Sample records for anion transporters oat1

  1. The flounder organic anion transporter fOat has sequence, function, and substrate specificity similarity to both mammalian Oat1 and Oat3

    PubMed Central

    Aslamkhan, Amy G.; Thompson, Deborah M.; Perry, Jennifer L.; Bleasby, Kelly; Wolff, Natascha A.; Barros, Scott; Miller, David S.; Pritchard, John B.

    2007-01-01

    The flounder renal organic anion transporter (fOat) has substantial sequence homology to mammalian basolateral organic anion transporter orthologs (OAT1/Oat1 and OAT3/Oat3), suggesting that fOat may have functional properties of both mammalian forms. We therefore compared uptake of various substrates by rat Oat1 and Oat3 and human OAT1 and OAT3 with the fOat clone expressed in Xenopus oocytes. These data confirm that estrone sulfate is an excellent substrate for mammalian OAT3/Oat3 transporters but not for OAT1/Oat1 transporters. In contrast, 2,4-dichlorophenoxyacetic acid and adefovir are better transported by mammalian OAT1/Oat1 than by the OAT3/Oat3 clones. All three substrates were well transported by fOat-expressing Xenopus oocytes. fOat Km values were comparable to those obtained for mammalian OAT/Oat1/3 clones. We also characterized the ability of these substrates to inhibit uptake of the fluorescent substrate fluorescein in intact teleost proximal tubules isolated from the winter flounder (Pseudopleuronectes americanus) and killifish (Fundulus heteroclitus). The rank order of the IC50 values for inhibition of cellular fluorescein accumulation was similar to that for the Km values obtained in fOat-expressing oocytes, suggesting that fOat may be the primary teleost renal basolateral Oat. Assessment of the zebrafish (Danio rerio) genome indicated the presence of a single Oat (zfOat) with similarity to both mammalian OAT1/Oat1 and OAT3/Oat3. The puffer fish (Takifugu rubripes) also has an Oat (pfOat) similar to mammalian OAT1/Oat1 and OAT3/Oat3 members. Furthermore, phylogenetic analyses argue that the teleost Oat1/3-like genes diverged from a common ancestral gene in advance of the divergence of the mammalian OAT1/Oat1, OAT3/Oat3, and, possibly, Oat6 genes. PMID:16857889

  2. Methotrexate-loxoprofen interaction: involvement of human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Taniguchi, Risa; Motohashi, Hideyuki; Saito, Hideyuki; Okuda, Masahiro; Inui, Ken-ichi

    2004-10-01

    Human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8) are responsible for renal tubular secretion of an antifolic acid methotrexate, and are considered to be involved in drug interaction of methotrexate with nonsteroidal anti-inflammatory drugs (NSAIDs). In our hospital, a delay of methotrexate elimination was experienced in a patient with Hodgkin's disease, who took loxoprofen, a commonly used NSAID in Japan, which suggested a cause. In this study, we examined the drug interaction via hOAT1 and hOAT3, using Xenopus laevis oocytes. hOAT1 and hOAT3 mediated the methotrexate transport with low affinity (K(m) of 724.0 muM) and high affinity (K(m) of 17.2 muM), respectively. Loxoprofen and its trans-OH metabolite, an active major metabolite, markedly inhibited the methotrexate transport by both transporters. Their inhibition concentrations (IC(50)) were in the range of the therapeutic levels. These findings suggest that loxoprofen retards the elimination of methotrexate, at least in part, by inhibiting hOAT1 and hOAT3.

  3. Flavonoids Are Inhibitors of Human Organic Anion Transporter 1 (OAT1)–Mediated Transport

    PubMed Central

    An, Guohua; Wang, Xiaodong

    2014-01-01

    Organic anion transporter 1 (OAT1) has been reported to be involved in the nephrotoxicity of many anionic xenobiotics. As current clinically used OAT1 inhibitors are often associated with safety issues, identifying potent OAT1 inhibitors with little toxicity is of great value in reducing OAT1-mediated drug nephrotoxicity. Flavonoids are a class of polyphenolic compounds with exceptional safety records. Our objective was to evaluate the effects of 18 naturally occurring flavonoids, and some of their glycosides, on the uptake of para-aminohippuric acid (PAH) in both OAT1-expressing and OAT1-negative LLC-PK1 cells. Most flavonoid aglycones produced substantial decreases in PAH uptake in OAT1-expressing cells. Among the flavonoids screened, fisetin, luteolin, morin, and quercetin exhibited the strongest effect and produced complete inhibition of OAT1-mediated PAH uptake at a concentration of 50 μM. Further concentration-dependent studies revealed that both morin and luteolin are potent OAT1 inhibitors, with IC50 values of <0.3 and 0.47 μM, respectively. In contrast to the tested flavonoid aglycones, all flavonoid glycosides had negligible or small effects on OAT1. In addition, the role of OAT1 in the uptake of fisetin, luteolin, morin, and quercetin was investigated and fisetin was found to be a substrate of OAT1. Taken together, our results indicate that flavonoids are a novel class of OAT1 modulators. Considering the high consumption of flavonoids in the diet and in herbal products, OAT1-mediated flavonoid-drug interactions may be clinically relevant. Further investigation is warranted to evaluate the nephroprotective role of flavonoids in relation to drug-induced nephrotoxicity mediated by the OAT1 pathway. PMID:25002746

  4. Identification and Quantitative Assessment of Uremic Solutes as Inhibitors of Renal Organic Anion Transporters, OAT1 and OAT3.

    PubMed

    Hsueh, Chia-Hsiang; Yoshida, Kenta; Zhao, Ping; Meyer, Timothy W; Zhang, Lei; Huang, Shiew-Mei; Giacomini, Kathleen M

    2016-09-06

    One of the characteristics of chronic kidney disease (CKD) is the accumulation of uremic solutes in the plasma. Less is known about the effects of uremic solutes on transporters that may play critical roles in pharmacokinetics. We evaluated the effect of 72 uremic solutes on organic anion transporter 1 and 3 (OAT1 and OAT3) using a fluorescent probe substrate, 6-carboxyfluorescein. A total of 12 and 13 solutes were identified as inhibitors of OAT1 and OAT3, respectively. Several of them inhibited OAT1 or OAT3 at clinically relevant concentrations and reduced the transport of other OAT1/3 substrates in vitro. Review of clinical studies showed that the active secretion of most drugs that are known substrates of OAT1/3 deteriorated faster than the renal filtration in CKD. Collectively, these data suggest that through inhibition of OAT1 and OAT3, uremic solutes contribute to the decline in renal drug clearance in patients with CKD.

  5. Molecular cloning and characterization of two novel human renal organic anion transporters (hOAT1 and hOAT3).

    PubMed

    Race, J E; Grassl, S M; Williams, W J; Holtzman, E J

    1999-02-16

    The cloned organic anion transporters from rat, mouse, and winter flounder (rOAT1, mOAT1, fROAT) mediate the coupled exchange of alpha-ketoglutarate with multiple organic anions, including p-aminohippurate (PAH). We have isolated two novel gene products from human kidney which bear significant homology to the known OATs and belong to the amphiphilic solute facilitator (ASF) family. The cDNAs, hOAT1 and hOAT3, encode for 550- and 568-amino-acid residue proteins, respectively. hOAT1 and hOAT3 mRNAs are expressed strongly in kidney and weakly in brain. Both genes map to chromosome 11 region q11.7. PAH uptake by Xenopus laevis oocytes injected with hOAT1 mRNA is increased 100-fold compared to water-injected oocytes. PAH uptake is chloride dependent and is not further increased by preincubation of oocytes in 5 mM glutarate. Uptake of PAH is inhibited by probenicid, alpha-ketoglutarate, bumetanide, furosemide, and losartan, but not by salicylate, urate, choline, amilioride, and hydrochlorothiazide. Copyright 1999 Academic Press.

  6. Inhibitory effect of selective cyclooxygenase-2 inhibitor lumiracoxib on human organic anion transporters hOAT1 and hOAT3.

    PubMed

    Uwai, Yuichi; Honjo, Hiroaki; Iwamoto, Kikuo

    2010-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) delay renal excretion of antifolate methotrexate by inhibiting human organic anion transporters hOAT1 (SLC22A6) and hOAT3 (SLC22A8). In this study, we performed uptake experiments using Xenopus laevis oocytes to assess the inhibitory effect of selective cyclooxygenase-2 inhibitors on hOAT1 and hOAT3. The uptake of methotrexate into oocytes was increased by the injection of hOAT1 and hOAT3 cRNA, and transport was strongly inhibited by lumiracoxib. The apparent 50% inhibitory concentrations of lumiracoxib were estimated to be 3.3 µM and 1.9 µM for uptake of p-aminohippurate by hOAT1 and of estrone sulfate by hOAT3, respectively. Eadie-Hofstee plot analysis showed that lumiracoxib inhibited hOAT1 and hOAT3 in a competitive manner. For other cyclooxygenase-2 inhibitors celecoxib, etoricoxib, rofecoxib and valdecoxib, slight to moderate inhibition of hOAT3 only was observed. These findings show that lumiracoxib has inhibitory potential toward hOAT1 and hOAT3, comparable to that of nonselective NSAIDs.

  7. Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate.

    PubMed

    Sayyed, Katia; Le Vee, Marc; Abdel-Razzak, Ziad; Fardel, Olivier

    2017-10-01

    Cigarette smoke condensate (CSC) has previously been shown to impair activity and expression of hepatic drug transporters. In the present study, we provided evidence that CSC also hinders activity of organic anion transporters (OATs), notably expressed at the kidney level. CSC thus cis-inhibited OAT substrate uptake in OAT1- and OAT3-transfected HEK293 cells, in a concentration-dependent manner (IC 50 =72.1μg/mL for OAT1 inhibition and IC 50 =27.3μg/mL for OAT3 inhibition). By contrast, OAT4 as well as the renal organic cation transporter (OCT) 2 were less sensitive to the inhibitory effect of CSC (IC 50 =351.5μg/mL and IC 50 =226.2μg/mL, for inhibition of OAT4 and OCT2, respectively). OAT3 activity was further demonstrated to be blocked by some single chemicals present in cigarette smoke such as the heterocyclic amines AαC (IC 50 =11.3μM) and PhIP (IC 50 =1.9μM), whereas other major cigarette smoke components used at 100μM, like nicotine, the nitrosamine NNK and the polycyclic aromatic hydrocarbons benzo(a)pyrene and phenanthrene, were without effect. AαC and PhIP however failed to trans-stimulate activity of OAT3, suggesting that they were not substrates for this transporter. Taken together, these data establish OAT1 and OAT3 transporters as targets of cigarette smoke chemicals, which may contribute to smoking-associated pharmacokinetics alterations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A role for the organic anion transporter OAT3 in renal creatinine secretion in mice

    PubMed Central

    Eraly, Satish A.; Rao, Satish Ramachandra; Gerasimova, Maria; Rose, Michael; Nagle, Megha; Anzai, Naohiko; Smith, Travis; Sharma, Kumar; Nigam, Sanjay K.; Rieg, Timo

    2012-01-01

    Tubular secretion of the organic cation, creatinine, limits its value as a marker of glomerular filtration rate (GFR) but the molecular determinants of this pathway are unclear. The organic anion transporters, OAT1 and OAT3, are expressed on the basolateral membrane of the proximal tubule and transport organic anions but also neutral compounds and cations. Here, we demonstrate specific uptake of creatinine into mouse mOat1- and mOat3-microinjected Xenopus laevis oocytes at a concentration of 10 μM (i.e., similar to physiological plasma levels), which was inhibited by both probenecid and cimetidine, prototypical competitive inhibitors of organic anion and cation transporters, respectively. Renal creatinine clearance was consistently greater than inulin clearance (as a measure of GFR) in wild-type (WT) mice but not in mice lacking OAT1 (Oat1−/−) and OAT3 (Oat3−/−). WT mice presented renal creatinine net secretion (0.23 ± 0.03 μg/min) which represented 45 ± 6% of total renal creatinine excretion. Mean values for renal creatinine net secretion and renal creatinine secretion fraction were not different from zero in Oat1−/− (−0.03 ± 0.10 μg/min; −3 ± 18%) and Oat3−/− (0.01 ± 0.06 μg/min; −6 ± 19%), with greater variability in Oat1−/−. Expression of OAT3 protein in the renal membranes of Oat1−/− mice was reduced to ∼6% of WT levels, and that of OAT1 in Oat3−/− mice to ∼60%, possibly as a consequence of the genes for Oat1 and Oat3 having adjacent chromosomal locations. Plasma creatinine concentrations of Oat3−/− were elevated in clearance studies under anesthesia but not following brief isoflurane anesthesia, indicating that the former condition enhanced the quantitative contribution of OAT3 for renal creatinine secretion. The results are consistent with a contribution of OAT3 and possibly OAT1 to renal creatinine secretion in mice. PMID:22338083

  9. The Organic Anion Transporter (OAT) Family: A Systems Biology Perspective

    PubMed Central

    Nigam, Sanjay K.; Bush, Kevin T.; Martovetsky, Gleb; Ahn, Sun-Young; Liu, Henry C.; Richard, Erin; Bhatnagar, Vibha; Wu, Wei

    2015-01-01

    The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the “Remote Sensing and Signaling Hypothesis,” which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling. PMID:25540139

  10. Discovery and Validation of Pyridoxic Acid and Homovanillic Acid as Novel Endogenous Plasma Biomarkers of Organic Anion Transporter (OAT) 1 and OAT3 in Cynomolgus Monkeys.

    PubMed

    Shen, Hong; Nelson, David M; Oliveira, Regina V; Zhang, Yueping; Mcnaney, Colleen A; Gu, Xiaomei; Chen, Weiqi; Su, Ching; Reily, Michael D; Shipkova, Petia A; Gan, Jinping; Lai, Yurong; Marathe, Punit; Humphreys, W Griffith

    2018-02-01

    Perturbation of organic anion transporter (OAT) 1- and OAT3-mediated transport can alter the exposure, efficacy, and safety of drugs. Although there have been reports of the endogenous biomarkers for OAT1/3, none of these have all of the characteristics required for a clinical useful biomarker. Cynomolgus monkeys were treated with intravenous probenecid (PROB) at a dose of 40 mg/kg in this study. As expected, PROB increased the area under the plasma concentration-time curve (AUC) of coadministered furosemide, a known substrate of OAT1 and OAT3, by 4.1-fold, consistent with the values reported in humans (3.1- to 3.7-fold). Of the 233 plasma metabolites analyzed using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolomics method, 29 metabolites, including pyridoxic acid (PDA) and homovanillic acid (HVA), were significantly increased after either 1 or 3 hours in plasma from the monkeys pretreated with PROB compared with the treated animals. The plasma of animals was then subjected to targeted LC-MS/MS analysis, which confirmed that the PDA and HVA AUCs increased by approximately 2- to 3-fold by PROB pretreatments. PROB also increased the plasma concentrations of hexadecanedioic acid (HDA) and tetradecanedioic acid (TDA), although the increases were not statistically significant. Moreover, transporter profiling assessed using stable cell lines constitutively expressing transporters demonstrated that PDA and HVA are substrates for human OAT1, OAT3, OAT2 (HVA), and OAT4 (PDA), but not OCT2, MATE1, MATE2K, OATP1B1, OATP1B3, and sodium taurocholate cotransporting polypeptide. Collectively, these findings suggest that PDA and HVA might serve as blood-based endogenous probes of cynomolgus monkey OAT1 and OAT3, and investigation of PDA and HVA as circulating endogenous biomarkers of human OAT1 and OAT3 function is warranted. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  11. The role of dileucine in the expression and function of human organic anion transporter 1 (hOAT1)

    PubMed Central

    Zhang, Qiang; Wu, Jinwei; Pan, Zui; You, Guofeng

    2011-01-01

    Human organic anion transporter hOAT1 plays a critical role in the body disposition of environmental toxins and clinically important drugs including anti-HIV therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories. In the current study, we investigated the role of dileucine (L6L7) at the amino terminus of hOAT1 in the expression and function of the transporter. We substituted L6L7 with alanine (A) simultaneously. The resulting mutant transporter L6A/L7A showed no transport activity due to its complete loss of expression at the cell surface. Such loss of surface expression of L6A/L7A was consistent with a complete loss of an 80 kDa mature form and a dramatic decrease in a 60 kDa immature form of the mutant transporter in the total cell lysates. Treatment of L6A/L7A-expressing cells with proteasomal inhibitor resulted in a significant increase in the immature form of hOAT1, but not its mature form, whereas treatment of these cells with lysosomal inhibitor had no effect on the expression of the mutant transporters, suggesting that the mutant transporter was degraded through proteasomal pathway. The accumulation of mutant transporter in the endoplasmic reticulum (ER) was confirmed by coimmunolocalization of L6L7 with calnexin, an ER marker. Furthermore, treatment of L6A/L7A-expressing cells with sodium 4-phenylbutyrate (4PBA) and glycerol, two chemical chaperones, could not promote the exit of the immature form of the mutant transporter from the ER. Our data suggest that L6L7 are critical for the stability and ER export of hOAT1. PMID:21494320

  12. The Role of Dileucine in the Expression and Function of Human Organic Anion Transporter 1 (hOAT1).

    PubMed

    Zhang, Qiang; Wu, Jinwei; Pan, Zui; You, Guofeng

    2011-01-01

    Human organic anion transporter hOAT1 plays a critical role in the body disposition of environmental toxins and clinically important drugs including anti-HIV therapeutics, anti-tumor drugs, antibiotics, anti-hypertensives, and anti-inflammatories. In the current study, we investigated the role of dileucine (L6L7) at the amino terminus of hOAT1 in the expression and function of the transporter. We substituted L6L7 with alanine (A) simultaneously. The resulting mutant transporter L6A/L7A showed no transport activity due to its complete loss of expression at the cell surface. Such loss of surface expression of L6A/L7A was consistent with a complete loss of an 80 kDa mature form and a dramatic decrease in a 60 kDa immature form of the mutant transporter in the total cell lysates. Treatment of L6A/L7A-expressing cells with proteasomal inhibitor resulted in a significant increase in the immature form of hOAT1, but not its mature form, whereas treatment of these cells with lysosomal inhibitor had no effect on the expression of the mutant transporters, suggesting that the mutant transporter was degraded through proteasomal pathway. The accumulation of mutant transporter in the endoplasmic reticulum (ER) was confirmed by coimmunolocalization of L6L7 with calnexin, an ER marker. Furthermore, treatment of L6A/L7A-expressing cells with sodium 4-phenylbutyrate (4PBA) and glycerol, two chemical chaperones, could not promote the exit of the immature form of the mutant transporter from the ER. Our data suggest that L6L7 are critical for the stability and ER export of hOAT1.

  13. Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: A Machine-Learning Approach

    PubMed Central

    Liu, Henry C.; Goldenberg, Anne; Chen, Yuchen; Lun, Christina; Wu, Wei; Bush, Kevin T.; Balac, Natasha; Rodriguez, Paul; Abagyan, Ruben

    2016-01-01

    Statistical analysis was performed on physicochemical descriptors of ∼250 drugs known to interact with one or more SLC22 “drug” transporters (i.e., SLC22A6 or OAT1, SLC22A8 or OAT3, SLC22A1 or OCT1, and SLC22A2 or OCT2), followed by application of machine-learning methods and wet laboratory testing of novel predictions. In addition to molecular charge, organic anion transporters (OATs) were found to prefer interacting with planar structures, whereas organic cation transporters (OCTs) interact with more three-dimensional structures (i.e., greater SP3 character). Moreover, compared with OAT1 ligands, OAT3 ligands possess more acyclic tetravalent bonds and have a more zwitterionic/cationic character. In contrast, OCT1 and OCT2 ligands were not clearly distinquishable form one another by the methods employed. Multiple pharmacophore models were generated on the basis of the drugs and, consistent with the machine-learning analyses, one unique pharmacophore created from ligands of OAT3 possessed cationic properties similar to OCT ligands; this was confirmed by quantitative atomic property field analysis. Virtual screening with this pharmacophore, followed by transport assays, identified several cationic drugs that selectively interact with OAT3 but not OAT1. Although the present analysis may be somewhat limited by the need to rely largely on inhibition data for modeling, wet laboratory/in vitro transport studies, as well as analysis of drug/metabolite handling in Oat and Oct knockout animals, support the general validity of the approach—which can also be applied to other SLC and ATP binding cassette drug transporters. This may make it possible to predict the molecular properties of a drug or metabolite necessary for interaction with the transporter(s), thereby enabling better prediction of drug-drug interactions and drug-metabolite interactions. Furthermore, understanding the overlapping specificities of OATs and OCTs in the context of dynamic transporter tissue

  14. Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: A Machine-Learning Approach.

    PubMed

    Liu, Henry C; Goldenberg, Anne; Chen, Yuchen; Lun, Christina; Wu, Wei; Bush, Kevin T; Balac, Natasha; Rodriguez, Paul; Abagyan, Ruben; Nigam, Sanjay K

    2016-10-01

    Statistical analysis was performed on physicochemical descriptors of ∼250 drugs known to interact with one or more SLC22 "drug" transporters (i.e., SLC22A6 or OAT1, SLC22A8 or OAT3, SLC22A1 or OCT1, and SLC22A2 or OCT2), followed by application of machine-learning methods and wet laboratory testing of novel predictions. In addition to molecular charge, organic anion transporters (OATs) were found to prefer interacting with planar structures, whereas organic cation transporters (OCTs) interact with more three-dimensional structures (i.e., greater SP3 character). Moreover, compared with OAT1 ligands, OAT3 ligands possess more acyclic tetravalent bonds and have a more zwitterionic/cationic character. In contrast, OCT1 and OCT2 ligands were not clearly distinquishable form one another by the methods employed. Multiple pharmacophore models were generated on the basis of the drugs and, consistent with the machine-learning analyses, one unique pharmacophore created from ligands of OAT3 possessed cationic properties similar to OCT ligands; this was confirmed by quantitative atomic property field analysis. Virtual screening with this pharmacophore, followed by transport assays, identified several cationic drugs that selectively interact with OAT3 but not OAT1. Although the present analysis may be somewhat limited by the need to rely largely on inhibition data for modeling, wet laboratory/in vitro transport studies, as well as analysis of drug/metabolite handling in Oat and Oct knockout animals, support the general validity of the approach-which can also be applied to other SLC and ATP binding cassette drug transporters. This may make it possible to predict the molecular properties of a drug or metabolite necessary for interaction with the transporter(s), thereby enabling better prediction of drug-drug interactions and drug-metabolite interactions. Furthermore, understanding the overlapping specificities of OATs and OCTs in the context of dynamic transporter tissue

  15. Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin-luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin.

    PubMed

    Furuya, Takahito; Takehara, Issey; Shimura, Asuka; Kishimoto, Hisanao; Yasujima, Tomoya; Ohta, Kinya; Shirasaka, Yoshiyuki; Yuasa, Hiroaki; Inoue, Katsuhisa

    2018-01-15

    Bioluminescence (BL) imaging based on d-luciferin (d-luc)-luciferase reaction allows noninvasive and real-time monitoring of luciferase-expressing cells. Because BL intensity depends on photons generated through the d-luc-luciferase reaction, an approach to increase intracellular levels of d-luc could improve the detection sensitivity. In the present study, we showed that organic anion transporter 1 (OAT1) is useful, as a d-luc transporter, in boosting the BL intensity in luciferase-expressing cells. Functional screening of several transporters showed that the expression of OAT1 in HEK293 cells stably expressing Pyrearinus termitilluminans luciferase (HEK293/eLuc) markedly enhanced BL intensity in the presence of d-luc. When OAT1 was transiently expressed in HEK293 cells, intracellular accumulation of d-luc was higher than that in control cells, and the specific d-luc uptake mediated by OAT1 was saturable with a Michaelis constant (K m ) of 0.23 μM. The interaction between OAT1 and d-luc was verified using 6-carboxyfluorescein, a typical substrate of OAT1, which showed that d-luc inhibited the uptake of 6-carboxyfluorescein mediated by OAT1. BL intensity was concentration-dependent at steady states in HEK293/eLuc cells stably expressing OAT1, and followed Michaelis-Menten kinetics with an apparent K m of 0.36 μM. In addition, the enhanced BL was significantly inhibited by OAT1-specific inhibitors. Thus, OAT1-mediated transport of d-luc could be a rate-limiting step in the d-luc-luciferase reaction. Furthermore, we found that expressing OAT1 in HEK293/eLuc cells implanted subcutaneously in mice also significantly increased the BL after intraperitoneal injection of d-luc. Our findings suggest that because OAT1 is capable of transporting d-luc, it can also be used to improve visualization and monitoring of luciferase-expressing cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Inhibitory effect of selective cyclooxygenase-2 inhibitor etoricoxib on human organic anion transporter 3 (hOAT3).

    PubMed

    Honjo, Hiroaki; Uwai, Yuichi; Iwamoto, Kikuo

    2011-04-01

    It is well known that nonsteroidal anti-inflammatory drugs (NSAIDs) delay the elimination of methotrexate. One of the mechanisms is thought to be inhibition of methotrexate uptake via human organic anion transporter 3 (hOAT3, SLC22A8) in the renal proximal tubule by NSAIDs. In this study, we evaluated the inhibitory effects of selective cyclooxygenase-2 inhibitor etoricoxib on hOAT3 by uptake experiments using Xenopus laevis oocytes. The injection of hOAT3 cRNA stimulated the uptake of methotrexate into the oocytes, and its transport was inhibited by etoricoxib. Etoricoxib inhibited estrone sulfate uptake by hOAT3 dose dependently, and the 50% inhibitory concentration was estimated to be 9.8 µM. Eadie-Hofstee plot analysis showed that etoricoxib inhibited hOAT3 in a competitive manner. These findings show that etoricoxib has inhibitory effect on hOAT3, and that the potential is comparable to that of traditional NSAIDs. ©2011 Bentham Science Publishers Ltd.

  17. Interaction of human organic anion transporter 2 (OAT2) and sodium taurocholate cotransporting polypeptide (NTCP) with antineoplastic drugs.

    PubMed

    Marada, Venkata V V R; Flörl, Saskia; Kühne, Annett; Müller, Judith; Burckhardt, Gerhard; Hagos, Yohannes

    2015-01-01

    The ability of an antineoplastic drug to exert its cytostatic effect depends largely on the balance between its uptake into and extrusion from the cancer cells. ATP driven efflux transporter proteins drive the export of antineoplastic drugs and play a pivotal role in the development of chemoresistance. As regards uptake transporters, comparably less is known on their impact in drug action. In the current study, we characterized the interactions of two uptake transporter proteins, expressed mainly in the liver; the organic anion transporter 2 (OAT2, encoded by the SLC22A7 gene) and the sodium taurocholate cotransporting polypeptide (NTCP, encoded by the SLC10A1 gene), stably transfected in human embryonic kidney cells, with some antineoplastic agents that are routinely being used in cancer chemotherapy. Whereas NTCP did not show any strong interactions with the cytostatics tested, we observed a very strong inhibition of OAT2 mediated [(3)H] cGMP uptake in the presence of bendamustine, irinotecan and paclitaxel. The Ki values of OAT2 for bendamustine, irinotecan and paclitaxel were determined to be 43.3±4.33μM, 26.4±2.34μM and 10.4±0.45μM, respectively. Incubation of bendamustine with OAT2 expressing cells increased the caspase-3 activity, and this increase was inhibited by simultaneous incubation with bendamustine and probenecid, a well-known inhibitor of OATs, suggesting that bendamustine is a substrate of OAT2. A higher accumulation of irinotecan was observed in OAT2 expressing cells compared to control pcDNA cells by HPLC analysis of cell lysates. The accumulation was diminished in the presence of cGMP, the substrate we used to functionally characterize OAT2, suggesting specificity of this uptake and the fact that OAT2 mediates uptake of irinotecan. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. POTENT INHIBITORS OF HUMAN ORGANIC ANION TRANSPORTERS 1 AND 3 FROM CLINICAL DRUG LIBRARIES: DISCOVERY AND MOLECULAR CHARACTERIZATION

    PubMed Central

    Duan, Peng; Li, Shanshan; Ai, Ni; Hu, Longqin; Welsh, William J.; You, Guofeng

    2012-01-01

    Transporter-mediated drug-drug interactions in the kidney dramatically influence the pharmacokinetics and other clinical effects of drugs. Human organic anion transporters 1 (hOAT1) and 3 (hOAT3) are the major transporters in the basolateral membrane of kidney proximal tubules, mediating the rate-limiting step in the elimination of a broad spectrum of drugs. In the present study, we screened two clinical drug libraries against hOAT1 and hOAT3. Of the 727 compounds screened, 92 compounds inhibited hOAT1 and 262 compounds inhibited hOAT3. When prioritized based on the peak unbound plasma concentrations of these compounds, three inhibitors for hOAT1 and seven inhibitors for hOAT3 were subsequently identified with high inhibitory potency (>95%). Computational analyses revealed that inhibitors and non-inhibitors can be differentiated from each other on the basis of several physico-chemical features, including: number of hydrogen-bond donors, number of rotatable bonds, and topological polar surface area (TPSA) for hOAT1; and molecular weight, number of hydrogen-bond donors and acceptors, TPSA, partition coefficient (Log P7.4), and polarizability for hOAT3. Pharmacophore modeling identified two common structural features associated with inhibitors for hOAT1 and hOAT3, viz., an anionic hydrogen-bond acceptor atom, and an aromatic center separated by ~5.7 Å. Such model provides mechanistic insights for predicting new OAT inhibitors. PMID:22973893

  19. Potent inhibitors of human organic anion transporters 1 and 3 from clinical drug libraries: discovery and molecular characterization.

    PubMed

    Duan, Peng; Li, Shanshan; Ai, Ni; Hu, Longqin; Welsh, William J; You, Guofeng

    2012-11-05

    Transporter-mediated drug-drug interactions in the kidney dramatically influence the pharmacokinetics and other clinical effects of drugs. Human organic anion transporters 1 (hOAT1) and 3 (hOAT3) are the major transporters in the basolateral membrane of kidney proximal tubules, mediating the rate-limiting step in the elimination of a broad spectrum of drugs. In the present study, we screened two clinical drug libraries against hOAT1 and hOAT3. Of the 727 compounds screened, 92 compounds inhibited hOAT1 and 262 compounds inhibited hOAT3. When prioritized based on the peak unbound plasma concentrations of these compounds, three inhibitors for hOAT1 and seven inhibitors for hOAT3 were subsequently identified with high inhibitory potency (>95%). Computational analyses revealed that inhibitors and noninhibitors can be differentiated from each other on the basis of several physicochemical features, including number of hydrogen-bond donors, number of rotatable bonds, and topological polar surface area (TPSA) for hOAT1; and molecular weight, number of hydrogen-bond donors and acceptors, TPSA, partition coefficient (log P(7.4)), and polarizability for hOAT3. Pharmacophore modeling identified two common structural features associated with inhibitors for hOAT1 and hOAT3, viz., an anionic hydrogen-bond acceptor atom, and an aromatic center separated by ∼5.7 Å. Such model provides mechanistic insights for predicting new OAT inhibitors.

  20. PAH clearance after renal ischemia and reperfusion is a function of impaired expression of basolateral Oat1 and Oat3.

    PubMed

    Bischoff, Ariane; Bucher, Michael; Gekle, Michael; Sauvant, Christoph

    2014-02-01

    Determination of renal plasma flow (RPF) by para-aminohippurate (PAH) clearance leads to gross underestimation of this respective parameter due to impaired renal extraction of PAH after renal ischemia and reperfusion injury. However, no mechanistic explanation for this phenomenon is available. Based on our own previous studies we hypothesized that this may be due to impairment of expression of the basolateral rate limiting organic anion transporters Oat1 and Oat3. Thus, we investigated this phenomenon in a rat model of renal ischemia and reperfusion by determining PAH clearance, PAH extraction, PAH net secretion, and the expression of rOat1 and rOat3. PAH extraction was seriously impaired after ischemia and reperfusion which led to a threefold underestimation of RPF when PAH extraction ratio was not considered. PAH extraction directly correlated with the expression of basolateral Oat1 and Oat3. Tubular PAH secretion directly correlated with PAH extraction. Consequently, our data offer an explanation for impaired renal PAH extraction by reduced expression of the rate limiting basolateral organic anion transporters Oat1 and Oat3. Moreover, we show that determination of PAH net secretion is suitable to correct PAH clearance for impaired extraction after ischemia and reperfusion in order to get valid results for RPF.

  1. The role of Nedd4-1 WW domains in binding and regulating human organic anion transporter 1

    PubMed Central

    Xu, Da; Wang, Haoxun; Gardner, Carol; Pan, Zui; Zhang, Ping L.; Zhang, Jinghui

    2016-01-01

    Human organic anion transporter 1 (hOAT1), expressed at the basolateral membrane of kidney proximal tubule cells, mediates the active renal secretion of a diverse array of clinically important drugs, including anti-human immunodeficiency virus therapeutics, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. We have previously demonstrated that posttranslational modification of hOAT1 by ubiquitination is an important mechanism for the regulation of this transporter. The present study aimed at identifying the ubiquitin ligase for hOAT1 and its mechanism of action. We showed that overexpression of neural precursor cell expressed, developmentally downregulated (Nedd)4-1, an E3 ubiquitin ligase, enhanced hOAT1 ubiquitination, decreased hOAT1 expression at the cell surface, and inhibited hOAT1 transport activity. In contrast, overexpression of the ubiquitin ligase-dead mutant Nedd4-1/C867S was without effects on hOAT1. Furthermore, knockdown of endogenously expressed Nedd4-1 by Nedd4-1-specific small interfering RNA reduced hOAT1 ubiquitination. Immunoprecipitation experiments in cultured cells and rat kidney slices and immunofluorescence experiments in rat kidney slices showed that there was a physical interaction between OAT1 and Nedd4-1. Nedd4-1 contains four protein-protein interacting WW domains. When these WW domains were inactivated by mutating two amino acid residues in each of the four WW domains (Mut-WW1: V210W/H212G, Mut-WW2: V367W/H369G, Mut-WW3: I440W/H442G, and Mut-WW4: I492W/H494G, respectively), only Mut-WW2 and Mut-WW3 significantly lost their ability to bind and to ubiquitinate hOAT1. As a result, Mut-WW2 and Mut-WW3 were unable to suppress hOAT1-mediated transport as effectively as wild-type Nedd4-1. In conclusion, this is the first demonstration that Nedd4-1 regulates hOAT1 ubiquitination, expression, and transport activity through its WW2 and WW3 domains. PMID:27226107

  2. Handling of the homocysteine S-conjugate of methylmercury by renal epithelial cells: role of organic anion transporter 1 and amino acid transporters.

    PubMed

    Zalups, Rudolfs K; Ahmad, Sarfaraz

    2005-11-01

    Recently, the activity of the organic anion transporter 1 (OAT1) protein has been implicated in the basolateral uptake of inorganic mercuric species in renal proximal tubular cells. Unfortunately, very little is known about the role of OAT1 in the renal epithelial transport of organic forms of mercury, such as methylmercury (CH(3)Hg(+)). Homocysteine (Hcy) S-conjugates of methylmercury [(S)-(3-amino-3-carboxypropylthio)(methyl)mercury (CH(3)Hg-Hcy)] have been identified recently as being potentially important biologically relevant forms of mercury. Thus, the present study was designed to characterize the transport of CH(3)Hg-Hcy in Madin-Darby canine kidney (MDCK) cells (which are derived from the distal nephron) that were transfected stably with the human isoform of OAT1 (hOAT1). Data on saturation kinetics, time dependence, substrate specificity, and temperature dependence demonstrated that CH(3)Hg-Hcy is a transportable substrate of hOAT1. However, substrate-specificity data from the control MDCK cells also showed that CH(3)Hg-Hcy is a substrate of one or more transporter(s) that is/are not hOAT1. Additional findings indicated that at least one amino acid transport system was probably responsible for this transport. It is noteworthy that the activity of amino acid transporters accounted for the greatest level of uptake of CH(3)Hg-Hcy in the hOAT1-expressing cells. Furthermore, rates of survival of the hOAT1-transfected MDCK cells were significantly lower than those of corresponding control MDCK cells when they were exposed to cytotoxic concentrations of CH(3)Hg-Hcy. Collectively, the present data indicate that CH(3)Hg-Hcy is a transportable substrate of OAT1 and amino acid transporters and, thus, is probably a transportable mercuric species taken up in vivo by proximal tubular epithelial cells.

  3. The role of Nedd4-1 WW domains in binding and regulating human organic anion transporter 1.

    PubMed

    Xu, Da; Wang, Haoxun; Gardner, Carol; Pan, Zui; Zhang, Ping L; Zhang, Jinghui; You, Guofeng

    2016-08-01

    Human organic anion transporter 1 (hOAT1), expressed at the basolateral membrane of kidney proximal tubule cells, mediates the active renal secretion of a diverse array of clinically important drugs, including anti-human immunodeficiency virus therapeutics, antitumor drugs, antibiotics, antihypertensives, and anti-inflammatories. We have previously demonstrated that posttranslational modification of hOAT1 by ubiquitination is an important mechanism for the regulation of this transporter. The present study aimed at identifying the ubiquitin ligase for hOAT1 and its mechanism of action. We showed that overexpression of neural precursor cell expressed, developmentally downregulated (Nedd)4-1, an E3 ubiquitin ligase, enhanced hOAT1 ubiquitination, decreased hOAT1 expression at the cell surface, and inhibited hOAT1 transport activity. In contrast, overexpression of the ubiquitin ligase-dead mutant Nedd4-1/C867S was without effects on hOAT1. Furthermore, knockdown of endogenously expressed Nedd4-1 by Nedd4-1-specific small interfering RNA reduced hOAT1 ubiquitination. Immunoprecipitation experiments in cultured cells and rat kidney slices and immunofluorescence experiments in rat kidney slices showed that there was a physical interaction between OAT1 and Nedd4-1. Nedd4-1 contains four protein-protein interacting WW domains. When these WW domains were inactivated by mutating two amino acid residues in each of the four WW domains (Mut-WW1: V210W/H212G, Mut-WW2: V367W/H369G, Mut-WW3: I440W/H442G, and Mut-WW4: I492W/H494G, respectively), only Mut-WW2 and Mut-WW3 significantly lost their ability to bind and to ubiquitinate hOAT1. As a result, Mut-WW2 and Mut-WW3 were unable to suppress hOAT1-mediated transport as effectively as wild-type Nedd4-1. In conclusion, this is the first demonstration that Nedd4-1 regulates hOAT1 ubiquitination, expression, and transport activity through its WW2 and WW3 domains. Copyright © 2016 the American Physiological Society.

  4. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat

    PubMed Central

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-01-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition. PMID:24646860

  5. Contribution of the organic anion transporter OAT2 to the renal active tubular secretion of creatinine and mechanism for serum creatinine elevations caused by cobicistat.

    PubMed

    Lepist, Eve-Irene; Zhang, Xuexiang; Hao, Jia; Huang, Jane; Kosaka, Alan; Birkus, Gabriel; Murray, Bernard P; Bannister, Roy; Cihlar, Tomas; Huang, Yong; Ray, Adrian S

    2014-08-01

    Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 μM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition.

  6. Roles of organic anion transporters in the renal excretion of perfluorooctanoic acid.

    PubMed

    Nakagawa, Hatsuki; Hirata, Taku; Terada, Tomohiro; Jutabha, Promsuk; Miura, Daisaku; Harada, Kouji H; Inoue, Kayoko; Anzai, Naohiko; Endou, Hitoshi; Inui, Ken-Ichi; Kanai, Yoshikatsu; Koizumi, Akio

    2008-07-01

    Perfluorooctanoic acid, an environmental contaminant, is found in both wild animals and human beings. There are large species and sex differences in the renal excretion of perfluorooctanoic acid. In the present study, we aimed to characterize organic anion transporters 1-3 (OAT1-3) in human beings and rats to investigate whether the species differences in the elimination kinetics of perfluorooctanoic acid from the kidneys can be attributed to differences in the affinities of these transporters for perfluorooctanoic acid. We used human (h) and rat (r) OAT transient expression cell systems and measured the [(14)C] perfluorooctanoic acid transport activities. Both human and rat OAT1 and OAT3 mediated perfluorooctanoic acid transport to similar degrees. Specifically, the kinetic parameters, K(m), were 48.0 +/- 6.4 microM for h OAT1; 51.0 +/- 12.0 microM for rOAT1; 49.1 +/- 21.4 microM for hOAT3 and 80.2 +/- 17.8 microM for rOAT3, respectively. These data indicate that both human and rat OAT1 and OAT3 have high affinities for perfluorooctanoic acid and that the species differences in its renal elimination are not attributable to affinity differences in these OATs between human beings and rats. In contrast, neither hOAT2 nor rOAT2 transported perfluorooctanoic acid. In conclusion, OAT1 and OAT3 mediated perfluorooctanoic acid transport in vitro, suggesting that these transporters also transport perfluorooctanoic acid through the basolateral membrane of proximal tubular cells in vivo in both human beings and rats. Neither human nor rat OAT2 mediated perfluorooctanoic acid transport. Collectively, the difference between the perfluorooctanoic acid half-lives in human beings and rats is not likely to be attributable to differences in the affinities of these transporters for perfluorooctanoic acid.

  7. Transport of the soy isoflavone daidzein and its conjugative metabolites by the carriers SOAT, NTCP, OAT4, and OATP2B1.

    PubMed

    Grosser, Gary; Döring, Barbara; Ugele, Bernhard; Geyer, Joachim; Kulling, Sabine E; Soukup, Sebastian T

    2015-12-01

    Soy isoflavones (IF) are phytoestrogens, which interact with estrogen receptors. They are extensively metabolized by glucuronosyltransferases and sulfotransferases, leading to the modulation of their estrogenic activity. It can be assumed that this biotransformation also has a crucial impact on the uptake of IF by active or passive cellular transport mechanisms, but little is known about the transport of IF phase II metabolites into the cell. Therefore, transport assays for phase II metabolites of daidzein (DAI) were carried out using HEK293 cell lines transfected with five human candidate carriers, i.e., organic anion transporter OAT4, sodium-dependent organic anion transporter (SOAT), Na(+)-taurocholate cotransporting polypeptide (NTCP), apical sodium-dependent bile acid transporter ASBT, and organic anion transporting polypeptide OATP2B1. Cellular uptake was monitored by UHPLC-DAD. DAI monosulfates were transported by the carriers NTCP and SOAT in a sodium-dependent manner, while OAT4-HEK293 cells revealed a partly sodium-dependent transport for these compounds. In contrast, DAI-7,4'-disulfate was only taken up by NTCP-HEK293 cells. DAI-7-glucuronide, but not DAI-4'-glucuronide, was transported exclusively by OATP2B1 in a sodium-independent manner. DAI-7-glucuronide-4'-sulfate, DAI-7-glucoside, and DAI were no substrate of any of the tested carriers. In addition, the inhibitory potency of the DAI metabolites toward estrone-sulfate (E1S) uptake of the above-mentioned carriers was determined. In conclusion, human SOAT, NTCP, OATP2B1, and OAT4 were identified as carriers for the DAI metabolites. Several metabolites were able to inhibit carrier-dependent E1S uptake. These findings might contribute to a better understanding of the bioactivity of IF especially in case of hormone-related cancers.

  8. The activity of organic anion transporter-3: Role of dexamethasone.

    PubMed

    Wang, Haoxun; Liu, Chenchang; You, Guofeng

    2018-02-01

    Human organic anion transporter-3 (hOAT3) is richly expressed in the kidney, where it plays critical roles in the secretion, from the blood to urine, of clinically important drugs, such as anti-viral therapeutics, anti-cancer drugs, antibiotics, antihypertensives, and anti-inflammatories. In the current study, we examined the role of dexamethasone in hOAT3 transport activity in the kidney HEK293 cells. Cis-inhibition study showed that dexamethasone exhibited a concentration-dependent inhibition of hOAT3-mediated uptake of estrone sulfate, a prototypical substrate for the transporter, with IC 50 value of 49.91 μM. Dixon plot analysis revealed that inhibition by dexamethasone was competitive with a Ki = 47.08 μM. In contrast to the cis-inhibition effect of dexamethasone, prolonged incubation (6 h) of hOAT3-expressing cells with dexamethasone resulted in an upregulation of hOAT3 expression and transport activity, kinetically revealed as an increase in the maximum transport velocity V max without meaningful alteration in substrate-binding affinity K m . Such upregulation was abrogated by GSK650394, a specific inhibitor for serum- and glucocorticoid-inducible kinases (sgk). Dexamethasone also enhanced sgk1 phosphorylation. Our study demonstrated that dexamethasone exhibits dual effects on hOAT3: it is a competitive inhibitor for hOAT3-mediated transport, and interestingly, when entering the cells, it stimulates hOAT3 expression and transport activity through sgk1. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  9. Intestinal ischemia-reperfusion suppresses biliary excretion of hepatic organic anion transporting polypeptides substrate.

    PubMed

    Maruyama, Hajime; Ogura, Jiro; Fujikawa, Asuka; Terada, Yusuke; Tsujimoto, Takashi; Koizumi, Takahiro; Kuwayama, Kaori; Kobayashi, Masaki; Yamaguchi, Hiroaki; Iseki, Ken

    2013-01-01

    Intestinal ischemia-reperfusion (I/R) causes gut dysfunction and promotes multi-organ failure. The liver and kidney can be affected by multi-organ failure after intestinal I/R. Organic anion transporting polypeptides (OATPs) and organic anion transporters (OATs) are recognized in a broad spectrum from endogenous compounds to xenobiotics, including clinically important drugs. Therefore, it is important for understanding the pharmacokinetics to obtain evidence of alterations in OATPs and OATs expression and transport activities. In the present study, we investigated the expression of rat Oatps and Oats after intestinal I/R. We used intestinal ischemia-reperfusion (I/R) model rats. Real-time PCR and Western blotting were used to assess mRNA and protein expression levels. Plasma concentration and biliary excretion of sulfobromophthalein (BSP), which is used as a model compound of organic anion drugs, were measured after intravenous administration in intestinal I/R rats. Although Oat1 and Oat3 mRNA levels were not altered in the kidney, Oatp1a1, Oatp1b2 and Oatp2b1 mRNA levels in the liver were significantly decreased at 1-6 h after intestinal I/R. Moreover, Oatp1a1 and Oatp2b1 protein expression levels were decreased at 1 h after intestinal I/R. Plasma concentration of BSP, which is a typical substrate of Oatps, in intestinal I/R rats reperfused 1 h was increased than that in sham-operated rats. Moreover, the area under the concentration-time curve (AUC₀₋₉₀) in intestinal I/R rats reperfused 1 h was significantly increased than that in sham-operated rats. The total clearance (CL(tot)) and the biliary clearance (CL(bile)) in intestinal I/R rats reperfused 1 h were significantly decreased than those in sham-operated rats. Oatp1a1 and Oatp2b1 expression levels are decreased by intestinal I/R. The decreases in these transporters cause alteration of pharmacokinetics of organic anion compound. The newly found influence of intestinal I/R on the expression and function

  10. Organic anion transporter 4 (OAT 4) modifies placental transfer of perfluorinated alkyl acids PFOS and PFOA in human placental ex vivo perfusion system.

    PubMed

    Kummu, M; Sieppi, E; Koponen, J; Laatio, L; Vähäkangas, K; Kiviranta, H; Rautio, A; Myllynen, P

    2015-10-01

    Perfluorinated alkyl acids (PFAAs) are widely used in industry and consumer products. Pregnant women are exposed to PFAAs and their presence in umbilical cord blood represents fetal exposure. Interestingly, PFAAs are substrates for organic anion transporters (OAT) of which OAT4 is expressed in human placenta. To evaluate the contribution of OAT4 and ATP-binding cassette transporter G2 (ABCG2) proteins in the transplacental transfer of perfluoro octane sulfonate (PFOS) and perfluoro octanoate (PFOA) an ex vivo dual recirculating human placental perfusion was used. Altogether 8 placentas from healthy mothers with uncomplicated pregnancies were successfully perfused. Both PFOS and PFOA crossed the placenta as suggested by in vivo data in the literature. The expression of OAT4 and ABCG2 proteins were studied by immunoblotting and correlation with the transfer index %(TI %) of PFOS and PFOA at 120 and 240 min (n = 4) was studied. The expression of OAT4 was in negative correlation with TI % of PFOA (R(2) = 0.92, p = 0.043) and PFOS (R(2) = 0.99, p = 0.007) at 120 min while at 240 min the correlation was statistically significant only with PFOA. The expression of ABCG2 did not correlate with TI% of PFOS or PFOA. Data obtained in this study suggest the involvement of OAT4 in placental passage of PFAAs. Placental passage of PFOS and PFOA is modified by the transporter protein OAT4 but not by ABCG2. This is the first study indicating that OAT4 may decrease the fetal exposure to PFAAs and protect the fetus after maternal exposure to PFAAs but further studies are needed to confirm our findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Linkage of Organic Anion Transporter-1 to Metabolic Pathways through Integrated “Omics”-driven Network and Functional Analysis*

    PubMed Central

    Ahn, Sun-Young; Jamshidi, Neema; Mo, Monica L.; Wu, Wei; Eraly, Satish A.; Dnyanmote, Ankur; Bush, Kevin T.; Gallegos, Tom F.; Sweet, Douglas H.; Palsson, Bernhard Ø.; Nigam, Sanjay K.

    2011-01-01

    The main kidney transporter of many commonly prescribed drugs (e.g. penicillins, diuretics, antivirals, methotrexate, and non-steroidal anti-inflammatory drugs) is organic anion transporter-1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471–6478). Targeted metabolomics in knockouts have shown that OAT1 mediates the secretion or reabsorption of many important metabolites, including intermediates in carbohydrate, fatty acid, and amino acid metabolism. This observation raises the possibility that OAT1 helps regulate broader metabolic activities. We therefore examined the potential roles of OAT1 in metabolic pathways using Recon 1, a functionally tested genome-scale reconstruction of human metabolism. A computational approach was used to analyze in vivo metabolomic as well as transcriptomic data from wild-type and OAT1 knock-out animals, resulting in the implication of several metabolic pathways, including the citric acid cycle, polyamine, and fatty acid metabolism. Validation by in vitro and ex vivo analysis using Xenopus oocyte, cell culture, and kidney tissue assays demonstrated interactions between OAT1 and key intermediates in these metabolic pathways, including previously unknown substrates, such as polyamines (e.g. spermine and spermidine). A genome-scale metabolic network reconstruction generated some experimentally supported predictions for metabolic pathways linked to OAT1-related transport. The data support the possibility that the SLC22 and other families of transporters, known to be expressed in many tissues and primarily known for drug and toxin clearance, are integral to a number of endogenous pathways and may be involved in a larger remote sensing and signaling system (Ahn, S. Y., and Nigam, S. K. (2009) Mol. Pharmacol. 76, 481–490, and Wu, W., Dnyanmote, A. V., and Nigam, S. K. (2011) Mol. Pharmacol. 79, 795–805). Drugs may alter

  12. The organic anion transport inhibitor probenecid increases brain concentrations of the NKCC1 inhibitor bumetanide.

    PubMed

    Töllner, Kathrin; Brandt, Claudia; Römermann, Kerstin; Löscher, Wolfgang

    2015-01-05

    Bumetanide is increasingly being used for experimental treatment of brain disorders, including neonatal seizures, epilepsy, and autism, because the neuronal Na-K-Cl cotransporter NKCC1, which is inhibited by bumetanide, is implicated in the pathophysiology of such disorders. However, use of bumetanide for treatment of brain disorders is associated with problems, including poor brain penetration and systemic adverse effects such as diuresis, hypokalemic alkalosis, and hearing loss. The poor brain penetration is thought to be related to its high ionization rate and plasma protein binding, which restrict brain entry by passive diffusion, but more recently brain efflux transporters have been involved, too. Multidrug resistance protein 4 (MRP4), organic anion transporter 3 (OAT3) and organic anion transporting polypeptide 2 (OATP2) were suggested to mediate bumetanide brain efflux, but direct proof is lacking. Because MRP4, OAT3, and OATP2 can be inhibited by probenecid, we studied whether this drug alters brain levels of bumetanide in mice. Probenecid (50 mg/kg) significantly increased brain levels of bumetanide up to 3-fold; however, it also increased its plasma levels, so that the brain:plasma ratio (~0.015-0.02) was not altered. Probenecid markedly increased the plasma half-life of bumetanide, indicating reduced elimination of bumetanide most likely by inhibition of OAT-mediated transport of bumetanide in the kidney. However, the diuretic activity of bumetanide was not reduced by probenecid. In conclusion, our study demonstrates that the clinically available drug probenecid can be used to increase brain levels of bumetanide and decrease its elimination, which could have therapeutic potential in the treatment of brain disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Short-term and long-term effects of protein kinase C on the trafficking and stability of human organic anion transporter 3

    PubMed Central

    Zhang, Qiang; Suh, Wonmo; Pan, Zui; You, Guofeng

    2012-01-01

    Human organic anion transporter 3 (hOAT3) belongs to a family of organic anion transporters that play critical roles in the body disposition of numerous clinically important drugs. Therefore, understanding the regulation of this transporter has profound clinical significance. In the current study, we investigated the short-term and long-term regulation of hOAT3 by protein kinase C (PKC). We showed that short-term activation of PKC by phobol 12-Myristate 13-Acetate (PMA) inhibited hOAT3 activity through accelerating its internalization from cell surface to intracellular recycling endosomes. The colocalization of hOAT3 with EEA1-positive recycling endosomes was demonstrated by immunolocalization with confocal microscopy. Furthermore, we showed that long-term activation of PKC resulted in the enhanced degradation of cell surface hOAT3. The pathways for hOAT3 degradation were further examined using proteasomal and lysosomal inhibitors. Our results showed that both proteasomal inhibitors and the lysosomal inhibitors significantly blocked hOAT3 degradation. These results demonstrate that PKC plays critical roles in the trafficking and the stability of hOAT3. PMID:22773962

  14. Effect of lycopene against cisplatin-induced acute renal injury in rats: organic anion and cation transporters evaluation.

    PubMed

    Erman, Fazilet; Tuzcu, Mehmet; Orhan, Cemal; Sahin, Nurhan; Sahin, Kazim

    2014-04-01

    In the present study, we investigated the effects of lycopene on the expression of organic anion transporters (OATs), organic cation transporters (OCTs), and multidrug resistance-associated proteins (MRPs) of cisplatin-induced nephrotoxicity in rats. Twenty-eight 8-week-old Wistar rats were divided into four groups: control, lycopene-treated (6 mg/kg BW by oral gavage), cisplatin-treated (7 mg/kg BW, IP), and lycopene in combination with cisplatin-treated groups. In the presence of cisplatin, serum urea nitrogen (urea-N) (48.5 vs. 124.3 mg/dl) and creatinine (0.29 vs. 1.37 mg/dl) levels and the kidney efflux transporters MRP2 and MRP4 levels were significantly increased, whereas OAT1, OAT3, OCT1, and OCT2 levels in kidney were decreased in the treated rats compared with normal control rats. However, administration of lycopene in combination with cisplatin resulted in a reduction in the serum urea-N (124.3 vs. 62.4) and creatinine (1.37 vs. 0.40) levels and the kidney efflux transporters MRP2 and MRP4 proteins in the kidneys. Administration of lycopene to acute renal injury-induced rats largely upregulated the organic anion transporters (OAT1 and 3) and organic cation transporters (OCT1 and 2) to decrease the side effects of cisplatin. The present study suggests that lycopene synergizes with its nephroprotective effect against cisplatin-induced acute kidney injury in rats.

  15. Characterization of Organic Anion Transporter 2 (SLC22A7): A Highly Efficient Transporter for Creatinine and Species-Dependent Renal Tubular Expression.

    PubMed

    Shen, Hong; Liu, Tongtong; Morse, Bridget L; Zhao, Yue; Zhang, Yueping; Qiu, Xi; Chen, Cliff; Lewin, Anne C; Wang, Xi-Tao; Liu, Guowen; Christopher, Lisa J; Marathe, Punit; Lai, Yurong

    2015-07-01

    The contribution of organic anion transporter OAT2 (SLC22A7) to the renal tubular secretion of creatinine and its exact localization in the kidney are reportedly controversial. In the present investigation, the transport of creatinine was assessed in human embryonic kidney (HEK) cells that stably expressed human OAT2 (OAT2-HEK) and isolated human renal proximal tubule cells (HRPTCs). The tubular localization of OAT2 in human, monkey, and rat kidney was characterized. The overexpression of OAT2 significantly enhanced the uptake of creatinine in OAT2-HEK cells. Under physiologic conditions (creatinine concentrations of 41.2 and 123.5 µM), the initial rate of OAT2-mediated creatinine transport was approximately 11-, 80-, and 80-fold higher than OCT2, multidrug and toxin extrusion protein (MATE)1, and MATE2K, respectively, resulting in approximately 37-, 1850-, and 80-fold increase of the intrinsic transport clearance when normalized to the transporter protein concentrations. Creatinine intracellular uptake and transcellular transport in HRPTCs were decreased in the presence of 50 µM bromosulfophthalein and 100 µM indomethacin, which inhibited OAT2 more potently than other known creatinine transporters, OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2K (IC50: 1.3 µM vs. > 100 µM and 2.1 µM vs. > 200 µM for bromosulfophthalein and indomethacin, respectively) Immunohistochemistry analysis showed that OAT2 protein was localized to both basolateral and apical membranes of human and cynomolgus monkey renal proximal tubules, but appeared only on the apical membrane of rat proximal tubules. Collectively, the findings revealed the important role of OAT2 in renal secretion and possible reabsorption of creatinine and suggested a molecular basis for potential species difference in the transporter handling of creatinine. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Interaction between rhein acyl glucuronide and methotrexate based on human organic anion transporters.

    PubMed

    Yuan, Yuan; Yang, Hua; Kong, Linghua; Li, Yuan; Li, Ping; Zhang, Hongjian; Ruan, Jianqing

    2017-11-01

    Rhein, a major bioactive compound of many medicinal herbs and the prodrug of diacerein, is often used with low dose of methotrexate as drug combination to treat rheumatoid arthritis. In this study, potential drug-drug interaction between methotrexate and rhein was investigated based on organic anion transporters (OAT). Our study demonstrated that rhein acyl glucuronide (RAG), the major metabolite of rhein in the human blood circulation, significantly inhibited the uptake of p-aminohippurate in hOAT1 transfected cells with IC 50 value of 691 nM and estrone sulfate uptake in hOAT3 transfected cells with IC 50 value of 78.5 nM. As the substrate of both hOAT1 and hOAT3, the methotrexate transport was significantly inhibited by RAG in hOAT1 transfected cells at 50 μM and hOAT3 transfected cells at 1 μM by 69% and 87%, respectively. Further in vivo study showed that after co-administrated with RAG in rats the AUC 0-24 values of methotrexate increased from 3109 to 5370 ng/mL*hr and the t 1/2 was prolonged by 40.5% (from 7.4 to 10.4 h), demonstrating the inhibitory effect of RAG on methotrexate excretion. In conclusion, rhein acyl glucuronide could significantly decrease the transport of methotrexate by both hOAT1 and hOAT3. The combination use of rhein, diacerein or other rhein-containing herbs with methotrexate may cause obvious drug-drug interaction and require close monitoring for potential drug interaction in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Synthesis of a dimeric 3α-hydroxy-7α,12α-diamino-5β-cholan-24-oate conjugate and its derivatives, and the effect of lipophilicity on their anion transport efficacy.

    PubMed

    Li, Zhi; Chen, Yun; Yuan, De-Qi; Chen, Wen-Hua

    2017-03-28

    A dimeric 3α-hydroxy-7α,12α-diamino-5β-cholan-24-oate conjugate and its derivatives having alkyl chains of varying length from methyl to n-pentyl groups on the amido bonds were synthesized and fully characterized on the basis of NMR ( 1 H and 13 C) and ESI MS (LR and HR) data. Their transmembrane anion transport activities were investigated in detail by means of a chloride ion selective electrode technique and the pyranine assay. The data indicate that this set of compounds is capable of promoting the transmembrane transport of anions, presumably via an anion exchange process and a mobile carrier mechanism. Detailed kinetic analysis on the data obtained from both chloride efflux and pH discharge experiments reveals that an optimum log P range may exist for the transport effectiveness in terms of both k 2 /K diss and EC 50 values. The present finding highlights the importance of high anionophoric activity in clarifying the effect of lipophilicity on ion-transport effectiveness.

  18. First evidence of epithelial transport in tardigrades: a comparative investigation of organic anion transport.

    PubMed

    Halberg, Kenneth Agerlin; Møbjerg, Nadja

    2012-02-01

    We investigated transport of the organic anion Chlorophenol Red (CPR) in the tardigrade Halobiotus crispae using a new method for quantifying non-fluorescent dyes. We compared the results acquired from the tardigrade with CPR transport data obtained from Malpighian tubules of the desert locust Schistocerca gregaria. CPR accumulated in the midgut lumen of H. crispae, indicating that organic anion transport takes place here. Our results show that CPR transport is inhibited by the mitochondrial un-coupler DNP (1 mmol l(-1); 81% reduction), the Na(+)/K(+)-ATPase inhibitor ouabain (10 mmol l(-1); 21% reduction) and the vacuolar H(+)-ATPase inhibitor bafilomycin (5 μmol l(-1); 21% reduction), and by the organic anions PAH (10 mmol l(-1); 44% reduction) and probenecid (10 mmol l(-1); 61% reduction, concentration-dependent inhibition). Transport by locust Malpighian tubules exhibits a similar pharmacological profile, albeit with markedly higher concentrations of CPR being reached in S. gregaria. Immunolocalization of the Na(+)/K(+)-ATPase α-subunit in S. gregaria revealed that this transporter is abundantly expressed and localized to the basal cell membranes. Immunolocalization data could not be obtained from H. crispae. Our results indicate that organic anion secretion by the tardigrade midgut is transporter mediated with likely candidates for the basolateral entry step being members of the Oat and/or Oatp transporter families. From our results, we cautiously suggest that apical H(+) and possibly basal Na(+)/K(+) pumps provide the driving force for the transport; the exact coupling between electrochemical gradients generated by the pumps and transport of ions, as well as the nature of the apical exit step, are unknown. This study is, to our knowledge, the first to show active epithelial transport in tardigrades.

  19. Expression of renal Oat5 and NaDC1 transporters in rats with acute biliary obstruction

    PubMed Central

    Brandoni, Anabel; Torres, Adriana Mónica

    2015-01-01

    AIM: To examine renal expression of organic anion transporter 5 (Oat5) and sodium-dicarboxylate cotransporter 1 (NaDC1), and excretion of citrate in rats with acute extrahepatic cholestasis. METHODS: Obstructive jaundice was induced in rats by double ligation and division of the common bile duct (BDL group). Controls underwent sham operation that consisted of exposure, but not ligation, of the common bile duct (Sham group). Studies were performed 21 h after surgery. During this period, animals were maintained in metabolic cages in order to collect urine. The urinary volume was determined by gravimetry. The day of the experiment, blood samples were withdrawn and used to measure total and direct bilirubin as indicative parameters of hepatic function. Serum and urine samples were used for biochemical determinations. Immunoblotting for Oat5 and NaDC1 were performed in renal homogenates and brush border membranes from Sham and BDL rats. Immunohistochemistry studies were performed in kidneys from both experimental groups. Total RNA was extracted from rat renal tissue in order to perform reverse transcription polymerase chain reaction. Another set of experimental animals were used to evaluate medullar renal blood flow (mRBF) using fluorescent microspheres. RESULTS: Total and direct bilirubin levels were significantly higher in BDL animals, attesting to the adequacy of biliary obstruction. An important increase in mRBF was determined in BDL group (Sham: 0.53 ± 0.12 mL/min per 100 g body weight vs BDL: 1.58 ± 0.24 mL/min per 100 g body weight, P < 0.05). An increase in the urinary volume was observed in BDL animals. An important decrease in urinary levels of citrate was seen in BDL group. Besides, a decrease in urinary citrate excretion (Sham: 0.53 ± 0.11 g/g creatinine vs BDL: 0.07 ± 0.02 g/g creatinine, P < 0.05) and an increase in urinary excretion of H+ (Sham: 0.082 ± 0.03 μmol/g creatinine vs BDL: 0.21 ± 0.04 μmol/g creatinine, P < 0.05) were observed in BDL

  20. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine.

    PubMed

    Hosoya, Ken-ichi; Makihara, Akihide; Tsujikawa, Yuki; Yoneyama, Daisuke; Mori, Shinobu; Terasaki, Tetsuya; Akanuma, Shin-ichi; Tomi, Masatoshi; Tachikawa, Masanori

    2009-04-01

    The purpose of the present study was to characterize rat organic anion transporter (Oat) 3 (Oat3, Slc22a8) in the efflux transport at the inner blood-retinal barrier (BRB). Reverse transcription-polymerase chain reaction analysis showed that rat (r) Oat3 mRNA is expressed in retinal vascular endothelial cells (RVECs), but not rOat1 and rOat2 mRNA. The expression of Oat3 in the retina and human cultured retinal endothelial cells was further confirmed by Western blot analysis. Immunohistochemical staining in RVECs showed that rOat3 is colocalized with glucose transporter 1, but not P-glycoprotein, suggesting that rOat3 is possibly located at the abluminal membrane of the RVEC. The contribution of rOat3 to the efflux of [(3)H]p-aminohippuric acid ([(3)H]PAH), [(3)H]benzylpenicillin ([(3)H]PCG), and [(14)C]6-mercaptopurine ([(14)C]6-MP), substrates of rOat3, from the vitreous humor/retina to the circulating blood across the inner BRB was evaluated using the microdialysis method. [(3)H]PAH, [(3)H]PCG, [(14)C]6-MP, and [(14)C] or [(3)H]d-mannitol, a bulk flow marker, were biexponentially eliminated from the vitreous humor after vitreous bolus injection. The elimination rate constant of [(3)H]PAH, [(3)H]PCG, and [(14)C]6-MP during the terminal phase was approximately 2-fold greater than that of d-mannitol. This efflux transport was reduced in the retinal presence of probenecid, PAH, and PCG, whereas it was not inhibited by digoxin. In conclusion, rOat3 is expressed at the inner BRB and involved in the vitreous humor/retina-to-blood transport of PAH, PCG, and 6-MP. This transport system is one mechanism to limit the retinal distribution of PAH, PCG, and 6-MP.

  1. Potential for food-drug interactions by dietary phenolic acids on human organic anion transporters 1 (SLC22A6), 3 (SLC22A8), and 4 (SLC22A11).

    PubMed

    Wang, Li; Sweet, Douglas H

    2012-10-15

    Phenolic acids exert beneficial health effects such as anti-oxidant, anti-carcinogenic, and anti-inflammatory activities and show systemic exposure after consumption of common fruits, vegetables, and beverages. However, knowledge regarding which components convey therapeutic benefits and the mechanism(s) by which they cross cell membranes is extremely limited. Therefore, we determined the inhibitory effects of nine food-derived phenolic acids, p-coumaric acid, ferulic acid, gallic acid, gentisic acid, 4-hydroxybenzoic acid, protocatechuic acid, sinapinic acid, syringic acid, and vanillic acid, on human organic anion transporter 1 (hOAT1), hOAT3, and hOAT4. In the present study, inhibition of OAT-mediated transport of prototypical substrates (1 μM) by phenolic acids (100 μM) was examined in stably expressing cell lines. All compounds significantly inhibited hOAT3 transport, while just ferulic, gallic, protocatechuic, sinapinic, and vanillic acid significantly blocked hOAT1 activity. Only sinapinic acid inhibited hOAT4 (~35%). For compounds exhibiting inhibition > ~60%, known clinical plasma concentration levels and plasma protein binding in humans were examined to select compounds to evaluate further with dose-response curves (IC(50) values) and drug-drug interaction (DDI) index determinations. IC(50) values ranged from 1.24 to 18.08 μM for hOAT1 and from 7.35 to 87.36 μM for hOAT3. Maximum DDI indices for gallic and gentisic acid (≫0.1) indicated a very strong potential for DDIs on hOAT1 and/or hOAT3. This study indicates that gallic acid from foods or supplements, or gentisic acid from salicylate-based drug metabolism, may significantly alter the pharmacokinetics (efficacy and toxicity) of concomitant therapeutics that are hOAT1 and/or hOAT3 substrates. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Expression of Organic Anion Transporters 1 and 3 in the Ovine Fetal Brain During the Latter Half of Gestation

    PubMed Central

    Cousins, Roderick; Wood, Charles E.

    2010-01-01

    Development and maturation of the fetal brain is critical for homeostasis in utero, responsiveness to fetal stress and, in ruminants, control of the timing of birth. In the sheep, as in the human, the placenta secretes estrogen and other signaling molecules into both the fetal and maternal blood, molecules whose entry or exit across the blood-brain barrier is likely to be facilitated by transporters. The purpose of this study was to test the hypothesis that the ovine fetal brain expresses organic anion transporters, and that the expression of these transporters varies as a function of brain region and fetal gestational age. Brains and pituitaries were collected at the time of sacrifice from fetal and newborn sheep at 80, 100, 120, 130, 145 days gestation and on the first day of postnatal life (parturition in sheep is at approximately 147 days gestation). Hypothalamus, medullary brainstem, cerebellum, and pituitary were processed for mRNA extraction and synthesis of cDNA (4–5/group). Real-time PCR analysis of OAT1 and OAT3 expression revealed significant expression of both genes in all of the tissues tested. In hypothalamus and cerebellum, there were statistically significant increases in the expression of one or both genes towards the end of gestation. In medullary brainstem and pituitary, the levels of expression were relatively unchanged as there were no statistically significant changes with developmental age. We conclude that the ovine fetal brain expresses both OAT1 and OAT3, that the pattern of expression suggests an increasing role for these transporters in the physiology of the developing fetal brain as the fetus nears the time of spontaneous parturition. PMID:20708067

  3. Transport of the placental estriol precursor 16α-hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) by stably transfected OAT4-, SOAT-, and NTCP-HEK293 cells.

    PubMed

    Schweigmann, H; Sánchez-Guijo, A; Ugele, B; Hartmann, K; Hartmann, M F; Bergmann, M; Pfarrer, C; Döring, B; Wudy, S A; Petzinger, E; Geyer, J; Grosser, G

    2014-09-01

    16α-Hydroxy-dehydroepiandrosterone sulfate (16α-OH-DHEAS) mainly originates from the fetus and serves as precursor for placental estriol biosynthesis. For conversion of 16α-OH-DHEAS to estriol several intracellular enzymes are required. However, prior to enzymatic conversion, 16α-OH-DHEAS must enter the cells by carrier mediated transport. To identify these carriers, uptake of 16α-OH-DHEAS by the candidate carriers organic anion transporter OAT4, sodium-dependent organic anion transporter SOAT, Na(+)-taurocholate cotransporting polypeptide NTCP, and organic anion transporting polypeptide OATP2B1 was measured in stably transfected HEK293 cells by LC-MS-MS. Furthermore, the study aimed to localize SOAT in the human placenta. Stably transfected OAT4-HEK293 cells revealed a partly sodium-dependent transport for 16α-OH-DHEAS with an apparent Km of 23.1 ± 5.1 μM and Vmax of 485.0 ± 39.1 pmol/mg protein/min, while stably transfected SOAT- and NTCP-HEK293 cells showed uptake only under sodium conditions with Km of 319.0 ± 59.5 μM and Vmax of 1465.8 ± 118.8 pmol/mg protein/min for SOAT and Km of 51.4 ± 9.9 μM and Vmax of 1423.3 ± 109.6 pmol/mg protein/min for NTCP. In contrast, stably transfected OATP2B1-HEK293 cells did not transport 16α-OH-DHEAS at all. Immunohistochemical studies and in situ hybridization of formalin fixed and paraffin embedded sections of human late term placenta showed expression of SOAT in syncytiotrophoblasts, predominantly at the apical membrane as well as in the vessel endothelium. In conclusion, OAT4, SOAT, and NTCP were identified as carriers for the estriol precursor 16α-OH-DHEAS. At least SOAT and OAT4 seem to play a functional role for the placental estriol synthesis as both are expressed in the syncytiotrophoblast of human placenta. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Limited brain distribution of [3R,4R,5S]-4-acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802), a pharmacologically active form of oseltamivir, by active efflux across the blood-brain barrier mediated by organic anion transporter 3 (Oat3/Slc22a8) and multidrug resistance-associated protein 4 (Mrp4/Abcc4).

    PubMed

    Ose, Atsushi; Ito, Mototsugu; Kusuhara, Hiroyuki; Yamatsugu, Kenzo; Kanai, Motomu; Shibasaki, Masakatsu; Hosokawa, Masakiyo; Schuetz, John D; Sugiyama, Yuichi

    2009-02-01

    [3R,4R,5S]-4-Acetamido-5-amino-3-(1-ethylpropoxy)-1-cyclohexene-1-carboxylate phosphate (Ro 64-0802) is a pharmacologically active form of the anti-influenza virus drug oseltamivir. Abnormal behavior is a suspected adverse effect of oseltamivir on the central nervous system. This study focused on the transport mechanisms of Ro 64-0802 across the blood-brain barrier (BBB). Ro 64-0802 was found to be a substrate of organic anion transporter 3 (OAT3/SLC22A8) and multidrug resistance-associated protein 4 (MRP4/ABCC4). Human embryonic kidney 293 cells expressing OAT3 exhibited a greater intracellular accumulation of Ro 64-0802 than mock-transfected cells (15 versus 1.2 microl/mg protein/10 min, respectively). The efflux of Ro 64-0802 was 3-fold greater when MRP4 was expressed in MDCKII cells and was significantly inhibited by indomethacin. After its microinjection into the cerebrum, the amount of Ro 64-0802 in brain was significantly greater in both Oat3(-/-) mice and Mrp4(-/-) mice compared with the corresponding wild-type mice (0.36 versus 0.080 and 0.32 versus 0.060 nmol at 120 min after injection, respectively). The brain/plasma concentration ratio (K(p,) (brain)) of Ro 64-0802, determined in wild-type mice after subcutaneous continuous infusion for 24 h, was close to the capillary volume (approximately 10 microl/g brain). Although the K(p,) (brain) of Ro 64-0802 was unchanged in Oat3(-/-) mice, it was significantly greater in Mrp4(-/-) mice (41 microl/g of brain). These results suggest that Ro 64-0802 can cross the BBB from the blood, but its brain distribution is limited by its active efflux by Mrp4 and Oat3 across the BBB. The transporter responsible for the brain uptake of Ro 64-0802 remains unknown, but Oat3 is a candidate transporter.

  5. Interactions of 172 plant extracts with human organic anion transporter 1 (SLC22A6) and 3 (SLC22A8): a study on herb-drug interactions

    PubMed Central

    Lu, Hang; Lu, Zhiqiang; Li, Xue; Li, Gentao; Qiao, Yilin

    2017-01-01

    Background Herb-drug interactions (HDIs) resulting from concomitant use of herbal products with clinical drugs may cause adverse reactions. Organic anion transporter 1 (OAT1) and 3 (OAT3) are highly expressed in the kidney and play a key role in the renal elimination of substrate drugs. So far, little is known about the herbal extracts that could modulate OAT1 and OAT3 activities. Methods HEK293 cells stably expressing human OAT1 (HEK-OAT1) and OAT3 (HEK-OAT3) were established and characterized. One hundred seventy-two extracts from 37 medicinal and economic plants were prepared. An initial concentration of 5 µg/ml for each extract was used to evaluate their effects on 6-carboxylfluorescein (6-CF) uptake in HEK-OAT1 and HEK-OAT3 cells. Concentration-dependent inhibition studies were conducted for those extracts with more than 50% inhibition to OAT1 and OAT3. The extract of Juncus effusus, a well-known traditional Chinese medicine, was assessed for its effect on the in vivo pharmacokinetic parameters of furosemide, a diuretic drug which is a known substrate of both OAT1 and OAT3. Results More than 30% of the plant extracts at the concentration of 5 µg/ml showed strong inhibitory effect on the 6-CF uptake mediated by OAT1 (61 extracts) and OAT3 (55 extracts). Among them, three extracts for OAT1 and fourteen extracts for OAT3 were identified as strong inhibitors with IC50 values being <5 µg/ml. Juncus effusus showed a strong inhibition to OAT3 in vitro, and markedly altered the in vivo pharmacokinetic parameters of furosemide in rats. Conclusion The present study identified the potential interactions of medicinal and economic plants with human OAT1 and OAT3, which is helpful to predict and to avoid potential OAT1- and OAT3-mediated HDIs. PMID:28560096

  6. Application of an in vitro OAT assay in drug design and optimization of renal clearance.

    PubMed

    Soars, Matthew G; Barton, Patrick; Elkin, Lisa L; Mosure, Kathleen W; Sproston, Joanne L; Riley, Robert J

    2014-07-01

    1. Optimization of renal clearance is a complex balance between passive and active processes mediated by renal transporters. This work aimed to characterize the interaction of a series of compounds with rat and human organic anion transporters (OATs) and develop quantitative structure-activity relationships (QSARs) to optimize renal clearance. 2. In vitro inhibition assays were established for human OAT1 and rat Oat3 and rat in vivo renal clearance was obtained. Statistically significant quantitative relationships were explored between the compounds' physical properties, their affinity for OAT1 and oat3 and the inter-relationship with unbound renal clearance (URC) in rat. 3. Many of the compounds were actively secreted and in vitro analysis demonstrated that these were ligands for rat and human OAT transporters (IC50 values ranging from <1 to >100 µM). Application of resultant QSAR models reduced renal clearance in the rat from 24 to <0.1 ml/min/kg. Data analysis indicated that the properties associated with increasing affinity at OATs are the same as those associated with reducing URC but orthogonal in nature. 4. This study has demonstrated that OAT inhibition data and QSAR models can be successfully used to optimize rat renal clearance in vivo and provide confidence of translation to humans.

