mary Lou

    2013-01-01

    The cardiac ganglion (CG) of Homarus americanus is a central pattern generator that consists of two oscillatory groups of neurons: “small cells” (SCs) and “large cells” (LCs). We have shown that SCs and LCs begin their bursts nearly simultaneously but end their bursts at variable phases. This variability contrasts with many other central pattern generator systems in which phase is well maintained. To determine both the consequences of this variability and how CG phasing is controlled, we modeled the CG as a pair of Morris-Lecar oscillators coupled by electrical and excitatory synapses and constructed a database of 15,000 simulated networks using random parameter sets. These simulations, like our experimental results, displayed variable phase relationships, with the bursts beginning together but ending at variable phases. The model suggests that the variable phasing of the pattern has important implications for the functional role of the excitatory synapses. In networks in which the two oscillators had similar duty cycles, the excitatory coupling functioned to increase cycle frequency. In networks with disparate duty cycles, it functioned to decrease network frequency. Overall, we suggest that the phasing of the CG may vary without compromising appropriate motor output and that this variability may critically determine how the network behaves in response to manipulations. PMID:23446690

  3. Morphological computation of multi-gaited robot locomotion based on free vibration.

    PubMed

    Reis, Murat; Yu, Xiaoxiang; Maheshwari, Nandan; Iida, Fumiya

    2013-01-01

    In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.

  4. Implementing finite state machines in a computer-based teaching system

    NASA Astrophysics Data System (ADS)

    Hacker, Charles H.; Sitte, Renate

    1999-09-01

    Finite State Machines (FSM) are models for functions commonly implemented in digital circuits such as timers, remote controls, and vending machines. Teaching FSM is core in the curriculum of many university digital electronic or discrete mathematics subjects. Students often have difficulties grasping the theoretical concepts in the design and analysis of FSM. This has prompted the author to develop an MS-WindowsTM compatible software, WinState, that provides a tutorial style teaching aid for understanding the mechanisms of FSM. The animated computer screen is ideal for visually conveying the required design and analysis procedures. WinState complements other software for combinatorial logic previously developed by the author, and enhances the existing teaching package by adding sequential logic circuits. WinState enables the construction of a students own FSM, which can be simulated, to test the design for functionality and possible errors.

  5. A goodness-of-fit test for capture-recapture model M(t) under closure

    USGS Publications Warehouse

    Stanley, T.R.; Burnham, K.P.

    1999-01-01

    A new, fully efficient goodness-of-fit test for the time-specific closed-population capture-recapture model M(t) is presented. This test is based on the residual distribution of the capture history data given the maximum likelihood parameter estimates under model M(t), is partitioned into informative components, and is based on chi-square statistics. Comparison of this test with Leslie's test (Leslie, 1958, Journal of Animal Ecology 27, 84- 86) for model M(t), using Monte Carlo simulations, shows the new test generally outperforms Leslie's test. The new test is frequently computable when Leslie's test is not, has Type I error rates that are closer to nominal error rates than Leslie's test, and is sensitive to behavioral variation and heterogeneity in capture probabilities. Leslie's test is not sensitive to behavioral variation in capture probabilities but, when computable, has greater power to detect heterogeneity than the new test.

  6. New insights into olivo-cerebellar circuits for learning from a small training sample.

    PubMed

    Tokuda, Isao T; Hoang, Huu; Kawato, Mitsuo

    2017-10-01

    Artificial intelligence such as deep neural networks exhibited remarkable performance in simulated video games and 'Go'. In contrast, most humanoid robots in the DARPA Robotics Challenge fell down to ground. The dramatic contrast in performance is mainly due to differences in the amount of training data, which is huge and small, respectively. Animals are not allowed with millions of the failed trials, which lead to injury and death. Humans fall only several thousand times before they balance and walk. We hypothesize that a unique closed-loop neural circuit formed by the Purkinje cells, the cerebellar deep nucleus and the inferior olive in and around the cerebellum and the highest density of gap junctions, which regulate synchronous activities of the inferior olive nucleus, are computational machinery for learning from a small sample. We discuss recent experimental and computational advances associated with this hypothesis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straatsma, TP

    Pseudomonas aeruginosa is a ubiquitous environmental Gram-negative bacterium with high metabolic versatility and an exceptional ability to adapt to a wide range of ecological environments, including soil, marches, coastal habitats, plant and animal tissues. Gram-negative microbes are characterized by the asymmetric lipopolysaccharide outer membrane, the study of which is important for a number of applications. The adhesion to mineral surfaces plays a central role in characterizing their contribution to the fate of contaminants in complex environmental systems by effecting microbial transport through soils, respiration redox chemistry, and ion mobility. Another important application stems from the fact that it is alsomore » a major opportunistic human pathogen that can result in life-threatening infections in many immunocompromised patients, such as lung infections in children with cystic fibrosis, bacteraemia in burn victims, urinary-tract infections in catheterized patients, hospital-acquired pneumonia in patients on respirators, infections in cancer patients receiving chemotherapy, and keratitis and corneal ulcers in users of extended-wear soft contact lenses. The inherent resistance against antibiotics which has been linked with the specific interactions in the outer membrane of P. aeruginosa makes these infections difficult to treat. Developments in simulation methodologies as well as computer hardware have enabled the molecular simulation of biological systems of increasing size and with increasing accuracy, providing detail that is difficult or impossible to obtain experimentally. Computer simulation studies contribute to our understanding of the behavior of proteins, protein-protein and protein-DNA complexes. In recent years, a number of research groups have made significant progress in applying these methods to the study of biological membranes. However, these applications have been focused exclusively on lipid bilayer membranes and on membrane proteins in lipid bilayers. A few simulation studies of outer membrane proteins of Gram-negative bacteria have been reported using simple lipid bilayers, even though this is not a realistic representation of the outer membrane environment. This contribution describes our recent molecular simulation studies of the rough lipopolysaccharide membrane of P. aeruginosa, which are the first and only reported studies to date for a complete, periodic lipopolysaccharide outer membrane. This also includes our current efforts in building on our initial and unique experience simulating the lipopolysaccharide membrane in the development and application of novel computational procedures and tools that allow molecular simulation studies of outer membrane proteins of Gram-negative bacteria to be carried out in realistic membrane models.« less

  8. Flow characteristics in a canine aneurysm model: A comparison of 4D accelerated phase-contrast MR measurements and computational fluid dynamics simulations

    PubMed Central

    Jiang, Jingfeng; Johnson, Kevin; Valen-Sendstad, Kristian; Mardal, Kent-Andre; Wieben, Oliver; Strother, Charles

    2011-01-01

    Purpose: Our purpose was to compare quantitatively velocity fields in and around experimental canine aneurysms as measured using an accelerated 4D PC-MR angiography (MRA) method and calculated based on animal-specific CFD simulations. Methods: Two animals with a surgically created bifurcation aneurysm were imaged using an accelerated 4D PC-MRA method. Meshes were created based on the geometries obtained from the PC-MRA and simulations using “subject-specific” pulsatile velocity waveforms and geometries were then solved using a commercial CFD solver. Qualitative visual assessments and quantitative comparisons of the time-resolved velocity fields obtained from the PC-MRA measurements and the CFD simulations were performed using a defined similarity metric combining both angular and magnitude differences of vector fields. Results: PC-MRA and image-based CFD not only yielded visually consistent representations of 3D streamlines in and around both aneurysms, but also showed good agreement with regard to the spatial velocity distributions. The estimated similarity between time-resolved velocity fields from both techniques was reasonably high (mean value >0.60; one being the highest and zero being the lowest). Relative differences in inflow and outflow zones among selected planes were also reasonable (on the order of 10%–20%). The correlation between CFD-calculated and PC-MRA-measured time-averaged wall shear stresses was low (0.22 and 0.31, p < 0.001). Conclusions: In two experimental canine aneurysms, PC-MRA and image-based CFD showed favorable agreement in intra-aneurismal velocity fields. Combining these two complementary techniques likely will further improve the ability to characterize and interpret the complex flow that occurs in human intracranial aneurysms. PMID:22047395

  9. Refrigeration and freezing of porcine tissue does not affect the retardation of fragment simulating projectiles.

    PubMed

    Breeze, J; Carr, D J; Mabbott, A; Beckett, S; Clasper, J C

    2015-05-01

    Explosively propelled fragments are the most common cause of injury to UK service personnel in modern conflicts. Numerical injury models to simulate such injuries utilise algorithms based upon gelatin and animal tissue testing but data is limited on many fragment simulating projectiles and these simulants cannot represent human anatomy. Testing with post mortem specimens may overcome this limitation but no information exists about how post mortem tissue changes and storage conditions in humans or animals may affect projectile penetration. Two chisel nosed cylinders (0.49 g and 1.10 g) and a 0.51 g (5 mm) sphere were fired into three groups of porcine tissue (fresh, refrigerated and frozen then refrigerated) and compared to 20% gelatin. Depth of projectile penetration was ascertained with the assistance of computed tomography and kinetic energy absorption by tissues measured using Doppler radar and high speed photography. No difference in depth of penetration was found between porcine tissue stored in the different manners compared with 20% gelatin by impact velocities less than 100 m/s. Insufficient numbers of projectiles were retained in tissue at higher velocities for statistical analysis to be undertaken. Energy absorbed per millimetre of tissue ranged between 0.42 and 0.98 J/mm for different porcine tissue despite differing storage. This pilot study would suggest that the effect of refrigerating or freezing porcine tissue followed by thawing has no effect on its ability to retard these projectiles. Further research is required to ascertain if these results occur at greater velocities and for other types of projectile. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  10. NUNOA: a computer simulator of individuals, families, and extended families of the high-altitude Quechua

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.C.; Weinstein, D.A.; Shugart, H.H.

