Thayer, J R; Rohrer, J S; Avdalovic, N; Gearing, R P
1998-02-15
High-pH anion exchange chromatography with pulsed amperometric detection (HPAEC/PAD) (1) is routinely used to separate neutral and charged oligosaccharides differing by branch, linkage, and positional isomerism. Oligosaccharides are eluted in 0.1 M NaOH with gradients of sodium acetate (up to 0.25 M). Analyses of HPAEC/PAD-purified oligosaccharides generally require neutralization and removal of eluent salts. To facilitate the process, we designed and produced a cation-exchange system to remove sodium ions (Na+) from the eluent after oligosaccharide detection [the Carbohydrate Membrane Desalter (CMD), with a volatile regenerant]. Exchange of >99.5% of eluent Na+ for hydronium ions (H3O+) within the CMD generates dilute acetic acid (removable by vacuum evaporation). The exchange process desalts up to 0.35 M Na+ at 1.0 ml/min. Oligosaccharides collected after on-line desalting, evaporated and resuspended in their original volume of deionized water contained < or = 350 muM residual Na+ when the eluting sodium concentration was 300 mM. This represents a desalting efficiency of >99.8%. Recovery of neutral and sialylated oligosaccharides under these conditions ranged from 75 to 100%. With the CMD system and postcollection evaporation, HPAEC/PAD can purify oligosaccharides ready for further characterization. As a proof test, oligosaccharides from a human monoclonal antibody were separated by HPAEC/PAD, desalted with the CMD system, dried, and analyzed by matrix-assisted laser desorption-ionization, time-of-flight mass spectrometry. Copyright 1998 Academic Press.
USDA-ARS?s Scientific Manuscript database
Sugar crops contain a broad variety of carbohydrates used for human consumption and the production of biofuels and bioproducts. Ion chromatography with integrated pulsed amperometric detection (IC-IPAD), also known as high performance anion exchange chromatography (HPAEC), can be used to simultaneo...
van der Put, Robert M F; de Haan, Alex; van den IJssel, Jan G M; Hamidi, Ahd; Beurret, Michel
2015-11-27
Due to the rapidly increasing introduction of Haemophilus influenzae type b (Hib) and other conjugate vaccines worldwide during the last decade, reliable and robust analytical methods are needed for the quantitative monitoring of intermediate samples generated during fermentation (upstream processing, USP) and purification (downstream processing, DSP) of polysaccharide vaccine components. This study describes the quantitative characterization of in-process control (IPC) samples generated during the fermentation and purification of the capsular polysaccharide (CPS), polyribosyl-ribitol-phosphate (PRP), derived from Hib. Reliable quantitative methods are necessary for all stages of production; otherwise accurate process monitoring and validation is not possible. Prior to the availability of high performance anion exchange chromatography methods, this polysaccharide was predominantly quantified either with immunochemical methods, or with the colorimetric orcinol method, which shows interference from fermentation medium components and reagents used during purification. Next to an improved high performance anion exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method, using a modified gradient elution, both the orcinol assay and high performance size exclusion chromatography (HPSEC) analyses were evaluated. For DSP samples, it was found that the correlation between the results obtained by HPAEC-PAD specific quantification of the PRP monomeric repeat unit released by alkaline hydrolysis, and those from the orcinol method was high (R(2)=0.8762), and that it was lower between HPAEC-PAD and HPSEC results. Additionally, HPSEC analysis of USP samples yielded surprisingly comparable results to those obtained by HPAEC-PAD. In the early part of the fermentation, medium components interfered with the different types of analysis, but quantitative HPSEC data could still be obtained, although lacking the specificity of the HPAEC-PAD method. Thus, the HPAEC-PAD method has the advantage of giving a specific response compared to the orcinol assay and HPSEC, and does not show interference from various components that can be present in intermediate and purified PRP samples. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yi, Lin; Ouyang, Yilan; Sun, Xue; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing
2015-12-04
Dextran, a family of natural polysaccharides, consists of an α (1→6) linked-glucose main (backbone) chain having a number of branches. The determination of the types and the quantities of branches in dextran is important in understanding its various biological roles. In this study, a hyphenated method using high-performance anion exchange chromatography (HPAEC) in parallel with pulsed amperometric detection (PAD) and mass spectrometry (MS) was applied to qualitative and quantitative analysis of dextran branches. A rotary cation-exchange cartridge array desalter was used for removal of salt from the HPAEC eluent making it MS compatible. MS and MS/MS were used to provide structural information on the enzymatically prepared dextran oligosaccharides. PAD provides quantitative data on the ratio of enzyme-resistant, branched dextran oligosaccharides. Both the types and degree of branching found in a variety of dextrans could be simultaneously determined online using this method. Copyright © 2015 Elsevier B.V. All rights reserved.