  7. OAT3-mediated extrusion of the 99mTc-ECD metabolite in the mouse brain

    PubMed Central

    Kikuchi, Tatsuya; Okamura, Toshimitsu; Wakizaka, Hidekatsu; Okada, Maki; Odaka, Kenichi; Yui, Joji; Tsuji, Atsushi B; Fukumura, Toshimitsu; Zhang, Ming-Rong

    2014-01-01

    After administration of the 99mTc complex with N,N'-1,2-ethylenediylbis-L-cysteine diethyl ester (99mTc-ECD), a brain perfusion imaging agent, the radioactive metabolite is trapped in primate brain, but not in mouse and rat. Here, we investigate the involvement of metabolite extrusion by organic anion transporter 3 (OAT3), which is highly expressed at the blood–brain barrier in mice, in this species difference. The efflux rate of radioactivity in the cerebrum of Oat3−/− mice at later phase was 20% of that of control mice. Thus, organic anion transporters in mouse brain would be involved in the low brain retention of radioactivity after 99mTc-ECD administration. PMID:24496177

  8. Immunohistochemical expression profiles of solute carrier transporters in alpha-fetoprotein-producing gastric cancer.

    PubMed

    Shimakata, Takaaki; Kamoshida, Shingo; Kawamura, Jumpei; Ogane, Naoki; Kameda, Yoichi; Yanagita, Emmy; Itoh, Tomoo; Takeda, Risa; Naka, Ayano; Sakamaki, Kuniko; Hayashi, Yurie; Kuwao, Sadahito

    2016-11-01

    Alpha-fetoprotein (AFP)-producing gastric cancer (GC) is an aggressive tumour with high rates of liver metastasis and poor prognosis, and for which a validated chemotherapy regimen has not been established. Drug uptake by solute carrier (SLC) transporters is proposed as one of the mechanisms involved in sensitivity to chemotherapy. In this study, we aimed to develop important insights into effective chemotherapeutic regimens for AFP-producing GC. We evaluated immunohistochemically the expression levels of a panel of SLC transporters in 20 AFP-producing GCs and 130 conventional GCs. SLC transporters examined were human equilibrative nucleoside transporter 1 (hENT1), organic anion transporter 2 (OAT2), organic cation transporter (OCT) 2, OCT6 and organic anion-transporting polypeptide 1B3 (OATP1B3). The rates of high expression levels of hENT1 (hENT1 high ) and OAT2 (OAT2 high ) were statistically higher in AFP-producing GC, compared with conventional GC. When analysing hENT1 and OAT2 in combination, hENT1 high /OAT2 high was the most particular expression profile for AFP-producing GC, with a greater significance than hENT1 or OAT2 alone. However, no significant differences in OCT2, OCT6 or OATP1B3 levels were detected between AFP-producing and conventional GCs. However, immunoreactivity for hENT1, OAT2 and OCT6 tended to be increased in GC tissues compared with non-neoplastic epithelia. Because hENT1 and OAT2 are crucial for the uptake of gemcitabine and 5-fluorouracil, respectively, our results suggest that patients with AFP-producing GC could potentially benefit from gemcitabine/fluoropyrimidine combination chemotherapy. Increased expression of hENT1, OAT2 and OCT6 may also be associated with the progression of GC. © 2016 John Wiley & Sons Ltd.

  9. P-gp, MRP2 and OAT1/OAT3 mediate the drug-drug interaction between resveratrol and methotrexate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Yongming

    The purpose of present study was to investigate the effect of resveratrol (Res) on altering methotrexate (MTX) pharmacokinetics and clarify the related molecular mechanism. Res significantly increased rat intestinal absorption of MTX in vivo and in vitro. Simultaneously, Res inhibited MTX efflux transport in MDR1-MDCK and MRP2-MDCK cell monolayers, suggesting that the target of drug interaction was MDR1 and MRP2 in the intestine during the absorption process. Furthermore, there was a significant decrease in renal clearance of MTX after simultaneous intravenous administration. Similarly, MTX uptake was markedly inhibited by Res in rat kidney slices and hOAT1/3-HEK293 cell, indicating that OAT1more » and OAT3 were involved in the drug interaction in the kidney. Additionally, concomitant administration of Res decreased cytotoxic effects of MTX in hOAT1/3-HEK293 cells, and ameliorated nephrotoxicity caused by MTX in rats. Conversely, intestinal damage caused by MTX was not exacerbated after Res treatment. In conclusion, Res enhanced MTX absorption in intestine and decreased MTX renal elimination by inhibiting P-gp, MRP2, OAT1 and OAT3 in vivo and in vitro. Res improved MTX-induced renal damage without increasing intestinal toxicity. - Highlights: • DDI between MTX and Res will occur when they are co-administered. • The first targets of the DDI are P-gp and MRP2 located in intestine. • The second targets of the DDI are OAT1 and OAT3 in kidney. • Res improved MTX-induced renal damage without increasing intestinal toxicity.« less

  10. Recent advances on uric acid transporters

    PubMed Central

    Xu, Liuqing; Shi, Yingfeng; Zhuang, Shougang; Liu, Na

    2017-01-01

    Uric acid is the product of purine metabolism and its increased levels result in hyperuricemia. A number of epidemiological reports link hyperuricemia with multiple disorders, such as kidney diseases, cardiovascular diseases and diabetes. Recent studies also showed that expression and functional changes of urate transporters are associated with hyperuricemia. Uric acid transporters are divided into two categories: urate reabsorption transporters, including urate anion transporter 1 (URAT1), organic anion transporter 4 (OAT4) and glucose transporter 9 (GLUT9), and urate excretion transporetrs, including OAT1, OAT3, urate transporter (UAT), multidrug resistance protein 4 (MRP4/ABCC4), ABCG-2 and sodium-dependent phosphate transport protein. In the kidney, uric acid transporters decrease the reabsorption of urate and increase its secretion. These transporters’ dysfunction would lead to hyperuricemia. As the function of urate transporters is important to control the level of serum uric acid, studies on the functional role of uric acid transporter may provide a new strategy to treat hyperuricemia associated diseases, such as gout, chronic kidney disease, hyperlipidemia, hypertension, coronary heart disease, diabetes and other disorders. This review article summarizes the physiology of urate reabsorption and excretion transporters and highlights the recent advances on their roles in hyperuricemia and various diseases. PMID:29246027

  11. The distribution of the anti-HIV drug, 2'3'-dideoxycytidine (ddC), across the blood-brain and blood-cerebrospinal fluid barriers and the influence of organic anion transport inhibitors.

    PubMed

    Gibbs, J E; Thomas, S A

    2002-02-01

    The brain and CSF distribution of the HIV reverse transcriptase inhibitor, 2'3'-dideoxycytidine (ddC), was investigated by the in situ brain perfusion and isolated incubated choroid plexus methods in the guinea pig. Multiple-time brain perfusions indicated that the distribution of [3H]ddC to the brain and CSF was low and the unidirectional rate constant (K(in)) for the brain uptake of this nucleoside analogue (0.52 +/- 0.10 microL/min/g) was not significantly different to that for the vascular marker, [14C]mannitol (0.44 +/- 0.09 microL/min/g). The influence of unlabelled ddC, six organic anion transport inhibitors and 3'-azido 3'-deoxythymidine (AZT) on the CNS uptake of [3H]ddC was examined in situ and in vitro. ddC, probenecid and 2,4-dichlorophenoxyacetic acid altered the distribution of [3H]ddC into the brain and choroid plexuses, indicating that the limited distribution of [3H]ddC was a result of an organic anion efflux transporter, in addition to the low lipophilicity of this drug (octanol-saline partition coefficient, 0.047 +/- 0.001). The CNS distribution was also sensitive to p-aminohippurate and deltorphin II, but not digoxin, suggesting the involvement of organic anion transporters (OAT1/OAT3-like) and organic anion transporting polypeptides (OATP1/OATPA-like). AZT did not effect the accumulation of [3H]ddC, indicating that when these nucleoside analogues are used in anti-HIV combination therapy, the CNS distribution of ddC is unchanged.

  12. Aspirin and probenecid inhibit organic anion transporter 3-mediated renal uptake of cilostazol and probenecid induces metabolism of cilostazol in the rat.

    PubMed

    Wang, Chong; Wang, Changyuan; Liu, Qi; Meng, Qiang; Cang, Jian; Sun, Huijun; Peng, Jinyong; Ma, Xiaochi; Huo, Xiaokui; Liu, Kexin

    2014-06-01

    This study aimed to evaluate the transporter-mediated renal excretion mechanism for cilostazol and to characterize the mechanism of drug-drug interaction (DDI) between cilostazol and aspirin or probenecid. Concentrations of cilostazol and its metabolites OPC-13015 [6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-2(1H)-quinolinone] and OPC-13213 [3,4-dihydro-6-[4-[1-(trans-4-hydroxycyclohexyl)-1H-tetrazol-5-yl]butoxy]-2-(1H)-quinolinone] in rat biologic or cell samples were measured by liquid chromatography-tandem mass spectrometry. Coadministration with probenecid, benzylpenicillin, or aspirin decreased the cumulative urinary excretion of cilostazol and renal clearance. Concentrations of cilostazol and OPC-13213 in plasma decreased, and the concentration of OPC-13015 increased in the presence of probenecid. By contrast, rat plasma cilostazol, in combination with benzylpenicillin or aspirin, sharply increased, and concentrations of OPC-13015 and OPC-13213 did not change. In urine, OPC-13015 was below the level of detection. The cumulative urinary excretion of OPC-13213 decreased in the presence of probenecid, benzylpenicillin, or aspirin. Cilostazol was distributed in the kidney and liver, with tissue to plasma partition coefficient (Kp) values of 8.4 ml/g and 16.3 ml/g, respectively. Probenecid and aspirin reduced cilostazol distribution in the kidney. Probenecid did not affect cilostazol metabolism in the kidney but increased cilostazol metabolism in the liver, and aspirin had no effect on cilostazol metabolism. Benzylpenicillin, aspirin, and cyclo-trans-4-l-hydroxyprolyl-l-serine (JBP485) reduced cilostazol uptake in kidney slices and human organic anion transporter 3 (hOAT3)-human embryonic kidney 293 (HEK293) cells, whereas p-aminohippuric acid did not. Compared with the vector, hOAT3-HEK293 cells accumulated more cilostazol, whereas hOAT1-HEK293 cells did not. OAT3 and Oat3 play a major role in cilostazol renal excretion, whereas OAT1 and Oat1 do not. Oat3 and Cyp

  13. Saponins extracted from Dioscorea collettii rhizomes regulate the expression of urate transporters in chronic hyperuricemia rats.

    PubMed

    Zhu, Liran; Dong, Yifan; Na, Sha; Han, Ru; Wei, Chengyin; Chen, Guangliang

    2017-09-01

    The current study aimed to investigate whether the saponins, bioactive component of effects of D. collettii, could reduce the serum uric acid level in a hyperuricemic mouse via regulation of urate transporters. Chronic hyperuricemia model was established by combine administration of adenine (100mg/kg) and ethambutol (250mg/kg). In the model group, the serum uric acid (SUA), urine uric acid (UUA) volume, and 24-h UUA values increased significantly, while the uric acid clearance rate (CUr) and creatinine clearance rate (CCr) values decreased. Further, the model groups showed significantly lower expression of organic anion transporter 1 (OAT1) and organic anion transporter 3 (OAT3) and significantly higher expression of renal tubular urate transporter 1 (URAT1), glucose transporter 9 (GLUT9) and URAT1 mRNA than the normal control group. Saponins administration was found to have a dose-dependent effect, as evidenced by the increase in the 24-h UUA, CUr and CCr values; the decrease in SUA; the decrease in the renal expression of URAT1 mRNA and URAT1 and GLUT9 proteins; and the increase in the renal expression of the OAT1 and OAT3 proteins. The saponins extracted from D. collettii rhizomes had an obvious anti-hyperuricemic effect through downregulation of the URAT1 mRNA and the URAT1 and GLUT9 proteins and upregulation of the OAT1 and OAT3 proteins. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Anion transport and supramolecular medicinal chemistry

    DOE PAGES

    Gale, Philip A.; Davis, Jeffery T.; Quesada, Roberto

    2017-04-05

    New approaches to the transmembrane transport of anions are discussed in this review. Advances in the design of small molecule anion carriers are reviewed in addition to advances in the design of synthetic anion channels. The application of anion transporters to the potential future treatment of disease is discussed in the context of recent findings on the selectivity of anion transporters.

  15. Anion transport and supramolecular medicinal chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gale, Philip A.; Davis, Jeffery T.; Quesada, Roberto

    New approaches to the transmembrane transport of anions are discussed in this review. Advances in the design of small molecule anion carriers are reviewed in addition to advances in the design of synthetic anion channels. The application of anion transporters to the potential future treatment of disease is discussed in the context of recent findings on the selectivity of anion transporters.

  16. Evaluation of a potential transporter-mediated drug interaction between rosuvastatin and pradigastat, a novel DGAT-1 inhibitor.

    PubMed

    Kulmatycki, Kenneth; Hanna, Imad; Meyers, Dan; Salunke, Atish; Movva, Aishwarya; Majumdar, Tapan; Natrillo, Adrienne; Vapurcuyan, Arpine; Rebello, Sam; Sunkara, Gangadhar; Chen, Jin

    2015-05-01

    An in vitro drugdrug interaction (DDI) study was performed to assess the potential for pradigastat to inhibit breast cancer resistance protein (BCRP), organic anion-transporting polypeptide (OATP), and organic anion transporter 3 (OAT3) transport activities. To understand the relevance of these in vitro findings, a clinical pharmacokinetic DDI study using rosuvastatin as a BCRP, OATP, and OAT3 probe substrate was conducted. The study used cell lines that stably expressed or over-expressed the respective transporters. The clinical study was an open-label, single sequence study where subjects (n = 36) received pradigastat (100 mg once daily x 3 days thereafter 40 mg once daily) and rosuvastatin (10 mg once daily), alone and in combination. Pradigastat inhibited BCRP-mediated efflux activity in a dose-dependent fashion in a BCRP over-expressing human ovarian cancer cell line with an IC(50) value of 5 μM. Similarly, pradigastat inhibited OATP1B1, OATP1B3 (estradiol 17β glucuronide transport), and OAT3 (estrone 3 sulfate transport) activity in a concentrationdependent manner with estimated IC(50) values of 1.66 ± 0.95 μM, 3.34 ± 0.64 μM, and 0.973 ± 0.11 μM, respectively. In the presence of steady state pradigastat concentrations, AUC(τ, ss) of rosuvastatin was unchanged and its Cmax,ss decreased by 14% (5.30 and 4.61 ng/mL when administered alone and coadministered with pradigastat, respectively). Pradigastat AUC(τ, ss) and C(max, ss) were unchanged when coadministered with rosuvastatin at steady state. Both rosuvastatin and pradigastat were well tolerated. These data indicate no clinically relevant pharmacokinetic interaction between pradigastat and rosuvastatin.

  17. Effect of a commercial anion dietary supplement on acid-base balance, urine volume, and urinary ion excretion in male goats fed oat or grass hay diets.

    PubMed

    Stratton-Phelps, Meri; House, John K

    2004-10-01

    To determine whether feeding a commercial anionic dietary supplement as a urinary acidifier to male goats may be useful for management of urolithiasis. 8 adult sexually intact male Toggenburg, Saanen, and Nubian goats. Goats were randomly assigned by age-, breed-, and weight-matched pairs to an oat or grass hay diet that was fed for 12 days. On days 13 to 14 (early sample collection time before supplementation), measurements were made of blood and urine sodium, potassium, calcium, magnesium, chloride, phosphorus, and sulfur concentrations; blood and urine pH; urine production; and water consumption. During the next 28 days, the anionic dietary supplement was added to the oat and grass hay diets to achieve a dietary cation-anion difference of 0 mEq/100g of dry matter. Blood and urine samples were analyzed during dietary supplementation on days 12 to 13 (middle sample collection time) and 27 to 28 (late sample collection time). Blood bicarbonate, pH, and urine pH of goats fed grass hay and goats fed oat hay were significantly decreased during the middle and late sample collection times, compared with the early sample collection time. Water consumption and urine production in all goats increased significantly during the late sample collection time, compared with the early sample collection time. The anionic dietary supplement used in our study increases urine volume, alters urine ion concentrations, and is an efficacious urinary acidifier in goats. Goats treated with prolonged anionic dietary supplementation should be monitored for secondary osteoporosis from chronic urinary calcium loss.

  18. The additive effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 function in diabetic rats.

    PubMed

    Thongnak, Laongdao; Pongchaidecha, Anchalee; Jaikumkao, Krit; Chatsudthipong, Varanuj; Chattipakorn, Nipon; Lungkaphin, Anusorn

    2017-10-19

    Hyperglycemia-induced oxidative stress is usually found in diabetic condition. 3-hydroxy-3-methylglutaryl coenzyme-A (HMG-CoA) reductase inhibitors, statins, are widely used as cholesterol-lowering medication with several "pleiotropic" effects in diabetic patients. This study aims to evaluate whether the protective effects of atorvastatin and insulin on renal function and renal organic anion transporter 3 (Oat3) function involve the modulation of oxidative stress and pancreatic function in type 1 diabetic rats. Type 1 diabetes was induced by intraperitoneal injection of streptozotocin (50 mg/kg BW). Atorvastatin and insulin as single or combined treatment were given for 4 weeks after diabetic condition had been confirmed. Diabetic rats demonstrated renal function and renal Oat3 function impairment with an increased MDA level and decreased SOD protein expression concomitant with stimulation of renal Nrf2 and HO-1 protein expression. Insulin plus atorvastatin (combined) treatment effectively restored renal function as well as renal Oat3 function which correlated with the decrease in hyperglycemia and oxidative stress. Moreover, pancreatic inflammation and apoptosis in diabetic rats were ameliorated by the combined drugs treatment. Therefore, atorvastatin plus insulin seems to exert the additive effect in improving renal functionby alleviating hyperglycemiaand the modulation of oxidative stress, inflammation and apoptosis.

  19. Interactions of bilastine, a new oral H₁ antihistamine, with human transporter systems.

    PubMed

    Lucero, Maria Luisa; Gonzalo, Ana; Ganza, Alvaro; Leal, Nerea; Soengas, Itziar; Ioja, Eniko; Gedey, Szilvia; Jahic, Mirza; Bednarczyk, Dallas

    2012-06-01

    Membrane transporters play a significant role in facilitating transmembrane drug movement. For new pharmacological agents, it is important to evaluate potential interactions (e.g., substrate specificity and/or inhibition) with human transporters that may affect their pharmacokinetics, efficacy, or toxicity. Bilastine is a new nonsedating H₁ antihistamine indicated for the treatment of allergic rhinoconjunctivitis and urticaria. The in vitro inhibitory effects of bilastine were assessed on 12 human transporters: four efflux [multidrug resistance protein 1 (MDR1) or P-glycoprotein, breast cancer resistance protein (BCRP), multidrug resistance associated protein 2 (MRP2), and bile salt export pump) and eight uptake transporters (sodium taurocholate cotransporting polypeptide, organic cation transporter (OCT)1, organic anion transporter (OAT)1, OAT3, OCT2, OATP2B1, OATP1B1, and OATP1B3). Only mild inhibition was found for MDR1-, OCT1-, and OATP2B1-mediated transport of probe substrates at the highest bilastine concentration assayed (300 μM; half-maximal inhibitory concentration: ≥300 μM). Bilastine transport by MDR1, BCRP, OAT1, OAT3, and OCT2 was also investigated in vitro. Only MDR1 active transport of bilastine was relevant, whereas it did not appear to be a substrate of OCT2, OAT1, or OAT3, nor was it transported substantially by BCRP. Drug-drug interactions resulting from bilastine inhibition of drug transporters that would be generally regarded as clinically relevant are unlikely. Additionally, bilastine did not appear to be a substrate of human BCRP, OAT1, OAT3, or OCT2 and thus is not a potential victim of inhibitors of these transporters. On the other hand, based on in vitro evaluation, clinically relevant interactions with MDR1 inhibitors are anticipated.

  20. Sulfhydryl modification of V449C in the glutamate transporter EAAT1 abolishes substrate transport but not the substrate-gated anion conductance

    PubMed Central

    Seal, Rebecca P.; Shigeri, Yasushi; Eliasof, Scott; Leighton, Barbara H.; Amara, Susan G.

    2001-01-01

    Excitatory amino acid transporters (EAATs) buffer and remove synaptically released l-glutamate and maintain its concentrations below neurotoxic levels. EAATs also mediate a thermodynamically uncoupled substrate-gated anion conductance that may modulate cell excitability. Here, we demonstrate that modification of a cysteine substituted within a C-terminal domain of EAAT1 abolishes transport in both the forward and reverse directions without affecting activation of the anion conductance. EC50s for l-glutamate and sodium are significantly lower after modification, consistent with kinetic models of the transport cycle that link anion channel gating to an early step in substrate translocation. Also, decreasing the pH from 7.5 to 6.5 decreases the EC50 for l-glutamate to activate the anion conductance, without affecting the EC50 for the entire transport cycle. These findings demonstrate for the first time a structural separation of transport and the uncoupled anion flux. Moreover, they shed light on some controversial aspects of the EAAT transport cycle, including the kinetics of proton binding and anion conductance activation. PMID:11752470

  1. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics.

    PubMed

    Walker, Aisha L; Lancaster, Cynthia S; Finkelstein, David; Ware, Russell E; Sparreboom, Alex

    2013-12-15

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assessing the role of OATP1B transporters in modulating hydroxyurea PK. Using wild-type and Oatp1b knockout (Oatp1b(-/-)) mice, hydroxyurea PK was analyzed in vivo by measuring [(14)C]hydroxyurea distribution in plasma, kidney, liver, urine, or the exhaled (14)CO2 metabolite. Plasma levels were significantly reduced by 20% in Oatp1b(-/-) mice compared with wild-type (area under the curve of 38.64 or 48.45 μg·h(-1)·ml(-1), respectively) after oral administration, whereas no difference was observed between groups following intravenous administration. Accumulation in the kidney was significantly decreased by twofold in Oatp1b(-/-) mice (356.9 vs. 748.1 pmol/g), which correlated with a significant decrease in urinary excretion. Hydroxyurea accumulation in the liver was also decreased (136.6 vs. 107.3 pmol/g in wild-type or Oatp1b(-/-) mice, respectively) correlating with a decrease in exhaled (14)CO2. These findings illustrate that deficiency of Oatp1b transporters alters the absorption, distribution, and elimination of hydroxyurea thus providing the first in vivo evidence that cell membrane transporters may play a significant role in modulating hydroxyurea PK. Future studies to investigate other transporters and their role in hydroxyurea disposition are warranted for understanding the sources of variation in hydroxyurea's PK.

  2. Organic anion transporting polypeptide 1B transporters modulate hydroxyurea pharmacokinetics

    PubMed Central

    Lancaster, Cynthia S.; Finkelstein, David; Ware, Russell E.; Sparreboom, Alex

    2013-01-01

    Hydroxyurea is currently the only FDA-approved drug that ameliorates the pathophysiology of sickle cell anemia. Unfortunately, substantial interpatient variability in the pharmacokinetics (PK) of hydroxyurea may result in variation of the drug's efficacy. However, little is known about mechanisms that modulate hydroxyurea PK. Recent in vitro studies identifying hydroxyurea as a substrate for organic anion transporting polypeptide (OATP1B) transporters prompted the current investigation assessing the role of OATP1B transporters in modulating hydroxyurea PK. Using wild-type and Oatp1b knockout (Oatp1b−/−) mice, hydroxyurea PK was analyzed in vivo by measuring [14C]hydroxyurea distribution in plasma, kidney, liver, urine, or the exhaled 14CO2 metabolite. Plasma levels were significantly reduced by 20% in Oatp1b−/− mice compared with wild-type (area under the curve of 38.64 or 48.45 μg·h−1·ml−1, respectively) after oral administration, whereas no difference was observed between groups following intravenous administration. Accumulation in the kidney was significantly decreased by twofold in Oatp1b−/− mice (356.9 vs. 748.1 pmol/g), which correlated with a significant decrease in urinary excretion. Hydroxyurea accumulation in the liver was also decreased (136.6 vs. 107.3 pmol/g in wild-type or Oatp1b−/− mice, respectively) correlating with a decrease in exhaled 14CO2. These findings illustrate that deficiency of Oatp1b transporters alters the absorption, distribution, and elimination of hydroxyurea thus providing the first in vivo evidence that cell membrane transporters may play a significant role in modulating hydroxyurea PK. Future studies to investigate other transporters and their role in hydroxyurea disposition are warranted for understanding the sources of variation in hydroxyurea's PK. PMID:23986199

  3. Transport properties of valsartan, sacubitril and its active metabolite (LBQ657) as determinants of disposition.

    PubMed

    Hanna, Imad; Alexander, Natalya; Crouthamel, Matthew H; Davis, John; Natrillo, Adrienne; Tran, Phi; Vapurcuyan, Arpine; Zhu, Bing

    2018-03-01

    1. The potential for drug-drug interactions of LCZ696 (a novel, crystalline complex comprising sacubitril and valsartan) was investigated in vitro. 2. Sacubitril was shown to be a highly permeable P-glycoprotein (P-gp) substrate and was hydrolyzed to the active anionic metabolite LBQ657 by human carboxylesterase 1 (CES1b and 1c). The multidrug resistance-associated protein 2 (MRP2) was shown to be capable of LBQ657 and valsartan transport that contributes to the elimination of either compound. 3. LBQ657 and valsartan were transported by OAT1, OAT3, OATP1B1 and OATP1B3, whereas no OAT- or OATP-mediated sacubitril transport was observed. 4. The contribution of OATP1B3 to valsartan transport (73%) was appreciably higher than that by OATP1B1 (27%), Alternatively, OATP1B1 contribution to the hepatic uptake of LBQ657 (∼70%) was higher than that by OATP1B3 (∼30%). 5. None of the compounds inhibited OCT1/OCT2, MATE1/MATE2-K, P-gp, or BCRP. Sacubitril and LBQ657 inhibited OAT3 but not OAT1, and valsartan inhibited the activity of both OAT1 and OAT3. Sacubitril and valsartan inhibited OATP1B1 and OATP1B3, whereas LBQ657 weakly inhibited OATP1B1 but not OATP1B3. 6. Drug interactions due to the inhibition of transporters are unlikely due to the redundancy of the available transport pathways (LBQ657: OATP1B1/OAT1/3 and valsartan: OATP1B3/OAT1/3) and the low therapeutic concentration of the LCZ696 analytes.

  4. Abundance of Drug Transporters in the Human Kidney Cortex as Quantified by Quantitative Targeted Proteomics

    PubMed Central

    Prasad, Bhagwat; Johnson, Katherine; Billington, Sarah; Lee, Caroline; Chung, Git W.; Brown, Colin D.A.; Kelly, Edward J.; Himmelfarb, Jonathan

    2016-01-01

    Protein expression of renal uptake and efflux transporters was quantified by quantitative targeted proteomics using the surrogate peptide approach. Renal uptake transporters assessed in this study included organic anion transporters (OAT1OAT4), organic cation transporter 2 (OCT2), organic/carnitine cation transporters (OCTN1 and OCTN2), and sodium-glucose transporter 2 (SGLT2); efflux transporters included P-glycoprotein, breast cancer resistance protein, multidrug resistance proteins (MRP2 and MRP4), and multidrug and toxin extrusion proteins (MATE1 and MATE2-K). Total membrane was isolated from the cortex of human kidneys (N = 41). The isolated membranes were digested by trypsin and the digest was subjected to liquid chromatography–tandem mass spectrometry analysis. The mean expression of surrogate peptides was as follows (given with the standard deviation, in picomoles per milligram of total membrane protein): OAT1 (5.3 ± 1.9), OAT2 (0.9 ± 0.3), OAT3 (3.5 ± 1.6), OAT4 (0.5 ± 0.2), OCT2 (7.4 ± 2.8), OCTN1 (1.3 ± 0.6), OCTN2 (0.6 ± 0.2), P-glycoprotein (2.1 ± 0.8), MRP2 (1.4 ± 0.6), MRP4 (0.9 ± 0.6), MATE1 (5.1 ± 2.3), and SGLT2 (3.7 ± 1.8). Breast cancer resistance protein (BCRP) and MATE2-K proteins were detectable but were below the lower limit of quantification. Interestingly, the protein expression of OAT1 and OAT3 was significantly correlated (r > 0.8). A significant correlation was also observed between expression of multiple other drug transporters, such as OATs/OCT2 or OCTN1/OCTN2, and SGLT2/OCTNs, OCT, OATs, and MRP2. These renal transporter data should be useful in deriving in vitro to in vivo scaling factors to accurately predict renal clearance and kidney epithelial cell exposure to drugs or their metabolites. PMID:27621205

  5. Metabolomic and Genome-wide Association Studies Reveal Potential Endogenous Biomarkers for OATP1B1.

    PubMed

    Yee, S W; Giacomini, M M; Hsueh, C-H; Weitz, D; Liang, X; Goswami, S; Kinchen, J M; Coelho, A; Zur, A A; Mertsch, K; Brian, W; Kroetz, D L; Giacomini, K M

    2016-11-01

    Transporter-mediated drug-drug interactions (DDIs) are a major cause of drug toxicities. Using published genome-wide association studies (GWAS) of the human metabolome, we identified 20 metabolites associated with genetic variants in organic anion transporter, OATP1B1 (P < 5 × 10 -8 ). Of these, 12 metabolites were significantly higher in plasma samples from volunteers dosed with the OATP1B1 inhibitor, cyclosporine (CSA) vs. placebo (q-value < 0.2). Conjugated bile acids and fatty acid dicarboxylates were among the metabolites discovered using both GWAS and CSA administration. In vitro studies confirmed tetradecanedioate (TDA) and hexadecanedioate (HDA) were novel substrates of OATP1B1 as well as OAT1 and OAT3. This study highlights the use of multiple datasets for the discovery of endogenous metabolites that represent potential in vivo biomarkers for transporter-mediated DDIs. Future studies are needed to determine whether these metabolites can serve as qualified biomarkers for organic anion transporters. Quantitative relationships between metabolite levels and modulation of transporters should be established. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  6. Evaluation of the transporter-mediated herb-drug interaction potential of DA-9801, a standardized dioscorea extract for diabetic neuropathy, in human in vitro and rat in vivo.

    PubMed

    Song, Im-Sook; Kong, Tae Yeon; Jeong, Hyeon-Uk; Kim, Eun Nam; Kwon, Soon-Sang; Kang, Hee Eun; Choi, Sang-Zin; Son, Miwon; Lee, Hye Suk

    2014-07-17

    Drug transporters play important roles in the absorption, distribution, and elimination of drugs and thereby, modulate drug efficacy and toxicity. With a growing use of poly pharmacy, concurrent administration of herbal extracts that modulate transporter activities with drugs can cause serious adverse reactions. Therefore, prediction and evaluation of drug-drug interaction potential is important in the clinic and in the drug development process. DA-9801, comprising a mixed extract of Dioscoreae rhizoma and Dioscorea nipponica Makino, is a new standardized extract currently being evaluated for diabetic peripheral neuropathy in a phase II clinical study. The inhibitory effects of DA-9801 on the transport functions of organic cation transporter (OCT)1, OCT2, organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, P-glycoprotein (P-gp), and breast cancer resistance protein (BCRP) were investigated in HEK293 or LLC-PK1 cells. The effects of DA-9801 on the pharmacokinetics of relevant substrate drugs of these transporters were also examined in vivo in rats. DA-9801 inhibited the in vitro transport activities of OCT1, OCT2, OAT3, and OATP1B1, with IC50 values of 106, 174, 48.1, and 273 μg/mL, respectively, while the other transporters were not inhibited by 300 μg/mL DA-9801. To investigate whether this inhibitory effect of DA-9801 on OCT1, OCT2, and OAT3 could change the pharmacokinetics of their substrates in vivo, we measured the pharmacokinetics of cimetidine, a substrate for OCT1, OCT2, and OAT3, and of furosemide, a substrate for OAT1 and OAT3, by co-administration of DA-9801 at a single oral dose of 1,000 mg/kg. Pre-dose of DA-9801 5 min or 2 h prior to cimetidine administration decreased the Cmax of cimetidine in rats. However, DA-9801 did not affect the elimination parameters such as half-life, clearance, or amount excreted in the urine, suggesting that it did not inhibit elimination process of cimetidine, which is

  7. Drug interaction between celecoxib and methotrexate in organic anion transporter 3-transfected renal cells and in rats in vivo.

    PubMed

    Maeda, Akimitsu; Tsuruoka, Shuichi; Ushijima, Kentarou; Kanai, Yoshikatsu; Endou, Hitoshi; Saito, Kazuyuki; Miyamoto, Etsuko; Fujimura, Akio

    2010-08-25

    Methotrexate has a clinically important pharmacokinetic interaction with nonsteroidal anti-inflammatory drugs (NSAIDs) mainly through its competition for tubular secretion via the renal organic anion transporter 3 (OAT3). We have previously reported the usefulness of OAT3-transfected renal tubular cells for screening of the drugs which interfere with the pharmacokinetics of methotrexate. Celecoxib, a cyclooxygenase (COX) 2 inhibitor, has not been reported to interact with methotrexate, but the mechanisms are unclear why the interaction did not occur. The purpose of this study was to evaluate the effect of celecoxib on methotrexate tubular secretion using a renal cell line stably expressing human OAT3 (S2-hOAT3), and to evaluate the pharmacokinetic interaction of the two drugs in rats. [3H]methotrexate uptake into S2-hOAT3 cells was significantly inhibited by celecoxib in a concentration-dependent manner and the Ki value was 35.3 microM. However, methotrexate serum concentrations and urinary excretion of methotrexate over 24 h in rats were not affected by celecoxib (50, 200 mg/kg). Celecoxib serum concentrations were increased by the increase in celecoxib dosage and the maximum drug concentration (Cmax) was 20.6 microM (celecoxib 200 mg/kg), which did not reach the Ki value obtained in the in vitro study. These results indicated that celecoxib inhibited the secretion of methotrexate via hOAT3, which suggested that celecoxib was a substrate of hOAT3. However, co-administration of the two drugs at clinical dosage did not affect the pharmacokinetics of methotrexate, because the serum concentrations did not reach the Ki value. Although the accumulation study using S2-hOAT3 cells was useful to predict the interaction between the new drug and methotrexate in vivo, a comparison of the Ki value with the Cmax in clinical dosage was necessary to evaluate the degree of this interaction. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  8. Molecular Characterization of Zebrafish Oatp1d1 (Slco1d1), a Novel Organic Anion-transporting Polypeptide*

    PubMed Central

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2013-01-01

    The organic anion-transporting polypeptide (OATP/Oatp) superfamily includes a group of polyspecific transporters that mediate transport of large amphipathic, mostly anionic molecules across cell membranes of eukaryotes. OATPs/Oatps are involved in the disposition and elimination of numerous physiological and foreign compounds. However, in non-mammalian species, the functional properties of Oatps remain unknown. We aimed to elucidate the role of Oatp1d1 in zebrafish to gain insights into the functional and structural evolution of the OATP1/Oatp1 superfamily. We show that diversification of the OATP1/Oatp1 family occurs after the emergence of jawed fish and that the OATP1A/Oatp1a and OATP1B/Oatp1b subfamilies appeared at the root of tetrapods. The Oatp1d subfamily emerged in teleosts and is absent in tetrapods. The zebrafish Oatp1d1 is similar to mammalian OATP1A/Oatp1a and OATP1B/Oatp1b members, with the main physiological role in transport and balance of steroid hormones. Oatp1d1 activity is dependent upon pH gradient, which could indicate bicarbonate exchange as a mode of transport. Our analysis of evolutionary conservation and structural properties revealed that (i) His-79 in intracellular loop 3 is conserved within OATP1/Oatp1 family and is crucial for the transport activity; (ii) N-glycosylation impacts membrane targeting and is conserved within the OATP1/Oatp1 family with Asn-122, Asn-133, Asn-499, and Asn-512 residues involved; (iii) the evolutionarily conserved cholesterol recognition interaction amino acid consensus motif is important for membrane localization; and (iv) Oatp1d1 is present in dimeric and possibly oligomeric form in the cell membrane. In conclusion, we describe the first detailed characterization of a new Oatp transporter in zebrafish, offering important insights into the functional evolution of the OATP1/Oatp1 family and the physiological role of Oatp1d1. PMID:24126916

  9. Semithiobambus[6]uril is a transmembrane anion transporter.

    PubMed

    Lang, Chao; Mohite, Amar; Deng, Xiaoli; Yang, Feihu; Dong, Zeyuan; Xu, Jiayun; Liu, Junqiu; Keinan, Ehud; Reany, Ofer

    2017-07-04

    Semithiobambus[6]uril is shown to be an efficient transmembrane anion transporter. Although all bambusuril analogs (having either O, S or N atoms in their portals) are excellent anion binders, only the sulfur analog is also an effective anion transporter capable of polarizing lipid membranes through selective anion uniport. This notable divergence reflects significant differences in the lipophilic character of the bambusuril analogs.

  10. Pharmacokinetic Interactions Between Isavuconazole and the Drug Transporter Substrates Atorvastatin, Digoxin, Metformin, and Methotrexate in Healthy Subjects

    PubMed Central

    Yamazaki, Takao; Desai, Amit; Goldwater, Ronald; Han, David; Lasseter, Kenneth C.; Howieson, Corrie; Akhtar, Shahzad; Kowalski, Donna; Lademacher, Christopher; Rammelsberg, Diane

    2016-01-01

    Abstract This article summarizes 4 phase 1 trials that explored interactions between the novel, triazole antifungal isavuconazole and substrates of the drug transporters breast cancer resistance protein (BCRP), multidrug and toxin extrusion protein‐1 (MATE1), organic anion transporters 1/3 (OAT1/OAT3), organic anion‐transporting polypeptide 1B1 (OATP1B1), organic cation transporters 1/2 (OCT1/OCT2), and P‐glycoprotein (P‐gp). Healthy subjects received single doses of atorvastatin (20 mg; OATP1B1 and P‐gp substrate), digoxin (0.5 mg; P‐gp substrate), metformin (850 mg; OCT1, OCT2, and MATE1 substrate), or methotrexate (7.5 mg; BCRP, OAT1, and OAT3 substrate) in the presence and absence of clinical doses of isavuconazole (200 mg 3 times a day for 2 days; 200 mg once daily thereafter). Coadministration with isavuconazole increased mean area under the plasma concentration‐time curves (90% confidence interval) of atorvastatin, digoxin, and metformin to 137% (129, 145), 125% (117, 134),  and 152% (138, 168) and increased mean maximum plasma concentrations to 103% (88, 121), 133% (119, 149), and 123% (109, 140), respectively. Methotrexate parameters were unaffected by isavuconazole. There were no serious adverse events. These findings indicate that isavuconazole is a weak inhibitor of P‐gp, as well as OCT1, OCT2, MATE1, or a combination thereof but not of BCRP, OATP1B1, OAT1, or OAT3. PMID:27273004

  11. Cetuximab Prevents Methotrexate-Induced Cytotoxicity in Vitro through Epidermal Growth Factor Dependent Regulation of Renal Drug Transporters

    PubMed Central

    2017-01-01

    The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma. As methotrexate is cleared by renal excretion, we studied the effect of cetuximab on renal methotrexate handling. We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based pathway analysis were used to predict EGFR-mediated transporter regulation. Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein (GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in transepithelial transport, respectively. Cetuximab reversed the EGF-increased expression of OAT1 and BCRP as well as their membrane expressions and transport activities, while MRP4 and P-gp were increased. Pathway analysis predicted cetuximab-induced modulation of PKC and PI3K pathways downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT inhibition reduced all transporters. Exposure to methotrexate for 24 h led to a decreased viability, an effect that was reversed by cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while upregulating P-gp and MRP4 through an EGFR-mediated regulation of PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates methotrexate-induced cytotoxicity, which opens possibilities for further research into nephroprotective comedication therapies. PMID:28493713

  12. Cetuximab Prevents Methotrexate-Induced Cytotoxicity in Vitro through Epidermal Growth Factor Dependent Regulation of Renal Drug Transporters.

    PubMed

    Caetano-Pinto, Pedro; Jamalpoor, Amer; Ham, Janneke; Goumenou, Anastasia; Mommersteeg, Monique; Pijnenburg, Dirk; Ruijtenbeek, Rob; Sanchez-Romero, Natalia; van Zelst, Bertrand; Heil, Sandra G; Jansen, Jitske; Wilmer, Martijn J; van Herpen, Carla M L; Masereeuw, Rosalinde

    2017-06-05

    The combination of methotrexate with epidermal growth factor receptor (EGFR) recombinant antibody, cetuximab, is currently being investigated in treatment of head and neck carcinoma. As methotrexate is cleared by renal excretion, we studied the effect of cetuximab on renal methotrexate handling. We used human conditionally immortalized proximal tubule epithelial cells overexpressing either organic anion transporter 1 or 3 (ciPTEC-OAT1/ciPTEC-OAT3) to examine OAT1 and OAT3, and the efflux pumps breast cancer resistance protein (BCRP), multidrug resistance protein 4 (MRP4), and P-glycoprotein (P-gp) in methotrexate handling upon EGF or cetuximab treatment. Protein kinase microarrays and knowledge-based pathway analysis were used to predict EGFR-mediated transporter regulation. Cytotoxic effects of methotrexate were evaluated using the dimethylthiazol bromide (MTT) viability assay. Methotrexate inhibited OAT-mediated fluorescein uptake and decreased efflux of Hoechst33342 and glutathione-methylfluorescein (GS-MF), which suggested involvement of OAT1/3, BCRP, and MRP4 in transepithelial transport, respectively. Cetuximab reversed the EGF-increased expression of OAT1 and BCRP as well as their membrane expressions and transport activities, while MRP4 and P-gp were increased. Pathway analysis predicted cetuximab-induced modulation of PKC and PI3K pathways downstream EGFR/ERBB2/PLCg. Pharmacological inhibition of ERK decreased expression of OAT1 and BCRP, while P-gp and MRP4 were increased. AKT inhibition reduced all transporters. Exposure to methotrexate for 24 h led to a decreased viability, an effect that was reversed by cetuximab. In conclusion, cetuximab downregulates OAT1 and BCRP while upregulating P-gp and MRP4 through an EGFR-mediated regulation of PI3K-AKT and MAPKK-ERK pathways. Consequently, cetuximab attenuates methotrexate-induced cytotoxicity, which opens possibilities for further research into nephroprotective comedication therapies.

  13. Multiple blood-brain barrier transport mechanisms limit bumetanide accumulation, and therapeutic potential, in the mammalian brain.

    PubMed

    Römermann, Kerstin; Fedrowitz, Maren; Hampel, Philip; Kaczmarek, Edith; Töllner, Kathrin; Erker, Thomas; Sweet, Douglas H; Löscher, Wolfgang

    2017-05-01

    There is accumulating evidence that bumetanide, which has been used over decades as a potent loop diuretic, also exerts effects on brain disorders, including autism, neonatal seizures, and epilepsy, which are not related to its effects on the kidney but rather mediated by inhibition of the neuronal Na-K-Cl cotransporter isoform NKCC1. However, following systemic administration, brain levels of bumetanide are typically below those needed to inhibit NKCC1, which critically limits its clinical use for treating brain disorders. Recently, active efflux transport at the blood-brain barrier (BBB) has been suggested as a process involved in the low brain:plasma ratio of bumetanide, but it is presently not clear which transporters are involved. Understanding the processes explaining the poor brain penetration of bumetanide is needed for developing strategies to improve the brain delivery of this drug. In the present study, we administered probenecid and more selective inhibitors of active transport carriers at the BBB directly into the brain of mice to minimize the contribution of peripheral effects on the brain penetration of bumetanide. Furthermore, in vitro experiments with mouse organic anion transporter 3 (Oat3)-overexpressing Chinese hamster ovary cells were performed to study the interaction of bumetanide, bumetanide derivatives, and several known inhibitors of Oats on Oat3-mediated transport. The in vivo experiments demonstrated that the uptake and efflux of bumetanide at the BBB is much more complex than previously thought. It seems that both restricted passive diffusion and active efflux transport, mediated by Oat3 but also organic anion-transporting polypeptide (Oatp) Oatp1a4 and multidrug resistance protein 4 explain the extremely low brain concentrations that are achieved after systemic administration of bumetanide, limiting the use of this drug for targeting abnormal expression of neuronal NKCC1 in brain diseases. Copyright © 2017 Elsevier Ltd. All rights

  14. JBP485 improves gentamicin-induced acute renal failure by regulating the expression and function of Oat1 and Oat3 in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xinjin; Meng, Qiang; Liu, Qi

    2013-09-01

    We investigated the effects of JBP485 (an anti-inflammatory dipeptide and a substrate of OAT) on regulation of the expression and function of renal Oat1 and Oat3, which can accelerate the excretion of accumulated uremic toxins (e.g. indoxyl sulfate) in the kidney to improve gentamicin-induced ARF in rats. JBP485 caused a significant decrease in the accumulation of endogenous substances (creatinine, blood urea nitrogen and indoxyl sulfate) in vivo, an increase in the excretion of exogenous compounds (lisinopril and inulin) into urine, and up-regulation of the expressions of renal Oat1 and Oat3 in the kidney tissues and slices via substrate induction. Tomore » determine the effect of JBP485 on the accelerated excretion of uremic toxins mediated by Oat1 and Oat3, the mRNA and protein expression levels of renal basolateral Oats were assessed by quantitative real-time PCR, western blot, immunohistochemical analysis and an immunofluorescence method. Gentamicin down-regulated the expression of Oats mRNA and protein in rat kidney, and these effects were reversed after administration of JBP485. In addition, JBP485 caused a significant decrease in MPO and MDA levels in the kidney, and improved the pathological condition of rat kidney. These results indicated that JBP485 improved acute renal failure by increasing the expression and function of Oat1 and Oat3, and by decreasing overoxidation of the kidney in gentamicin-induced ARF rats. - Highlights: • JBP485 could up-regulate function and expression of Oat1 and Oat3 in kidney. • Effects of JBP485 on ARF are mediated by stimulating excretion of uremic toxins. • JBP485 protected against gentamicin-induced ARF by decreasing MPO and MDA.« less

  15. Anion Binding and Transport by Prodigiosin and Its Analogs

    NASA Astrophysics Data System (ADS)

    Davis, Jeffery T.

    The red-colored prodiginines, exemplified by prodigiosin 1, are secondary metabolites produced by a number of microorganisms, including the bacterium Serratia marcescens. These tripyrrole natural products and their synthetic analogs have received renewed attention over the past deacade, primarily because of their promising immunosuppressive and anticancer activities. One of the hallmarks of prodiginin chemistry is the ability of the monoprotonated ligand to bind anions, including the essential chloride and bicarbonate ions. The resulting lipophilic ion pair is then able to diffuse across the hydrophobic barrier presented by phospholipid bilayers. Thus, prodiginines have been found to be potent transmembrane anion transporters and HCl cotransporters. In this chapter, the author reviews what is known about the solid-state structure of prodiginins and their anion complexes, the solution conformation of prodiginines, and the biochemcal evidence for the ability to bind anions and to transport HCl across cell membranes. Recent progress in making synthetic models of prodiginines and recent results on the ability of prodigiosin to transport HCO 3 - across lipid membranes are discussed.

  16. Sorption of copper, zinc and cobalt by oat and oat products.

    PubMed

    Górecka, Danuta; Stachowiak, Jadwiga

    2002-04-01

    We determined copper, zinc and cobalt sorption by oat and its products under variable pH conditions as well as the content of neutral dietary fiber (NDF) and its fractional composition. Adsorbents in a model sorption system were: oat, dehulled oat, oats bran and oats flakes. Three various buffers (pH 1.8, 6.6 and 8.7) were used as dispersing solutions. Results collected during this study indicate that copper, zinc and cobalt sorption is significantly affected by the type of cereal raw material. Zinc and copper ions are subjected to higher sorption than cobalt ions. Examined metal ions were subjected to high sorption under conditions corresponding to the duodenum environment (pH 8.7), regardless of the kind of adsorbent. A little lower sorption capacity is observed under conditions close to the neutral environment, while the lowest one is found in environment reflecting conditions of stomach juice (pH 1.8). Zinc ions are bound intensively by dehulled oat, while oats flakes bound mostly copper and cobalt, independently on environmental conditions. Contents of dietary fiber in oat, dehulled oat, oat bran and oat flakes were: 40.1, 19.3, 20.3 and 14.3%, respectively. The dominating fraction in all oat products was the fraction of hemicelluloses. The content of remaining fractions varies in dependence on the product.

  17. Association analysis of the SLC22A11 (organic anion transporter 4) and SLC22A12 (urate transporter 1) urate transporter locus with gout in New Zealand case-control sample sets reveals multiple ancestral-specific effects

    PubMed Central

    2013-01-01

    Introduction There is inconsistent association between urate transporters SLC22A11 (organic anion transporter 4 (OAT4)) and SLC22A12 (urate transporter 1 (URAT1)) and risk of gout. New Zealand (NZ) Māori and Pacific Island people have higher serum urate and more severe gout than European people. The aim of this study was to test genetic variation across the SLC22A11/SLC22A12 locus for association with risk of gout in NZ sample sets. Methods A total of 12 single nucleotide polymorphism (SNP) variants in four haplotype blocks were genotyped using TaqMan® and Sequenom MassArray in 1003 gout cases and 1156 controls. All cases had gout according to the 1977 American Rheumatism Association criteria. Association analysis of single markers and haplotypes was performed using PLINK and Stata. Results A haplotype block 1 SNP (rs17299124) (upstream of SLC22A11) was associated with gout in less admixed Polynesian sample sets, but not European Caucasian (odds ratio; OR = 3.38, P = 6.1 × 10-4; OR = 0.91, P = 0.40, respectively) sample sets. A protective block 1 haplotype caused the rs17299124 association (OR = 0.28, P = 6.0 × 10-4). Within haplotype block 2 (SLC22A11) we could not replicate previous reports of association of rs2078267 with gout in European Caucasian (OR = 0.98, P = 0.82) sample sets, however this SNP was associated with gout in Polynesian (OR = 1.51, P = 0.022) sample sets. Within haplotype block 3 (including SLC22A12) analysis of haplotypes revealed a haplotype with trans-ancestral protective effects (OR = 0.80, P = 0.004), and a second haplotype conferring protection in less admixed Polynesian sample sets (OR = 0.63, P = 0.028) but risk in European Caucasian samples (OR = 1.33, P = 0.039). Conclusions Our analysis provides evidence for multiple ancestral-specific effects across the SLC22A11/SLC22A12 locus that presumably influence the activity of OAT4 and URAT1 and risk of gout. Further

  18. Inhibition of Human Drug Transporter Activities by the Pyrethroid Pesticides Allethrin and Tetramethrin

    PubMed Central

    Chedik, Lisa; Bruyere, Arnaud; Le Vee, Marc; Stieger, Bruno; Denizot, Claire; Parmentier, Yannick; Potin, Sophie; Fardel, Olivier

    2017-01-01

    Pyrethroids are widely-used chemical insecticides, to which humans are commonly exposed, and known to alter functional expression of drug metabolizing enzymes. Limited data have additionally suggested that drug transporters, that constitute key-actors of the drug detoxification system, may also be targeted by pyrethroids. The present study was therefore designed to analyze the potential regulatory effects of these pesticides towards activities of main ATP-binding cassette (ABC) and solute carrier (SLC) drug transporters, using transporter-overexpressing cells. The pyrethroids allethrin and tetramethrin were found to inhibit various ABC and SLC drug transporters, including multidrug resistance-associated protein (MRP) 2, breast cancer resistance protein (BCRP), organic anion transporter polypeptide (OATP) 1B1, organic anion transporter (OAT) 3, multidrug and toxin extrusion transporter (MATE) 1, organic cation transporter (OCT) 1 and OCT2, with IC50 values however ranging from 2.6 μM (OCT1 inhibition by allethrin) to 77.6 μM (OAT3 inhibition by tetramethrin) and thus much higher than pyrethroid concentrations (in the nM range) reached in environmentally pyrethroid-exposed humans. By contrast, allethrin and tetramethrin cis-stimulated OATP2B1 activity and failed to alter activities of OATP1B3, OAT1 and MATE2-K, whereas P-glycoprotein activity was additionally moderately inhibited. Twelve other pyrethoids used at 100 μM did not block activities of the various investigated transporters, or only moderately inhibited some of them (inhibition by less than 50%). In silico analysis of structure-activity relationships next revealed that molecular parameters, including molecular weight and lipophilicity, are associated with transporter inhibition by allethrin/tetramethrin and successfully predicted transporter inhibition by the pyrethroids imiprothrin and prallethrin. Taken together, these data fully demonstrated that two pyrethoids, i.e., allethrin and tetramethrin, can

  19. Substrate transport and anion permeation proceed through distinct pathways in glutamate transporters

    PubMed Central

    Cheng, Mary Hongying; Torres-Salazar, Delany; Gonzalez-Suarez, Aneysis D; Amara, Susan G; Bahar, Ivet

    2017-01-01

    Advances in structure-function analyses and computational biology have enabled a deeper understanding of how excitatory amino acid transporters (EAATs) mediate chloride permeation and substrate transport. However, the mechanism of structural coupling between these functions remains to be established. Using a combination of molecular modeling, substituted cysteine accessibility, electrophysiology and glutamate uptake assays, we identified a chloride-channeling conformer, iChS, transiently accessible as EAAT1 reconfigures from substrate/ion-loaded into a substrate-releasing conformer. Opening of the anion permeation path in this iChS is controlled by the elevator-like movement of the substrate-binding core, along with its wall that simultaneously lines the anion permeation path (global); and repacking of a cluster of hydrophobic residues near the extracellular vestibule (local). Moreover, our results demonstrate that stabilization of iChS by chemical modifications favors anion channeling at the expense of substrate transport, suggesting a mutually exclusive regulation mediated by the movement of the flexible wall lining the two regions. DOI: http://dx.doi.org/10.7554/eLife.25850.001 PMID:28569666

  20. Cysteine Scanning Mutagenesis of Transmembrane Domain 10 in Organic Anion Transporting Polypeptide 1B1

    PubMed Central

    2015-01-01

    Organic anion transporting polypeptide (OATP) 1B1 is an important drug transporter expressed in human hepatocytes. Previous studies have indicated that transmembrane (TM) domain 2, 6, 8, 9, and in particular 10 might be part of the substrate binding site/translocation pathway. To explore which amino acids in TM10 are important for substrate transport, we mutated 34 amino acids individually to cysteines, expressed them in HEK293 cells, and determined their surface expression. Transport activity of the two model substrates estrone-3-sulfate and estradiol-17β-glucuronide as well as of the drug substrate valsartan for selected mutants was measured. Except for F534C and F537C, all mutants were expressed at the plasma membrane of HEK293 cells. Mutants Q541C and A549C did not transport estradiol-17β-glucuronide and showed negligible estrone-3-sulfate transport. However, A549C showed normal valsartan transport. Pretreatment with the anionic and cell impermeable sodium (2-sulfonatoethyl)methanethiosulfonate (MTSES) affected the transport of each substrate differently. Pretreatment of L545C abolished estrone-3-sulfate uptake almost completely, while it stimulated estradiol-17β-glucuronide uptake. Further analyses revealed that mutant L545C in the absence of MTSES showed biphasic kinetics for estrone-3-sulfate that was converted to monophasic kinetics with a decreased apparent affinity, explaining the previously seen inhibition. In contrast, the apparent affinity for estradiol-17β-glucuronide was not changed by MTSES treatment, but the Vmax value was increased about 4-fold, explaining the previously seen stimulation. Maleimide labeling of L545C was affected by preincubation with estrone-3-sulfate but not with estradiol-17β-glucuronide. These results strongly suggest that L545C is part of the estrone-3-sulfate binding site/translocation pathway but is not directly involved in binding/translocation of estradiol-17β-glucuronide. PMID:24673529

  1. The organic anion transport polypeptide 1d1 (Oatp1d1) mediates hepatocellular uptake of phalloidin and microcystin into skate liver.

    PubMed

    Meier-Abt, F; Hammann-Hänni, A; Stieger, B; Ballatori, N; Boyer, J L

    2007-02-01

    Organic anion transporting polypeptides (rodent Oatp; human OATP) mediate cellular uptake of numerous organic compounds including xenobiotic toxins into mammalian hepatocytes. In the little skate Leucoraja erinacea a liver-specific Oatp (Oatp1d1, also called sOatp) has been identified and suggested to represent an evolutionarily ancient precursor of the mammalian liver OATP1B1 (human), Oatp1b2 (rat), and OATP1B3 (human). The present study tested whether Oatp1d1 shares functional transport activity of the xenobiotic oligopeptide toxins phalloidin and microcystin with the mammalian liver Oatps/OATPs. The phalloidin analogue [(3)H]-demethylphalloin was taken up into skate hepatocytes with high affinity (Km approximately 0.4 microM), and uptake could be inhibited by phalloidin and a variety of typical Oatp/OATP substrates such as bromosulfophthalein, bile salts, estrone-3-sulfate, cyclosporine A and high concentrations of microcystin-LR (Ki approximately 150 microM). When expressed in Xenopus laevis oocytes Oatp1d1 increased uptake of demethylphalloin (Km approximately 2.2 microM) and microcystin-LR (Km approximately 27 microM) 2- to 3-fold over water-injected oocytes, whereas the alternative skate liver organic anion transporter, the dimeric Ostalpha/beta, exhibited no phalloidin and only minor microcystin-LR transport. Also, the closest mammalian Oatp1d1 orthologue, the human brain and testis OATP1C1, did not show any phalloidin transport activity. These results demonstrate that the evolutionarily ancient Oatp1d1 is able to mediate uptake of cyclic oligopeptide toxins into skate liver. The findings support the notion that Oatp1d1 is a precursor of the liver-specific mammalian Oatps/OATPs and that its transport properties are closely associated with certain forms of toxic liver injury such as for example protein phosphatase inhibition by the water-borne toxin microcystin.

  2. Sodium and Potassium Fluxes and Compartmentation in Roots of Atriplex and Oat 1

    PubMed Central

    Mills, David; Robinson, Kenneth; Hodges, Thomas K.

    1985-01-01

    K+ and Na+ fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K+ with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions. Increasing ambient Na+ concentrations from 0 to 50 millimolar altered K+, in Atriplex, as follows: slightly decreased the cytoplasmic content (Qc), the vacuolar content (Qv), and the plasma membrane influx and efflux. Xylem transport for K+ decreased by 63% in Atriplex. For oat roots, similar increases in Na+ altered K+ parameters as follows: plasma membrane influx and efflux decreased by about 80%. Qc decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Qv for K+. Increasing ambient Na+ resulted in higher (3 to 5-fold) Na+ fluxes across the plasma membrane and in Qc of both species. In Atriplex, Na+ fluxes across the tonoplast and Qv increased as external Na+ was increased. In oat, however, no significant change was observed in Na+ flux across the tonoplast or in Qv as external Na+ was increased. In oat roots, Na+ reduced K+ uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na+ levels, the influx transport system at the plasma membrane of both species preferred K+ over Na+. Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K+ occurred across the plasma membrane, and passive movement of K+ occurred across the tonoplast in both species. Na+, in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na+ was passively distributed between the free space, cytoplasm, and vacuole. PMID:16664273

  3. Simultaneous Assessment of Transporter-Mediated Drug-Drug Interactions Using a Probe Drug Cocktail in Cynomolgus Monkey.

    PubMed

    Kosa, Rachel E; Lazzaro, Sarah; Bi, Yi-An; Tierney, Brendan; Gates, Dana; Modi, Sweta; Costales, Chester; Rodrigues, A David; Tremaine, Larry M; Varma, Manthena V

    2018-06-07

    We aim to establish an in vivo preclinical model to enable simultaneous assessment of inhibition potential of an investigational drug on clinically relevant drug transporters, organic anion transporting polypeptide (OATP)1B, breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and organic anion transporter (OAT)3. Pharmacokinetics of substrate cocktail consisting of pitavastatin (OATP1B substrate), rosuvastatin (OATP1B/BCRP/OAT3), sulfasalazine (BCRP) and talinolol (P-gp) were obtained in cynomolgus monkey - alone or in combination with transporter inhibitors. Single dose rifampicin (30 mg/kg) significantly (p<0.01) increased the plasma exposure of all four drugs, with a marked effect on pitavastatin and rosuvastatin (AUC ratio ~21-39). Elacridar, BCRP/P-gp inhibitor, increased the AUC of sulfasalazine, talinolol, as well as rosuvastatin and pitavastatin. An OAT1/3 inhibitor (probenecid) significantly (p<0.05) impacted the renal clearance of rosuvastatin (~8-fold). In vitro, rifampicin (10μM) inhibited uptake of pitavastatin, rosuvastatin and sulfasalazine by monkey and human primary hepatocytes. Transport studies using membrane vesicles suggested that all probe substrates, except talinolol, are transported by cynoBCRP; while talinolol is a cynoP-gp substrate. Elacridar and rifampicin inhibited both cynoBCRP and cynoP-gp in vitro, indicating potential for in vivo intestinal efflux inhibition. In conclusion, a probe substrate cocktail was validated to simultaneously evaluate perpetrator impact on multiple clinically relevant transporters using the cynomolgus monkey. The results support the use of the cynomolgus monkey as a model that could enable drug-drug interaction risk assessment, before advancing a new molecular entity into clinical development, as well as providing mechanistic insights on transporter-mediated interactions. The American Society for Pharmacology and Experimental Therapeutics.

  4. Mangiferin Inhibits Renal Urate Reabsorption by Modulating Urate Transporters in Experimental Hyperuricemia.

    PubMed

    Yang, Hua; Gao, Lihui; Niu, Yanfen; Zhou, Yuanfang; Lin, Hua; Jiang, Jing; Kong, Xiangfu; Liu, Xu; Li, Ling

    2015-01-01

    Mangiferin, a natural glucosyl xanthone from the leaves of Mangifera indica L., was previously shown to exert potent hypouricemic effects associated with inhibition of the activity of xanthine dehydrogenase/oxidase. The present study aimed to evaluate its uricosuric effect and possible molecular mechanisms underlying the renal urate transporters responsible for urate reabsorption in vivo. Mangiferin (1.5-24.0 mg/kg) was administered intragastrically to hyperuricemic mice and rats induced by the intraperitoneal injection of uric acid and potassium oxonate, respectively. The uricosuric effect was evaluated by determining the serum and urinary urate levels as well as fractional excretion of uric acid (FEUA). The mRNA and protein levels of renal urate-anion transporter 1 (URAT1), organic anion transporter 10 (OAT10), glucose transporter 9 (GLUT9), and PDZ domain-containing protein (PDZK1) were analyzed. The administration of mangiferin significantly decreased the serum urate levels in hyperuricemic mice in a dose- and time-dependent manner. In hyperuricemic rats, mangiferin also reduced the serum urate levels and increased the urinary urate levels and FEUA. These results indicate that mangiferin has uricosuric effects. Further examination showed that mangiferin markedly inhibited the mRNA and protein expression of renal URAT1, OAT10, and GLUT9 in hyperuricemic rats, but did not interfere with PDZK1 expression. Taken together, these findings suggest that mangiferin promotes urate excretion by the kidney, which may be related to the inhibition of urate reabsorption via downregulation of renal urate transporters.

  5. Glutamate transporter-associated anion channels adjust intracellular chloride concentrations during glial maturation.

    PubMed

    Untiet, Verena; Kovermann, Peter; Gerkau, Niklas J; Gensch, Thomas; Rose, Christine R; Fahlke, Christoph

    2017-02-01

    Astrocytic volume regulation and neurotransmitter uptake are critically dependent on the intracellular anion concentration, but little is known about the mechanisms controlling internal anion homeostasis in these cells. Here we used fluorescence lifetime imaging microscopy (FLIM) with the chloride-sensitive dye MQAE to measure intracellular chloride concentrations in murine Bergmann glial cells in acute cerebellar slices. We found Bergmann glial [Cl - ] int to be controlled by two opposing transport processes: chloride is actively accumulated by the Na + -K + -2Cl - cotransporter NKCC1, and chloride efflux through anion channels associated with excitatory amino acid transporters (EAATs) reduces [Cl - ] int to values that vary upon changes in expression levels or activity of these channels. EAATs transiently form anion-selective channels during glutamate transport, and thus represent a class of ligand-gated anion channels. Age-dependent upregulation of EAATs results in a developmental chloride switch from high internal chloride concentrations (51.6 ± 2.2 mM, mean ± 95% confidence interval) during early development to adult levels (35.3 ± 0.3 mM). Simultaneous blockade of EAAT1/GLAST and EAAT2/GLT-1 increased [Cl - ] int in adult glia to neonatal values. Moreover, EAAT activation by synaptic stimulations rapidly decreased [Cl - ] int . Other tested chloride channels or chloride transporters do not contribute to [Cl - ] int under our experimental conditions. Neither genetic removal of ClC-2 nor pharmacological block of K + -Cl - cotransporter change resting Bergmann glial [Cl - ] int in acute cerebellar slices. We conclude that EAAT anion channels play an important and unexpected role in adjusting glial intracellular anion concentration during maturation and in response to cerebellar activity. GLIA 2017;65:388-400. © 2016 Wiley Periodicals, Inc.

  6. HvALMT1 from barley is involved in the transport of organic anions

    PubMed Central

    Gruber, Benjamin D.; Ryan, Peter R.; Richardson, Alan E.; Tyerman, Stephen D.; Ramesh, Sunita; Hebb, Diane M.; Howitt, Susan M.; Delhaize, Emmanuel

    2010-01-01

    Members of the ALMT gene family contribute to the Al3+ resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al3+ resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the greatest sequence similarity to TaALMT1. HvALMT1 is located on chromosome 2H which has not been associated with Al3+ resistance in barley. The relatively low levels of HvALMT1 expression detected in root and shoot tissues were independent of external aluminium or phosphorus supply. Transgenic barley plants transformed with the HvALMT1 promoter fused to the green fluorescent protein (GFP) indicated that expression of HvALMT1 was relatively high in stomatal guard cells and in root tissues containing expanding cells. GFP fused to the C-terminus of the full HvALMT1 protein localized to the plasma membrane and motile vesicles within the cytoplasm. HvALMT1 conferred both inward and outward currents when expressed in Xenopus laevis oocytes that were bathed in a range of anions including malate. Both malate uptake and efflux were confirmed in oocyte assays using [14C]malate as a radiotracer. It is suggested that HvALMT1 functions as an anion channel to facilitate organic anion transport in stomatal function and expanding cells. PMID:20176888

  7. HvALMT1 from barley is involved in the transport of organic anions.

    PubMed

    Gruber, Benjamin D; Ryan, Peter R; Richardson, Alan E; Tyerman, Stephen D; Ramesh, Sunita; Hebb, Diane M; Howitt, Susan M; Delhaize, Emmanuel

    2010-03-01

    Members of the ALMT gene family contribute to the Al(3+) resistance of several plant species by facilitating malate efflux from root cells. The first member of this family to be cloned and characterized, TaALMT1, is responsible for most of the natural variation of Al(3+) resistance in wheat. The current study describes the isolation and characterization of HvALMT1, the barley gene with the greatest sequence similarity to TaALMT1. HvALMT1 is located on chromosome 2H which has not been associated with Al(3+) resistance in barley. The relatively low levels of HvALMT1 expression detected in root and shoot tissues were independent of external aluminium or phosphorus supply. Transgenic barley plants transformed with the HvALMT1 promoter fused to the green fluorescent protein (GFP) indicated that expression of HvALMT1 was relatively high in stomatal guard cells and in root tissues containing expanding cells. GFP fused to the C-terminus of the full HvALMT1 protein localized to the plasma membrane and motile vesicles within the cytoplasm. HvALMT1 conferred both inward and outward currents when expressed in Xenopus laevis oocytes that were bathed in a range of anions including malate. Both malate uptake and efflux were confirmed in oocyte assays using [(14)C]malate as a radiotracer. It is suggested that HvALMT1 functions as an anion channel to facilitate organic anion transport in stomatal function and expanding cells.

  8. Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: implications for oral drug delivery.

    PubMed

    Sweet, Deborah M; Kolhatkar, Rohit B; Ray, Abhijit; Swaan, Peter; Ghandehari, Hamidreza

    2009-08-19

    The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired.

  9. Transepithelial Transport of PEGylated Anionic Poly(amidoamine) Dendrimers: Implications for Oral Drug Delivery

    PubMed Central

    Sweet, Deborah M.; Kolhatkar, Rohit B.; Ray, Abhijit; Swaan, Peter; Ghandehari, Hamidreza

    2009-01-01

    The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired. PMID:19393702

  10. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popovic, Marta; Zaja, Roko; Fent, Karl

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towardsmore » perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA

  11. Simultaneous determination of gallic acid and gentisic acid in organic anion transporter expressing cells by liquid chromatography-tandem mass spectrometry.

    PubMed

    Wang, Li; Halquist, Matthew S; Sweet, Douglas H

    2013-10-15

    In order to elucidate the role of organic anion transporters (OATs) in the renal elimination of gallic acid and gentisic acid, a new, rapid, and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous determination of gallic acid and gentisic acid in cell lysate, using Danshensu as the internal standard (IS). After a simple liquid-liquid extraction, the analytes were detected in negative ESI mode using selected reaction monitoring. The precursor-to-product ion transitions (m/z) were 169.0→125.0, 153.1→108.0, and 196.8→135.2 for gallic acid, gentisic acid, and the IS, respectively. Chromatographic separation was achieved on a C18 column using mobile phases consisting of water with 0.1% acetic acid (A) and acetonitrile with 0.05% formic acid. (B) The total run time was 3min and calibration curves were linear over the concentrations of 0.33-2400ng/mL for both compounds (r(2)>0.995). Good precision (between 3.11% and 14.1% RSD) and accuracy (between -12.7% and 11% bias) was observed for quality controls at concentrations of 0.33 (lower limit of quantification), 1, 50, and 2000ng/mL. The mean extraction recovery of gallic acid and gentisic acid was 80.7% and 83.5%, respectively. Results from post-column infusion and post-extraction methods indicated that the analytical method exhibited negligible matrix effects. Finally, this validated assay was successfully applied in a cellular uptake study to determine the intracellular concentrations of gallic acid and gentisic acid in OAT expressing cells. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The role of hormone transport and metabolism in apical dominance in oats

    NASA Technical Reports Server (NTRS)

    Harrison, M. A.; Kaufman, P. B.

    1984-01-01

    14C-benzyladenine (BA) and 14C-indole-3-acetic acid (IAA) were used to study hormone transport to the tiller bud and hormone catabolism in excised oat stem segments. Acropetal BA transport was greatest from upright stem segments to tiller buds suppressed by apical dominance. IAA, abscisic acid (ABA), and C2H4 inhibited BA transport to the tiller bud. IAA transport to the tiller bud site was inhibited by BA, C2H4, or after gravistimulation, which affected BA transport to a lesser extent than IAA transport. Multiple peaks of radioactivity were observed in 14C-BA- or 14C-IAA-treated stem segments after 9 h of transport. IAA, ABA, and C2H4 promoted BA catabolism. Auxin, ABA, and C2H4 may inhibit tiller bud release by inhibiting cytokinin transport to the tiller bud and by promoting cytokinin catabolism. Gravistimulation may promote tiller release by inhibiting IAA transport to the tiller bud and allowing cytokinins to accumulate there preferentially.

  13. Efficient, non-toxic anion transport by synthetic carriers in cells and epithelia

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Valkenier, Hennie; Judd, Luke W.; Brotherhood, Peter R.; Hussain, Sabir; Cooper, James A.; Jurček, Ondřej; Sparkes, Hazel A.; Sheppard, David N.; Davis, Anthony P.

    2016-01-01

    Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especially promising activity, including deliverability, potency and persistence. Electrophysiological tests show strong effects in epithelia, close to those of natural anion channels. Toxicity assays yield negative results in three cell lines, suggesting that promotion of anion transport may not be deleterious to cells. We therefore conclude that synthetic anion carriers are realistic candidates for further investigation as treatments for cystic fibrosis.

  14. Functional, structural and phylogenetic analysis of domains underlying the Al-sensitivity of the aluminium-activated malate/anion transporter, TaALMT1

    USDA-ARS?s Scientific Manuscript database

    TaALMT1 (Triticum aestivum Aluminum Activated Malate Transporter) is the founding member of a novel gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small subgroup of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (...

  15. Liver Zonation Index of Drug Transporter and Metabolizing Enzyme Protein Expressions in Mouse Liver Acinus.

    PubMed

    Tachikawa, Masanori; Sumiyoshiya, Yuna; Saigusa, Daisuke; Sasaki, Kazunari; Watanabe, Michitoshi; Uchida, Yasuo; Terasaki, Tetsuya

    2018-05-01

    The purpose of the present study was to clarify the molecular basis of zonated drug distributions in mouse liver based on the protein expression levels of transporters and metabolizing enzymes in periportal (PP) and pericentral (PC) vein regions of mouse hepatic lobules. The distributions of sulforhodamine 101 (SR-101), a substrate of organic anion transporting polypeptides (Oatps), and ribavirin, a substrate of equilibrative nucleoside transporter 1 (Ent1), were elucidated in frozen liver sections of mice, to which each compound had been intravenously administered. Regions strongly positive for SR-101 (SR-101 + ) and regions weakly positive or negative for SR-101 (SR-101 - ) were separated by laser microdissection. The zonated distribution of protein expression was quantified in terms of the liver zonation index. Quantitative targeted absolute proteomics revealed the selective expression of glutamine synthetase in the SR-101 + region, indicating predominant distribution of SR-101 in hepatocytes of the PC vein region. The protein levels of Oatp1a1, Oatp1b2, organic cation transporter 1 (Oct1), and cytochrome P450 (P450) 2e1 were greater in the PC vein regions, whereas the level of organic anion transporter 2 (Oat2) was greater in the PP vein regions. Mouse Oatp1a1 mediated SR-101 transport. On the other hand, there were no statistically significant differences in expression of Ent1, Na + -taurocholate cotransporting polypeptide, several canalicular transporters, P450 enzymes, and UDP-glucuronosyltransferases between the PP and PC vein regions. This is consistent with the almost uniform distribution of ribavirin in the liver. In conclusion, sinusoidal membrane transporters such as Oatp1a1, Oatp1b2, Oct1, and Oat2 appear to be determinants of the zonated distribution of drugs in the liver. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions.

    PubMed

    Alam, Khondoker; Crowe, Alexandra; Wang, Xueying; Zhang, Pengyue; Ding, Kai; Li, Lang; Yue, Wei

    2018-03-14

    Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.