    1980-10-01

    The Quechua Indians of the Peruvian Andes are an example of a human population which has developed special cultural adaptations to deal with hypocaloric stress imposed by a harsh environment. A highly detailed human ecosystem model, NUNOA, which simulates the yearly energy balance of individuals, families, and extended families in a hypothetical farming and herding Quechua community of the high Andes was developed. Unlike most population models which use sets of differential equations in which individuals are aggregated into groups, this model considers the response of each individual to a stochastic environment. The model calculates the yearly energy demand formore » each family based on caloric requirements of its members. For each family, the model simulates the cultivation of seven different crops and the impact of precipitation, temperature, and disease on yield. Herding, slaughter, and market sales of three different animal species are also simulated. Any energy production in excess of the family's energy demand is placed into extended family storage for possible redistribution. A family failing to meet their annual energy demand may slaughter additional herd animals, temporarily migrate from the community, or borrow food from the extended family storage. The energy balance is used in determining births, deaths, marriages, and resource sharing in the Indian community. In addition, the model maintains a record of each individual's ancestry as well as seven genetic traits for use in tracing lineage and gene flow. The model user has the opportunity to investigate the effect of changes in marriage patterns, resource sharing patterns, or subsistence activities on the ability of the human population to survive in the harsh Andean environment. In addition, the user may investigate the impact of external technology on the Indian culture.« less

  11. Considerations in video playback design: using optic flow analysis to examine motion characteristics of live and computer-generated animation sequences.

    PubMed

    Woo, Kevin L; Rieucau, Guillaume

    2008-07-01

    The increasing use of the video playback technique in behavioural ecology reveals a growing need to ensure better control of the visual stimuli that focal animals experience. Technological advances now allow researchers to develop computer-generated animations instead of using video sequences of live-acting demonstrators. However, care must be taken to match the motion characteristics (speed and velocity) of the animation to the original video source. Here, we presented a tool based on the use of an optic flow analysis program to measure the resemblance of motion characteristics of computer-generated animations compared to videos of live-acting animals. We examined three distinct displays (tail-flick (TF), push-up body rock (PUBR), and slow arm wave (SAW)) exhibited by animations of Jacky dragons (Amphibolurus muricatus) that were compared to the original video sequences of live lizards. We found no significant differences between the motion characteristics of videos and animations across all three displays. Our results showed that our animations are similar the speed and velocity features of each display. Researchers need to ensure that similar motion characteristics in animation and video stimuli are represented, and this feature is a critical component in the future success of the video playback technique.

  12. [Toxocariasis in the Republic of Altai. Geoinformation mapping simulation].

    PubMed

    Pautova, E A; Kurepina, N Iu; Dovgalev, A S

    2012-01-01

    Toxocariasis is one of the most important zooanthroponotic natural-focal parasitic diseases in the Republic of Altai. The prevalence of their invasion among the inhabitants of the Republic has increased by more than 7 times. The data of the authors' observations ofToxocara infection in animals (cats, dogs), soil contamination with helminth eggs, and prevalence of human toxocariasis in the Republic of Altai, by considering the results of tests for antibodies against its pathogen in the inhabitants of the region, were automatically processed using geoinformation mapping simulation, which yielded a mapping model to rank the region's area by morbidity rates. The use of up-to-date computers and geo information systems makes it possible to systematize information on this invasion and to see major foci of the disease to reveal the reasons for their assignment to the specific type of the region's landscape.

  13. A DISCRETE-EVENT SIMULATION APPROACH TO IDENTIFY RULES THAT GOVERN ARBOR REMODELING FOR BRANCHING CUTANEOUS AFFERENTS IN HAIRY SKIN.

    PubMed

    Kang, Hyojung; Orlowsky, Rachel L; Gerling, Gregory J

    2017-12-01

    In mammals, touch is encoded by sensory receptors embedded in the skin. For one class of receptors in the mouse, the architecture of its Merkel cells, unmyelinated neurites, and heminodes follow particular renewal and remodeling trends over hair cycle stages from ages 4 to 10 weeks. As it is currently impossible to observe such trends across a single animal's hair cycle, this work employs discrete event simulation to identify and evaluate policies of Merkel cell and heminode dynamics. Well matching the observed data, the results show that the baseline model replicates dynamic remodeling behaviors between stages of the hair cycle - based on particular addition and removal polices and estimated probabilities tied to constituent parts of Merkel cells, terminal branch neurites and heminodes. The analysis shows further that certain policies hold greater influence than others. This use of computation is a novel approach to understanding neuronal development.

  14. Ballistics and anatomical modelling - A review.

    PubMed

    Humphrey, Caitlin; Kumaratilake, Jaliya

    2016-11-01

    Ballistics is the study of a projectiles motion and can be broken down into four stages: internal, intermediate, external and terminal ballistics. The study of the effects a projectile has on a living tissue is referred to as wound ballistics and falls within terminal ballistics. To understand the effects a projectile has on living tissues the mechanisms of wounding need to be understood. These include the permanent and temporary cavities, energy, yawing, tumbling and fragmenting. Much ballistics research has been conducted including using cadavers, animal models and simulants such as ballistics ordnance gelatine. Further research is being conducted into developing anatomical, 3D, experimental and computational models. However, these models need to accurately represent the human body and its heterogeneous nature which involves understanding the biomechanical properties of the different tissues and organs. Further research is needed to accurately represent the human tissues with simulants and is slowly being conducted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Multiscale Simulation of Blood Flow in Brain Arteries with an Aneurysm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leopold Grinberg; Vitali Morozov; Dmitry A. Fedosov

    2013-04-24

    Multi-scale modeling of arterial blood flow can shed light on the interaction between events happening at micro- and meso-scales (i.e., adhesion of red blood cells to the arterial wall, clot formation) and at macro-scales (i.e., change in flow patterns due to the clot). Coupled numerical simulations of such multi-scale flow require state-of-the-art computers and algorithms, along with techniques for multi-scale visualizations.This animation presents results of studies used in the development of a multi-scale visualization methodology. First we use streamlines to show the path the flow is taking as it moves through the system, including the aneurysm. Next we investigate themore » process of thrombus (blood clot) formation, which may be responsible for the rupture of aneurysms, by concentrating on the platelet blood cells, observing as they aggregate on the wall of the aneurysm.« less

  16. Assessment of auditory distance in a territorial songbird: accurate feat or rule of thumb?

    PubMed

    Naguib; Klump; Hillmann; Grießmann; Teige

    2000-04-01

    Territorial passerines presumably benefit from their ability to use auditory cues to judge the distance to singing conspecifics, by increasing the efficiency of their territorial defence. Here, we report data on the approach of male territorial chaffinches, Fringilla coelebs, to a loudspeaker broadcasting conspecific song simulating a rival at various distances by different amounts of song degradation. Songs were degraded digitally in a computer-simulated forest emulating distances of 0, 20, 40, 80 and 120 m. The approach distance of chaffinches towards the loudspeaker increased with increasing amounts of degradation indicating a perceptual representation of differences in distance of a sound source. We discuss the interindividual variation of male responses with respect to constraints resulting from random variation of ranging cues provided by the environmental song degradation, the perception accuracy and the decision rules. Copyright 2000 The Association for the Study of Animal Behaviour.

  17. Simulations of dolphin kick swimming using smoothed particle hydrodynamics.

    PubMed

    Cohen, Raymond C Z; Cleary, Paul W; Mason, Bruce R

    2012-06-01

    In competitive human swimming the submerged dolphin kick stroke (underwater undulatory swimming) is utilized after dives and turns. The optimal dolphin kick has a balance between minimizing drag and maximizing thrust while also minimizing the physical exertion required of the swimmer. In this study laser scans of athletes are used to provide realistic swimmer geometries in a single anatomical pose. These are rigged and animated to closely match side-on video footage. Smoothed Particle Hydrodynamics (SPH) fluid simulations are performed to evaluate variants of this swimming stroke technique. This computational approach provides full temporal and spatial information about the flow moving around the deforming swimmer model. The effects of changes in ankle flexibility and stroke frequency are investigated through a parametric study. The results suggest that the net streamwise force on the swimmer is relatively insensitive to ankle flexibility but is strongly dependent on kick frequency. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  18. Novel graphical environment for virtual and real-world operations of tracked mobile manipulators

    NASA Astrophysics Data System (ADS)

    Chen, ChuXin; Trivedi, Mohan M.; Azam, Mir; Lassiter, Nils T.

    1993-08-01

    A simulation, animation, visualization and interactive control (SAVIC) environment has been developed for the design and operation of an integrated mobile manipulator system. This unique system possesses the abilities for (1) multi-sensor simulation, (2) kinematics and locomotion animation, (3) dynamic motion and manipulation animation, (4) transformation between real and virtual modes within the same graphics system, (5) ease in exchanging software modules and hardware devices between real and virtual world operations, and (6) interfacing with a real robotic system. This paper describes a working system and illustrates the concepts by presenting the simulation, animation and control methodologies for a unique mobile robot with articulated tracks, a manipulator, and sensory modules.