Quéméner, Bernard; Désiré, Cédric; Lahaye, Marc; Debrauwer, Laurent; Negroni, Luc
2003-01-01
The off-line coupling of high-performance anion-exchange chromatography (HPAEC) to electrospray ionisation/ion trap mass spectrometry (ESI-ITMS) is described. The Dionex carbohydrate membrane desalter (CMD) has been assessed as an on-line chromatographic desalting system to remove the high sodium concentration necessary for the HPAEC separation of partially methyl-esterified oligogalacturonides. The developed HPAEC configuration proved to be suitable for indirect coupling with ESI-ITMS. This paper provides some interesting features of positive- and negative-ion multistage tandem mass spectrometry (MS(n)) analysis of these acidic oligosaccharides. The spectra acquired in both negative- and positive-ion modes show characteristic fragment ions resulting from glycosidic bond and cross-ring cleavages. Some new mass spectrometric fragmentation routes are also described. The positive-ion mode gave more complex spectra but was as informative as the negative-ion mode. ESI-ITMS was revealed to be, as previously reported from direct use on an unseparated enzymatic digest, a powerful sequencing technique for the determination of linkage type and the methyl ester distribution of partially methyl-esterified oligogalacturonides. Moreover, unlike matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS), it gives valuable information on the elution behaviour of these oligomers in relation to their structure, namely the HPAEC co-elution of isomeric structures.
Sanders, Peter; Ernste-Nota, Veronica; Visser, Klaas; van Soest, Jeroen; Brunt, Kommer
2017-09-01
A method using high-performance anion-exchange chromatography (HPAEC) with a pulsed amperometric detector (PAD) for the determination of mono- and disaccharides is described. The method was accepted by the International Dairy Federation and the Internal Organization for Standardization as a new work item for the determination of sugars in dairy matrixes, and the Milk and Milk Products technical committee of ISO/TC 34/SC 5 accepted the topic "Milk and milk products - Determination of the sugar contents - High-performance anion-exchange chromatographic method (HPAEC-PAD)" as a new work item. The proposed method consists of an aqueous ethanol extraction of the sugars in the dairy sample, followed by clarification with Carrez I and II reagents. The clarified filtrate is diluted and then directly introduced in the HPAEC-PAD system for quantification of the sugars. A single-laboratory validation of the proposed method has been scheduled for spring 2017.
Micoli, F; Adamo, R; Proietti, D; Gavini, M; Romano, M R; MacLennan, C A; Costantino, P; Berti, F
2013-11-15
A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX. Copyright © 2013 Elsevier Inc. All rights reserved.
Contamination of commercial cane sugars by some organic acids and some inorganic anions.
Wojtczak, Maciej; Antczak, Aneta; Lisik, Krystyna
2013-01-01
The aim of the paper was the identification and the quantitative evaluation of the following inorganic anions: chloride, phosphate, nitrate, nitrite, sulphate and the following organic acids: lactic, acetic, formic, malic and citric in commercial "unrefined" brown cane sugars and in cane raw sugars. The determination was carried out by high performance anion exchange chromatography with conductivity detector HPAEC-CD. The conducted analyses have shown that the content of some inorganic anions and organic acids in cane sugars may be an important criterion of the quality of commercial "unrefined" brown cane sugars. Copyright © 2012 Elsevier Ltd. All rights reserved.