  17. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions

    PubMed Central

    Alam, Khondoker; Crowe, Alexandra; Wang, Xueying; Zhang, Pengyue; Ding, Kai; Li, Lang; Yue, Wei

    2018-01-01

    Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs. PMID:29538325

  18. Role of transmembrane domain 10 for the function of organic anion transporting polypeptide 1B1

    PubMed Central

    Gui, Chunshan; Hagenbuch, Bruno

    2009-01-01

    The liver-specific organic anion transporting polypeptides OATP1B1 and OATP1B3 are highly homologous and share numerous substrates. However, at low concentrations OATP1B1 shows substrate selectivity for estrone-3-sulfate. In this study, we investigated the molecular mechanism for this substrate selectivity of OATP1B1 by constructing OATP1B1/1B3 chimeric transporters and by site-directed mutagenesis. Functional studies of chimeras showed that transmembrane domain 10 is critical for the function of OATP1B1. We further identified four amino acid residues, namely L545, F546, L550, and S554 in TM10, whose simultaneous mutation caused almost complete loss of OATP1B1-mediated estrone-3-sulfate transport. Comparison of the kinetics of estrone-3-sulfate transport confirmed a biphasic pattern for OATP1B1, but showed a monophasic pattern for the quadruple mutant L545S/F546L/L550T/S554T. This mutant also showed reduced transport for other OATP1B1 substrates such as bromosulfophthalein and [d-penicillamine2,5]enkephalin. Helical wheel analysis and molecular modeling suggest that L545 is facing the substrate translocation pathway, whereas F546, L550, and S554 are located inside the protein. These results indicate that L545 might contribute to OATP1B1 function by interacting with substrates, whereas F546, L550, and S554 seem important for protein structure. In conclusion, our results show that TM10 is critical for the function of OATP1B1. PMID:19760661

  19. Pitavastatin is a more sensitive and selective organic anion-transporting polypeptide 1B clinical probe than rosuvastatin

    PubMed Central

    Prueksaritanont, Thomayant; Chu, Xiaoyan; Evers, Raymond; Klopfer, Stephanie O; Caro, Luzelena; Kothare, Prajakti A; Dempsey, Cynthia; Rasmussen, Scott; Houle, Robert; Chan, Grace; Cai, Xiaoxin; Valesky, Robert; Fraser, Iain P; Stoch, S Aubrey

    2014-01-01

    Aims Rosuvastatin and pitavastatin have been proposed as probe substrates for the organic anion-transporting polypeptide (OATP) 1B, but clinical data on their relative sensitivity and selectivity to OATP1B inhibitors are lacking. A clinical study was therefore conducted to determine their relative suitability as OATP1B probes using single oral (PO) and intravenous (IV) doses of the OATP1B inhibitor rifampicin, accompanied by a comprehensive in vitro assessment of rifampicin inhibitory potential on statin transporters. Methods The clinical study comprised of two separate panels of eight healthy subjects. In each panel, subjects were randomized to receive a single oral dose of rosuvastatin (5 mg) or pitavastatin (1 mg) administered alone, concomitantly with rifampicin (600 mg) PO or IV. The in vitro transporter studies were performed using hepatocytes and recombinant expression systems. Results Rifampicin markedly increased exposures of both statins, with greater differential increases after PO vs. IV rifampicin only for rosuvastatin. The magnitudes of the increases in area under the plasma concentration–time curve were 5.7- and 7.6-fold for pitavastatin and 4.4- and 3.3-fold for rosuvastatin, after PO and IV rifampicin, respectively. In vitro studies showed that rifampicin was an inhibitor of OATP1B1 and OATP1B3, breast cancer resistance protein and multidrug resistance protein 2, but not of organic anion transporter 3. Conclusions The results indicate that pitavastatin is a more sensitive and selective and thus preferred clinical OATP1B probe substrate than rosuvastatin, and that a single IV dose of rifampicin is a more selective OATP1B inhibitor than a PO dose. PMID:24617605

  20. The discovery of slowness: low-capacity transport and slow anion channel gating by the glutamate transporter EAAT5.

    PubMed

    Gameiro, Armanda; Braams, Simona; Rauen, Thomas; Grewer, Christof

    2011-06-08

    Excitatory amino acid transporters (EAATs) control the glutamate concentration in the synaptic cleft by glial and neuronal glutamate uptake. Uphill glutamate transport is achieved by the co-/countertransport of Na(+) and other ions down their concentration gradients. Glutamate transporters also display an anion conductance that is activated by the binding of Na(+) and glutamate but is not thermodynamically coupled to the transport process. Of the five known glutamate transporter subtypes, the retina-specific subtype EAAT5 has the largest conductance relative to glutamate uptake activity. Our results suggest that EAAT5 behaves as a slow-gated anion channel with little glutamate transport activity. At steady state, EAAT5 was activated by glutamate, with a K(m)= 61 ± 11 μM. Binding of Na(+) to the empty transporter is associated with a K(m) = 229 ± 37 mM, and binding to the glutamate-bound form is associated with a K(m) = 76 ± 40 mM. Using laser-pulse photolysis of caged glutamate, we determined the pre-steady-state kinetics of the glutamate-induced anion current of EAAT5. This was characterized by two exponential components with time constants of 30 ± 1 ms and 200 ± 15 ms, which is an order of magnitude slower than those observed in other glutamate transporters. A voltage-jump analysis of the anion currents indicates that the slow activation behavior is caused by two slow, rate-limiting steps in the transport cycle, Na(+) binding to the empty transporter, and translocation of the fully loaded transporter. We propose a kinetic transport scheme that includes these two slow steps and can account for the experimentally observed data. Overall, our results suggest that EAAT5 may not act as a classical high-capacity glutamate transporter in the retina; rather, it may function as a slow-gated glutamate receptor and/or glutamate buffering system. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  1. Application of physiologically-based pharmacokinetic modeling to explore the role of kidney transporters in renal reabsorption of perfluorooctanoic acid in the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worley, Rachel Rogers, E-mail: idz7@cdc.gov; Interdisciplinary Toxicology Program, University of Georgia, 341 Pharmacy South, Athens, GA 30602; Fisher, Jeffrey

    ABSTRACT: Renal elimination and the resulting clearance of perfluorooctanoic acid (PFOA) from the serum exhibit pronounced sex differences in the adult rat. The literature suggests that this is largely due to hormonally regulated expression of organic anion transporters (OATs) on the apical and basolateral membranes of the proximal tubule cells that facilitate excretion and reabsorption of PFOA from the filtrate into the blood. Previously developed PBPK models of PFOA exposure in the rat have not been parameterized to specifically account for transporter-mediated renal elimination. We developed a PBPK model for PFOA in male and female rats to explore the rolemore » of Oat1, Oat3, and Oatp1a1 in sex-specific renal reabsorption and excretion of PFOA. Descriptions of the kinetic behavior of these transporters were extrapolated from in vitro studies and the model was used to simulate time-course serum, liver, and urine data for intravenous (IV) and oral exposures in both sexes. Model predicted concentrations of PFOA in the liver, serum, and urine showed good agreement with experimental data for both male and female rats indicating that in vitro derived physiological descriptions of transporter-mediated renal reabsorption can successfully predict sex-dependent excretion of PFOA in the rat. This study supports the hypothesis that sex-specific serum half-lives for PFOA are largely driven by expression of transporters in the kidney and contribute to the development of PBPK modeling as a tool for evaluating the role of transporters in renal clearance. - Highlights: • The PBPK model for PFOA in the rat explores the role of OATs in sex-specific clearance. • Descriptions of OAT kinetics were extrapolated from in vitro studies. • Model predictions showed good fit with experimental data for male and female rats.« less

  2. Regulated traffic of anion transporters in mammalian Brunner's glands: a role for water and fluid transport.

    PubMed

    Collaco, Anne M; Jakab, Robert L; Hoekstra, Nadia E; Mitchell, Kisha A; Brooks, Amos; Ameen, Nadia A

    2013-08-01

    The Brunner's glands of the proximal duodenum exert barrier functions through secretion of glycoproteins and antimicrobial peptides. However, ion transporter localization, function, and regulation in the glands are less clear. Mapping the subcellular distribution of transporters is an important step toward elucidating trafficking mechanisms of fluid transport in the gland. The present study examined 1) changes in the distribution of intestinal anion transporters and the aquaporin 5 (AQP5) water channel in rat Brunner's glands following second messenger activation and 2) anion transporter distribution in Brunner's glands from healthy and disease-affected human tissues. Cystic fibrosis transmembrane conductance regulator (CFTR), AQP5, sodium-potassium-coupled chloride cotransporter 1 (NKCC1), sodium-bicarbonate cotransporter (NBCe1), and the proton pump vacuolar ATPase (V-ATPase) were localized to distinct membrane domains and in endosomes at steady state. Carbachol and cAMP redistributed CFTR to the apical membrane. cAMP-dependent recruitment of CFTR to the apical membrane was accompanied by recruitment of AQP5 that was reversed by a PKA inhibitor. cAMP also induced apical trafficking of V-ATPase and redistribution of NKCC1 and NBCe1 to the basolateral membranes. The steady-state distribution of AQP5, CFTR, NBCe1, NKCC1, and V-ATPase in human Brunner's glands from healthy controls, cystic fibrosis, and celiac disease resembled that of rat; however, the distribution profiles were markedly attenuated in the disease-affected duodenum. These data support functional transport of chloride, bicarbonate, water, and protons by second messenger-regulated traffic in mammalian Brunner's glands under physiological and pathophysiological conditions.

  3. Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl−/H+ Exchanger ClC-ec1

    PubMed Central

    Jiang, Tao; Han, Wei; Maduke, Merritt; Tajkhorshid, Emad

    2016-01-01

    Cl−/H+ transporters of the CLC superfamily form a ubiquitous class of membrane proteins that catalyze stoichiometrically coupled exchange of Cl− and H+ across biological membranes. CLC transporters exchange H+ for halides and certain polyatomic anions, but exclude cations, F−, and larger physiological anions, such as PO43− and SO42−. Despite comparable transport rates of different anions, the H+ coupling in CLC transporters varies significantly depending on the chemical nature of the transported anion. Although the molecular mechanism of exchange remains unknown, studies on bacterial ClC-ec1 transporter revealed that Cl− binding to the central anion-binding site (Scen) is crucial for the anion-coupled H+ transport. Here, we show that Cl−, F−, NO3−, and SCN− display distinct binding coordinations at the Scen site and are hydrated in different manners. Consistent with the observation of differential bindings, ClC-ec1 exhibits markedly variable ability to support the formation of the transient water wires, which are necessary to support the connection of the two H+ transfer sites (Gluin and Gluex), in the presence of different anions. While continuous water wires are frequently observed in the presence of physiologically transported Cl−, binding of F− or NO3− leads to the formation of pseudo-water-wires that are substantially different from the wires formed with Cl−. Binding of SCN−, however, eliminates the water wires altogether. These findings provide structural details of anion binding in ClC-ec1 and reveal a putative atomic-level mechanism for the decoupling of H+ transport to the transport of anions other than Cl−. PMID:26880377

  4. Mineral Ion Contents and Cell Transmembrane Electropotentials of Pea and Oat Seedling Tissue 1

    PubMed Central

    Higinbotham, N.; Etherton, Bud; Foster, R. J.

    1967-01-01

    The relationships of concentration gradients to electropotential gradients resulting from passive diffusion processes, after equilibration, are described by the Nernst equation. The primary criterion for the hypothesis that any given ion is actively transported is to establish that it is not diffusing passively. A test was made of how closely the Nernst equation describes the electrochemical equilibrium in seedling tissues. Segments of roots and epicotyl internodes of pea (Pisum sativum var. Alaska) and of roots and coleoptiles of oat (Avena sativa var. Victory) seedlings were immersed and shaken in defined nutrient solutions containing eight major nutrients (K+, Na+, Ca2+, Mg2+, Cl−, NO3−, H2PO4− and SO42−) at 1-fold and 10-fold concentrations. The tissue content of each ion was assayed at 0, 8, 24, and 48 hours. A near-equilibrium condition was approached by roots for most ions; however, the segments of shoot tissue generally continued to show a net accumulation of some ions, mainly K+ and NO3−. Only K+ approached a reasonable fit to the Nernst equation and this was true for the 1-fold concentration but not the 10-fold. The data suggest that for Na+, Mg2+, and Ca2+ the electrochemical gradient is from the external solution to the cell interior; thus passive diffusion should be in an inward direction. Consequently, some mechanism must exist in plant tissue either to exclude these cations or to extrude them (e.g., by an active efflux pump). For each of the anions the electrochemical gradient is from the tissue to the solution; thus an active influx pump for anions seems required. Root segments approach ionic equilibrium with the solution concentration in which the seedlings were grown. Segments of shoot tissue, however, are far removed from such equilibration. Thus in the intact seedling the extracellular (wall space) fluid must be very different from that of the nutrient solution bathing the segments; it would appear that the root is the site of

  5. Oats

    MedlinePlus

    ... saturated fat. For each gram of soluble fiber (beta-glucan) consumed, total cholesterol decreases by about 1.42 ... total cholesterol than foods containing oat bran plus beta-glucan soluble fiber. The FDA recommends that approximately 3 ...

  6. Organic Anion Transporting Polypeptide 1a1 Null Mice Are Sensitive to Cholestatic Liver Injury

    PubMed Central

    Zhang, Youcai; Csanaky, Iván L.; Cheng, Xingguo; Lehman-McKeeman, Lois D.; Klaassen, Curtis D.

    2012-01-01

    Organic anion transporting polypeptide 1a1 (Oatp1a1) is predominantly expressed in livers of mice and is thought to transport bile acids (BAs) from blood into liver. Because Oatp1a1 expression is markedly decreased in mice after bile duct ligation (BDL). We hypothesized that Oatp1a1-null mice would be protected against liver injury during BDL-induced cholestasis due largely to reduced hepatic uptake of BAs. To evaluate this hypothesis, BDL surgeries were performed in both male wild-type (WT) and Oatp1a1-null mice. At 24 h after BDL, Oatp1a1-null mice showed higher serum alanine aminotransferase levels and more severe liver injury than WT mice, and all Oatp1a1-null mice died within 4 days after BDL, whereas all WT mice survived. At 24 h after BDL, surprisingly Oatp1a1-null mice had higher total BA concentrations in livers than WT mice, suggesting that loss of Oatp1a1 did not prevent BA accumulation in the liver. In addition, secondary BAs dramatically increased in serum of Oatp1a1-null BDL mice but not in WT BDL mice. Oatp1a1-null BDL mice had similar basolateral BA uptake (Na+-taurocholate cotransporting polypeptide and Oatp1b2) and BA-efflux (multidrug resistance–associated protein [Mrp]-3, Mrp4, and organic solute transporter α/β) transporters, as well as BA-synthetic enzyme (Cyp7a1) in livers as WT BDL mice. Hepatic expression of small heterodimer partner Cyp3a11, Cyp4a14, and Nqo1, which are target genes of farnesoid X receptor, pregnane X receptor, peroxisome proliferator-activated receptor alpha, and NF-E2-related factor 2, respectively, were increased in WT BDL mice but not in Oatp1a1-null BDL mice. These results demonstrate that loss of Oatp1a1 function exacerbates cholestatic liver injury in mice and suggest that Oatp1a1 plays a unique role in liver adaptive responses to obstructive cholestasis. PMID:22461449

  7. Counter anion effect on structural, opto-electronic and charge transport properties of fused π-conjugated imidazolium compound

    NASA Astrophysics Data System (ADS)

    Vinodha, M.; Senthilkumar, K.

    2018-05-01

    The structure-activity relationship of fused π-conjugated imidazolium cation with three counter anion molecules, BF4-, CF3SO3- and (CF3SO2)2N-, was studied using electronic structure calculations. The structural, opto-electronic and charge transport properties of these complexes were studied. The charge transfer from π-conjugated imidazolium(I) to counter anion was confirmed in all the studied complexes. Interaction energy varies significantly depending on the counter anion and the stability was found higher for I-BF4 complex than both I-CF3SO3 and I-(CF3SO2)2N complexes. The strong (C-H)+...F- hydrogen bond of length 1.95 Å between fused π-conjugated imidazolium and BF-4 anion is the driving force for the strongest interaction energy in I-BF4 complex. The energy decomposition analysis confirms that the interaction between imidazolium and counter anion is mainly driven by electrostatic and orbital interaction. It has been observed that the absorption spectra of the complex are independent of anion nature but the influence of anion character is observed on frontier molecular orbital pattern. The charge transport property of I-BF4 complex was studied by using tight-binding Hamiltonian approach and found that the hole mobility in I-BF4 is 1.13 × 10-4 cm2 V-1 s-1.

  8. Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1.

    PubMed

    Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G

    2018-07-01

    Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American

  9. Understanding Anion, Water, and Methanol Transport in a Polyethylene- b -poly(vinylbenzyl trimethylammonium) Copolymer Anion-Exchange Membrane for Electrochemical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarode, Himanshu N.; Yang, Yuan; Motz, Andrew R.

    Herein, we report the anion and water transport properties of an anion-exchange membrane (AEM) comprising a block copolymer of polyethylene and poly- (vinylbenzyl trimethylammonium) (PE-b-PVBTMA) with an ion-exchange capacity (IEC) of 1.08 mequiv/g. The conductivity varied little among the anions CO3 2-, HCO3 -, and F-, with a value of Ea ≈ 20 kJ/mol and a maximum fluoride conductivity of 34 mS/cm at 90 °C and 95% relative humidity. The Br- conductivity showed a transition at 60 °C. Pulsed gradient stimulated spin echo nuclear magnetic resonance (PGSE NMR) experiments showed that water diffusion in this AEM is heterogeneous and ismore » affected by the anion present, being fastest in the presence of F-. We determined the methanol self-diffusion in this membrane and observed that it is lower than that in Nafion 117, because of the lower water uptake. This article reports the first measurements of 13C-labeled bicarbonate self-diffusion in an AEM using PGSE NMR spectrometry, which was found to be significantly slower than F- self-diffusion. Back-calculation of the bicarbonate conductivity using the Nernst-Einstein equation gave a value that was significantly lower than the measured value, implying that bicarbonate transport involves OH- in the transport mechanism. Fourier transform infrared spectroscopy, PGSE NMR spectrometry, and small-angle X-ray scattering (SAXS) indicated the presence of different types of waters present in the membrane at different length scales. The SAXS data indicated that there is a water-rich region within the hydrophilic domains of the polymer that has a temperature dependence in intensity at 95% relative humidity (RH).« less

  10. Differential effect of genetic variants of Na(+)-taurocholate co-transporting polypeptide (NTCP) and organic anion-transporting polypeptide 1B1 (OATP1B1) on the uptake of HMG-CoA reductase inhibitors.

    PubMed

    Choi, Min-Koo; Shin, Ho Jung; Choi, Young-Lim; Deng, Jian-Wei; Shin, Jae-Gook; Song, Im-Sook

    2011-01-01

    The purpose of this study was to investigate the effect of genetic variations in organic anion-transporting polypeptide 1B1 (OATP1B1) and Na(+)/taurocholate co-transporting polypeptide (NTCP) on the uptake of various statins having different affinities for these transporters. The functional activities and simultaneous expression of NTCP and OATP1B1 were confirmed by the uptake of taurocholate and estrone-3-sulphate as representative substrates for NTCP and OATP1B1, respectively, and by an immunofluorescence analysis. The substrate specificities of NTCP and OATP1B1 for statins and the effects of genetic variations on the uptake of rosuvastatin, pitavastatin, and atorvastatin were measured. Based on the K(m) values and intrinsic clearances of the three statins, pitavastatin was taken up more efficiently than rosuvastatin and atorvastatin by OATP1B1. Consequently, the cellular accumulation of pitavastatin was modulated according to the genetic variation of OATP1B1 (OATP1B1*15), rather than NTCP*2. In contrast, NTCP*2 displayed greater transport of atorvastatin and rosuvastatin, compared with NTCP wild type. Thus, the measurements of decreased rosuvastatin and atorvastatin transport by OATP1B1*15 were confounded by the presence of NTCP and its genetic variant, NTCP*2. In conclusion, the functional consequences of genetic variants of NTCP and OATP1B1 may be different for various statins, depending on the substrate specificity of the OATP1B1 and NTCP transporters.

  11. Transcriptome analysis of hexaploid hulless oat in response to salinity stress

    PubMed Central

    Wu, Bin; Hu, Yani; Huo, Pengjie; Zhang, Qian; Chen, Xin; Zhang, Zongwen

    2017-01-01

    Background Oat is a cereal crop of global importance used for food, feed, and forage. Understanding salinity stress tolerance mechanisms in plants is an important step towards generating crop varieties that can cope with environmental stresses. To date, little is known about the salt tolerance of oat at the molecular level. To better understand the molecular mechanisms underlying salt tolerance in oat, we investigated the transcriptomes of control and salt-treated oat using RNA-Seq. Results Using Illumina HiSeq 4000 platform, we generated 72,291,032 and 356,891,432 reads from non-stressed control and salt-stressed oat, respectively. Assembly of 64 Gb raw sequence data yielded 128,414 putative unique transcripts with an average length of 1,189 bp. Analysis of the assembled unigenes from the salt stressed and control libraries indicated that about 65,000 unigenes were differentially expressed at different stages. Functional annotation showed that ABC transporters, plant hormone signal transduction, plant-pathogen interactions, starch and sucrose metabolism, arginine and proline metabolism, and other secondary metabolite pathways were enriched under salt stress. Based on the RPKM values of assembled unigenes, 24 differentially expressed genes under salt stress were selected for quantitative RT-PCR validation, which successfully confirmed the results of RNA-Seq. Furthermore, we identified 18,039 simple sequence repeats, which may help further elucidate salt tolerance mechanisms in oat. Conclusions Our global survey of transcriptome profiles of oat plants in response to salt stress provides useful insights into the molecular mechanisms underlying salt tolerance in this crop. These findings also represent a rich resource for further analysis of salt tolerance and for breeding oat with improved salt tolerance through the use of salt-related genes. PMID:28192458

  12. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    DTIC Science & Technology

    2013-06-25

    membranes (AEMs) are being developed for potential use in fuel cell systems which include portable power applications. In a fuel cell , these membranes...Alkaline Anion Exchange Membranes Report Title ABSTRACT Anion exchange membranes (AEMs) are being developed for potential use in fuel cell systems which...include portable power applications. In a fuel cell , these membranes transport hydroxide ions from the cathode to the anode. If carbon dioxide is

  13. Xenobiotic, Bile Acid, and Cholesterol Transporters: Function and Regulation

    PubMed Central

    Aleksunes, Lauren M.

    2010-01-01

    Transporters influence the disposition of chemicals within the body by participating in absorption, distribution, and elimination. Transporters of the solute carrier family (SLC) comprise a variety of proteins, including organic cation transporters (OCT) 1 to 3, organic cation/carnitine transporters (OCTN) 1 to 3, organic anion transporters (OAT) 1 to 7, various organic anion transporting polypeptide isoforms, sodium taurocholate cotransporting polypeptide, apical sodium-dependent bile acid transporter, peptide transporters (PEPT) 1 and 2, concentrative nucleoside transporters (CNT) 1 to 3, equilibrative nucleoside transporter (ENT) 1 to 3, and multidrug and toxin extrusion transporters (MATE) 1 and 2, which mediate the uptake (except MATEs) of organic anions and cations as well as peptides and nucleosides. Efflux transporters of the ATP-binding cassette superfamily, such as ATP-binding cassette transporter A1 (ABCA1), multidrug resistance proteins (MDR) 1 and 2, bile salt export pump, multidrug resistance-associated proteins (MRP) 1 to 9, breast cancer resistance protein, and ATP-binding cassette subfamily G members 5 and 8, are responsible for the unidirectional export of endogenous and exogenous substances. Other efflux transporters [ATPase copper-transporting β polypeptide (ATP7B) and ATPase class I type 8B member 1 (ATP8B1) as well as organic solute transporters (OST) α and β] also play major roles in the transport of some endogenous chemicals across biological membranes. This review article provides a comprehensive overview of these transporters (both rodent and human) with regard to tissue distribution, subcellular localization, and substrate preferences. Because uptake and efflux transporters are expressed in multiple cell types, the roles of transporters in a variety of tissues, including the liver, kidneys, intestine, brain, heart, placenta, mammary glands, immune cells, and testes are discussed. Attention is also placed upon a variety of regulatory

  14. Effect of Structure on Transport Properties (Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient) of Aprotic Heterocyclic Anion (AHA) Room-Temperature Ionic Liquids. 1. Variation of Anionic Species.

    PubMed

    Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F

    2015-12-03

    A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications.

  15. Assessment of vandetanib as an inhibitor of various human renal transporters: inhibition of multidrug and toxin extrusion as a possible mechanism leading to decreased cisplatin and creatinine clearance.

    PubMed

    Shen, Hong; Yang, Zheng; Zhao, Weiping; Zhang, Yueping; Rodrigues, A David

    2013-12-01

    Vandetanib was evaluated as an inhibitor of human organic anion transporter 1 (OAT1), OAT3, organic cation transporter 2 (OCT2), and multidrug and toxin extrusion (MATE1 and MATE2K) transfected (individually) into human embryonic kidney 293 cells (HEK293). Although no inhibition of OAT1 and OAT3 was observed, inhibition of OCT2-mediated uptake of 1-methyl-4-phenylpyridinium (MPP(+)) and metformin was evident (IC(50) of 73.4 ± 14.8 and 8.8 ± 1.9 µM, respectively). However, vandetanib was an even more potent inhibitor of MATE1- and MATE2K-mediated uptake of MPP(+) (IC(50) of 1.23 ± 0.05 and 1.26 ± 0.06 µM, respectively) and metformin (IC(50) of 0.16 ± 0.05 and 0.30 ± 0.09 µM, respectively). Subsequent cytotoxicity studies demonstrated that transport inhibition by vandetanib (2.5 µM) significantly decreased the sensitivity [right shift in concentration of cisplatin giving rise to 50% cell death; IC(50(CN))] of MATE1-HEK and MATE2K-HEK cells to cisplatin [IC(50(CN)) of 1.12 ± 0.13 versus 2.39 ± 0.44 µM; 0.85 ± 0.09 versus 1.99 ± 0.16 µM; P < 0.05), but not OCT2-HEK cells (1.36 ± 0.19 versus 1.47 ± 0.24 µM) versus vandetanib untreated cells and Mock-HEK cells [IC(50(CN)) of 2.34 ± 0.31 µM]. In summary, the results show that vandetanib is a potent inhibitor of MATE1 and MATE2K (versus OCT2). Inhibition of the two transporters may explain why there are reports of decreased creatinine clearance, and increased cisplatin nephrotoxicity (reduced cisplatin clearance), in some subjects receiving vandetanib therapy.

  16. The systems biology of uric acid transporters: the role of remote sensing and signaling.

    PubMed

    Nigam, Sanjay K; Bhatnagar, Vibha

    2018-07-01

    Uric acid homeostasis in the body is mediated by a number of SLC and ABC transporters in the kidney and intestine, including several multispecific 'drug' transporters (e.g., OAT1, OAT3, and ABCG2). Optimization of uric acid levels can be viewed as a 'systems biology' problem. Here, we consider uric acid transporters from a systems physiology perspective using the framework of the 'Remote Sensing and Signaling Hypothesis.' This hypothesis explains how SLC and ABC 'drug' and other transporters mediate interorgan and interorganismal communication (e.g., gut microbiome and host) via small molecules (e.g., metabolites, antioxidants signaling molecules) through transporters expressed in tissues lining body fluid compartments (e.g., blood, urine, cerebrospinal fluid). The list of uric acid transporters includes: SLC2A9, ABCG2, URAT1 (SLC22A12), OAT1 (SLC22A6), OAT3 (SLC22A8), OAT4 (SLC22A11), OAT10 (SLC22A13), NPT1 (SLC17A1), NPT4 (SLC17A3), MRP2 (ABCC2), MRP4 (ABCC4). Normally, SLC2A9, - along with URAT1, OAT1 and OAT3, - appear to be the main transporters regulating renal urate handling, while ABCG2 appears to regulate intestinal transport. In chronic kidney disease (CKD), intestinal ABCG2 becomes much more important, suggesting remote organ communication between the injured kidney and the intestine. The remote sensing and signaling hypothesis provides a useful systems-level framework for understanding the complex interplay of uric acid transporters expressed in different tissues involved in optimizing uric acid levels under normal and diseased (e.g., CKD, gut microflora dysbiosis) conditions.

  17. Does lipophilicity affect the effectiveness of a transmembrane anion transporter? Insight from squaramido-functionalized bis(choloyl) conjugates.

    PubMed

    Li, Zhi; Deng, Li-Qun; Chen, Jin-Xiang; Zhou, Chun-Qiong; Chen, Wen-Hua

    2015-12-28

    Six squaramido-functionalized bis(choloyl) conjugates were synthesized and fully characterized on the basis of NMR ((1)H and (13)C) and ESI MS (LR and HR) data. Their transmembrane anionophoric activity was investigated in detail by means of chloride ion selective electrode technique and pyranine assay. The data indicate that this set of compounds is capable of promoting the transmembrane transport of anions presumably via proton/anion symport and anion exchange processes, and that lipophilicity in terms of clog P from 3.90 to 8.32 affects the apparent ion transport rate in a concentration-dependent fashion. Detailed kinetic analysis on the data obtained from both the chloride efflux and pH discharge experiments reveals that there may exist an optimum clog P range for the intrinsic ion transport rate. However, lipophilicity exhibits little effect on the effectiveness of this set of compounds in terms of either k2/Kdiss or EC50 values.

  18. Suppressors of oat crown rust resistance in interspecific oat crosses

    USDA-ARS?s Scientific Manuscript database

    Attempts to transfer disease resistance genes between related species may be hindered by suppression, or lack of expression, of the trait in the interspecific combination. In crosses of diploid oat Avena strigosa (Schreb.) accession CI6954SP with resistance to oat crown rust Puccinia coronata f. sp....

  19. Role of Phosphate and Other Proton-Donating Anions in Respiration-Coupled Transport of Ca2+ by Mitochondria

    PubMed Central

    Lehninger, Albert L.

    1974-01-01

    Measurements of extra oxygen consumption, 45Ca2+ uptake, and the osmotic expansion of the matrix compartment show that not all permeant anions are capable of supporting and accompanying the energy-dependent transport of Ca2+ from the medium into the matrix in respiring rat-liver mitochondria. Phosphate, arsenate, acetate, butyrate, β-hydroxybutyrate, lactate, and bicarbonate + CO2 supported Ca2+ uptake, whereas the permeant anions, nitrate, thiocyanate, chlorate, and perchlorate, did not. The active anions share a common denominator, the potential ability to donate a proton to the mitochondrial matrix; the inactive anions lack this capacity. Phosphate and the other active permeant anions move into the matrix in response to the alkaline-inside electrochemical gradient of protons generated across the mitochondrial membrane by electron transport, thus forming a negative-inside anion gradient. It is postulated that the latter gradient is the immediate “pulling” force for the influx of Ca2+ on the electrogenic Ca2+ carrier in respiring mitochondria under intracellular conditions. Since mitochondria in the cell are normally exposed to an excess of phosphate (and the bicarbonate-CO2 system), particularly in state 4, inward transport of these proton-yielding anions probably precedes and is necessary for inward transport of Ca2+ and other cations under biological conditions. These observations indicate that a negative-inside gradient of phosphate generated by electron transport is a common step and provides the immediate motive power not only for (a) the inward transport of dicarboxylates and tricarboxylates and (b) the energy-dependent exchange of external ADP3- for internal ATP4- during oxidative phosphorylation, as has already been established, but also for (c) the inward transport of Ca2+, K+, and other cations. PMID:4364542

  20. In vitro fermentation of oat flours from typical and high beta-glucan oat lines.

    PubMed

    Kim, Hyun Jung; White, Pamela J

    2009-08-26

    Two publicly available oat (Avena sativa) lines, "Jim" and "Paul" (5.17 and 5.31% beta-glucan, respectively), and one experimental oat line "N979" (7.70% beta-glucan), were used to study the effect of beta-glucan levels in oat flours during simulated in vitro digestion and fermentation with human fecal flora obtained from different individuals. The oat flours were digested by using human digestion enzymes and fermented by batch fermentation under anaerobic conditions for 24 h. The fermentation progress was monitored by measuring pH, total gas, and short-chain fatty acid (SCFA) production. Significant effects of beta-glucan on the formation of gas and total SCFA were observed compared to the blank without substrate (P < 0.05); however, there were no differences in pH changes, total gas, and total SCFA production among oat lines (P > 0.05). Acetate, propionate, and butyrate were the main SCFA produced from digested oat flours during fermentation. More propionate and less acetate were produced from digested oat flours compared to lactulose. Different human fecal floras obtained from three healthy individuals had similar patterns in the change of pH and the production of gas during fermentation. Total SCFA after 24 h of fermentation were not different, but the formation rates of total SCFA differed between individuals. In vitro fermentation of digested oat flours with beta-glucan could provide favorable environmental conditions for the colon and these findings, thus, will help in developing oat-based food products with desirable health benefits.

  1. Rheological characterization of neutral and anionic polysaccharides with reduced mucociliary transport rates.

    PubMed

    Shah, Ankur J; Donovan, Maureen D

    2007-04-20

    The purpose of this research was to compare the viscoelastic properties of several neutral and anionic polysaccharide polymers with their mucociliary transport rates (MTR) across explants of ciliated bovine tracheal tissue to identify rheologic parameters capable of predicting the extent of reduction in mucociliary transport. The viscoelastic properties of the polymer gels and gels mixed with mucus were quantified using controlled stress rheometry. In general, the anionic polysaccharides were more efficient at decreasing the mucociliary transport rate than were the neutral polymers, and a concentration threshold, where no further decreases in mucociliary transport occurred with increasing polymer concentration, was observed for several of the neutral polysaccharides. No single rheologic parameter (eta, G', G'', tan delta, G*) was a good predictor of the extent of mucociliary transport reduction, but a combination of the apparent viscosity (eta), tangent to the phase angle (tan delta), and complex modulus (G*) was found to be useful in the identification of formulations capable of decreasing MTR. The relative values of each of the rheologic parameters were unique for each polymer, yet once the relationships between the rheologic parameters and mucociliary transport rate reduction were determined, formulations capable of resisting mucociliary clearance could be rapidly optimized.

  2. Sodium and potassium fluxes and compartmentation in roots of atriplex and oat.

    PubMed

    Mills, D; Robinson, K; Hodges, T K

    1985-07-01

    K(+) and Na(+) fluxes and ion content have been studied in roots of Atriplex nummularia Lindl. and Avena sativa L. cv Goodfield grown in 3 millimolar K(+) with or without 3 or 50 millimolar NaCl. Compartmental analysis was carried out with entire root systems under steady-state conditions.Increasing ambient Na(+) concentrations from 0 to 50 millimolar altered K(+), in Atriplex, as follows: slightly decreased the cytoplasmic content (Q(c)), the vacuolar content (Q(v)), and the plasma membrane influx and efflux. Xylem transport for K(+) decreased by 63% in Atriplex. For oat roots, similar increases in Na(+) altered K(+) parameters as follows: plasma membrane influx and efflux decreased by about 80%. Q(c) decreased by 65%, and xylem transport decreased by 91%. No change, however, was observed in Q(v) for K(+). Increasing ambient Na(+) resulted in higher (3 to 5-fold) Na(+) fluxes across the plasma membrane and in Q(c) of both species. In Atriplex, Na(+) fluxes across the tonoplast and Q(v) increased as external Na(+) was increased. In oat, however, no significant change was observed in Na(+) flux across the tonoplast or in Q(v) as external Na(+) was increased. In oat roots, Na(+) reduced K(+) uptake markedly; in Atriplex, this was not as pronounced. However, even at high Na(+) levels, the influx transport system at the plasma membrane of both species preferred K(+) over Na(+).Based upon the Ussing-Teorell equation, it was concluded that active inward transport of K(+) occurred across the plasma membrane, and passive movement of K(+) occurred across the tonoplast in both species. Na(+), in oat roots, was actively pumped out of the cytoplasm to the exterior, whereas, in Atriplex, Na(+) was passively distributed between the free space, cytoplasm, and vacuole.

  3. CLC-mediated anion transport in plant cells

    PubMed Central

    De Angeli, Alexis; Monachello, Dario; Ephritikhine, Geneviève; Frachisse, Jean-Marie; Thomine, Sébastien; Gambale, Franco; Barbier-Brygoo, Hélène

    2008-01-01

    Plants need nitrate for growth and store the major part of it in the central vacuole of cells from root and shoot tissues. Based on few studies on the two model plants Arabidopsis thaliana and rice, members of the large ChLoride Channel (CLC) family have been proposed to encode anion channels/transporters involved in nitrate homeostasis. Proteins from the Arabidopsis CLC family (AtClC, comprising seven members) are present in various membrane compartments including the vacuolar membrane (AtClCa), Golgi vesicles (AtClCd and AtClCf) or chloroplast membranes (AtClCe). Through a combination of electrophysiological and genetic approaches, AtClCa was shown to function as a 2NO3−/1H+ exchanger that is able to accumulate specifically nitrate into the vacuole, in agreement with the main phenotypic trait of knockout mutant plants that accumulate 50 per cent less nitrate than their wild-type counterparts. The set-up of a functional complementation assay relying on transient expression of AtClCa cDNA in the mutant background opens the way for studies on structure–function relationships of the AtClCa nitrate transporter. Such studies will reveal whether important structural determinants identified in bacterial or mammalian CLCs are also crucial for AtClCa transport activity and regulation. PMID:18957376

  4. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5.

    PubMed

    Arakawa, Hiroshi; Shirasaka, Yoshiyuki; Haga, Makoto; Nakanishi, Takeo; Tamai, Ikumi

    2012-09-01

    Fluoroquinolone antimicrobial drugs are absorbed efficiently after oral administration despite of their hydrophilic nature, implying an involvement of carrier-mediated transport in their membrane transport process. It has been that several fluoroquinolones are substrates of organic anion transporter polypeptides OATP1A2 expressed in human intestine derived Caco-2 cells. In the present study, to clarify the involvement of OATP in intestinal absorption of ciprofloxacin, the contribution of Oatp1a5, which is expressed at the apical membranes of rat enterocytes, to intestinal absorption of ciprofloxacin was investigated in rats. The intestinal membrane permeability of ciprofloxacin was measured by in situ and the vascular perfused closed loop methods. The disappeared and absorbed amount of ciprofloxacin from the intestinal lumen were increased markedly in the presence of 7,8-benzoflavone, a breast cancer resistance protein inhibitor, and ivermectin, a P-glycoprotein inhibitor, while it was decreased significantly in the presence of these inhibitors in combination with naringin, an Oatp1a5 inhibitor. Furthermore, the Oatp1a5-mediated uptake of ciprofloxacin was saturable with a K(m) value of 140 µm, and naringin inhibited the uptake with an IC(50) value of 18 µm by Xenopus oocytes expressing Oatp1a5. Naringin reduced the permeation of ciprofloxacin from the mucosal-to-serosal side, with an IC(50) value of 7.5 µm by the Ussing-type chamber method. The estimated IC(50) values were comparable to that of Oatp1a5. These data suggest that Oatp1a5 is partially responsible for the intestinal absorption of ciprofloxacin. In conclusion, the intestinal absorption of ciprofloxacin could be affected by influx transporters such as Oatp1a5 as well as the efflux transporters such as P-gp and Bcrp. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Insights into molecular structure and digestion rate of oat starch.

    PubMed

    Xu, Jinchuan; Kuang, Qirong; Wang, Kai; Zhou, Sumei; Wang, Shuo; Liu, Xingxun; Wang, Shujun

    2017-04-01

    The in vitro digestibility of oat starch and its relationship with starch molecular structure was investigated. The in vitro digestion results showed that the first-order kinetic constant (k) of oat starches (OS-1 and OS-2) was lower than that of rice starch. The size of amylose chains, amylose content and degree of branching (DB) of amylopectin in oat starch were significantly higher than the corresponding parameters in rice starch. The larger molecular size of oat starch may account for its lower digestion rate. The fine structure of amylopectin showed that oat starch had less chains of DP 6-12 and DP>36, which may explain the small difference in digestion rate between oat and rice starch. The biosynthesis model from oat amylopectin fine structure data suggested a lower starch branching enzyme (SBE) activity and/or a higher starch synthase (SS) activity, which may decrease the DB of oat starch and increase its digestion rate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Interaction of Silymarin Flavonolignans with Organic Anion-Transporting Polypeptides

    PubMed Central

    Köck, Kathleen; Xie, Ying; Oberlies, Nicholas H.; Brouwer, Kim L. R.

    2013-01-01

    Organic anion-transporting polypeptides (OATPs) are multispecific transporters mediating the uptake of endogenous compounds and xenobiotics in tissues that are important for drug absorption and elimination, including the intestine and liver. Silymarin is a popular herbal supplement often used by patients with chronic liver disease; higher oral doses than those customarily used (140 mg three times/day) are being evaluated clinically. The present study examined the effect of silymarin flavonolignans on OATP1B1-, OATP1B3-, and OATP2B1-mediated transport in cell lines stably expressing these transporters and in human hepatocytes. In overexpressing cell lines, OATP1B1- and OATP1B3-mediated estradiol-17β-glucuronide uptake and OATP2B1-mediated estrone-3-sulfate uptake were inhibited by most of the silymarin flavonolignans investigated. OATP1B1-, OATP1B3-, and OATP2B1-mediated substrate transport was inhibited efficiently by silymarin (IC50 values of 1.3, 2.2 and 0.3 µM, respectively), silybin A (IC50 values of 9.7, 2.7 and 4.5 µM, respectively), silybin B (IC50 values of 8.5, 5.0 and 0.8 µM, respectively), and silychristin (IC50 values of 9.0, 36.4, and 3.6 µM, respectively). Furthermore, silymarin, silybin A, and silybin B (100 µM) significantly inhibited OATP-mediated estradiol-17β-glucuronide and rosuvastatin uptake into human hepatocytes. Calculation of the maximal unbound portal vein concentrations/IC50 values indicated a low risk for silymarin-drug interactions in hepatic uptake with a customary silymarin dose. The extent of silymarin-drug interactions depends on OATP isoform specificity and concentrations of flavonolignans at the site of drug transport. Higher than customary doses of silymarin, or formulations with improved bioavailability, may increase the risk of flavonolignan interactions with OATP substrates in patients. PMID:23401473

  7. Grazing management for fall-grown oat forages

    USDA-ARS?s Scientific Manuscript database

    Fall forage production of oat generally will out-yield winter wheat or cereal rye by about a 2:1 ratio, regardless of weather conditions or harvest date because oat plants will joint, elongate, and produce a seedhead before winter, while winter wheat or cereal rye will remain vegetative until spring...

  8. Volatile Compounds Produced by Lactobacillus paracasei During Oat Fermentation.

    PubMed

    Lee, Sang Mi; Oh, Jieun; Hurh, Byung-Serk; Jeong, Gwi-Hwa; Shin, Young-Keum; Kim, Young-Suk

    2016-12-01

    This study investigated the profiles of volatile compounds produced by Lactobacillus paracasei during oat fermentation using gas chromatography-mass spectrometry coupled with headspace solid-phase microextraction method. A total of 60 compounds, including acids, alcohols, aldehydes, esters, furan derivatives, hydrocarbons, ketones, sulfur-containing compounds, terpenes, and other compounds, were identified in fermented oat. Lipid oxidation products such as 2-pentylfuran, 1-octen-3-ol, hexanal, and nonanal were found to be the main contributors to oat samples fermented by L. paracasei with the level of 2-pentylfuran being the highest. In addition, the contents of ketones, alcohols, acids, and furan derivatives in the oat samples consistently increased with the fermentation time. On the other hand, the contents of degradation products of amino acids, such as 3-methylbutanal, benzaldehyde, acetophenone, dimethyl sulfide, and dimethyl disulfide, decreased in oat samples during fermentation. Principal component analysis (PCA) was applied to discriminate the fermented oat samples according to different fermentation times. The fermented oats were clearly differentiated on PCA plots. The initial fermentation stage was mainly affected by aldehydes, whereas the later samples of fermented oats were strongly associated with acids, alcohols, furan derivatives, and ketones. The application of PCA to data of the volatile profiles revealed that the oat samples fermented by L. paracasei could be distinguished according to fermentation time. © 2016 Institute of Food Technologists®.

  9. C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1.

    PubMed

    Mumm, Patrick; Imes, Dennis; Martinoia, Enrico; Al-Rasheid, Khaled A S; Geiger, Dietmar; Marten, Irene; Hedrich, Rainer

    2013-09-01

    Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel families—SLAC/SLAH and ALMT—are known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al(3+)-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In contrast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al(3+)-insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUAC1-type currents in the plasma membrane of guard cells and QUAC1-expressing oocytes revealing similar voltage dependencies and activation–deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increasing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains common for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is conserved in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.

  10. Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants.

    PubMed

    Singh-Rawal, Pooja; Zsiros, Ottó; Bharti, Sudhakar; Garab, Gyozo; Jajoo, Anjana

    2011-04-01

    With an aim to improve our understanding of the mechanisms behind specific anion effects in biological membranes, we have studied the effects of sodium salts of anions of varying valency in thylakoid membranes. Rates of electron transport of PS II and PS I, 77K fluorescence emission and excitation spectra, cyclic electron flow around PS I and circular dichroism (CD) spectra were measured in thylakoid membranes in order to elucidate a general mechanism of action of inorganic anions on photosynthetic electron transport chain. Re-distribution of absorbed excitation energy has been observed as a signature effect of inorganic anions. In the presence of anions, such as nitrite, sulphate and phosphate, distribution of absorbed excitation energy was found to be more in favor of Photosystem I (PS I). The amount of energy distributed towards PS I depended on the valency of the anion. In this paper, we propose for the first time that energy re-distribution and its valence dependence may not be the effect of anions per se. The entry of negative charge (anion) is accompanied by influx of positive charge (protons) to maintain a balance of charge across the thylakoid membranes. As reflected by the CD spectra, the observed energy re-distribution could be a result of structural rearrangements of the protein complexes of PS II caused by changes in the ionic environment of the thylakoid lumen.

  11. Glutaric aciduria type I and methylmalonic aciduria: simulation of cerebral import and export of accumulating neurotoxic dicarboxylic acids in in vitro models of the blood-brain barrier and the choroid plexus.

    PubMed

    Sauer, Sven W; Opp, Silvana; Mahringer, Anne; Kamiński, Marcin M; Thiel, Christian; Okun, Jürgen G; Fricker, Gert; Morath, Marina A; Kölker, Stefan

    2010-06-01

    Intracerebral accumulation of neurotoxic dicarboxylic acids (DCAs) plays an important pathophysiological role in glutaric aciduria type I and methylmalonic aciduria. Therefore, we investigated the transport characteristics of accumulating DCAs - glutaric (GA), 3-hydroxyglutaric (3-OH-GA) and methylmalonic acid (MMA) - across porcine brain capillary endothelial cells (pBCEC) and human choroid plexus epithelial cells (hCPEC) representing in vitro models of the blood-brain barrier (BBB) and the choroid plexus respectively. We identified expression of organic acid transporters 1 (OAT1) and 3 (OAT3) in pBCEC on mRNA and protein level. For DCAs tested, transport from the basolateral to the apical site (i.e. efflux) was higher than influx. Efflux transport of GA, 3-OH-GA, and MMA across pBCEC was Na(+)-dependent, ATP-independent, and was inhibited by the OAT substrates para-aminohippuric acid (PAH), estrone sulfate, and taurocholate, and the OAT inhibitor probenecid. Members of the ATP-binding cassette transporter family or the organic anion transporting polypeptide family, namely MRP2, P-gp, BCRP, and OATP1B3, did not mediate transport of GA, 3-OH-GA or MMA confirming the specificity of efflux transport via OATs. In hCPEC, cellular import of GA was dependent on Na(+)-gradient, inhibited by NaCN, and unaffected by probenecid suggesting a Na(+)-dependent DCA transporter. Specific transport of GA across hCPEC, however, was not found. In conclusion, our results indicate a low but specific efflux transport for GA, 3-OH-GA, and MMA across pBCEC, an in vitro model of the BBB, via OAT1 and OAT3 but not across hCPEC, an in vitro model of the choroid plexus. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Dramatic Influence of an Anionic Donor on the Oxygen-Atom Transfer Reactivity of a MnV–Oxo Complex

    PubMed Central

    Neu, Heather M; Quesne, Matthew G; Yang, Tzuhsiung; Prokop-Prigge, Katharine A; Lancaster, Kyle M; Donohoe, James; DeBeer, Serena; de Visser, Sam P; Goldberg, David P

    2014-01-01

    Addition of an anionic donor to an MnV(O) porphyrinoid complex causes a dramatic increase in 2-electron oxygen-atom-transfer (OAT) chemistry. The 6-coordinate [MnV(O)(TBP8Cz)(CN)]− was generated from addition of Bu4N+CN− to the 5-coordinate MnV(O) precursor. The cyanide-ligated complex was characterized for the first time by Mn K-edge X-ray absorption spectroscopy (XAS) and gives Mn–O=1.53 Å, Mn–CN=2.21 Å. In combination with computational studies these distances were shown to correlate with a singlet ground state. Reaction of the CN− complex with thioethers results in OAT to give the corresponding sulfoxide and a 2e−-reduced MnIII(CN)− complex. Kinetic measurements reveal a dramatic rate enhancement for OAT of approximately 24 000-fold versus the same reaction for the parent 5-coordinate complex. An Eyring analysis gives ΔH≠=14 kcal mol−1, ΔS≠=−10 cal mol−1 K−1. Computational studies fully support the structures, spin states, and relative reactivity of the 5- and 6-coordinate MnV(O) complexes. PMID:25256417

  13. Aza-Bambusurils En Route to Anion Transporters.

    PubMed

    Singh, Mandeep; Solel, Ephrath; Keinan, Ehud; Reany, Ofer

    2016-06-20

    Previous calculations of anion binding with various bambusuril analogs predicted that the replacement of oxygen by nitrogen atoms to produce semiaza-bambus[6]urils would award these new cavitands with multiple anion binding properties. This study validates the hypothesis by efficient synthesis, crystallography, thermogravimetric analysis and calorimetry. These unique host molecules are easily accessible from the corresponding semithio-bambusurils in a one-pot reaction, which converts a single anion receptor into a potential anion channel. Solid-state structures exhibit simultaneous accommodation of three anions, linearly positioned within the cavity along the main symmetry axis. The ability to hold anions at a short distance of about 4 Å is reminiscent of natural chloride channels in E. coli, which exhibit similar distances between their adjacent anion binding sites. The calculated transition-state energy for double-anion movement through the channel suggests that although these host-guest complexes are thermodynamically stable they enjoy high kinetic flexibility to render them efficient anion channels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. In vitro total antioxidant capacity and anti-inflammatory activity of three common oat-derived avenanthramides.

    PubMed

    Yang, Jun; Ou, Boxin; Wise, Mitchell L; Chu, YiFang

    2014-10-01

    To better understand mechanisms underlying the health benefits of oats, the free radical scavenging capacities of oat avenanthramides 2c, 2f, and 2p and their ability to inhibit NF-κB activation were evaluated. The antioxidant capacities of 2c, 2f, and 2p against peroxyl radicals, hydroxyl radicals, superoxide anion, singlet oxygen, and peroxynitrite were determined by using ORAC, HORAC, SORAC, SOAC, and NORAC assays, respectively. The total antioxidant capacity of 2c was approximately 1.5-fold those of 2f and 2p. Total antioxidant capacity was primarily attributable to SORAC and ORAC for 2c (>77%, p<0.05), and to ORAC and SOAC for 2f. ORAC accounted for approximately 32% of total antioxidant capacity in 2p. EC50 values for inhibiting TNF-α-induced NF-κB activation in C2C12 cells were 64.3, 29.3, and 9.10 μM for 2c, 2f, and 2p, respectively. Differences in antioxidant capacities and ability to inhibit NF-κB among the avenanthramides could be ascribed to structural variations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Microstructure and nutrient distribution in oats: influence on quality

    NASA Astrophysics Data System (ADS)

    Miller, S. Shea; Frégeau-Reid, Judith

    2009-05-01

    Oats have long been recognized as having superior quality among cereals with respect to protein and lipid composition as well as soluble dietary fibre (β-glucan). The microstructure and chemistry of oats influence oat quality, and thus are determinants of the end products derived from oats. Light and scanning electron microscopies have been used to elucidate microstructure and nutrient distribution in oats. The influence of variation in these parameters on oat quality can be demonstrated, from milling through to oat products for consumption. Milling quality is determined in part by hull architecture. SEM examination of oat hulls can help predict ease of dehulling, which affects the efficiency and economics of oat milling. In addition to protein and lipid, β-glucan is an important nutritional component of oats. Fluorescence microscopy can reveal both the relative amount and distribution of β-glucan in oat kernels. Consumption of oats or oat products containing β-glucan has been shown to have beneficial effects on carbohydrate and lipid metabolism. These health benefits have generated a demand for new and palatable ways to incorporate oats into the diet as consumer demand increases. To help meet this need, we have been investigating the use of micronized naked oats as a whole grain to be cooked and consumed as a rice alternative. Different varieties of naked oats had dramatically different acceptance levels from a sensory panel. SEM of the pericarp, light microscopy of the endosperm, and analyses of starch properties of the different varieties revealed differences that corresponded with sensory data.

  16. The effect of organic anion-transporting polypeptides 1B1, 1B3 and 2B1 on the antitumor activity of flavopiridol in breast cancer cells.

    PubMed

    Brenner, Stefan; Riha, Juliane; Giessrigl, Benedikt; Thalhammer, Theresia; Grusch, Michael; Krupitza, Georg; Stieger, Bruno; Jäger, Walter

    2015-01-01

    The contribution of organic anion transporting polypeptides (OATPs) to the cellular uptake of flavopiridol was investigated in OATP1B1-, OATP1B3- and OATP2B1-expressing Chinese hamster ovary (CHO) cells. Uptake of flavopiridol into these cells showed typical Michaelis-Menten kinetics with much higher transport capacity for OATP1B3 compared to OATP1B1 and OATP2B1 (Vmax/Km, 33.9 vs. 8.84 and 2.41 µl/mg/min, respectively). The predominant role of OATPs was further supported by a dramatic inhibition of flavopiridol uptake in the presence of the OATP substrate rifampicin. Uptake of flavopiridol by OATPs also seems to be an important determinant in breast cancer cells. The much higher mRNA level for OATP1B1 found in wild-type compared to ZR-75-1 OATP1B1 knockdown cells correlated with higher flavopiridol initial uptake leading to 4.6-fold decreased IC50 values in the cytotoxicity assay (IC50, 1.45 vs. 6.64 µM). Cell cycle profile also showed a clear incidence for a stronger cell cycle arrest in the G2/M phase for ZR-75-1 wild-type cells compared to OATP1B1 knockdown cells, further indicating an active uptake via OATP1B1. In conclusion, our results revealed OATP1B1, OATP1B3 and OATP2B1 as uptake transporters for flavopiridol in cancer cells, which may also apply in patients during cancer therapy.

  17. Mechanisms of antimelanoma effect of oat β-glucan supported by electroporation.

    PubMed

    Choromanska, Anna; Lubinska, Sandra; Szewczyk, Anna; Saczko, Jolanta; Kulbacka, Julita

    2018-06-06

    There are still not specified mechanisms how beta-glucan molecules are transported into cells. Supposing, beta-glucan toxicity against tumor cells may be related to the overexpression of the transporter responsible for the transport of glucose molecules in the cells. In this case, glucans - polymers composed of glucose units are much more up-taken by tumor than normal cells. Increased GLUT1 (Glucose Transporter Type 1) expression has been demonstrated earlier in malignant melanomas. GLUT1 expression promotes glucose uptake and cell growth in that cells. Also, in human melanoma tissues a significant correlation between GLUT1 expression and mitotic activity was found. The aim of the study was to verify if oat β-glucan (OβG) is delivered into cells by GLUT-1 membrane protein. To check it out we blocked GLUT1 transporters by an inhibitor WZB117 and then we investigated cells viability with and without reversible electroporation (EP). The obtained results bring us to elucidate the mechanism of transport of the OβG into the cells is GLUT-1 dependent and moreover can be supported by EP method. Copyright © 2018. Published by Elsevier B.V.

  18. Hydroxide Solvation and Transport in Anion Exchange Membranes.

    PubMed

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E; Knight, Chris; Voth, Gregory A

    2016-01-27

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationic groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.

  19. pH-sensitive interaction of HMG-CoA reductase inhibitors (statins) with organic anion transporting polypeptide 2B1.

    PubMed

    Varma, Manthena V; Rotter, Charles J; Chupka, Jonathan; Whalen, Kevin M; Duignan, David B; Feng, Bo; Litchfield, John; Goosen, Theunis C; El-Kattan, Ayman F

    2011-08-01

    The human organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is ubiquitously expressed and may play an important role in the disposition of xenobiotics. The present study aimed to examine the role of OATP2B1 in the intestinal absorption and tissue uptake of 3-hydroxy-3-methylglutaryl-Coenzyme A (HMG-CoA) reductase inhibitors (statins). We first investigated the functional affinity of statins to the transporter as a function of extracellular pH, using OATP2B1-transfeced HEK293 cells. The results indicate that OATP2B1-mediated transport is significant for rosuvastatin, fluvastatin and atorvastatin, at neutral pH. However, OATP2B1 showed broader substrate specificity as well as enhanced transporter activity at acidic pH. Furthermore, uptake at acidic pH was diminished in the presence of proton ionophore, suggesting proton gradient as the driving force for OATP2B1 activity. Notably, passive transport rates are predominant or comparable to active transport rates for statins, except for rosuvastatin and fluvastatin. Second, we studied the effect of OATP modulators on statin uptake. At pH 6.0, OATP2B1-mediated transport of atorvastatin and cerivastatin was not inhibitable, while rosuvastatin transport was inhibited by E-3-S, rifamycin SV and cyclosporine with IC(50) values of 19.7 ± 3.3 μM, 0.53 ± 0.2 μM and 2.2 ± 0.4 μM, respectively. Rifamycin SV inhibited OATP2B1-mediated transport of E-3-S and rosuvastatin with similar IC(50) values at pH 6.0 and 7.4, suggesting that the inhibitor affinity is not pH-dependent. Finally, we noted that OATP2B1-mediated transport of E-3-S, but not rosuvastatin, is pH sensitive in intestinal epithelial (Caco-2) cells. However, uptake of E-3-S and rosuvastatin by Caco-2 cells was diminished in the presence of proton ionophore. The present results indicate that OATP2B1 may be involved in the tissue uptake of rosuvastatin and fluvastatin, while OATP2B1 may play a significant role in the intestinal absorption of several

  20. Functional properties of teff and oat composites

    USDA-ARS?s Scientific Manuscript database

    Teff-oat composites were developed using gluten free teff flour containing essential amino acids and minerals along with oat products containing ß-glucan known for lowering blood cholesterol. Teff-oat composites were evaluated for their pasting and rheological properties by a Rapid Visco Analyzer (R...

  1. PDZK1 binding and serine phosphorylation regulate subcellular trafficking of organic anion transport protein 1a1

    PubMed Central

    Choi, Jo H.; Murray, John W.

    2011-01-01

    Although perturbation of organic anion transport protein (oatp) cell surface expression can result in drug toxicity, little is known regarding mechanisms regulating its subcellular distribution. Many members of the oatp family, including oatp1a1, have a COOH-terminal PDZ consensus binding motif that interacts with PDZK1, while serines upstream of this site (S634 and S635) can be phosphorylated. Using oatp1a1 as a prototypical member of the oatp family, we prepared plasmids in which these serines were mutated to glutamic acid [E634E635 (oatp1a1EE), phosphomimetic] or alanine [A634A635 (oatp1a1AA), nonphosphorylatable]. Distribution of oatp1a1AA and oatp1a1EE was largely intracellular in transfected human embryonic kidney (HEK) 293T cells. Cotransfection with a plasmid encoding PDZK1 revealed that oatp1a1AA was now expressed largely on the cell surface, while oatp1a1EE remained intracellular. To quantify these changes, studies were performed in HuH7 cells stably transfected with these oatp1a1 plasmids. These cells endogenously express PDZK1. Surface biotinylation at 4°C followed by shift to 37°C showed that oatp1a1EE internalizes quickly compared with oatp1a1AA. To examine a physiological role for phosphorylation in oatp1a1 subcellular distribution, studies were performed in rat hepatocytes exposed to extracellular ATP, a condition that stimulates serine phosphorylation of oatp1a1 via activity of a purinergic receptor. Internalization of oatp1a1 under these conditions was rapid. Thus, although PDZK1 binding is required for optimal cell surface expression of oatp1a1, phosphorylation provides a mechanism for fast regulation of the distribution of oatp1a1 between the cell surface and intracellular vesicular pools. Identification of the proteins and motor molecules that mediate these trafficking events represents an important area for future study. PMID:21183661

  2. Forward phenomics of oat panicles

    USDA-ARS?s Scientific Manuscript database

    There is a growing need for adapted and more productive germplasm to expand oat production, optimize its yield, improve groat quality, and satisfy farmers and consumers demand, especially in the Upper Midwest of the US. Oat germplasm, representing different eco-geographical origins and breeding stat...

  3. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1.

    PubMed

    Thies, Bastian; Meyer-Schwesinger, Catherine; Lamp, Jessica; Schweizer, Michaela; Koeller, David M; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris

    2013-10-01

    The metabolic disorder glutaric aciduria type 1 (GA1) is caused by deficiency of the mitochondrial glutaryl-CoA dehydrogenase (GCDH), leading to accumulation of the pathologic metabolites glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in blood, urine and tissues. Affected patients are prone to metabolic crises developing during catabolic conditions, with an irreversible destruction of striatal neurons and a subsequent dystonic-dyskinetic movement disorder. The pathogenetic mechanisms mediated by GA and 3OHGA have not been fully characterized. Recently, we have shown that GA and 3OHGA are translocated through membranes via sodium-dependent dicarboxylate cotransporter (NaC) 3, and organic anion transporters (OATs) 1 and 4. Here, we show that induced metabolic crises in Gcdh(-/-) mice lead to an altered renal expression pattern of NaC3 and OATs, and the subsequent intracellular GA and 3OHGA accumulation. Furthermore, OAT1 transporters are mislocalized to the apical membrane during metabolic crises accompanied by a pronounced thinning of proximal tubule brush border membranes. Moreover, mitochondrial swelling and increased excretion of low molecular weight proteins indicate functional tubulopathy. As the data clearly demonstrate renal proximal tubule alterations in this GA1 mouse model during induced metabolic crises, we propose careful evaluation of renal function in GA1 patients, particularly during acute crises. Further studies are needed to investigate if these findings can be confirmed in humans, especially in the long-term outcome of affected patients. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Hydroxide Solvation and Transport in Anion Exchange Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chen; Tse, Ying-Lung Steve; Lindberg, Gerrick E.

    Understanding hydroxide solvation and transport in anion exchange membranes (AEMs) can provide important insight into the design principles of these new membranes. To accurately model hydroxide solvation and transport, we developed a new multiscale reactive molecular dynamics model for hydroxide in aqueous solution, which was then subsequently modified for an AEM material. With this model, we investigated the hydroxide solvation structure and transport mechanism in the membrane. We found that a relatively even separation of the rigid side chains produces a continuous overlapping region for hydroxide transport that is made up of the first hydration shell of the tethered cationicmore » groups. Our results show that hydroxide has a significant preference for this overlapping region, transporting through it and between the AEM side chains with substantial contributions from both vehicular (standard diffusion) and Grotthuss (proton hopping) mechanisms. Comparison of the AEM with common proton exchange membranes (PEMs) showed that the excess charge is less delocalized in the AEM than the PEMs, which is correlated with a higher free energy barrier for proton transfer reactions. The vehicular mechanism also contributes considerably more than the Grotthuss mechanism for hydroxide transport in the AEM, while our previous studies of PEM systems showed a larger contribution from the Grotthuss mechanism than the vehicular mechanism for proton transport. The activation energy barrier for hydroxide diffusion in the AEM is greater than that for proton diffusion in PEMs, implying a more significant enhancement of ion transport in the AEM at elevated temperatures.« less

  5. The minimal structure containing the band 3 anion transport site. A 35Cl NMR study.

    PubMed

    Falke, J J; Kanes, K J; Chan, S I

    1985-10-25

    35Cl NMR, which enables observation of chloride binding to the anion transport site on band 3, is used in the present study to determine the minimal structure containing the intact transport site. Removal of cytoskeletal and other nonintegral membrane proteins, or removal of the 40-kDa cytoskeletal domain of band 3, each leave the transport site intact. Similarly, cleavage of the 52-kDa transport domain into 17- and 35-kDa fragments by chymotrypsin leaves the transport site intact. Extensive proteolysis by papain reduces the integral red cell membrane proteins to their transmembrane segments. Papain treatment removes approximately 60% of the extramembrane portion of the transport domain and produces small fragments primarily in the range 3-7 kDa, with 5 kDa being most predominant. Papain treatment damages, but does not destroy, chloride binding to the transport site; thus, the minimal structure containing the transport site is composed solely of transmembrane segments. In short, the results are completely consistent with a picture in which the transport site is buried in the membrane where it is protected from proteolysis; the transmembrane segments that surround the transport site are held together by strong attractive forces within the bilayer; and the transport site is accessed by solution chloride via an anion channel leading from the transport site to the solution.

  6. Cookies elaborated with oat and common bean flours improved serum markers in diabetic rats.

    PubMed

    Pérez-Ramírez, Iza F; Becerril-Ocampo, Laura J; Reynoso-Camacho, Rosalía; Herrera, Mayra D; Guzmán-Maldonado, S Horacio; Cruz-Bravo, Raquel K

    2018-02-01

    Common beans have been associated with anti-diabetic effects, due to its high content of bioactive compounds. Nevertheless, its consumption has decreased worldwide. Therefore, there is an increasing interest in the development of novel functional foods elaborated with common beans. The aim of this study was to evaluate the anti-diabetic effect of oat-bean flour cookies, and to analyze its bioactive composition, using commercial oat-wheat cookies for comparative purposes. Oat-bean cookies (1.2 g kg -1 ) slightly decreased serum glucose levels (∼1.1-fold) and increased insulin levels (∼1.2-fold) in diabetic rats, reducing the hyperglycemic peak in healthy rats (∼1.1-fold). Oat-bean cookies (0.8 and 1.2 g kg -1 ) exerted a greater hypolipidemic effect than commercial oat-wheat cookies (1.2 g kg -1 ), as observed in decreased serum triglycerides and low-density lipoprotein cholesterol. Furthermore, the supplementation with 1.2 g kg -1 oat-bean cookies decreased atherogenic index and serum C-reactive protein levels, suggesting their cardioprotective potential. The beneficial effect of oat-bean cookies was associated with their high content of dietary fiber and galacto oligosaccharides, as well as chlorogenic acid, rutin, protocatechuic acid, β-sitosterol and soyasaponins. These results suggest that common beans can be used as functional ingredients for the elaboration of cookies with anti-diabetic effects. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Functional Properties of a High Protein Beverage Stabilized with Oat-β-Glucan.

    PubMed

    Vasquez-Orejarena, Eva; Simons, Christopher T; Litchfield, John H; Alvarez, Valente B

    2018-05-01

    This study evaluated the effect of oat flour and milk protein on the functional properties and sensory acceptability of shelf stable high protein dairy beverages containing at least 0.75 g of oat-β-glucan per serving size. Formulations adjusted to levels of 1.50% to 2.30% oat flour and 2.50% to 4.00% milk protein isolate (MPI) were thermal processed in a rotary retort. The finished product exhibited good suspension stability (>80%). The increase of oat and MPI contents lead to nectar-like beverages (51 to 100 mPas). However, oat flour was the component showing the highest effect on the viscosity coefficient values of the beverages. Sensory evaluation indicated that formulations with less than 1.9% oat flour and 2.5% MPI (thin liquid, <50 mPas) were the most accepted. Mouthfeel (perceived thickness), sweetness and aftertaste had the most influence on overall liking of the beverages. Overall, this study comprises the development of a functional food product. Supplementation of beverages with fiber from oats is an innovative approach to stabilize high protein beverages. Ready to drink protein beverage formulations use gums to stabilize the product and provide a desirable mouthfeel. The levels of oat-β-glucan used in the beverage increased the thickness and meet the requirement of the FDA approved health claim for reduction of the cardiovascular disease risk (21 CFR 101.81). © 2018 Institute of Food Technologists®.

  8. Structural Development of the Oat Plant

    NASA Technical Reports Server (NTRS)

    Kaufman, Peter B.; Brock, Thomas G.

    1992-01-01

    The anatomical structure and morphology of the oat plant (Avena sativa L.) have been reviewed previously by Hector (1936), Bonnett (1961a,b) and Coffman (1977). In addition, Bonnett published detailed accounts of oat panicle development (1937, 1961a,b). This work has been summarized by Esau in her book, Anatomy of Seed Plants, in 1977. It is not the purpose of the present authors to simply go over all this same material again in a repetitive fashion, but rather, to emphasize some of the more recent and previously overlooked work on structural development of the oat plant, with emphasis on the major cultivated species, A. sativa (see Stanton, 1955; Coffman, 1977 for descriptions of this species). The material presented here should be of use to oat breeders, agronomists, and plant physiologists.

  9. Antidiabetic and renoprotective effects of Cladophora glomerata Kützing extract in experimental type 2 diabetic rats: a potential nutraceutical product for diabetic nephropathy.

    PubMed

    Srimaroeng, Chutima; Ontawong, Atcharaporn; Saowakon, Naruwan; Vivithanaporn, Pornpun; Pongchaidecha, Anchalee; Amornlerdpison, Doungporn; Soodvilai, Sunhapas; Chatsudthipong, Varanuj

    2015-01-01

    Cladophora glomerata extract (CGE) has been shown to exhibit antigastric ulcer, anti-inflammatory, analgesic, hypotensive, and antioxidant activities. The present study investigated antidiabetic and renoprotective effects of CGE in type 2 diabetes mellitus (T2DM) rats. The rats were induced by high-fat diet and streptozotocin and supplemented daily with 1 g/kg BW of CGE for 12 weeks. The renal transport function was assessed by the uptake of para-aminohippurate mediated organic anion transporters 1 (Oat1) and 3 (Oat3), using renal cortical slices. These two transporters were known to be upregulated by insulin and PKCζ while they were downregulated by PKCα activation. Compared to T2DM, CGE supplemented rats had significantly improved hyperglycaemia, hypertriglyceridemia, insulin resistance, and renal morphology. The baseline uptake of para-aminohippurate was not different among experimental groups and was correlated with Oat1 and 3 mRNA expressions. Nevertheless, while insulin-stimulated Oat1 and 3 functions in renal slices were blunted in T2DM rats, they were improved by CGE supplementation. The mechanism of CGE-restored insulin-stimulated Oat1 and 3 functions was clearly shown to be associated with upregulated PKCζ and downregulated PKCα expressions and activations. These findings indicate that CGE has antidiabetic effect and suggest it may prevent diabetic nephropathy through PKCs in a T2DM rat model.

  10. Antidiabetic and Renoprotective Effects of Cladophora glomerata Kützing Extract in Experimental Type 2 Diabetic Rats: A Potential Nutraceutical Product for Diabetic Nephropathy

    PubMed Central

    Srimaroeng, Chutima; Ontawong, Atcharaporn; Saowakon, Naruwan; Vivithanaporn, Pornpun; Pongchaidecha, Anchalee; Amornlerdpison, Doungporn; Soodvilai, Sunhapas; Chatsudthipong, Varanuj

    2015-01-01

    Cladophora glomerata extract (CGE) has been shown to exhibit antigastric ulcer, anti-inflammatory, analgesic, hypotensive, and antioxidant activities. The present study investigated antidiabetic and renoprotective effects of CGE in type 2 diabetes mellitus (T2DM) rats. The rats were induced by high-fat diet and streptozotocin and supplemented daily with 1 g/kg BW of CGE for 12 weeks. The renal transport function was assessed by the uptake of para-aminohippurate mediated organic anion transporters 1 (Oat1) and 3 (Oat3), using renal cortical slices. These two transporters were known to be upregulated by insulin and PKCζ while they were downregulated by PKCα activation. Compared to T2DM, CGE supplemented rats had significantly improved hyperglycaemia, hypertriglyceridemia, insulin resistance, and renal morphology. The baseline uptake of para-aminohippurate was not different among experimental groups and was correlated with Oat1 and 3 mRNA expressions. Nevertheless, while insulin-stimulated Oat1 and 3 functions in renal slices were blunted in T2DM rats, they were improved by CGE supplementation. The mechanism of CGE-restored insulin-stimulated Oat1 and 3 functions was clearly shown to be associated with upregulated PKCζ and downregulated PKCα expressions and activations. These findings indicate that CGE has antidiabetic effect and suggest it may prevent diabetic nephropathy through PKCs in a T2DM rat model. PMID:25883984

  11. Effects of oat β-glucan consumption at breakfast on ad libitum eating, appetite, glycemia, insulinemia and GLP-1 concentrations in healthy subjects.

    PubMed

    Zaremba, Suzanne M M; Gow, Iain F; Drummond, Sandra; McCluskey, Jane T; Steinert, Robert E

    2018-06-18

    There is evidence that oat β-glucan lowers appetite and ad libitum eating; however, not all studies are consistent, and the underpinning mechanisms are not entirely understood. We investigated the effects of 4 g high molecular weight (MW) oat β-glucan on ad libitum eating, subjective appetite, glycemia, insulinemia and plasma GLP-1 responses in 33 normal-weight subjects (22 female/11 male, mean age (y): 26.9 ± 1.0, BMI (kg/m 2 ): 23.5 ± 0.4). The study followed a randomised double-blind, cross-over design with subjects fed two test breakfasts with and without oat β-glucan followed by an ad libitum test meal on two different days. Blood samples and ratings for subjective appetite were collected postprandially at regular time intervals. Oat β-glucan increased feelings of fullness (p = 0.048) and satiety (p = 0.034), but did not affect energy and amount eaten at the ad libitum test meal. There was a treatment by time interaction for plasma GLP-1, plasma insulin and blood glucose. GLP-1 was significantly reduced at 90 min (p = 0.021), blood glucose at 30 min (p = 0.008) and plasma insulin at 30 and 60 min (p = 0.002 and 0.017, respectively) following the oat β-glucan breakfast when compared with the control breakfast. Four grams of high MW oat β-glucan lowers appetite but not ad libitum eating and beneficially modulates postprandial glycaemia, it does however, not increase plasma GLP-1 secretion. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Dielectric properties of wheat flour mixed with oat meal

    NASA Astrophysics Data System (ADS)

    Łuczycka, D.; Czubaszek, A.; Fujarczuk, M.; Pruski, K.

    2013-03-01

    Possibilities of using electric methods for determining admixtures of oat meal to wheat flour, type 650 are presented. In wheat flour, oat meal and mixtures containing 10, 20 and 30% of the oat meal, moisture, protein, starch and ash content, sedimentation value, yield and softening of wet gluten were determined. In samples containing 0, 5, 10, 15, 20, 25, 30 and 100% of oat meal, the dielectric loss factor and conductivity were determined using an impedance analyzer for electromagnetic field frequency ranging from 0.1-20 kHz. It was found that the dielectric loss factor varied for tested material. The best distinguishing between tested mixtures was obtained at the measuring electromagnetic field frequency of 20 kHz. The loss factor was significantly correlated with the yield of wet gluten and the sedimentation value, parameters indicating the amount and quality of gluten proteins in flour.

  13. The difference between oats and beta-glucan extract intake in the management of HbA1c, fasting glucose and insulin sensitivity: a meta-analysis of randomized controlled trials.

    PubMed

    He, Li-xia; Zhao, Jian; Huang, Yuan-sheng; Li, Yong

    2016-03-01

    Increasing oats and beta-glucan extract intake has been associated with improved glycemic control, which is associated with the reduction in the development of diabetes. This study aims to assess the different effects between oat (whole and bran) and beta-glucan extract intake on glycemic control and insulin sensitivity. PubMed, Embase, Medline, The Cochrane Library, CINAHL and Web of Science were searched up to February 2014. We included randomized controlled trials with interventions that lasted at least four weeks that compared oats and beta-glucan (extracted from oats or other sources) intake with a control. A total of 1351 articles were screened for eligibility, and relevant data were extracted from 18 studies (n = 1024). Oat product dose ranged from 20 g d(-1) to 136 g d(-1), and beta-glucan extract dose ranged from 3 g d(-1) to 10 g d(-1). Compared with the control, oat intake resulted in a greater decrease in fasting glucose and insulin of subjects (P < 0.05), but beta-glucan extract intake did not. Furthermore, oat intake resulted in a greater decrease in glycosylated hemoglobin (HbA1c) (P < 0.001, I(2) = 0%) and fasting glucose (P < 0.001, I(2) = 68%) after removing one study using a concentrate and a different design and fasting insulin of type 2 diabetes (T2D) (P < 0.001, I(2) = 0%). The intake of oats and beta-glucan extracted from oats were effective in decreasing fasting glucose (P = 0.007, I(2) = 91%) and fasting insulin of T2D (P < 0.001, I(2) = 0%) and tented to lower HbA1c (P = 0.09, I(2) = 92%). Higher consumption of whole oats and oat bran, but not oat or barley beta-glucan extracts, are associated with lower HbA1c, fasting glucose and fasting insulin of T2D, hyperlipidaemic and overweight subjects, especially people with T2D, which supports the need for clinical trials to evaluate the potential role of oats in approaching to the management of glycemic control and insulin sensitivity of diabetes or metabolic syndrome subjects.