  19. Understanding Emergency Care Delivery Through Computer Simulation Modeling.

    PubMed

    Laker, Lauren F; Torabi, Elham; France, Daniel J; Froehle, Craig M; Goldlust, Eric J; Hoot, Nathan R; Kasaie, Parastu; Lyons, Michael S; Barg-Walkow, Laura H; Ward, Michael J; Wears, Robert L

    2018-02-01

    In 2017, Academic Emergency Medicine convened a consensus conference entitled, "Catalyzing System Change through Health Care Simulation: Systems, Competency, and Outcomes." This article, a product of the breakout session on "understanding complex interactions through systems modeling," explores the role that computer simulation modeling can and should play in research and development of emergency care delivery systems. This article discusses areas central to the use of computer simulation modeling in emergency care research. The four central approaches to computer simulation modeling are described (Monte Carlo simulation, system dynamics modeling, discrete-event simulation, and agent-based simulation), along with problems amenable to their use and relevant examples to emergency care. Also discussed is an introduction to available software modeling platforms and how to explore their use for research, along with a research agenda for computer simulation modeling. Through this article, our goal is to enhance adoption of computer simulation, a set of methods that hold great promise in addressing emergency care organization and design challenges. © 2017 by the Society for Academic Emergency Medicine.

  20. The Simultaneous Production Model; A Model for the Construction, Testing, Implementation and Revision of Educational Computer Simulation Environments.

    ERIC Educational Resources Information Center

    Zillesen, Pieter G. van Schaick

    This paper introduces a hardware and software independent model for producing educational computer simulation environments. The model, which is based on the results of 32 studies of educational computer simulations program production, implies that educational computer simulation environments are specified, constructed, tested, implemented, and…

  1. The Learning Effects of Computer Simulations in Science Education

    ERIC Educational Resources Information Center

    Rutten, Nico; van Joolingen, Wouter R.; van der Veen, Jan T.

    2012-01-01

    This article reviews the (quasi)experimental research of the past decade on the learning effects of computer simulations in science education. The focus is on two questions: how use of computer simulations can enhance traditional education, and how computer simulations are best used in order to improve learning processes and outcomes. We report on…

  2. Soft-error tolerance and energy consumption evaluation of embedded computer with magnetic random access memory in practical systems using computer simulations

    NASA Astrophysics Data System (ADS)

    Nebashi, Ryusuke; Sakimura, Noboru; Sugibayashi, Tadahiko

    2017-08-01

    We evaluated the soft-error tolerance and energy consumption of an embedded computer with magnetic random access memory (MRAM) using two computer simulators. One is a central processing unit (CPU) simulator of a typical embedded computer system. We simulated the radiation-induced single-event-upset (SEU) probability in a spin-transfer-torque MRAM cell and also the failure rate of a typical embedded computer due to its main memory SEU error. The other is a delay tolerant network (DTN) system simulator. It simulates the power dissipation of wireless sensor network nodes of the system using a revised CPU simulator and a network simulator. We demonstrated that the SEU effect on the embedded computer with 1 Gbit MRAM-based working memory is less than 1 failure in time (FIT). We also demonstrated that the energy consumption of the DTN sensor node with MRAM-based working memory can be reduced to 1/11. These results indicate that MRAM-based working memory enhances the disaster tolerance of embedded computers.

  3. Computer simulation of the probability that endangered whales will interact with oil spills, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, M.; Jayko, K.; Bowles, A.

    1986-10-01

    A numerical model system was developed to assess quantitatively the probability that endangered bowhead and gray whales will encounter spilled oil in Alaskan waters. Bowhead and gray whale migration diving-surfacing models, and an oil-spill-trajectory model comprise the system. The migration models were developed from conceptual considerations, then calibrated with and tested against observations. The distribution of animals is represented in space and time by discrete points, each of which may represent one or more whales. The movement of a whale point is governed by a random-walk algorithm which stochastically follows a migratory pathway.

  4. Iterated learning and the evolution of language.

    PubMed

    Kirby, Simon; Griffiths, Tom; Smith, Kenny

    2014-10-01

    Iterated learning describes the process whereby an individual learns their behaviour by exposure to another individual's behaviour, who themselves learnt it in the same way. It can be seen as a key mechanism of cultural evolution. We review various methods for understanding how behaviour is shaped by the iterated learning process: computational agent-based simulations; mathematical modelling; and laboratory experiments in humans and non-human animals. We show how this framework has been used to explain the origins of structure in language, and argue that cultural evolution must be considered alongside biological evolution in explanations of language origins. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  6. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into five groups: 1) Grid Functions for grids, grid-checking, etc.; 2) Scalar Functions for contour or carpet plots of density, pressure, temperature, Mach number, vorticity magnitude, helicity, etc.; 3) Vector Functions for vector plots of velocity, vorticity, momentum, and density gradient, etc.; 4) Particle Trace Functions for rake-like plots of particle flow or vortex lines; and 5) Shock locations based on pressure gradient. TURB3D is a modification of PLOT3D which is used for viewing CFD simulations of incompressible turbulent flow. Input flow data consists of pressure, velocity and vorticity. Typical quantities to plot include local fluctuations in flow quantities and turbulent production terms, plotted in physical or wall units. PLOT3D/TURB3D includes both TURB3D and PLOT3D because the operation of TURB3D is identical to PLOT3D, and there is no additional sample data or printed documentation for TURB3D. Graphical capabilities of PLOT3D version 3.6b+ vary among the implementations available through COSMIC. Customers are encouraged to purchase and carefully review the PLOT3D manual before ordering the program for a specific computer and graphics library. There is only one manual for use with all implementations of PLOT3D, and although this manual generally assumes that the Silicon Graphics Iris implementation is being used, informative comments concerning other implementations appear throughout the text. With all implementations, the visual representation of the object and flow field created by PLOT3D consists of points, lines, and polygons. Points can be represented with dots or symbols, color can be used to denote data values, and perspective is used to show depth. Differences among implementations impact the program's ability to use graphical features that are based on 3D polygons, the user's ability to manipulate the graphical displays, and the user's ability to obtain alternate forms of output. In addition to providing the advantages of performing complex calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo, DN10000, and GMR3D are trademarks of Hewlett-Packard, Incorporated. System V is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  7. An animal-to-human scaling law for blast-induced traumatic brain injury risk assessment.

    PubMed

    Jean, Aurélie; Nyein, Michelle K; Zheng, James Q; Moore, David F; Joannopoulos, John D; Radovitzky, Raúl

    2014-10-28

    Despite recent efforts to understand blast effects on the human brain, there are still no widely accepted injury criteria for humans. Recent animal studies have resulted in important advances in the understanding of brain injury due to intense dynamic loads. However, the applicability of animal brain injury results to humans remains uncertain. Here, we use advanced computational models to derive a scaling law relating blast wave intensity to the mechanical response of brain tissue across species. Detailed simulations of blast effects on the brain are conducted for different mammals using image-based biofidelic models. The intensity of the stress waves computed for different external blast conditions is compared across species. It is found that mass scaling, which successfully estimates blast tolerance of the thorax, fails to capture the brain mechanical response to blast across mammals. Instead, we show that an appropriate scaling variable must account for the mass of protective tissues relative to the brain, as well as their acoustic impedance. Peak stresses transmitted to the brain tissue by the blast are then shown to be a power function of the scaling parameter for a range of blast conditions relevant to TBI. In particular, it is found that human brain vulnerability to blast is higher than for any other mammalian species, which is in distinct contrast to previously proposed scaling laws based on body or brain mass. An application of the scaling law to recent experiments on rabbits furnishes the first physics-based injury estimate for blast-induced TBI in humans.

  8. People, Animals and the Environment: An Educational Simulation Game. Teacher's Guide and Student Guide.

    ERIC Educational Resources Information Center

    American Animal Welfare Foundation, St. Paul, MN.

    This document consists of a teacher guide and a student guide to an educational simulation game that provides students with an opportunity to examine the relationship between humans and animals, and to explore the roles that animals play in daily life. The teaching technique employed is a student-centered process in which students work…

  9. CADRE-SS, an in Silico Tool for Predicting Skin Sensitization Potential Based on Modeling of Molecular Interactions.

    PubMed

    Kostal, Jakub; Voutchkova-Kostal, Adelina

    2016-01-19

    Using computer models to accurately predict toxicity outcomes is considered to be a major challenge. However, state-of-the-art computational chemistry techniques can now be incorporated in predictive models, supported by advances in mechanistic toxicology and the exponential growth of computing resources witnessed over the past decade. The CADRE (Computer-Aided Discovery and REdesign) platform relies on quantum-mechanical modeling of molecular interactions that represent key biochemical triggers in toxicity pathways. Here, we present an external validation exercise for CADRE-SS, a variant developed to predict the skin sensitization potential of commercial chemicals. CADRE-SS is a hybrid model that evaluates skin permeability using Monte Carlo simulations, assigns reactive centers in a molecule and possible biotransformations via expert rules, and determines reactivity with skin proteins via quantum-mechanical modeling. The results were promising with an overall very good concordance of 93% between experimental and predicted values. Comparison to performance metrics yielded by other tools available for this endpoint suggests that CADRE-SS offers distinct advantages for first-round screenings of chemicals and could be used as an in silico alternative to animal tests where permissible by legislative programs.

  10. Time-scheduled delivery of computer health animations: "Installing" healthy habits of computer use.

    PubMed

    Wang, Sy-Chyi; Chern, Jin-Yuan

    2013-06-01

    The development of modern technology brings convenience to our lives but removes physical activity from our daily routines, thereby putting our lives at risk. Extended computer use may contribute to symptoms such as visual impairment and musculoskeletal disorders. To help reduce the risk of physical inactivity and promote healthier computer use, this study developed a time-scheduled delivery of health-related animations for users sitting in front of computers for prolonged periods. In addition, we examined the effects that the program had on the computer-related health behavior intentions and actions of participants. Two waves of questionnaires were implemented for data collection before and after intervention. The results showed that the animation program indeed had a positive effect on participants' healthy computer use actions in terms of breathtaking, body massages, and body stretches. It also helped to bridge the intention-action gap of the health behaviors. The development and evaluation were documented, and users' experiences/suggestions were discussed at the end.