Chemmalil, Letha; Suravajjala, Sreekanth; See, Kate; Jordan, Eric; Furtado, Marsha; Sun, Chong; Hosselet, Stephen
2015-01-01
This paper describes a novel approach for the quantitation of nonderivatized sialic acid in glycoproteins, separated by hydrophilic interaction chromatography, and detection by Nano Quantity Analyte Detector (NQAD). The detection technique of NQAD is based on measuring change in the size of dry aerosol and converting the particle count rate into chromatographic output signal. NQAD detector is suitable for the detection of sialic acid, which lacks sufficiently active chromophore or fluorophore. The water condensation particle counting technology allows the analyte to be enlarged using water vapor to provide highest sensitivity. Derivatization-free analysis of glycoproteins using HPLC/NQAD method with PolyGLYCOPLEX™ amide column is well correlated with HPLC method with precolumn derivatization using 1, 2-diamino-4, 5-methylenedioxybenzene (DMB) as well as the Dionex-based high-pH anion-exchange chromatography (or ion chromatography) with pulsed amperometric detection (HPAEC-PAD). With the elimination of derivatization step, HPLC/NQAD method is more efficient than HPLC/DMB method. HPLC/NQAD method is more reproducible than HPAEC-PAD method as HPAEC-PAD method suffers high variability because of electrode fouling during analysis. Overall, HPLC/NQAD method offers broad linear dynamic range as well as excellent precision, accuracy, repeatability, reliability, and ease of use, with acceptable comparability to the commonly used HPAEC-PAD and HPLC/DMB methods. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Messia, M C; Di Falco, T; Panfili, G; Marconi, E
2008-10-01
A rapid microwave procedure for protein hydrolysis coupled with High Performance Anion Exchange Chromatography and Pulsed Amperometric Detection (HPAEC-PAD) was developed to quantify the amino acid 4-hydroxyproline in meat and meat-based products. This innovative approach was successfully applied to determine collagen content (4-hydroxyproline×8) as the index quality of meat material employed in the preparation of typical meat sausages ("Mortadella di Bologna PGI" and "Salamini italiani alla cacciatora PDO") and fresh filled pastas. Microwave hydrolysis showed a precision and accuracy similar to traditional hydrolysis (RSD% from 0.0 to 6.4; relative error 1.4-10.0%) with a reduction in the hydrolysis time from 24h to 20min. HPAEC-PAD allowed detection of 4-hydroxyproline without pre or post-column derivatization and the use of non-toxic eluents.
Quéro, Anthony; Béthencourt, Linda; Pilard, Serge; Fournet, Antoine; Guillot, Xavier; Sangwan, Rajbir S; Boitel-Conti, Michèle; Courtois, Josiane; Petit, Emmanuel
2013-03-01
Trehalose is a non-reducing disaccharide involved in stress tolerance in plants. To understand better the role of trehalose in the osmotic stress response in linseed (Linum usitatissimum), trehalose content in leaves was studied. First, the method commonly used for sugar determination, high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), gave unsatisfactory results and the separation efficiency could not be improved by varying the elution conditions. The same problem was also found in the model plant: Arabidopsis thaliana. After clearly highlighting a co-elution of trehalose in these two species by a trehalase assay and liquid chromatography-high resolution mass spectrometry analysis, gas chromatography-mass spectrometry (GC-MS) was used as the analytical method instead. These results confirmed that trehalose content is currently overestimated by HPAEC-PAD analysis, approximately 7 and 13 times for A. thaliana and linseed respectively. Thus GC-MS gave more satisfactory results for trehalose quantification in plants. With this method, trehalose accumulation was observed in linseed during an osmotic stress (-0.30 MPa), the quantity (31.49 nmol g(-1) dry weight after 48 h) appears too low to assign an osmoprotector or osmoregulator role to trehalose in stressed linseed. Copyright © Physiologia Plantarum 2012.