  14. Maize ZmALMT2 is a root anion transporter that mediates constitutive root malate efflux.

    PubMed

    Ligaba, Ayalew; Maron, Lyza; Shaff, Jon; Kochian, Leon; Piñeros, Miguel

    2012-07-01

    Root efflux of organic acid anions underlies a major mechanism of plant aluminium (Al) tolerance on acid soils. This efflux is mediated by transporters of the Al-activated malate transporter (ALMT) or the multi-drug and toxin extrusion (MATE) families. ZmALMT2 was previously suggested to be involved in Al tolerance based on joint association-linkage mapping for maize Al tolerance. In the current study, we functionally characterized ZmALMT2 by heterologously expressing it in Xenopus laevis oocytes and transgenic Arabidopsis. In oocytes, ZmALMT2 mediated an Al-independent electrogenic transport product of organic and inorganic anion efflux. Ectopic overexpression of ZmALMT2 in an Al-hypersensitive Arabidopsis KO/KD line lacking the Al tolerance genes, AtALMT1 and AtMATE, resulted in Al-independent constitutive root malate efflux which partially restored the Al tolerance phenotype. The lack of correlation between ZmALMT2 expression and Al tolerance (e.g., expression not localized to the root tip, not up-regulated by Al, and higher in sensitive versus tolerance maize lines) also led us to question ZmALMT2's role in Al tolerance. The functional properties of the ZmALMT2 transporter presented here, along with the gene expression data, suggest that ZmALMT2 is not involved in maize Al tolerance but, rather, may play a role in mineral nutrient acquisition and transport. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.

  15. Selenium-containing organic nanoparticles as silent precursors for ultra-sensitive thiol-responsive transmembrane anion transport.

    PubMed

    Lang, Chao; Zhang, Xin; Dong, Zeyuan; Luo, Quan; Qiao, Shanpeng; Huang, Zupeng; Fan, Xiaotong; Xu, Jiayun; Liu, Junqiu

    2016-02-07

    An anion transporter with a selenoxide group was able to form nanoparticles in water, whose activity was fully turned off due to the aggregation effect. The formed nanoparticles have a uniform size and can be readily dispersed in water at high concentrations. Turn-on of the nanoparticles by reducing molecules is proposed to be a combined process, including the reduction of selenoxide to selenide, disassembly of the nanoparticles and location of the transporter to the lipid membrane. Accordingly, a special acceleration phase can be observed in the turn-on kinetic curves. Since turn-on of the nanoparticles is quantitatively related to the amount of reductant, the nanoparticles can be activated in a step-by-step manner. Due to the sensibility of this system to thiols, cysteine can be detected at low nanomolar concentrations. This ultra-sensitive thiol-responsive transmembrane anion transport system is quite promising in biological applications.

  16. Ornithine aminotransferase (OAT): recombination between an X-linked OAT sequence (7.5 kb) and the Norrie disease locus.

    PubMed

    Ngo, J T; Bateman, J B; Spence, M A; Cortessis, V; Sparkes, R S; Kivlin, J D; Mohandas, T; Inana, G

    1990-01-01

    A human ornithine aminotransferase (OAT) locus has been mapped to the Xp11.2, as has the Norrie disease locus. We used a cDNA probe to investigate a 3-generation UCLA family with Norrie disease; a 4.2-kb RFLP was detected and a maximum lod score of 0.602 at zero recombination fraction was calculated. We used the same probe to study a second multigeneration family with Norrie disease from Utah. A different RFLP of 7.5 kb in size was identified and a recombinational event between the OAT locus represented by this RFLP and the disease loci was observed. Linkage analysis of these two loci in this family revealed a maximum load score of 1.88 at a recombination fraction of 0.10. Although both families have affected members with the same disease, the lod scores are reported separately because the 4.2- and 7.5-kb RFLPs may represent two different loci for the X-linked OAT.

  17. Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model

    PubMed Central

    Gao, Chenfei; Gao, Zhanguo; Greenway, Frank L.; Burton, Jeffrey H.; Johnson, William D.; Keenan, Michael J.; Enright, Frederick M.; Martin, Roy J.; Chu, YiFang; Zheng, Jolene

    2015-01-01

    In addition to their fermentable dietary fiber and the soluble β-glucan fiber, oats have unique avenanthramides that have anti-inflammatory and antioxidant properties that reduce coronary heart disease in human clinical trials. We hypothesized that oat consumption will increase insulin sensitivity, reduce body fat, and improve health span in Caenorhabditis elegans through a mechanism involving the daf-2 gene, which codes for the insulin/insulin-like growth factor-1–like receptor, and that hyperglycemia will attenuate these changes. Caenorhabditis elegans wild type (N2) and the null strains sir-2.1, daf-16, and daf-16/daf-2 were fed Escherichia coli (OP50) and oat flakes (0.5%, 1.0%, or 3%) with and without 2% glucose. Oat feeding decreased intestinal fat deposition in N2, daf-16, or daf-16/daf-2 strains (P < .05); and glucose did not affect intestinal fat deposition response. The N2, daf-16, or sir-2.1 mutant increased the pharyngeal pumping rate (P < .05), a surrogate marker of life span, following oat consumption. Oat consumption increased ckr-1, gcy-8, cpt-1, and cpt-2 mRNA expression in both the N2 and the sir-2.1 mutant, with significantly higher expression in sir-2.1 than in N2 (P < .01). Additional glucose further increased expression 1.5-fold of the 4 genes in N2 (P < .01), decreased the expression of all except cpt-1 in the daf-16 mutant, and reduced mRNA expression of the 4 genes in the daf-16/daf-2 mutant (P < .01). These data suggest that oat consumption reduced fat storage and increased ckr-1, gcy-8, cpt-1, or cpt-2 through the sir-2.1 genetic pathway. Oat consumption may be a beneficial dietary intervention for reducing fat accumulation, augmenting health span, and improving hyperglycemia-impaired lipid metabolism. PMID:26253816

  18. Partition coefficient of cadmium between organic soils and bean and oat plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siddqui, M.F.R.; Courchesne, F.; Kennedy, G.

    Environmental fate models require the partition coefficient data of contaminants among two or more environmental compartments. The bioaccumulation of cadmium (Cd) by bean and oat plants grown on organic soils in a controlled growth chamber was investigated to validate the plant/soil partition coefficient. Total Cd was measured in the soils and in the different parts of the plants. The mean total Cd concentrations for soil cultivated with beans and oats were 0.86 and 0.69 {micro}g/g, respectively. Selective extractants (BaCl{sub 2}, Na-pyrophosphate and HNO{sub 3}-hydroxy) were used to evaluate solid phase Cd species in the soil. In the soil cultivated withmore » bean, BaCl{sub 2} exchangeable, Na-pyrophosphate extractable and HNO{sub 3}-NH{sub 2}OH extractable Cd represented 1.2, 1.6 and 50.9% of total soil Cd, respectively. For the soil cultivated with oats, the same extractants gave values of 1.1, 1.8 and 61.9%. Cd concentration levels in bean plants followed the sequence roots > fruits = stems > leaves (p < 0.01) while the following sequence was observed for oat plants: roots > fruits > stems > leaves (p < 0.05). The partition coefficient for total Cd (Cd{sub Plant tissue}/Cd{sub Soil}) was in the range of 0.28--0.55 for bean plants and 1.03--1.86 for oat plants.« less

  19. Structures, properties, modifications, and uses of oat starch.

    PubMed

    Zhu, Fan

    2017-08-15

    There has been increasing interest to utilise oats and their components to formulate healthy food products. Starch is the major component of oat kernels and may account up to 60% of the dry weight. Starch properties may greatly determine the product quality. As a by-product of oat processing and fractionation, the starch may also be utilised for food and non-food applications. This mini-review updates the recent advances in the isolation, chemical and granular structures, physicochemical properties, chemical and physical modifications, and food and non-food uses of oat starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. The U.S. Oats Industry. Agricultural Economic Report Number 573.

    ERIC Educational Resources Information Center

    Hoffman, Linwood A.; Livezey, Janet

    This report describes the United States oats industry from producers to consumers and provides a single source of economic and statistical information on oats. Background information on oats is provided first. The report then examines the basic factors of supply, demand, and price to determine what caused the decline in the importance of oats and…

  1. Human Sodium Phosphate Transporter 4 (hNPT4/SLC17A3) as a Common Renal Secretory Pathway for Drugs and Urate*

    PubMed Central

    Jutabha, Promsuk; Anzai, Naohiko; Kitamura, Kenichiro; Taniguchi, Atsuo; Kaneko, Shuji; Yan, Kunimasa; Yamada, Hideomi; Shimada, Hidetaka; Kimura, Toru; Katada, Tomohisa; Fukutomi, Toshiyuki; Tomita, Kimio; Urano, Wako; Yamanaka, Hisashi; Seki, George; Fujita, Toshiro; Moriyama, Yoshinori; Yamada, Akira; Uchida, Shunya; Wempe, Michael F.; Endou, Hitoshi; Sakurai, Hiroyuki

    2010-01-01

    The evolutionary loss of hepatic urate oxidase (uricase) has resulted in humans with elevated serum uric acid (urate). Uricase loss may have been beneficial to early primate survival. However, an elevated serum urate has predisposed man to hyperuricemia, a metabolic disturbance leading to gout, hypertension, and various cardiovascular diseases. Human serum urate levels are largely determined by urate reabsorption and secretion in the kidney. Renal urate reabsorption is controlled via two proximal tubular urate transporters: apical URAT1 (SLC22A12) and basolateral URATv1/GLUT9 (SLC2A9). In contrast, the molecular mechanism(s) for renal urate secretion remain unknown. In this report, we demonstrate that an orphan transporter hNPT4 (human sodium phosphate transporter 4; SLC17A3) was a multispecific organic anion efflux transporter expressed in the kidneys and liver. hNPT4 was localized at the apical side of renal tubules and functioned as a voltage-driven urate transporter. Furthermore, loop diuretics, such as furosemide and bumetanide, substantially interacted with hNPT4. Thus, this protein is likely to act as a common secretion route for both drugs and may play an important role in diuretics-induced hyperuricemia. The in vivo role of hNPT4 was suggested by two hyperuricemia patients with missense mutations in SLC17A3. These mutated versions of hNPT4 exhibited reduced urate efflux when they were expressed in Xenopus oocytes. Our findings will complete a model of urate secretion in the renal tubular cell, where intracellular urate taken up via OAT1 and/or OAT3 from the blood exits from the cell into the lumen via hNPT4. PMID:20810651

  2. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    PubMed

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-04

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.

  3. Characterization of celiac disease related oat proteins: bases for the development of high quality oat varieties suitable for celiac patients.

    PubMed

    Giménez, María J; Real, Ana; García-Molina, M Dolores; Sousa, Carolina; Barro, Francisco

    2017-02-17

    Some studies have suggested that the immunogenicity of oats depends on the cultivar. RP-HPLC has been proposed as a useful technique to select varieties of oats with reduced immunogenicity. The aim of this study was to identify both the avenin protein patterns associated with low gluten content and the available variability for the development of new non-toxic oat cultivars. The peaks of alcohol-soluble avenins of a collection of landraces and cultivars of oats have been characterized based on the RP-HPLC elution times. The immunotoxicity of oat varieties for patients with celiac disease (CD) has been tested using a competitive ELISA based on G12 monoclonal antibody. The oat lines show, on average, seven avenin peaks giving profiles with certain similarities. Based on this similarity, most of the accessions have been grouped into avenin patterns. The variability of RP-HPLC profiles of the collection is great, but not sufficient to uniquely identify the different varieties of the set. Overall, the immunogenicity of the collection is less than 20 ppm. However, there is a different distribution of toxicity ranges between the different peak patterns. We conclude that the RP-HPLC technique is useful to establish groups of varieties differing in degree of toxicity for CD patients.

  4. Characterization of celiac disease related oat proteins: bases for the development of high quality oat varieties suitable for celiac patients

    PubMed Central

    Giménez, María J.; Real, Ana; García-Molina, M. Dolores; Sousa, Carolina; Barro, Francisco

    2017-01-01

    Some studies have suggested that the immunogenicity of oats depends on the cultivar. RP-HPLC has been proposed as a useful technique to select varieties of oats with reduced immunogenicity. The aim of this study was to identify both the avenin protein patterns associated with low gluten content and the available variability for the development of new non-toxic oat cultivars. The peaks of alcohol-soluble avenins of a collection of landraces and cultivars of oats have been characterized based on the RP-HPLC elution times. The immunotoxicity of oat varieties for patients with celiac disease (CD) has been tested using a competitive ELISA based on G12 monoclonal antibody. The oat lines show, on average, seven avenin peaks giving profiles with certain similarities. Based on this similarity, most of the accessions have been grouped into avenin patterns. The variability of RP-HPLC profiles of the collection is great, but not sufficient to uniquely identify the different varieties of the set. Overall, the immunogenicity of the collection is less than 20 ppm. However, there is a different distribution of toxicity ranges between the different peak patterns. We conclude that the RP-HPLC technique is useful to establish groups of varieties differing in degree of toxicity for CD patients. PMID:28209962

  5. Functional, structural and phylogenetic analysis of domains underlying the Al sensitivity of the aluminum-activated malate/anion transporter, TaALMT1.

    PubMed

    Ligaba, Ayalew; Dreyer, Ingo; Margaryan, Armine; Schneider, David J; Kochian, Leon; Piñeros, Miguel

    2013-12-01

    Triticum aestivum aluminum-activated malate transporter (TaALMT1) is the founding member of a unique gene family of anion transporters (ALMTs) that mediate the efflux of organic acids. A small sub-group of root-localized ALMTs, including TaALMT1, is physiologically associated with in planta aluminum (Al) resistance. TaALMT1 exhibits significant enhancement of transport activity in response to extracellular Al. In this study, we integrated structure-function analyses of structurally altered TaALMT1 proteins expressed in Xenopus oocytes with phylogenic analyses of the ALMT family. Our aim is to re-examine the role of protein domains in terms of their potential involvement in the Al-dependent enhancement (i.e. Al-responsiveness) of TaALMT1 transport activity, as well as the roles of all its 43 negatively charged amino acid residues. Our results indicate that the N-domain, which is predicted to form the conductive pathway, mediates ion transport even in the absence of the C-domain. However, segments in both domains are involved in Al(3+) sensing. We identified two regions, one at the N-terminus and a hydrophobic region at the C-terminus, that jointly contribute to the Al-response phenotype. Interestingly, the characteristic motif at the N-terminus appears to be specific for Al-responsive ALMTs. Our study highlights the need to include a comprehensive phylogenetic analysis when drawing inferences from structure-function analyses, as a significant proportion of the functional changes observed for TaALMT1 are most likely the result of alterations in the overall structural integrity of ALMT family proteins rather than modifications of specific sites involved in Al(3+) sensing. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  6. Physical properties of sugar cookies containing chia-oat composites

    USDA-ARS?s Scientific Manuscript database

    Omega-3 of chia seeds (Salvia hispanica L.) and soluble ß-glucan of oat products could be beneficial for lowering blood cholesterol and preventing coronary heart disease. Nutrim, oat bran concentrate (OBC), and whole oat flour (WOF) were dry-blended with finely ground chia for improving nutritional ...

  7. Physical properties and FTIR analysis of rice-oat flour and maize-oat flour based extruded food products containing olive pomace.

    PubMed

    Ying, DanYang; Hlaing, Mya Myintzu; Lerisson, Julie; Pitts, Keith; Cheng, Lijiang; Sanguansri, Luz; Augustin, Mary Ann

    2017-10-01

    Olive pomace, a waste stream from olive oil processing, was fractionated by centrifugation to obtain a supernatant and a flesh-enriched fraction, and freeze dried to obtain a powder. The dried supernatant contained 5.8% moisture, 4.8% protein, 3.5% fat, 3.5% ash, 82.4% carbohydrate (including 17.2% dietary fiber) and polyphenols (2970mg gallic acid equivalents (GAE)/100g). The dried flesh-enriched fraction, contained 5.9% moisture, 13.4% protein, 14.2% fat, 3.5% ash, 63.1% carbohydrate (including 42.7% dietary fiber) and polyphenols (1960mg GAE/100g). The extruded products using rice-oat flour or maize-oat flour mixtures as the base were formulated to contain 5% or 10% olive pomace fractions (dry basis). The extruded products with added olive pomace fractions has higher fiber (2-7g/100g) and polyphenol contents (67-161mg GAE/100g) compared to the corresponding mixtures of rice-oat flour base (0.92g/100g fiber, 20mg GAE/100g) or maize-oat flour base (3.2g/100g fiber, 20mg GAE/100g) without olive pomace fractions. Addition of olive pomace fractions reduced the die pressure and specific mechanical energy during extrusion and resulted in lower radial expansion in the extruded product. The impact of the addition of olive pomace fraction on physical characteristics of the extruded product is higher for rice-oat flour base than maize-oat flour base. The underlining mechanism was explained by FTIR analysis. FTIR showed that there were significant changes in the carbohydrate components and the structure of the proteins on extrusion, with consequent effects on the expansion and density of the extruded product. This study showed the feasibility of preparing fiber and polyphenol enriched extruded products by incorporation of olive pomace. This shows the potential of recovery and diversion of edible components from waste streams of olive oil processing for formulation of extruded products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Identification, introgression, and molecular marker genetic analysis and selection of a highly effective novel oat crown rust resistance from diploid oat, Avena strigosa

    USDA-ARS?s Scientific Manuscript database

    A new highly effective resistance to oat crown rust (Puccinia coronata f. sp. avenae) was identified in the diploid oat Avena strigosa PI 258731 and introgressed into hexaploid cultivated oat. Young plants with this resistance show moderate susceptibility, whereas older plant tissues and adult plant...

  9. Purification and Biochemical Properties of Phytochromobilin Synthase from Etiolated Oat Seedlings1

    PubMed Central

    McDowell, Michael T.; Lagarias, J. Clark

    2001-01-01

    Plant phytochromes are dependent on the covalent attachment of the linear tetrapyrrole chromophore phytochromobilin (PΦB) for photoactivity. In planta, biliverdin IXα (BV) is reduced by the plastid-localized, ferredoxin (Fd)-dependent enzyme PΦB synthase to yield 3Z-PΦB. Here, we describe the >50,000-fold purification of PΦB synthase from etioplasts from dark-grown oat (Avena sativa L. cv Garry) seedlings using traditional column chromatography and preparative electrophoresis. Thus, PΦB synthase is a very low abundance enzyme with a robust turnover rate. We estimate the turnover rate to be >100 s−1, which is similar to that of mammalian NAD(P)H-dependent BV reductase. Oat PΦB synthase is a monomer with a subunit mass of 29 kD. However, two distinct charged forms of the enzymes were identified by native isoelectric focusing. The ability of PΦB synthase to reduce BV is dependent on reduced 2Fe-2S Fds. A Km for spinach (Spinacea oleracea) Fd was determined to be 3 to 4 μm. PΦB synthase has a high affinity for its bilin substrate, with a sub-micromolar Km for BV. PMID:11500553

  10. Role of endolymphatic anion transport in forskolin-induced Cl- activity increase of scala media.

    PubMed

    Kitano, I; Mori, N; Matsunaga, T

    1995-03-01

    To determine the role of anion transport in the forskolin-induced Cl- increase of scala media (SM), effects of forskolin on the EP (endocochlear potential) and Cl- activity (ACl) in SM were examined with double-barrelled Cl(-)-selective microelectrodes. The experiments were carried out on guinea pig cochleae, using a few anion transport inhibitors: IAA-94 for a Cl- channel blocker, bumetanide (BU) for an Na+/K+/2Cl- cotransport blocker, and SITS and DIDS for Cl-/HCO3- exchange blockers. The application of forskolin (200 microM) into scala vestibuli (SV) caused a 20 mEq increase of endolymphatic ACl and a 15 mV elevation of EP, and IAA-94 with forskolin completely abolished these responses. Although each application of BU, SITS or DIDS did not completely suppress EP elevation, the concurrent application of these inhibitors completely suppressed EP with endolymphatic ACl increase. The results indicate the involvement of Cl- channels, Na+/K+/2Cl- cotransport and Cl-/HCO3- exchange in forskolin-induced increase of ACl and EP. The role of adenylate cyclase activation and Cl- transport in endolymph homeostasis was discussed.

  11. Dramatic influence of an anionic donor on the oxygen-atom transfer reactivity of a Mn(V) -oxo complex.

    PubMed

    Neu, Heather M; Quesne, Matthew G; Yang, Tzuhsiung; Prokop-Prigge, Katharine A; Lancaster, Kyle M; Donohoe, James; DeBeer, Serena; de Visser, Sam P; Goldberg, David P

    2014-11-03

    Addition of an anionic donor to an Mn(V) (O) porphyrinoid complex causes a dramatic increase in 2-electron oxygen-atom-transfer (OAT) chemistry. The 6-coordinate [Mn(V) (O)(TBP8 Cz)(CN)](-) was generated from addition of Bu4 N(+) CN(-) to the 5-coordinate Mn(V) (O) precursor. The cyanide-ligated complex was characterized for the first time by Mn K-edge X-ray absorption spectroscopy (XAS) and gives MnO=1.53 Å, MnCN=2.21 Å. In combination with computational studies these distances were shown to correlate with a singlet ground state. Reaction of the CN(-) complex with thioethers results in OAT to give the corresponding sulfoxide and a 2e(-) -reduced Mn(III) (CN)(-) complex. Kinetic measurements reveal a dramatic rate enhancement for OAT of approximately 24 000-fold versus the same reaction for the parent 5-coordinate complex. An Eyring analysis gives ΔH(≠) =14 kcal mol(-1) , ΔS(≠) =-10 cal mol(-1)  K(-1) . Computational studies fully support the structures, spin states, and relative reactivity of the 5- and 6-coordinate Mn(V) (O) complexes. © 2014 The Authors. Published by Wiley-VCHVerlag GmbH & Co. KGaA. This is an open access article under the terms ofthe Creative Commons Attribution License, which permits use, distribution andreproduction in any medium, provided the original work is properly cited.

  12. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice.

    PubMed

    Bailey, D G; Dresser, G K; Leake, B F; Kim, R B

    2007-04-01

    We showed previously that grapefruit and orange juices inhibited human enteric organic anion-transporting polypeptide (OATP)1A2 in vitro and lowered oral fexofenadine bioavailability clinically. Inhibition of OATP1A2 transport by flavonoids in grapefruit (naringin) and orange (hesperidin) was conducted in vitro. Two randomized, crossover, pharmacokinetic studies were performed clinically. In one study, 120 mg of fexofenadine was ingested with 300 ml grapefruit juice, an aqueous solution of naringin at the same juice concentration (1,200 microM), or water. In the other study, fexofenadine was administered with grapefruit juice, with or 2 h before aqueous suspension of the particulate fraction of juice containing known clinical inhibitors of enteric CYP3A4, but relatively low naringin concentration (34 microM), or with water. Naringin and hesperidin's half-maximal inhibitions were 3.6 and 2.7 microM, respectively. Fexofenadine area under the plasma drug concentration-time curves (AUCs) with grapefruit juice and naringin solution were 55% (P<0.001) and 75% (P<0.05) of that with water, respectively. Fexofenadine AUCs with grapefruit juice and particulate fractions were 57% (P<0.001), 96% (not significant (NS)), and 97% (NS) of that with water, respectively. Individuals tested in both studies (n=9 of 12) had highly reproducible fexofenadine AUC with water (r(2)=0.85, P<0.001) and extent of reduction of it with grapefruit juice (r(2)=0.72, P<0.01). Naringin most probably directly inhibited enteric OATP1A2 to decrease oral fexofenadine bioavailability. Inactivation of enteric CYP3A4 was probably not involved. Naringin appears to have sufficient safety, specificity, and sensitivity to be a clinical OATP1A2 inhibitor probe. Inherent OATP1A2 activity may be influenced by genetic factors. This appears to be the first report of a single dietary constituent clinically modulating drug transport.

  13. 7 CFR 810.1001 - Definition of oats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Oats Terms Defined § 810.1001 Definition of oats. Grain that consists...

  14. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss...

  15. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss...

  16. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss...

  17. The effect of thermo-mechanical processing on physical properties of processed amaranth and oat bran composites

    USDA-ARS?s Scientific Manuscript database

    Amaranth-oat composites were developed using gluten free amaranth flour containing essential amino acids and minerals with oat products containing ß-glucan, known for lowering blood cholesterol. Amaranth flour and oat bran concentrate (OBC) composites (1:4) were processed using different technologie...

  18. Donnan membrane technique (DMT) for anion measurement.

    PubMed

    Vega, Flora Alonso; Weng, Liping; Temminghoff, Erwin J M; Van Riemsdijk, Willem H

    2010-04-01

    Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4). The strongest effect of ionic strength on equilibrium time is found for H(2)PO(4)(-), followed by SO(4)(2-) and SeO(4)(2-), and then by Cl(-) and NO(3)(-). The negatively charged organic particles of fulvic and humic acids do not pass the membrane. Two approaches for the measurement of different anion species of the same element, such as SeO(4)(2-) and HSeO(3)(-), using DMT are proposed and tested. These two approaches are based on transport kinetics or response to ionic strength difference. A transport model that was developed previously for cation DMT is applied in this work to analyze the rate-limiting step in the anion DMT. In the absence of mobile/labile complexes, transport tends to be controlled by diffusion in solution at a low ionic strength, whereas at a higher ionic strength, diffusion in the membrane starts to control the transport.

  19. Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism

    PubMed Central

    Faraldo-Gómez, José D.

    2017-01-01

    The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation. PMID:29167180

  20. No harm from five year ingestion of oats in coeliac disease

    PubMed Central

    Janatuinen, E K; Kemppainen, T A; Julkunen, R J K; Kosma, V-M; Mäki, M; Heikkinen, M; Uusitupa, M I J

    2002-01-01

    Background: Six to 12 months of ingestion of moderate amounts of oats does not have a harmful effect in adult patients with coeliac disease. As the safety of long term intake of oats in coeliac patients is not known, we continued our previous 6–12 month study for five years. Aim: To assess the safety of long term ingestion of oats in the diet of coeliac patients. Patients: In our previous study, the effects of a gluten free diet and a gluten free diet including oats were compared in a randomised trial involving 92 adult patients with coeliac disease (45 in the oats group, 47 in the control group). After the initial phase of 6–12 months, patients in the oats group were allowed to eat oats freely in conjunction with an otherwise gluten free diet. After five years, 35 patients in the original oats group (23 still on an oats diet) and 28 in the control group on a conventional gluten free diet were examined. Methods: Clinical and nutritional assessment, duodenal biopsies for conventional histopathology and histomorphometry, and measurement of antiendomysial, antireticulin, and antigliadin antibodies. Results: There were no significant differences between controls and those patients consuming oats with respect to duodenal villous architecture, inflammatory cell infiltration of the duodenal mucosa, or antibody titres after five years of follow up. In both groups histological and histomorphometric indexes improved equally with time. Conclusions: This study provides the first evidence of the long term safety of oats as part of a coeliac diet in adult patients with coeliac disease. It also appears that the majority of coeliac patients prefer oats in their diet. PMID:11839710

  1. Why Oats Are Safe and Healthy for Celiac Disease Patients.

    PubMed

    Gilissen, Luud J W J; van der Meer, Ingrid M; Smulders, Marinus J M

    2016-11-26

    The water-insoluble storage proteins of cereals (prolamins) are called "gluten" in wheat, barley, and rye, and "avenins" in oat. Gluten can provoke celiac disease (CD) in genetically susceptible individuals (those with human leukocyte antigen (HLA)-DQ2 or HLA-DQ8 serotypes). Avenins are present at a lower concentration (10%-15% of total protein content) in oat as compared to gluten in wheat (80%-85%). The avenins in the genus Avena (cultivated oat as well as various wild species of which gene bank accessions were analyzed) are free of the known CD immunogenic epitopes from wheat, barley, and rye. T cells that recognize avenin-specific epitopes have been found very rarely in CD patients. CD patients that consume oats daily do not show significantly increased levels of intraepithelial lymphocyte (EIL) cells. The safety and the positive health effects of the long-term inclusion of oats in the gluten-free diet have been confirmed in long-term studies. Since 2009 (EC 41/2009) and 2013 (FDA) oat products may be sold as gluten-free in several countries provided a gluten contamination level below 20 ppm. Introduction of oats in the gluten-free diet of celiac patients is advised after the recovery of the intestine. Health effects of oat consumption are reflected in European Food Safety Authority (EFSA)- and Food and Drug Administration (FDA)-approved health claims. Oats can form a healthy, nutritious, fiber-rich, and safe complement to the gluten-free diet.

  2. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss... paragraphs (c) through (h) of this section, except to the extent that similar provisions apply to claims...

  3. 7 CFR 1437.310 - Sea grass and sea oats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Sea grass and sea oats. 1437.310 Section 1437.310... Determining Coverage Using Value § 1437.310 Sea grass and sea oats. (a) Sea grass and sea oats are value loss... paragraphs (c) through (h) of this section, except to the extent that similar provisions apply to claims...

  4. Organic Anion Transporting Polypeptides Contribute to the Disposition of Perfluoroalkyl Acids in Humans and Rats.

    PubMed

    Zhao, Wen; Zitzow, Jeremiah D; Weaver, Yi; Ehresman, David J; Chang, Shu-Ching; Butenhoff, John L; Hagenbuch, Bruno

    2017-03-01

    Perfluoroalkyl sulfonates (PFSAs) such as perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) have very long serum elimination half-lives in humans, and preferentially distribute to serum and liver. The enterohepatic circulation of PFHxS and PFOS likely contributes to their extended elimination half-lives. We previously demonstrated that perfluorobutane sulfonate (PFBS), PFHxS, and PFOS are transported into hepatocytes both in a sodium-dependent and a sodium-independent manner. We identified Na+/taurocholate cotransporting polypeptide (NTCP) as the responsible sodium-dependent transporter. Furthermore, we demonstrated that the human apical sodium-dependent bile salt transporter (ASBT) contributes to the intestinal reabsorption of PFOS. However, so far no sodium-independent uptake transporters for PFSAs have been identified in human hepatocytes or enterocytes. In addition, perfluoroalkyl carboxylates (PFCAs) with 8 and 9 carbons were shown to preferentially distribute to the liver of rodents; however, no rat or human liver uptake transporters are known to transport these PFCAs. Therefore, we tested whether PFBS, PFHxS, PFOS, and PFCAs with 7-10 carbons are substrates of organic anion transporting polypeptides (OATPs). We used CHO and HEK293 cells to demonstrate that human OATP1B1, OATP1B3, and OATP2B1 can transport PFBS, PFHxS, PFOS, and the 2 PFCAs (C8 and C9). In addition, we show that rat OATP1A1, OATP1A5, OATP1B2, and OATP2B1 transport all 3 PFSAs. In conclusion, our results suggest that besides NTCP and ASBT, OATPs also are capable of contributing to the enterohepatic circulation and extended human serum elimination half-lives of the tested perfluoroalkyl acids. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Effects of Organic Anion, Organic Cation, and Dipeptide Transport Inhibitors on Cefdinir in the Isolated Perfused Rat Kidney

    PubMed Central

    Lepsy, Christopher S.; Guttendorf, Robert J.; Kugler, Alan R.; Smith, David E.

    2003-01-01

    Cefdinir (Omnicef; Abbott Laboratories) is a cephalosporin antibiotic primarily eliminated by the kidney. Nonlinear renal elimination of cefdinir has been previously reported. Cefdinir renal transport mechanisms were studied in the erythrocyte-free isolated perfused rat kidney. Studies were performed with drug-free perfusate and perfusate containing cefdinir alone to establish the baseline physiology and investigate cefdinir renal elimination characteristics. To investigate cefdinir renal transport mechanisms, inhibition studies were conducted by coperfusing cefdinir with inhibitors of the renal organic anion (probenecid), organic cation (tetraethylammonium), or dipeptide (glycylsarcosine) transport system. Cefdinir concentrations in biological samples were determined using reversed-phase high-performance liquid chromatography. Differences between treatments and controls were evaluated using analysis of variance and Dunnett's test. The excretion ratio (ER; the renal clearance corrected for the fraction unbound and glomerular filtration rate) for cefdinir was 5.94, a value indicating net renal tubular secretion. Anionic, cationic, and dipeptide transport inhibitors all significantly affected the cefdinir ER. With probenecid, the ER was reduced to 0.59, clearly demonstrating a significant reabsorptive component to cefdinir renal disposition. This finding was confirmed by glycylsarcosine studies, in which the ER was elevated to 7.95, indicating that reabsorption was mediated, at least in part, by the dipeptide transporter system. The effects of the organic cation tetraethylammonium, in which the ER was elevated to 7.53, were likely secondary in nature. The anionic secretory pathway was found to be the predominant mechanism for cefdinir renal excretion. PMID:12543679

  6. Evolution of the Oat Genetic Road Map: From Tetraploid to Hexaploid

    USDA-ARS?s Scientific Manuscript database

    The development of a genetic linkage map for hexaploid oat (Avena sativa L. 2n = 6 x = 42) that defines all 21 chromosomes has been hindered due to the lack of oat-based markers and the size and complexity of the oat genome. Recent efforts in oat DArT, SSR, and SNP marker development should improve...

  7. Fusarium mycotoxin content of UK organic and conventional oats.

    PubMed

    Edwards, S G

    2009-07-01

    Every year between 2002 and 2005 approximately 100 samples of oats from fields of known agronomy were analysed by GC/MS for 10 trichothecenes: deoxynivalenol (DON), nivalenol, 3-acetylDON, 15-acetylDON, fusarenone X, T-2 toxin (T2), HT-2 toxin (HT2), diacetoxyscirpenol, neosolaniol and T-2 triol. Samples were also analysed for moniliformin and zearalenone by HPLC. Of the 10 trichothecenes analysed from 458 harvest samples of oat only three, 15-acetylDON, fusarenone X and diacetoxyscirpenol, were not detected. Moniliformin and zearalenone were absent or rarely detected, respectively. HT2 and T2 were the most frequently detected fusarium mycotoxins, present above the limit of quantification (10 microg kg(-1)) in 92 and 84% of samples, respectively, and were usually present at the highest concentrations. The combined mean and median for HT2 and T2 (HT2 + T2) was 570 and 213 microg kg(-1), respectively. There were good correlations between concentrations of HT2 and all other type A trichothecenes detected (T2, T2 triol and neosolaniol). Year and region had a significant effect on HT2 + T2 concentration. There was also a highly significant difference between HT2 + T2 content in organic and conventional samples, with the predicted mean for organic samples five times lower than that of conventional samples. This is the largest difference reported for any mycotoxin level in organic and conventional cereals. No samples exceeded the legal limits for DON or zearalenone in oats intended for human consumption. Legislative limits for HT2 and T2 are currently under consideration by the European Commission. Depending on the limits set for unprocessed oats intended for human consumption, the levels detected here could have serious consequences for the UK oat-processing industry.

  8. QTLs for important breeding characteristics in the doubled haploid oat progeny.

    PubMed

    Tanhuanpää, Pirjo; Manninen, Outi; Kiviharju, Elina

    2010-06-01

    A homozygous mapping population, consisting of doubled haploid (DH) oat (Avena sativa L.) plants generated through anther culture of F1 plants from the cross between the Finnish cultivar 'Aslak' and the Swedish cultivar 'Matilda', was used to construct an oat linkage map. Ten agronomic and quality traits were analyzed in the DH plants from field trials in 2005 and 2006. Leaf blotch (caused by Pyrenophora avenae) resistance was also evaluated in a greenhouse test with 2 different isolates. One to 8 quantitative trait loci (QTLs) were found to be associated with each trait studied. Some chromosomal regions affected more than 1 trait; for example, 4 regions affected both protein and oil content. This study gives valuable information to oat breeders concerning the inheritance of important traits, and it provides potential tools to assist breeding.

  9. Physical properties of sugar cookies containing chia-oat composites.

    PubMed

    Inglett, George E; Chen, Diejun; Liu, Sean

    2014-12-01

    Omega-3 fatty acids of chia seeds (Salvia hispanica L.) and soluble β-glucan of oat products are known for lowering blood cholesterol and preventing coronary heart disease. Nutrim, oat bran concentrate (OBC), and whole oat flour (WOF) were composited with finely ground chia, and used in cookies at 20% replacement of wheat flour for improved nutritional and physical quality. The objective was to evaluate physical properties of chia-oat composites, dough, and cookies. These composites had improved water-holding capacities compared to the starting materials. The geometrical properties and texture properties of the cookies were not greatly influenced by a 20% flour replacement using chia-OBC or chia-WOF composites. There was a decrease in the cookie diameter, and increases in the height of cookies and dough hardness using 20% Chia- Nutrim composite. These fine-particle chia-oat composites were prepared by a feasible procedure for improved nutritional value and physical properties of foods. The cookies containing chia-oat composites can be considered a health-promoting functional food. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  10. In vitro antioxidant capacity and anti-inflammatory activity of seven common oats

    USDA-ARS?s Scientific Manuscript database

    Oats have received increased scientific and public interest for their purported antioxidant-associated health benefits, however most reported studies have concentrated on oat extracts or specific oat phytochemicals, such as beta-glucans, tocols (vitamin E) or avenanthramides. Studies on whole oat gr...

  11. The C-terminal ester of membrane anchored peptide ion channels affects anion transport.

    PubMed

    Djedovic, Natasha; Ferdani, Riccardo; Harder, Egan; Pajewska, Jolanta; Pajewski, Robert; Schlesinger, Paul H; Gokel, George W

    2003-12-07

    Five heptapeptide derivatives, [CH3(CH2)17]2NCOCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR, in which R = ethyl, 2-propyl, heptyl, benzyl, and cyclohexylmethyl, were found to transport chloride anion through a phospholipid bilayer to varying extents dependent on the identity of R. It was concluded that the R group is a membrane anchor for the synthetic chloride channels.

  12. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    PubMed

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  13. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  14. Lipid-modifying enzymes in oat and faba bean.

    PubMed

    Yang, Zhen; Piironen, Vieno; Lampi, Anna-Maija

    2017-10-01

    The aim was to study lipase, lipoxygenase (LOX) and peroxygenase (POX) activities in oat and faba bean samples to be able to evaluate their potential in formation of lipid-derived off-flavours. Lipase and LOX activities were measured by spectroscopy, and POX activities via the formation of epoxides. An ultra-high performance liquid chromatography method was developed to study the formation of fatty acid epoxides. The epoxides of esters were measured by gas chromatography. Mass spectroscopy was used to verify the identity of the epoxides. Both oat and faba bean possessed high lipase activities. In faba bean, LOX catalysed the formation of hydroperoxides, whose break-down products are the likely cause of off-flavours. Since oat had low LOX activity, autoxidation is needed to initiate lipid oxidation. Oat had high POX activity, which is able to convert hydroperoxides to epoxy and hydroxy fatty acids that could contribute significantly to off-flavours. POX activity in the faba bean was low. Thus, in faba bean volatile lipid oxidation products could rapidly be formed by LOX, whereas in oat reactions are slower due to the need of autoxidation prior to further reactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Molecular Determinants for Functional Differences between Alanine-Serine-Cysteine Transporter 1 and Other Glutamate Transporter Family Members*

    PubMed Central

    Scopelliti, Amanda J.; Ryan, Renae M.; Vandenberg, Robert J.

    2013-01-01

    The ASCTs (alanine, serine, and cysteine transporters) belong to the solute carrier family 1 (SLC1), which also includes the human glutamate transporters (excitatory amino acid transporters, EAATs) and the prokaryotic aspartate transporter GltPh. Despite the high degree of amino acid sequence identity between family members, ASCTs function quite differently from the EAATs and GltPh. The aim of this study was to mutate ASCT1 to generate a transporter with functional properties of the EAATs and GltPh, to further our understanding of the structural basis for the different transport mechanisms of the SLC1 family. We have identified three key residues involved in determining differences between ASCT1, the EAATs and GltPh. ASCT1 transporters containing the mutations A382T, T459R, and Q386E were expressed in Xenopus laevis oocytes, and their transport and anion channel functions were investigated. A382T and T459R altered the substrate selectivity of ASCT1 to allow the transport of acidic amino acids, particularly l-aspartate. The combination of A382T and T459R within ASCT1 generates a transporter with a similar profile to that of GltPh, with preference for l-aspartate over l-glutamate. Interestingly, the amplitude of the anion conductance activated by the acidic amino acids does not correlate with rates of transport, highlighting the distinction between these two processes. Q386E impaired the ability of ASCT1 to bind acidic amino acids at pH 5.5; however, this was reversed by the additional mutation A382T. We propose that these residues differences in TM7 and TM8 combine to determine differences in substrate selectivity between members of the SLC1 family. PMID:23393130

  16. Adaptation in Caco-2 Human Intestinal Cell Differentiation and Phenolic Transport with Chronic Exposure to Blackberry (Rubus sp.) Extract.

    PubMed

    Redan, Benjamin W; Albaugh, George P; Charron, Craig S; Novotny, Janet A; Ferruzzi, Mario G

    2017-04-05

    As evidence mounts for a health-protective role of dietary phenolics, the importance of understanding factors influencing bioavailability increases. Recent evidence has suggested chronic exposure to phenolics may impact their absorption and metabolism. To explore alterations occurring from chronic dietary exposure to phenolics, Caco-2 cell monolayers were differentiated on Transwell inserts with 0-10 μM blackberry (Rubus sp.) total phenolics extracts rich in anthocyanins, flavonols, and phenolic acids. Following differentiation, apical to basolateral transport of phenolics was assessed from an acute treatment of 100 μM blackberry phenolics from 0 to 4 h. Additionally, differences in gene expression of transport and phase II metabolizing systems including ABC transporters, organic anion transporters (OATs), and uridine 5'-diphospho (UDP) glucuronosyltransferases (UGTs) were probed. After 4 h, 1 μM pretreated monolayers showed a significant (P < 0.05) decrease in the percentage of cumulative transport including less epicatechin (42.1 ± 0.53), kaempferol glucoside (23.5 ± 0.29), and dicaffeoylquinic acid (31.9 ± 0.20) compared to control. Finally, significant (P < 0.05) alterations in mRNA expression of key phase II metabolizing enzymes and transport proteins were observed with treatment. Therefore, adaptation to blackberry extract exposure may impact intestinal transport and metabolism of phenolics.

  17. Assay of Ca2+ transport by VDAC1 reconstituted into liposomes.

    PubMed

    Ben-Hail, Danya; Shoshan-Barmatz, Varda

    2014-02-01

    Ca(2+) permeability mediated by voltage-dependent anion-selective channel protein 1 (VDAC1) can be tested by reconstitution of purified VDAC1 into liposomes. Here, we describe a setup for this membranal system, which has been used to study the transport activity of various transporters, including VDAC1, and allows detection of the passage of molecules across the lipid bilayer. Despite the disadvantage of needing radiolabeled molecules, this system is highly desirable when the transport properties of noncharged molecules and/or active transporters are studied.

  18. Metabolism of HT-2 Toxin and T-2 Toxin in Oats

    PubMed Central

    Meng-Reiterer, Jacqueline; Bueschl, Christoph; Rechthaler, Justyna; Berthiller, Franz; Lemmens, Marc; Schuhmacher, Rainer

    2016-01-01

    The Fusarium mycotoxins HT-2 toxin (HT2) and T-2 toxin (T2) are frequent contaminants in oats. These toxins, but also their plant metabolites, may contribute to toxicological effects. This work describes the use of 13C-assisted liquid chromatography–high-resolution mass spectrometry for the first comprehensive study on the biotransformation of HT2 and T2 in oats. Using this approach, 16 HT2 and 17 T2 metabolites were annotated including novel glycosylated and hydroxylated forms of the toxins, hydrolysis products, and conjugates with acetic acid, putative malic acid, malonic acid, and ferulic acid. Further targeted quantitative analysis was performed to study toxin metabolism over time, as well as toxin and conjugate mobility within non-treated plant tissues. As a result, HT2-3-O-β-d-glucoside was identified as the major detoxification product of both parent toxins, which was rapidly formed (to an extent of 74% in HT2-treated and 48% in T2-treated oats within one day after treatment) and further metabolised. Mobility of the parent toxins appeared to be negligible, while HT2-3-O-β-d-glucoside was partly transported (up to approximately 4%) through panicle side branches and stem. Our findings demonstrate that the presented combination of untargeted and targeted analysis is well suited for the comprehensive elucidation of mycotoxin metabolism in plants. PMID:27929394

  19. Genetic progress in oat associated with fungicide use in Rio Grande do Sul, Brazil.

    PubMed

    Follmann, D N; Cargnelutti Filho, A; Lúcio, A D; de Souza, V Q; Caraffa, M; Wartha, C A

    2016-12-19

    The State of Rio Grande do Sul (RS) is the largest producer of oat in Brazil with the aid of consolidated breeding programs, which are constantly releasing new cultivars. The main objectives of this study were to: 1) evaluate the annual genetic progress in grain yield and hectoliter weight of the oat cultivars in RS, with and without fungicide use on aerial parts of plants; and 2) evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars through network yield trials conducted with and without fungicide use on aerial plant parts. The data on grain yield and hectoliter weight were obtained from 89 competition field trials of oat cultivars carried out from 2007 to 2014 in nine municipalities of RS. Of the total 89 trials, 44 were carried out with fungicide application on aerial plant parts and 45 were carried out without fungicide application. The annual genetic progress in oat cultivars was studied using the methodology proposed by Vencovsky (1988). The annual genetic progress in oat grain yield was 1.02% with fungicide use and 4.02% without fungicide use during the eight-year study period in RS. The annual genetic progress with respect to the hectoliter weight was 0.08% for trials with fungicide use and 0.71% for trials without fungicide use. Performing network yield trials with and without fungicide use on the aerial plants parts is a feasible method to evaluate the efficiency of oat breeding programs in introducing disease-resistant genes in the released cultivars.

  20. Genome-wide association mapping of crown rust resistance in oat elite germplasm

    USDA-ARS?s Scientific Manuscript database

    Oat crown rust, caused by Puccinia coronata f. sp. avenae, is a major constraint to oat production in many parts of the world. In this first comprehensive multi-environment genome-wide association map of oat crown rust, we used 2,972 SNPs genotyped on 631 oat lines for association mapping of quantit...

  1. Properties of amaranth flour with functional oat products

    USDA-ARS?s Scientific Manuscript database

    Amaranth flour containing the essential amino acid, lysine, was composited with oat products that contain ß-glucan known for lowering blood cholesterol and preventing heart disease. The pasting and rheological properties of amaranth-oat composites were evaluated. The amaranth-Nutrim composites showe...

  2. Pasting and rheological properties of quinoa-oat composites

    USDA-ARS?s Scientific Manuscript database

    Quinoa (Chenopodium, quinoa) flour, known for its essential amino acids, was composited with oat products containing ß-glucan known for lowering blood cholesterol and preventing heart disease. Quinoa-oat composites were developed and evaluated for their pasting and rheological properties by a Rapid ...

  3. Development of a model system to identify differences in spring and winter oat.

    PubMed

    Chawade, Aakash; Lindén, Pernilla; Bräutigam, Marcus; Jonsson, Rickard; Jonsson, Anders; Moritz, Thomas; Olsson, Olof

    2012-01-01

    Our long-term goal is to develop a Swedish winter oat (Avena sativa). To identify molecular differences that correlate with winter hardiness, a winter oat model comprising of both non-hardy spring lines and winter hardy lines is needed. To achieve this, we selected 294 oat breeding lines, originating from various Russian, German, and American winter oat breeding programs and tested them in the field in south- and western Sweden. By assaying for winter survival and agricultural properties during four consecutive seasons, we identified 14 breeding lines of different origins that not only survived the winter but also were agronomically better than the rest. Laboratory tests including electrolytic leakage, controlled crown freezing assay, expression analysis of the AsVrn1 gene and monitoring of flowering time suggested that the American lines had the highest freezing tolerance, although the German lines performed better in the field. Finally, six lines constituting the two most freezing tolerant lines, two intermediate lines and two spring cultivars were chosen to build a winter oat model system. Metabolic profiling of non-acclimated and cold acclimated leaf tissue samples isolated from the six selected lines revealed differential expression patterns of 245 metabolites including several sugars, amino acids, organic acids and 181 hitherto unknown metabolites. The expression patterns of 107 metabolites showed significant interactions with either a cultivar or a time-point. Further identification, characterisation and validation of these metabolites will lead to an increased understanding of the cold acclimation process in oats. Furthermore, by using the winter oat model system, differential sequencing of crown mRNA populations would lead to identification of various biomarkers to facilitate winter oat breeding.

  4. Wheat streak mosaic virus coat protein is a host-specific long-distance transport determinant in oat

    USDA-ARS?s Scientific Manuscript database

    Viral determinants involved in systemic infection of hosts by monocot-infecting plant viruses are poorly understood. Wheat streak mosaic virus (WSMV, genus Tritimovirus, family Potyviridae) exclusively infects monocotyledonous crops such as wheat, oat, barley, maize, triticale, and rye. Previously, ...

  5. Gis-Based Crop Support System For Common Oatand Naked Oat in China

    NASA Astrophysics Data System (ADS)

    Wan, Fan; Wang, Zhen; Li, Fengmin; Cao, Huhua; Sun, Guojun

    The identification of the suitable areas for common oat (Avena sativa L.) and naked oat (Avena nuda L.) in China using Multi-Criteria Evaluation (MCE) approach based on GIS is presented in the current article. Climate, topography, soil, land use and oat variety databases were created. Relevant criteria,suitability levels and their weights for each factor were defined. Then the criteria maps were obtained and turned into the MCE process, and suitability maps for common oat and naked oat were created. The land use and the suitability maps were crossed to identify the suitable areas for each crop. The results identified 397,720 km2 of suitable areas for common oats of forage purpose distributed in 744 counties in 17 provinces, and 556,232 km2 of suitable areas for naked oats of grain purpose distributed in 779 counties in 19 provinces. This result is in accordance with the distribution of farmingpastoral ecozones located in semi-arid regions of northern China. The mapped areas can help define the working limits and serve as indicative zones for oat in China. The created databases, mapped results, interface of expert system and relevant hardware facilities could construct a complete crop support system for oats.

  6. Fortification of yogurt with oat hydrocolloid

    USDA-ARS?s Scientific Manuscript database

    C-Trim 30, an oat hydrocolloid was added to milk such that fermented yogurt had 0, 0.75, 1.5, 2.25, and 3 g ß-glucan per serving. The fermentation rate and physical characteristics of yogurt were studied. Lactose fermentation was not inhibited by the addition of C-Trim. All yogurt mix reached the...

  7. Mobilization of lipid reserves during germination of oat (Avena sativa L.), a cereal rich in endosperm oil.

    PubMed

    Leonova, Svetlana; Grimberg, Asa; Marttila, Salla; Stymne, Sten; Carlsson, Anders S

    2010-06-01

    Since the cereal endosperm is a dead tissue in the mature grain, beta-oxidation is not possible there. This raises the question about the use of the endosperm oil in cereal grains during germination. In this study, mobilization of lipids in different tissues of germinating oat grains was analysed using thin-layer and gas chromatography. The data imply that the oat endosperm oil [triacylglycerol (TAG)] is not a dead-end product as it was absorbed by the scutellum, either as free fatty acids (FFAs) released from TAG or as intact TAG immediately degraded to FFAs. These data were supported by light and transmission electron microscopy (LM and TEM) studies where close contact between endosperm lipid droplets and the scutellum was observed. The appearance of the fused oil in the oat endosperm changed into oil droplets during germination in areas close to the aleurone and the scutellar epithelium. However, according to the data obtained by TEM these oil droplets are unlikely to be oil bodies surrounded by oleosins. Accumulation of FFA pools in the embryo suggested further transport of FFAs from the scutellum. Noticeably high levels of TAG were also accumulated in the embryo but were not synthesized by re-esterification from imported FFAs. Comparison between two oat cultivars with different amounts of oil and starch in the endosperm suggests that an increased oil to starch ratio in oat grains does not significantly impact the germination process.

  8. The Effect of Oat Fibre Powder Particle Size on the Physical Properties of Wheat Bread Rolls

    PubMed Central

    Kurek, Marcin; Wyrwisz, Jarosław; Piwińska, Monika; Wierzbicka, Agnieszka

    2016-01-01

    Summary In response to the growing interest of modern society in functional food products, this study attempts to develop a bakery product with high dietary fibre content added in the form of an oat fibre powder. Oat fibre powder with particle sizes of 75 µm (OFP1) and 150 µm (OFP2) was used, substituting 4, 8, 12, 16 and 20% of the flour. The physical properties of the dough and the final bakery products were then measured. Results indicated that dough with added fibre had higher elasticity than the control group. The storage modulus values of dough with OFP1 most closely approximated those of the control group. The addition of OFP1 did not affect significantly the colour compared to the other samples. Increasing the proportion of oat fibre powder resulted in increased firmness, which was most prominent in wheat bread rolls with oat fibre powder of smaller particle sizes. The addition of oat fibre powder with smaller particles resulted in a product with the rheological and colour parameters that more closely resembled control sample. PMID:27904392

  9. Pasting and rheological properties of oat products dry-blended with ground chia seeds

    USDA-ARS?s Scientific Manuscript database

    Oat products containing ß-glucan are documented for lowering blood cholesterol that could be beneficial for preventing coronary heart disease. Oat products (oat flour, oat bran concentrate, and Nutrim) were dry-blended with ground chia (Salvia hispanica L.) that contains omega-3 polyunsaturated fatt...

  10. Multi-layer membrane model for mass transport in a direct ethanol fuel cell using an alkaline anion exchange membrane

    NASA Astrophysics Data System (ADS)

    Bahrami, Hafez; Faghri, Amir

    2012-11-01

    A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m

  11. Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys

    PubMed Central

    Lawrence, Melanie L.; Chang, C-Hong; Davies, Jamie A.

    2015-01-01

    Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys. PMID:25766625

  12. Oat raw materials and bakery products - amino acid composition and celiac immunoreactivity.

    PubMed

    Mickowska, Barbara; Litwinek, Dorota; Gambuś, Halina

    2016-01-01

    The aim of this study was to compare the biochemical and immunochemical properties of avenins in some special oat raw materials and additionally the possibility of using them as a raw material for the gluten-free bakery products. The compared oat raw materials were - oat flakes, commercial oat flours (including gluten-free oat flour) and residual oat flour, which is by-product of β-glucan preparation. Biochemical characteristic included amino acid compositions and SDS-PAGE profiles of extracted avenins. The immunochemical reactivity with polyclonal anti-gluten and monoclonal anti-gliadin antibodies was evaluated qualitatively and quantitatively by immunoblotting and ELISA methods. Additionally, experimental bakery products made of examined raw materials were assessed according to their suitability for the celiac patients' diet. The highest protein content was measured in the β-glucan preparation "Betaven" and gluten-free oat flour. Proteins of all materials are rich in glutamic and aspartic acid, leucine and arginine. Proportions of amino acids in avenins extracted from most of oat raw materials are similar, excluding gluten-free oat flour, which has a very low avenin content and proportions of individual amino acids are different. The SDS-PAGE protein pattern consisted of proteins with molecular weight of about 25-35 kDa. Polyclonal anti-gluten anti-body recognized all protein fractions of molecular weight higher than 20 kDa. Quantitative ELISA analysis shows that the majority of samples has a gliadin-like protein content within the range of 80-260 mg/kg, excluding gluten-free flours and corresponding bakery products. Altogether, β-glucan preparation has extremely high level of gliadin-like proteins. In the examined oat raw materials and foods the contents of immunoreactive amino acid sequences exceeded the limit of 20 mg/kg (considered as gluten-free) except for gluten-free flours (oat and  the prepared mixture) and the bakery products based on gluten

  13. Na+ Interactions with the Neutral Amino Acid Transporter ASCT1*

    PubMed Central

    Scopelliti, Amanda J.; Heinzelmann, Germano; Kuyucak, Serdar; Ryan, Renae M.; Vandenberg, Robert J.

    2014-01-01

    The alanine, serine, cysteine transporters (ASCTs) belong to the solute carrier family 1A (SLC1A), which also includes the excitatory amino acid transporters (EAATs) and the prokaryotic aspartate transporter GltPh. Acidic amino acid transport by the EAATs is coupled to the co-transport of three Na+ ions and one proton, and the counter-transport of one K+ ion. In contrast, neutral amino acid exchange by the ASCTs does not require protons or the counter-transport of K+ ions and the number of Na+ ions required is not well established. One property common to SLC1A family members is a substrate-activated anion conductance. We have investigated the number and location of Na+ ions required by ASCT1 by mutating residues in ASCT1 that correspond to residues in the EAATs and GltPh that are involved in Na+ binding. Mutations to all three proposed Na+ sites influence the binding of substrate and/or Na+, or the rate of substrate exchange. A G422S mutation near the Na2 site reduced Na+ affinity, without affecting the rate of exchange. D467T and D467A mutations in the Na1 site reduce Na+ and substrate affinity and also the rate of substrate exchange. T124A and D380A mutations in the Na3 site selectively reduce the affinity for Na+ and the rate of substrate exchange without affecting substrate affinity. In many of the mutants that reduce the rate of substrate transport the amplitudes of the substrate-activated anion conductances are not substantially affected indicating altered ion dependence for channel activation compared with substrate exchange. PMID:24808181

  14. Antisense oligodeoxynucleotide to the cystic fibrosis gene inhibits anion transport in normal cultured sweat duct cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorscher, E.J.; Kirk, K.L.; Weaver, M.L.

    The authors have tested the hypothesis that the cystic fibrosis (CF) gene product, called the CF transmembrane conductance regulator (CFTR), mediates anion transport in normal human sweat duct cells. Sweat duct cells in primary culture were treated with oligodeoxynucleotides that were antisense to the CFTR gene transcript in order to block the expression of the wild-type CFTR. Anion transport in CFTR transcript antisense-treated cells was then assessed with a halide-specific dye, 6-methoxy-N-(3-sulfopropryl)quinolinium, and fluorescent digital imaging microscopy to monitor halide influx and efflux from single sweat duct cells. Antisense oligodeoxynucleotide treatment for 24 hr virtually abolished Cl{sup {minus}} transport inmore » sweat duct cells compared with untreated cells or control cells treated with sense oligodeoxynucleotides. Br{sup {minus}} uptake into sweat duct cells was also blocked after a 24-hr CFTR transcript antisense treatments, but not after treatments for only 4 hr. Lower concentrations of antisense oligodeoxynucleotides were less effective at inhibiting Cl{sup {minus}} transport. These results indicate that oligodeoxynucleotides that are antisense to CFTR transcript inhibit sweat duct Cl{sup {minus}} permeability in both a time-dependent and dose-dependent manner. This approach provides evidence that inhibition of the expression of the wild-type CFTR gene in a normal, untransfected epithelial cell results in an inhibition of Cl{sup {minus}} permeability.« less

  15. Plant defense activators as elicitors of oat avenanthramide biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Oats produce a group of phenolic secondary metabolites termed “avenanthramides”. Among food crops these metabolites are unique to oat. In addition to their biological role as phytoalexins, the avenanthramides are potent antioxidants in vitro and have potential as nutraceuticals. In cellular assays ...

  16. Metabolomics Reveals Signature of Mitochondrial Dysfunction in Diabetic Kidney Disease

    PubMed Central

    Karl, Bethany; Mathew, Anna V.; Gangoiti, Jon A.; Wassel, Christina L.; Saito, Rintaro; Pu, Minya; Sharma, Shoba; You, Young-Hyun; Wang, Lin; Diamond-Stanic, Maggie; Lindenmeyer, Maja T.; Forsblom, Carol; Wu, Wei; Ix, Joachim H.; Ideker, Trey; Kopp, Jeffrey B.; Nigam, Sanjay K.; Cohen, Clemens D.; Groop, Per-Henrik; Barshop, Bruce A.; Natarajan, Loki; Nyhan, William L.; Naviaux, Robert K.

    2013-01-01

    Diabetic kidney disease is the leading cause of ESRD, but few biomarkers of diabetic kidney disease are available. This study used gas chromatography-mass spectrometry to quantify 94 urine metabolites in screening and validation cohorts of patients with diabetes mellitus (DM) and CKD(DM+CKD), in patients with DM without CKD (DM–CKD), and in healthy controls. Compared with levels in healthy controls, 13 metabolites were significantly reduced in the DM+CKD cohorts (P≤0.001), and 12 of the 13 remained significant when compared with the DM–CKD cohort. Many of the differentially expressed metabolites were water-soluble organic anions. Notably, organic anion transporter-1 (OAT1) knockout mice expressed a similar pattern of reduced levels of urinary organic acids, and human kidney tissue from patients with diabetic nephropathy demonstrated lower gene expression of OAT1 and OAT3. Analysis of bioinformatics data indicated that 12 of the 13 differentially expressed metabolites are linked to mitochondrial metabolism and suggested global suppression of mitochondrial activity in diabetic kidney disease. Supporting this analysis, human diabetic kidney sections expressed less mitochondrial protein, urine exosomes from patients with diabetes and CKD had less mitochondrial DNA, and kidney tissues from patients with diabetic kidney disease had lower gene expression of PGC1α (a master regulator of mitochondrial biogenesis). We conclude that urine metabolomics is a reliable source for biomarkers of diabetic complications, and our data suggest that renal organic ion transport and mitochondrial function are dysregulated in diabetic kidney disease. PMID:23949796

  17. Organic Anion Transporting Polypeptide (OATP)2B1 Contributes to Gastrointestinal Toxicity of Anticancer Drug SN-38, Active Metabolite of Irinotecan Hydrochloride.

    PubMed

    Fujita, Daichi; Saito, Yoshimasa; Nakanishi, Takeo; Tamai, Ikumi

    2016-01-01

    Gastrointestinal toxicity, such as late-onset diarrhea, is a significant concern in irinotecan hydrochloride (CPT-11)-containing regimens. Prophylaxis of late-onset diarrhea has been reported with use of Japanese traditional (Kampo) medicine containing baicalin and with the antibiotic cefixime, and this has been explained in terms of inhibition of bacterial deconjugation of SN-38-glucuronide since unconjugated SN-38 (active metabolite of CPT-11) is responsible for the gastrointestinal toxicity. It is also prerequisite for SN-38 to be accumulated in intestinal tissues to exert toxicity. Based on the fact that liver-specific organic anion transporting polypeptide (OATP)1B1, a member of the same family as OATP2B1, is known to be involved in hepatic transport of SN-38, we hypothesized that intestinal transporter OATP2B1 contributes to the accumulation of SN-38 in gastrointestinal tissues, and its inhibition would help prevent associated toxicity. We found that uptake of SN-38 by OATP2B1-expressing Xenopus oocytes was significantly higher than that by control oocytes. OATP2B1-mediated uptake of SN-38 was saturable, pH dependent, and decreased in the presence of baicalin, cefixime, or fruit juices such as apple juice. In vivo gastrointestinal toxicity of SN-38 in mice caused by oral administration for consecutive 5 days was prevented by coingestion of apple juice. Thus, OATP2B1 contributes to the uptake of SN-38 by intestinal tissues, triggering gastrointestinal toxicity. So, in addition to the reported inhibition of bacterial β-glucuronidase by cefixime or baicalin, inhibition of OATP2B1 may also contribute to prevention of gastrointestinal toxicity. Apple juice may be helpful for prophylaxis of late-onset diarrhea observed in CPT-11 therapy without disturbance of the intestinal microflora. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Cellulose fibers extracted from rice and oat husks and their application in hydrogel.

    PubMed

    Oliveira, Jean Paulo de; Bruni, Graziella Pinheiro; Lima, Karina Oliveira; Halal, Shanise Lisie Mello El; Rosa, Gabriela Silveira da; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2017-04-15

    The commercial cellulose fibers and cellulose fibers extracted from rice and oat husks were analyzed by chemical composition, morphology, functional groups, crystallinity and thermal properties. The cellulose fibers from rice and oat husks were used to produce hydrogels with poly (vinyl alcohol). The fibers presented different structural, crystallinity, and thermal properties, depending on the cellulose source. The hydrogel from rice cellulose fibers had a network structure with a similar agglomeration sponge, with more homogeneous pores compared to the hydrogel from oat cellulose fibers. The hydrogels prepared from the cellulose extracted from rice and oat husks showed water absorption capacity of 141.6-392.1% and high opacity. The highest water absorption capacity and maximum stress the compression were presented by rice cellulose hydrogel at 25°C. These results show that the use of agro-industrial residues is promising for the biomaterial field, especially in the preparation of hydrogels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Oat Newsletter: where we've been and where we're going

    USDA-ARS?s Scientific Manuscript database

    The first Oat Newsletter was published by the National Oat Conference in 1950. It was published once a year and mailed out to “oat workers” only. The newsletter was designed to supplement the Uniform Nursery reports by providing short research updates, meeting information, community information,...

  20. Avenanthramide-enriched oats have an anti-inflammatory action: a pilot clinical trial

    USDA-ARS?s Scientific Manuscript database

    Regular consumption of oats has been shown to benefit heart health by lowering serum lipids in humans, an effect mediated primarily via beta-glucan. Other components of oats, including the polyphenolic avenanthramides (AV), may also contribute to reducing the risk of atherogenesis. In vivo, oat AV e...

  1. Transport mechanism for lovastatin acid in bovine kidney NBL-1 cells: kinetic evidences imply involvement of monocarboxylate transporter 4.

    PubMed

    Nagasawa, Kazuki; Nagai, Katsuhito; Ishimoto, Atsushi; Fujimoto, Sadaki

    2003-08-27

    We previously indicated that lovastatin acid, a 3-hydroxyl-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, was transported by a monocarboxylate transporter (MCT) in cultured rat mesangial cells. In this study, to identify the MCT isoform(s) responsible for the lovastatin acid uptake, the transport mechanism was investigated using bovine kidney NBL-1 cells, which have been reported to express only MCT4 at the protein level. On RT-PCR analysis, the message of mRNAs for MCT1 and MCT4 was detected in the NBL-1 cells used in this study, which was confirmed by kinetic analysis of [14C]L-lactic acid uptake, consisting of high- and low-affinity components corresponding to MCT1 and MCT4, respectively. The lovastatin acid uptake depended on an inwardly directed H+-gradient, and was inhibited by representative monocarboxylates, but not by inhibitors/substrates for organic anion transporting polypeptides and organic anion transporters. In addition, L-lactic acid competitively inhibited the uptake of lovastatin acid and lovastatin acid inhibited the low affinity component of [14C]L-lactic acid uptake dose dependently. The inhibition constant of L-lactic acid for lovastatin acid uptake was almost the same as the Michaelis constant for [14C]L-lactic acid uptake by the low-affinity component. These kinetic evidences imply that lovastatin acid was taken up into NBL-1 cells via MCT4.

  2. Community Needs Assessment Office Administration & Technology (OAT).

    ERIC Educational Resources Information Center

    Pezzoli, J. A.; Lum, Ku'uipo; Meyer, Diane

    The purpose of this survey was to obtain from employers the requisite skills and potential employment demand for office workers on Maui. Of particular interest was: (1) the assessment of various clerical skills and computer software in its relevance to the Office Administration & Technology (OAT) curriculum at Maui Community College; and (2)…

  3. Chromosome-anchored QTL conferring aluminum tolerance in hexaploid oat

    USDA-ARS?s Scientific Manuscript database

    Abstract Aluminum (Al) toxicity is a major constraint on crop production in acid soils around the world. Hexaploid oat (Avena sativa L.) possesses signi'cant Al tolerance making it a good candidate for production in these environments. Genetic improvement for Al tolerance in oat has traditionally be...

  4. Analysis of genetic diversity using SNP markers in oat

    USDA-ARS?s Scientific Manuscript database

    A large-scale single nucleotide polymorphism (SNP) discovery was carried out in cultivated oat using Roche 454 sequencing methods. DNA sequences were generated from cDNAs originating from a panel of 20 diverse oat cultivars, and from Diversity Array Technology (DArT) genomic complexity reductions fr...

  5. Hypoxia/reoxygenation stress signals an increase in organic anion transporting polypeptide 1a4 (Oatp1a4) at the blood-brain barrier: relevance to CNS drug delivery.

    PubMed

    Thompson, Brandon J; Sanchez-Covarrubias, Lucy; Slosky, Lauren M; Zhang, Yifeng; Laracuente, Mei-li; Ronaldson, Patrick T

    2014-04-01

    Cerebral hypoxia and subsequent reoxygenation stress (H/R) is a component of several diseases. One approach that may enable neural tissue rescue after H/R is central nervous system (CNS) delivery of drugs with brain protective effects such as 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors (i.e., statins). Our present in vivo data show that atorvastatin, a commonly prescribed statin, attenuates poly (ADP-ribose) polymerase (PARP) cleavage in the brain after H/R, suggesting neuroprotective efficacy. However, atorvastatin use as a CNS therapeutic is limited by poor blood-brain barrier (BBB) penetration. Therefore, we examined regulation and functional expression of the known statin transporter organic anion transporting polypeptide 1a4 (Oatp1a4) at the BBB under H/R conditions. In rat brain microvessels, H/R (6% O2, 60 minutes followed by 21% O2, 10 minutes) increased Oatp1a4 expression. Brain uptake of taurocholate (i.e., Oap1a4 probe substrate) and atorvastatin were reduced by Oatp inhibitors (i.e., estrone-3-sulfate and fexofenadine), suggesting involvement of Oatp1a4 in brain drug delivery. Pharmacological inhibition of transforming growth factor-β (TGF-β)/activin receptor-like kinase 5 (ALK5) signaling with the selective inhibitor SB431542 increased Oatp1a4 functional expression, suggesting a role for TGF-β/ALK5 signaling in Oatp1a4 regulation. Taken together, our novel data show that targeting an endogenous BBB drug uptake transporter (i.e., Oatp1a4) may be a viable approach for optimizing CNS drug delivery for treatment of diseases with an H/R component.

  6. Multidrug Resistance Protein 1 (MRP1, ABCC1), a “Multitasking” ATP-binding Cassette (ABC) Transporter*

    PubMed Central

    Cole, Susan P. C.

    2014-01-01

    The multidrug resistance protein 1 (MRP1) encoded by ABCC1 was originally discovered as a cause of multidrug resistance in tumor cells. However, it is now clear that MRP1 serves a broader role than simply mediating the ATP-dependent efflux of drugs from cells. The antioxidant GSH and the pro-inflammatory cysteinyl leukotriene C4 have been identified as key physiological organic anions effluxed by MRP1, and an ever growing body of evidence indicates that additional lipid-derived mediators are also substrates of this transporter. As such, MRP1 is a multitasking transporter that likely influences the etiology and progression of a host of human diseases. PMID:25281745

  7. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery?

    PubMed

    Abdullahi, Wazir; Davis, Thomas P; Ronaldson, Patrick T

    2017-07-01

    Drug delivery to the central nervous system (CNS) is greatly limited by the blood-brain barrier (BBB). Physical and biochemical properties of the BBB have rendered treatment of CNS diseases, including those with a hypoxia/reoxygenation (H/R) component, extremely difficult. Targeting endogenous BBB transporters from the ATP-binding cassette (ABC) superfamily (i.e., P-glycoprotein (P-gp)) or from the solute carrier (SLC) family (i.e., organic anion transporting polypeptides (OATPs in humans; Oatps in rodents)) has been suggested as a strategy that can improve delivery of drugs to the brain. With respect to P-gp, direct pharmacological inhibition using small molecules or selective regulation by targeting intracellular signaling pathways has been explored. These approaches have been largely unsuccessful due to toxicity issues and unpredictable pharmacokinetics. Therefore, our laboratory has proposed that optimization of CNS drug delivery, particularly for treatment of diseases with an H/R component, can be achieved by targeting Oatp isoforms at the BBB. As the major drug transporting Oatp isoform, Oatp1a4 has demonstrated blood-to-brain transport of substrate drugs with neuroprotective properties. Furthermore, our laboratory has shown that targeting Oatp1a4 regulation (i.e., TGF-β signaling mediated via the ALK-1 and ALK-5 transmembrane receptors) represents an opportunity to control Oatp1a4 functional expression for the purpose of delivering therapeutics to the CNS. In this review, we will discuss limitations of targeting P-gp-mediated transport activity and the advantages of targeting Oatp-mediated transport. Through this discussion, we will also provide critical information on novel approaches to improve CNS drug delivery by targeting endogenous uptake transporters expressed at the BBB.

  8. Identification and molecular characterization of oat peptides implicated on coeliac immune response

    PubMed Central

    Comino, Isabel; Bernardo, David; Bancel, Emmanuelle; Moreno, María de Lourdes; Sánchez, Borja; Barro, Francisco; Šuligoj, Tanja; Ciclitira, Paul J.; Cebolla, Ángel; Knight, Stella C.; Branlard, Gérard; Sousa, Carolina

    2016-01-01

    Background Oats provide important nutritional and pharmacological properties, although their safety in coeliac patients remains controversial. Previous studies have confirmed that the reactivity of the anti-33-mer monoclonal antibody with different oat varieties is proportional to the immune responses in terms of T-cell proliferation. Although the impact of these varieties on the adaptive response has been studied, the role of the dendritic cells (DC) is still poorly understood. The aim of this study is to characterize different oat fractions and to study their effect on DC from coeliac patients. Methods and results Protein fractions were isolated from oat grains and analyzed by SDS–PAGE. Several proteins were characterized in the prolamin fraction using immunological and proteomic tools, and by Nano-LC-MS/MS. These proteins, analogous to α- and γ-gliadin-like, showed reactive sequences to anti-33-mer antibody suggesting their immunogenic potential. That was further confirmed as some of the newly identified oat peptides had a differential stimulatory capacity on circulating DC from coeliac patients compared with healthy controls. Conclusions This is the first time, to our knowledge, where newly identified oat peptides have been shown to elicit a differential stimulatory capacity on circulating DC obtained from coeliac patients, potentially identifying immunogenic properties of these oat peptides. PMID:26853779

  9. Putting the pieces together: a crystal clear window into CLC anion channel regulation.

    PubMed

    Strange, Kevin

    2011-01-01

    CLC anion transport proteins function as Cl (-) channels and Cl (-) /H (+) exchangers and are found in all major groups of life including archaebacteria. Early electrophysiological studies suggested that CLC anion channels have two pores that are opened and closed independently by a "fast" gating process operating on a millisecond timescale, and a "common" or "slow" gate that opens and closes both pores simultaneously with a timescale of seconds (Figure 1A). Subsequent biochemical and molecular experiments suggested that CLC channels/transporters are homodomeric proteins ( 1-3) .