  11. Benefits of computer screen-based simulation in learning cardiac arrest procedures.

    PubMed

    Bonnetain, Elodie; Boucheix, Jean-Michel; Hamet, Maël; Freysz, Marc

    2010-07-01

    What is the best way to train medical students early so that they acquire basic skills in cardiopulmonary resuscitation as effectively as possible? Studies have shown the benefits of high-fidelity patient simulators, but have also demonstrated their limits. New computer screen-based multimedia simulators have fewer constraints than high-fidelity patient simulators. In this area, as yet, there has been no research on the effectiveness of transfer of learning from a computer screen-based simulator to more realistic situations such as those encountered with high-fidelity patient simulators. We tested the benefits of learning cardiac arrest procedures using a multimedia computer screen-based simulator in 28 Year 2 medical students. Just before the end of the traditional resuscitation course, we compared two groups. An experiment group (EG) was first asked to learn to perform the appropriate procedures in a cardiac arrest scenario (CA1) in the computer screen-based learning environment and was then tested on a high-fidelity patient simulator in another cardiac arrest simulation (CA2). While the EG was learning to perform CA1 procedures in the computer screen-based learning environment, a control group (CG) actively continued to learn cardiac arrest procedures using practical exercises in a traditional class environment. Both groups were given the same amount of practice, exercises and trials. The CG was then also tested on the high-fidelity patient simulator for CA2, after which it was asked to perform CA1 using the computer screen-based simulator. Performances with both simulators were scored on a precise 23-point scale. On the test on a high-fidelity patient simulator, the EG trained with a multimedia computer screen-based simulator performed significantly better than the CG trained with traditional exercises and practice (16.21 versus 11.13 of 23 possible points, respectively; p<0.001). Computer screen-based simulation appears to be effective in preparing learners to use high-fidelity patient simulators, which present simulations that are closer to real-life situations.

  12. Effects of Static Visuals and Computer-Generated Animations in Facilitating Immediate and Delayed Achievement in the EFL Classroom

    ERIC Educational Resources Information Center

    Lin, Huifen; Chen, Tsuiping; Dwyer, Francis M.

    2006-01-01

    The purpose of this experimental study was to compare the effects of using static visuals versus computer-generated animation to enhance learners' comprehension and retention of a content-based lesson in a computer-based learning environment for learning English as a foreign language (EFL). Fifty-eight students from two EFL reading sections were…

  13. Computational Models of the Cardiovascular System and Its Response to Microgravity

    NASA Technical Reports Server (NTRS)

    Kamm, Roger D.

    1999-01-01

    Computational models of the cardiovascular system are powerful adjuncts to ground-based and in-flight experiments. We will provide NSBRI with a model capable of simulating the short-term effects of gravity on cardiovascular function. The model from this project will: (1) provide a rational framework which quantitatively defines interactions among complex cardiovascular parameters and which supports the critical interpretation of experimental results and testing of hypotheses. (2) permit predictions of the impact of specific countermeasures in the context of various hypothetical cardiovascular abnormalities induced by microgravity. Major progress has been made during the first 18 months of the program: (1) We have developed an operational first-order computer model capable of simulating the cardiovascular response to orthostatic stress. The model consists of a lumped parameter hemodynamic model and a complete reflex control system. The latter includes cardiopulmonary and carotid sinus reflex limbs and interactions between the two. (2) We have modeled the physiologic stress of tilt table experiments and lower body negative pressure procedures (LBNP). We have verified our model's predictions by comparing them with experimental findings from the literature. (3) We have established collaborative efforts with leading investigators interested in experimental studies of orthostatic intolerance, cardiovascular control, and physiologic responses to space flight. (4) We have established a standardized method of transferring data to our laboratory from the ongoing NSBRI bedrest studies. We use this data to estimate input parameters to our model and compare our model predictions to actual data to further verify our model. (5) We are in the process of systematically simulating current hypotheses concerning the mechanism underlying orthostatic intolerance by matching our simulations to stand test data from astronauts pre- and post-flight. (6) We are in the process of developing a JAVA version of the simulator which will be distributed amongst the cardiovascular team members. Future work on this project involves modifications of the model to represent a rodent (rat) model, further evaluation of the bedrest astronaut and animal data, and systematic investigation of specific countermeasures.

  14. Exact and efficient simulation of concordant computation

    NASA Astrophysics Data System (ADS)

    Cable, Hugo; Browne, Daniel E.

    2015-11-01

    Concordant computation is a circuit-based model of quantum computation for mixed states, that assumes that all correlations within the register are discord-free (i.e. the correlations are essentially classical) at every step of the computation. The question of whether concordant computation always admits efficient simulation by a classical computer was first considered by Eastin in arXiv:quant-ph/1006.4402v1, where an answer in the affirmative was given for circuits consisting only of one- and two-qubit gates. Building on this work, we develop the theory of classical simulation of concordant computation. We present a new framework for understanding such computations, argue that a larger class of concordant computations admit efficient simulation, and provide alternative proofs for the main results of arXiv:quant-ph/1006.4402v1 with an emphasis on the exactness of simulation which is crucial for this model. We include detailed analysis of the arithmetic complexity for solving equations in the simulation, as well as extensions to larger gates and qudits. We explore the limitations of our approach, and discuss the challenges faced in developing efficient classical simulation algorithms for all concordant computations.

  15. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Rovira, I.; Sempau, J.; Prezado, Y.

    Purpose: Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-{mu}m-wide microbeams spaced by 200-400 {mu}m) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct featuresmore » of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. Methods: The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Results: Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. Conclusions: The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.« less

  16. Monte Carlo-based treatment planning system calculation engine for microbeam radiation therapy.

    PubMed

    Martinez-Rovira, I; Sempau, J; Prezado, Y

    2012-05-01

    Microbeam radiation therapy (MRT) is a synchrotron radiotherapy technique that explores the limits of the dose-volume effect. Preclinical studies have shown that MRT irradiations (arrays of 25-75-μm-wide microbeams spaced by 200-400 μm) are able to eradicate highly aggressive animal tumor models while healthy tissue is preserved. These promising results have provided the basis for the forthcoming clinical trials at the ID17 Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF). The first step includes irradiation of pets (cats and dogs) as a milestone before treatment of human patients. Within this context, accurate dose calculations are required. The distinct features of both beam generation and irradiation geometry in MRT with respect to conventional techniques require the development of a specific MRT treatment planning system (TPS). In particular, a Monte Carlo (MC)-based calculation engine for the MRT TPS has been developed in this work. Experimental verification in heterogeneous phantoms and optimization of the computation time have also been performed. The penelope/penEasy MC code was used to compute dose distributions from a realistic beam source model. Experimental verification was carried out by means of radiochromic films placed within heterogeneous slab-phantoms. Once validation was completed, dose computations in a virtual model of a patient, reconstructed from computed tomography (CT) images, were performed. To this end, decoupling of the CT image voxel grid (a few cubic millimeter volume) to the dose bin grid, which has micrometer dimensions in the transversal direction of the microbeams, was performed. Optimization of the simulation parameters, the use of variance-reduction (VR) techniques, and other methods, such as the parallelization of the simulations, were applied in order to speed up the dose computation. Good agreement between MC simulations and experimental results was achieved, even at the interfaces between two different media. Optimization of the simulation parameters and the use of VR techniques saved a significant amount of computation time. Finally, parallelization of the simulations improved even further the calculation time, which reached 1 day for a typical irradiation case envisaged in the forthcoming clinical trials in MRT. An example of MRT treatment in a dog's head is presented, showing the performance of the calculation engine. The development of the first MC-based calculation engine for the future TPS devoted to MRT has been accomplished. This will constitute an essential tool for the future clinical trials on pets at the ESRF. The MC engine is able to calculate dose distributions in micrometer-sized bins in complex voxelized CT structures in a reasonable amount of time. Minimization of the computation time by using several approaches has led to timings that are adequate for pet radiotherapy at synchrotron facilities. The next step will consist in its integration into a user-friendly graphical front-end.

  17. Monte Carlo simulation of simultaneous radiation detection in the hybrid tomography system ClearPET-XPAD3/CT

    NASA Astrophysics Data System (ADS)

    Dávila, H. Olaya; Sevilla, A. C.; Castro, H. F.; Martínez, S. A.

    2016-07-01

    Using the Geant4 based simulation framework SciFW1, a detailed simulation was performed for a detector array in the hybrid tomography prototype for small animals called ClearPET / XPAD, which was built in the Centre de Physique des Particules de Marseille. The detector system consists of an array of phoswich scintillation detectors: LSO (Lutetium Oxy-ortosilicate doped with cerium Lu2SiO5:Ce) and LuYAP (Lutetium Ortoaluminate of Yttrium doped with cerium Lu0.7Y0.3AlO3:Ce) for Positron Emission Tomography (PET) and hybrid pixel detector XPAD for Computed Tomography (CT). Simultaneous acquisition of deposited energy and the corresponding time - position for each recorded event were analyzed, independently, for both detectors. interference between detection modules for PET and CT. Information about amount of radiation reaching each phoswich crystal and XPAD detector using a phantom in order to study the effectiveness by radiation attenuation and influence the positioning of the radioactive source 22Na was obtained. The simulation proposed will improve distribution of detectors rings and interference values will be taken into account in the new versions of detectors.