  10. Fall-grown oat to extend the fall grazing season for replacement dairy heifers.

    PubMed

    Coblentz, W K; Brink, G E; Hoffman, P C; Esser, N M; Bertram, M G

    2014-03-01

    Our objective was to assess the pasture productivity and forage characteristics of 2 fall-grown oat (Avena sativa L.) cultivars, specifically for extending the grazing season and reducing reliance on harvested forages by replacement dairy heifers. A total of 160 gravid Holstein heifers (80 heifers/yr) were stratified by weight, and assigned to 1 of 10 identical research pens (8 heifers/pen). Initial body weights were 480 ± 43.5 kg in 2011 and 509 ± 39.4 kg in 2012. During both years of the trial, four 1.0-ha pasture replicates were seeded in August with Ogle oat (Schumitsch Seed Inc., Antigo, WI), and 4 separate, but similarly configured, pasture replicates were seeded with Forage Plus oat (Kratz Farms, Slinger, WI). Heifer groups were maintained as units, assigned to specific pastures, and then allowed to graze fall-oat pastures for 6h daily before returning to the barn, where they were offered a forage-based basal total mixed ration. Two heifer groups were retained in confinement (without grazing) as controls and offered the identical total mixed ration as pasture groups. During 2011, available forage mass increased with strong linear and quadratic effects for both cultivars, peaking at almost 9 Mg/ha on October 31. In contrast, forage mass was not affected by evaluation date in 2012, remaining ≤ 2,639 kg/ha across all dates because of droughty climatic conditions. During 2012, Ogle exhibited greater forage mass than Forage Plus across all sampling dates (2,678 vs. 1,856 kg/ha), largely because of its more rapid maturation rate and greater canopy height. Estimates of energy density for oat forage ranged from 59.6 to 69.1% during 2011, and ranged narrowly from 68.4 to 70.4% during 2012. For 2011, responses for both cultivars had strong quadratic character, in which the most energy-dense forages occurred in mid November, largely due to accumulation of water-soluble carbohydrates that reached maximum concentrations of 18.2 and 15.1% for Forage Plus and Ogle

  11. Digestive development in neonatal dairy calves with either whole or ground oats in the calf starter.

    PubMed

    Suarez-Mena, F X; Heinrichs, A J; Jones, C M; Hill, T M; Quigley, J D

    2015-05-01

    A series of 3 trials was conducted to determine effects of whole or ground oats in starter grain on reticulorumen fermentation and digestive system development of preweaned calves. Male Holstein calves (43.1±2.3kg at birth; n=8, 9, and 7 for trials 1, 2, and 3, respectively) were housed in individual pens in a heated facility; bedding was covered with landscape fabric to prevent consumption of bedding by the calves. In trials 1 and 2 only, calves were fitted with rumen cannulas by wk 2 of life. In all trials, a fixed amount of starter (containing 25% oats either ground and in the pellet or whole) was offered daily; orts were fed through the cannula in trials 1 and 2. Calves were randomly assigned to an all-pelleted starter or pellets plus whole oats. Rumen contents (trials 1 and 2) were sampled weekly at -8, -4, 0, 2, 4, 8, and 12 h after grain feeding for determination of pH and volatile fatty acids. Calves were killed 3 wk (trial 1) or 4 wk (trials 2 and 3) after grain was offered; organs were harvested, emptied, rinsed, and weighed to gauge digestive organ development. Starter intake was not different between treatments. Weekly measurements of rumen digesta pH did not change and only subtle changes were observed in molar proportions of individual volatile fatty acids. Molar proportion of butyrate and pH linearly decreased with age, whereas acetate proportion increased. Reticulorumen weight and papillae length tended to be greater for calves fed pelleted starter, whereas abomasum weight was greater for calves fed pellets plus whole oats. Fecal particle size and starch content were greater for calves fed pellets plus whole oats. Under the conditions of this study, physical form of oats in starter grain did not affect rumen fermentation measurements; greater rumen weight and papillae length in calves fed pelleted starter may be the result of greater nutrient availability of ground oats. Under the conditions of this study with young calves on treatments for <4 wk

  12. Polyamine binding to proteins in oat and Petunia protoplasts

    NASA Technical Reports Server (NTRS)

    Mizrahi, Y.; Applewhite, P. B.; Galston, A. W.

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  13. Polyamine binding to proteins in oat and Petunia protoplasts.

    PubMed

    Mizrahi, Y; Applewhite, P B; Galston, A W

    1989-01-01

    Previous work (A Apelbaum et al. [1988] Plant Physiol 88: 996-998) has demonstrated binding of labeled spermidine (Spd) to a developmentally regulated 18 kilodalton protein in tobacco tissue cultures derived from thin surface layer explants. To assess the general importance of such Spd-protein complexes, we attempted bulk isolation from protoplasts of Petunia and oat (Avena sativa). In Petunia, as in tobacco, fed radioactive Spd is bound to protein, but in oat, Spd is first converted to 1,3,-diaminopropane (DAP), probably by polyamine oxidase action. In oat, binding of DAP to protein depends on age of donor leaf and conditions of illumination and temperature, and the extraction of the DAP-protein complex depends upon buffer and pH. The yield of the DAP-protein complex was maximized by extraction of frozen-thawed protoplasts with a pH 8.8 carbonate buffer containing SDS. Its molecular size, based on Sephacryl column fractionation of ammonium sulfate precipitated material, exceeded 45 kilodaltons. Bound Spd or DAP can be released from their complexes by the action of Pronase, but not DNAse, RNAse, or strong salt solutions, indicating covalent attachment to protein.

  14. Genome-Wide Association Mapping of Crown Rust Resistance in Oat Elite Germplasm.

    PubMed

    Klos, Kathy Esvelt; Yimer, Belayneh A; Babiker, Ebrahiem M; Beattie, Aaron D; Bonman, J Michael; Carson, Martin L; Chong, James; Harrison, Stephen A; Ibrahim, Amir M H; Kolb, Frederic L; McCartney, Curt A; McMullen, Michael; Fetch, Jennifer Mitchell; Mohammadi, Mohsen; Murphy, J Paul; Tinker, Nicholas A

    2017-07-01

    Oat crown rust, caused by f. sp. , is a major constraint to oat ( L.) production in many parts of the world. In this first comprehensive multienvironment genome-wide association map of oat crown rust, we used 2972 single-nucleotide polymorphisms (SNPs) genotyped on 631 oat lines for association mapping of quantitative trait loci (QTL). Seedling reaction to crown rust in these lines was assessed as infection type (IT) with each of 10 crown rust isolates. Adult plant reaction was assessed in the field in a total of 10 location-years as percentage severity (SV) and as infection reaction (IR) in a 0-to-1 scale. Overall, 29 SNPs on 12 linkage groups were predictive of crown rust reaction in at least one experiment at a genome-wide level of statistical significance. The QTL identified here include those in regions previously shown to be linked with seedling resistance genes , , , , , and and also with adult-plant resistance and adaptation-related QTL. In addition, QTL on linkage groups Mrg03, Mrg08, and Mrg23 were identified in regions not previously associated with crown rust resistance. Evaluation of marker genotypes in a set of crown rust differential lines supported as the identity of . The SNPs with rare alleles associated with lower disease scores may be suitable for use in marker-assisted selection of oat lines for crown rust resistance. Copyright © 2017 Crop Science Society of America.

  15. Avenanthramides, unique polyphenols of oats with potential health effects

    USDA-ARS?s Scientific Manuscript database

    Oats in addition to being a good source of carbohydrate energy in food and animal feed are considered a grain with several health benefits. It is a grain with a well-accepted healthy heart effect due to its soluble fiber b-glucan content, which reduces blood cholesterol. For a long time, the oat bat...

  16. Loss of anion transport without increased sodium absorption characterizes newborn porcine cystic fibrosis airway epithelia

    PubMed Central

    Chen, Jeng-Haur; Stoltz, David A.; Karp, Philip H.; Ernst, Sarah E.; Pezzulo, Alejandro A.; Moninger, Thomas O.; Rector, Michael V.; Reznikov, Leah R.; Launspach, Janice L.; Chaloner, Kathryn; Zabner, Joseph; Welsh, Michael J.

    2011-01-01

    SUMMARY Defective transepithelial electrolyte transport is thought to initiate cystic fibrosis (CF) lung disease. Yet, how loss of CFTR affects electrolyte transport remains uncertain. CFTR−/− pigs spontaneously develop lung disease resembling human CF. At birth, their airways exhibit a bacterial host defense defect, but are not inflamed. Therefore, we studied ion transport in newborn nasal and tracheal/bronchial epithelia in tissue, cultures, and in vivo. CFTR−/− epithelia showed markedly reduced Cl− and HCO3− transport. However, in contrast to a widely held view, lack of CFTR did not increase transepithelial Na+ or liquid absorption or reduce periciliary liquid depth. Like human CF, CFTR−/− pigs showed increased amiloride-sensitive voltage and current, but lack of apical Cl− conductance caused the change, not increased Na+ transport. These results indicate that CFTR provides the predominant transcellular pathway for Cl− and HCO3− in porcine airway epithelia, and reduced anion permeability may initiate CF airway disease. PMID:21145458

  17. Physical properties of gluten free sugar cookies containing teff and functional oat products

    USDA-ARS?s Scientific Manuscript database

    Teff-oat composites were developed using gluten free teff flour containing essential 15 amino acids with oat products containing ß-glucan, known for lowering blood cholesterol and improving texture. The teff-oat composites were used in sugar cookies for improving nutritional and physical properties....

  18. Comparative Analysis of the Antioxidant Capacities and Phenolic Compounds of Oat and Buckwheat Vinegars During Production Processes.

    PubMed

    Yu, Xiao; Yang, Mei; Dong, Jilin; Shen, Ruiling

    2018-03-01

    This study aimed to explore the dynamic changes in the antioxidant activities and phenolic acid profiles of oat and buckwheat vinegars during different production stages. The results showed that both oat and buckwheat vinegar products comparably attenuated D-galactose-induced oxidative damage in mice serum and liver, indicating no obvious dose dependence within the tested concentrations. However, oat vinegar product revealed more favorable in vitro antioxidant activities than those in buckwheat vinegar product as evaluated by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities. Moreover, the alcoholic fermentation, acetic acid fermentation and fumigating induced successive increase in DPPH radical scavenging abilities and phenolic acid contents of the fermentation substrates of oat and buckwheat vinegars. Importantly, the different fermentation processes of oat and buckwheat vinegars were accompanied by the dynamic migration and transformation of specific phenolic acids across bound, esterified and free fractions. Thus, the antioxidant activities of oat and buckwheat vinegars could be improved through targeted modulation of the generation of specific phenolic acid fractions during production processes. We had evaluated the in vitro and in vivo antioxidant activities and phenolic acid contents of oat and buckwheat vinegars, and further explored the dynamic changes of bound, esterified and free phenolic acid fractions during successive fermentation processes of oat and buckwheat vinegars. This study provided the theoretical guidance for obtaining minor grain vinegar with the optimal antioxidant activities through targeted modulation of fermentation processes. © 2018 Institute of Food Technologists®.

  19. Novel Properties of the Wheat Aluminum Tolerance Organic Acid Transporter (TaALMT1) Revealed by Electrophysiological Characterization in Xenopus Oocytes: Functional and Structural Implications1[OA

    PubMed Central

    Piñeros, Miguel A.; Cançado, Geraldo M.A.; Kochian, Leon V.

    2008-01-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al3+ at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al3+ (Km1/2 of approximately 5 μm Al3+ activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al3+. The lack of change in the reversal potential (Erev) upon exposure to Al3+ suggests that the “enhancement” of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the Erev as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the Erev as the extracellular Cl− activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl−, NO3−, and

  20. Trimodal Control of Ion-Transport Activity on Cyclo-oligo-(1→6)-β-D-glucosamine-Based Artificial Ion-Transport Systems.

    PubMed

    Roy, Arundhati; Saha, Tanmoy; Gening, Marina L; Titov, Denis V; Gerbst, Alexey G; Tsvetkov, Yury E; Nifantiev, Nikolay E; Talukdar, Pinaki

    2015-11-23

    Cyclo-oligo-(1→6)-β-D-glucosamines functionalized with hydrophobic tails are reported as a new class of transmembrane ion-transport system. These macrocycles with hydrophilic cavities were introduced as an alternative to cyclodextrins, which are supramolecular systems with hydrophobic cavities. The transport activities of these glycoconjugates were manipulated by altering the oligomericity of the macrocycles, as well as the length and number of attached tails. Hydrophobic tails of 3 different sizes were synthesized and coupled with each glucosamine scaffold through the amide linkage to obtain 18 derivatives. The ion-transport activity increased from di- to tetrameric glucosamine macrocycles, but decreased further when flexible pentameric glucosamine was introduced. The ion-transport activity also increased with increasing length of attached linkers. For a fixed length of linkers, the transport activity decreased when the number of such tails was reduced. All glycoconjugates displayed a uniform anion-selectivity sequence: Cl(-) >Br(-) >I(-) . From theoretical studies, hydrogen bonding between the macrocycle backbone and the anion bridged through water molecules was observed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Effects of anion transport inhibitors and ion substitution on Cl sup minus transport in TAL of Henle's loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, Yoshiaki; Yoshitomi, Koji; Imai, Masashi

    1987-12-01

    To identify the mechanism of Cl{sup {minus}} transport across the thin ascending limb of Henle's loop (TAL), the authors examined effects of anion transport inhibitors and ionic substitution in the isolated segments of hamsters using the in vitro microperfusion technique. 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS) at 10{sup {minus}3} M changed the NaCl diffusion voltage (V{sub t}) to the orientation that corresponds to the decrease in the Cl{sup {minus}}-Na{sup +} permeability ratio when it was added either to the bath or to the lumen. DIDS, added to the bath or to the lumen decreased the lumen-to-bath flux coefficient for {sup 36}Cl, whereas itmore » had little effect on the flux coefficient for {sup 22}Na. The inhibitory effect of phloretin was rapid and reversible. Phloridzin was ineffective. From these observations, they conclude that Cl{sup {minus}} transport across the TAL is distinct from Na{sup +} and is not coupled with Na{sup +}, K{sup +}, or HCO{sup {minus}}{sub 3}.« less

  2. Shaker Oats: Fortifying Musicality

    ERIC Educational Resources Information Center

    Semmes, Laurie R.

    2010-01-01

    In this article, the author describes how an experiment in a class she taught called Minority Musics of North America developed into a surprisingly successful and flexible teaching tool known as "Shaker Oats," created to encourage the concepts of ensemble and community. Most music educators in the United States today are familiar with…

  3. Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei

    PubMed Central

    Macêdo, Juan P.; Kunz Renggli, Christina; Bütikofer, Peter; Rentsch, Doris; Mäser, Pascal

    2017-01-01

    CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium. PMID:29244877

  4. Identification and characterization of the three members of the CLC family of anion transport proteins in Trypanosoma brucei.

    PubMed

    Steinmann, Michael E; Schmidt, Remo S; Macêdo, Juan P; Kunz Renggli, Christina; Bütikofer, Peter; Rentsch, Doris; Mäser, Pascal; Sigel, Erwin

    2017-01-01

    CLC type anion transport proteins are homo-dimeric or hetero-dimeric with an integrated transport function in each subunit. We have identified and partially characterized three members of this family named TbVCL1, TbVCL2 and TbVCL3 in Trypanosoma brucei. Among the human CLC family members, the T. brucei proteins display highest similarity to CLC-6 and CLC-7. TbVCL1, but not TbVCL2 and TbVCL3 is able to complement growth of a CLC-deficient Saccharomyces cerevisiae mutant. All TbVCL-HA fusion proteins localize intracellulary in procyclic form trypanosomes. TbVCL1 localizes close to the Golgi apparatus and TbVCL2 and TbVCL3 to the endoplasmic reticulum. Upon expression in Xenopus oocytes, all three proteins induce similar outward rectifying chloride ion currents. Currents are sensitive to low concentrations of DIDS, insensitive to the pH in the range 5.4 to 8.4 and larger in nitrate than in chloride medium.

  5. Evaluation of beneficial use of wood-fired boiler ash on oat and bean growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krejsl, J.A.; Scanlon, T.M.

    An evaluation on the effects of pulp and paper mill combined boiler ashes on growth and nutrient uptake by oat (Avena sativa L., var. 501) and bean (Phaseolus vulgaris L., var. blue pole) was conducted in a greenhouse. Ash with a calcium carbonate equivalent of 29.1% and a pH of 12.1 was applied at the rates 30, 40, and 50 dry Mg ha{sup -1} to Chehalis silty clay loam (fine-silty, mixed, mesic Cumulic Ultic Haploxerolls), with pH 5.4. An agricultural dolomitic lime treatment of 7.4 Mg ha{sup -1} and a nonamended control were also included. Plants grown on ash-amended soilmore » had higher biomass compared to plants grown on lime and control treatments. Ash treatments 30, 40, and 50 dry Mg ha{sup -1} increased the bean (stems and leaves) dry matter (DM) yield over the control by 49, 57, and 64%, respectively. The lime treatment increased the bean DM yield by 31% compared with the control. The ash rate 30 dry Mg ha{sup -1}, equivalent to the recommended agronomic lime rate 7.4 Mg ha{sup -1}, increased oat (shoots) DM yields over the control by 45%, while the lime treatment increased biomass by 8% over control. The highest ash treatment, 50 Mg ha{sup -1}, produced the lowest oat biomass. The ash was as effective as dolomitic lime in raising soil pH. Ash-amended soils contained higher concentrations of P, S, and B for plant growth compared to lime and nonamended soils. Soil Zn, Fe, mn, and Cu concentrations decreased as ash application rates increased. Oat and bean plants grown in the ash-amended soil had increased concentrations of K, S, and B and decreased concentrations of Mn and Cu compared with plants grown in the nonamended control soil. Overall, oat and bean benefited from the increased nutrient availability and soil pH caused by the application of boiler ash. 20 refs., 6 tabs.« less

  6. Transfer of repaglinide in the dually perfused human placenta and the role of organic anion transporting polypeptides (OATPs).

    PubMed

    Tertti, Kristiina; Petsalo, Aleksanteri; Niemi, Mikko; Ekblad, Ulla; Tolonen, Ari; Rönnemaa, Tapani; Turpeinen, Miia; Heikkinen, Tuija; Laine, Kari

    2011-10-09

    Our aim was to investigate the placental transfer of repaglinide by ex vivo placental perfusion experiment. In addition, the involvement of the active organic anion transporters (OATP1B1, OATP1B3 and OATP2B1) was studied by assessing the single nucleotide polymorphisms (SNPs) in genes (SLCO1B1, SLCO1B3 and SLCO2B1) encoding OATPs. Fifteen placentas were obtained after delivery and a 2-h non-recirculating perfusion of a single placental cotyledon was performed to study maternal-to-fetal and fetal-to-maternal transport of repaglinide by using antipyrine as a reference of passive-diffusion transfer compound. Genotyping was performed for all placentas. Maternal-to-fetal transfer of repaglinide and antipyrine were 1.5% and 13.2%, respectively, and fetal-to-maternal transfers were 6.7% and 40.3%, respectively. Fetal-to-maternal transfer of repaglinide was statistically significantly higher than maternal-to-fetal transfer (P<0.0001). The number of placentas was not sufficient for proper statistical analysis, but the fetal-to-maternal transfer seemed to be affected by the SLCO1B3 polymorphism. The placental transfer of repaglinide from mother to fetus was low. Since a higher transfer rate of repaglinide was observed in fetal-to-maternal than maternal-to-fetal direction, active transport by OATP-transporters may be an important factor in fetal exposure to repaglinide. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The Long-Term Consumption of Oats in Celiac Disease Patients Is Safe: A Large Cross-Sectional Study

    PubMed Central

    Aaltonen, Katri; Laurikka, Pilvi; Huhtala, Heini; Mäki, Markku; Kaukinen, Katri; Kurppa, Kalle

    2017-01-01

    A strict gluten-free diet (GFD) can be diversified by non-contaminated oats, but there is a shortage of long-term studies concerning its safety. We compared long-term treatment outcomes and factors associated with the introduction of oats between celiac patients on a GFD with or without oats. Eight hundred sixty-nine previously diagnosed celiac patients were interviewed. The validated Gastrointestinal Symptom Rating Scale (GSRS), Psychological General Well-Being (PGWB), and Short-Form 36 Health Survey (SF-36) questionnaires were used to assess symptoms and quality of life, serological tests were performed, and results of histology were confirmed from patient records. We found the median duration of GFD to be 10 years and 82% using oats. Factors predicting the consumption of oats were diagnosis after the year 2000, advice from a dietitian, detection by screening, and mild clinical presentation. Oat consumers and non-consumers did not differ in dietary adherence (96.5% vs. 97.4%, p = 0.746), the prevalence of symptoms (22.9% vs. 22.5%, p = 0.931), positivity for endomysial antibodies (8.8% vs. 6.0%, p = 0.237), histological recovery after one year (63.1% vs. 60.0%, p = 0.773), malignancy (4.8% vs. 3.3%, p = 0.420), osteoporosis/osteopenia (9.2% vs. 11.0%, p = 0.489), or fractures (26.9% vs. 27.9%, p = 0.791). The oat consumers had better SF-36 physical role limitations and general health scores. Based on our results, the long-term consumption of oats in celiac disease patients is safe and may improve quality of life. PMID:28617328

  8. Genetics or environment in drug transport: the case of organic anion transporting polypeptides and adverse drug reactions.

    PubMed

    Clarke, John D; Cherrington, Nathan J

    2012-03-01

    Organic anion transporting polypeptide (OATP) uptake transporters are important for the disposition of many drugs and perturbed OATP activity can contribute to adverse drug reactions (ADRs). It is well documented that both genetic and environmental factors can alter OATP expression and activity. Genetic factors include single nucleotide polymorphisms (SNPs) that change OATP activity and epigenetic regulation that modify OATP expression levels. SNPs in OATPs contribute to ADRs. Environmental factors include the pharmacological context of drug-drug interactions and the physiological context of liver diseases. Liver diseases such as non-alcoholic fatty liver disease, cholestasis and hepatocellular carcinoma change the expression of multiple OATP isoforms. The role of liver diseases in the occurrence of ADRs is unknown. This article covers the roles OATPs play in ADRs when considered in the context of genetic or environmental factors. The reader will gain a greater appreciation for the current evidence regarding the salience and importance of each factor in OATP-mediated ADRs. A SNP in a single OATP transporter can cause changes in drug pharmacokinetics and contribute to ADRs but, because of overlap in substrate specificities, there is potential for compensatory transport by other OATP isoforms. By contrast, the expression of multiple OATP isoforms is decreased in liver diseases, reducing compensatory transport and thereby increasing the probability of ADRs. To date, most research has focused on the genetic factors in OATP-mediated ADRs while the impact of environmental factors has largely been ignored.

  9. Gas-Phase Anionic σ-Adduct (Trans)formations in Heteroaromatic Systems1

    NASA Astrophysics Data System (ADS)

    Zimnicka, Magdalena; Danikiewicz, Witold

    2015-07-01

    Anions of nitroderivatives of thiophene and furan were subjected to the reactions with selected C-H acids in the gas phase. Various structures and reaction pathways were proposed for the observed ionic products. In general, the reactions of heteroaromatic anions with C-H acids may be divided into three groups, depending on the proton affinity difference between C-H acid's conjugate base and heteroaromatic anion (ΔPA). The proton transfer from C-H acid to heteroaromatic anion is a dominant process in the reactions for which ΔPA < 0 kcal mol-1, whereas the reactions with high ΔPA (ΔPA > 16 kcal mol-1) do not lead to any ionic products. The formation of σ-adducts and products of their further transformations according to the VNS, SNAr, cine, and tele substitution mechanisms have been proposed for reactions with moderate ΔPA. The other possible mechanisms as SN2 reaction, nucleophilic addition to the cyano group, ring-opening pathway, and halogenophilic reaction have also been discussed to contribute in the reactions between heteroaromatic anions and C-H acids.

  10. Defects in a New Class of Sulfate/Anion Transporter Link Sulfur Acclimation Responses to Intracellular Glutathione Levels and Cell Cycle Control1[W][OPEN

    PubMed Central

    Fang, Su-Chiung; Chung, Chin-Lin; Chen, Chun-Han; Lopez-Paz, Cristina; Umen, James G.

    2014-01-01

    We previously identified a mutation, suppressor of mating type locus3 15-1 (smt15-1), that partially suppresses the cell cycle defects caused by loss of the retinoblastoma tumor suppressor-related protein encoded by the MAT3 gene in Chlamydomonas reinhardtii. smt15-1 single mutants were also found to have a cell cycle defect leading to a small-cell phenotype. SMT15 belongs to a previously uncharacterized subfamily of putative membrane-localized sulfate/anion transporters that contain a sulfate transporter domain and are found in a widely distributed subset of eukaryotes and bacteria. Although we observed that smt15-1 has a defect in acclimation to sulfur-limited growth conditions, sulfur acclimation (sac) mutants, which are more severely defective for acclimation to sulfur limitation, do not have cell cycle defects and cannot suppress mat3. Moreover, we found that smt15-1, but not sac mutants, overaccumulates glutathione. In wild-type cells, glutathione fluctuated during the cell cycle, with highest levels in mid G1 phase and lower levels during S and M phases, while in smt15-1, glutathione levels remained elevated during S and M. In addition to increased total glutathione levels, smt15-1 cells had an increased reduced-to-oxidized glutathione redox ratio throughout the cell cycle. These data suggest a role for SMT15 in maintaining glutathione homeostasis that impacts the cell cycle and sulfur acclimation responses. PMID:25361960

  11. Replacing Corn and Wheat in Layer Diets with Hulless Oats Shows Effects on Sensory Properties and Yolk Quality of Eggs.

    PubMed

    Winkler, Louisa R; Hasenbeck, Aimee; Murphy, Kevin M; Hermes, James C

    2017-01-01

    US organic poultry producers are under pressure to find feed alternatives to corn and wheat. Hulless oats offer advantages such as wide geographic adaptation of the plant and high concentrations of protein and oil in the grain. They have shown considerable potential in experimental work as a feed grain for poultry, but more research is needed into their influence on the sensory and nutritional properties of eggs. In this study, hulless oats were substituted for corn or wheat at 200 g kg -1 in diets fed to Hy-Line Brown hens and eggs were sampled for sensory evaluation after 8 weeks. Discrimination tests of blended and baked egg samples found evidence of difference between eggs from oat-based diets and those from the oat-free control ( p  < 0.05 for eggs from an oat-corn diet, p  < 0.01 for eggs from an oat-wheat diet). Acceptance tests of similar samples showed that eggs from the oat-wheat diet were significantly less liked than control eggs for their texture ( p  < 0.01) and response to cooking ( p  < 0.01), while eggs from the oat-corn diet were somewhat less liked. Yolk weight was greater ( p  < 0.05) in control eggs (34.1 g) than eggs from oat-corn (31.6 g) or oat-wheat (31.2 g) diets, leading to smaller yolk proportion in the oat-fed eggs. Fatty acid profile differences across treatments were not of nutritional significance, and no evidence was found that the feeding of hulless oats improved storage properties of eggs. In this study, modifying the carbohydrate source in layer diets was shown to change textural properties of cooked eggs in a way that was perceptible to untrained consumers, probably by reducing the yolk proportion. This finding was not commercially relevant owing to small effect size, and results overall add to existing evidence that hulless oats can be fed to poultry at a moderate proportion of the diet with no negative effect on consumer acceptability of eggs. Regardless of the small effect size, however, findings

  12. Replacing Corn and Wheat in Layer Diets with Hulless Oats Shows Effects on Sensory Properties and Yolk Quality of Eggs

    PubMed Central

    Winkler, Louisa R.; Hasenbeck, Aimee; Murphy, Kevin M.; Hermes, James C.

    2017-01-01

    US organic poultry producers are under pressure to find feed alternatives to corn and wheat. Hulless oats offer advantages such as wide geographic adaptation of the plant and high concentrations of protein and oil in the grain. They have shown considerable potential in experimental work as a feed grain for poultry, but more research is needed into their influence on the sensory and nutritional properties of eggs. In this study, hulless oats were substituted for corn or wheat at 200 g kg−1 in diets fed to Hy-Line Brown hens and eggs were sampled for sensory evaluation after 8 weeks. Discrimination tests of blended and baked egg samples found evidence of difference between eggs from oat-based diets and those from the oat-free control (p < 0.05 for eggs from an oat-corn diet, p < 0.01 for eggs from an oat-wheat diet). Acceptance tests of similar samples showed that eggs from the oat-wheat diet were significantly less liked than control eggs for their texture (p < 0.01) and response to cooking (p < 0.01), while eggs from the oat-corn diet were somewhat less liked. Yolk weight was greater (p < 0.05) in control eggs (34.1 g) than eggs from oat-corn (31.6 g) or oat-wheat (31.2 g) diets, leading to smaller yolk proportion in the oat-fed eggs. Fatty acid profile differences across treatments were not of nutritional significance, and no evidence was found that the feeding of hulless oats improved storage properties of eggs. In this study, modifying the carbohydrate source in layer diets was shown to change textural properties of cooked eggs in a way that was perceptible to untrained consumers, probably by reducing the yolk proportion. This finding was not commercially relevant owing to small effect size, and results overall add to existing evidence that hulless oats can be fed to poultry at a moderate proportion of the diet with no negative effect on consumer acceptability of eggs. Regardless of the small effect size, however, findings are

  13. Effect of an oats-containing gluten-free diet on symptoms and quality of life in coeliac disease. A randomized study.

    PubMed

    Peräaho, M; Kaukinen, K; Mustalahti, K; Vuolteenaho, N; Mäki, M; Laippala, P; Collin, P

    2004-01-01

    Evidence suggests the acceptability of oats in a gluten-free diet in coeliac disease. We investigated the impact of an oats-containing diet on quality of life and gastrointestinal symptoms. Thirty-nine coeliac disease patients on a gluten-free diet were randomized to take either 50 g of oats-containing gluten-free products daily or to continue without oats for 1 year. Quality of life was assessed using the Psychological General Well-Being questionnaire and gastrointestinal symptoms using the Gastrointestinal Symptom Rating Scale. Small-bowel mucosal villous architecture, CD3+, alphabeta+, gammadelta+ intraepithelial lymphocytes, serum endomysial and tissue transglutaminase antibodies were investigated. Twenty-three subjects were randomized to the oats-containing diet and 16 to the traditional gluten-free diet. All adhered strictly to their respective diet. Quality of life did not differ between the groups. In general, there were more gastrointestinal symptoms in the oats-consuming group. Patients taking oats suffered significantly more often from diarrhoea, but there was a simultaneous trend towards a more severe average constipation symptom score. The villous structure did not differ between the groups, but the density of intraepithelial lymphocytes was slightly but significantly higher in the oats group. The severity of symptoms was not dependent on the degree of inflammation. Antibody levels did not increase during the study period. The oats-containing gluten-free diet caused more intestinal symptoms than the traditional diet. Mucosal integrity was not disturbed, but more inflammation was evident in the oats group. Oats provide an alternative in the gluten-free diet, but coeliac patients should be aware of the possible increase in intestinal symptoms.

  14. Ultraslow Phase Transitions in an Anion-Anion Hydrogen-Bonded Ionic Liquid.

    PubMed

    Faria, Luiz F O; Lima, Thamires A; Ferreira, Fabio F; Ribeiro, Mauro C C

    2018-02-15

    A Raman spectroscopy study of 1-ethyl-3-methylimidazolium hydrogen sulfate, [C 2 C 1 im][HSO 4 ], as a function of temperature, has been performed to reveal the role played by anion-anion hydrogen bond on the phase transitions of this ionic liquid. Anion-anion hydrogen bonding implies high viscosity, good glass-forming ability, and also moderate fragility of [C 2 C 1 im][HSO 4 ] in comparison with other ionic liquids. Heating [C 2 C 1 im][HSO 4 ] from the glassy phase results in cold crystallization at ∼245 K. A solid-solid transition (crystal I → crystal II) is barely discernible in calorimetric measurements at typical heating rates, but it is clearly revealed by Raman spectroscopy and X-ray diffraction. Raman spectroscopy indicates that crystal I has extended ([HSO 4 ] - ) n chains of hydrogen-bonded anions but crystal II has not. Raman spectra recorded at isothermal condition show the ultraslow dynamics of cold crystallization, solid-solid transition, and continuous melting of [C 2 C 1 im][HSO 4 ]. A brief comparison is also provided between [C 2 C 1 im][HSO 4 ] and [C 4 C 1 im][HSO 4 ], as Raman spectroscopy shows that the latter does not form the crystalline phase with extended anion-anion chains.

  15. Impact of whole grains on the gut microbiota: the next frontier for oats?

    PubMed

    Rose, Devin J

    2014-10-01

    The gut microbiota plays important roles in proper gut function and can contribute to or help prevent disease. Whole grains, including oats, constitute important sources of nutrients for the gut microbiota and contribute to a healthy gut microbiome. In particular, whole grains provide NSP and resistant starch, unsaturated TAG and complex lipids, and phenolics. The composition of these constituents is unique in oats compared with other whole grains. Therefore, oats may contribute distinctive effects on gut health relative to other grains. Studies designed to determine these effects may uncover new human-health benefits of oat consumption.

  16. Quantitative Rationalization of Gemfibrozil Drug Interactions: Consideration of Transporters-Enzyme Interplay and the Role of Circulating Metabolite Gemfibrozil 1-O-β-Glucuronide.

    PubMed

    Varma, Manthena V S; Lin, Jian; Bi, Yi-an; Kimoto, Emi; Rodrigues, A David

    2015-07-01

    Gemfibrozil has been suggested as a sensitive cytochrome P450 2C8 (CYP2C8) inhibitor for clinical investigation by the U.S. Food and Drug Administration and the European Medicines Agency. However, gemfibrozil drug-drug interactions (DDIs) are complex; its major circulating metabolite, gemfibrozil 1-O-β-glucuronide (Gem-Glu), exhibits time-dependent inhibition of CYP2C8, and both parent and metabolite also behave as moderate inhibitors of organic anion transporting polypeptide 1B1 (OATP1B1) in vitro. Additionally, parent and metabolite also inhibit renal transport mediated by OAT3. Here, in vitro inhibition data for gemfibrozil and Gem-Glu were used to assess their impact on the pharmacokinetics of several victim drugs (including rosiglitazone, pioglitazone, cerivastatin, and repaglinide) by employing both static mechanistic and dynamic physiologically based pharmacokinetic (PBPK) models. Of the 48 cases evaluated using the static models, about 75% and 98% of the DDIs were predicted within 1.5- and 2-fold of the observed values, respectively, when incorporating the interaction potential of both gemfibrozil and its 1-O-β-glucuronide. Moreover, the PBPK model was able to recover the plasma profiles of rosiglitazone, pioglitazone, cerivastatin, and repaglinide under control and gemfibrozil treatment conditions. Analyses suggest that Gem-Glu is the major contributor to the DDIs, and its exposure needed to bring about complete inactivation of CYP2C8 is only a fraction of that achieved in the clinic after a therapeutic gemfibrozil dose. Overall, the complex interactions of gemfibrozil can be quantitatively rationalized, and the learnings from this analysis can be applied in support of future predictions of gemfibrozil DDIs. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  17. Effects of high-fiber oat and wheat cereals on postprandial glucose and lipid responses in healthy men.

    PubMed

    Maki, Kevin C; Davidson, Michael H; Witchger, Mary Sue; Dicklin, Mary R; Subbaiah, Papasani V

    2007-09-01

    This randomized, crossover study compared the effects of consuming high-fiber oat and wheat cereals on postprandial metabolic profiles in healthy men. Twenty-seven subjects received oat (providing 5.7 g/day beta-glucan) or wheat (control) cereal products, in random order, incorporated into their usual diets for two weeks. Total energy and fiber (approximately 14 g/day) contents of the cereals were matched. A meal tolerance test that included the study cereal and a high-fat milkshake (1240 kcal, 105 g fat) was performed at the end of each treatment period. Postprandial insulin and glucose responses over 10 hours did not differ between treatments. Peak triglyceride concentration was lower after oat vs. wheat cereal consumption [2.3 +/- 1.2 (mean +/- standard deviation) vs. 2.9 +/- 1.3 mmol/L, p = 0.016]. Mean area under the triglyceride curve also tended to be lower (15.1 +/- 8.2 vs. 17.6 +/- 8.6 hours x mmol/L, p = 0.068). The free fatty acid area under the curve was elevated after the oat vs. the wheat products (3.64 +/- 0.91 vs. 3.38 +/- 0.98 hours x mmol/L, p = 0.018). These results suggest that high-fiber oat cereal influenced postprandial triglyceride and free fatty acid levels, which may have implications regarding cardiovascular disease risk.

  18. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Wigger, Cornelia; Van Loon, Luc R.

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described.

  19. Effect of the pore water composition on the diffusive anion transport in argillaceous, low permeability sedimentary rocks.

    PubMed

    Wigger, Cornelia; Van Loon, Luc R

    2018-06-01

    The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl 2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl 2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl 2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Enhanced Anion Transport Using Some Expanded Porphyrins as Carriers.

    DTIC Science & Technology

    1991-01-01

    is able to bind a smaller chemical species. The substrate is the specie whose binding is being sought. It can be neutral as well as charged , such as a...34ligand- protein -central metal cation-guest anion" ternary interactions. 6 To date, non-biological, synthetically made polyammonium macrocycles and... complementarity between these spherical anions and the ellipsoidal cavity of 6-6H+ . The cavity of the bis-tren receptor is best suited for the linear

  1. Anion binding in biological systems

    NASA Astrophysics Data System (ADS)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  2. New DArT markers for oat provide enhanced map coverage and global germplasm characterization

    USDA-ARS?s Scientific Manuscript database

    Genomic discovery in oat and its application to oat improvement have been hindered by a lack of common markers on different genetic maps, and by the difficulty of conducting whole-genome analysis using high throughput markers. In this study we developed, characterized, and applied a large set oat g...

  3. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.

    PubMed

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej

    2005-05-04

    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  4. Activity and distribution of intracellular carbonic anhydrase II and their effects on the transport activity of anion exchanger AE1/SLC4A1.

    PubMed

    Al-Samir, Samer; Papadopoulos, Symeon; Scheibe, Renate J; Meißner, Joachim D; Cartron, Jean-Pierre; Sly, William S; Alper, Seth L; Gros, Gerolf; Endeward, Volker

    2013-10-15

    We have investigated the previously published 'metabolon hypothesis' postulating that a close association of the anion exchanger 1 (AE1) and cytosolic carbonic anhydrase II (CAII) exists that greatly increases the transport activity of AE1. We study whether there is a physical association of and direct functional interaction between CAII and AE1 in the native human red cell and in tsA201 cells coexpressing heterologous fluorescent fusion proteins CAII-CyPet and YPet-AE1. In these doubly transfected tsA201 cells, YPet-AE1 is clearly associated with the cell membrane, whereas CAII-CyPet is homogeneously distributed throughout the cell in a cytoplasmic pattern. Förster resonance energy transfer measurements fail to detect close proximity of YPet-AE1 and CAII-CyPet. The absence of an association of AE1 and CAII is supported by immunoprecipitation experiments using Flag-antibody against Flag-tagged AE1 expressed in tsA201 cells, which does not co-precipitate native CAII but co-precipitates coexpressed ankyrin. Both the CAII and the AE1 fusion proteins are fully functional in tsA201 cells as judged by CA activity and by cellular HCO3(-) permeability (P(HCO3(-))) sensitive to inhibition by 4,4-Diisothiocyano-2,2-stilbenedisulfonic acid. Expression of the non-catalytic CAII mutant V143Y leads to a drastic reduction of endogenous CAII and to a corresponding reduction of total intracellular CA activity. Overexpression of an N-terminally truncated CAII lacking the proposed site of interaction with the C-terminal cytoplasmic tail of AE1 substantially increases intracellular CA activity, as does overexpression of wild-type CAII. These variously co-transfected tsA201 cells exhibit a positive correlation between cellular P(HCO3(-)) and intracellular CA activity. The relationship reflects that expected from changes in cytoplasmic CA activity improving substrate supply to or removal from AE1, without requirement for a CAII-AE1 metabolon involving physical interaction. A functional

  5. Excretion of Avenanthramides, Phenolic Acids and their Major Metabolites Following Intake of Oat Bran

    PubMed Central

    Schär, Manuel Y.; Corona, Giulia; Soycan, Gulten; Dine, Clemence; Kristek, Angelika; Alsharif, Sarah N. S.; Behrends, Volker; Lovegrove, Alison; Shewry, Peter R.

    2017-01-01

    Scope Wholegrain has been associated with reduced chronic disease mortality, with oat intake particularly notable for lowering blood cholesterol and glycemia. To better understand the complex nutrient profile of oats, we studied urinary excretion of phenolic acids and avenanthramides after ingestion of oat bran in humans. Methods and results After a 2‐d (poly)phenol‐low diet, seven healthy men provided urine 12 h before and 48 h after consuming 60 g oat bran (7.8 μmol avenanthramides, 139.2 μmol phenolic acids) or a phenolic‐low (traces of phenolics) control in a crossover design. Analysis by ultra‐high performance liquid chromatography (UPLC)–MS/MS showed that oat bran intake resulted in an elevation in urinary excretion of 30 phenolics relative to the control, suggesting that they are oat bran‐derived. Mean excretion levels were elevated between 0–2 and 4–8 h, following oat bran intake, and amounted to a total of 33.7 ± 7.3 μmol total excretion (mean recovery: 22.9 ± 5.0%), relative to control. The predominant metabolites included: vanillic acid, 4‐ and 3‐hydroxyhippuric acids, and sulfate‐conjugates of benzoic and ferulic acids, which accounted collectively for two thirds of total excretion. Conclusion Oat bran phenolics follow a relatively rapid urinary excretion, with 30 metabolites excreted within 8 h of intake. These levels of excretion suggest that bound phenolics are, in part, rapidly released by the microbiota. PMID:29024323

  6. Avenanthramide biosynthesis in oat cultivars treated with systemic acquired resistance elicitors

    USDA-ARS?s Scientific Manuscript database

    The synthetic systemic acquired resistance elicitor benzothiadiazole (BTH) has been shown to elicit avenanthramide biosynthesis in the oat cultivar ‘Belle’. This report investigates the response of multiple oat cultivars to BTH as well as 2,6- dichloroisonicotinic acid (INA) at different growth stag...

  7. Puccinia coronata f. sp. avenae: a threat to global oat production.

    PubMed

    Nazareno, Eric S; Li, Feng; Smith, Madeleine; Park, Robert F; Kianian, Shahryar F; Figueroa, Melania

    2018-05-01

    Puccinia coronata f. sp. avenae (Pca) causes crown rust disease in cultivated and wild oat (Avena spp.). The significant yield losses inflicted by this pathogen make crown rust the most devastating disease in the oat industry. Pca is a basidiomycete fungus with an obligate biotrophic lifestyle, and is classified as a typical macrocyclic and heteroecious fungus. The asexual phase in the life cycle of Pca occurs in oat, whereas the sexual phase takes place primarily in Rhamnus species as the alternative host. Epidemics of crown rust happens in areas with warm temperatures (20-25 °C) and high humidity. Infection by the pathogen leads to plant lodging and shrivelled grain of poor quality. Disease symptoms: Infection of susceptible oat varieties gives rise to orange-yellow round to oblong uredinia (pustules) containing newly formed urediniospores. Pustules vary in size and can be larger than 5 mm in length. Infection occurs primarily on the surfaces of leaves, although occasional symptoms develop in the oat leaf sheaths and/or floral structures, such as awns. Symptoms in resistant oat varieties vary from flecks to small pustules, typically accompanied by chlorotic halos and/or necrosis. The pycnial and aecial stages are mostly present in the leaves of Rhamnus species, but occasionally symptoms can also be observed in petioles, young stems and floral structures. Aecial structures display a characteristic hypertrophy and can differ in size, occasionally reaching more than 5 mm in diameter. Taxonomy: Pca belongs to the kingdom Fungi, phylum Basidiomycota, class Pucciniomycetes, order Pucciniales and family Pucciniaceae. Host range: Puccinia coronata sensu lato can infect 290 species of grass hosts. Pca is prevalent in all oat-growing regions and, compared with other cereal rusts, displays a broad telial host range. The most common grass hosts of Pca include cultivated hexaploid oat (Avena sativa) and wild relatives, such as bluejoint grass, perennial ryegrass and

  8. Loss of the anion exchanger DRA (Slc26a3), or PAT1 (Slc26a6), alters sulfate transport by the distal ileum and overall sulfate homeostasis.

    PubMed

    Whittamore, Jonathan M; Hatch, Marguerite

    2017-09-01

    The ileum is considered the primary site of inorganic sulfate ([Formula: see text]) absorption. In the present study, we explored the contributions of the apical chloride/bicarbonate (Cl - /[Formula: see text]) exchangers downregulated in adenoma (DRA; Slc26a3), and putative anion transporter 1 (PAT1; Slc26a6), to the underlying transport mechanism. Transepithelial 35 [Formula: see text] and 36 Cl - fluxes were determined across isolated, short-circuited segments of the distal ileum from wild-type (WT), DRA-knockout (KO), and PAT1-KO mice, together with measurements of urine and plasma sulfate. The WT distal ileum supported net sulfate absorption [197.37 ± 13.61 (SE) nmol·cm -2 ·h -1 ], but neither DRA nor PAT1 directly contributed to the unidirectional mucosal-to-serosal flux ([Formula: see text]), which was sensitive to serosal (but not mucosal) DIDS, dependent on Cl - , and regulated by cAMP. However, the absence of DRA significantly enhanced net sulfate absorption by one-third via a simultaneous rise in [Formula: see text] and a 30% reduction to the secretory serosal-to-mucosal flux ([Formula: see text]). We propose that DRA, together with PAT1, contributes to [Formula: see text] by mediating sulfate efflux across the apical membrane. Associated with increased ileal sulfate absorption in vitro, plasma sulfate was 61% greater, and urinary sulfate excretion ( U SO4 ) 2.2-fold higher, in DRA-KO mice compared with WT controls, whereas U SO4 was increased 1.8-fold in PAT1-KO mice. These alterations to sulfate homeostasis could not be accounted for by any changes to renal sulfate handling suggesting that the source of this additional sulfate was intestinal. In summary, we characterized transepithelial sulfate fluxes across the mouse distal ileum demonstrating that DRA (and to a lesser extent, PAT1) secretes sulfate with significant implications for intestinal sulfate absorption and overall homeostasis. NEW & NOTEWORTHY Sulfate is an essential anion that is

  9. Green tea extract and aged garlic extract inhibit anion transport and sickle cell dehydration in vitro.

    PubMed

    Ohnishi, S T; Ohnishi, T; Ogunmola, G B

    2001-01-01

    Both green tea extract (GTE or tea polyphenols) and aged garlic extract (AGE) effectively inhibited in vitro dehydration of sickle red blood cells induced by K-Cl cotransport or red cell storage. For K-Cl cotransport induced by 500 mM urea, 0.3 mg/ml EGCg (epigallocatechin gallate; a major component in GTE) almost completely inhibited dehydration, and 6 mg/ml AGE inhibited dehydration to 30% of the control level. Both vitamins E and C had no effect at the level of 2 mM. Different tea extracts had different degrees of inhibition, but the inhibitory activity increased when the number of hydroxyl groups in the compounds increased. With storage of sickle cells at 4 degrees C for 6 days, the cells started to undergo spontaneous dehydration when incubated at 37 degrees C. Neither inhibitors for Ca-induced K efflux nor K-Cl cotransport could inhibit cell dehydration of stored sickle cells, but both GTE and AGE effectively inhibited it. Chloride efflux measurements using a chloride electrode demonstrated that both GTE and AGE inhibited anion transport in red blood cells. The inhibitory mechanism of these compounds may be related to anion transport inhibition, although involvement of their antioxidant activities can not yet be ruled out. Copyright 2001 Academic Press.

  10. [Effects of legume-oat intercropping on abundance and community structure of soil N2-fixing bacteria].

    PubMed

    Yang, Ya Dong; Feng, Xiao Min; Hu, Yue Gao; Ren, Chang Zhong; Zeng, Zhao Hai

    2017-03-18

    In this study, real-time PCR and high-throughput sequencing approaches were employed to investigate the abundance and community structure of N 2 -fixing bacteria in a field experiment with three planting patterns (Oat monoculture, O; Soybean-oat intercropping, OSO; Mung bean-oat intercropping, OMO). The results showed that soil chemical properties varied significantly in different soil samples (P<0.05). The abundance of nifH gene varied from 1.75×10 10 to 7.37×10 10 copies·g -1 dry soil in all soil samples. The copy numbers of nifH gene in OSO and OMO were 2.18, 2.64, and 1.92, 2.57 times as much as that in O at jointing and mature stages, with a significant decline from jointing to mature stage for all treatments (P<0.05). Rarefaction curve and cove-rage results proved the nifH gene sequencing results were reliable, and the diversity index showed that the N 2 -fixing bacteria diversity of OSO was much higher than that of O. Azohydromonas, Azotobacter, Bradyrhizobium, Skermanella and other groups that could not be classified are the dominant genera, with significant differences in proportion of these dominant groups observed among all soil samples (P<0.05). Venn and PCA analysis indicated that there were greater differences of nifH gene communities between jointing and mature stages; however, the OSO and OMO had similar communities in both stages. All these results confirmed that legume-oat intercropping significantly increased the abundance and changed the community composition of N 2 -fixing bacteria in oat soils.

  11. Carbachol-induced colonic mucus formation requires transport via NKCC1, K+ channels and CFTR

    PubMed Central

    Lindén, Sara K.; Alwan, Ala H.; Scholte, Bob J.; Hansson, Gunnar C.; Sjövall, Henrik

    2016-01-01

    The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K+ channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K+ channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules. PMID:25139191

  12. Understanding ion and solvent transport in anion exchange membranes under humidified conditions

    NASA Astrophysics Data System (ADS)

    Sarode, Himanshu

    Anion exchange membranes (AEM) have been studied for more than a decade for potential applications in low temperature fuel cells and other electrochemical devices. They offer the advantage of faster reaction kinetics under alkaline conditions and ability to perform without costly platinum catalyst. Inherently slow diffusion of hydroxide ions compared to protons is a primary reason for synthesizing and studying the ion transport properties in AEMs. The aim of this thesis is to understand ion transport in novel AEMs using Pulse Gradient stimulated Spin Echo Nuclear Magnetic Resonance technique (PGSE NMR), water uptake, ionic conductivity, Small Angle X-ray Scattering (SAXS) etc. All experiments were performed under humidified conditions (80--95% relative humidity) and fuel cell operating temperatures of 30--90°C. In this work, the NMR tube design was modified for humidifying the entire NMR tube evenly from our previous design. We have developed a new protocol for replacing caustic hydroxide with harmless fluoride or bicarbonate ions for 19F and 13 C NMR diffusion experiments. After performing these NMR experiments, we have obtained in-depth understanding of the morphology linked ion transport in AEMs. We have obtained the highest fluoride self-diffusion coefficient of > 1 x 10-5 cm2/sec ( 55°C) for ETFE-g-PVBTMA membrane which is a result of low tortuosity of 1 obtained for the membrane. This faster fluoride transport combined with low tortuosity of the membrane resulted in > 100mS/cm hydroxide conductivity for the membrane. Polycyclooctene (PCOE) based triblock copolymers are also studied for in-depth understanding of molecular weight, IEC, mechanical and transport properties. Effect of melting temperature of PCOE has favorable effect on increasing ion conductivity and lowering activation energy. Mechanical properties of these types of membranes were studied showing detrimental effect of water plasticization which results in unsuitable mechanical properties

  13. Screening wild oat accessions from Morocco for resistance to Puccinia coronata

    USDA-ARS?s Scientific Manuscript database

    Here we report the screening of 338 new accessions of 11 different wild oat species (Avena) from the USDA Small Grains Collection for resistance to crown rust (Puccinia coronata). Wild oat species were originally collected in Morocco by C. Al Faiz, INRAT Rabat: Avena agadiriana, A. atlantica, A. bar...

  14. Puccinia coronata f. sp. avenae: a threat to global oat production

    USDA-ARS?s Scientific Manuscript database

    Puccinia coronata f. sp. avenae causes crown rust disease in cultivated and wild oat. The significant yield losses inflicted by this pathogen makes crown rust the most devastating disease in the oat industry. P. coronata f. sp. avenae is a basidiomycete fungus with an obligate biotrophic lifestyle a...

  15. New Advances in Marker Assisted Selection for Winter Hardiness in Oats.

    USDA-ARS?s Scientific Manuscript database

    Oat (Avena sativa L.) breeding and genetics research has lagged behind other small grains, such as wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.), in the development of PCR based markers and map construction due to fewer oat researchers and reduced research funding. As a result, marke...

  16. Features of acute liver congestion on gadoxetate disodium-enhanced MRI in a rat model: Role of organic anion-transporting polypeptide 1A1.

    PubMed

    Shimizu, Akira; Kobayashi, Akira; Motoyama, Hiroaki; Sakai, Hiroshi; Yamada, Akira; Yoshizawa, Akihiko; Momose, Masanobu; Kadoya, Masumi; Miyagawa, Shin-ichi

    2015-09-01

    To evaluate the features of hepatic congestion on gadoxetate disodium (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) and the mechanisms responsible for the radiological findings in a rat model of partial liver congestion. A conventional T1 -weighted spin-echo sequence of the liver was performed using a 1.5T magnetic resonance imager with an 80-mm magnetic aperture for animal studies. We induced regional congestion using partial left lateral hepatic vein ligation (n = 5) and evaluated the following in both congestive liver (CL) and noncongestive liver (non-CL): 1) chronological changes in the relative enhancement (RE) up to 60 minutes after Gd-EOB-DTPA administration, and 2) mRNA and protein expression of rat organic anion transporting protein 1a1 (Oatp1a1). The RE in the CL reached a small peak (18%) at 5 minutes, corresponding to approximately half of the value observed in the non-CL, then slowly decreased in a linear manner thereafter. The degree of RE in the CL was significantly lower than that in the non-CL for up to 30 minutes (P < 0.05). An immunohistological examination showed that Oatp1a1 protein expression was downregulated in the CL. The mRNA level of Oatp1a1 in the CL was significantly upregulated, compared with that in control rat liver (P = 0.046), whereas no significant difference was observed between the CL and the non-CL (P = 0.698). The reduced signal intensity in the CL on Gd-EOB-DTPA-enhanced MRI could be explained by the decreased uptake of Gd-EOB-DTPA via Oatp1a1 protein in the congestive area. © 2015 Wiley Periodicals, Inc.

  17. Towards high conductivity in anion-exchange membranes for alkaline fuel cells.

    PubMed

    Li, Nanwen; Guiver, Michael D; Binder, Wolfgang H

    2013-08-01

    Quaternized poly(2,6-dimethylphenylene oxide) materials (PPOs) containing clicked 1,2,3-triazoles were first prepared through Cu(I) -catalyzed "click chemistry" to improve the anion transport in anion-exchange membranes (AEMs). Clicked 1,2,3-triazoles incorporated into AEMs provided more sites to form efficient and continuous hydrogen-bond networks between the water/hydroxide and the triazole for anion transport. Higher water uptake was observed for these triazole membranes. Thus, the membranes showed an impressive enhancement of the hydroxide diffusion coefficient and, therefore, the anion conductivities. The recorded hydroxide conductivity was 27.8-62 mS cm(-1) at 20 °C in water, which was several times higher than that of a typical PPO-based AEM (TMA-20) derived from trimethylamine (5 mS cm(-1) ). Even at reduced relative humidity, the clicked membrane showed superior conductivity to a trimethylamine-based membrane. Moreover, similar alkaline stabilities at 80 °C in 1 M NaOH were observed for the clicked and non-clicked membranes. The performance of a H2 /O2 single cell assembled with a clicked AEM was much improved compared to that of a non-clicked TMA-20 membrane. The peak power density achieved for an alkaline fuel cell with the synthesized membrane 1a(20) was 188.7 mW cm(-2) at 50 °C. These results indicated that clicked AEM could be a viable strategy for improving the performance of alkaline fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Endocytic Uptake, Transport and Macromolecular Interactions of Anionic PAMAM Dendrimers within Lung Tissue.

    PubMed

    Morris, Christopher J; Aljayyoussi, Ghaith; Mansour, Omar; Griffiths, Peter; Gumbleton, Mark

    2017-12-01

    Polyamidoamine (PAMAM) dendrimers are a promising class of nanocarrier with applications in both small and large molecule drug delivery. Here we report a comprehensive evaluation of the uptake and transport pathways that contribute to the lung disposition of dendrimers. Anionic PAMAM dendrimers and control dextran probes were applied to an isolated perfused rat lung (IPRL) model and lung epithelial monolayers. Endocytosis pathways were examined in primary alveolar epithelial cultures by confocal microscopy. Molecular interactions of dendrimers with protein and lipid lung fluid components were studied using small angle neutron scattering (SANS). Dendrimers were absorbed across the intact lung via a passive, size-dependent transport pathway at rates slower than dextrans of similar molecular sizes. SANS investigations of concentration-dependent PAMAM transport in the IPRL confirmed no aggregation of PAMAMs with either albumin or dipalmitoylphosphatidylcholine lung lining fluid components. Distinct endocytic compartments were identified within primary alveolar epithelial cells and their functionality in the rapid uptake of fluorescent dendrimers and model macromolecular probes was confirmed by co-localisation studies. PAMAM dendrimers display favourable lung biocompatibility but modest lung to blood absorption kinetics. These data support the investigation of dendrimer-based carriers for controlled-release drug delivery to the deep lung.

  19. Aluminum-Activated Malate Transporters Can Facilitate GABA Transport.

    PubMed

    Ramesh, Sunita A; Kamran, Muhammad; Sullivan, Wendy; Chirkova, Larissa; Okamoto, Mamoru; Degryse, Fien; McLaughlin, Michael; Gilliham, Matthew; Tyerman, Stephen D

    2018-05-01

    Plant aluminum-activated malate transporters (ALMTs) are currently classified as anion channels; they are also known to be regulated by diverse signals, leading to a range of physiological responses. Gamma-aminobutyric acid (GABA) regulation of anion flux through ALMT proteins requires a specific amino acid motif in ALMTs that shares similarity with a GABA binding site in mammalian GABA A receptors. Here, we explore why TaALMT1 activation leads to a negative correlation between malate efflux and endogenous GABA concentrations ([GABA] i ) in both wheat ( Triticum aestivum ) root tips and in heterologous expression systems. We show that TaALMT1 activation reduces [GABA] i because TaALMT1 facilitates GABA efflux but GABA does not complex Al 3+ TaALMT1 also leads to GABA transport into cells, demonstrated by a yeast complementation assay and via 14 C-GABA uptake into TaALMT1 -expressing Xenopus laevis oocytes; this was found to be a general feature of all ALMTs we examined. Mutation of the GABA motif (TaALMT1 F213C ) prevented both GABA influx and efflux, and resulted in no correlation between malate efflux and [GABA] i We conclude that ALMTs are likely to act as both GABA and anion transporters in planta. GABA and malate appear to interact with ALMTs in a complex manner to regulate each other's transport, suggestive of a role for ALMTs in communicating metabolic status. © 2018 American Society of Plant Biologists. All rights reserved.

  20. Celiac Disease and Gluten-Free Oats: A Canadian Position Based on a Literature Review.

    PubMed

    La Vieille, Sébastien; Pulido, Olga M; Abbott, Michael; Koerner, Terence B; Godefroy, Samuel

    2016-01-01

    This paper provides an overview of the latest scientific data related to the safety of uncontaminated oats (<20 ppm of gluten) in the diet of individuals with celiac disease (CD). It updates the previous Health Canada position posted on the Health Canada website in 2007 and a related paper published in 2009. It considers a number of recent studies published between January 2008 and January 2015. While recognizing that a few people with celiac disease seem to be clinically intolerant to oats, this review concludes that oats uncontaminated by gluten-containing cereals (wheat, rye, and barley) can be safely ingested by most patients with celiac disease and that there is no conclusive evidence that the consumption of uncontaminated or specially produced oats containing no greater than 20 ppm gluten by patients with celiac disease should be limited to a specific daily amount. However, individuals with CD should observe a stabilization phase before introducing uncontaminated oats to the gluten-free diet (GFD). Oats uncontaminated with gluten should only be introduced after all symptoms of celiac disease have resolved and the individual has been on a GFD for a minimum of 6 months. Long-term regular medical follow-up of these patients is recommended but this is no different recommendation to celiac individuals on a GFD without oats.

  1. The Effect of Chemical Systemic Acquired Resistance Elicitors on Oat Avenanthramide Biosynthesis

    USDA-ARS?s Scientific Manuscript database

    Abstract. Oats produce a group of phenolic antioxidants termed “avenanthramides”. These metabolites are, among food crops, unique to oats. They are known to be potent antioxidants and have shown certain desirable nutritional characteristics such as inhibiting atherosclerotic plaque formation and ...

  2. Aluminum ions induce oat protoplasts to produce an extracellular (1 yields 3). beta. -D-glucan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, H.J.; Walton, J.D.

    1990-09-01

    Aluminum chloride induced mesophyll protoplasts of oat (Avena sativa) to produce an extracellular polysaccharide (EPS). EPS induced by AlCl{sub 3} appeared identical to that produced in response to the phytotoxin victorin. Al ions at 1 millimolar were toxic to protoplasts, but maximum EPS production occurred at a sublethal concentration of 200 micromolar, assayed at pH 6.0. As measured by incorporation of ({sup 14}C)glucose, AlCl{sub 3} stimulated EPS production 10- to 15-fold. Pretreatment of protoplasts with cycloheximide prevented EPS production but not cell death in response to AlCl{sub 3}, indicating that protein synthesis was necessary for EPS production but not formore » the phytotoxicity of Al ions. The trivalent salts of Y, Yb, Gd, and In also induced EPS production but those of Sc, Fe, Ga, Cr, and La did not. Mesophyll protoplasts from an acid-soil tolerant oat cultivar produced less EPS in response to AlCl{sub 3} than the acid-soil sensitive cultivar Fla 501. EPS was also produced by wheat (Triticum aestivum) and barley (Hordeum vulgare) protoplasts in response to AlCl{sub 3}. An Al-tolerant cultivar of wheat, Atlas, produced less EPS than an Al-sensitive cultivar, Scout, but an Al-tolerant cultivar of barley, Dayton, produced more than the Al-sensitive cultivar Kearney. Therefore, production of EPS by protoplasts in response to Al ions did not appear to be related to Al ion tolerance at the level of whole plants. EPS fluoresced in the presence of Calcofluor and Sirofluor and was degraded by purified laminarinase ((1{yields}3){beta}-D-glucanase) but did not pectinase (polygalacturonase). EPS was composed solely of glucose in 1{yields}3 linkages; hence it is a (1{yields}3){beta}-D-glucan (callose).« less

  3. Electron localization of anions probed by nitrile vibrations

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.; Newton, Marshall D.; ...

    2015-08-02

    Localization and delocalization of electrons is a key concept in chemistry, and is one of the important factors determining the efficiency of electron transport through organic conjugated molecules, which have potential to act as “molecular wires”. This, in turn, substantially influences the efficiencies of organic solar cells and other molecular electronic devices. It is also necessary to understand the electronic energy landscape and the dynamics of electrons through molecular chain that govern their transport capabilities in one-dimensional conjugated chains so that we can better define the design principles of conjugated molecules for their applications. We show that nitrile ν(C≡N) vibrationsmore » respond to the degree of electron localization in nitrile-substituted organic anions by utilizing time-resolved infrared (TRIR) detection combined with pulse radiolysis. Measurements of a series of aryl nitrile anions allow us to construct a semi-empirical calibration curve between the changes in the ν(C≡N) IR shifts and the changes in the electronic charges from the neutral to the anion states in the nitriles; more electron localization in the nitrile anion results in larger IR shifts. Furthermore, the IR linewidth in anions can report a structural change accompanying changes in the electronic density distribution. Probing the shift of the nitrile ν(C≡N) IR vibrational bands enables us to determine how the electron is localized in anions of nitrile-functionalized oligofluorenes, considered as organic mixed-valence compounds. We estimate the diabatic electron transfer distance, electronic coupling strengths, and energy barriers in these organic mixed-valence compounds. The analysis reveals a dynamic picture, showing that the electron is moving back and forth within the oligomers with a small activation energy of ≤ k BT, likely controlled by the movement of dihedral angles between monomer units. Thus, implications for the electron transport capability

  4. Dietary fiber and satiety: the effects of oats on satiety

    PubMed Central

    O’Neil, Carol E.; Greenway, Frank L.

    2016-01-01

    This review examines the effect of β-glucan, the viscous soluble fiber in oats, on satiety. A literature search for studies that examined delivery of the fiber in whole foods or as an extract was conducted. Viscosity interferes with the peristaltic mixing process in the small intestine to impede digestion and absorption of nutrients, which precipitates satiety signals. From measurements of the physicochemical and rheological properties of β-glucan, it appears that viscosity plays a key role in modulating satiety. However, the lack of standardized methods to measure viscosity and the inherent nature of appetite make it difficult to pinpoint the reasons for inconsistent results of the effects of oats on satiety. Nevertheless, the majority of the evidence suggests that oat β-glucan has a positive effect on perceptions of satiety. PMID:26724486

  5. Effect of Consuming Oat Bran Mixed in Water before a Meal on Glycemic Responses in Healthy Humans-A Pilot Study.

    PubMed

    Steinert, Robert E; Raederstorff, Daniel; Wolever, Thomas M S

    2016-08-26

    Viscous dietary fibers including oat β-glucan are one of the most effective classes of functional food ingredients for reducing postprandial blood glucose. The mechanism of action is thought to be via an increase in viscosity of the stomach contents that delays gastric emptying and reduces mixing of food with digestive enzymes, which, in turn, retards glucose absorption. Previous studies suggest that taking viscous fibers separate from a meal may not be effective in reducing postprandial glycemia. We aimed to re-assess the effect of consuming a preload of a commercially available oat-bran (4.5, 13.6 or 27.3 g) containing 22% of high molecular weight oat β-glucan (O22 (OatWell(®)22)) mixed in water before a test-meal of white bread on glycemic responses in 10 healthy humans. We found a significant effect of dose on blood glucose area under the curve (AUC) (p = 0.006) with AUC after 27.3 g of O22 being significantly lower than white bread only. Linear regression analysis showed that each gram of oat β-glucan reduced glucose AUC by 4.35% ± 1.20% (r = 0.507, p = 0.0008, n = 40) and peak rise by 6.57% ± 1.49% (r = 0.582, p < 0.0001). These data suggest the use of oat bran as nutritional preload strategy in the management of postprandial glycemia.

  6. Carbachol-induced colonic mucus formation requires transport via NKCC1, K⁺ channels and CFTR.

    PubMed

    Gustafsson, Jenny K; Lindén, Sara K; Alwan, Ala H; Scholte, Bob J; Hansson, Gunnar C; Sjövall, Henrik

    2015-07-01

    The colonic mucosa protects itself from the luminal content by secreting mucus that keeps the bacteria at a distance from the epithelium. For this barrier to be effective, the mucus has to be constantly replenished which involves exocytosis and expansion of the secreted mucins. Mechanisms involved in regulation of mucus exocytosis and expansion are poorly understood, and the aim of this study was to investigate whether epithelial anion secretion regulates mucus formation in the colon. The muscarinic agonist carbachol was used to induce parallel secretion of anions and mucus, and by using established inhibitors of ion transport, we studied how inhibition of epithelial transport affected mucus formation in mouse colon. Anion secretion and mucin exocytosis were measured by changes in membrane current and epithelial capacitance, respectively. Mucus thickness measurements were used to determine the carbachol effect on mucus growth. The results showed that the carbachol-induced increase in membrane current was dependent on NKCC1 co-transport, basolateral K(+) channels and Cftr activity. In contrast, the carbachol-induced increase in capacitance was partially dependent on NKCC1 and K(+) channel activity, but did not require Cftr activity. Carbachol also induced an increase in mucus thickness that was inhibited by the NKCC1 blocker bumetanide. However, mice that lacked a functional Cftr channel did not respond to carbachol with an increase in mucus thickness, suggesting that carbachol-induced mucin expansion requires Cftr channel activity. In conclusion, these findings suggest that colonic epithelial transport regulates mucus formation by affecting both exocytosis and expansion of the mucin molecules.

  7. Physical and molecular changes during the storage of gluten-free rice and oat bread.

    PubMed

    Hager, Anna-Sophie; Bosmans, Geertrui M; Delcour, Jan A

    2014-06-18

    Gluten-free bread crumb generally firms more rapidly than regular wheat bread crumb. We here combined differential scanning calorimetry (DSC), texture analysis, and time-domain proton nuclear magnetic resonance (TD (1)H NMR) to investigate the mechanisms underlying firming of gluten-free rice and oat bread. The molecular mobility of water and biopolymers in flour/water model systems and changes thereof after heating and subsequent cooling to room temperature were investigated as a basis for underpinning the interpretation of TD (1)H NMR profiles of fresh crumb. The proton distributions of wheat and rice flour/water model systems were comparable, while that of oat flour/water samples showed less resolved peaks and an additional population at higher T2 relaxation times representing lipid protons. No significant crumb moisture loss during storage was observed for the gluten-free bread loaves. Crumb firming was mainly caused by amylopectin retrogradation and water redistribution within bread crumb. DSC, texture, and TD (1)H NMR data correlated well and showed that starch retrogradation and crumb firming are much more pronounced in rice flour bread than in oat flour bread.

  8. Citizen Science: Dune Restoration with Sea Oats by Junior Friends of MacArthur Beach State Park

    NASA Astrophysics Data System (ADS)

    Allen, S.

    2016-12-01

    As a crucial part of the dune ecosystem, Sea Oats are a protected species in Florida. They provide excellent habitat for small birds and mammals and prevent dune erosion with their fibrous roots.Citizen science is a research and education tool that involves everyday people in real and meaningful forms of science. My volunteer group, Junior friends of Macarthur Beach State Park, used citizen science to restore dunes by growing and planting Sea Oats. Junior friends is a group of 6-12th grade students whose purpose is to support the park through monthly activities and special events. Junior Friends asked,what is the best way to germinate/grow/and plant Sea Oats to renourish the beach dune. Specifically, what planting medium is most conducive for maximizing growth of Sea Oats? We tested three scenarios: 100% potting soil, 100% sand from the beach, 50% sand-50% potting soil mixture.Using harvested Sea Oat seeds from Macarthur Beach State Park, we separated the seeds from their casings, known as spiklets. We then monitored the plant's weekly over the course of 14 weeks and charted their growth. All the seeds had similar growth rates, but the seeds that grew in 100% potting soil consistently grew the tallest. The second tallest Sea Oats were 100% sand; the 50% sand-50% potting soil mixture produced the least amount of growth. When seedlings reached their desired growth of 6-8 inches and established a root ball, we planted the Sea Oats on the dune for restoration. After planting them,we monitored the growth of the Sea Oats on the MacArthur Beach dune throughout the rest of the year, charting the height of the planted Sea Oats. Using Citizen science we had meaningful data that helped us have a better understanding of restoring Sea Oats on Florida dunes and will help further future restorations.

  9. Production and nitrogen-use efficiency of oat forage receiving slurry or urea

    USDA-ARS?s Scientific Manuscript database

    Recently, several research projects have evaluated fall-grown oat for use as emergency fall forage throughout the north-central US; however, using fall-grown oat in cropping programs also allows the practical benefit of summer manure distribution that is completely de-coupled from corn production. ‘...

  10. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman-James, Kristen

    2004-12-01

    This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical andmore » structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.« less

  11. Discriminating oat and groat kernels from other grains using near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Oat and groats can be discriminated from other grains such as barley, wheat, rye, and triticale (non-oats) using near infrared spectroscopy. The two instruments tested were the manual version of the ARS-USDA Single Kernel Near Infrared (SKNIR) and the automated QualySense QSorter Explorer high-speed...

  12. A gene expression atlas of developing oat seeds for enhancing nutritional composition

    USDA-ARS?s Scientific Manuscript database

    Oat (Avena sativa L.) genome resources are less abundant than for wheat and barley, but next generation sequencing (NGS) technologies have great potential to accelerate new genome information for oat in a cost-effective manner. We are employing RNA-Seq to develop a gene expression atlas of developin...

  13. Relationship of carbohydrates and lignin molecular structure spectral profiles to nutrient profile in newly developed oats cultivars and barley grain

    NASA Astrophysics Data System (ADS)

    Prates, Luciana Louzada; Refat, Basim; Lei, Yaogeng; Louzada-Prates, Mariana; Yu, Peiqiang

    2018-01-01

    The objectives of this study were to quantify the chemical profile and the magnitude of differences in the oat and barley grain varieties developed by Crop Development Centre (CDC) in terms of Cornell Net Carbohydrate Protein System (CNCPS) carbohydrate sub-fractions: CA4 (sugars), CB1 (starch), CB2 (soluble fibre), CB3 (available neutral detergent fibre - NDF), and CC (unavailable carbohydrate); to estimate the energy values; to detect the lignin and carbohydrate (CHO) molecular structure profiles in CDC Nasser and CDC Seabiscuit oat and CDC Meredith barley grains by using Fourier transform infrared attenuated total reflectance (FTIR-ATR); to develop a model to predict nutrient supply based on CHO molecular profile. Results showed that NDF, ADF and CHO were greater (P < 0.05) in oat than in barley. The starch content was greater (P < 0.05) in barley than in oat. The CDC Meredith showed greater total rumen degradable carbohydrate (RDC), intestinal digestible fraction carbohydrate (FC) and lower total rumen undegradable carbohydrate (RUC). However, the estimated milk production did not differ for CDC Nasser oat and CDC Meredith barley. Lignin peak area and peak height did not differ (P > 0.05) for oat and barley grains as well as non-structural CHO. However, cellulosic compounds peak area and height were greater (P < 0.05) in oat than barley grains. Multiple regressions were determined to predict nutrient supply by using lignin and CHO molecular profiles. It was concluded that although there were some differences between oat and barley grains, CDC Nasser and CDC Meredith presented similarities related to chemical and molecular profiles, indicating that CDC Meredith barley could be replaced for CDC Nasser as ruminant feed. The FTIR was able to identify functional groups related to CHO molecular spectral in oat and barley grains and FTIR-ATR results could be used to predict nutrient supply in ruminant livestock systems.

  14. Pore dilatation increases the bicarbonate permeability of CFTR, ANO1 and glycine receptor anion channels

    PubMed Central

    Jun, Ikhyun; Cheng, Mary Hongying; Sim, Eunji; Jung, Jinsei; Suh, Bong Lim; Kim, Yonjung; Son, Hankil; Park, Kyungsoo; Kim, Chul Hoon; Yoon, Joo‐Heon; Whitcomb, David C.; Bahar, Ivet

    2016-01-01

    Key points Cellular stimuli can modulate the ion selectivity of some anion channels, such as CFTR, ANO1 and the glycine receptor (GlyR), by changing pore size.Ion selectivity of CFTR, ANO1 and GlyR is critically affected by the electric permittivity and diameter of the channel pore.Pore size change affects the energy barriers of ion dehydration as well as that of size‐exclusion of anion permeation.Pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of CFTR, ANO1 and GlyR.Dynamic change in P HC O3/ Cl may mediate many physiological and pathological processes. Abstract Chloride (Cl−) and bicarbonate (HCO3 −) are two major anions and their permeation through anion channels plays essential roles in our body. However, the mechanism of ion selection by the anion channels is largely unknown. Here, we provide evidence that pore dilatation increases the bicarbonate permeability (P HC O3/ Cl ) of anion channels by reducing energy barriers of size‐exclusion and ion dehydration of HCO3 − permeation. Molecular, physiological and computational analyses of major anion channels, such as cystic fibrosis transmembrane conductance regulator (CFTR), anoctamin‐1(ANO1/TMEM16A) and the glycine receptor (GlyR), revealed that the ion selectivity of anion channels is basically determined by the electric permittivity and diameter of the pore. Importantly, cellular stimuli dynamically modulate the anion selectivity of CFTR and ANO1 by changing the pore size. In addition, pore dilatation by a mutation in the pore‐lining region alters the anion selectivity of GlyR. Changes in pore size affected not only the energy barriers of size exclusion but that of ion dehydration by altering the electric permittivity of water‐filled cavity in the pore. The dynamic increase in P HC O3/ Cl by pore dilatation may have many physiological and pathophysiological implications ranging from epithelial HCO3 − secretion to neuronal excitation. PMID:26663196

  15. Interindividual Variability in Hepatic Organic Anion-Transporting Polypeptides and P-Glycoprotein (ABCB1) Protein Expression: Quantification by Liquid Chromatography Tandem Mass Spectroscopy and Influence of Genotype, Age, and Sex

    PubMed Central

    Prasad, Bhagwat; Evers, Raymond; Gupta, Anshul; Hop, Cornelis E. C. A.; Salphati, Laurent; Shukla, Suneet; Ambudkar, Suresh V.

    2014-01-01

    Interindividual variability in protein expression of organic anion-transporting polypeptides (OATPs) OATP1B1, OATP1B3, OATP2B1, and multidrug resistance-linked P-glycoprotein (P-gp) or ABCB1 was quantified in frozen human livers (n = 64) and cryopreserved human hepatocytes (n = 12) by a validated liquid chromatography tandem mass spectroscopy (LC-MS/MS) method. Membrane isolation, sample workup, and LC-MS/MS analyses were as described before by our laboratory. Briefly, total native membrane proteins, isolated from the liver tissue and cryopreserved hepatocytes, were trypsin digested and quantified by LC-MS/MS using signature peptide(s) unique to each transporter. The mean ± S.D. (maximum/minimum range in parentheses) protein expression (fmol/µg of membrane protein) in human liver tissue was OATP1B1- 2.0 ± 0.9 (7), OATP1B3- 1.1 ± 0.5 (8), OATP2B1- 1 1.7 ± 0.6 (5), and P-gp- 0.4 ± 0.2 (8). Transporter expression in the liver tissue was comparable to that in the cryopreserved hepatocytes. Most important is that livers with SLCO1B1 (encoding OATP1B1) haplotypes *14/*14 and *14/*1a [i.e., representing single nucleotide polymorphisms (SNPs), c.388A > G, and c.463C > A] had significantly higher (P < 0.0001) protein expression than the reference haplotype (*1a/*1a). Based on these genotype-dependent protein expression data, we predicted (using Simcyp) an up to ∼40% decrease in the mean area under the curve of rosuvastatin or repaglinide in subjects harboring these variant alleles compared with those harboring the reference alleles. SLCO1B3 (encoding OATP1B3) SNPs did not significantly affect protein expression. Age and sex were not associated with transporter protein expression. These data will facilitate the prediction of population-based human transporter-mediated drug disposition, drug-drug interactions, and interindividual variability through physiologically based pharmacokinetic modeling. PMID:24122874

  16. Functional expression of the 11 human Organic Anion Transporting Polypeptides in insect cells reveals that sodium fluorescein is a general OATP substrate.

    PubMed

    Patik, Izabel; Kovacsics, Daniella; Német, Orsolya; Gera, Melinda; Várady, György; Stieger, Bruno; Hagenbuch, Bruno; Szakács, Gergely; Özvegy-Laczka, Csilla

    2015-12-15

    Organic Anion Transporting Polypeptides (OATPs), encoded by genes of the Solute Carrier Organic Anion (SLCO) family, are transmembrane proteins involved in the uptake of various compounds of endogenous or exogenous origin. In addition to their physiological roles, OATPs influence the pharmacokinetics and drug-drug interactions of several clinically relevant compounds. To examine the function and molecular interactions of human OATPs, including several poorly characterized family members, we expressed all 11 human OATPs at high levels in the baculovirus-Sf9 cell system. We measured the temperature- and inhibitor-sensitive cellular accumulation of sodium fluorescein and fluorescein-methotrexate, two fluorescent substrates of the OATPs, OATP1B1 and 1B3. OATP1B1 and 1B3 were functional in Sf9 cells, showing rapid uptake (t1/2(fluorescein-methotrexate) 2.64 and 4.16 min, and t1/2(fluorescein) 6.71 and 5.58 min for OATP1B1 and 1B3, respectively) and high-affinity transport (Km(fluorescein-methotrexate) 0.23 and 0.53 μM, and Km(fluorescein) 25.73 and 38.55 μM for OATP1B1 and 1B3, respectively) of both substrates. We found that sodium fluorescein is a general substrate of all human OATPs: 1A2, 1B1, 1B3, 1C1, 2A1, 2B1, 3A1, 4A1, 4C1, 5A1 and 6A1, while fluorescein-methotrexate is only transported by 1B1, 1B3, 1A2 and 2B1. Acidic extracellular pH greatly facilitated fluorescein uptake by all OATPs, and new molecular interactions were detected (between OATP2B1 and Imatinib, OATP3A1, 5A1 and 6A1 and estradiol 17-β-d-glucuronide, and OATP1C1 and 4C1 and prostaglandin E2). These studies demonstrate, for the first time, that the insect cell system is suitable for the functional analysis of the entire human OATP family, and for drug-OATP interaction screening. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. The Gluten-Free Diet: Can Oats and Wheat Starch Be Part of It?

    PubMed

    Poley, J Rainer

    2017-01-01

    Objective and Conclusion: Uncertainty still exists about the use of oats and wheat starch as part of a gluten-free diet in patients with celiac disease (CD). This review should help to clarify the issues at hand. Whereas uncontaminated (from gluten/gliadin) oats and oats from cultivars not containing celiac-activating sequences of proline and glutamine can be used without risk of intestinal damage, wheat starch should not be used, unless it is free of gluten-that is, deglutinized-because even small amounts of gluten over time are able to induce small intestinal mucosal damage.

  18. Reduction of lipid oxidation by formation of caseinate-oil-oat gum emulsions

    USDA-ARS?s Scientific Manuscript database

    The concentration of oat gum, though important for formation of stable emulsion, has no effect on oxidation of Omega 3 oil; this is most prominent in fish-oil based Omega 3 oil. The optimal concentration of oat gum is about 0.2% wt for emulsion stability and visual appearance. We found that concentr...

  19. Oat avenanthramides induce heme oxygenase-1 expression via Nrf2-mediated signaling in HK-2 cells

    USDA-ARS?s Scientific Manuscript database

    Numerous laboratory and human studies have shown that avenanthramides (AVAs), unique compounds found in oats, are strong antioxidants. Their underlying mechanisms, however, remain unclear. We demonstrated for the first time that the three major AVAs in oats—2c, 2f, and 2p—significantly increased hem...

  20. Anion exchange pathways for Cl sup minus transport in rabbit renal microvillus membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karniski, L.P.; Aronson, P.S.

    1987-09-01

    The authors evaluated the mechanisms of chloride transport in microvillus membrane vesicles isolated from the rabbit renal cortex. The presence of Cl-formate exchange was confirmed. Outward gradients of oxaloacetate, HCO{sub 3}, acetate, lactate, succinate, sulfate, and p-aminohippurate (PAH) stimulated the rate of Cl uptake minimally or not at all. However, an outward gradient of oxalate stimulated Cl uptake by 70%, and an outward Cl gradient induced uphill oxalate uptake, indicting Cl-oxalate exchange. Moreover, an outward formate gradient induced uphill oxalate uptake, indicating formate-oxalate exchange. Studies of inhibitor and substrate specificity indicated the probably operation of at least two separate anionmore » exchangers in mediating Cl transport. The Cl-formate exchanger accepted Cl and formate as substrates, had little or no affinity for oxalate, was sensitive to inhibition by furosemide, and was less sensitive to inhibition by 4,4{prime}-diisothiocyanostilbene-2,2{prime}-disulfonic acid (DIDS). The Cl (formate)-oxalate exchanger also accepted Cl and formate as substrates but had high affinity for oxalate, was highly sensitive to inhibition by DIDS, and was less sensitive to inhibition by furosemide. The Cl-formate exchanger was electroneutral, whereas the Cl (formate)-oxalate exchanger was electrogenic. They conclude that at least separate anion exchangers mediating Cl transport are present on the luminal membrane of the rabbit proximal tubule cell. These exchangers may play important roles in mediating transtubular Cl and oxalate transport in this nephron segment.« less

  1. Computational and photoelectron spectroscopic study of the dipole-bound anions, indole(H2O)1,2 (.).

    PubMed

    Buytendyk, A M; Buonaugurio, A M; Xu, S-J; Nilles, J M; Bowen, K H; Kirnosov, N; Adamowicz, L

    2016-07-14

    We report our joint computational and anion photoelectron spectroscopic study of indole-water cluster anions, indole(H2O)1,2 (-). The photoelectron spectra of both cluster anions show the characteristics of dipole-bound anions, and this is confirmed by our theoretical computations. The experimentally determined vertical electron detachment (VDE) energies for indole(H2O)1 (-) and indole(H2O)2 (-) are 144 meV and 251 meV, respectively. The corresponding theoretically determined VDE values for indole(H2O)1 (-) and indole(H2O)2 (-) are 124 meV and 255 meV, respectively. The vibrational features in the photoelectron spectra of these cluster anions are assigned as the vibrations of the water molecule.

  2. Computational and photoelectron spectroscopic study of the dipole-bound anions, indole(H2O)1,2-

    NASA Astrophysics Data System (ADS)

    Buytendyk, A. M.; Buonaugurio, A. M.; Xu, S.-J.; Nilles, J. M.; Bowen, K. H.; Kirnosov, N.; Adamowicz, L.

    2016-07-01

    We report our joint computational and anion photoelectron spectroscopic study of indole-water cluster anions, indole(H2O)1,2-. The photoelectron spectra of both cluster anions show the characteristics of dipole-bound anions, and this is confirmed by our theoretical computations. The experimentally determined vertical electron detachment (VDE) energies for indole(H2O)1- and indole(H2O)2- are 144 meV and 251 meV, respectively. The corresponding theoretically determined VDE values for indole(H2O)1- and indole(H2O)2- are 124 meV and 255 meV, respectively. The vibrational features in the photoelectron spectra of these cluster anions are assigned as the vibrations of the water molecule.

  3. Effects of cultivar and grazing initiation date on fall-grown oat for replacement dairy heifers.

    PubMed

    Coblentz, W K; Brink, G E; Esser, N M; Cavadini, J S

    2015-09-01

    Fall-grown oat has shown promise for extending the grazing season in Wisconsin, but the optimum date for initiating grazing has not been evaluated. Our objectives for this project were (1) to assess the pasture productivity and nutritive value of 2 oat cultivars [Ogle and ForagePlus (OG and FP, respectively)] with late-September (EG) or mid-October (LG) grazing initiation dates; and (2) to evaluate growth performance by heifers grazing these oat forages compared with heifers reared in confinement (CON). A total of 160 gravid Holstein heifers (80 heifers/yr) were assigned to 10 research groups (8 heifers/group). Mean initial body weight was 509±40.5 kg in 2013 and 517±30.2 kg in 2014. Heifer groups were assigned to specific pastures arranged as a 2×2 factorial of oat cultivars and grazing initiation dates. Grazing heifer groups were allowed to strip-graze oat pastures for 6 h daily before returning to the barn, where they were offered a forage-based basal total mixed ration. Main effects of oat cultivar and sampling date interacted for forage characteristics in 2013, but not in 2014. During 2013, oat forage mass increased until early November before declining in response to freezing weather conditions, thereby exhibiting linear and quadratic effects of sampling date, regardless of oat cultivar. Similar trends over time were observed in 2014. For 2013, the maximum forage mass was 5,329 and 5,046 kg/ha for FP and OG, respectively, whereas the mean maximum forage mass for 2014 was 4,806 kg/ha. ForagePlus did not reach the boot stage of growth during either year of the trial; OG matured more rapidly, reaching the late-heading stage during 2013, but exhibited only minor maturity differences from FP in 2014. For 2013, average daily gain for CON did not differ from grazing heifer groups (overall mean=0.63 kg/d); however, average daily gain from FP was greater than OG (0.68 vs. 0.57 kg/d), and greater from EG compared with LG (0.82 vs. 0.43 kg/d). For 2013, advantages in

  4. Using brown midrib 6 dwarf forage sorghum silage and fall-grown oat silage in lactating dairy cow rations.

    PubMed

    Harper, M T; Oh, J; Giallongo, F; Lopes, J C; Roth, G W; Hristov, A N

    2017-07-01

    Double cropping and increasing crop diversity could improve dairy farm economic and environmental sustainability. In this experiment, corn silage was partially replaced with 2 alternative forages, brown midrib-6 brachytic dwarf forage sorghum (Sorghum bicolor) or fall-grown oat (Avena sativa) silage, in the diet of lactating dairy cows. We investigated the effect on dry matter (DM) intake, milk yield (MY), milk components and fatty acid profile, apparent total-tract nutrient digestibility, N utilization, enteric methane emissions, and income over feed cost. We analyzed the in situ DM and neutral detergent fiber disappearance of the alternative forages versus corn silage and alfalfa haylage. Sorghum was grown in the summer and harvested in the milk stage. Oats were grown in the fall and harvested in the boot stage. Compared with corn silage, neutral detergent fiber and acid detergent fiber concentrations were higher in the alternative forages. Lignin content was highest for sorghum silage and similar for corn silage and oat silage. The alternative forages had less than 1% starch compared with the approximately 35% starch in the corn silage. Ruminal in situ DM effective degradability was similar, although statistically different, for corn silage and oat silage, but lower for sorghum silage. Diets with the alternative forages were fed in a replicated 3 × 3 Latin square design experiment with three 28-d periods and 12 Holstein cows. The control diet contained 44% (DM basis) corn silage. In the other 2 diets, sorghum or oat silages were included at 10% of dietary DM, replacing corn silage. Sorghum silage inclusion decreased DM intake, MY, and milk protein content but increased milk fat and maintained energy-corrected MY similar to the control. Oat silage had no effect on DM intake, MY, or milk components compared to the control. The oat silage diet increased apparent total-tract digestibility of dietary nutrients, except starch, whereas the sorghum diet slightly

  5. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of oat genome.

    PubMed

    Gutierrez-Gonzalez, Juan J; Garvin, David F

    2016-11-01

    Vitamin E is essential for humans and thus must be a component of a healthy diet. Among the cereal grains, hexaploid oats (Avena sativa L.) have high vitamin E content. To date, no gene sequences in the vitamin E biosynthesis pathway have been reported for oats. Using deep sequencing and orthology-guided assembly, coding sequences of genes for each step in vitamin E synthesis in oats were reconstructed, including resolution of the sequences of homeologs. Three homeologs, presumably representing each of the three oat subgenomes, were identified for the main steps of the pathway. Partial sequences, likely representing pseudogenes, were recovered in some instances as well. Pairwise comparisons among homeologs revealed that two of the three putative subgenome-specific homeologs are almost identical for each gene. Synonymous substitution rates indicate the time of divergence of the two more similar subgenomes from the distinct one at 7.9-8.7 MYA, and a divergence between the similar subgenomes from a common ancestor 1.1 MYA. A new proposed evolutionary model for hexaploid oat formation is discussed. Homeolog-specific gene expression was quantified during oat seed development and compared with vitamin E accumulation. Homeolog expression largely appears to be similar for most of genes; however, for some genes, homoeolog-specific transcriptional bias was observed. The expression of HPPD, as well as certain homoeologs of VTE2 and VTE4, is highly correlated with seed vitamin E accumulation. Our findings expand our understanding of oat genome evolution and will assist efforts to modify vitamin E content and composition in oats. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Molecular mapping of powdery mildew resistance gene Eg-3 in cultivated oat (Avena sativa L. cv. Rollo).

    PubMed

    Mohler, Volker; Zeller, Friedrich J; Hsam, Sai L K

    2012-05-01

    Powdery mildew is a prevalent fungal disease affecting oat (Avena sativa L.) production in Europe. Common oat cultivar Rollo was previously shown to carry the powdery mildew resistance gene Eg-3 in common with cultivar Mostyn. The resistance gene was mapped with restriction fragment length polymorphism (RFLP) markers from Triticeae group-1 chromosomes using a population of F(3) lines from a cross between A. byzantina cv. Kanota and A. sativa cv. Rollo. This comparative mapping approach positioned Eg-3 between cDNA-RFLP marker loci cmwg706 and cmwg733. Since both marker loci were derived from the long arm of barley chromosome 1H, the subchromosomal location of Eg-3 was assumed to be on the long arm of oat chromosome 17. Amplified fragment length polymorphism (AFLP) marker technology featured as an efficient means for obtaining markers closely linked to Eg-3.

  7. Novel properties of the wheat aluminum tolerance organic acid transporter (TaALMT1) revealed by electrophysiological characterization in Xenopus Oocytes: functional and structural implications.

    PubMed

    Piñeros, Miguel A; Cançado, Geraldo M A; Kochian, Leon V

    2008-08-01

    Many plant species avoid the phytotoxic effects of aluminum (Al) by exuding dicarboxylic and tricarboxylic acids that chelate and immobilize Al(3+) at the root surface, thus preventing it from entering root cells. Several novel genes that encode membrane transporters from the ALMT and MATE families recently were cloned and implicated in mediating the organic acid transport underlying this Al tolerance response. Given our limited understanding of the functional properties of ALMTs, in this study a detailed characterization of the transport properties of TaALMT1 (formerly named ALMT1) from wheat (Triticum aestivum) expressed in Xenopus laevis oocytes was conducted. The electrophysiological findings are as follows. Although the activity of TaALMT1 is highly dependent on the presence of extracellular Al(3+) (K(m1/2) of approximately 5 microm Al(3+) activity), TaALMT1 is functionally active and can mediate ion transport in the absence of extracellular Al(3+). The lack of change in the reversal potential (E(rev)) upon exposure to Al(3+) suggests that the "enhancement" of TaALMT1 malate transport by Al is not due to alteration in the transporter's selectivity properties but is solely due to increases in its anion permeability. The consistent shift in the direction of the E(rev) as the intracellular malate activity increases indicates that TaALMT1 is selective for the transport of malate over other anions. The estimated permeability ratio between malate and chloride varied between 1 and 30. However, the complex behavior of the E(rev) as the extracellular Cl(-) activity was varied indicates that this estimate can only be used as a general guide to understanding the relative affinity of TaALMT1 for malate, representing only an approximation of those expected under physiologically relevant ionic conditions. TaALMT1 can also mediate a large anion influx (i.e. outward currents). TaALMT1 is permeable not only to malate but also to other physiologically relevant anions such as Cl

  8. Processing of oats and the impact of processing operations on nutrition and health benefits.

    PubMed

    Decker, Eric A; Rose, Devin J; Stewart, Derek

    2014-10-01

    Oats are a uniquely nutritious food as they contain an excellent lipid profile and high amounts of soluble fibre. However, an oat kernel is largely non-digestible and thus must be utilised in milled form to reap its nutritional benefits. Milling is made up of numerous steps, the most important being dehulling to expose the digestible groat, heat processing to inactivate enzymes that cause rancidity, and cutting, rolling or grinding to convert the groat into a product that can be used directly in oatmeal or can be used as a food ingredient in products such as bread, ready-to-eat breakfast cereals and snack bars. Oats can also be processed into oat bran and fibre to obtain high-fibre-containing fractions that can be used in a variety of food products.

  9. Dietary fiber and satiety: the effects of oats on satiety.

    PubMed

    Rebello, Candida J; O'Neil, Carol E; Greenway, Frank L

    2016-02-01

    This review examines the effect of β-glucan, the viscous soluble fiber in oats, on satiety. A literature search for studies that examined delivery of the fiber in whole foods or as an extract was conducted. Viscosity interferes with the peristaltic mixing process in the small intestine to impede digestion and absorption of nutrients, which precipitates satiety signals. From measurements of the physicochemical and rheological properties of β-glucan, it appears that viscosity plays a key role in modulating satiety. However, the lack of standardized methods to measure viscosity and the inherent nature of appetite make it difficult to pinpoint the reasons for inconsistent results of the effects of oats on satiety. Nevertheless, the majority of the evidence suggests that oat β-glucan has a positive effect on perceptions of satiety. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Isatinphenylsemicarbazones as efficient colorimetric sensors for fluoride and acetate anions - anions induce tautomerism.

    PubMed

    Jakusová, Klaudia; Donovalová, Jana; Cigáň, Marek; Gáplovský, Martin; Garaj, Vladimír; Gáplovský, Anton

    2014-04-05

    The anion induced tautomerism of isatin-3-4-phenyl(semicarbazone) derivatives is studied herein. The interaction of F(-), AcO(-), H2PO4(-), Br(-) or HSO4(-) anions with E and Z isomers of isatin-3-4-phenyl(semicarbazone) and N-methylisatin-3-4-phenyl(semicarbazone) as sensors influences the tautomeric equilibrium of these sensors in the liquid phase. This tautomeric equilibrium is affected by (1) the inter- and intra-molecular interactions' modulation of isatinphenylsemicarbazone molecules due to the anion induced change in the solvation shell of receptor molecules and (2) the sensor-anion interaction with the urea hydrogens. The acid-base properties of anions and the difference in sensor structure influence the equilibrium ratio of the individual tautomeric forms. Here, the tautomeric equilibrium changes were indicated by "naked-eye" experiment, UV-VIS spectral and (1)H NMR titration, resulting in confirmation that appropriate selection of experimental conditions leads to a high degree of sensor selectivity for some investigated anions. Sensors' E and Z isomers differ in sensitivity, selectivity and sensing mechanism. Detection of F(-) or CH3COO(-) anions at high weakly basic anions' excess is possible. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS)

    PubMed Central

    Paroder-Belenitsky, Monika; Maestas, Matthew J.; Dohán, Orsolya; Nicola, Juan Pablo; Reyna-Neyra, Andrea; Follenzi, Antonia; Dadachova, Ekaterina; Eskandari, Sepehr; Amzel, L. Mario; Carrasco, Nancy

    2011-01-01

    I- uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na+/I- symporter (NIS) with an electrogenic 2Na+ : 1I- stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I- transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the Km for the anion substrates. Unlike WT NIS, which mediates symport of Na+ and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 2∶1 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na+/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot. PMID:22011571

  12. Pharmacokinetics of avenanthramides (AV) from AV-enriched malted oats in healthy older adults

    USDA-ARS?s Scientific Manuscript database

    Avenanthramides (AV) are a unique group of phytochemicals found in oat bran. In vitro studies show both purified AV and concentrated oat AV mixtures have anti-atherogenic and anti-inflammatory activity, suggesting they may have similar effects in vivo if they are sufficiently bioavailable. The bioav...

  13. OATE Journal: Oklahoma Association of Teacher Educators. Volume 14, Spring 2010

    ERIC Educational Resources Information Center

    Green, Malinda Hendricks, Ed.

    2010-01-01

    The "OATE Journal" is published annually by the Oklahoma Association of Teacher Educators. Articles in this issue include: (1) "The Transition of Middle School Students into High School" by Aric Sappington, Malinda Hendricks Green, Jennifer J. R. Endicott, and Susan C. Scott; (2) "Graduate Students' Perceptions of Teacher…

  14. The effect of replacing fat with oat bran on fatty acid composition and physicochemical properties of meatballs.

    PubMed

    Yılmaz, İsmail; Dağlıoğlu, Orhan

    2003-10-01

    Oat bran was used as a fat substitute in the production of meatballs. The effect of oat bran addition on the fatty acid composition, trans fatty acids, total fat, some physicochemical and sensory properties of the samples was studied. Meatballs were produced with four different formulations; the addition of 5, 10, 15 and 20% oat bran. Control samples were formulated with 25% fat addition as in commercial production. The major fatty acids were cis-oleic, palmitic and stearic acid in all the meatball samples, those with oat bran added as well as the control. Meatballs containing oat bran had lower concentrations of total fat and total trans fatty acids than the control samples. Meatballs made with 20% oat bran had the highest protein, salt and ash contents, L value (lightness), b value (yellowness), and the lowest moisture content and a value (redness). There was no significant difference among the meatball samples with respect to sensory properties, and all samples had high acceptability.

  15. Pure Oats as Part of the Canadian Gluten-Free Diet in Celiac Disease: The Need to Revisit the Issue

    PubMed Central

    de Souza, M. Cristina P.; Deschênes, Marie-Eve; Laurencelle, Suzanne; Godet, Patrick; Roy, Claude C.; Djilali-Saiah, Idriss

    2016-01-01

    The question about recommending pure, noncontaminated oats as part of the gluten-free diet of patients with celiac disease remains controversial. This might be due to gluten cross contamination and to the possible immunogenicity of some oat cultivars. In view of this controversy, a review of the scientific literature was conducted to highlight the latest findings published between 2008 and 2014 to examine the current knowledge on oats safety and celiac disease in Europe and North America. Results showed that regular oats consumed in Canada are largely contaminated. Overall, the consumption of pure oats has been generally considered to be safe for adults and children. However, it appears that some oat cultivars may trigger an immune response in sensitive individuals. Therefore, further long-term studies on the impact of consumption of oats identifying the cultivar(s) constitute an important step forward for drawing final recommendations. Furthermore, a closer and more accurate monitoring of the dietary intake of noncontaminated oats would be paramount to better determine what its actual contribution in the gluten-free diet of adults and children with celiac disease are in order to draw sound recommendations on the safety of pure oats as part of the gluten-free diet. PMID:27446824

  16. Pure Oats as Part of the Canadian Gluten-Free Diet in Celiac Disease: The Need to Revisit the Issue.

    PubMed

    de Souza, M Cristina P; Deschênes, Marie-Eve; Laurencelle, Suzanne; Godet, Patrick; Roy, Claude C; Djilali-Saiah, Idriss

    2016-01-01

    The question about recommending pure, noncontaminated oats as part of the gluten-free diet of patients with celiac disease remains controversial. This might be due to gluten cross contamination and to the possible immunogenicity of some oat cultivars. In view of this controversy, a review of the scientific literature was conducted to highlight the latest findings published between 2008 and 2014 to examine the current knowledge on oats safety and celiac disease in Europe and North America. Results showed that regular oats consumed in Canada are largely contaminated. Overall, the consumption of pure oats has been generally considered to be safe for adults and children. However, it appears that some oat cultivars may trigger an immune response in sensitive individuals. Therefore, further long-term studies on the impact of consumption of oats identifying the cultivar(s) constitute an important step forward for drawing final recommendations. Furthermore, a closer and more accurate monitoring of the dietary intake of noncontaminated oats would be paramount to better determine what its actual contribution in the gluten-free diet of adults and children with celiac disease are in order to draw sound recommendations on the safety of pure oats as part of the gluten-free diet.

  17. Preferential recruitment of the maternal centromere-specific histone H3 (CENH3) in oat (Avena sativa L.) × pearl millet (Pennisetum glaucum L.) hybrid embryos.

    PubMed

    Ishii, Takayoshi; Sunamura, Naohiro; Matsumoto, Ayaka; Eltayeb, Amin Elsadig; Tsujimoto, Hisashi

    2015-12-01

    Chromosome elimination occurs frequently in interspecific hybrids between distantly related species in Poaceae. However, chromosomes from both parents behave stably in a hybrid of female oat (Avena sativa L.) pollinated by pearl millet (Pennisetum glaucum L.). To analyze the chromosome behavior in this hybrid, we cloned the centromere-specific histone H3 (CENH3) genes of oat and pearl millet and produced a pearl millet-specific anti-CENH3 antibody. Application of this antibody together with a grass species common anti-CENH3 antibody revealed the dynamic CENH3 composition of the hybrid cells before and after fertilization. Despite co-expression of CENH3 genes encoded by oat and pearl millet, only an oat-type CENH3 was incorporated into the centromeres of both species in the hybrid embryo. Oat CENH3 enables a functional centromere in pearl millet chromosomes in an oat genetic background. Comparison of CENH3 genes among Poaceae species that show chromosome elimination in interspecific hybrids revealed that the loop 1 regions of oat and pearl millet CENH3 exhibit exceptionally high similarity.

  18. GC-TOF-MS-based serum metabolomic investigations of naked oat bran supplementation in high-fat-diet-induced dyslipidemic rats.

    PubMed

    Gu, Jiaojiao; Jing, Lulu; Ma, Xiaotao; Zhang, Zhaofeng; Guo, Qianying; Li, Yong

    2015-12-01

    The present study aimed to explore the metabolic response of oat bran consumption in dyslipidemic rats by a high-throughput metabolomics approach. Four groups of Sprague-Dawley rats were used: N group (normal chow diet), M group (dyslipidemia induced by 4-week high-fat feeding, then normal chow diet), OL group and OH group (dyslipidemia induced, then normal chow diet supplemented with 10.8% or 43.4% naked oat bran). Intervention lasted for 12weeks. Gas chromatography quadrupole time-of-flight mass spectrometry was used to identify serum metabolite profiles. Results confirmed the effects of oat bran on improving lipidemic variables and showed distinct metabolomic profiles associated with diet intervention. A number of endogenous molecules were changed by high-fat diet and normalized following supplementation of naked oat bran. Elevated levels of serum unsaturated fatty acids including arachidonic acid (Log2Fold of change=0.70, P=.02 OH vs. M group), palmitoleic acid (Log2Fold of change=1.24, P=.02 OH vs. M group) and oleic acid (Log2Fold of change=0.66, P=.04 OH vs. M group) were detected after oat bran consumption. Furthermore, consumption of oat bran was also characterized by higher levels of methionine and S-adenosylmethionine. Pathway exploration found that most of the discriminant metabolites were involved in fatty acid biosynthesis, biosynthesis and metabolism of amino acids, microbial metabolism in diverse environments and biosynthesis of plant secondary metabolites. These results point to potential biomarkers and underlying benefit of naked oat bran in the context of diet-induced dyslipidemia and offer some insights into the mechanism exploration. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Comparing Various In Vitro Prediction Criteria to Assess the Potential of a New Molecular Entity to Inhibit Organic Anion Transporting Polypeptide 1B1.

    PubMed

    Vaidyanathan, Jayabharathi; Yoshida, Kenta; Arya, Vikram; Zhang, Lei

    2016-07-01

    Evaluation of organic anion transporting polypeptide (OATP) 1B1-mediated drug-drug interactions (DDIs) is an integral part of drug development and is recommended by regulatory agencies. In this study we compared various prediction methods and cutoff criteria based on in vitro inhibition data to assess the potential of a new molecular entity to inhibit OATP1B1 in vivo. In vitro (eg, IC50 , fu,p ) and in vivo (eg, dose, Cmax , change in area under the curve [AUC]) data for 11 substrates and 61 inhibitors for OATP1B1 were obtained from literature and Drugs@FDA, which include 107 clinical (in vivo) DDI studies. Substrate dependency and variability of IC50 values were noted. In addition to the ratio of unbound or total systemic concentration (Imax,u and Imax ) to IC50 , maximum unbound inhibitor concentration at the inlet to the liver (Iu,in,max ) was used for the estimation of "R value" where R = 1 + Iu,in,max /IC50 . Based on our analyses, Imax /Ki ≥ 0.1, R ≥ 1.04, or R ≥ 1.1 seem to be appropriate for reducing the false-negative (FN) predictions. However, as compared with R ≥ 1.1, Imax /Ki ≥ 0.1 and R ≥ 1.04 resulted in higher false positives (FPs) and lower true negatives (TNs). R ≥ 1.1, Imax,u /Ki ≥ 0.02, and R ≥ 1.25 alone, or combined criterion of Imax /Ki ≥ 0.1 and R ≥ 1.25, were reasonable to determine the need to perform clinical DDI studies with OATP1B1 substrates with similar positive and negative predictive values. Possible reasons of FP or FN from different decision criteria should be considered when interpreting prediction results, and the variability in IC50 determination needs to be understood and minimized. © 2016, The American College of Clinical Pharmacology.

  20. Fluoride resistance and transport by riboswitch-controlled CLC antiporters

    PubMed Central

    Stockbridge, Randy B.; Lim, Hyun-Ho; Otten, Renee; Williams, Carole; Shane, Tania; Weinberg, Zasha; Miller, Christopher

    2012-01-01

    A subclass of bacterial CLC anion-transporting proteins, phylogenetically distant from long-studied CLCs, was recently shown to be specifically up-regulated by F-. We establish here that a set of randomly selected representatives from this “CLCF” clade protect Escherichia coli from F- toxicity, and that the purified proteins catalyze transport of F- in liposomes. Sequence alignments and membrane transport experiments using 19F NMR, osmotic response assays, and planar lipid bilayer recordings reveal four mechanistic traits that set CLCF proteins apart from all other known CLCs. First, CLCFs lack conserved residues that form the anion binding site in canonical CLCs. Second, CLCFs exhibit high anion selectivity for F- over Cl-. Third, at a residue thought to distinguish CLC channels and transporters, CLCFs bear a channel-like valine rather than a transporter-like glutamate, and yet are F-/H+ antiporters. Finally, F-/H+ exchange occurs with 11 stoichiometry, in contrast to the usual value of 2∶1. PMID:22949689

  1. Fluoride resistance and transport by riboswitch-controlled CLC antiporters.

    PubMed

    Stockbridge, Randy B; Lim, Hyun-Ho; Otten, Renee; Williams, Carole; Shane, Tania; Weinberg, Zasha; Miller, Christopher

    2012-09-18

    A subclass of bacterial CLC anion-transporting proteins, phylogenetically distant from long-studied CLCs, was recently shown to be specifically up-regulated by F(-). We establish here that a set of randomly selected representatives from this "CLC(F)" clade protect Escherichia coli from F(-) toxicity, and that the purified proteins catalyze transport of F(-) in liposomes. Sequence alignments and membrane transport experiments using (19)F NMR, osmotic response assays, and planar lipid bilayer recordings reveal four mechanistic traits that set CLC(F) proteins apart from all other known CLCs. First, CLC(F)s lack conserved residues that form the anion binding site in canonical CLCs. Second, CLC(F)s exhibit high anion selectivity for F(-) over Cl(-). Third, at a residue thought to distinguish CLC channels and transporters, CLC(F)s bear a channel-like valine rather than a transporter-like glutamate, and yet are F(-)/H(+) antiporters. Finally, F(-)/H(+) exchange occurs with 1:1 stoichiometry, in contrast to the usual value of 2:1.

  2. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa)

    USDA-ARS?s Scientific Manuscript database

    Oats produce a group of phenolic antioxidants termed avenanthramides. These metabolites are, among food crops, unique to oats and have shown some desirable nutritional characteristics, in experimental systems, such as inhibiting atherosclerotic plaque formation and reducing inflammatory responses. ...

  3. Grain boundary mobility in anion doped MgO

    NASA Technical Reports Server (NTRS)

    Kapadia, C. M.; Leipold, M. H.

    1973-01-01

    Certain anions OH(-), F(-) and Gl(-) are shown to enhance grain growth in MgO. The magnitude of their effect decreases in the order in which the anions are listed and depends on their location (solid-solution, second phase) in the MgO lattice. As most anions exhibit relatively high vapor pressures at sintering temperatures, they retard densification and invariably promote residual porosity. The role of anions on grain growth rates was studied in relation to their effect on pore mobility and pore removal; the atomic process controlling the actual rates was determined from observed kinetics in conjunction with the microstructural features. With respect to controlling mechanisms, the effects of all anions are not the same. OH(-) and F(-) control behavior through creation of a defect structure and a grain boundary liquid phase while Cl(-) promotes matter transport within pores by evaporation-condensation. Studies on an additional anion, S to the minus 2nd power gave results which were no different from undoped MgO, possibly because of evaporative losses during hot pressing. Hence, the effect of sulphur is negligible or undetermined.

  4. Identification and Quantification of Avenanthramides and Free and Bound Phenolic Acids in Eight Cultivars of Husked Oat ( Avena sativa L) from Finland.

    PubMed

    Multari, Salvatore; Pihlava, Juha-Matti; Ollennu-Chuasam, Priscilla; Hietaniemi, Veli; Yang, Baoru; Suomela, Jukka-Pekka

    2018-03-21

    Finland is the second largest oat producer in Europe. Despite the existing knowledge of phenolics in oat, there is little information on the phenolic composition of oats from Finland. The aim of the study was to investigate the concentrations of free and bound phenolic acids, as well as avenanthramides in eight Finnish cultivars of husked oat ( Avena sativa L.). Seven phenolic acids and one phenolic aldehyde were identified, including, in decreasing order of abundance: p-coumaric, ferulic, cinnamic, syringic, vanillic, 2,4-dihydroxybenzoic, and o-coumaric acids and syringaldehyde. Phenolic acids were mostly found as bound compounds. Significant varietal differences ( p < 0.05) were observed in the cumulative content of phenolic acids, with the lowest level found in cv. 'Viviana' (1202 ± 52.9 mg kg -1 ) and the highest in cv. 'Akseli' (1687 ± 80.2 mg kg -1 ). Avenanthramides (AVNs) 2a, 2p, and 2f were the most abundant. Total AVNs levels ranged from 26.7 ± 1.44 to 185 ± 12.5 mg kg -1 in cv. 'Avetron' and 'Viviana', respectively.

  5. Extracellular determinants of anion discrimination of the Cl-/H+ antiporter protein CLC-5.

    PubMed

    De Stefano, Silvia; Pusch, Michael; Zifarelli, Giovanni

    2011-12-23

    Mammalian CLC proteins comprise both Cl- channels and Cl-/H+ antiporters that carry out fundamental physiological tasks by transporting Cl- across plasma membrane and intracellular compartments. The NO3- over Cl- preference of a plant CLC transporter has been pinpointed to a conserved serine residue located at Scen and it is generally assumed that the other two binding sites of CLCs, Sext and Sin, do not substantially contribute to anion selectivity. Here we show for the Cl-/H+ antiporter CLC-5 that the conserved and extracellularly exposed Lys210 residue is critical to determine the anion specificity for transport activity. In particular, mutations that neutralize or invert the charge at this position reverse the NO3- over Cl- preference of WT CLC-5 at a concentration of 100 mm, but do not modify the coupling stoichiometry with H+. The importance of the electrical charge is shown by chemical modification of K210C with positively charged cysteine-reactive compounds that reintroduce the WT preference for Cl-. At saturating extracellular anion concentrations, neutralization of Lys210 is of little impact on the anion preference, suggesting an important role of Lys210 on the association rate of extracellular anions to Sext.

  6. Low-Temperature Reactivity of C2n+1N(-) Anions with Polar Molecules.

    PubMed

    Joalland, Baptiste; Jamal-Eddine, Nour; Kłos, Jacek; Lique, François; Trolez, Yann; Guillemin, Jean-Claude; Carles, Sophie; Biennier, Ludovic

    2016-08-04

    Following the recent discovery of molecular anions in the interstellar medium, we report on the kinetics of proton transfer reactions between cyanopolyynide anions C2n+1N(-) (n = 0, 1, 2) and formic acid HCOOH. The results, obtained from room temperature down to 36 K by means of uniform supersonic flows, show a surprisingly weak temperature dependence of the CN(-) reaction rate, in contrast with longer chain anions. The CN(-) + HCOOH reaction is further studied theoretically via a reduced dimensional quantum model that highlights a tendency of the reaction probability to decrease with temperature, in agreement with experimental data but at the opposite of conventional long-range capture theories. In return, comparing HCOOH to HC3N as target molecules suggests that dipole-dipole interactions must play an active role in overcoming this limiting effect at low temperatures. This work provides new fundamental insights on prototypical reactions between polar anions and polar molecules along with critical data for astrochemical modeling.

  7. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull

    PubMed Central

    Agu, Obiora S.; Tabil, Lope G.; Dumonceaux, Tim

    2017-01-01

    The effects of microwave-assisted alkali pre-treatment on pellets’ characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield. PMID:28952504

  8. Microwave-Assisted Alkali Pre-Treatment, Densification and Enzymatic Saccharification of Canola Straw and Oat Hull.

    PubMed

    Agu, Obiora S; Tabil, Lope G; Dumonceaux, Tim

    2017-03-26

    The effects of microwave-assisted alkali pre-treatment on pellets' characteristics and enzymatic saccharification for bioethanol production using lignocellulosic biomass of canola straw and oat hull were investigated. The ground canola straw and oat hull were immersed in distilled water, sodium hydroxide and potassium hydroxide solutions at two concentrations (0.75% and 1.5% w/v) and exposed to microwave radiation at power level 713 W and three residence times (6, 12 and 18 min). Bulk and particle densities of ground biomass samples were determined. Alkaline-microwave pre-treated and untreated samples were subjected to single pelleting test in an Instron universal machine, pre-set to a load of 4000 N. The measured parameters, pellet density, tensile strength and dimensional stability were evaluated and the results showed that the microwave-assisted alkali pre-treated pellets had a significantly higher density and tensile strength compared to samples that were untreated or pre-treated by microwave alone. The chemical composition analysis showed that microwave-assisted alkali pre-treatment was able to disrupt and break down the lignocellulosic structure of the samples, creating an area of cellulose accessible to cellulase reactivity. The best enzymatic saccharification results gave a high glucose yield of 110.05 mg/g dry sample for canola straw ground in a 1.6 mm screen hammer mill and pre-treated with 1.5% NaOH for 18 min, and a 99.10 mg/g dry sample for oat hull ground in a 1.6 mm screen hammer mill and pre-treated with 0.75% NaOH for 18 min microwave-assisted alkali pre-treatments. The effects of pre-treatment results were supported by SEM analysis. Overall, it was found that microwave-assisted alkali pre-treatment of canola straw and oat hull at a short residence time enhanced glucose yield.

  9. Mechanism of anion selectivity and stoichiometry of the Na+/I- symporter (NIS).

    PubMed

    Paroder-Belenitsky, Monika; Maestas, Matthew J; Dohán, Orsolya; Nicola, Juan Pablo; Reyna-Neyra, Andrea; Follenzi, Antonia; Dadachova, Ekaterina; Eskandari, Sepehr; Amzel, L Mario; Carrasco, Nancy

    2011-11-01

    I(-) uptake in the thyroid, the first step in thyroid hormone biosynthesis, is mediated by the Na(+)/I(-) symporter (NIS) with an electrogenic 2Na(+):1I(-) stoichiometry. We have obtained mechanistic information on NIS by characterizing the congenital I(-) transport defect-causing NIS mutant G93R. This mutant is targeted to the plasma membrane but is inactive. Substitutions at position 93 show that the longer the side chain of the neutral residue at this position, the higher the K(m) for the anion substrates. Unlike WT NIS, which mediates symport of Na(+) and the environmental pollutant perchlorate electroneutrally, G93T/N/Q/E/D NIS, strikingly, do it electrogenically with a 21 stoichiometry. Furthermore, G93E/Q NIS discriminate between anion substrates, a discovery with potential clinical relevance. A 3D homology model of NIS based on the structure of the bacterial Na(+)/galactose transporter identifies G93 as a critical player in the mechanism of the transporter: the changes from an outwardly to an inwardly open conformation during the transport cycle use G93 as a pivot.

  10. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel.

    PubMed

    Müller, Heike M; Schäfer, Nadine; Bauer, Hubert; Geiger, Dietmar; Lautner, Silke; Fromm, Jörg; Riederer, Markus; Bueno, Amauri; Nussbaumer, Thomas; Mayer, Klaus; Alquraishi, Saleh A; Alfarhan, Ahmed H; Neher, Erwin; Al-Rasheid, Khaled A S; Ache, Peter; Hedrich, Rainer

    2017-10-01

    Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl - medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  11. Evaluation of organic anion-transporting polypeptide 1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG cells cultured in a dynamic three-dimensional bioreactor system.

    PubMed

    Ulvestad, Maria; Darnell, Malin; Molden, Espen; Ellis, Ewa; Åsberg, Anders; Andersson, Tommy B

    2012-10-01

    The long-term stability of liver cell functions is a major challenge when studying hepatic drug transport, metabolism, and toxicity in vitro. The aim of the present study was to investigate organic anion-transporting polypeptide (OATP) 1B1 and CYP3A4 activities in fresh primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in a three-dimensional (3D) bioreactor system. OATP1B1 activity was determined by loss from media experiments of [(3)H]estradiol-17β-D-glucuronide and atorvastatin acid (ATA) for up to 7 days in culture. ATA metabolite formation was determined at days 3 to 4 to evaluate CYP3A4 activity. Overall, the results showed that freshly isolated human hepatocytes inoculated in the bioreactor retained OATP1B1 activity for at least 7 days, whereas in HepaRG cells no OATP1B1 activity was observed beyond day 2. The activity data were in agreement with immunohistochemical stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days in fresh human hepatocytes, whereas OATP1B1 was expressed markedly lower in HepaRG cells after 9 days in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in bioreactor culture, and immunohistochemical stainings supported these findings. Activity and mRNA expression of OATP1B1 and CYP3A4 in primary human hepatocytes compared with HepaRG cells in fresh suspensions were in agreement with data obtained in bioreactor culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system preserve both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug disposition and toxicity.

  12. Responses of Oat Grains to Fusarium poae and F. langsethiae Infections and Mycotoxin Contaminations

    PubMed Central

    Martin, Charlotte; Schöneberg, Torsten; Morisoli, Romina; Bertossa, Mario; Bucheli, Thomas D.; Mauch-Mani, Brigitte; Mascher, Fabio

    2018-01-01

    Recent increases of Fusarium head blight (FHB) disease caused by infections with F. poae (FP) and F. langsethiae (FL) have been observed in oats. These pathogens are producers of nivalenol (NIV) and T-2/HT-2 toxin (T-2/HT-2), respectively, which are now considered major issues for cereal food and feed safety. To date, the impact of FP and FL on oat grains has not yet been identified, and little is known about oat resistance elements against these pathogens. In the present study, the impact of FL and FP on oat grains was assessed under different environmental conditions in field experiments with artificial inoculations. The severity of FP and FL infection on grains were compared across three field sites, and the resistance against NIV and T-2/HT2 accumulation was assessed for seven oat genotypes. Grain weight, β-glucan content, and protein content were compared between infected and non-infected grains. Analyses of grain infection showed that FL was able to cause infection on the grain only in the field site with the highest relative humidity, whereas FP infected grains in all field sites. The FP infection of grains resulted in NIV contamination (between 30–500 μg/kg). The concentration of NIV in grains was not conditioned by environmental conditions. FL provoked an average contamination of grains with T-2/HT-2 (between 15–132 μg/kg). None of the genotypes was able to fully avoid toxin accumulation. The general resistance of oat grains against toxin accumulation was weak, and resistance against NIV accumulation was strongly impacted by the interaction between the genotype and the environment. Only the genotype with hull-less grains showed partial resistance to both NIV and T-2/HT-2 contamination. FP and FL infections could change the β-glucan content in grains, depending on the genotypes and environmental conditions. FP and FL did not have a significant impact on the thousand kernel weight (TKW) and protein content. Hence, resistance against toxin

  13. Fractionation of oats into products enriched with protein, beta-glucan, starch, or other carbohydrates

    USDA-ARS?s Scientific Manuscript database

    A modified wet method was developed to fractionate ground oat groats into 4 fractions enriched with beta-glucan (BG), protein, starch, and other carbohydrates (CHO), respectively. Effects of defatting oats and centrifuge force for separation were also investigated. Results show that, depending on ...

  14. Digestibility of carbohydrates from rice-, oat- and wheat-based ready-to-eat breakfast cereals in children.

    PubMed

    Brighenti, F; Casiraghi, M C; Ciappellano, S; Crovetti, R; Testolin, G

    1994-09-01

    To study the effect of the presence and quality of dietary fibre in ready-to-eat (RTE) breakfast cereals on completeness of carbohydrate digestion in children and on starch susceptibility to alpha-amylase in vitro. A controlled intervention study. Eight 3-8-year-old healthy children. Completeness of digestion was evaluated by assessing the amount of carbohydrates apparently fermented into the colon using the breath-H2 technique after consumption in random order, of five breakfast tests containing boiled rice (either alone or supplemented with 3 g of lactulose) as reference food, or RTE cereals based on rice (low-fibre), wheat (high insoluble fibre) and oats (high-soluble fibre). The potential glycaemic impact of the products was estimated in vitro by assessing starch susceptibility to alpha-amylolysis using an enzymatic-dialysis method. Compared to boiled rice and to rice-based RTE cereal, wheat- and oat-based RTE cereals both significantly (P < 0.05) increased the amount of apparently fermented carbohydrates (+1.1 +/- 1.7% of total breakfast carbohydrate fermented for rice, +5.6 +/- 0.9% for wheat and +9.4 +/- 3.7% for oats; mean +/- SEM), calculated using the excess H2 in breath after lactulose as standard. All products showed similar in vitro digestibility, resulting in estimated glycaemic indexes of 117.5 (24.0) for rice, and 105.7 (14.1) for oats-based, 128.4 (17.6) for wheat-based, and 129.8 (16.6) [mean 95% CI)] for rice-based RTE cereals. Results suggest that the presence of fibre in RTE breakfast cereals, in particular soluble fibre, increases colonic fermentation in children whereas it seems not to affect glucose availability.

  15. Poly(1-adamantyl acrylate): Living Anionic Polymerization, Block Copolymerization, and Thermal Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Huang, Caili; Hong, Kunlun

    Living anionic polymerization of acrylates is challenging due to intrinsic side reactions including backbiting reactions of propagating enolate anions and aggregation of active chain ends. In this study, the controlled synthesis of poly(1-adamatyl acrylate) (PAdA) was performed successfully for the first time via living anionic polymerization through investigation of the initiation systems of sec-butyllithium/diphenylethylene/lithium chloride (sec-BuLi/DPE/LiCl), diphenylmethylpotassium/diethylzinc (DPMK/Et 2Zn), and sodium naphthalenide/dipenylethylene/diethylzinc (Na-Naph/DPE/Et2Zn) in tetrahydrofuran at -78 °C using custom glass-blowing and high-vacuum techniques. PAdA synthesized via anionic polymerization using DPMK with a large excess (more than 40-fold to DPMK) of Et 2Zn as the ligand exhibited predicted molecular weightsmore » from 4.3 to 71.8 kg/mol and polydispersity indices of around 1.10. In addition, the produced PAdAs exhibit a low level of isotactic content (mm triads of 2.1%). The block copolymers of AdA and methyl methacrylate (MMA) were obtained by sequential anionic polymerization, and the distinct living property of PAdA over other acrylates was demonstrated based on the observation that the resulting PAdA-b-PMMA block copolymers were formed with no residual PAdA homopolymer. The PAdA homopolymers exhibit a very high glass transition temperature (133 °C) and outstanding thermal stability (T d: 376 °C) as compared to other acrylic polymers such as poly(tert-butyl acrylate) and poly(methyl acrylate). These merits make PAdA a promising candidate for acrylic-based thermoplastic elastomers with high upper service temperature and enhanced mechanical strength.« less

  16. Poly(1-adamantyl acrylate): Living Anionic Polymerization, Block Copolymerization, and Thermal Properties

    DOE PAGES

    Lu, Wei; Huang, Caili; Hong, Kunlun; ...

    2016-12-06

    Living anionic polymerization of acrylates is challenging due to intrinsic side reactions including backbiting reactions of propagating enolate anions and aggregation of active chain ends. In this study, the controlled synthesis of poly(1-adamatyl acrylate) (PAdA) was performed successfully for the first time via living anionic polymerization through investigation of the initiation systems of sec-butyllithium/diphenylethylene/lithium chloride (sec-BuLi/DPE/LiCl), diphenylmethylpotassium/diethylzinc (DPMK/Et 2Zn), and sodium naphthalenide/dipenylethylene/diethylzinc (Na-Naph/DPE/Et2Zn) in tetrahydrofuran at -78 °C using custom glass-blowing and high-vacuum techniques. PAdA synthesized via anionic polymerization using DPMK with a large excess (more than 40-fold to DPMK) of Et 2Zn as the ligand exhibited predicted molecular weightsmore » from 4.3 to 71.8 kg/mol and polydispersity indices of around 1.10. In addition, the produced PAdAs exhibit a low level of isotactic content (mm triads of 2.1%). The block copolymers of AdA and methyl methacrylate (MMA) were obtained by sequential anionic polymerization, and the distinct living property of PAdA over other acrylates was demonstrated based on the observation that the resulting PAdA-b-PMMA block copolymers were formed with no residual PAdA homopolymer. The PAdA homopolymers exhibit a very high glass transition temperature (133 °C) and outstanding thermal stability (T d: 376 °C) as compared to other acrylic polymers such as poly(tert-butyl acrylate) and poly(methyl acrylate). These merits make PAdA a promising candidate for acrylic-based thermoplastic elastomers with high upper service temperature and enhanced mechanical strength.« less

  17. Comparative analysis of homoeoallele expression in the tocol biosynthetic pathway during oat seed development

    USDA-ARS?s Scientific Manuscript database

    Oats are a rich source of compounds that collectively constitute vitamin E, the tocols. Significant attention has been given to the health benefits of tocols in oats, but little is known about themolecular control of their accumulation during grain development. Next generation sequencing provides an...

  18. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    PubMed Central

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  19. P-glycoprotein limits oral availability, brain penetration, and toxicity of an anionic drug, the antibiotic salinomycin.

    PubMed

    Lagas, Jurjen S; Sparidans, Rolf W; van Waterschoot, Robert A B; Wagenaar, Els; Beijnen, Jos H; Schinkel, Alfred H

    2008-03-01

    Salinomycin is a polyether organic anion that is extensively used as a coccidiostatic antibiotic in poultry and commonly fed to ruminant animals to improve feed efficiency. However, salinomycin also causes severe toxicity when accidentally fed to animals in high doses. In addition, humans are highly sensitive to salinomycin and severe toxicity has been reported. Multidrug efflux transporters like P-glycoprotein (P-gp), BCRP, and MRP2 are highly expressed in the intestine and can restrict the oral uptake and tissue penetration of xenobiotics. The purpose of this study was to investigate whether the anionic drug salinomycin is a substrate for one or more of these efflux pumps. Salinomycin was actively transported by human MDR1 P-gp expressed in polarized MDCK-II monolayers but not by the known organic anion transporters human MRP2 and murine Bcrp1. Using P-gp-deficient mice, we found a marked increase in plasma salinomycin concentrations after oral administration and decreased plasma clearance after intravenous administration. Furthermore, absence of P-gp resulted in significantly increased brain penetration. P-gp-deficient mice also displayed clearly increased susceptibility to salinomycin toxicity. Thus far, P-gp was thought to affect mainly hydrophobic, positively charged or neutral drugs in vivo. Our data show that P-gp can also be a major determinant of the pharmacokinetic behavior and toxicity of an organic anionic drug. Variation in P-gp activity might thus directly affect the effective exposure to salinomycin and possibly to other anionic drugs and toxin substrates. Individuals with reduced or absent P-gp activity could therefore be more susceptible to salinomycin toxicity.

  20. Organotin-mediated exchange diffusion of anions in human red cells

    PubMed Central

    1979-01-01

    Organotin cations (R3Sn+) form electrically neutral ion pairs with monovalent anions. It is demonstrated that the tin derivatives induce exchange diffusion of chloride in red cells and resealed ghosts, without any detectable increase of membrane permeability to net movements of chloride ions. The obligatory anion exchange is believed to be due to the permeation of electroneural ion pairs, whereas the organic cation (R3Sn+) has an extremely low membrane permeability. Exchange fluxes of chloride increased with the lipophilicity of the substituting group (R3). At the same molar concentration of organotin, the relative potencies of the tin derivatives as anion carriers (with trimethyltin as a reference) were: methyl 1, ethyl 30, propyl = phenyl 1,00, and butyl 10,000. Tributyltin-mediated anion exchange was studied in detail. The organotin-induced anion transport increased through the sequence: F- less than Cl- less than Br- less than I- = SCN- less than OH-. Partitioning of tributyltin into red cell membranes was greater in iodide than in chloride media (partition coefficients 6.6 and 1.7 x 10(- 3) cm, respectively). Bicarbonate, fluoride, nitrate, phosphate, and sulphate did not exchange with chloride in the presence of tributyltin. Chloride exchange fluxes increased linearly with tributylin concentrations up to 10(-5) M, and with chloride concentrations up to at least 0.9 M. The apparent turnover number for tributyltin-mediated chloride exchange increased from 15 to 1,350 s-1 between 0 and 38 degrees C. These figures are minimum turnover numbers, because it is not known what fraction of the organotin in the membrane exists as chloride ion pairs. PMID:479814

  1. Transport of steroid 3-sulfates and steroid 17-sulfates by the sodium-dependent organic anion transporter SOAT (SLC10A6).

    PubMed

    Grosser, Gary; Bennien, Josefine; Sánchez-Guijo, Alberto; Bakhaus, Katharina; Döring, Barbara; Hartmann, Michaela; Wudy, Stefan A; Geyer, Joachim

    2018-05-01

    The sodium-dependent organic anion transporter SOAT/Soat shows highly specific transport activity for sulfated steroids. SOAT substrates identified so far include dehydroepiandrosterone sulfate, 16α-hydroxydehydroepiandrosterone sulfate, estrone-3-sulfate, pregnenolone sulfate, 17β-estradiol-3-sulfate, and androstenediol sulfate. Apart from these compounds, many other sulfated steroids occur in mammals. Therefore, we aimed to expand the substrate spectrum of SOAT and analyzed the SOAT-mediated transport of eight different sulfated steroids by combining in vitro transport experiments in SOAT-transfected HEK293 cells with LC-MS/MS analytics of cell lysates. In addition, we aimed to better understand the structural requirements for SOAT substrates and so selected structural pairs varying only at specific positions: 3α/3β-sulfate, 17α/17β-sulfate, mono-sulfate/di-sulfate, and 17α-hydroxylation. We found significant and sodium-dependent SOAT-mediated transport of 17α-hydroxypregnenolone sulfate, 17β-estradiol-17-sulfate, androsterone sulfate, epiandrosterone sulfate, testosterone sulfate, epitestosterone sulfate, and 5α-dihydrotestosterone sulfate. However, 17β-estradiol-3,17-disulfate was not transported by SOAT. SOAT substrates from the group of sulfated steroids are characterized by a planar and lipophilic steroid backbone in trans-trans-trans conformation of the rings and a negatively charged mono-sulfate group at positions 3' or 17' with flexibility for α- or β- orientation. Furthermore, 5α-reduction, 16α-hydroxylation, and 17α-hydroxylation are acceptable for SOAT substrate recognition, whereas addition of a second negatively charged sulfate group seems to abolish substrate binding to SOAT, and so 17β-estradiol-3,17-disulfate is not transported by SOAT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*

    PubMed Central

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-01-01

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514

  3. Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.

    PubMed

    Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis

    2014-09-12

    The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Safety of Adding Oats to a Gluten-Free Diet for Patients With Celiac Disease: Systematic Review and Meta-analysis of Clinical and Observational Studies.

    PubMed

    Pinto-Sánchez, María Inés; Causada-Calo, Natalia; Bercik, Premysl; Ford, Alexander C; Murray, Joseph A; Armstrong, David; Semrad, Carol; Kupfer, Sonia S; Alaedini, Armin; Moayyedi, Paul; Leffler, Daniel A; Verdú, Elena F; Green, Peter

    2017-08-01

    Patients with celiac disease should maintain a gluten-free diet (GFD), excluding wheat, rye, and barley. Oats might increase the nutritional value of a GFD, but their inclusion is controversial. We performed a systematic review and meta-analysis to evaluate the safety of oats as part of a GFD in patients with celiac disease. We searched the Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE databases for clinical trials and observational studies of the effects of including oats in GFD of patients with celiac disease. The studies reported patients' symptoms, results from serology tests, and findings from histologic analyses. We used the GRADE approach to assess the quality of evidence. We identified 433 studies; 28 were eligible for analysis. Of these, 6 were randomized and 2 were not randomized controlled trials comprising a total of 661 patients-the remaining studies were observational. All randomized controlled trials used pure/uncontaminated oats. Oat consumption for 12 months did not affect symptoms (standardized mean difference: reduction in symptom scores in patients who did and did not consume oats, -0.22; 95% CI, -0.56 to 0.13; P = .22), histologic scores (relative risk for histologic findings in patients who consumed oats, 0.24; 95% CI, 0.01-4.8; P = .35), intraepithelial lymphocyte counts (standardized mean difference, 0.21; 95% CI, reduction of 1.44 to increase in 1.86), or results from serologic tests. Subgroup analyses of adults vs children did not reveal differences. The overall quality of evidence was low. In a systematic review and meta-analysis, we found no evidence that addition of oats to a GFD affects symptoms, histology, immunity, or serologic features of patients with celiac disease. However, there were few studies for many endpoints, as well as limited geographic distribution and low quality of evidence. Rigorous double-blind, placebo-controlled, randomized controlled trials, using commonly available oats sourced from

  5. Genetic diversity and crown rust resistance of oat landraces from various locations throughout Turkey

    USDA-ARS?s Scientific Manuscript database

    A diversity study was carried out to identify the origin of 375 oat landraces (Avena sativa L. and A. byzantina C. Koch.) collected from Turkey and maintained in various gene banks. New assays interrogating oat-based microsatellite and single-nucleotide polymorphism loci were used to characterize t...

  6. New DArT markers for oat provide enhanced map coverage and global germplasm characterization

    USDA-ARS?s Scientific Manuscript database

    Background Genomic discovery in oat and its application to oat improvement have been hindered by a lack of genetic markers common to different genetic maps, and by the difficulty of conducting whole-genome analysis using high-throughput markers. This study was intended to develop, characterize, and ...

  7. Carbon balance assessment by eddy covariance method for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils of Russia

    NASA Astrophysics Data System (ADS)

    Meshalkina, J. L.; Yaroslavtsev, A. M.; Vasenev, I. I.; Andreeva, I. V.; Tihonova, M. V.

    2018-01-01

    The carbon balance for the agroecosystems with potato plants and oats & vetch mixture on sod-podzolics soils was evaluated using the eddy covariance approach. Absorption of carbon was recorded only during the growing season; maximum values were detected for all crops in July. The number of days during the vegetation period, when the carbon stocked in the fields with potatoes and oats & vetch mixture was about the same and accounted for 53-55 days. During this period, the increase in gross primary production (GPP) is well correlated with the crop yields. The curve of the gross primary productivity is closely linked to the phases of development of plants; for potatoes, this graph differs significantly for all phases. Form of oats & vetch mixture biomass curve shown linear increases. Carbon losses were observed for all the studied agroecosystems: for fields with an oats & vetch mixture they were 254 g C m-2 y-1, while for fields with potato plants they were 307 g C m-2 y-1. Values about 250-300 g C m-2 per year may be considered as estimated values for the total carbon uptake for agroecosystems with potato plants and oats & vetch mixture on sod-podzolic soils.

  8. Age- and sex-related differences of organic anion-transporting polypeptide gene expression in livers of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Wei-Yu; Xu, Shang-Fu; Zhu, Qiong-Ni

    Organic anion-transporting polypeptides (Oatps) play important roles in transporting endogenous substances and xenobiotics into the liver and are implicated in drug-drug interactions. Many factors could influence their expression and result in alterations in drug disposition, efficacy and toxicity. This study was aimed to examine the development-, aging-, and sex-dependent Oatps expression in livers of rats. The livers from SD rats during development (− 2, 1, 7, 14, 21, 28, 35, and 60 d) and aging (60, 180, 540 and/or 800 d) were collected and total RNAs were extracted, purified, and subjected to real-time PCR analysis. Total proteins were extracted formore » western-blot analysis. Results showed that Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 were all hardly detectable in fetal rat livers, low at birth, rapidly increased after weaning (21 d), and reached the peak at 60 d. The Oatps remained stable during the age between 60–180 d, and decreased at elderly (540 and/or 800 d). After birth, Oatp1a1, Oatp1a4, and Oatp1b2 were all highly expressed in liver, in contrast, Oatp1a5 expression was low. Oatp expressions are male-predominant in rat livers. In the livers of aged rats, the Oatp expression decreased and shared a consistent ontogeny pattern at the mRNA and protein level. In conclusion, this study showed that in rat liver, Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 gene expressions are influenced by age and gender, which could provide a basis of individual variation in drug transport, metabolism and toxicity in children, elderly and women. - Highlights: • Oatp1a1, Oatp1a4, Oatp1a5 and Oatp1b2 expression in livers of rats. • Ontogenic changes of Oatps at − 2, 1, 7, 14, 21, 28, 35, and 60 days. • Age-related changes of Oatps at 60, 180, 540, and 800 days. • Sex-difference of Oatps at the both mRNA and protein levels.« less

  9. Extracellular Determinants of Anion Discrimination of the Cl−/H+ Antiporter Protein CLC-5*

    PubMed Central

    De Stefano, Silvia; Pusch, Michael; Zifarelli, Giovanni

    2011-01-01

    Mammalian CLC proteins comprise both Cl− channels and Cl−/H+ antiporters that carry out fundamental physiological tasks by transporting Cl− across plasma membrane and intracellular compartments. The NO3− over Cl− preference of a plant CLC transporter has been pinpointed to a conserved serine residue located at Scen and it is generally assumed that the other two binding sites of CLCs, Sext and Sin, do not substantially contribute to anion selectivity. Here we show for the Cl−/H+ antiporter CLC-5 that the conserved and extracellularly exposed Lys210 residue is critical to determine the anion specificity for transport activity. In particular, mutations that neutralize or invert the charge at this position reverse the NO3− over Cl− preference of WT CLC-5 at a concentration of 100 mm, but do not modify the coupling stoichiometry with H+. The importance of the electrical charge is shown by chemical modification of K210C with positively charged cysteine-reactive compounds that reintroduce the WT preference for Cl−. At saturating extracellular anion concentrations, neutralization of Lys210 is of little impact on the anion preference, suggesting an important role of Lys210 on the association rate of extracellular anions to Sext. PMID:21921031

  10. Bipyrrole-Strapped Calix[4]pyrroles: Strong Anion Receptors That Extract the Sulfate Anion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sung Kuk; Lee, Juhoon; Williams, Neil J

    Cage-type calix[4]pyrroles 2 and 3 bearing two additional pyrrole groups on the strap have been synthesized. Compared with the parent calix[4]pyrrole (1), they were found to exhibit remarkably enhanced affinities for anions, including the sulfate anion (TBA+ salts), in organic media (CD2Cl2). This increase is ascribed to participation of the bipyrrole units in anion binding. Receptors 2 and 3 extract the hydrophilic sulfate anion (as the methyltrialkyl(C8-10)ammonium (A336+) salt)) from aqueous media into a chloroform phase with significantly improved efficiency (>10-fold relative to calix[4]pyrrole 1). These two receptors also solubilize into chloroform the otherwise insoluble sulfate salt, (TMA)2SO4 (tetramethylammonium sulfate).

  11. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    PubMed

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  12. Structural Make-up, Biopolymer Conformation, and Biodegradation Characteristics of Newly Developed Super Genotype of Oats (CDC SO-I vs. Conventional Varieties): Novel Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damiran, D.; Yu, P

    Recently, a new 'super' genotype of oats (CDC SO-I or SO-I) has been developed. The objectives of this study were to determine structural makeup (features) of oat grain in endosperm and pericarp regions and to reveal and identify differences in protein amide I and II and carbohydrate structural makeup (conformation) between SO-I and two conventional oats (CDC Dancer and Derby) grown in western Canada in 2006, using advanced synchrotron radiation based Fourier transform infrared microspectroscopy (SRFTIRM). The SRFTIRM experiments were conducted at National Synchrotron Light Sources, Brookhaven National Laboratory (NSLS, BNL, U.S. Department of Energy). From the results, it wasmore » observed that comparison between the new genotype oats and conventional oats showed (1) differences in basic chemical and protein subfraction profiles and energy values with the new SO-I oats containing lower lignin (21 g/kg of DM) and higher soluble crude protein (530 g/kg CP), crude fat (59 g/kg of DM), and energy values (TDN, 820 g/kg of DM; NE{sub L3x}, 7.8 MJ/kg of DM); (2) significant differences in rumen biodegradation kinetics of dry matter, starch, and protein with the new SO-I oats containing lower EDDM (638 g/kg of DM) and higher EDCP (103 g/kg of DM); (3) significant differences in nutrient supply with highest truly absorbed rumen undegraded protein (ARUP, 23 g/kg of DM) and total metabolizable protein supply (MP, 81 g/kg of DM) from the new SO-I oats; and (4) significant differences in structural makeup in terms of protein amide I in the endosperm region (with amide I peak height from 0.13 to 0.22 IR absorbance unit) and cellulosic compounds to carbohydrate ratio in the pericarp region (ratio from 0.02 to 0.06). The results suggest that with the SRFTIRM technique, the structural makeup differences between the new genotype oats (SO-I) and two conventional oats (Dancer and Derby) could be revealed.« less

  13. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.S. Tumuluru; L.G. Tabil; Y. Song

    2014-01-01

    In the present study, specific energy for grinding and physical properties of wheat, canola, oat and barley straw grinds were investigated. The initial moisture content of the straw was about 0.13–0.15 (fraction total mass basis). Particle size reduction experiments were conducted in two stages: (1) a chopper without a screen, and (2) a hammer mill using three screen sizes (19.05, 25.4, and 31.75 mm). The lowest grinding energy (1.96 and 2.91 kWh t-1) was recorded for canola straw using a chopper and hammer mill with 19.05-mm screen size, whereas the highest (3.15 and 8.05 kWh t-1) was recorded for barleymore » and oat straws. The physical properties (geometric mean particle diameter, bulk, tapped and particle density, and porosity) of the chopped and hammer-milled wheat, barley, canola, and oat straw grinds measured were in the range of 0.98–4.22 mm, 36–80 kg m-3, 49–119 kg m-3, 600–1220 kg m-3, and 0.9–0.96, respectively. The average mean particle diameter was highest for the chopped wheat straw (4.22-mm) and lowest for the canola grind (0.98-mm). The canola grinds produced using the hammer mill (19.05-mm screen size) had the highest bulk and tapped density of about 80 and 119 kg m-3; whereas, the wheat and oat grinds had the lowest of about 58 and 88–90 kg m-3. The results indicate that the bulk and tapped densities are inversely proportional to the particle size of the grinds. The flow properties of the grinds calculated are better for chopped straws compared to hammer milled using smaller screen size (19.05 mm).« less

  14. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen.

    PubMed

    Fuerst, E Patrick; James, Matthew S; Pollard, Anne T; Okubara, Patricia A

    2017-01-01

    Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a .1 was relatively rapid in wild oat ( Avena fatua L.) isoline "M73," with >50% decay after 8 days with almost no decay in wheat ( Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a .1 for 2-3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a .1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a .1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a .1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to

  15. Molecular and Immunological Characterization of Gluten Proteins Isolated from Oat Cultivars That Differ in Toxicity for Celiac Disease

    PubMed Central

    Real, Ana; Comino, Isabel; de Lorenzo, Laura; Merchán, Francisco; Gil-Humanes, Javier; Giménez, María J.; López-Casado, Miguel Ángel; Cebolla, Ángel; Sousa, Carolina; Barro, Francisco; Pistón, Fernando

    2012-01-01

    A strict gluten-free diet (GFD) is the only currently available therapeutic treatment for patients with celiac disease (CD). Traditionally, treatment with a GFD has excluded wheat, barley and rye, while the presence of oats is a subject of debate. The most-recent research indicates that some cultivars of oats can be a safe part of a GFD. In order to elucidate the toxicity of the prolamins from oat varieties with low, medium, and high CD toxicity, the avenin genes of these varieties were cloned and sequenced, and their expression quantified throughout the grain development. At the protein level, we have accomplished an exhaustive characterization and quantification of avenins by RP-HPLC and an analysis of immunogenicity of peptides present in prolamins of different oat cultivars. Avenin sequences were classified into three different groups, which have homology with S-rich prolamins of Triticeae. Avenin proteins presented a lower proline content than that of wheat gliadin; this may contribute to the low toxicity shown by oat avenins. The expression of avenin genes throughout the development stages has shown a pattern similar to that of prolamins of wheat and barley. RP-HPLC chromatograms showed protein peaks in the alcohol-soluble and reduced-soluble fractions. Therefore, oat grains had both monomeric and polymeric avenins, termed in this paper gliadin- and glutenin-like avenins. We found a direct correlation between the immunogenicity of the different oat varieties and the presence of the specific peptides with a higher/lower potential immunotoxicity. The specific peptides from the oat variety with the highest toxicity have shown a higher potential immunotoxicity. These results suggest that there is wide range of variation of potential immunotoxicity of oat cultivars that could be due to differences in the degree of immunogenicity in their sequences. PMID:23284616

  16. Total antioxidant capacity and starch digestibility of muffins baked with rice, wheat, oat, corn and barley flour.

    PubMed

    Soong, Yean Yean; Tan, Seow Peng; Leong, Lai Peng; Henry, Jeya Kumar

    2014-12-01

    Muffins are a popular snack consumed in western and emerging countries. Increased glycemic load has been implicated in the aetiology of diabetes. This study examined the starch digestibility of muffins baked with rice, wheat, corn, oat and barley flour. Rapidly digested starch (RDS) was greatest in rice (445 mg/g) and wheat (444 mg/g) muffins, followed by oat (416 mg/g), corn (402 mg/g) and barley (387 mg/g). Total phenolic content was found to be positively correlated with total antioxidative capacity and inversely related to the RDS of muffins. The phenolic content was highest in muffin baked with barley flour (1,687 μg/g), followed by corn (1,454 μg/g), oat (945 μg/g), wheat (705 μg/g), and rice (675 μg/g) flour. Browning was shown not to correlate with free radical scavenging capacity and digestibility of muffins. The presence of high phenolic content and low RDS makes barley muffin an ideal snack to modulate glycemic response. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Formulation Optimization of Gluten-Free Functional Spaghetti Based on Maize Flour and Oat Bran Enriched in b-Glucans.

    PubMed

    Padalino, Lucia; Mastromatteo, Marcella; Sepielli, Grazia; Nobile, Matteo Alessandro Del

    2011-12-08

    The aim of this work concerns the manufacturing process of gluten-free functional spaghetti based on maize flour and oat bran, enriched with b-glucans (22%). More specifically, the goal of the study was to obtain oat bran-loaded maize spaghetti with sensory properties close to unloaded pasta. To this aim, the study has been organized in two subsequent trials. In the first one, the oat bran amount added to spaghetti was continuously increased until the overall sensory quality of pasta reached the set sensory threshold (oat bran concentration = 20%). The second experimental step was aimed to improve the overall sensory quality of oat bran loaded maize spaghetti. In particular, an attempt was made to increase the sensory quality of spaghetti added with 20% oat bran by means of structuring agents. To this aim, the effects of different kinds of some hydrocolloids and egg white powder on the rheological properties of dough, as well as on quality attributes of pasta were examined. The rheological analysis showed that the addition of hydrocolloids and white egg to the dough enriched with 20% oat bran did not cause any substantial difference in the viscoelastic properties, compared to samples without any structuring agents. The best overall quality for both fresh and dry spaghetti was obtained by the addition of carboxymethylcellulose and chitosan at a concentration of 2%.

  18. A SNP genotyping array for hexaploid oat

    USDA-ARS?s Scientific Manuscript database

    Recognizing a need in cultivated hexaploid oat (Avena sativa L.) for a reliable set of reference SNPs, we have developed a 6K BeadChip design containing 257 Infinium I and 5,486 Infinium II designs corresponding to 5,743 SNPs. Of those, 4,975 SNPs yielded successful assays after array manufacturing...

  19. Structural makeup, biopolymer conformation, and biodegradation characteristics of a newly developed super genotype of oats (CDC SO-I versus conventional varieties): a novel approach.

    PubMed

    Damiran, Daalkhaijav; Yu, Peiqiang

    2010-02-24

    Recently, a new "super" genotype of oats (CDC SO-I or SO-I) has been developed. The objectives of this study were to determine structural makeup (features) of oat grain in endosperm and pericarp regions and to reveal and identify differences in protein amide I and II and carbohydrate structural makeup (conformation) between SO-I and two conventional oats (CDC Dancer and Derby) grown in western Canada in 2006, using advanced synchrotron radiation based Fourier transform infrared microspectroscopy (SRFTIRM). The SRFTIRM experiments were conducted at National Synchrotron Light Sources, Brookhaven National Laboratory (NSLS, BNL, U.S. Department of Energy). From the results, it was observed that comparison between the new genotype oats and conventional oats showed (1) differences in basic chemical and protein subfraction profiles and energy values with the new SO-I oats containing lower lignin (21 g/kg of DM) and higher soluble crude protein (530 g/kg CP), crude fat (59 g/kg of DM), and energy values (TDN, 820 g/kg of DM; NE(L3x), 7.8 MJ/kg of DM); (2) significant differences in rumen biodegradation kinetics of dry matter, starch, and protein with the new SO-I oats containing lower EDDM (638 g/kg of DM) and higher EDCP (103 g/kg of DM); (3) significant differences in nutrient supply with highest truly absorbed rumen undegraded protein (ARUP, 23 g/kg of DM) and total metabolizable protein supply (MP, 81 g/kg of DM) from the new SO-I oats; and (4) significant differences in structural makeup in terms of protein amide I in the endosperm region (with amide I peak height from 0.13 to 0.22 IR absorbance unit) and cellulosic compounds to carbohydrate ratio in the pericarp region (ratio from 0.02 to 0.06). The results suggest that with the SRFTIRM technique, the structural makeup differences between the new genotype oats (SO-I) and two conventional oats (Dancer and Derby) could be revealed.