  18. Hop, Skip and Jump: Animation Software.

    ERIC Educational Resources Information Center

    Eiser, Leslie

    1986-01-01

    Discusses the features of animation software packages, reviewing eight commercially available programs. Information provided for each program includes name, publisher, current computer(s) required, cost, documentation, input device, import/export capabilities, printing possibilities, what users can originate, types of image manipulation possible,…

  19. Toward a computational theory for motion understanding: The expert animators model

    NASA Technical Reports Server (NTRS)

    Mohamed, Ahmed S.; Armstrong, William W.

    1988-01-01

    Artificial intelligence researchers claim to understand some aspect of human intelligence when their model is able to emulate it. In the context of computer graphics, the ability to go from motion representation to convincing animation should accordingly be treated not simply as a trick for computer graphics programmers but as important epistemological and methodological goal. In this paper we investigate a unifying model for animating a group of articulated bodies such as humans and robots in a three-dimensional environment. The proposed model is considered in the framework of knowledge representation and processing, with special reference to motion knowledge. The model is meant to help setting the basis for a computational theory for motion understanding applied to articulated bodies.

  20. Single-Photon Computed Tomography With Large Position-Sensitive Phototubes*

    NASA Astrophysics Data System (ADS)

    Feldmann, John; Ranck, Amoreena; Saunders, Robert S.; Welsh, Robert E.; Bradley, Eric L.; Saha, Margaret S.; Kross, Brian; Majewski, Stan; Popov, Vladimir; Weisenberger, Andrew G.; Wojcik, Randolph

    2000-10-01

    Position-sensitive photomultiplier tubes (PSPMTs) coupled to pixelated CsI(Tl) scintillators have been used with parallel-hole collimators to view the metabolism in small animals of radiopharmaceuticals tagged with ^125I. We report here our preliminary results analyzed using a tomography program^1 written in IDL programming language. The PSPMTs are mounted on a rotating gantry so as to view the subject animal from any azimuth. Preliminary results to test the tomography algorithm have been obtained by placing a variety of plastic mouse-brain phantoms (loaded with Na^125I) in front of one of the detectors and rotating the phantom in steps through 360 degrees. Results of this simulation taken with a variety of collimator hole sizes will be compared and discussed. Extentions of this technique to the use of very small PSPMTs (Hamamatsu M-64) which are capable of a very close approach to those parts of the animal of greatest interest will be described. *Supported in part by The Department of Energy, The National Science Foundation, The American Diabetes Association, The Howard Hughes Foundation and The Jeffress Trust. 1. Tomography algorithm kindly provided by Dr. S. Meikle of The Royal Prince Albert Hospital, Sydney, Australia

  1. Mechanosensory Interactions Drive Collective Behaviour in Drosophila

    PubMed Central

    Ramdya, Pavan; Lichocki, Pawel; Cruchet, Steeve; Frisch, Lukas; Tse, Winnie; Floreano, Dario; Benton, Richard

    2014-01-01

    Collective behaviour enhances environmental sensing and decision-making in groups of animals1,2. Experimental and theoretical investigations of schooling fish, flocking birds and human crowds have demonstrated that simple interactions between individuals can explain emergent group dynamics3,4. These findings imply the existence of neural circuits that support distributed behaviours, but the molecular and cellular identities of relevant sensory pathways are unknown. Here we show that Drosophila melanogaster exhibits collective responses to an aversive odour: individual flies weakly avoid the stimulus, but groups show enhanced escape reactions. Using high-resolution behavioural tracking, computational simulations, genetic perturbations, neural silencing and optogenetic activation we demonstrate that this collective odour avoidance arises from cascades of appendage touch interactions between pairs of flies. Inter-fly touch sensing and collective behaviour require the activity of distal leg mechanosensory sensilla neurons and the mechanosensory channel NOMPC5,6. Remarkably, through these inter-fly encounters, wild-type flies can elicit avoidance behaviour in mutant animals that cannot sense the odour – a basic form of communication. Our data highlight the unexpected importance of social context in the sensory responses of a solitary species and open the door to a neural circuit level understanding of collective behaviour in animal groups. PMID:25533959

  2. New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing ofmore » PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson`s and Huntington`s disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology.« less

  3. Numerical and experimental hydrodynamic analysis of suction cup bio-logging tag designs for marine mammals

    NASA Astrophysics Data System (ADS)

    Murray, Mark; Shorter, Alex; Howle, Laurens; Johnson, Mark; Moore, Michael

    2012-11-01

    The improvement and miniaturization of sensing technologies has made bio-logging tags, utilized for the study of marine mammal behavior, more practical. These sophisticated sensing packages require a housing which protects the electronics from the environment and provides a means of attachment to the animal. The hydrodynamic forces on these housings can inadvertently remove the tag or adversely affect the behavior or energetics of the animal. A modification to the original design of a suction cup bio-logging tag housing was desired to minimize the adverse forces. In this work, hydrodynamic loading of two suction cup tag designs, original and modified designs, were analyzed using computational fluid dynamics (CFD) models and validated experimentally. Overall, the simulation and experimental results demonstrated that a tag housing that minimized geometric disruptions to the flow reduced drag forces, and that a tag housing with a small frontal cross-sectional area close to the attachment surface reduced lift forces. Preliminary results from experimental work with a common dolphin cadaver indicates that the suction cups used to attach the tags to the animal provide sufficient attachment force to resist failure at predicted drag and lift forces in 10 m/s flow.

  4. Prompt gamma-ray imaging for small animals

    NASA Astrophysics Data System (ADS)

    Xu, Libai

    Small animal imaging is recognized as a powerful discovery tool for small animal modeling of human diseases, which is providing an important clue to complete understanding of disease mechanisms and is helping researchers develop and test new treatments. The current small animal imaging techniques include positron emission tomography (PET), single photon emission tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound (US). A new imaging modality called prompt gamma-ray imaging (PGI) has been identified and investigated primarily by Monte Carlo simulation. Currently it is suggested for use on small animals. This new technique could greatly enhance and extend the present capabilities of PET and SPECT imaging from ingested radioisotopes to the imaging of selected non-radioactive elements, such as Gd, Cd, Hg, and B, and has the great potential to be used in Neutron Cancer Therapy to monitor neutron distribution and neutron-capture agent distribution. This approach consists of irradiating small animals in the thermal neutron beam of a nuclear reactor to produce prompt gamma rays from the elements in the sample by the radiative capture (n, gamma) reaction. These prompt gamma rays are emitted in energies that are characteristic of each element and they are also produced in characteristic coincident chains. After measuring these prompt gamma rays by surrounding spectrometry array, the distribution of each element of interest in the sample is reconstructed from the mapping of each detected signature gamma ray by either electronic collimations or mechanical collimations. In addition, the transmitted neutrons from the beam can be simultaneously used for very sensitive anatomical imaging, which provides the registration for the elemental distributions obtained from PGI. The primary approach is to use Monte Carlo simulation methods either with the specific purpose code CEARCPG, developed at NC State University or with the general purpose codes GEANT4 or MCNP5, to predict results and investigate the feasibility of this new imaging idea. Benchmark experiments have been conducted to test the capability of the code to simulate prompt gamma rays, which are produced by following the nuclear structures of each irradiated isotope, and coincidence counting techniques, which are considered the most important improvement in neutron-related gamma-ray detection applications to reduce gamma background and improve system signal-to-noise ratios. With coincidence prompt gamma rays available, two major imaging techniques, electronic collimations and mechanic collimations, are implemented in the simulation to illustrate the feasibility of imaging elemental distribution by this new technique. The expectation maximization algorithm is employed in electronic collimation to reconstruct images. The common SPECT imaging algorithms are used in mechanical collimation to get an image. Several critical topics concerning practical applications have already been discussed, such as the radiation dose to the mouse and the detection efficiency of high-energy gamma rays. The funding of this work is provided by the Center for Engineering Application of Radioisotopes (CEAR) at North Carolina State University (NCSU) and Nuclear Engineering Education Research.

  5. AORTIC COARCTATION: RECENT DEVELOPMENTS IN EXPERIMENTAL AND COMPUTATIONAL METHODS TO ASSESS TREATMENTS FOR THIS SIMPLE CONDITION

    PubMed Central

    LaDisa, John F.; Taylor, Charles A.; Feinstein, Jeffrey A.

    2010-01-01

    Coarctation of the aorta (CoA) is often considered a relatively simple disease, but long-term outcomes suggest otherwise as life expectancies are decades less than in the average population and substantial morbidity often exists. What follows is an expanded version of collective work conducted by the authors’ and numerous collaborators that was presented at the 1st International Conference on Computational Simulation in Congenital Heart Disease pertaining to recent advances for CoA. The work begins by focusing on what is known about blood flow, pressure and indices of wall shear stress (WSS) in patients with normal vascular anatomy from both clinical imaging and the use of computational fluid dynamics (CFD) techniques. Hemodynamic alterations observed in CFD studies from untreated CoA patients and those undergoing surgical or interventional treatment are subsequently discussed. The impact of surgical approach, stent design and valve morphology are also presented for these patient populations. Finally, recent work from a representative experimental animal model of CoA that may offer insight into proposed mechanisms of long-term morbidity in CoA is presented. PMID:21152106

  6. Inventory of environmental impact models related to energy technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Dailey, N.S.; Johnson, C.A.

    The purpose of this inventory is to identify and collect data on computer simulations and computational models related to the environmental effects of energy source development, energy conversion, or energy utilization. Information for 33 data fields was sought for each model reported. All of the information which could be obtained within the time alloted for completion of the project is presented for each model listed. Efforts will be continued toward acquiring the needed information. Readers who are interested in these particular models are invited to contact ESIC for assistance in locating them. In addition to the standard bibliographic information, othermore » data fields of interest to modelers, such as computer hardware and software requirements, algorithms, applications, and existing model validation information, are included. Indexes are provided for contact person, acronym, keyword, and title. The models are grouped into the following categories: atmospheric transport, air quality, aquatic transport, terrestrial food chains, soil transport, aquatic food chains, water quality, dosimetry, and human effects, animal effects, plant effects, and generalized environmental transport. Within these categories, the models are arranged alphabetically by last name of the contact person.« less

  7. Quantitative relation between server motion and receiver anticipation in tennis: implications of responses to computer-simulated motions.