  20. Effect of natural flocculants on purity and properties of β-glucan extracted from barley and oat.

    PubMed

    Kurek, Marcin Andrzej; Karp, Sabina; Stelmasiak, Adrian; Pieczykolan, Ewelina; Juszczyk, Karolina; Rieder, Anne

    2018-05-15

    In this study, β-glucan was extracted from wholegrain oat and barley flours by a novel extraction and purification method employing natural flocculants (chitosan, guar gum and gelatin). The use of flocculants decreased the total amount of extracted gum, which was highest in control samples (9.07 and 7.9% for oat and barley, respectively). The β-glucan specific yield, however, increased with the use of chitosan and guar gum, which were able to remove protein and ash impurities resulting in gums with a higher purity.The highest concentration of chitosan (0.6 %) resulted in gums with the highest β-glucan content (82.0 ± 0.23 and 79.0 ± 0.19 for barley and oat, respectively) and highest β-glucan specific yield (96.9 and 93.3 % for oat and barley, respectively). Explanation is in R&D section. The use of gelatin was not successful. All gum samples had a high content of total dietary fiber (>74%) and a high water holding capacity (4.6-7.4 g/g), but differed in apparent viscosity, which was highest for the oat sample extracted with 0.6% chitosan. This sample also showed the highest β-glucan molecular weight among the oat samples, which were in general 10-fold higher than for the barley samples. Among the barley samples, β-glucan molecular weight was highest for the control. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Strapped Calix[4]pyrroles Bearing an 1,3-Indanedione at a β-Pyrrolic Position: Chemodosimeters for the Cyanide Anion

    PubMed Central

    Kim, Sook-Hee; Hong, Seong-Jin; Yoo, Jaeduk; Kim, Sung Kuk; Sessler, Janathan L.; Lee, Chang-Hee

    2014-01-01

    A strapped calix[4]pyrrole bearing an 1,3-indanedione group at a β-pyrrolic position has been synthesized and studied as a ratiometric cyanide selective chemosensor. A concentration-dependent bleaching of the initial yellow color was observed upon addition of the cyanide anion. The bleaching, which was observed exclusively with the cyanide anion, occurred even in the presence of other anions. Spectroscopic studies provides support for a mechanistic interpretation wherein the cyanide anion forms a complex with the receptor (K = 2.78 × 104 M-1) through a fast equilibrium, which is followed by slow nucleophilic addition to the β-position of the 1,3-indanedione group. A minimum inhibitory effect from other anions was observed, a feature that could be beneficial in the selective sensing of the cyanide anion. PMID:19639968

  2. Intracellular pH recovery from alkalinization. Characterization of chloride and bicarbonate transport by the anion exchange system of human neutrophils

    PubMed Central

    1990-01-01

    The nature of the intracellular pH-regulatory mechanism after imposition of an alkaline load was investigated in isolated human peripheral blood neutrophils. Cells were alkalinized by removal of a DMO prepulse. The major part of the recovery could be ascribed to a Cl- /HCO3- counter-transport system: specifically, a one-for-one exchange of external Cl- for internal HCO3-. This exchange mechanism was sensitive to competitive inhibition by the cinnamate derivative UK-5099 (Ki approximately 1 microM). The half-saturation constants for binding of HCO3- and Cl- to the external translocation site of the carrier were approximately 2.5 and approximately 5.0 mM. In addition, other halides and lyotropic anions could substitute for external Cl-. These ions interacted with the exchanger in a sequence of decreasing affinities: HCO3- greater than Cl approximately NO3- approximately Br greater than I- approximately SCN- greater than PAH-. Glucuronate and SO4(2-) lacked any appreciable affinity. This rank order is reminiscent of the selectivity sequence for the principal anion exchanger in resting cells. Cl- and HCO3- displayed competition kinetics at both the internal and external binding sites of the carrier. Finally, evidence compatible with the existence of an approximately fourfold asymmetry (Michaelis constants inside greater than outside) between inward- and outward-facing states is presented. These results imply that a Cl-/HCO3- exchange mechanism, which displays several properties in common with the classical inorganic anion exchanger of erythrocytes, is primarily responsible for restoring the pHi of human neutrophils to its normal resting value after alkalinization. PMID:2280252

  3. Functional characterization of Citrus macrophylla BOR1 as a boron transporter.

    PubMed

    Cañon, Paola; Aquea, Felipe; Rodríguez-Hoces de la Guardia, Amparo; Arce-Johnson, Patricio

    2013-11-01

    Plants have evolved to develop an efficient system of boron uptake and transport using a range of efflux carriers named BOR proteins. In this work we isolated and characterized a boron transporter of citrus (Citrus macrophylla), which was named CmBOR1 for its high homology to AtBOR1. CmBOR1 has 4403 bp and 12 exons. Its coding region has 2145 bp and encodes for a protein of 714 amino acids. CmBOR1 possesses the molecular features of BORs such as an anion exchanger domain and the presence of 10 transmembrane domains. Functional analysis in yeast indicated that CmBOR1 has an efflux boron transporter activity, and transformants have increased tolerance to excess boron. CmBOR1 is expressed in leaves, stem and flowers and shows the greatest accumulation in roots. The transcript accumulation was significantly increased under boron deficiency conditions in shoots. In contrast, the accumulation of the transcript did not change in boron toxicity conditions. Finally, we observed that constitutive expression of CmBOR1 was able to increase tolerance to boron deficiency conditions in Arabidopsis thaliana, suggesting that CmBOR1 is a xylem loading boron transporter. Based on these results, it was determined that CmBOR1 encodes a boric acid/borate transporter involved in tolerance to boron deficiency in plants. © 2013 Scandinavian Plant Physiology Society.

  4. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils.

    PubMed

    Chang, Pearl; Gerhardt, Karen E; Huang, Xiao-Dong; Yu, Xiao-Ming; Glick, Bernard R; Gerwing, Perry D; Greenberg, Bruce M

    2014-01-01

    Plant growth-promoting bacteria (PGPB) strains that contain the enzyme 1-amino-cyclopropane-1-carboxylate (ACC) deaminase can lower stress ethylene levels and improve plant growth. In this study, ACC deaminase-producing bacteria were isolated from a ) salt-impacted ( 50 dS/m) farm field, and their ability to promote plant growth of barley 1): and oats in saline soil was investigated in pouch assays (1% NaCI), greenhouse trials (9.4 dS/m), and field trials (6-24 dS/m). A mix of previously isolated PGPB strains UW3 (Pseudomonas sp.) and UW4 (P. sp.) was also tested for comparison. Rhizobacterial isolate CMH3 (P. corrugata) and UW3+UW4 partially alleviated plant salt stress in growth pouch assays. In greenhouse trials, CMH3 enhanced root biomass of barley and oats by 200% and 50%, respectively. UW3+UW4, CMH3 and isolate CMH2 also enhanced barley and oat shoot growth by 100%-150%. In field tests, shoot biomass of oats tripled when treated with UW3+UW4 and doubled with CHM3 compared with that of untreated plants. PGPB treatment did not affect salt uptake on a per mass basis; higher plant biomass led to greater salt uptake, resulting in decreased soil salinity. This study demonstrates a method for improving plant growth in marginal saline soils. Associated implications for salt

  5. Effect of gemfibrozil, rifampicin, or probenecid on the pharmacokinetics of the SGLT2 inhibitor empagliflozin in healthy volunteers.

    PubMed

    Macha, Sreeraj; Koenen, Rüdiger; Sennewald, Regina; Schöne, Katja; Hummel, Noemi; Riedmaier, Stephan; Woerle, Hans J; Salsali, Afshin; Broedl, Uli C

    2014-02-01

    Empagliflozin is a potent, oral, selective inhibitor of sodium glucose cotransporter 2 in development for the treatment of type 2 diabetes mellitus. The goal of these studies was to investigate potential drug-drug interactions between empagliflozin and gemfibrozil (an organic anion-transporting polypeptide 1B1 [OATP1B1]/1B3 and organic anion transporter 3 [OAT3] inhibitor), rifampicin (an OATP1B1/1B3 inhibitor), or probenecid (an OAT3 and uridine diphosphate glucuronosyltransferase inhibitor). Two open-label, randomized, crossover studies were undertaken in healthy subjects. In the first study, 18 subjects received the following in 1 of 2 randomized treatment sequences: a single dose of empagliflozin 25 mg alone and gemfibrozil 600 mg BID for 5 days with a single dose of empagliflozin 25 mg on the third day. In the second study, 18 subjects received a single dose of empagliflozin 10 mg, a single dose of empagliflozin 10 mg coadministered with a single dose of rifampicin 600 mg, and probenecid 500 mg BID for 4 days with a single dose of empagliflozin 10 mg on the second day in 1 of 6 randomized treatment sequences. In the gemfibrozil study, 11 subjects were male, mean age was 35.1 years and mean body mass index (BMI) was 23.47 kg/m(2). In the rifampicin/probenecid study, 10 subjects were male, mean age was 32.7 years and mean BMI was 23.03 kg/m(2). Exposure to empagliflozin was increased by coadministration with gemfibrozil (AUC0-∞: geometric mean ratio [GMR], 158.50% [90% CI, 151.77-165.53]; Cmax: GMR, 115.00% [90% CI, 106.15-124.59]), rifampicin (AUC0-∞: GMR, 135.20% [90% CI, 129.58-141.06]; Cmax: GMR, 175.14% [90% CI, 160.14-191.56]), and probenecid (AUC0-∞: GMR, 153.47% [90% CI, 146.41-160.88]; Cmax: GMR, 125.60% [90% CI, 113.67-138.78]). All treatments were well tolerated. Increases in empagliflozin exposure were <2-fold, indicating that the inhibition of the OATP1B1/1B3, OAT3 transporter, and uridine diphosphate glucuronosyltransferases did not have a

  6. Molecular anions.

    PubMed

    Simons, Jack

    2008-07-24

    The experimental and theoretical study of molecular anions has undergone explosive growth over the past 40 years. Advances in techniques used to generate anions in appreciable numbers as well as new ion-storage, ion-optics, and laser spectroscopic tools have been key on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now allow one to achieve higher accuracy and to study electronically metastable states, thus bringing theory in close collaboration with experiment in this field. In this article, many of the experimental and theoretical challenges specific to studying molecular anions are discussed. Results from many research groups on several classes of molecular anions are overviewed, and both literature citations and active (in online html and pdf versions) links to numerous contributing scientists' Web sites are provided. Specific focus is made on the following families of anions: dipole-bound, zwitterion-bound, double-Rydberg, multiply charged, metastable, cluster-based, and biological anions. In discussing each kind of anion, emphasis is placed on the structural, energetic, spectroscopic, and chemical-reactivity characteristics that make these anions novel, interesting, and important.

  7. Unique interrelationships between fiber composition, water-soluble carbohydrates, and in vitro gas production for fall-grown oat forages.

    PubMed

    Coblentz, W K; Nellis, S E; Hoffman, P C; Hall, M B; Weimer, P J; Esser, N M; Bertram, M G

    2013-01-01

    Sixty samples of 'ForagePlus' oat were selected from a previous plot study for analysis of in vitro gas production (IVGP) on the basis of 2 factors: (1) high (n=29) or low (n=31) neutral detergent fiber (NDF; 62.7±2.61 and 45.1±3.91%, respectively); and (2) the range of water-soluble carbohydrates (WSC) within the high- and low-NDF groups. For the WSC selection factor, concentrations ranged from 4.7 to 13.4% (mean=7.9±2.06%) and from 3.5 to 19.4% (mean=9.7±4.57%) within high- and low-NDF forages, respectively. Our objectives were to assess the relationships between IVGP and various agronomic or nutritional characteristics for high- and low-NDF fall-oat forages. Cumulative IVGP was fitted to a single-pool nonlinear regression model: Y=MAX × (1 - e ([-)(K)(× (t - lag)])), where Y=cumulative gas produced (mL), MAX=maximum cumulative gas produced with infinite incubation time (mL), K=rate constant, t=incubation time (h), and lag=discrete lag time (h). Generally, cumulative IVGP after 12, 24, 36, or 48h within high-NDF fall-oat forages was negatively correlated with NDF, hemicellulose, lignin, and ash, but positively correlated with WSC, nonfiber carbohydrate (NFC), and total digestible nutrients (TDN). For low-NDF fall-grown oat forages, IVGP was positively correlated with growth stage, canopy height, WSC, NFC, and TDN; negative correlations were observed with ash and crude protein (CP) but not generally with fiber components. These responses were also reflected in multiple regression analysis for high- and low-NDF forages. After 12, 24, or 36h of incubation, cumulative IVGP within high-NDF fall-oat forages was explained by complex regression equations utilizing (lignin:NDF)(2), lignin:NDF, hemicellulose, lignin, and TDN(2) as independent variables (R(2)≥0.43). Within low-NDF fall-grown oat forages, cumulative IVGP at these incubation intervals was explained by positive linear relationships with NFC that also exhibited high coefficients of determination (R(2)

  8. Carbon partitioning between oil and carbohydrates in developing oat (Avena sativa L.) seeds.

    PubMed

    Ekman, Asa; Hayden, Daniel M; Dehesh, Katayoon; Bülow, Leif; Stymne, Sten

    2008-01-01

    Cereals accumulate starch in the endosperm as their major energy reserve in the grain. In most cereals the embryo, scutellum, and aleurone layer are high in oil, but these tissues constitute a very small part of the total seed weight. However, in oat (Avena sativa L.) most of the oil in kernels is deposited in the same endosperm cells that accumulate starch. Thus oat endosperm is a desirable model system to study the metabolic switches responsible for carbon partitioning between oil and starch synthesis. A prerequisite for such investigations is the development of an experimental system for oat that allows for metabolic flux analysis using stable and radioactive isotope labelling. An in vitro liquid culture system, developed for detached oat panicles and optimized to mimic kernel composition during different developmental stages in planta, is presented here. This system was subsequently used in analyses of carbon partitioning between lipids and carbohydrates by the administration of 14C-labelled sucrose to two cultivars having different amounts of kernel oil. The data presented in this study clearly show that a higher amount of oil in the high-oil cultivar compared with the medium-oil cultivar was due to a higher proportion of carbon partitioning into oil during seed filling, predominantly at the earlier stages of kernel development.

  9. Facilitated Anion Transport Induces Hyperpolarization of the Cell Membrane That Triggers Differentiation and Cell Death in Cancer Stem Cells.

    PubMed

    Soto-Cerrato, Vanessa; Manuel-Manresa, Pilar; Hernando, Elsa; Calabuig-Fariñas, Silvia; Martínez-Romero, Alicia; Fernández-Dueñas, Víctor; Sahlholm, Kristoffer; Knöpfel, Thomas; García-Valverde, María; Rodilla, Ananda M; Jantus-Lewintre, Eloisa; Farràs, Rosa; Ciruela, Francisco; Pérez-Tomás, Ricardo; Quesada, Roberto

    2015-12-23

    Facilitated anion transport potentially represents a powerful tool to modulate various cellular functions. However, research into the biological effects of small molecule anionophores is still at an early stage. Here we have used two potent anionophore molecules inspired in the structure of marine metabolites tambjamines to gain insight into the effect induced by these compounds at the cellular level. We show how active anionophores, capable of facilitating the transmembrane transport of chloride and bicarbonate in model phospholipid liposomes, induce acidification of the cytosol and hyperpolarization of plasma cell membranes. We demonstrate how this combined effect can be used against cancer stem cells (CSCs). Hyperpolarization of cell membrane induces cell differentiation and loss of stemness of CSCs leading to effective elimination of this cancer cell subpopulation.

  10. Molecular Basis of the Increase in Invertase Activity Elicited by Gravistimulation of Oat-Shoot Pulvini

    NASA Technical Reports Server (NTRS)

    Wu, Liu-Lai; Song, Il; Kim, Donghern; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom) increase in invertase activity is elicited by gravistimulation in oatshoot pulvini starting within 3h after treatment. In order to analyze the regulation of invertase gene expression in this system, we examined the effect of gravistimulation on invertase mRNA induction. Total RNA and poly(A)(+)RNA, isolated from oat pulvini, and two oligonucleotide primers, corresponding to two conserved amino-acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the Polymerase Chain Reaction (PCR). A partial-length cDNA (550 base pairs) was obtained and characterized. There was a 52 % deduced amino-acid sequence homology to that of carrot beta-fructosi- dase and a 48 % homology to that of tomato invertase. Northern blot analysis showed that there was an obvious transient accumulation of invertase mRNA elicited by gravistimulation of oat pulvini. The mRNA was rapidly induced to a maximum level at 1h following gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher (five-fold) than that in the top half of the pulvinus tissue. The induction of invertase mRNA was consistent with the transient enhancement of invertase activity during the graviresponse of the pulvinus. These data indicate that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional and/or translational levels. Southern blot analysis showed that there were four genomic DNA fragments hybridized to the invertase cDNA. This suggests that an invertase gene family may exist in oat plants.

  11. Effects of seeding rate on the dry matter yield and nutritive value of fall-oat

    USDA-ARS?s Scientific Manuscript database

    Several recent research projects have evaluated fall-grown oat as a fall-forage option for harvest as silage, or to extend the fall grazing season. Producers frequently ask about the appropriate seeding rates for fall-grown oat and whether or not it is the same as the traditional recommendation for ...

  12. Synthesis and characterization of Mg-Al-layered double hydroxides intercalated with cubane-1,4-dicarboxylate anions.

    PubMed

    Rezvani, Zolfaghar; Arjomandi Rad, Farzad; Khodam, Fatemeh

    2015-01-21

    In the present work, Mg2Al-layered double hydroxide (LDH) intercalated with cubane-1,4-dicarboxylate anions was prepared from the reaction of solutions of Mg(ii) and Al(iii) nitrate salts with an alkaline solution of cubane-1,4-dicarboxylic acid by using the coprecipitation method. The successful preparation of a nanohybrid of cubane-1,4-dicarboxylate(cubane-dc) anions with LDH was confirmed by powder X-ray diffraction, FTIR spectroscopy and thermal gravimetric analysis (TGA). The increase in the basal spacing of LDHs from 8.67 Å to 13.40 Å shows that cubane-dc anions were successfully incorporated into the interlayer space. Thermogravimetric analyses confirm that the thermal stability of the intercalated cubane-dc anions is greater than that of the pure form before intercalation because of host-guest interactions involving hydrogen bonds. The interlayer structure, hydrogen bonding, and subsequent distension of LDH compounds containing cubane-dc anions were shown by molecular simulation. The RDF (radial distribution function), mean square displacement (MSD), and self-diffusion coefficient were calculated using the trajectory files on the basis of molecular dynamics (MD) simulations, and the results indicated that the cubane-dc anions were more stable when intercalated into the LDH layers. A good agreement was obtained between calculated and measured X-ray diffraction patterns and between experimental and calculated basal spacings.

  13. Germination of oat and quinoa and evaluation of the malts as gluten free baking ingredients.

    PubMed

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2013-03-01

    Germination can be used to improve the sensory and nutritional properties of cereal and pseudocereal grains. Oat and quinoa are rich in minerals, vitamins and fibre while quinoa also contains high amounts of protein of a high nutritional value. In this study, oat and quinoa malts were produced and incorporated in a rice and potato based gluten free formulation. Germination of oat led to a drastic increase of α-amylase activity from 0.3 to 48 U/g, and minor increases in proteolytic and lipolytic activities. Little change was observed in quinoa except a decrease in proteolytic activity from 9.6 to 6.9 U/g. Oat malt addition decreased batter viscosities at both proofing temperature and during heating. These changes led to a decrease in bread density from 0.59 to 0.5 g/ml and the formation of a more open crumb, but overdosing of oat malt deteriorated the product as a result of excessive amylolysis during baking. Quinoa malt had no significant effect on the baking properties due to low α-amylase activity. Despite showing a very different impact on the bread quality, both malts influenced the electrophoretic patterns of rice flour protein similarly. This suggests that malt induced proteolysis does not influence the technological properties of a complex gluten free formulation.

  14. Anion permselective membrane

    NASA Technical Reports Server (NTRS)

    Hodgdon, R. B.; Waite, W. A.

    1982-01-01

    The synthesis and fabrication of polymeric anion permselective membranes for redox systems are discussed. Variations of the prime candidate anion membrane formulation to achieve better resistance and/or lower permeability were explored. Processing parameters were evaluated to lower cost and fabricate larger sizes. The processing techniques to produce more membranes per batch were successfully integrated with the fabrication of larger membranes. Membranes of about 107 cm x 51 cm were made in excellent yield. Several measurements were made on the larger sample membranes. Among the data developed were water transport and transference numbers for these prime candidate membranes at 20 C. Other work done on this system included characterization of a number of specimens of candidate membranes which had been returned after service lives of up to sixteen months. Work with new polymer constituents, with new N.P.'s, catalysts and backing fabrics is discussed. Some work was also done to evaluate other proportions of the ingredients of the prime candidate system. The adoption of a flow selectivity test at elevated temperature was explored.

  15. Defense Enzyme Responses in Dormant Wild Oat and Wheat Caryopses Challenged with a Seed Decay Pathogen

    PubMed Central

    Fuerst, E. Patrick; James, Matthew S.; Pollard, Anne T.; Okubara, Patricia A.

    2018-01-01

    Seeds have well-established passive physical and chemical defense mechanisms that protect their food reserves from decay-inducing organisms and herbivores. However, there are few studies evaluating potential biochemical defenses of dormant seeds against pathogens. Caryopsis decay by the pathogenic Fusarium avenaceum strain F.a.1 was relatively rapid in wild oat (Avena fatua L.) isoline “M73,” with >50% decay after 8 days with almost no decay in wheat (Triticum aestivum L.) var. RL4137. Thus, this fungal strain has potential for selective decay of wild oat relative to wheat. To study defense enzyme activities, wild oat and wheat caryopses were incubated with F.a.1 for 2–3 days. Whole caryopses were incubated in assay reagents to measure extrinsic defense enzyme activities. Polyphenol oxidase, exochitinase, and peroxidase were induced in whole caryopses, but oxalate oxidase was reduced, in response to F.a.1 in both species. To evaluate whether defense enzyme activities were released from the caryopsis surface, caryopses were washed with buffer and enzyme activity was measured in the leachate. Significant activities of polyphenol oxidase, exochitinase, and peroxidase, but not oxalate oxidase, were leached from caryopses. Defense enzyme responses were qualitatively similar in the wild oat and wheat genotypes evaluated. Although the absolute enzyme activities were generally greater in whole caryopses than in leachates, the relative degree of induction of polyphenol oxidase, exochitinase, and peroxidase by F.a.1 was greater in caryopsis leachates, indicating that a disproportionate quantity of the induced activity was released into the environment from the caryopsis surface, consistent with their assumed role in defense. It is unlikely that the specific defense enzymes studied here play a key role in the differential susceptibility to decay by F.a.1 in these two genotypes since defense enzyme activities were greater in the more susceptible wild oat, compared to

  16. A bioartificial kidney device with polarized secretion of immune modulators.

    PubMed

    Chevtchik, N V; Mihajlovic, M; Fedecostante, M; Bolhuis-Versteeg, L; Sastre Toraño, J; Masereeuw, R; Stamatialis, D

    2018-05-15

    The accumulation of protein-bound toxins in dialyzed patients is strongly associated with their high morbidity and mortality. The bioartificial kidney device (BAK), containing proximal tubule epithelial cells (PTEC) seeded on functionalized synthetic hollow fiber membranes (HFM), may be a powerful solution for the active removal of those metabolites. In an earlier study, we developed an upscaled BAK containing conditionally immortalized human PTEC (ciPTEC) with functional organic cationic transporter 2 (OCT2). Here, we first extended this development to a BAK device having cells with the organic anionic transporter 1 (OAT1), capable of removing anionic uremic wastes. We confirmed the quality of the ciPTEC monolayer by confocal microscopy and paracellular inulin-FITC leakage, as well as, by the active transport of anionic toxin, indoxyl sulfate (IS). Furthermore, we assessed the immune-safety of our system by measuring the production of relevant cytokines by the cells after lipopolysaccharide (LPS) stimulation. Upon LPS treatment, we observed a polarized secretion of pro-inflammatory cytokines by the cells: 10-fold higher in the extraluminal space, corresponding to the urine compartment, as compared to the intraluminal space, corresponding to the blood compartment. To the best of our knowledge, our work is the first to show this favorable cell polarization in a BAK upscaled device. This article is protected by copyright. All rights reserved.

  17. Anions coordinating anions: analysis of the interaction between anionic Keplerate nanocapsules and their anionic ligands.

    PubMed

    Melgar, Dolores; Bandeira, Nuno A G; Bonet Avalos, Josep; Bo, Carles

    2017-02-15

    Keplerates are a family of anionic metal oxide spherical capsules containing up to 132 metal atoms and some hundreds of oxygen atoms. These capsules holding a high negative charge of -12 coordinate both mono-anionic and di-anionic ligands thus increasing their charge up to -42, even up to -72, which is compensated by the corresponding counter-cations in the X-ray structures. We present an analysis of the relative importance of several energy terms of the coordinate bond between the capsule and ligands like carbonate, sulphate, sulphite, phosphinate, selenate, and a variety of carboxylates, of which the overriding component is contributed by solvation/de-solvation effects.

  18. Effect of grapefruit juice volume on the reduction of fexofenadine bioavailability: possible role of organic anion transporting polypeptides.

    PubMed

    Dresser, George K; Kim, Richard B; Bailey, David G

    2005-03-01

    The purpose of this study was to elucidate the potential clinical relevance and mechanism(s) of action of 2 different volumes of grapefruit juice on the reduction of bioavailability of fexofenadine, a substrate of organic anion transporting polypeptides. Grapefruit juice or water at normal (300 mL) or high (1200 mL) volume was ingested concomitantly with 120 mg fexofenadine by 12 healthy volunteers in a randomized 4-way crossover study, and fexofenadine pharmacokinetics were determined over a period of 8 hours. The 300-mL volume of grapefruit juice decreased the mean area under the plasma drug concentration-time curve (AUC) and the peak plasma drug concentration of fexofenadine to 58% (P < .001) and 53% (P < .001), respectively, of those with the corresponding volume of water, and 1200 mL grapefruit juice reduced these parameters to 36% ( P < .001) and 33% ( P < .001), respectively, of those with the corresponding volume of water. The 300-mL volume of grapefruit juice diminished the AUC of fexofenadine variably among individuals. This decline correlated with baseline AUC of fexofenadine with water at equivalent volume (r(2) = 0.97, P < .0001). The 1200-mL volume of grapefruit juice decreased the AUC of fexofenadine more than the 300-mL volume of grapefruit juice compared with the corresponding volume of water in each subject by a constant amount. Grapefruit juice, 300 mL and 1200 mL, reduced the coefficient of variation of the AUC of fexofenadine by 2-fold compared with that with a matching volume of water. Grapefruit juice at a commonly consumed volume diminished the oral bioavailability of fexofenadine sufficiently to be pertinent clinically, likely by direct inhibition of uptake by intestinal organic anion transporting polypeptide A (OATP-A; new nomenclature, OATP1A2). A much higher volume caused an additional modest effect, possibly from reduced intestinal concentration and transit time of fexofenadine. This food-drug interaction appears to be novel and may be

  19. Effects of bicarbonate on lithium transport in human red cells

    PubMed Central

    1978-01-01

    Lithium influx into human erythrocytes increased 12-fold, when chloride was replaced with bicarbonate in a 150 mM lithium medium (38 degrees C. pH 7.4). The increase was linearly related to both lithium- and bicarbonate concentration, and was completely eliminated by the amino reagent 4, 4'- diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). DIDS binds to an integral membrane protein (mol wt approximately 10(5) dalton) involved in anion exchange. Inhibition of both anion exchange and of bicarbonate-stimulated lithium influx was linearly related to DIDS binding. 1.1 X 10(6) DIDS molecules per cell caused complete inhibition of both processes. Both Cl- and Li+ can apparently be transported by the anion transport mechanism. The results support our previous proposal that bicarbonate-induced lithium permeability is due to transport of lithium-carbonate ion pairs (LiCO-3). DIDS-sensitive lithium influx had a high activation energy (24 kcal/mol), compatible with transport by the anion exchange mechanism. We have examined how variations of passive lithium permeability, induced by bicarbonate, affect the sodium-driven lithium counter-transport in human erythrocytes. The ability of the counter-transport system to establish a lithium gradient across the membrane decrease linearly with bicarbonate concentration in the medium. The counter-transport system was unaffected by DIDS treatement. At a plasma bicarbonate concentration of 24 mM, two-thirds of the lithium influx is mediated by the bicarbonate-stimulated pathway, and the fraction will increase significantly in metabolic alkalosis. PMID:670928

  20. N-acetylglyoxylic amide bearing a nitrophenyl group as anion receptors: NMR and X-ray investigations on anion binding and selectivity

    NASA Astrophysics Data System (ADS)

    Suryanti, Venty; Bhadbhade, Mohan; Black, David StC; Kumar, Naresh

    2017-10-01

    N-Nitrophenylglyoxylic amides 1 and 2 in presence of tetrabutylammonium cation (TBA) act as receptors for anions HSO4-, Cl-, Br- and NO3- as investigated by NMR studies. The receptors formed 1:1 host-guest complexes in solution. X-ray structure of 1 along with TBA that bind a chloride anion is reported. Molecule 1 showed the highest selectivity for HSO4- anion over others measured. X-ray structure of the bound Cl- revealed a pocket containing the anion making strong (Nsbnd H⋯Cl) and weak hydrogen bonds (Csbnd H⋯Cl) that contribute to the recognition of the chloride anion. Nsbnd H and Csbnd H hydrogen bonds resulted in a relatively strong binding for chloride ions.

  1. Deiodinases, Organic Anion Transporter Polypeptide Polymorphisms, and Thyroid Hormones in Patients with Myocardial Infarction.

    PubMed

    Brozaitiene, Julija; Skiriute, Daina; Burkauskas, Julius; Podlipskyte, Aurelija; Jankauskiene, Edita; Serretti, Alessandro; Mickuviene, Narseta

    2018-04-01

    To investigate the association among deiodinases (DIO), organic anion-transporting polypeptide 1C1 (OATP1C1) gene polymorphisms, and thyroid hormones (THs) in patients with acute myocardial infarction (AMI). In summary, 290 patients with AMI were evaluated for sociodemographic and clinical characteristics, coronary artery disease (CAD) risk factors, and comorbidities, as well as circulating thyroid-stimulating hormone and TH (triiodothyronine [T3], thyroxine [T4], free T3, free T4, and reverse T3) levels. Ten single nucleotide polymorphisms for thyroid axis related genes: DIO1 (rs11206244-C/T, rs12095080-A/G, rs2235544-A/C), DIO2 (rs225014-T/C, rs225015-G/A), DIO3 (rs945006-T/G), and OATP1C1 (rs10444412-T/C, rs10770704-C/T, rs1515777-A/G, rs974453-G/A) were genotyped. Marginal associations were observed between the DIO1, DIO2, and OATP1C1 gene polymorphisms and almost all analyzed THs (p's < 0.05). After controlling for potential confounders, the OATP1C1 rs1515777-A/G minor allele homozygous genotype (G/G) was associated with a decrease in circulating free T3 and free T3/free T4. In the AMI cohort, associations between: DIO1 rs12095080 and hypertension; DIO2 rs225015 and diabetes mellitus; and the OATP1C1 rs974453 genotype, and AMI type were established. DIO1 and DIO2 gene polymorphisms are mainly associated with T3, free T4, free T3/free T4, and [natural-log transformed (ln)] reverse T3 levels, while the OATP1C1 minor allele homozygous genotype is associated with free T3 and free T3/free T4 in CAD patients after AMI.

  2. Antiretroviral drug transporters and metabolic enzymes in human testicular tissue: potential contribution to HIV-1 sanctuary site.

    PubMed

    Huang, Yiying; Hoque, Md Tozammel; Jenabian, Mohammad-Ali; Vyboh, Kishanda; Whyte, Sana-Kay; Sheehan, Nancy L; Brassard, Pierre; Bélanger, Maud; Chomont, Nicolas; Fletcher, Courtney V; Routy, Jean-Pierre; Bendayan, Reina

    2016-07-01

    The testes are a potential viral sanctuary site for HIV-1 infection. Our study aims to provide insight into the expression and localization of key drug transporters and metabolic enzymes relevant to ART in this tissue compartment. We characterized gene and protein expression of 12 representative drug transporters and two metabolic enzymes in testicular tissue samples obtained from uninfected (n = 8) and virally suppressed HIV-1-infected subjects on ART (n = 5) and quantified antiretroviral drug concentrations in plasma and testicular tissues using LC/MS/MS from HIV-1-infected subjects. Our data demonstrate that key ABC drug transporters (permeability glycoprotein, multidrug-resistance protein 1, 2 and 4, and breast cancer resistance protein), solute carrier transporters (organic anion transporting polypeptides 1B1 and 2B1, organic anion transporter 1, concentrative nucleoside transporter 1, equilibrative nucleoside transporter 2) and cytochrome P450 metabolic enzymes (CYP3A4 and CYP2D6) previously shown to interact with many commonly used antiretroviral drugs are expressed at the mRNA and protein level in the testes of both subject groups and localize primarily at the blood-testis barrier, with no significant differences between the two groups. Furthermore, we observed that PIs known to be substrates for ATP-binding cassette membrane transporters, displayed variable testicular tissue penetration, with darunavir concentrations falling below therapeutic values. In contrast, the NRTIs emtricitabine, lamivudine and tenofovir displayed favourable tissue penetration, reaching concentrations comparable to plasma levels. We also demonstrated that nuclear receptors, peroxisome proliferator-activated receptors α and γ exhibited higher gene expression in the testicular tissue compared with pregnane X receptor and constitutive androstane receptor, suggesting a potential regulatory pathway governing drug transporter and metabolic enzyme expression in this tissue

  3. Bird cherry-oat aphid: do we have resistance?

    USDA-ARS?s Scientific Manuscript database

    Bird cherry-oat aphid (BCOA), Rhopalosiphum padi (L.), is a highly efficient, non-propagative, persistent vector of the phloem limited leutovirus BYD-PAV. BYD is the most important viral disease of cereal grains in the world and PAV is the most prevalent strain of BYD in North America. Not all BCO...

  4. Highly Dynamic Anion-Quadrupole Networks in Proteins.

    PubMed

    Kapoor, Karan; Duff, Michael R; Upadhyay, Amit; Bucci, Joel C; Saxton, Arnold M; Hinde, Robert J; Howell, Elizabeth E; Baudry, Jerome

    2016-11-01

    The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.

  5. UV-C induces K sup + efflux from bean but not from oat leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huerta, A.J.; Gueltig, B.G.

    Previous reports have shown that ultraviolet radiation (UV) induces a specific leakage of K{sup +} from cells in culture as well as from guard cells of bean leaves resulting in stomatal closure. In an effort to determine how general this response may be in photosynthetic leaf cells, we measured the UV-C-induced K{sup +} efflux from irradiated 10-14 day-old bean and oat leaf sections. Our results show that oat leaves do not respond to UV-C irradiation with K{sup +} efflux. However UV-C irradiated bean leaves leaked K{sup +} at a rate of approximately 47 nmoles cm{sup {minus}2} h{sup {minus}1} and themore » leakage was linear for at least 3.5 hours. The source cells for K{sup +} efflux and the possible mechanisms responsible for this difference in UV-sensitivity will be discussed.« less

  6. Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Barley yellow dwarf (BYD) is one of the most destructive diseases of cereal crops worldwide. Barley yellow dwarf viruses (BYDVs) are responsible for BYD and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-t...

  7. Tracking multi-walled carbon nanotubes inside oat (Avena sativa L.) plants and assessing their effect on growth, yield, and mammalian (human) cell viability

    NASA Astrophysics Data System (ADS)

    Joshi, Anjali; Kaur, Simranjeet; Singh, Pargat; Dharamvir, Keya; Nayyar, Harsh; Verma, Gaurav

    2018-05-01

    Our findings show that oxidized multi-walled carbon nanotubes (MWCNT) having serpent-like morphology and smaller sizes (diameter of 35 nm and lengths of 200-300 nm) are compatible with oat plant tissues. Applied by seed-priming method as 90 µg/ml concentration, these serpentine MWCNT (having open-end caps) enter the oat plant and traverse the cells. Tracking of MWCNT inside sections and tissues during growth of oat plant has been done using special sample preparation. We present clear images of MWCNT inside the primed seeds and vascular bundles, the conducting tissues of root and shoot of oat. A dye fluorescein isothiocyanate non-covalently bonded to MWCNT also helped in detecting the path through circumferential perimeters of the oat channels, using fluorescence and confocal microscopy. The presence of MWCNT inside oat enhanced the growth of xylem cells by about 1.85-fold in vasculature of shoots. Compared to controls, the chlorophyll content increased by 57%, while photosynthetic activity enhanced by 15% for the same sample in MWCNT-primed plants. Overall, the growth factors were also augmented leading to significant increase in yield components. No toxic effects of MWCNT were observed in the DNA of the primed plants, and in the human cell lines treated with grains harvested from the MWCNT-primed plants. Our study provides some new insights about the role of MWCNT in plants and their potential benefits in agriculture.

  8. 40 CFR 721.10278 - 4,4′-Bipyridinium, 1-(phosphonoalkyl)-1′-substituted-, salt with anion (1:2) (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10278 4,4′-Bipyridinium, 1-(phosphonoalkyl)-1′-substituted-, salt with anion (1:2) (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as 4,4′-Bipyridinium, 1...

  9. Structural characterization and evaluation of antioxidant, anticancer and hypoglycemic activity of radiation degraded oat (Avena sativa) β- glucan

    NASA Astrophysics Data System (ADS)

    Hussain, Peerzada R.; Rather, Sarver A.; Suradkar, Prashant P.

    2018-03-01

    Oat β-D-glucan after extraction was degraded at doses of 3, 6, 9, 12 and 15 kGy. The average molecular weight decreased to 45 kDa at dose of 15 kGy from an initial value of 200 kDa in native sample. XRD analysis revealed no significant change in diffraction pattern of irradiated samples when compared with control, except a decrease in intensity of x-ray diffraction. The results of the antioxidant activity revealed decrease in EC50 values and corresponding increase in antioxidant activity of radiation degraded oat β-D-glucan. Results of the anticancer studies indicated that cytotoxicity of gamma irradiated oat β-D-glucan in cancer cell lines was highest against colo-205 and MCF7 cancer cells compared to T47D cell and no cytotoxicity was observed in normal cell lines at all concentrations used. Evaluation of hypoglycemic activity showed highest inhibition in α-glucosidase activity compared to α-amylase activity due to gamma irradiation of oat β-D-glucan. Comparison of the EC50 values of known standards and gamma irradiated oat beta-glucan samples indicates that radiation treatment significantly modified the biological activity of the beta-glucan samples. Therefore, it is suggested that gamma irradiation can be used for producing low molecular weight oat β-D-glucan; which can help in modifying the biological activities.

  10. Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios.

    PubMed

    Tumino, Giorgio; Voorrips, Roeland E; Rizza, Fulvia; Badeck, Franz W; Morcia, Caterina; Ghizzoni, Roberta; Germeier, Christoph U; Paulo, Maria-João; Terzi, Valeria; Smulders, Marinus J M

    2016-09-01

    Infinium SNP data analysed as continuous intensity ratios enabled associating genotypic and phenotypic data from heterogeneous oat samples, showing that association mapping for frost tolerance is a feasible option. Oat is sensitive to freezing temperatures, which restricts the cultivation of fall-sown or winter oats to regions with milder winters. Fall-sown oats have a longer growth cycle, mature earlier, and have a higher productivity than spring-sown oats, therefore improving frost tolerance is an important goal in oat breeding. Our aim was to test the effectiveness of a Genome-Wide Association Study (GWAS) for mapping QTLs related to frost tolerance, using an approach that tolerates continuously distributed signals from SNPs in bulked samples from heterogeneous accessions. A collection of 138 European oat accessions, including landraces, old and modern varieties from 27 countries was genotyped using the Infinium 6K SNP array. The SNP data were analyzed as continuous intensity ratios, rather than converting them into discrete values by genotype calling. PCA and Ward's clustering of genetic similarities revealed the presence of two main groups of accessions, which roughly corresponded to Continental Europe and Mediterranean/Atlantic Europe, although a total of eight subgroups can be distinguished. The accessions were phenotyped for frost tolerance under controlled conditions by measuring fluorescence quantum yield of photosystem II after a freezing stress. GWAS were performed by a linear mixed model approach, comparing different corrections for population structure. All models detected three robust QTLs, two of which co-mapped with QTLs identified earlier in bi-parental mapping populations. The approach used in the present work shows that SNP array data of heterogeneous hexaploid oat samples can be successfully used to determine genetic similarities and to map associations to quantitative phenotypic traits.

  11. Possible involvement of cationic-drug sensitive transport systems in the blood-to-brain influx and brain-to-blood efflux of amantadine across the blood-brain barrier.

    PubMed

    Suzuki, Toyofumi; Fukami, Toshiro; Tomono, Kazuo

    2015-03-01

    The purpose of this study was to characterize the brain-to-blood efflux transport of amantadine across the blood-brain barrier (BBB). The apparent in vivo efflux rate constant for [(3) H]amantadine from the rat brain (keff ) was found to be 1.53 × 10(-2) min(-1) after intracerebral microinjection using the brain efflux index method. The efflux of [(3) H]amantadine was inhibited by 1-methyl-4-phenylpyridinium (MPP(+) ), a cationic neurotoxin, suggesting that amantadine transport from the brain to the blood across the BBB potentially involves the rat plasma membrane monoamine transporter (rPMAT). On the other hand, other selected substrates for organic cation transporters (OCTs) and organic anion transporters (OATs), as well as inhibitors of P-glycoprotein (P-gp), did not affect the efflux transport of [(3) H]amantadine. In addition, in vitro studies using an immortalized rat brain endothelial cell line (GPNT) showed that the uptake and retention of [(3) H]amantadine by the cells was not changed by the addition of cyclosporin, which is an inhibitor of P-gp. However, cyclosporin affected the uptake and retention of rhodamine123. Finally, the initial brain uptake of [(3) H]amantadine was determined using an in situ mouse brain perfusion technique. Notably, the brain uptake clearance for [(3) H]amantadine was significantly decreased with the co-perfusion of quinidine or verapamil, which are cationic P-gp inhibitors, while MPP(+) did not have a significant effect. It is thus concluded that while P-gp is not involved, it is possible that rPMAT and the cationic drug-sensitive transport system participate in the brain-to-blood efflux and the blood-to-brain influx of amantadine across the BBB, respectively. Copyright © 2014 John Wiley & Sons, Ltd.

  12. A versatile tripodal amide receptor for the encapsulation of anions or hydrated anions via formation of dimeric capsules.

    PubMed

    Arunachalam, M; Ghosh, Pradyut

    2010-02-01

    A bowl-shaped tripodal receptor with an appropriately positioned amide functionality on the benzene platform and electron-withdrawing p-nitrophenyl terminals (L(1)) has been designed, synthesized, and studied for the anion binding properties. The single-crystal X-ray crystallographic analysis on crystals of L(1) with tetrabutylammonium salts of nitrate (1), acetate (2), fluoride (3), and chloride (4) obtained in moist dioxane medium showed encapsulation of two NO(3)(-), [(AcO)(2)(H(2)O)(4)](2-), [F(2)(H(2)O)(6)](2-), and [Cl(2)(H(2)O)(4)](2-) respectively as the anionic guests inside the staggered dimeric capsular assembly of L(1). The p-nitro substitution in the aryl terminals assisted the formation of dimeric capsular assembly of L(1) exclusively upon binding/encapsulating above different guests. Though L(1) demonstrates capsule formation upon anion or hydrated anion complexation for all of the anions studied here, its positional isomer with the o-nitro-substituted tripodal triamide receptor L(2) selectively formed the dimeric capsular assembly upon encapsulation of [F(2)(H(2)O)(6)](2-) and noncapsular aggregates in the cases of other anions such as Cl(-), NO(3)(-), and AcO(-). Interestingly, structural investigations upon anion exchange of the complexes revealed that both isomers have selectivity toward the formation of a [F(2)(H(2)O)(6)](2-) encapsulated dimeric capsule. In contrast, solution-state (1)H NMR titration studies of L(1) and L(2) in DMSO-d(6) with AcO(-) indicated 1:3 (host:guest) binding.

  13. Gamma-vinyl GABA increases nonvesicular release of GABA and glutamate in the nucleus accumbens in rats via action on anion channels and GABA transporters

    PubMed Central

    Peng, Xiao-Qing; Gardner, Eliot L.

    2013-01-01

    Rationale γ-Amino butyric acid (GABA) is a well-characterized inhibitory neurotransmitter in the central nervous system, which may also stimulate nonvesicular release of other neurotransmitters under certain conditions. We have recently reported that γ-vinyl GABA (GVG), an irreversible GABA transaminase inhibitor, elevates extracellular GABA but fails to alter dopamine release in the nucleus accumbens (NAc). Objectives Here, we investigated the mechanism(s) by which GVG elevates extracellular GABA levels and whether GVG also alters glutamate release in the NAc. Materials and methods In vivo microdialysis was used to simultaneously measure extracellular NAc GABA and glutamate before and after GVG administration in freely moving rats. Results Systemic administration of GVG or intra-NAc local perfusion of GVG significantly increased extracellular NAc GABA and glutamate. GVG-enhanced GABA was completely blocked by intra-NAc local perfusion of 5-nitro-2, 3-(phenylpropylamino)-benzoic acid (NPPB), a selective anion channel blocker and partially blocked by SKF89976A, a type 1 GABA transporter inhibitor. GVG-enhanced glutamate was completely blocked by NPPB or SKF89976A. Tetrodotoxin, a voltage-dependent Na+-channel blocker, failed to alter GVG-enhanced GABA and glutamate. Conclusions These data suggest that GVG-enhanced extracellular GABA and glutamate are mediated predominantly by the opening of anion channels and partially by the reversal of GABA transporters. Enhanced extracellular glutamate may functionally attenuate the pharmacological action of GABA and prevent enhanced GABA-induced excess inhibition. PMID:20033132

  14. Verification of the sputter-generated 32SFn- (n = 1-6) anions by accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Mane, R. G.; Surendran, P.; Kumar, Sanjay; Nair, J. P.; Yadav, M. L.; Hemalatha, M.; Thomas, R. G.; Mahata, K.; Kailas, S.; Gupta, A. K.

    2016-01-01

    Recently, we have performed systematic Secondary Ion Mass Spectrometry (SIMS) measurements at our ion source test set up and have demonstrated that gas phase 32SFn- (n = 1-6) anions for all size 'n' can be readily generated from a variety of surfaces undergoing Cs+ ion sputtering in the presence of high purity SF6 gas by employing the gas spray-cesium sputter technique. In our SIMS measurements, the isotopic yield ratio 34SFn-/32SFn- (n = 1-6) was found to be close to its natural abundance but not for all size 'n'. In order to gain further insight into the constituents of these molecular anions, ultra sensitive Accelerator Mass Spectrometry (AMS) measurements were conducted with the most abundant 32SFn- (n = 1-6) anions, at BARC-TIFR 14 UD Pelletron accelerator. The results from these measurements are discussed in this paper.

  15. Analysis, annotation, and profiling of the oat seed transcriptome

    USDA-ARS?s Scientific Manuscript database

    Novel high-throughput next generation sequencing (NGS) technologies are providing opportunities to explore genomes and transcriptomes in a cost-effective manner. To construct a gene expression atlas of developing oat (Avena sativa) seeds, two software packages specifically designed for RNA-seq (Trin...

  16. Physical properties of ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various anions and the bis(trifluoromethylsulfonyl)imide anion with various cations.

    PubMed

    Jin, Hui; O'Hare, Bernie; Dong, Jing; Arzhantsev, Sergei; Baker, Gary A; Wishart, James F; Benesi, Alan J; Maroncelli, Mark

    2008-01-10

    Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.

  17. In vitro and physiologically‐based pharmacokinetic based assessment of drug–drug interaction potential of canagliflozin

    PubMed Central

    Dallas, Shannon; Sensenhauser, Carlo; Lim, Heng Keang; Scheers, Ellen; Verboven, Peter; Cuyckens, Filip; Leclercq, Laurent; Evans, David C.; Kelley, Michael F.; Johnson, Mark D.; Snoeys, Jan

    2016-01-01

    Aims Canagliflozin is a recently approved drug for use in the treatment of type 2 diabetes. The potential for canagliflozin to cause clinical drug–drug interactions (DDIs) was assessed. Methods DDI potential of canagliflozin was investigated using in vitro test systems containing drug metabolizing enzymes or transporters. Basic predictive approaches were applied to determine potential interactions in vivo. A physiologically‐based pharmacokinetic (PBPK) model was developed and clinical DDI simulations were performed to determine the likelihood of cytochrome P450 (CYP) inhibition by canagliflozin. Results Canagliflozin was primarily metabolized by uridine 5′‐diphospho‐glucuronosyltransferase 1A9 and 2B4 enzymes. Canagliflozin was a substrate of efflux transporters (P‐glycoprotein, breast cancer resistance protein and multidrug resistance‐associated protein‐2) but was not a substrate of uptake transporters (organic anion transporter polypeptide isoforms OATP1B1, OATP1B3, organic anion transporters OAT1 and OAT3, and organic cationic transporters OCT1, and OCT2). In inhibition assays, canagliflozin was shown to be a weak in vitro inhibitor (IC50) of CYP3A4 (27 μmol l –1, standard error [SE] 4.9), CYP2C9 (80 μmol l –1, SE 8.1), CYP2B6 (16 μmol l–1, SE 2.1), CYP2C8 (75 μmol l –1, SE 6.4), P‐glycoprotein (19.3 μmol l –1, SE 7.2), and multidrug resistance‐associated protein‐2 (21.5 μmol l –1, SE 3.1). Basic models recommended in DDI guidelines (US Food & Drug Administration and European Medicines Agency) predicted moderate to low likelihood of interaction for these CYPs and efflux transporters. PBPK DDI simulations of canagliflozin with CYP probe substrates (simvastatin, S‐warfarin, bupropion, repaglinide) did not show relevant interaction in humans since mean areas under the concentration‐time curve and maximum plasma concentration ratios for probe substrates with and without canagliflozin and its 95% CIs were within

  18. Wholegrain oat-based cereals have prebiotic potential and low glycaemic index.

    PubMed

    Connolly, M L; Tuohy, K M; Lovegrove, J A

    2012-12-28

    Population studies show a positive association between increased dietary intake of wholegrains and reduced risk of cardiometabolic disorders. Consumption of wholegrain food has been associated with lower blood glucose and therefore may contribute to a low-glycaemic load diet. The ability to mediate a prebiotic modulation of gut microbiota has recently been suggested to have an inverse correlation with risk of cardiometabolic disease. To date very little work has been carried out on the functionality of wholegrain breakfast cereals in terms of glycaemic response or impact on gut microbiota. An investigation into identifying wholegrain-based breakfast cereals demonstrating both low glycaemic index (GI) and prebiotic attributes was performed. After in vitro digestion, cereal samples were supplemented to pH-controlled anaerobic batch cultures of the human faecal microbiota. Total bacteria populations increased significantly (P < 0·05) in all treated cultures, and the fermentation of a wholegrain oat cluster cereal was associated with proliferation of the Bifidobacterium genus (P = 0·02). Smaller, but significant increases in the Bifidobacterium genus were observed for a further four oat-based cereals. Significant increases in the Lactobacillus-Enterococcus group were observed for granola (P = 0·01), 100 % wholegrain aggregate (P = 0·04) and 70 % wholegrain loops (P = 0·01). Cereals demonstrating prebiotic potential were selected for GI determination in twelve healthy subjects. The wholegrain oat aggregate cereal achieved the lowest GI value (40), three other cereals ranged between 44 and 74, with instant porridge resulting in a GI value similar to the standard glucose control. The present study suggests that wholegrain oat-based breakfast cereals may be prebiotics and have the potential to have low GI.

  19. A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial sub-genome rearrangement

    USDA-ARS?s Scientific Manuscript database

    Hexaploid oat (Avena sativa, 2n = 6x = 42) is a member of the Poaceae family with a very large genome (~13 Gb) containing 21 chromosome pairs: seven from each of two similar ancestral diploids (A and D) and seven from a more diverged ancestral diploid (C). Physical rearrangements among ancestral oat...

  20. Cost-effectiveness of Maintaining Daily Intake of Oat β-Glucan for Coronary Heart Disease Primary Prevention.

    PubMed

    Earnshaw, Stephanie R; McDade, Cheryl L; Chu, YiFang; Fleige, Lisa E; Sievenpiper, John L

    2017-04-01

    Oat β-glucan reduces cholesterol levels and thus reduces the risk for coronary heart disease (CHD). However, its economic impact has not been well studied. We examined the economic impact of daily intake of ≥3 g of oat β-glucan in primary prevention of CHD in patients receiving statins or no pharmacologic treatment. A decision model was developed to compare costs and outcomes associated with lowering cholesterol levels with no pharmacologic treatment and normal diet, no pharmacologic treatment plus ≥3 g/d of oat β-glucan, and statin therapy plus ≥3 g/d of oat β-glucan. The population comprised men 45, 55, or 65 years of age with no history of cardiovascular disease and a 10-year risk for CHD of 5%, 7.5%, or 10%. Clinical efficacy data were gathered from meta-analyses; safety data, costs, and utilities were gathered from published literature. Cost per quality-adjusted life years and number of first events were reported. Maintaining ≥3 g/d of β-glucan may be cost-effective in men aged 45, 55, and 65 years with 10-year CHD risks of 5.0%, 7.5%, and 10.0% taking no pharmacologic treatment or on statins. It may also reduce first events of myocardial infarction and CHD death. Results are sensitive to oat β-glucan cost but insensitive to changes in other parameters. Maintaining ≥3 g of oat β-glucan daily remains cost-effective within plausible range of values. β-glucan may be cost-effective for preventing CHD events in middle-aged men with no history of cardiovascular events whose 10-year CHD risk is ≥5%. Maintaining daily β-glucan intake may have considerable impact on first events. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Grotthuss Transport of Iodide in EMIM/I3 Ionic Crystal.

    PubMed

    McDaniel, Jesse G; Yethiraj, Arun

    2018-01-11

    Highly ionic environments can mediate unusual chemical reactions that would otherwise be considered impossible based on chemical intuition. For example, the formation of a chemical bond between two iodide anions to form a divalent polyiodide anion is seemingly prohibited due to Coulombic repulsion. Using ab initio molecular dynamics simulations, we show that in the 1-ethyl-3-methylimidazolium (EMIM)/I 3 ionic crystal, the reactive formation of divalent and even trivalent polyiodide anions occurs with extremely small energetic barriers, due to the electrostatic field of the ionic lattice. A practical consequence of this anomalous reactivity is that iodide anions are efficiently transported within the crystal through a "Grotthuss-exchange" mechanism involving bond-breaking and forming events. We characterize two distinct transport pathways, involving both I 4 2- and I 7 3- intermediates, with fast transport of iodide resulting from the release of an I - anion on the opposite side of the intermediate species from the initial bond formation. The ordered cation arrangement in the crystal provides the necessary electrostatic screening for close approach of anions, suggesting a new counterintuitive approach to obtain high ionic conductivity. This new design principle could be used to develop better solid-state electrolytes for batteries, fuel cells, and supercapacitors.

  2. Experimental non-alcoholic fatty liver disease results in decreased hepatic uptake transporter expression and function in rats

    PubMed Central

    Fisher, Craig D.; Lickteig, Andrew J.; Augustine, Lisa M.; Oude Elferink, Ronald P.J.; Besselsen, David G.; Erickson, Robert P.; Cherrington, Nathan J.

    2009-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of diagnoses ranging from simple fatty liver (SFL), to non-alcoholic steatohepatitis (NASH). This study aimed to determine the effect of moderate and severe NAFLD on hepatic transporter expression and function in vivo. Rats were fed a high-fat diet (SFL model) or a methionine-choline-deficient diet (NASH model) for eight weeks. Hepatic uptake transporter function was determined by bromosulfophthalein (BSP) disposition. Transporter expression was determined by branched DNA signal amplification assay and western blotting; inflammation was identified by immunostaining of liver slices for interleukin 1 beta (IL-1β). MC- rats showed significant retention of BSP in the plasma when compared to control rats. Hepatic NTCP, OATP1a1, 1a4, 1b2 and 2b1; and OAT 2 and 3 mRNA levels were significantly decreased in high-fat and MC- diet rats when compared to control. Protein expression of OATP1a1 was significantly decreased in high-fat animals, while OATP1a1 and OATP1b2 expression was significantly lower in MC- rats when compared to control. Liver tissue from high-fat and MC- rats stained positive for IL-1β, a pro-inflammatory cytokine known to decrease expression of NTCP, OATP and OAT transporters, suggesting a plausible mechanism for the observed transporter alterations. These data suggest that different stages of NAFLD result in altered hepatic uptake transporter expression that can lead to a functional impairment of xenobiotic uptake from the blood. Furthermore, NAFLD may alter the plasma retention time of clinically relevant drugs that are reliant on these transporters and may increase the potential drug toxicity. PMID:19358839

  3. Genome-Wide Association Mapping of Barley Yellow Dwarf Virus Tolerance in Spring Oat (Avena sativa L.)

    PubMed Central

    Foresman, Bradley J.; Oliver, Rebekah E.; Jackson, Eric W.; Chao, Shiaoman; Arruda, Marcio P.; Kolb, Frederic L.

    2016-01-01

    Barley yellow dwarf viruses (BYDVs) are responsible for the disease barley yellow dwarf (BYD) and affect many cereals including oat (Avena sativa L.). Until recently, the molecular marker technology in oat has not allowed for many marker-trait association studies to determine the genetic mechanisms for tolerance. A genome-wide association study (GWAS) was performed on 428 spring oat lines using a recently developed high-density oat single nucleotide polymorphism (SNP) array as well as a SNP-based consensus map. Marker-trait associations were performed using a Q-K mixed model approach to control for population structure and relatedness. Six significant SNP-trait associations representing two QTL were found on chromosomes 3C (Mrg17) and 18D (Mrg04). This is the first report of BYDV tolerance QTL on chromosome 3C (Mrg17) and 18D (Mrg04). Haplotypes using the two QTL were evaluated and distinct classes for tolerance were identified based on the number of favorable alleles. A large number of lines carrying both favorable alleles were observed in the panel. PMID:27175781

  4. Tailoring the properties of acetate-based ionic liquids using the tricyanomethanide anion.

    PubMed

    Lepre, L F; Szala-Bilnik, J; Padua, A A H; Traïkia, M; Ando, R A; Costa Gomes, M F

    2016-08-17

    The equilibrium and transport properties of mixtures of two ionic liquids - [C4C1Im][OAc] and [C4C1Im][C(CN)3] - were determined and interpreted at the molecular level using vibration spectroscopy, NMR and molecular dynamics simulation. The non-ideality of the mixtures [C4C1Im][OAc](1-x)[C(CN)3]x was characterized by V(E) = +0.28 cm(3) mol(-1) (293 K, x = 0.65) and H(E) = -2.2 kJ mol(-1) for x = 0.5. These values could be explained by a rearrangement of the hydrogen-bond network of the mixture that favours the interaction of the acetate anion with the imidazolium cation at position C2. The dynamic properties of the mixture are also dramatically influenced by the composition with a decrease of the viscosity and an increase of self-diffusion coefficients of the ions when the amount of tricyanomethanide anion increases in the mixture.

  5. Pu Anion Exchange Process Intensification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor-Pashow, Kathryn M. L.

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through themore » large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.« less

  6. Genetic variation and associations involving Fusarium head blight and deoxynivalenol accumulation in cultivated oat (Avena sativa L.)

    USDA-ARS?s Scientific Manuscript database

    Resistance in oats (Avena sativa L.) to infection by Fusarium graminearum was assessed in field trials in 2011-12 including 424 spring oat lines from North America and Scandinavia. Traits measured were Fusarium Head Blight (FHB), deoxynivalenol (DON) content, days to flowering (DTF) and days to matu...

  7. Improved bioavailability of dietary phenolic acids in whole grain barley and oat groat following fermentation with probiotic Lactobacillus acidophilus , Lactobacillus johnsonii , and Lactobacillus reuteri.

    PubMed

    Hole, Anastasia S; Rud, Ida; Grimmer, Stine; Sigl, Stefanie; Narvhus, Judith; Sahlstrøm, Stefan

    2012-06-27

    The aim of this study was to improve the bioavailability of the dietary phenolic acids in flours from whole grain barley and oat groat following fermentation with lactic acid bacteria (LAB) exhibiting high feruloyl esterase activity (FAE). The highest increase of free phenolic acids was observed after fermentation with three probiotic strains, Lactobacillus johnsonii LA1, Lactobacillus reuteri SD2112, and Lactobacillus acidophilus LA-5, with maximum increases from 2.55 to 69.91 μg g(-1) DM and from 4.13 to 109.42 μg g(-1) DM in whole grain barley and oat groat, respectively. Interestingly, higher amounts of bound phenolic acids were detected after both water treatment and LAB fermentation in whole grain barley, indicating higher bioaccessibility, whereas some decrease was detected in oat groat. To conclude, cereal fermentation with specific probiotic strains can lead to significant increase of free phenolic acids, thereby improving their bioavailability.

  8. Theoretical and experimental study of organic nano-material for acetate anion based on 1, 10-phenanthroline.

    PubMed

    Shang, Xuefang; Zhao, Yuan; Wei, Xiaofang; Feng, Yaqian; Li, Xin; Gao, Shuyan; Xu, Xiufang

    2015-01-01

    New phenanthroline derivatives (1, 2, 3, 4) containing phenol groups have been synthesized and optimized. The nano-material of compound 2 was also developed. Their binding properties were evaluated for various biological anions (F(-), Cl(-), Br(-), I(-), AcO(-) and H(2)PO(4)(-)) by theoretical investigation, UV-vis, fluorescence, (1)HNMR titration experiments and these compounds all showed strong binding ability for AcO(-) without the interference of other anions tested. The anion binding ability could be regularized by electron push-pull properties of the ortho- or para- substituent on benzene. Theoretical investigation analysis revealed the effect of intramolecular hydrogen bond existed between -OH and other atoms in the structure of these compounds.

  9. Population genetics related to adaptation in elite oat germplasm

    USDA-ARS?s Scientific Manuscript database

    Six hundred thirty five oat lines and 2,635 SNP loci were used to evaluate population structure, linkage disequilibrium (LD) and genotype-phenotype association with heading date. The first five principal components (PC) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 2...

  10. The art of attrition: development of robust oat microsatellites

    USDA-ARS?s Scientific Manuscript database

    Microsatellite or simple sequence repeat (SSR) markers are important tools for genetic analyses, especially those targeting diversity, based on the fact that multiple alleles can occur at a given locus. Currently, only 160 genomic-based SSR markers are publicly available for oat, most of which have...

  11. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    DOE PAGES

    Mani, Tomoyasu; Grills, David C.

    2017-07-05

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we showmore » that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1. IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.« less

  12. Reduction of Ochratoxin A in Oat Flakes by Twin-Screw Extrusion Processing.

    PubMed

    Lee, Hyun Jung; Dahal, Samjhana; Perez, Enrique Garcia; Kowalski, Ryan Joseph; Ganjyal, Girish M; Ryu, Dojin

    2017-10-01

    Ochratoxin A (OTA) is one of the most important mycotoxins owing to its widespread occurrence and toxicity, including nephrotoxicity and potential carcinogenicity to humans. OTA has been detected in a wide range of agricultural commodities, including cereal grains and their processed products. In particular, oat-based products show a higher incidence and level of contamination. Extrusion cooking is widely used in the manufacturing of breakfast cereals and snacks and may reduce mycotoxins to varying degrees. Hence, the effects of extrusion cooking on the stability of OTA in spiked (100 μg/kg) oat flake was investigated by using a laboratory-scale twin-screw extruder with a central composite design. Factors examined were moisture content (20, 25, and 30% dry weight basis), temperature (140, 160, and 180°C), screw speed (150, 200, and 250 rpm), and die size (1.5, 2, and 3 mm). Both nonextruded and extruded samples were analyzed for reductions of OTA by high-performance liquid chromatography, coupled with fluorescence detection. The percentage of reductions in OTA in the contaminated oat flakes upon extrusion processing were in the range of 0 to 28%. OTA was partially stable during extrusion, with only screw speed and die size having significant effect on reduction (P < 0.005). The highest reduction of 28% was achieved at 180°C, 20% moisture, 250 rpm screw speed, and a 3-mm die with 193 kJ/kg specific mechanical energy. According to the central composite design analyses, up to 28% of OTA can be reduced by a combination of 162°C, 30% moisture, and 221 rpm, with a 3-mm die.

  13. Carboxylic Acids Plasma Membrane Transporters in Saccharomyces cerevisiae.

    PubMed

    Casal, Margarida; Queirós, Odília; Talaia, Gabriel; Ribas, David; Paiva, Sandra

    2016-01-01

    This chapter covers the functionally characterized plasma membrane carboxylic acids transporters Jen1, Ady2, Fps1 and Pdr12 in the yeast Saccharomyces cerevisiae, addressing also their homologues in other microorganisms, as filamentous fungi and bacteria. Carboxylic acids can either be transported into the cells, to be used as nutrients, or extruded in response to acid stress conditions. The secondary active transporters Jen1 and Ady2 can mediate the uptake of the anionic form of these substrates by a H(+)-symport mechanism. The undissociated form of carboxylic acids is lipid-soluble, crossing the plasma membrane by simple diffusion. Furthermore, acetic acid can also be transported by facilitated diffusion via Fps1 channel. At the cytoplasmic physiological pH, the anionic form of the acid prevails and it can be exported by the Pdr12 pump. This review will highlight the mechanisms involving carboxylic acids transporters, and the way they operate according to the yeast cell response to environmental changes, as carbon source availability, extracellular pH and acid stress conditions.

  14. 7 CFR 810.1004 - Grades and grade requirements for oats.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 810.1004 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD ADMINISTRATION (FEDERAL GRAIN INSPECTION SERVICE), DEPARTMENT OF AGRICULTURE OFFICIAL UNITED STATES STANDARDS FOR GRAIN United States Standards for Oats Principles Governing the...

  15. Effect of cisplatin on organic ion transport in membrane vesicles from rat kidney cortex.

    PubMed

    Williams, P D; Hottendorf, G H

    1985-01-01

    Purified renal membrane vesicles were utilized to gain indirect information regarding the renal handling of cisplatin. The effects of cisplatin on prototypical organic anion (p-amino-hippurate, PAH) and cation (N1-methylnicotinamide; tetraethylammonium, TEA) transport in brush border and basolateral membrane vesicles prepared from rat kidney cortex were observed. While cisplatin inhibited organic cation transport (N1-methylnicotinamide; TEA) in brush border and basolateral membranes, no interaction with the organic anion (p-amino-hippurate) system was observed. Kinetic analyses revealed that cisplatin is a competitive inhibitor of TEA transport in brush border membranes with a ki of 0.12 mM. While the relationship between organic cation transport inhibition and cisplatin nephrotoxicity is unknown, it may suggest that the cisplatin complex itself is transported into the kidney by the organic cation system. The reported effect of the organic anion, probenecid, on the renal handling of cisplatin is discussed in light of these results.

  16. High levels of avenanthramides in oat-based diet further suppress high fat diet-induced atherosclerosis in Ldlr-/- mice

    USDA-ARS?s Scientific Manuscript database

    Background: The consumption of oats reduces plasma cholesterol, a major risk factor for heart disease. Oats, in addition to cholesterol lowering properties through its beta-glucan content, are a good source of several antioxidants including Avenanthramides (Avns), a unique group of polyphenols prese...

  17. Activation of Polyphenol Oxidase in Dormant Wild Oat Caryopses by a Seed-Decay Isolate of Fusarium avenaceum

    USDA-ARS?s Scientific Manuscript database

    Incubation of dormant wild oat (Avena fatua L., isoline M73) caryopses for 1 to 3 days with Fusarium avenaceum seed-decay isolate F.a.1 induced activity of the plant defense enzyme polyphenol oxidase (PPO). Both extracts and leachates obtained from F.a.1-treated caryopses had decreased abundance of ...

  18. Anion exchange membrane

    DOEpatents

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  19. KSC 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT) Report

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E.

    2015-01-01

    This report documents analysis results of the Kennedy Space Center updated 50-MHz Doppler Radar Wind Profiler (DRWP) Operational Acceptance Test (OAT). This test was designed to demonstrate that the new DRWP operates in a similar manner to the previous DRWP for use as a situational awareness asset for mission operations at the Eastern Range to identify rapid changes in the wind environment that weather balloons cannot depict. Data examination and two analyses showed that the updated DRWP meets the specifications in the OAT test plan and performs at least as well as the previous DRWP. Data examination verified that the DRWP provides complete profiles every five minutes from 1.8-19.5 km in vertical increments of 150 m. Analysis of 5,426 wind component reports from 49 concurrent DRWP and balloon profiles presented root mean square (RMS) wind component differences around 2.0 m/s. The DRWP's effective vertical resolution (EVR) was found to be 300 m for both the westerly and southerly wind component, which the best EVR possible given the DRWP's vertical sampling interval. A third analysis quantified the sensitivity to rejecting data that do not have adequate signal by assessing the number of first-guess propagations at each altitude. This report documents the data, quality control procedures, methodology, and results of each analysis. It also shows that analysis of the updated DRWP produced results that were at least as good as the previous DRWP with proper rationale. The report recommends acceptance of the updated DRWP for situational awareness usage as per the OAT's intent.

  20. Ion and solute transport by prestin in Drosophila and Anopheles

    PubMed Central

    Hirata, Taku; Czapar, Anna; Brin, Lauren R.; Haritonova, Alyona; Bondeson, Daniel P.; Linser, Paul J.; Cabrero, Pablo; Dow, Julian A. T.; Romero, Michael F.

    2012-01-01

    The gut and Malpighian tubules of insects are the primary sites of active solute and water transport for controlling hemolymph and urine composition, pH, and osmolarity. These processes depend on ATPase (pumps), channels and solute carriers (Slc proteins). Maturation of genomic databases enables us to identify the putative molecular players for these processes. Anion transporters of the Slc4 family, AE1 and NDAE1, have been reported as HCO3− transporters, but are only part of the story. Here we report Dipteran (Drosophila melanogaster (d) and Anopheles gambiae (Ag)) anion exchangers, belonging to the Slc26 family, which are multi-functional anion exchangers. One Drosophila and two Ag homologues of mammalian Slc26a5 (prestin) and Slc26a6 (aka, PAT1, CFEX) were identified and designated dPrestin, AgPrestinA and AgPrestinB. dPrestin and AgPrestinB show electrogenic anion exchange (Cl−/nHCO3−, Cl−/SO42− and Cl−/oxalate2−) in an oocyte expression system. Since these transporters are the only Dipteran Slc26 proteins whose transport is similar to mammalian Slc26a6, we submit that Dipteran Prestin are functional and even molecular orthologues of mammalian Slc26a6. OSR1 kinase increases dPrestin ion transport, implying another set of physiological processes controlled by WNK/SPAK signaling in epithelia. All of these mRNAs are highly expressed in the gut and Malpighian tubules. Dipteran Prestin proteins appear suited for central roles in bicarbonate, sulfate and oxalate metabolism including generating the high pH conditions measured in the Dipteran midgut lumen. Finally, we present and discuss Drosophila genetic models that integrate these processes. PMID:22321763

  1. Steroid hormones specifically modify the activity of organic anion transporting polypeptides.

    PubMed

    Koenen, Anna; Köck, Kathleen; Keiser, Markus; Siegmund, Werner; Kroemer, Heyo K; Grube, Markus

    2012-11-20

    Previously, the steroid hormone progesterone has been demonstrated to stimulate OATP2B1-mediated transport of estrone-3-sulphate (E(1)S), dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PS), which may influence the uptake of precursor molecules for steroid hormone synthesis. However, it is unclear whether OATP2B1 drug substrates like atorvastatin or glibenclamide are also affected by this phenomenon. In addition, it has not been studied so far if this stimulatory effect is specific for OATP2B1. To address these questions, we examined the influence of progesterone on OATP2B1-mediated atorvastatin and glibenclamide uptake and studied the impact of steroid hormones on the transport activity of OATP1A2, OATP1B1 and OATP1B3. Comparison of the substrate spectrum of the investigated OATPs revealed that DHEAS and atorvastatin are substrates of all transporters, while E(1)S was only significantly transported by OATP1A2, OATP2B1 and OATP1B1. Glibenclamide uptake was limited to OATP1A2, OATP1B1 and OATP2'B1. Subsequent interaction studies indicated that progesterone only increases OATP2B1-mediated E(1)S and DHEAS transport, whereas uptake of BSP, atorvastatin and glibenclamide was either inhibited or not affected. Moreover, the steroid hormone effect was specific for OATP2B1; neither OATP1B1, OATP1B3 nor OATP1A2 function was stimulated in the presence of progesterone. Similar to progesterone, the glucocorticoide dexamethasone stimulated OATP2B1-mediated transport of E(1)S and DHEAS (EC(50) for E(1)S: 10.2 ± 5.6 μM and 17.9 ± 15.4 μM for DHEAS). In conclusion, our data demonstrate that among the tested compounds the stimulatory effect of progesterone is specific for OATP2B1 and restricted to sulphated steroids like E(1)S and DHEAS while the OATP-mediated drug transport is not enhanced. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions

    PubMed Central

    Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.

    2016-01-01

    Ion transport–driven instabilities in electrodeposition of metals that lead to morphological instabilities and dendrites are receiving renewed attention because mitigation strategies are needed for improving rechargeability and safety of lithium batteries. The growth rate of these morphological instabilities can be slowed by immobilizing a fraction of anions within the electrolyte to reduce the electric field at the metal electrode. We analyze the role of elastic deformation of the solid electrolyte with immobilized anions and present theory combining the roles of separator elasticity and modified transport to evaluate the factors affecting the stability of planar deposition over a wide range of current densities. We find that stable electrodeposition can be easily achieved even at relatively high current densities in electrolytes/separators with moderate polymer-like mechanical moduli, provided a small fraction of anions are immobilized in the separator. PMID:27453943

  3. The anionic (9-methyladenine)-(1-methylthymine) base pair solvated by formic acid. A computational and photoelectron spectroscopy study.

    PubMed

    Storoniak, Piotr; Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej; Rak, Janusz; Eustis, Soren N; Ko, Yeon Jae; Wang, Haopeng; Bowen, Kit H

    2010-09-02

    The photoelectron spectrum for (1-methylthymine)-(9-methyladenine)...(formic acid) (1MT-9MA...FA) anions with the maximum at ca. 1.87 eV was recorded with 2.54 eV photons and interpreted through the quantum-chemical modeling carried out at the B3LYP/6-31+G(d,p) level. The relative free energies of the anions and their calculated vertical detachment energies suggest that only seven anionic structures contribute to the observed PES signal. We demonstrate that electron binding to the (1MT-9MA...FA) complex can trigger intermolecular proton transfer from formic acid, leading to the strong stabilization of the resulting radical anion. The SOMO distribution indicates that an excess electron may localize not only on the pyrimidine but also on the purine moiety. The biological context of DNA-environment interactions concerning the formation of single-strand breaks induced by excess electrons has been briefly discussed.

  4. Effect of amaranth and oat bran on blood serum and liver lipids in rats depending on the kind of dietary fats.

    PubMed

    Grajeta, H

    1999-04-01

    The effect of amaranth and oat bran on the lipids of blood and liver in rats depending on the kind of fats in diet was the subject of our study. Sixty male Buffalo rats were fed for 28 days one of six diet containing 15% of fat (lard or sunflower oil), 20% of protein and 0.5% of cholesterol. Amaranth and oat bran added to diet provided 4-4.5% of dietary fiber, water soluble fraction of which amounted to 30%. Amaranth significantly decreased the level of total cholesterol in rats blood serum (by 10.7% in the case of diet with lard and by 14% with sunflower oil) and in liver (by 20% in the case of diet with lard and by 23% with sunflower oil). Similarly oat bran decreased the level of total cholesterol in the blood serum: by 19% in the case of diet with lard and by 22% with sunflower oil; and in liver by 22 and 27%, respectively. Amaranth and oat bran did not influence HDL-cholesterol in the blood of rats. The influence of amaranth and oat bran on the concentration of triglycerides in the blood serum depended on the kind of fats in a diet. The diets containing amaranth or oat bran with lard did not decrease the concentration of this lipids, however, the same diets but with sunflower oil decreased this concentration significantly (by 22%). In liver significant hypotriglyceridemic effect of amaranth and oat bran was observed for both of the diets: based on lard and sunflower. The decrease of triglycerides concentration under the influence of amaranth amounted to 10% (diet with lard) and 15% (diet with sunflower oil). Oat bran decreased the concentration of triglycerides in liver by 15% (diet with lard) and 20% (diet with sunflower oil). Sunflower oil added to the diets augmented the hypolipemic effect of amaranth and oat bran.

  5. Biochemical changes in black oat (avena strigosa schreb) cultivated in vineyard soils contaminated with copper.

    PubMed

    Girotto, Eduardo; Ceretta, Carlos A; Rossato, Liana V; Farias, Julia G; Brunetto, Gustavo; Miotto, Alcione; Tiecher, Tadeu L; de Conti, Lessandro; Lourenzi, Cledimar R; Schmatz, Roberta; Giachini, Admir; Nicoloso, Fernando T

    2016-06-01

    Soils used for the cultivation of grapes generally have a long history of copper (Cu) based fungicide applications. As a result, these soils can accumulate Cu at levels that are capable of causing toxicity in plants that co-inhabit the vineyards. The aim of the present study was to evaluate growth parameters and oxidative stress in black oat plants grown in vineyard soils contaminated with high levels of Cu. Soil samples were collected from the Serra Gaúcha and Campanha Gaúcha regions, which are the main wine producing regions in the state of Rio Grande do Sul, in southern Brazil. Experiments were conducted in a greenhouse in 2009, with soils containing Cu concentrations from 2.2 to 328.7 mg kg(-1). Evaluated parameters included plant root and shoot dry matter, Cu concentration in the plant's tissues, and enzymatic and non-enzymatic biochemical parameters related to oxidative stress in the shoots of plants harvested 15 and 40 days after emergence. The Cu absorbed by plants predominantly accumulated in the roots, with little to no translocation to the shoots. Even so, oat plants showed symptoms of toxicity when grown in soils containing high Cu concentrations. The enzymatic and non-enzymatic antioxidant systems of oat plants were unable to reverse the imposed oxidative stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Anion Solvation in Carbonate-Based Electrolytes

    DOE PAGES

    von Wald Cresce, Arthur; Gobet, Mallory; Borodin, Oleg; ...