    PubMed

    Ida, Hirofumi; Fukuhara, Kazunobu; Sawada, Misako; Ishii, Motonobu

    2011-01-01

    The purpose of this study was to determine the quantitative relationships between the server's motion and the receiver's anticipation using a computer graphic animation of tennis serves. The test motions were determined by capturing the motion of a model player and estimating the computational perturbations caused by modulating the rotation of the player's elbow and forearm joints. Eight experienced and eight novice players rated their anticipation of the speed, direction, and spin of the ball on a visual analogue scale. The experienced players significantly altered some of their anticipatory judgment depending on the percentage of both the forearm and elbow modulations, while the novice players indicated no significant changes. Multiple regression analyses, including that of the racket's kinematic parameters immediately before racket-ball impact as independent variables, showed that the experienced players demonstrated a higher coefficient of determination than the novice players in their anticipatory judgment of the ball direction. The results have implications on the understanding of the functional relation between a player's motion and the opponent's anticipatory judgment during real play.

  8. Alternative methods for the median lethal dose (LD(50)) test: the up-and-down procedure for acute oral toxicity.

    PubMed

    Rispin, Amy; Farrar, David; Margosches, Elizabeth; Gupta, Kailash; Stitzel, Katherine; Carr, Gregory; Greene, Michael; Meyer, William; McCall, Deborah

    2002-01-01

    The authors have developed an improved version of the up-and-down procedure (UDP) as one of the replacements for the traditional acute oral toxicity test formerly used by the Organisation for Economic Co-operation and Development member nations to characterize industrial chemicals, pesticides, and their mixtures. This method improves the performance of acute testing for applications that use the median lethal dose (classic LD50) test while achieving significant reductions in animal use. It uses sequential dosing, together with sophisticated computer-assisted computational methods during the execution and calculation phases of the test. Staircase design, a form of sequential test design, can be applied to acute toxicity testing with its binary experimental endpoints (yes/no outcomes). The improved UDP provides a point estimate of the LD50 and approximate confidence intervals in addition to observed toxic signs for the substance tested. It does not provide information about the dose-response curve. Computer simulation was used to test performance of the UDP without the need for additional laboratory validation.

  9. Real-time simulation of the TF30-P-3 turbofan engine using a hybrid computer

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Bruton, W. M.

    1974-01-01

    A real-time, hybrid-computer simulation of the TF30-P-3 turbofan engine was developed. The simulation was primarily analog in nature but used the digital portion of the hybrid computer to perform bivariate function generation associated with the performance of the engine's rotating components. FORTRAN listings and analog patching diagrams are provided. The hybrid simulation was controlled by a digital computer programmed to simulate the engine's standard hydromechanical control. Both steady-state and dynamic data obtained from the digitally controlled engine simulation are presented. Hybrid simulation data are compared with data obtained from a digital simulation provided by the engine manufacturer. The comparisons indicate that the real-time hybrid simulation adequately matches the baseline digital simulation.

  10. Reparametrization-based estimation of genetic parameters in multi-trait animal model using Integrated Nested Laplace Approximation.

    PubMed

    Mathew, Boby; Holand, Anna Marie; Koistinen, Petri; Léon, Jens; Sillanpää, Mikko J

    2016-02-01

    A novel reparametrization-based INLA approach as a fast alternative to MCMC for the Bayesian estimation of genetic parameters in multivariate animal model is presented. Multi-trait genetic parameter estimation is a relevant topic in animal and plant breeding programs because multi-trait analysis can take into account the genetic correlation between different traits and that significantly improves the accuracy of the genetic parameter estimates. Generally, multi-trait analysis is computationally demanding and requires initial estimates of genetic and residual correlations among the traits, while those are difficult to obtain. In this study, we illustrate how to reparametrize covariance matrices of a multivariate animal model/animal models using modified Cholesky decompositions. This reparametrization-based approach is used in the Integrated Nested Laplace Approximation (INLA) methodology to estimate genetic parameters of multivariate animal model. Immediate benefits are: (1) to avoid difficulties of finding good starting values for analysis which can be a problem, for example in Restricted Maximum Likelihood (REML); (2) Bayesian estimation of (co)variance components using INLA is faster to execute than using Markov Chain Monte Carlo (MCMC) especially when realized relationship matrices are dense. The slight drawback is that priors for covariance matrices are assigned for elements of the Cholesky factor but not directly to the covariance matrix elements as in MCMC. Additionally, we illustrate the concordance of the INLA results with the traditional methods like MCMC and REML approaches. We also present results obtained from simulated data sets with replicates and field data in rice.

  11. Laparoscopic Skills Are Improved With LapMentor™ Training

    PubMed Central

    Andreatta, Pamela B.; Woodrum, Derek T.; Birkmeyer, John D.; Yellamanchilli, Rajani K.; Doherty, Gerard M.; Gauger, Paul G.; Minter, Rebecca M.

    2006-01-01

    Objective: To determine if prior training on the LapMentor™ laparoscopic simulator leads to improved performance of basic laparoscopic skills in the animate operating room environment. Summary Background Data: Numerous influences have led to the development of computer-aided laparoscopic simulators: a need for greater efficiency in training, the unique and complex nature of laparoscopic surgery, and the increasing demand that surgeons demonstrate competence before proceeding to the operating room. The LapMentor™ simulator is expensive, however, and its use must be validated and justified prior to implementation into surgical training programs. Methods: Nineteen surgical interns were randomized to training on the LapMentor™ laparoscopic simulator (n = 10) or to a control group (no simulator training, n = 9). Subjects randomized to the LapMentor™ trained to expert criterion levels 2 consecutive times on 6 designated basic skills modules. All subjects then completed a series of laparoscopic exercises in a live porcine model, and performance was assessed independently by 2 blinded reviewers. Time, accuracy rates, and global assessments of performance were recorded with an interrater reliability between reviewers of 0.99. Results: LapMentor™ trained interns completed the 30° camera navigation exercise in significantly less time than control interns (166 ± 52 vs. 220 ± 39 seconds, P < 0.05); they also achieved higher accuracy rates in identifying the required objects with the laparoscope (96% ± 8% vs. 82% ± 15%, P < 0.05). Similarly, on the two-handed object transfer exercise, task completion time for LapMentor™ trained versus control interns was 130 ± 23 versus 184 ± 43 seconds (P < 0.01) with an accuracy rate of 98% ± 5% versus 80% ± 13% (P < 0.001). Additionally, LapMentor™ trained interns outperformed control subjects with regard to camera navigation skills, efficiency of motion, optimal instrument handling, perceptual ability, and performance of safe electrocautery. Conclusions: This study demonstrates that prior training on the LapMentor™ laparoscopic simulator leads to improved resident performance of basic skills in the animate operating room environment. This work marks the first prospective, randomized evaluation of the LapMentor™ simulator, and provides evidence that LapMentor™ training may lead to improved operating room performance. PMID:16772789

  12. Displaying Computer Simulations Of Physical Phenomena

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1991-01-01

    Paper discusses computer simulation as means of experiencing and learning to understand physical phenomena. Covers both present simulation capabilities and major advances expected in near future. Visual, aural, tactile, and kinesthetic effects used to teach such physical sciences as dynamics of fluids. Recommends classrooms in universities, government, and industry be linked to advanced computing centers so computer simulations integrated into education process.

  13. The Impact of Animation in CD-ROM Books on Students' Reading Behaviors and Comprehension.

    ERIC Educational Resources Information Center

    Okolo, Cindy; Hayes, Renee

    This study evaluated the use of children's literature presented via one of three conditions: an adult reading a book to the child; the child reading a CD-ROM version of a book on the computer but without animation; and the child reading the book on the computer with high levels of animation. The study, in one primary grade classroom, involved 10…

  14. The DYNAMO Simulation Language--An Alternate Approach to Computer Science Education.

    ERIC Educational Resources Information Center

    Bronson, Richard

    1986-01-01

    Suggests the use of computer simulation of continuous systems as a problem solving approach to computer languages. Outlines the procedures that the system dynamics approach employs in computer simulations. Explains the advantages of the special purpose language, DYNAMO. (ML)

  15. Launch Site Computer Simulation and its Application to Processes

    NASA Technical Reports Server (NTRS)

    Sham, Michael D.

    1995-01-01

    This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.

  16. Protocols for Handling Messages Between Simulation Computers

    NASA Technical Reports Server (NTRS)

    Balcerowski, John P.; Dunnam, Milton

    2006-01-01

    Practical Simulator Network (PSimNet) is a set of data-communication protocols designed especially for use in handling messages between computers that are engaging cooperatively in real-time or nearly-real-time training simulations. In a typical application, computers that provide individualized training at widely dispersed locations would communicate, by use of PSimNet, with a central host computer that would provide a common computational- simulation environment and common data. Originally intended for use in supporting interfaces between training computers and computers that simulate the responses of spacecraft scientific payloads, PSimNet could be especially well suited for a variety of other applications -- for example, group automobile-driver training in a classroom. Another potential application might lie in networking of automobile-diagnostic computers at repair facilities to a central computer that would compile the expertise of numerous technicians and engineers and act as an expert consulting technician.

  17. Reversible simulation of irreversible computation

    NASA Astrophysics Data System (ADS)

    Li, Ming; Tromp, John; Vitányi, Paul

    1998-09-01

    Computer computations are generally irreversible while the laws of physics are reversible. This mismatch is penalized by among other things generating excess thermic entropy in the computation. Computing performance has improved to the extent that efficiency degrades unless all algorithms are executed reversibly, for example by a universal reversible simulation of irreversible computations. All known reversible simulations are either space hungry or time hungry. The leanest method was proposed by Bennett and can be analyzed using a simple ‘reversible’ pebble game. The reachable reversible simulation instantaneous descriptions (pebble configurations) of such pebble games are characterized completely. As a corollary we obtain the reversible simulation by Bennett and, moreover, show that it is a space-optimal pebble game. We also introduce irreversible steps and give a theorem on the tradeoff between the number of allowed irreversible steps and the memory gain in the pebble game. In this resource-bounded setting the limited erasing needs to be performed at precise instants during the simulation. The reversible simulation can be modified so that it is applicable also when the simulated computation time is unknown.

  18. a Geo-Visual Analytics Approach to Biological Shepherding: Modelling Animal Movements and Impacts

    NASA Astrophysics Data System (ADS)

    Benke, K. K.; Sheth, F.; Betteridge, K.; Pettit, C. J.; Aurambout, J.-P.

    2012-07-01

    The lamb industry in Victoria is a significant component of the state economy with annual exports in the vicinity of 1 billion. GPS and visualisation tools can be used to monitor grazing animal movements at the farm scale and observe interactions with the environment. Modelling the spatial-temporal movements of grazing animals in response to environmental conditions provides input for the design of paddocks with the aim of improving management procedures, animal performance and animal welfare. The term "biological shepherding" is associated with the re-design of environmental conditions and the analysis of responses from grazing animals. The combination of biological shepherding with geo-visual analytics (geo-spatial data analysis with visualisation) provides a framework for improving landscape design and supports research in grazing behaviour in variable landscapes, heat stress avoidance behaviour during summer months, and modelling excreta distributions (with respect to nitrogen emissions and nitrogen return for fertilising the paddock). Nitrogen losses due to excreta are mainly in the form of gaseous emissions to the atmosphere and leaching into the groundwater. In this study, background and context are provided in the case of biological shepherding and tracking animal movements. Examples are provided of recent applications in regional Australia and New Zealand. Based on experimental data and computer simulation, and using data visualisation and feature extraction, it was demonstrated that livestock excreta are not always randomly located, but concentrated around localised gathering points, sometimes separated by the nature of the excretion. Farmers require information on the nitrogen losses in order to reduce emissions to meet local and international nitrogen leaching and greenhouse gas targets and to improve the efficiency of nutrient management.

  19. Massively parallel quantum computer simulator

    NASA Astrophysics Data System (ADS)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray X1E, a SGI Altix 3700 and clusters of PCs running Windows XP. We study the performance of the software by simulating quantum computers containing up to 36 qubits, using up to 4096 processors and up to 1 TB of memory. Our results demonstrate that the simulator exhibits nearly ideal scaling as a function of the number of processors and suggest that the simulation software described in this paper may also serve as benchmark for testing high-end parallel computers.

  20. Simulated Flyover of Mars Canyon Map Animation

    NASA Image and Video Library

    2014-12-12

    This frame from an animation simulates a flyover of a portion of a Martian canyon detailed in a geological map produced by the U.S. Geological Survey and based on observations by the HiRISE camera on NASA Mars Reconnaissance Orbiter.

  1. Cardiovascular responses to hypogravic environments

    NASA Technical Reports Server (NTRS)

    Sandler, H.

    1983-01-01

    The cardiovascular deconditioning observed during and after space flight is characterized in a review of human space and simulation studies and animal simulations. The various simulation techniques (horizontal bed rest, head-down tilt, and water immersion in man, and immobilization of animals) are examined, and sample results are presented in graphs. Countermeasures such as exercise regimens, fluid replacement, drugs, venous pooling, G-suits, oscillating beds, electrostimulation of muscles, lower-body negative pressure, body-surface cooling, and hypoxia are reviewed and found to be generally ineffective or unreliable. The need for future space experimentation in both humans and animals is indicated.

  2. Space-filling designs for computer experiments: A review

    DOE PAGES

    Joseph, V. Roshan

    2016-01-29

    Improving the quality of a product/process using a computer simulator is a much less expensive option than the real physical testing. However, simulation using computationally intensive computer models can be time consuming and therefore, directly doing the optimization on the computer simulator can be infeasible. Experimental design and statistical modeling techniques can be used for overcoming this problem. This article reviews experimental designs known as space-filling designs that are suitable for computer simulations. In the review, a special emphasis is given for a recently developed space-filling design called maximum projection design. Furthermore, its advantages are illustrated using a simulation conductedmore » for optimizing a milling process.« less

  3. Space-filling designs for computer experiments: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, V. Roshan

    Improving the quality of a product/process using a computer simulator is a much less expensive option than the real physical testing. However, simulation using computationally intensive computer models can be time consuming and therefore, directly doing the optimization on the computer simulator can be infeasible. Experimental design and statistical modeling techniques can be used for overcoming this problem. This article reviews experimental designs known as space-filling designs that are suitable for computer simulations. In the review, a special emphasis is given for a recently developed space-filling design called maximum projection design. Furthermore, its advantages are illustrated using a simulation conductedmore » for optimizing a milling process.« less

  4. The evolution of distributed sensing and collective computation in animal populations

    PubMed Central

    Hein, Andrew M; Rosenthal, Sara Brin; Hagstrom, George I; Berdahl, Andrew; Torney, Colin J; Couzin, Iain D

    2015-01-01

    Many animal groups exhibit rapid, coordinated collective motion. Yet, the evolutionary forces that cause such collective responses to evolve are poorly understood. Here, we develop analytical methods and evolutionary simulations based on experimental data from schooling fish. We use these methods to investigate how populations evolve within unpredictable, time-varying resource environments. We show that populations evolve toward a distinctive regime in behavioral phenotype space, where small responses of individuals to local environmental cues cause spontaneous changes in the collective state of groups. These changes resemble phase transitions in physical systems. Through these transitions, individuals evolve the emergent capacity to sense and respond to resource gradients (i.e. individuals perceive gradients via social interactions, rather than sensing gradients directly), and to allocate themselves among distinct, distant resource patches. Our results yield new insight into how natural selection, acting on selfish individuals, results in the highly effective collective responses evident in nature. DOI: http://dx.doi.org/10.7554/eLife.10955.001 PMID:26652003

  5. Motion synthesis and force distribution analysis for a biped robot.

    PubMed

    Trojnacki, Maciej T; Zielińska, Teresa

    2011-01-01

    In this paper, the method of generating biped robot motion using recorded human gait is presented. The recorded data were modified taking into account the velocity available for robot drives. Data includes only selected joint angles, therefore the missing values were obtained considering the dynamic postural stability of the robot, which means obtaining an adequate motion trajectory of the so-called Zero Moment Point (ZMT). Also, the method of determining the ground reaction forces' distribution during the biped robot's dynamic stable walk is described. The method was developed by the authors. Following the description of equations characterizing the dynamics of robot's motion, the values of the components of ground reaction forces were symbolically determined as well as the coordinates of the points of robot's feet contact with the ground. The theoretical considerations have been supported by computer simulation and animation of the robot's motion. This was done using Matlab/Simulink package and Simulink 3D Animation Toolbox, and it has proved the proposed method.

  6. Rapid, parallel path planning by propagating wavefronts of spiking neural activity

    PubMed Central

    Ponulak, Filip; Hopfield, John J.

    2013-01-01

    Efficient path planning and navigation is critical for animals, robotics, logistics and transportation. We study a model in which spatial navigation problems can rapidly be solved in the brain by parallel mental exploration of alternative routes using propagating waves of neural activity. A wave of spiking activity propagates through a hippocampus-like network, altering the synaptic connectivity. The resulting vector field of synaptic change then guides a simulated animal to the appropriate selected target locations. We demonstrate that the navigation problem can be solved using realistic, local synaptic plasticity rules during a single passage of a wavefront. Our model can find optimal solutions for competing possible targets or learn and navigate in multiple environments. The model provides a hypothesis on the possible computational mechanisms for optimal path planning in the brain, at the same time it is useful for neuromorphic implementations, where the parallelism of information processing proposed here can fully be harnessed in hardware. PMID:23882213

  7. Computer Support of Operator Training: Constructing and Testing a Prototype of a CAL (Computer Aided Learning) Supported Simulation Environment.

    ERIC Educational Resources Information Center

    Zillesen, P. G. van Schaick; And Others

    Instructional feedback given to the learners during computer simulation sessions may be greatly improved by integrating educational computer simulation programs with hypermedia-based computer-assisted learning (CAL) materials. A prototype of a learning environment of this type called BRINE PURIFICATION was developed for use in corporate training…

  8. Refinement, Reduction, and Replacement of Animal Toxicity Tests by Computational Methods.

    PubMed

    Ford, Kevin A

    2016-12-01

    Widespread public and scientific interest in promoting the care and well-being of animals used for toxicity testing has given rise to improvements in animal welfare practices and views over time, as well as laws and regulations that support means to reduce, refine, and replace animal use (known as the 3Rs) in certain toxicity studies. One way these regulations continue to achieve their aim is by promoting the research, development, and application of alternative testing approaches to characterize potential toxicities either without animals or with minimal use. An important example of an alternative approach is the use of computational toxicology models. Along with the potential capacity to reduce or replace the use of animals for the assessment of particular toxicological endpoints, computational models offer several advantages compared to in vitro and in vivo approaches, including cost-effectiveness, rapid availability of results, and the ability to fully standardize procedures. Pharmaceutical research incorporating the use of computational models has increased steadily over the past 15 years, likely driven by the motivation of companies to screen out toxic compounds in the early stages of development. Models are currently available to aid in the prediction of several important toxicological endpoints, including mutagenicity, carcinogenicity, eye irritation, hepatotoxicity, and skin sensitization, albeit with varying degrees of success. This review serves to introduce the concepts of computational toxicology and evaluate their role in the safety assessment of compounds, while also highlighting the application of in silico methods in the support of the goal and vision of the 3Rs. © The Author 2016. Published by Oxford University Press on behalf of the Institute for Laboratory Animal Research.All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Teaching Tip: Development of Veterinary Anesthesia Simulations for Pre-Clinical Training: Design, Implementation, and Evaluation Based on Student Perspectives.