    2015-11-16

    The correlation between Li + solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. Now, most studies are dedicated to the solvation of Li +, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. Moreover, as a mirror effort to prior Li + solvation studies, this work focuses on the interactions between carbonate-based solvents andmore » two anions (hexafluorophosphate, PF 6–, and tetrafluoroborate, BF 4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.« less

  7. Comparison of the lipid composition of oat root and coleoptile plasma membranes: lack of short-term change in response to auxin

    NASA Technical Reports Server (NTRS)

    Sandstrom, R. P.; Cleland, R. E.

    1989-01-01

    The total lipid composition of plasma membranes (PM), isolated by the phase partitioning method from two different oat (Avena sativa L.) tissues, the root and coleoptile, was compared. In general, the PM lipid composition was not conserved between these two organs of the oat seedling. Oat roots contained 50 mole percent phospholipid, 25 mole percent glycolipid, and 25 mole percent free sterol, whereas comparable amounts in the coleoptile were 42, 39, and 19 mole percent, respectively. Individual lipid components within each lipid class also showed large variations between the two tissues. Maximum specific ATPase activity in the root PM was more than double the activity in the coleoptile. Treatment of coleoptile with auxin for 1 hour resulted in no detectable changes in PM lipids or extractable ATPase activity. Differences in the PM lipid composition between the two tissues that may define the limits of ATPase activity are discussed.

  8. Decreased erythrocyte nucleoside transport and hENT1 transporter expression in glucose 6-phosphate dehydrogenase deficiency.

    PubMed

    Al-Ansari, Mohammad; Craik, James D

    2015-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is associated with erythrocyte sensitivity to oxidative damage and hemolytic crises. In β-thalassemia major, where hemoglobin instability imposes oxidative stress, erythrocytes show reduced hENT1 nucleoside transporter expression and decreased nucleoside uptake. This study investigated hENT1 expression and nucleoside transport in G6PD-deficient erythrocytes to determine if decreased hENT1 activity might be a contributory feature in the variable pathology of this enzymopathy. Uptake of (3)H-uridine was measured at room temperature using an inhibitor-oil stop protocol and 5-s incubations. Erythrocyte membranes were analyzed by SDS-PAGE and nucleoside (hENT1), glucose (GLUT-1), and anion exchange (Band 3) transporter polypeptides quantitated on immunoblots. In G6PD-deficient cells, uridine uptake (mean 8.18, 95 % CI 5.6-10.7 vs controls mean 12.35, 95 % CI 9.2-15.5, pmol uridine/gHb/min; P = 0.031) and expression of hENT1 (mean 50.4 %, 95 % CI 38.1-62.7 %, arbitrary units n = 11 vs controls mean 95.23 %, 95 % CI 88.38-102.1 % arbitrary units, n = 8; P < 0.001) were significantly lower; expression of GLUT-1 (mean 106.9 %, vs control mean 99.75 %; P = 0.308) and Band 3 polypeptides (mean 100.1 %, vs control mean 102.84 %; P = 0.329) were unchanged. Nucleoside transporter activity in human erythrocytes sustains intracellular purine nucleotide levels and assists in control of plasma adenosine levels; decreased hENT1 expression and activity in G6PD-deficiency could affect red metabolism and influence a wide spectrum of responses mediated by adenosine receptors.

  9. [Creation of a unit for education in the self-management of oat].

    PubMed

    Camino Guiu, M Jesús; Cebollero Mata, M Luisa; Bolea Muro, Carmen; Borrel Roncalés, Mercedes

    2012-04-01

    Oral anticoagulant therapy (OAT) with Vitamin K antagonists requires frequent analytical controls that create a certain degree of dependency and a loss of autonomy in the patient. These drugs have an undesirable variability due to food and drug interactions, febrile processes, etc. which can modify the patient's INR and predispose them to a thromboembolic or hemorrhagic event. OAT self-control is supported by more than 15 years of experience in countries such as Germany and the Netherlands, and by comparative studies that reflect a reduction of thromboembolism and other adverse effects. The reason of this is because these patients are in the correct therapeutic range for longer periods of time due to more frequent controls (once a week against every 4-5 weeks of traditional control) and also to a better understanding of their treatment. In Aragon, OAT is a free health service and in our hospital, OAT has been an institutional aim since 2070. After a training course, the patient is capable to make their own INR determinations at home, to evaluate their results and adjust their own dose. Additionally the patient should acquire the appropriate knowledge to detect any adverse symptom and to know how to react to any problem in their treatment. This article summarizes our experience regarding the implementation of the programme and creation of the specific unit: the organization and training of the professionals involved, establishment of the patient selection criteria, and design of the patients' training course, follow-up strategy and equipment. In addition, the results of the study conducted in our Unit, showing a high degree of patient satisfaction, are included. At this moment 20% of our patients are included in the self-control strategy.

  10. Transgenic Wheat, Barley and Oats: Future Prospects

    NASA Astrophysics Data System (ADS)

    Dunwell, Jim M.

    Following the success of transgenic maize and rice, methods have now been developed for the efficient introduction of genes into wheat, barley and oats. This review summarizes the present position in relation to these three species, and also uses information from field trial databases and the patent literature to assess the future trends in the exploitation of transgenic material. This analysis includes agronomic traits and also discusses opportunities in expanding areas such as biofuels and biopharming.

  11. Mycotoxin co-occurrence in rice, oat flakes and wheat noodles used as staple foods in Ecuador.

    PubMed

    Ortiz, Johana; Van Camp, John; Mestdagh, Frédéric; Donoso, Silvana; De Meulenaer, Bruno

    2013-01-01

    The co-occurrence of aflatoxin B₁ (AFB₁), B₂ (AFB₂), G₁ (AFG₁) and G₂ (AFG₂), ochratoxin A (OTA), deoxynivalenol (DON), fumonisin B₁ (FB₁), zearalenone (ZEN), and HT-2 and T-2 toxins in the main Ecuadorian staple cereals (rice, oat flakes, and yellow and white wheat noodles) was evaluated. A ultra high performance liquid chromatography/time-of-flight mass spectrometry (UHPLC/TOFMS) method was developed and validated to screen for the presence of these mycotoxins in those cereal matrices. Matrix-matched calibration curves were used to compensate for ion suppression and extraction losses and the recovery values were in agreement with the minimum requirements of Regulation 401/2006/EC (70-110%). For most mycotoxins, the LODs obtained allowed detection in compliance with the maximum permitted levels set in Regulation EC/2006/1881, with the exception of OTA in all cereals and AFB1 in yellow noodles. Extra target analysis of OTA in oat flakes and wheat noodles was performed by HPLC with fluorescence detection. High rates of contamination were observed in paddy rice (23% DON, 23% FB₁, 7% AFB₁, 2% AFG₁ and 2% AFG₂), white wheat noodles (33% DON and 5% OTA) and oat flakes (17% DON, 2% OTA and 2% AFB₁), whereas the rates of contamination were lower in polished rice (2% AFG₁ and 4% HT-2 toxin) and yellow noodles (5% DON). Low rates of co-occurrence of several mycotoxins were observed only for white wheat noodles (5%) and paddy rice (7%). White noodles were contaminated with DON and/or OTA, while combinations of AFG₁, AFB₁, DON and FB₁ were found in paddy rice. Yellow noodles were contaminated with DON only; oat flakes contained DON, OTA or AFB₁, and polished rice was contaminated with AFG₁ and HT-2 toxin.

  12. Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.

    PubMed

    Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang

    2018-05-01

    Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Chen; L Hu; M Punta

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated bymore » an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.« less

  14. Anion-free bambus[6]uril and its supramolecular properties.

    PubMed

    Svec, Jan; Dusek, Michal; Fejfarova, Karla; Stacko, Peter; Klán, Petr; Kaifer, Angel E; Li, Wei; Hudeckova, Edita; Sindelar, Vladimir

    2011-05-09

    Methods for the preparation of anion-free bambus[6]uril (BU6) are presented. They are based on the oxidation of iodide anion, which is bound inside the macrocycle, utilizing dark oxidation by hydrogen peroxide or photooxidation in the presence of titanium dioxide. Anion-free BU6 was found to be insoluble in any of the investigated solvents; however, it dissolves in methanol/chloroform (1:1) or acetonitrile/water (1:1) mixtures in the presence of the tetrabutylammonium salt of a suitable anion. The association constants with halide ions, BF(4)(-), NO(3)(-), and CN(-), were measured by (1)H NMR spectroscopy. The highest association constant (8.9×10(5) M(-1)) was found for the 1:1 complex of BU6 with I(-) in acetonitrile/water mixture. A number of crystal structures of BU6 complexes with various anions were obtained. The influence of the anion size on the macrocycle diameter is discussed together with an unusual arrangement of the macrocycles into separate layers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Black oat cover crop management in watermelon production systems

    USDA-ARS?s Scientific Manuscript database

    Black oats (Avena strigosa Schreb.) were sown as a cover crop near Weslaco, Texas (Lat. 26 deg N) in Fall 2010. The cover crop was allowed to senesce naturally and was planted to watermelons in both the spring and in the fall of 2011. Watermelon transplants planted in the spring into mowed black o...

  16. Anion photoelectron imaging spectroscopy of glyoxal

    NASA Astrophysics Data System (ADS)

    Xue, Tian; Dixon, Andrew R.; Sanov, Andrei

    2016-09-01

    We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.

  17. Quantitative trait loci from two genotypes of oat (Avena sativa L.) conditioning resistance to Puccinia coronata

    USDA-ARS?s Scientific Manuscript database

    Developing oat cultivars with partial resistance to crown rust would be beneficial for disease management. Two recombinant inbred line (RIL) populations were derived by crossing the susceptible cultivar ‘Provena’ with two partially resistant sources, ‘CDC Boyer’ and breeding line 94197A1-9-2-2-2-5. ...

  18. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride).

    PubMed

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2013-01-02

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively.

  19. Electrodialytic Transport Properties of Anion-Exchange Membranes Prepared from Poly(vinyl alcohol) and Poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride)

    PubMed Central

    Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi

    2012-01-01

    Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543

  20. Transport behaviors of anionic azo dyes at interface between surfactant-modified flax shives and aqueous solution: Synchrotron infrared and adsorption studies

    NASA Astrophysics Data System (ADS)

    Wang, Wenxia; Huang, Guohe; An, Chunjiang; Xin, Xiaying; Zhang, Yan; Liu, Xia

    2017-05-01

    From the viewpoint of sustainability, biomass adsorbent has a high potential in pollution control and there is an emerging interest to investigate the behaviors of pollutants at the interface between biomass adsorbent and solution. This study investigated the performance of cetyltrimethylammonium bromide surfactant-modified flax shives (MFS) for removal of anionic azo dyes from aqueous solution. The equilibrium and kinetic analysis for the adsorption of Acid Orange 7 (AO-7), Acid Red 18 (AR-18) and Acid Black 1 (AB-1) on MFS were conducted. The surface of MFS was characterized by synchrotron infrared and SEM analysis. The absorbed amount of three anionic azo dyes varied with the change of adsorbent dosage, pH and ionic strength. The adsorption isotherm data well fit to the Langmuir model. The adsorption process followed the pseudo-second-order kinetics and the liquid film diffusion models. Thermodynamic studies indicated that the adsorption of three anionic azo dyes was spontaneous. The adsorption of AR-18 and AB-1 onto MFS was endothermic while the adsorption of AO-7 was exothermic. The results can help better understand the behaviors of organic pollutants at biomass adsorbent-water interface. They also present the potential of using MFS as a suitable adsorbent for the removal of anionic azo dyes from wastewater.

  1. Impact of planting date on annual clover survival in oat

    USDA-ARS?s Scientific Manuscript database

    Interseeding annual clovers in cereal grains may help organic producers reduce the need for tillage in their cropping systems. In this study in eastern South Dakota, we evaluated seedling emergence and survival of two annual clovers in oat as affected by planting date. Berseem clover (Trifolium al...

  2. Gluten-containing grains skew gluten assessment in oats due to sample grind non-homogeneity.

    PubMed

    Fritz, Ronald D; Chen, Yumin; Contreras, Veronica

    2017-02-01

    Oats are easily contaminated with gluten-rich kernels of wheat, rye and barley. These contaminants are like gluten 'pills', shown here to skew gluten analysis results. Using R-Biopharm R5 ELISA, we quantified gluten in gluten-free oatmeal servings from an in-market survey. For samples with a 5-20ppm reading on a first test, replicate analyses provided results ranging <5ppm to >160ppm. This suggests sample grinding may inadequately disperse gluten to allow a single accurate gluten assessment. To ascertain this, and characterize the distribution of 0.25-g gluten test results for kernel contaminated oats, twelve 50g samples of pure oats, each spiked with a wheat kernel, showed that 0.25g test results followed log-normal-like distributions. With this, we estimate probabilities of mis-assessment for a 'single measure/sample' relative to the <20ppm regulatory threshold, and derive an equation relating the probability of mis-assessment to sample average gluten content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Protein evaluation of four oat (Avena sativa L.) cultivars adapted for cultivation in the south of Brazil.

    PubMed

    Pedó, I; Sgarbieri, V C; Gutkoski, L C

    1999-01-01

    Four oat cultivars adapted for soil and climate conditions in the southern region of Brazil were evaluated for protein nutritive value. Evaluations were done both in vitro and in vivo. In vitro evaluation was done by essential amino acid profile, available lysine, amino acid scoring, and protein digestibility corrected amino acid-scoring (PDCAAS). Nitrogen balance indices and PER were determined in vivo with rats. In all four cultivars (UFP-15, UFP-16, CTC-03, UFRGS-14), lysine was the most limiting amino acid. Available lysine, amino acid score and PDCAAS were highest for cultivar UFRGS-14 and lowest for CTC-03. When compared to casein, only nitrogen retention for UFRGS-14 did not differ statistically (p>0.05); all other indices of protein quality were inferior to casein for the oat cultivars. The oat cultivars tended to be identical among themselves, except for apparent protein digestibility which was significantly higher in the UFRGS-14 and CTC-03 cultivars. On average, the PER values of the oat cultivars were 82% of casein; the net protein utilization was 88% of casein as determined in vivo and 49% by the estimation in vitro (PDCAAS).

  4. Poly(1-allylimidazole)-grafted silica, a new specific stationary phase for reversed-phase and anion-exchange liquid chromatography.

    PubMed

    Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang

    2009-05-01

    A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.

  5. SLC26 anion exchangers of guinea pig pancreatic duct: molecular cloning and functional characterization

    PubMed Central

    Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Reimold, Fabian; Heneghan, John F.; Nakakuki, M.; Akhavein, Arash; Ko, Shigeru; Ishiguro, Hiroshi

    2011-01-01

    The secretin-stimulated human pancreatic duct secretes HCO3−-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO3− secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl−/HCO3− exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO3− or more, mouse and rat ducts secrete ∼40–70 mM HCO3−. Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO3− secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl−/Cl− exchange and electroneutral Cl−/HCO3− exchange. gpSlc26a6 in Xenopus oocytes mediated Cl−/Cl− exchange and bidirectional exchange of Cl− for oxalate and sulfate, but Cl−/HCO3− exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl−, oxalate, and sulfate transport but no detectable Cl−/HCO3− exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of 36Cl− influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO3− secretion in species that share a high HCO3− secretory output. PMID:21593449

  6. Bradykinin-Stimulated Cyclooxygenase Activity Stimulates Vas Deferens Epithelial Anion Secretion In Vitro in Swine and Humans1

    PubMed Central

    Pierucci-Alves, Fernando; Schultz, Bruce D.

    2008-01-01

    Epithelia lining the male reproductive duct modulate fertility by altering the luminal environment to which sperm are exposed. Although vas deferens epithelial cells reportedly express high levels of cyclooxygenases (Ptgs), and activation of bradykinin (BK) receptors can lead to upregulation of PTGS activity in epididymal epithelia, it remains unknown whether BKs and/or PTGSs have any role in modulating epithelial ion transport across vas deferens epithelia. Porcine and human vas deferens epithelial cell primary cultures and the PVD9902 cell line responded to lysylbradykinin with an increase in short circuit current (ISC; indicating net anion secretion), an effect that was 60%–93% reduced by indomethacin. The BK effect was inhibited by the B2 receptor subtype (BDKRB2) antagonist HOE140, whereas the B1 receptor subtype agonist des-Arg9-BK had no effect. BDKRB2 immunoreactivity was documented in most epithelial cells composing the native epithelium and on Western blots derived from cultured cells. Gene expression analysis revealed that the PTGS2 transcript is 20 times more abundant than its PTGS1 counterpart in cultured porcine vas deferens epithelia and that BDKRB2 mRNA is likewise highly expressed. Subsequent experiments revealed that prostaglandin E2, 1-OH prostaglandin E1 (prostaglandin E receptor 4 [PTGER4] agonist) and butaprost (PTGER2 agonist) increase ISC in a concentration-dependent manner, whereas sulprostone (mixed PTGER1 and PTGER3 agonist) produced no change in ISC. These results demonstrate that autacoids can affect epithelial cells to acutely modulate the luminal environment to which sperm are exposed in the vas deferens by enhancing PTGS activity, leading to the production of prostaglandins that act at PTGER4 and/or PTGER2 to induce or enhance anion secretion. PMID:18480467

  7. Kinetic Induction of Oat Shoot Pulvinus Invertase mRNA by Gravistimulation and Partial cDNA Cloning by the Polymerase Chain Reaction

    NASA Technical Reports Server (NTRS)

    Wu, Liu-Lai; Song, Il; Karuppiah, Nadarajah; Kaufman, Peter B.

    1993-01-01

    An asymmetric (top vs. bottom halves of pulvini) induction of invertase mRNA by gravistimulation was analyzed in oat shoot pulvini. Total RNA and poly(A)(+) RNA, isolated from oat pulvini, and two oli-gonucleotide primers, corresponding to two conserved amino acid sequences (NDPNG and WECPD) found in invertase from other species, were used for the polymerase chain reaction (PCR). A partial length cDNA (550 bp) was obtained and characterized. A 62% nucleotide sequence homology and 58% deduced amino acid sequence homology, as compared to beta-fructosidase of carrot cell wall, was found. Northern blot analysis showed that there was an obviously transient induction of invertase mRNA by gravistimulation in the oat pulvinus system. The mRNA was rapidly induced to a maximum level at 1 hour after gravistimulation treatment and gradually decreased afterwards. The mRNA level in the bottom half of the oat pulvinus was significantly higher than that in the top half of the pulvinus tissue. The kinetic induction of invertase mRNA was consistent with the transient accumulation of invertase activity during the graviresponse of the pulvinus. This indicates that the expression of the invertase gene(s) could be regulated by gravistimulation at the transcriptional level. Southern blot analysis showed that there were two to three genomic DNA fragments which hybridized with the partial-length invertase cDNA.

  8. The effects of cereal additives in low-fat sausages and meatballs. Part 2: Rye bran, oat bran and barley fibre.

    PubMed

    Petersson, Karin; Godard, Ophélie; Eliasson, Ann-Charlotte; Tornberg, Eva

    2014-01-01

    Rye bran, oat bran and barley fibre have been compared as additives in low-fat sausages and meatballs. The water/protein ratio and starch content were constant to allow direct comparisons. Oat bran was the best alternative in low-fat sausages due to its gelling ability upon heating. These sausages exhibited low process (0.9%) and frying losses (10.9%), and high values of firmness (11.0 N) and sensory acceptance. The sausages containing barley fibre, with the highest amount of soluble β-glucan, had high losses (3.8% and 19.6%) and the lowest firmness (4.6 N). Rye bran was suitable in meatballs, probably due to its particulate nature, which is more acceptable in this type of meat product, where the gelling properties are not as important as in sausages. There was no significant difference between the firmness of meatballs containing rye bran (6.1 N) and the reference (7.5 N), after pan-frying. Meatballs with oat bran or barley fibre were less firm (3.6 N and 2.0 N). © 2013.

  9. Interaction of digitalis-like compounds with liver uptake transporters NTCP, OATP1B1, and OATP1B3.

    PubMed

    Gozalpour, Elnaz; Greupink, Rick; Wortelboer, Heleen M; Bilos, Albert; Schreurs, Marieke; Russel, Frans G M; Koenderink, Jan B

    2014-06-02

    Digitalis-like compounds (DLCs) such as digoxin, digitoxin, and ouabain, also known as cardiac glycosides, are among the oldest pharmacological treatments for heart failure. The compounds have a narrow therapeutic window, while at the same time, DLC pharmacokinetics is prone to drug-drug interactions at the transport level. Hepatic transporters organic anion transporting polypeptide (OATP) 1B1, OATP1B3, and Na(+)-dependent taurocholate co-transporting polypeptide (NTCP) influence the disposition of a variety of drugs by mediating their uptake from blood into hepatocytes. The interaction of digoxin, digitoxin, and ouabain with hepatic uptake transporters has been studied before. However, here, we systematically investigated a much wider range of structurally related DLCs for their capability to inhibit or to be transported by these transporters in order to better understand the relation between the activity and chemical structure of this compound type. We studied the uptake and inhibitory potency of a series of 14 structurally related DLCs in Chinese hamster ovary cells expressing NTCP (CHO-NTCP) and human embryonic kidney cells expressing OATP1B1 and OATP1B3 (HEK-OATP1B1 and HEK-OATP1B3). The inhibitory effect of the DLCs was measured against taurocholic acid (TCA) uptake in CHO-NTCP cells and against uptake of β-estradiol 17-β-d-glucuronide (E217βG) in HEK-OATP1B1 and HEK-OATP1B3 cells. Proscillaridin A was the most effective inhibitor of NTCP-mediated TCA transport (IC50 = 22 μM), whereas digitoxin and digitoxigenin were the most potent inhibitors of OATP1B1 and OAPTP1B3, with IC50 values of 14.2 and 36 μM, respectively. Additionally, we found that the sugar moiety and hydroxyl groups of the DLCs play different roles in their interaction with NTCP, OATP1B1, and OATP1B3. The sugar moiety decreases the inhibition of NTCP and OATP1B3 transport activity, whereas it enhances the inhibitory potency against OATP1B1. Moreover, the hydroxyl group at position 12

  10. Energy and structure of bonds in the interaction of organic anions with layered double hydroxide nanosheets: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tsukanov, A. A.; Psakhie, S. G.

    2016-01-01

    The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.

  11. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.

    PubMed

    Kierdaszuk, Borys

    2013-03-01

    We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.

  12. CryoEM structure of the human SLC4A4 sodium-coupled acid-base transporter NBCe1.

    PubMed

    Huynh, Kevin W; Jiang, Jiansen; Abuladze, Natalia; Tsirulnikov, Kirill; Kao, Liyo; Shao, Xuesi; Newman, Debra; Azimov, Rustam; Pushkin, Alexander; Zhou, Z Hong; Kurtz, Ira

    2018-03-02

    Na + -coupled acid-base transporters play essential roles in human biology. Their dysfunction has been linked to cancer, heart, and brain disease. High-resolution structures of mammalian Na + -coupled acid-base transporters are not available. The sodium-bicarbonate cotransporter NBCe1 functions in multiple organs and its mutations cause blindness, abnormal growth and blood chemistry, migraines, and impaired cognitive function. Here, we have determined the structure of the membrane domain dimer of human NBCe1 at 3.9 Å resolution by cryo electron microscopy. Our atomic model and functional mutagenesis revealed the ion accessibility pathway and the ion coordination site, the latter containing residues involved in human disease-causing mutations. We identified a small number of residues within the ion coordination site whose modification transformed NBCe1 into an anion exchanger. Our data suggest that symporters and exchangers utilize comparable transport machinery and that subtle differences in their substrate-binding regions have very significant effects on their transport mode.

  13. Glycemic potency of muffins made with wheat, rice, corn, oat and barley flours: a comparative study between in vivo and in vitro.

    PubMed

    Soong, Yean Yean; Quek, Rina Yu Chin; Henry, Christiani Jeyakumar

    2015-12-01

    Muffins made with wheat flour are a popular snack consumed in western and emerging countries. This study aimed to examine the content of amylose, glycemic response (GR) and glycemic index (GI) of muffins baked with refined wheat and rice flours, as well as wholegrain corn, oat and barley flours. This study adopted a randomized, controlled, crossover, non-blind design. Twelve healthy participants consumed wheat, rice, corn, oat and barley muffins once and the reference glucose solution three times in a random order on non-consecutive day. Capillary blood samples were taken every 15 min in the first 60 min and every 30 min for the remaining 60 min for blood glucose analysis. The Megazyme amylose/amylopectin assay procedure was employed to measure amylose content. The GR elicited from the consumption of wheat, rice and corn muffins was comparable between these samples but significantly greater when compared with oat and barley muffins. Consumption of wholegrain muffins, apart from corn muffin, blunted postprandial GR when compared with muffins baked with refined cereal flours. Muffins baked with wheat, rice, corn, oat and barley flours gave rise to GI values of 74, 79, 74, 53 and 55, respectively. The content of amylose was significantly higher in corn, oat and barley muffins than wheat and rice muffins. The greater content of amylose and fibre may play a part in the reduced glycemic potency of oat and barley muffins. Wheat flour can be substituted with oat and barley flours for healthier muffins and other bakery products.

  14. A mechanistic framework for in vitro-in vivo extrapolation of liver membrane transporters: prediction of drug-drug interaction between rosuvastatin and cyclosporine.

    PubMed

    Jamei, M; Bajot, F; Neuhoff, S; Barter, Z; Yang, J; Rostami-Hodjegan, A; Rowland-Yeo, K

    2014-01-01

    The interplay between liver metabolising enzymes and transporters is a complex process involving system-related parameters such as liver blood perfusion as well as drug attributes including protein and lipid binding, ionisation, relative magnitude of passive and active permeation. Metabolism- and/or transporter-mediated drug-drug interactions (mDDIs and tDDIs) add to the complexity of this interplay. Thus, gaining meaningful insight into the impact of each element on the disposition of a drug and accurately predicting drug-drug interactions becomes very challenging. To address this, an in vitro-in vivo extrapolation (IVIVE)-linked mechanistic physiologically based pharmacokinetic (PBPK) framework for modelling liver transporters and their interplay with liver metabolising enzymes has been developed and implemented within the Simcyp Simulator(®). In this article an IVIVE technique for liver transporters is described and a full-body PBPK model is developed. Passive and active (saturable) transport at both liver sinusoidal and canalicular membranes are accounted for and the impact of binding and ionisation processes is considered. The model also accommodates tDDIs involving inhibition of multiple transporters. Integrating prior in vitro information on the metabolism and transporter kinetics of rosuvastatin (organic-anion transporting polypeptides OATP1B1, OAT1B3 and OATP2B1, sodium-dependent taurocholate co-transporting polypeptide [NTCP] and breast cancer resistance protein [BCRP]) with one clinical dataset, the PBPK model was used to simulate the drug disposition of rosuvastatin for 11 reported studies that had not been used for development of the rosuvastatin model. The simulated area under the plasma concentration-time curve (AUC), maximum concentration (C max) and the time to reach C max (t max) values of rosuvastatin over the dose range of 10-80 mg, were within 2-fold of the observed data. Subsequently, the validated model was used to investigate the impact of

  15. Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products.

    PubMed

    Tosh, S M

    2013-04-01

    Oat and barley foods have been shown to reduce human glycaemic response, compared to similar wheat foods or a glucose control. The strength of the evidence supporting the hypothesis that the soluble fibre, mixed linkage β-glucan, reduces glycaemic response was evaluated. A search of the literature was conducted to find clinical trials with acute glycaemic response as an end point using oat or barley products. Of the 76 human studies identified, 34 met the inclusion and exclusion criteria. Dose response and ratio of β-glucan to available carbohydrate as predictors of glycaemic response were assessed. Meals provided 0.3-12.1 g oat or barley β-glucan, and reduced glycaemic response by an average of 48 ± 33 mmol · min/l compared to a suitable control. Regression analysis on 119 treatments indicated that change in glycaemic response (expressed as incremental area under the post-prandial blood-glucose curve) was greater for intact grains than for processed foods. For processed foods, glycaemic response was more strongly related to the β-glucan dose alone (r(2)=0.48, P<0.0001) than to the ratio of β-glucan to the available carbohydrate (r(2)=0.25, P<0.0001). For processed foods containing 4 g of β-glucan, the linear model predicted a decrease in glycaemic response of 27 ± 3 mmol · min/l, and 76% of treatments significantly reduced glycaemic response. Thus, intact grains as well as a variety of processed oat and barley foods containing at least 4 g of β-glucan and 30-80 g available carbohydrate can significantly reduce post-prandial blood glucose.

  16. Benzonitrile: Electron affinity, excited states, and anion solvation

    NASA Astrophysics Data System (ADS)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  17. A protein with anion exchange properties found in the kidney proximal tubule.

    PubMed

    Soleimani, M; Bizal, G L; Anderson, C C

    1993-09-01

    One important mechanism for reabsorption of chloride in the kidney proximal tubule involves anion exchange of chloride for a base. Anion exchange transport systems in general demonstrate sensitivity to inhibition by disulfonic stilbenes, probenecid, furosemide, and the arginyl amino group modifier phenylglyoxal. Using disulfonic stilbene affinity chromatography, we have identified and partially purified a protein with anion exchanger properties in luminal membrane vesicles isolated from rabbit kidney cortex. This protein has a molecular weight of 162 kD. The binding of the 162 kD protein to the stilbene affinity matrix is inhibited by disulfonic stilbenes, probenecid, furosemide, and phenylglyoxal. Reconstitution of the proteins eluted from the affinity matrix into liposomes demonstrates anion exchange activity as assayed by radiolabeled chloride influx. Deletion of the 162 kD protein from the eluted mixture by probenecid diminishes the anion exchanger activity in the reconstituted liposomes. Further purification of the disulfonic stilbene column eluant by Econo-Pac Q ion exchange chromatography resulted in significant enrichment in 162 kD protein abundance and also anion exchange activity in reconstituted liposomes. The results of the above experiments strongly suggest that the 162 kD protein is an anion exchanger. Insight into the functional and molecular characteristics of this protein should provide important information about the mechanism(s) of chloride reabsorption in the kidney proximal tubule.

  18. Low oxidation state aluminum-containing cluster anions: Cp{sup ∗}Al{sub n}H{sup −}, n = 1–3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xinxing; Ganteför, Gerd; Bowen, Kit, E-mail: AKandalam@wcupa.edu, E-mail: kbowen@jhu.edu

    Three new, low oxidation state, aluminum-containing cluster anions, Cp*Al{sub n}H{sup −}, n = 1–3, were prepared via reactions between aluminum hydride cluster anions, Al{sub n}H{sub m}{sup −}, and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.

  19. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes

    PubMed Central

    Zhao, Chen-Zi; Zhang, Xue-Qiang; Cheng, Xin-Bing; Zhang, Rui; Xu, Rui; Chen, Peng-Yu; Peng, Hong-Jie; Huang, Jia-Qi

    2017-01-01

    Lithium metal is strongly regarded as a promising electrode material in next-generation rechargeable batteries due to its extremely high theoretical specific capacity and lowest reduction potential. However, the safety issue and short lifespan induced by uncontrolled dendrite growth have hindered the practical applications of lithium metal anodes. Hence, we propose a flexible anion-immobilized ceramic–polymer composite electrolyte to inhibit lithium dendrites and construct safe batteries. Anions in the composite electrolyte are tethered by a polymer matrix and ceramic fillers, inducing a uniform distribution of space charges and lithium ions that contributes to a dendrite-free lithium deposition. The dissociation of anions and lithium ions also helps to reduce the polymer crystallinity, rendering stable and fast transportation of lithium ions. Ceramic fillers in the electrolyte extend the electrochemically stable window to as wide as 5.5 V and provide a barrier to short circuiting for realizing safe batteries at elevated temperature. The anion-immobilized electrolyte can be applied in all–solid-state batteries and exhibits a small polarization of 15 mV. Cooperated with LiFePO4 and LiNi0.5Co0.2Mn0.3O2 cathodes, the all–solid-state lithium metal batteries render excellent specific capacities of above 150 mAh⋅g−1 and well withstand mechanical bending. These results reveal a promising opportunity for safe and flexible next-generation lithium metal batteries. PMID:28973945

  20. Microhydration of cytosine and its radical anion: cytosine.(H2O)n (n=1-5).

    PubMed

    Kim, Sunghwan; Schaefer, Henry F

    2007-02-14

    Microhydration effects on cytosine and its radical anion have been investigated theoretically, by explicitly considering various structures of cytosine complexes with up to five water molecules. Each successive water molecule (through n=5) is bound by 7-10 kcal mol(-1) to the relevant cytosine complex. The hydration energies are uniformly higher for the analogous anion systems. While the predicted vertical detachment energy (VDE) of the isolated cytosine is only 0.48 eV, it is predicted to increase to 1.27 eV for the lowest-lying pentahydrate of cytosine. The adiabatic electron affinity (AEA) of cytosine was also found to increase from 0.03 to 0.61 eV for the pentahydrate, implying that the cytosine anion, while questionable in the gas phase, is bound in aqueous solution. Both the VDE and AEA values for cytosine are smaller than those of uracil and thymine for a given hydration number. These results are in qualitative agreement with available experimental results from photodetachment-photoelectron spectroscopy studies of Schiedt et al. [Chem. Phys. 239, 511 (1998)].

  1. Microhydration of cytosine and its radical anion: Cytosine.(H2O)n (n=1-5)

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Schaefer, Henry F.

    2007-02-01

    Microhydration effects on cytosine and its radical anion have been investigated theoretically, by explicitly considering various structures of cytosine complexes with up to five water molecules. Each successive water molecule (through n =5) is bound by 7-10kcalmol-1 to the relevant cytosine complex. The hydration energies are uniformly higher for the analogous anion systems. While the predicted vertical detachment energy (VDE) of the isolated cytosine is only 0.48eV, it is predicted to increase to 1.27eV for the lowest-lying pentahydrate of cytosine. The adiabatic electron affinity (AEA) of cytosine was also found to increase from 0.03to0.61eV for the pentahydrate, implying that the cytosine anion, while questionable in the gas phase, is bound in aqueous solution. Both the VDE and AEA values for cytosine are smaller than those of uracil and thymine for a given hydration number. These results are in qualitative agreement with available experimental results from photodetachment-photoelectron spectroscopy studies of Schiedt et al. [Chem. Phys. 239, 511 (1998)].

  2. The Thermodynamics of Anion Complexation to Nonpolar Pockets.

    PubMed

    Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C

    2018-02-08

    The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

  3. EPR studies of the vitamin K 1 semiquinone radical anion. Comparison to the electron acceptor A 1 in green plant photosystem I

    NASA Astrophysics Data System (ADS)

    Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.

    Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.

  4. A Review of Extraction and Analysis of Bioactives in Oat and Barley and Scope for Use of Novel Food Processing Technologies.

    PubMed

    Gangopadhyay, Nirupama; Hossain, Mohammad B; Rai, Dilip K; Brunton, Nigel P

    2015-06-12

    Oat and barely are cereal crops mainly used as animal feed and for the purposes of malting and brewing, respectively. Some studies have indicated that consumption of oat and barley rich foods may reduce the risk of some chronic diseases such as coronary heart disease, type II diabetes and cancer. Whilst there is no absolute consensus, some of these benefits may be linked to presence of compounds such as phenolics, vitamin E and β-glucan in these cereals. A number of benefits have also been linked to the lipid component (sterols, fatty acids) and the proteins and bioactive peptides in oats and barley. Since the available evidence is pointing toward the possible health benefits of oat and barley components, a number of authors have examined techniques for recovering them from their native sources. In the present review, we summarise and examine the range of conventional techniques that have been used for the purpose of extraction and detection of these bioactives. In addition, the recent advances in use of novel food processing technologies as a substitute to conventional processes for extraction of bioactives from oats and barley, has been discussed.

  5. Anions in Cometary Comae

    NASA Technical Reports Server (NTRS)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  6. Preferred carbon precursors for lipid labelling in the heterotrophic endosperm of developing oat (Avena sativa L.) grains.

    PubMed

    Grimberg, Åsa

    2014-10-01

    Oat (Avena sativa L.) is unusual among the cereal grains in storing high amounts of oil in the endosperm; up to 90% of total grain oil. By using oat as a model species for oil metabolism in the cereal endosperm, we can learn how to develop strategies to redirect carbon from starch to achieve high-oil yielding cereal crops. Carbon precursors for lipid synthesis were compared in two genetically close oat cultivars with different endosperm oil content (about 6% and 10% of grain dw, medium-oil; MO, and high-oil; HO cultivar, respectively) by supplying a variety of (14)C-labelled substrates to the grain from both up- and downstream parts of glycolysis, either through detached oat panicles in vitro or by direct injection in planta. When supplied by direct injection, (14)C from acetate was identified to label the lipid fraction of the grain to the highest extent among substrates tested; 46% of net accumulated (14)C, demonstrating its applicability as a marker for lipids in the endosperm. Time course analyses of injected (14)C acetate during grain development suggested a more efficient transfer of fatty acids from polar lipids to triacylglycerol in the HO as compared to the MO cultivar, and turnover of triacylglycerol was suggested to not play a major role for the final oil content of oat grain endosperm despite the low amount of protective oleosins in this tissue. Moreover, availability of light was shown to drastically affect grain net carbon accumulation from (14)C-sucrose when supplied through detached panicles for the HO cultivar. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  7. Neutral and anionic duality of 1,2,4-triazole α-amino acid scaffold in 1D coordination polymers

    NASA Astrophysics Data System (ADS)

    Naik, Anil D.; Dîrtu, Marinela M.; Garcia, Yann

    2012-03-01

    A tiny supramolecular synthon, 4H-1,2,4-triazol-4-yl acetic acid (HGlytrz) which is bifunctional by design having an electronic asymmetry and conformational flexibility has been introduced to synthesize iron(II) complexes. Having 1,2,4-triazole or carboxylic extremities on the same framework HGlytrz could display dual functionality by acting as a neutral as well as anionic ligand based on the possibility of deprotonation of carboxylic group. Four new iron(II) HGlytrz complexes with ClO4- ( 1), NO3- ( 2), BF4- ( 3) and CF3SO3- ( 4) anions were prepared. Formulation of their composition which is complicated due to ligand deprotonation is discussed. Unlike its ester protected counterpart ethyl-4H-1,2,4-triazol-4-yl-acetate ( αGlytrz) which show hysteretic room temperature spin crossover, 1- 4 remain in the high-spin state as revealed by 57Mössbauer spectroscopy. Prospects of such 1D coordination polymers with dangling unbounded carboxylic entities in the realm of self-assembled monolayer (SAM) are discussed.

  8. Extraction and characterization of beta-D-glucan from oat for industrial utilization.

    PubMed

    Ahmad, Asif; Anjum, Faqir Muhammad; Zahoor, Tahir; Nawaz, Haq; Ahmed, Zaheer

    2010-04-01

    Oat beta-D-glucan is a valuable functional ingredient having numerous industrial, nutritional and health benefits. Its extraction needs careful attention as extraction process may affect the physiochemical and functional properties of extracted beta-D-glucan. The present study aimed at analyzing the effect of extraction of beta-D-glucan gum pellets from oat cultivar followed by detailed chemical and functional analysis. Enzymatic extraction process resulted in highest yield and recovery. Chemical analysis revealed protein as a dominating impurity. The water binding capacity of the beta-D-glucan ranged between 3.14 and 4.52 g g(-1) of sample. beta-D-Glucan exhibited ideal foaming stability when appropriate extraction technique was used. The viscosity of beta-D-glucan gum ranged between 35.6 and 56.16 cp. The color analysis showed L* value of beta-D-glucan gum pellet ranged between 72.18 and 83.54. Phosphorus, potassium and calcium appeared as major minerals in beta-D-glucan gum whereas iron, manganese and copper appeared as minor minerals. FTIR spectroscopy also confirms the presence of beta-D-glucan, protein and other components in extracted beta-D-glucan gum pellets. Overall, extracted beta-D-glucan showed a good potential for industrial usage. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Effect of Dephytinization by Fermentation and Hydrothermal Autoclaving Treatments on the Antioxidant Activity, Dietary Fiber, and Phenolic Content of Oat Bran.

    PubMed

    Özkaya, H; Özkaya, B; Duman, B; Turksoy, S

    2017-07-19

    Fermentation and hydrothermal methods were tested to reduce the phytic acid (PA) content of oat bran, and the effects of these methods on the dietary fiber (DF) and total phenolic (TP) contents as well as the antioxidant activity (AA) were also investigated. Fermentation with 6% yeast and for 6 h resulted in 88.2% reduction in PA content, while it only resulted in 32.5% reduction in the sample incubated for 6 h without yeast addition. The PA loss in autoclaved oat bran sample (1.5 h, pH 4.0) was 95.2% while it was 41.8% at most in the sample autoclaved without pH adjustment. In both methods, soluble, insoluble, and total DF contents of samples were remarkably higher than the control samples. Also for TP in the oat bran samples, both processes led to 17% and 39% increases, respectively, while AA values were 8% and 15%, respectively. Among all samples, the autoclaving process resulted in the lowest PA and the greatest amount of bioactive compounds.

  10. Interaction of soy isoflavones and their main metabolites with hOATP2B1 transporter.

    PubMed

    Navrátilová, Lucie; Applová, Lenka; Horký, Pavel; Mladěnka, Přemysl; Pávek, Petr; Trejtnar, František

    2018-06-22

    Membrane organic anion-transporting polypeptides (OATPs) are responsible for the drug transmembrane transport within the human body. The function of OATP2B1 transporter can be inhibited by various natural compounds. Despite increased research interest in soya as a part of human diet, the effect of its active components to interact with hOATP2B1 has not been elucidated in a complex extent. This in vitro study examined the inhibitory effect of main soy isoflavones (daidzin, daidzein, genistin, genistein, glycitin, glycitein, biochanin A, formononetin) and their metabolites formed in vivo (S-equol, O-desmethylangolensin) towards human OATP2B1 transporter. MDCKII cells overexpressing hOATP2B1 were employed to determine quantitative inhibitory parameters of the tested compounds and to analyze mechanism/s of the inhibitory interaction. The study showed that aglycones of soy isoflavones and the main biologically active metabolite S-equol were able to significantly inhibit hOATP2B1-mediated transport. The K i values for most of aglycones range from 1 to 20 μM. In contrast, glucosides did not exhibit significant inhibitory effect. The kinetic analysis did not indicate a uniform type of inhibition towards the hOATP2B1 although predominant mechanism of inhibition seemed to be competitive. These findings may suggest that tested soy isoflavones and their metabolites might affect transport of xenobiotics including drugs across tissue barriers via hOATP2B1.

  11. Fluoride Induces a Volume Reduction in CA1 Hippocampal Slices Via MAP Kinase Pathway Through Volume Regulated Anion Channels

    PubMed Central

    Lee, Jaekwang; Han, Young-Eun; Favorov, Oleg; Tommerdahl, Mark; Whitsel, Barry

    2016-01-01

    Regulation of cell volume is an important aspect of cellular homeostasis during neural activity. This volume regulation is thought to be mediated by activation of specific transporters, aquaporin, and volume regulated anion channels (VRAC). In cultured astrocytes, it was reported that swelling-induced mitogen-activated protein (MAP) kinase activation is required to open VRAC, which are thought to be important in regulatory volume decrease and in the response of CNS to trauma and excitotoxicity. It has been also described that sodium fluoride (NaF), a recognized G-protein activator and protein phosphatase inhibitor, leads to a significant MAP kinase activation in endothelial cells. However, NaF's effect in volume regulation in the brain is not known yet. Here, we investigated the mechanism of NaF-induced volume change in rat and mouse hippocampal slices using intrinsic optical signal (IOS) recording, in which we measured relative changes in intracellular and extracellular volume as changes in light transmittance through brain slices. We found that NaF (1~5 mM) application induced a reduction in light transmittance (decreased volume) in CA1 hippocampus, which was completely reversed by MAP kinase inhibitor U0126 (10 µM). We also observed that NaF-induced volume reduction was blocked by anion channel blockers, suggesting that NaF-induced volume reduction could be mediated by VRAC. Overall, our results propose a novel molecular mechanism of NaF-induced volume reduction via MAP kinase signaling pathway by activation of VRAC. PMID:27122993

  12. Cadmium-induced accumulation of putrescine in oat and bean leaves

    NASA Technical Reports Server (NTRS)

    Weinstein, L. H.; Kaur-Sawhney, R.; Rajam, M. V.; Wettlaufer, S. H.; Galston, A. W.

    1986-01-01

    The effects of Cd2+ on putrescine (Put), spermidine (Spd), and spermine (Spm) titers were studied in oat and bean leaves. Treatment with Cd2+ for up to 16 hours in the light or dark resulted in a large increase in Put titer, but had little or no effect on Spd or Spm. The activity of arginine decarboxylase (ADC) followed the pattern of Put accumulation, and experiments with alpha-difluoromethylarginine established that ADC was the enzyme responsible for Put increase. Concentrations of Cd2+ as low as 10 micromolar increased Put titer in oat segments. In bean leaves, there was a Cd(2+)-induced accumulation of Put in the free and soluble conjugated fractions, but not in the insoluble fraction. This suggests a rapid exchange between Put that exists in the free form and Put found in acid soluble conjugate forms. It is concluded that Cd2+ can act like certain other stresses (K+ and Mg2+ deficiency, excess NH4+, low pH, salinity, osmotic stress, wilting) to induce substantial increases in Put in plant cells.

  13. Heavy metal phytoextraction-natural and EDTA-assisted remediation of contaminated calcareous soils by sorghum and oat.

    PubMed

    Mahmood-Ul-Hassan, Muhammad; Suthar, Vishandas; Ahmad, Rizwan; Yousra, Munazza

    2017-10-30

    The abilities of sorghum (Sorghum bicolor L.) and oat (Avena sativa L.) to take up heavy metals from soils amended with ethylenediaminetetraacetic acid (EDTA) were assessed under greenhouse conditions. Both plants were grown in two soils contaminated with heavy metals (Gujranwala-silty loam and Pacca-clay loam). The soils were treated with 0, 0.625, 1.25, and 2.5 mM EDTA kg -1 soil applied at both 45 and 60 days after sowing (DAS); the experiment was terminated at 75 DAS. Addition of EDTA significantly increased concentrations of Cd, Cr, and Pb in roots and shoots, and bio-concentration factors and phytoextraction rates were also increased. Post-harvest soil analysis showed that soluble fractions of metals were also increased significantly. The increase in Cd was ≈ 3-fold and Pb was ≈ 15-fold at the highest addition of EDTA in Gujranwala soil; in the Pacca soil, the increase was less. Similarly, other phytoremediation factors, such as metal translocation, bio-concentration factor, and phytoextraction, efficiency were also maximum when soils were treated with 2.5 mM EDTA kg -1 soil. The study demonstrated that sorghum was better than oat for phytoremediation.

  14. Swedish children with celiac disease comply well with a gluten-free diet, and most include oats without reporting any adverse effects: a long-term follow-up study.

    PubMed

    Tapsas, Dimitrios; Fälth-Magnusson, Karin; Högberg, Lotta; Hammersjö, Jan-Åke; Hollén, Elisabet

    2014-05-01

    The only known treatment for celiac disease is a gluten-free diet (GFD), which initially meant abstention from wheat, rye, barley, and oats. Recently, oats free from contamination with wheat have been accepted in the GFD. Yet, reports indicate that all celiac disease patients may not tolerate oats. We hypothesized that celiac children comply well with a GFD and that most have included oats in their diet. A food questionnaire was used to check our patients; 316 questionnaires were returned. Mean time on the GFD was 6.9 years, and 96.8% of the children reported that they were trying to keep a strict GFD. However, accidental transgressions occurred in 263 children (83.2%). In 2 of 3 cases, mistakes took place when the patients were not at home. Symptoms after incidental gluten intake were experienced by 162 (61.6%) patients, mostly (87.5%) from the gastrointestinal tract. Small amounts of gluten (<4 g) caused symptoms in 38% of the cases, and 68% reported symptoms during the first 3 hours after gluten consumption. Oats were included in the diet of 89.4% of the children for a mean of 3.4 years. Most (81.9%) ate purified oats, and 45.3% consumed oats less than once a week. Among those who did not consume oats, only 5.9% refrained because of symptoms. General compliance with the GFD was good. Only the duration of the GFD appeared to influence adherence to the diet. Most patients did not report adverse effects after long-term consumption of oats. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Pyromellitamide aggregates and their response to anion stimuli.

    PubMed

    Webb, James E A; Crossley, Maxwell J; Turner, Peter; Thordarson, Pall

    2007-06-06

    The N,N',N'',N'''-1,2,4,5-tetra(ethylhexanoate) pyromellitamide is found to be capable of both intermolecular aggregation and binding to small anions. It is synthesized by aminolysis of pyromellitic anhydride with ethanolamine, followed by a reaction with hexanoyl chloride. The single-crystal X-ray structure of the pyromellitamide shows that it forms one-dimensional columnar stacks through an intermolecular hydrogen-bonding network. It also forms self-assembled gels in nonpolar solvents, presumably by a hydrogen-bonding network similar to the solid-state structure as shown by IR and XRD studies. Aggregation by intermolecular hydrogen bonding of the pyromellitamide is also observed by NMR and IR in solution. Fitting of NMR dilution data for pyromellitamide in d6-acetone to a cooperative aggregation model gave KE=232 M-1 and positive cooperativity of aggregation (rho=0.22). The pyromellitamide binds to a range of small anions with the binding strength decreasing in the order chloride>acetate>bromide>nitrate approximately iodide. The data indicate that the pyromellitamide binds two anions and that it displays negative cooperativity. The intermolecular aggregation of the pyromellitamide can also be altered using small anion stimuli; anion addition to preformed self-assembled pyromellitamide gels causes their collapse. The kinetics of anion-induced gel collapse are qualitatively correlated to the binding affinities of the same anions in solution. The cooperative anion binding properties and the sensitivity of the self-assembled gels formed by pyromellitamide toward anions could be useful in the development of sensors and switching/releasing devices.

  16. Co-operative actions and degradation analysis of purified xylan-degrading enzymes from Thermomonospora fusca BD25 on oat-spelt xylan.

    PubMed

    Tuncer, M; Ball, A S

    2003-01-01

    To determine and quantify the products from the degradation of xylan by a range of purified xylan-degrading enzymes, endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase produced extracellularly by Thermomonospora fusca BD25. The amounts of reducing sugars released from oat-spelt xylan by the actions of endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase were equal to 28.1, 4.6 and 7% hydrolysis (as xylose equivalents) of the substrate used, respectively. However, addition of beta-xylosidase and alpha-l-arabinofuranosidase preparation to endoxylanase significantly enhanced (70 and 20% respectively) the action of endoxylanase on the substrate. The combination of purified endoxylanase, beta-xylosidase and alpha-l-arabinofuranosidase preparations produced a greater sugar yield (58.6% hydrolysis) and enhanced the total reducing sugar yield by around 50%. The main xylooligosaccharide products released using the action of endoxylanase alone on oat-spelt xylan were identified as xylobiose and xylopentose. alpha-l-Arabinofuranosidase was able to release arabinose and xylobiose from oat-spelt xylan. In the presence of all three purified enzymes the hydrolysis products of oat-spelt xylan were mainly xylose, arabinose and substituted xylotetrose with lesser amount of substituted xylotriose. The addition of the beta-xylosidase and alpha-l-arabinofuranosidase enzymes to purified xylanases more than doubled the degradation of xylan from 28 to 58% of the total substrate with xylose and arabinose being the major sugars produced. The results highlight the role of xylan de-branching enzymes in the degradation of xylan and suggest that the use of enzyme cocktails may significantly improve the hydrolysis of xylan in industrial processes.

  17. Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

    PubMed Central

    Yang, Lin-Tong; Qi, Yi-Ping; Jiang, Huan-Xin; Chen, Li-Song

    2013-01-01

    Approximately 30% of the world's total land area and over 50% of the world's potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed. PMID:23509687

  18. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine fecal microbiota in vitro

    USDA-ARS?s Scientific Manuscript database

    Aims: The goal was to determine the effect of starch source (corn, oats and wheat) and concentration on: 1) total amylolytic bacteria, Group D Gram-positive cocci (GPC), lactobacilli, and lactate-utilizing bacteria, and 2) fermentation by equine microflora. Methods and Results: When fecal washed cel...

  19. K2P TASK-2 and KCNQ1-KCNE3 K+ channels are major players contributing to intestinal anion and fluid secretion.

    PubMed

    Julio-Kalajzić, Francisca; Villanueva, Sandra; Burgos, Johanna; Ojeda, Margarita; Cid, L Pablo; Jentsch, Thomas J; Sepúlveda, Francisco V

    2018-02-01

    K + channels are important in intestinal epithelium as they ensure the ionic homeostasis and electrical potential of epithelial cells during anion and fluid secretion. Intestinal epithelium cAMP-activated anion secretion depends on the activity of the (also cAMP dependent) KCNQ1-KCNE3 K + channel, but the secretory process survives after genetic inactivation of the K + channel in the mouse. Here we use double mutant mice to investigate which alternative K + channels come into action to compensate for the absence of KCNQ1-KCNE3 K + channels. Our data establish that whilst Ca 2+ -activated K Ca 3.1 channels are not involved, K 2P two-pore domain TASK-2 K + channels are major players providing an alternative conductance to sustain the intestinal secretory process. Work with double mutant mice lacking both TASK-2 and KCNQ1-KCNE3 channels nevertheless points to yet-unidentified K + channels that contribute to the robustness of the cAMP-activated anion secretion process. Anion and fluid secretion across the intestinal epithelium, a process altered in cystic fibrosis and secretory diarrhoea, is mediated by cAMP-activated CFTR Cl - channels and requires the simultaneous activity of basolateral K + channels to maintain cellular ionic homeostasis and membrane potential. This function is fulfilled by the cAMP-activated K + channel formed by the association of pore-forming KCNQ1 with its obligatory KCNE3 β-subunit. Studies using mice show sizeable cAMP-activated intestinal anion secretion in the absence of either KCNQ1 or KCNE3 suggesting that an alternative K + conductance must compensate for the loss of KCNQ1-KCNE3 activity. We used double mutant mouse and pharmacological approaches to identify such a conductance. Ca 2+ -dependent anion secretion can also be supported by Ca 2+ -dependent K Ca 3.1 channels after independent CFTR activation, but cAMP-dependent anion secretion is not further decreased in the combined absence of K Ca 3.1 and KCNQ1-KCNE3 K + channel activity. We

  20. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA)

    DOE PAGES

    Sychantha, David; Jones, Carys S.; Little, Dustin J.; ...

    2017-10-27

    The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain.more » We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.« less

  1. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sychantha, David; Jones, Carys S.; Little, Dustin J.

    The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain.more » We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens.« less

  2. In vitro characterization of the antivirulence target of Gram-positive pathogens, peptidoglycan O-acetyltransferase A (OatA)

    PubMed Central

    Sychantha, David; Jones, Carys S.; Little, Dustin J.; Howell, P. Lynne

    2017-01-01

    The O-acetylation of the essential cell wall polymer peptidoglycan occurs in most Gram-positive bacterial pathogens, including species of Staphylococcus, Streptococcus and Enterococcus. This modification to peptidoglycan protects these pathogens from the lytic action of the lysozymes of innate immunity systems and, as such, is recognized as a virulence factor. The key enzyme involved, peptidoglycan O-acetyltransferase A (OatA) represents a particular challenge to biochemical study since it is a membrane associated protein whose substrate is the insoluble peptidoglycan cell wall polymer. OatA is predicted to be bimodular, being comprised of an N-terminal integral membrane domain linked to a C-terminal extracytoplasmic domain. We present herein the first biochemical and kinetic characterization of the C-terminal catalytic domain of OatA from two important human pathogens, Staphylococcus aureus and Streptococcus pneumoniae. Using both pseudosubstrates and novel biosynthetically-prepared peptidoglycan polymers, we characterized distinct substrate specificities for the two enzymes. In addition, the high resolution crystal structure of the C-terminal domain reveals an SGNH/GDSL-like hydrolase fold with a catalytic triad of amino acids but with a non-canonical oxyanion hole structure. Site-specific replacements confirmed the identity of the catalytic and oxyanion hole residues. A model is presented for the O-acetylation of peptidoglycan whereby the translocation of acetyl groups from a cytoplasmic source across the cytoplasmic membrane is catalyzed by the N-terminal domain of OatA for their transfer to peptidoglycan by its C-terminal domain. This study on the structure-function relationship of OatA provides a molecular and mechanistic understanding of this bacterial resistance mechanism opening the prospect for novel chemotherapeutic exploration to enhance innate immunity protection against Gram-positive pathogens. PMID:29077761

  3. Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc.

    PubMed

    Tiecher, Tadeu L; Tiecher, Tales; Ceretta, Carlos A; Ferreira, Paulo A A; Nicoloso, Fernando T; Soriani, Hilda H; Tassinari, Adriele; Paranhos, Juçara Terezinha; De Conti, Lessandro; Brunetto, Gustavo

    2016-09-01

    Vineyard sandy acid soils from South Brazil have experienced heavy metal contamination due to replacement of copper (Cu)-based by zinc (Zn)-based products to control foliar diseases. Thus, we evaluate physiological and nutritional status of black oat (Avena strigosa Schreb.), a common interrow crop in vineyards from this region. Soil was collected in a natural field from Santana do Livramento, in Rio Grande do Sul, the southernmost state of Brazil. Black oat was cultivated for 30 days in a greenhouse with application of 0, 30, and 60 mg Cu kg(-1) combined with 0, 15, 30, 60, 120, and 180 mg Zn kg(-1). After the trial period, dry matter accumulation of roots and shoots, Cu and Zn contents in roots and shoots, chlorophyll a fluorescence, photosynthetic pigments and catalase (CAT, EC 1.11.1.6) and peroxidase (POD, EC 1.11.1.7) activity were determined. Cu and Zn toxicity was evidenced by the decrease in plant growth of black oat as well as by the decrease of photochemical efficiency associated with the decrease in photosynthetic pigment content, especially with the highest doses of Cu and Zn. Furthermore, the activity of antioxidant enzymes (CAT and POD) was increased in intermediate doses of Zn, indicating the activation of the antioxidant system, but the stress condition in treatments with high levels of Cu and Zn was not reversed. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Noise analysis and relaxation experiments of transport of hydrophobic anions across lipid membranes at equilibrium and nonequilibrium.

    PubMed

    Junges, R; Kolb, H A

    1983-06-01

    Under equilibrium and nonequilibrium steady-state conditions, the spectral intensity of current noise SJ(f) generated by the transport of hydrophobic anions across lipid bilayer membranes was investigated. The experimental results were compared with different reaction models. SJ(f) showed a characteristic increase proportional to f2 between frequency-independent tails at low and high frequencies. This gradient was found to be independent of applied voltage which indicates the contribution of a single voltage-dependent reaction step of ion translocation across the membrane. From the shape of SJ(f) at low frequencies the rate constant of ion desorption from the membrane into the aqueous phase could be estimated. Unambiguous evidence for the application of a general model, which includes the coupling of slow ion diffusion in the aqueous phase to ion adsorption/desorption at the membrane interface, could not be obtained from the low-frequency shape of SJ(f). The shot noise of this ion transport determines the amplitude of SJ(f) at high frequencies which decreases with increasing voltage applied. Analysis of voltage-jump current-relaxation experiments and of current noise carried out on one membrane yielded significant differences of the derived ion partition coefficient. This deviation is qualitatively described on the basis of incomplete reaction steps.

  5. Effects of dietary oat, barley, and guar gums on serum and liver lipid concentrations in diet-induced hypertriglyceridemic rats.

    PubMed

    Oda, T; Aoe, S; Imanishi, S; Kanazawa, Y; Sanada, H; Ayano, Y

    1994-04-01

    Effects of dietary oat, barley, and guar gums on serum and liver triglyceride or cholesterol concentrations were examined in diet-induced hypertriglyceridemic rats. Male Sprague-Dawley rats were fed a hypertriglyceridemic diet that contained 20% coconut oil, 17.5% fructose, 17.5% sucrose, and 5% cellulose at 4 weeks of age for 14 days. In the gum-supplemented diets, 2% cellulose was replaced by oat gum, barley gum, or guar gum. Hypertriglyceridemia was observed in the control group, whereas serum cholesterol concentration was not increased. All of the gums lowered serum and liver cholesterol concentrations except barley gum which had no significant effect on liver cholesterol. Both oat and barley gums suppressed the elevation of serum and liver triglyceride concentrations but guar gum had no effect.

  6. A Barley Efflux Transporter Operates in a Na+-Dependent Manner, as Revealed by a Multidisciplinary Platform[OPEN

    PubMed Central

    Nagarajan, Yagnesh; Rongala, Jay; Luang, Sukanya; Shadiac, Nadim; Sutton, Tim; Tyerman, Stephen D.; McPhee, Gordon; Voelcker, Nicolas H.; Lee, Jung-Goo

    2016-01-01

    Plant growth and survival depend upon the activity of membrane transporters that control the movement and distribution of solutes into, around, and out of plants. Although many plant transporters are known, their intrinsic properties make them difficult to study. In barley (Hordeum vulgare), the root anion-permeable transporter Bot1 plays a key role in tolerance to high soil boron, facilitating the efflux of borate from cells. However, its three-dimensional structure is unavailable and the molecular basis of its permeation function is unknown. Using an integrative platform of computational, biophysical, and biochemical tools as well as molecular biology, electrophysiology, and bioinformatics, we provide insight into the origin of transport function of Bot1. An atomistic model, supported by atomic force microscopy measurements, reveals that the protein folds into 13 transmembrane-spanning and five cytoplasmic α-helices. We predict a trimeric assembly of Bot1 and the presence of a Na+ ion binding site, located in the proximity of a pore that conducts anions. Patch-clamp electrophysiology of Bot1 detects Na+-dependent polyvalent anion transport in a Nernstian manner with channel-like characteristics. Using alanine scanning, molecular dynamics simulations, and transport measurements, we show that conductance by Bot1 is abolished by removal of the Na+ ion binding site. Our data enhance the understanding of the permeation functions of Bot1. PMID:26672067

  7. Photoelectron spectroscopy of the 6-azauracil anion.

    PubMed

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  8. Anion-π interactions in active centers of superoxide dismutases.

    PubMed

    Ribić, Vesna R; Stojanović, Srđan Đ; Zlatović, Mario V

    2018-01-01

    We investigated 1060 possible anion-π interactions in a data set of 41 superoxide dismutase active centers. Our observations indicate that majority of the aromatic residues are capable to form anion-π interactions, mainly by long-range contacts, and that there is preference of Trp over other aromatic residues in these interactions. Furthermore, 68% of total predicted interactions in the dataset are multiple anion-π interactions. Anion-π interactions are distance and orientation dependent. We analyzed the energy contribution resulting from anion-π interactions using ab initio calculations. The results showed that, while most of their interaction energies lay in the range from -0 to -4kcalmol -1 , those energies can be up to -9kcalmol -1 and about 34% of interactions were found to be repulsive. Majority of the suggested anion-π interacting residues in ternary complexes are metal-assisted. Stabilization centers for these proteins showed that all the six residues found in predicted anion-π interactions are important in locating one or more of such centers. The anion-π interacting residues in these proteins were found to be highly conserved. We hope that these studies might contribute useful information regarding structural stability and its interaction in future designs of novel metalloproteins. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat.

    PubMed

    Yan, Honghai; Bekele, Wubishet A; Wight, Charlene P; Peng, Yuanying; Langdon, Tim; Latta, Robert G; Fu, Yong-Bi; Diederichsen, Axel; Howarth, Catherine J; Jellen, Eric N; Boyle, Brian; Wei, Yuming; Tinker, Nicholas A

    2016-11-01

    Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.

  10. Inactivation of Staphylococcus aureus in Oat and Soya Drinks by Enterocin AS-48 in Combination with Other Antimicrobials.

    PubMed

    Burgos, María José Grande; Aguayo, M Carmen López; Pulido, Rubén Pérez; Gálvez, Antonio; López, Rosario Lucas

    2015-09-01

    The presence of toxicogenic Staphylococcus aureus in foods and the dissemination of methicillin-resistant S. aureus (MRSA) in the food chain are matters of concern. In the present study, the circular bacteriocin enterocin AS-48, applied singly or in combination with phenolic compounds (carvacrol, eugenol, geraniol, and citral) or with 2-nitro-1-propanol (2NPOH), was investigated in the control of a cocktail made from 1 methicillin-sensitive and 1 MRSA strains inoculated on commercial oat and soya drinks. Enterocin AS-48 exhibited low bactericidal activity against staphylococci in the drinks investigated when applied singly. The combinations of sub-inhibitory concentrations of enterocin AS-48 (25 μg/mL) and phenolic compounds or 2NPOH caused complete inactivation of staphylococci in the drinks within 24 h of incubation at 22 °C. When tested in oat and soya drinks stored for 7 d at 10 °C, enterocin AS-48 (25 μg/mL) in combination with 2NPOH (5.5 mM) reduced viable counts rapidly in the case of oat drink (4.2 log cycles after 12 h) or slowly in soya drink (3.8 log cycles after 3 d). The same combined treatment applied on drinks stored at 22 °C achieved a fast inactivation of staphylococci within 12 to 24 h in both drinks, and no viable staphylococci were detected for up to 7 d of storage. Results from the study highlight the potential of enterocin AS-48 in combination with 2NPOH for inactivation of staphylococci. © 2015 Institute of Food Technologists®

  11. Altered Expression of a Malate-Permeable Anion Channel, OsALMT4, Disrupts Mineral Nutrition1[OPEN

    PubMed Central

    Delhaize, Emmanuel

    2017-01-01

    Aluminum-activated malate transporters (ALMTs) form a family of anion channels in plants, but little is known about most of its members. This study examined the function of OsALMT4 from rice (Oryza sativa). We show that OsALMT4 is expressed in roots and shoots and that the OsALMT4 protein localizes to the plasma membrane. Transgenic rice lines overexpressing (OX) OsALMT4 released malate from the roots constitutively and had 2-fold higher malate concentrations in the xylem sap than nulls, indicating greater concentrations of malate in the apoplast. OX lines developed brown necrotic spots on the leaves that did not appear on nulls. These symptoms were not associated with altered concentrations of any mineral element in the leaves, although the OX lines had higher concentrations of Mn and B in their grain compared with nulls. While total leaf Mn concentrations were not different between the OX and null lines, Mn concentrations in the apoplast were greater in the OX plants. The OX lines also displayed increased expression of Mn transporters and were more sensitive to Mn toxicity than null plants. We showed that the growth of wild-type rice was unaffected by 100 µm Mn in hydroponics but, when combined with 1 mm malate, this concentration inhibited growth. We conclude that increasing OsALMT4 expression affected malate efflux and compartmentation within the tissues, which increased Mn concentrations in the apoplast of leaves and induced the toxicity symptoms. This study reveals new links between malate transport and mineral nutrition. PMID:29101278

  12. Whole-grain ready-to-eat oat cereal, as part of a dietary program for weight loss, reduces low-density lipoprotein cholesterol in adults with overweight and obesity more than a dietary program including low-fiber control foods.

    PubMed

    Maki, Kevin C; Beiseigel, Jeannemarie M; Jonnalagadda, Satya S; Gugger, Carolyn K; Reeves, Matthew S; Farmer, Mildred V; Kaden, Valerie N; Rains, Tia M

    2010-02-01

    Weight loss and consumption of viscous fibers both lower low-density lipoprotein (LDL) cholesterol levels. We evaluated whether or not a whole-grain, ready-to-eat (RTE) oat cereal containing viscous fiber, as part of a dietary program for weight loss, lowers LDL cholesterol levels and improves other cardiovascular disease risk markers more than a dietary program alone. Randomized, parallel-arm, controlled trial. Free-living, overweight and obese adults (N=204, body mass index 25 to 45) with baseline LDL cholesterol levels 130 to 200 mg/dL (3.4 to 5.2 mmol/L) were randomized; 144 were included in the main analysis of participants who completed the trial without significant protocol violations. Two portions per day of whole-grain RTE oat cereal (3 g/day oat b-glucan) or energy-matched low-fiber foods (control), as part of a reduced energy ( approximately 500 kcal/day deficit) dietary program that encouraged limiting consumption of foods high in energy and fat, portion control, and regular physical activity. Fasting lipoprotein levels, waist circumference, triceps skinfold thickness, and body weight were measured at baseline and weeks 4, 8, 10, and 12. LDL cholesterol level was reduced significantly more with whole-grain RTE oat cereal vs control (-8.7+/-1.0 vs -4.3+/-1.1%, P=0.005). Total cholesterol (-5.4+/-0.8 vs -2.9+/-0.9%, P=0.038) and non-high-density lipoprotein-cholesterol (-6.3+/-1.0 vs -3.3+/-1.1%, P=0.046) were also lowered significantly more with whole-grain RTE oat cereal, whereas high-density lipoprotein and triglyceride responses did not differ between groups. Weight loss was not different between groups (-2.2+/-0.3 vs -1.7+/-0.3 kg, P=0.325), but waist circumference decreased more (-3.3+/-0.4 vs -1.9+/-0.4 cm, P=0.012) with whole-grain RTE oat cereal. Larger reductions in LDL, total, and non-high-density lipoprotein cholesterol levels and waist circumference were evident as early as week 4 in the whole-grain RTE oat cereal group. Consumption of a

  13. Physical properties of gluten-free sugar cookies made from amaranth-oat composites

    USDA-ARS?s Scientific Manuscript database

    Amaranth flour containing the essential amino acid, lysine, was blended with oat products that contain ß-glucan known for lowering blood cholesterol and preventing heart disease. These composites improved nutritional value, water holding capacity and the pasting properties along with their gluten fr...

  14. Functional properties of gluten-free sugar cookies made from amaranth-oat composites

    USDA-ARS?s Scientific Manuscript database

    Amaranth flour containing the essential amino acid, lysine, was blended with oat products that contain ß-glucan known for lowering blood cholesterol and preventing heart disease. These composites improved nutritional value, water holding capacity and the pasting properties along with their gluten fr...

  15. Outer-sphere interaction of aluminum and gallium solvates with competitive anions in 1,2-propanediol solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrosyants, S.P.; Buslaeva, E.R.

    1986-04-01

    The interaction of aluminum and gallium solvates with ..pi..-acid ligand in 1,2-propanediol solutions has been investigated. The formation of associates of hexacoordinate aluminum solvates depends on the solvation of the anions in the bulk of the solution or on the faces of the solvento complexes. In the case of gallium the association of the solvates with the anions is determined by two factors: the existence of a configurational equilibrium for the solvento complexes and the preferential solvation of the competitive ..pi..-acid ligands.

  16. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  17. Digital image sensor-based assessment of the status of oat (Avena sativa L.) crops after frost damage.

    PubMed

    Macedo-Cruz, Antonia; Pajares, Gonzalo; Santos, Matilde; Villegas-Romero, Isidro

    2011-01-01

    The aim of this paper is to classify the land covered with oat crops, and the quantification of frost damage on oats, while plants are still in the flowering stage. The images are taken by a digital colour camera CCD-based sensor. Unsupervised classification methods are applied because the plants present different spectral signatures, depending on two main factors: illumination and the affected state. The colour space used in this application is CIELab, based on the decomposition of the colour in three channels, because it is the closest to human colour perception. The histogram of each channel is successively split into regions by thresholding. The best threshold to be applied is automatically obtained as a combination of three thresholding strategies: (a) Otsu's method, (b) Isodata algorithm, and (c) Fuzzy thresholding. The fusion of these automatic thresholding techniques and the design of the classification strategy are some of the main findings of the paper, which allows an estimation of the damages and a prediction of the oat production.

  18. Proteolytic Activity at Alkaline pH in Oat Leaves, Isolation of an Aminopeptidase 1

    PubMed Central

    Casano, Leonardo M.; Desimone, Marcelo; Trippi, Victorio S.

    1989-01-01

    Proteolytic activity in oat leaf extracts was measured with both azocasein and ribulose bisphosphate carboxylase (Rubisco) as substrates over a wide range of pH (3.0-9.2). With either azocasein or Rubisco activity peaks appeared at pH 4.8, 6.6, and 8.4. An aminopeptidase (AP) which hydrolyzes leucine-nitroanilide was partially purified. Purification consisted of a series of six steps which included ammonium sulfate precipitation, gel filtration, and two ionic exchange chromatographies. The enzyme was purified more than 100-fold. The apparent Km for leucine-nitroanilide is 0.08 millimolar at its pH optimum of 8.4. AP may be a cystein protease since it is inhibited by heavy metals and activated by 2-mercaptoethanol. Isolated chloroplasts were also able to hydrolyze leucine-nitroanilide at a pH optimum of 8.4, indicating that AP could be localized inside the photosynthetic organelles. PMID:16667194

  19. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.

    PubMed

    Ben-Hail, Danya; Palty, Raz; Shoshan-Barmatz, Varda

    2014-02-01

    Ca(2+) is a ubiquitous cellular signal, with changes in intracellular Ca(2+) concentration not only stimulating a number of intercellular events but also triggering cell death pathways, including apoptosis. Mitochondrial Ca(2+) uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca(2+) signaling, energy metabolism and cell death. Ca(2+) transport across the inner and outer mitochondrial membranes is mediated by several proteins, including channels, antiporters, and a uniporter. In this article, we present the background to several methods now established for assaying mitochondrial Ca(2+) transport activity across both mitochondrial membranes. The first of these is Ca(2+) transport mediated by the outer mitochondrial protein, the voltage-dependent anion-selective channel protein 1 (VDAC1, also known as porin 1), both as a purified protein reconstituted into a planar lipid bilayer (PLB) or into liposomes and as a mitochondrial membrane-embedded protein. The second method involves isolated mitochondria for assaying the activity of an inner mitochondrial membrane transport protein, the mitochondrial Ca(2+) uniporter (MCU) that transports Ca(2+) and is powered by the steep mitochondrial membrane potential. In the event of Ca(2+) overload, this leads to opening of the mitochondrial permeability transition pore (MPTP) and cell death. The third method describes how Na(+)-dependent mitochondrial Ca(2+) efflux mediated by mitochondrial NCLX, a member of the Na(+)/Ca(2+) exchanger superfamily, can be assayed in digitonin-permeabilized HEK-293 cells. The Ca(2+)-transport assays can be performed under various conditions and in combination with inhibitors, allowing detailed characterization of the transport activity of interest.

  20. Impaired organic ion transport in proximal tubules of rats with Heymann nephritis.

    PubMed

    Park, E K; Hong, S K; Goldinger, J; Andres, G; Noble, B

    1985-10-01

    Organic ion transport across the basolateral membrane of proximal tubules was measured by means of the tissue slice technique in each of the four different stages of Heymann nephritis. Impairment of both organic anion and cation transport was detected early in Stage 2, and became more severe in Stage 3 of Heymann nephritis. The decreased transport function was associated with extensive damage to proximal tubule cells, including loss of brush border microvilli and basal infoldings. Despite these abnormalities of structure and function, oxygen consumption of proximal tubule cells remained essentially normal. Partial recovery of organic cation transport was noted late in Heymann nephritis (Stage 4). Recovery of the cation transport function was associated with a partial restoration of brush border microvilli and basal infoldings to proximal tubule cells. However, organic anion transport remained depressed throughout the entire course of disease. Impairment of organic ion transport in rats with Heymann nephritis appeared to result from damage to basolateral membrane transport elements rather than general deterioration of the metabolic machinery of proximal tubule cells. Decreased organic cation transport appeared to be the consequence of a reduction in the number of carrier sites, a phenomenon that could have resulted from decreased membrane surface area. However, the depression of organic anion transport was associated with decreased substrate affinity of the anion carrier, indicating that qualitative, rather than quantitative changes, were primarily responsible for that defect. Specific antibody-mediated damage to the anion transport elements in basolateral membranes of proximal tubules is postulated to occur in Heymann nephritis.