    PubMed

    Jones, Jana L; Rinehart, Jim; Spiegel, Jacqueline Jordan; Englar, Ryane E; Sidaway, Brian K; Rowles, Joie

    2018-01-01

    Anesthesia simulations have been used in pre-clinical medical training for decades to help learners gain confidence and expertise in an operating room environment without danger to a live patient. The authors describe a veterinary anesthesia simulation environment (VASE) with anesthesia scenarios developed to provide a re-creation of a veterinarian's task environment while performing anesthesia. The VASE uses advanced computer technology with simulator inputs provided from standard monitoring equipment in common use during veterinary anesthesia and a commercial canine training mannequin that allows intubation, ventilation, and venous access. The simulation outputs are determined by a script that outlines routine anesthesia scenarios and describes the consequences of students' hands-on actions and interventions during preestablished anesthetic tasks and critical incidents. Patients' monitored physiologic parameters may be changed according to predetermined learner events and students' interventions to provide immediate learner feedback and clinical realism. A total of 96 students from the pre-clinical anesthesia course participated in the simulations and the pre- and post-simulation surveys evaluating students' perspectives. Results of the surveys and comparisons of overall categorical cumulative responses in the pre- and post-simulation surveys indicated improvement in learners' perceived preparedness and confidence as a result of the simulated anesthesia experience, with significant improvement in the strongly agree, moderately agree, and agree categories (p<.05 at a 95% CI). These results suggest that anesthesia simulations in the VASE may complement traditional teaching methods through experiential learning and may help foster classroom-to-clinic transference of knowledge and skills without harm to an animal.

  10. Computer Simulation in Mass Emergency and Disaster Response: An Evaluation of Its Effectiveness as a Tool for Demonstrating Strategic Competency in Emergency Department Medical Responders

    ERIC Educational Resources Information Center

    O'Reilly, Daniel J.

    2011-01-01

    This study examined the capability of computer simulation as a tool for assessing the strategic competency of emergency department nurses as they responded to authentically computer simulated biohazard-exposed patient case studies. Thirty registered nurses from a large, urban hospital completed a series of computer-simulated case studies of…

  11. Space Ultrareliable Modular Computer (SUMC) instruction simulator

    NASA Technical Reports Server (NTRS)

    Curran, R. T.

    1972-01-01

    The design principles, description, functional operation, and recommended expansion and enhancements are presented for the Space Ultrareliable Modular Computer interpretive simulator. Included as appendices are the user's manual, program module descriptions, target instruction descriptions, simulator source program listing, and a sample program printout. In discussing the design and operation of the simulator, the key problems involving host computer independence and target computer architectural scope are brought into focus.

  12. Improving Perceptual Skills with 3-Dimensional Animations.

    ERIC Educational Resources Information Center

    Johns, Janet Faye; Brander, Julianne Marie

    1998-01-01

    Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)

  13. Signal detection in animal psychoacoustics: Analysis and simulation of sensory and decision-related influences

    PubMed Central

    Alves-Pinto, A.; Sollini, J.; Sumner, C.J.

    2012-01-01

    Signal detection theory (SDT) provides a framework for interpreting psychophysical experiments, separating the putative internal sensory representation and the decision process. SDT was used to analyse ferret behavioural responses in a (yes–no) tone-in-noise detection task. Instead of measuring the receiver-operating characteristic (ROC), we tested SDT by comparing responses collected using two common psychophysical data collection methods. These (Constant Stimuli, Limits) differ in the set of signal levels presented within and across behavioural sessions. The results support the use of SDT as a method of analysis: SDT sensory component was unchanged between the two methods, even though decisions depended on the stimuli presented within a behavioural session. Decision criterion varied trial-by-trial: a ‘yes’ response was more likely after a correct rejection trial than a hit trial. Simulation using an SDT model with several decision components reproduced the experimental observations accurately, leaving only ∼10% of the variance unaccounted for. The model also showed that trial-by-trial dependencies were unlikely to influence measured psychometric functions or thresholds. An additional model component suggested that inattention did not contribute substantially. Further analysis showed that ferrets were changing their decision criteria, almost optimally, to maximise the reward obtained in a session. The data suggest trial-by-trial reward-driven optimization of the decision process. Understanding the factors determining behavioural responses is important for correlating neural activity and behaviour. SDT provides a good account of animal psychoacoustics, and can be validated using standard psychophysical methods and computer simulations, without recourse to ROC measurements. PMID:22698686

  14. Computer-aided Instructional System for Transmission Line Simulation.

    ERIC Educational Resources Information Center

    Reinhard, Erwin A.; Roth, Charles H., Jr.

    A computer-aided instructional system has been developed which utilizes dynamic computer-controlled graphic displays and which requires student interaction with a computer simulation in an instructional mode. A numerical scheme has been developed for digital simulation of a uniform, distortionless transmission line with resistive terminations and…

  15. Reflected stochastic differential equation models for constrained animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  16. Verifying the Simulation Hypothesis via Infinite Nested Universe Simulacrum Loops

    NASA Astrophysics Data System (ADS)

    Sharma, Vikrant

    2017-01-01

    The simulation hypothesis proposes that local reality exists as a simulacrum within a hypothetical computer's dimension. More specifically, Bostrom's trilemma proposes that the number of simulations an advanced 'posthuman' civilization could produce makes the proposition very likely. In this paper a hypothetical method to verify the simulation hypothesis is discussed using infinite regression applied to a new type of infinite loop. Assign dimension n to any computer in our present reality, where dimension signifies the hierarchical level in nested simulations our reality exists in. A computer simulating known reality would be dimension (n-1), and likewise a computer simulating an artificial reality, such as a video game, would be dimension (n +1). In this method, among others, four key assumptions are made about the nature of the original computer dimension n. Summations show that regressing such a reality infinitely will create convergence, implying that the verification of whether local reality is a grand simulation is feasible to detect with adequate compute capability. The action of reaching said convergence point halts the simulation of local reality. Sensitivities to the four assumptions and implications are discussed.

  17. Animating functional anatomy for the web.

    PubMed

    Guttmann, G D

    2000-04-15

    The instructor sometimes has a complex task in explaining the concepts of functional anatomy and embryology to health professional students. However, animations can easily illustrate functional anatomy, clinical procedures, or the developing embryo. Web animation increases the accessibility of this information and makes it much more useful for independent student learning. A modified version of the animation can also be used for patient education. This article defines animation, provides a brief history of animation, discusses the principles of animation, illustrates and evaluates some of the video-editing or movie-making computer software programs, and shows examples of two of the author's animations. These two animations are the inferior alveolar nerve block from the mandibular nerve anesthetics unit and normal temporomandibular joint (TMJ) function from the muscles of the mastication and the TMJ function unit. The software discussed are the industry leaders and have made the job of producing computer-based animations much easier. The programs are Adobe Premiere, Adobe After Effects, Apple QuickTime and Macromedia Flash .

  18. Fluid Flow Simulation and Energetic Analysis of Anomalocarididae Locomotion

    NASA Astrophysics Data System (ADS)

    Mikel-Stites, Maxwell; Staples, Anne

    2014-11-01

    While an abundance of animal locomotion simulations have been performed modeling the motions of living arthropods and aquatic animals, little quantitative simulation and reconstruction of gait parameters has been done to model the locomotion of extinct animals, many of which bear little physical resemblance to their modern descendants. To that end, this project seeks to analyze potential swimming patterns used by the anomalocaridid family, (specifically Anomalocaris canadensis, a Cambrian Era aquatic predator), and determine the most probable modes of movement. This will serve to either verify or cast into question the current assumed movement patterns and properties of these animals and create a bridge between similar flexible-bodied swimmers and their robotic counterparts. This will be accomplished by particle-based fluid flow simulations of the flow around the fins of the animal, as well as an energy analysis of a variety of sample gaits. The energy analysis will then be compared to the extant information regarding speed/energy use curves in an attempt to determine which modes of swimming were most energy efficient for a given range of speeds. These results will provide a better understanding of how these long-extinct animals moved, possibly allowing an improved understanding of their behavioral patterns, and may also lead to a novel potential platform for bio-inspired underwater autonomous vehicles (UAVs).

  19. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    ERIC Educational Resources Information Center

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  20. Inner Ear Damage during Decompression from Deep Dives 1975-1982.

    DTIC Science & Technology

    1984-01-01

    was controlled and delivered by a computer-based system (PDP 11/04 computer; Digital Equipment Corp.). During training and testing, the animals were...decompression sickness. Initial trials with control animals had shown that the monkeys could withstand the Table 6 treatment .thout showing visible...observed shortly after the dive (Fig. 3). In this regard, the amount of exudate is similar to that observed in control animals. Moreover, bone and/or

Top