Anumula, K R; Dhume, S T
1998-07-01
Facile labeling of oligosaccharides (acidic and neutral) in a nonselective manner was achieved with highly fluorescent anthranilic acid (AA, 2-aminobenzoic acid) (more than twice the intensity of 2-aminobenzamide, AB) for specific detection at very high sensitivity. Quantitative labeling in acetate-borate buffered methanol (approximately pH 5.0) at 80 degreesC for 60 min resulted in negligible or no desialylation of the oligosaccharides. A high resolution high performance liquid chromatographic method was developed for quantitative oligosaccharide mapping on a polymeric-NH2bonded (Astec) column operating under normal phase and anion exchange (NP-HPAEC) conditions. For isolation of oligosaccharides from the map by simple evaporation, the chromatographic conditions developed use volatile acetic acid-triethylamine buffer (approximately pH 4.0) systems. The mapping and characterization technology was developed using well characterized standard glycoproteins. The fluorescent oligosaccharide maps were similar to the maps obtained by the high pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), except that the fluorescent maps contained more defined peaks. In the map, the oligosaccharides separated into groups based on charge, size, linkage, and overall structure in a manner similar to HPAEC-PAD with contribution of -COOH function from the label, anthranilic acid. However, selectivity of the column for sialic acid linkages was different. A second dimension normal phase HPLC (NP-HPLC) method was developed on an amide column (TSK Gel amide-80) for separation of the AA labeled neutral complex type and isomeric structures of high mannose type oligosaccharides. The oligosaccharides labeled with AA are compatible with biochemical and biophysical techniques, and use of matrix assisted laser desorption mass spectrometry for rapid determination of oligosaccharide mass map of glycoproteins is demonstrated. High resolution of NP-HPAEC and NP-HPLC methods combined with mass spectrometry (MALDI-TOF) can provide an effective technology for analyzing a wide repertoire of oligosaccharide structures and for determining the action of both transferases and glycosidases.
Bruggink, C.; Koeleman, C.; Barreto, V.; Lui, Y.; Pohl, C.; Ingendoh, A.; Wuhrer, M.; Hokke, C.; Deelder, A.
2007-01-01
High-pH anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is an established technique for selective separation and analysis of underivatized carbohydrates. The miniaturization of chromatographic techniques by means of capillary columns, and on-line coupling to mass spectrometry are critical to the further development of glycan analysis methods that are compatible with the current requirements in clinical settings. A system has been developed based on the Dionex BioLC equipped with a microbore gradient pump with PEEK flow splitter, a FAMOS micro autosampler, a modified electrochemical cell for on-line capillary PAD, and a capillary column (380 μm i.d.) packed with a new type of anion-exchange resin. This system operates with sensitivity in the low femtomol range. In addition, an on-line capillary desalter has been developed to allow direct coupling to the Bruker Esquire 3000 ion-trap mass spectrometer with electrospray ionization interface (ESI-IT-MS). Both systems have been evaluated using oligosaccharide standards as well as urine samples exhibiting various lysosomal oligosaccharide storage diseases. Initial data indicate that the robust and selective anion-exchange system, in combination with ESI-IT-MS for structure confirmation and analysis, provides a powerful platform that complements existing nano/capillary LC-MS methods for analytical determination of oligosaccharides in biological matrices.
Rodríguez-Gómez, R; Jiménez-Díaz, I; Zafra-Gómez, A; Morales, J C
2015-11-01
A simple and reliable method for the determination of the fructooligosaccharides (FOS) kestose (GF2), nystose (GF3), fructofuranosylnystose (GF4), in the presence of fructose, glucose and lactose in dairy products is proposed. The most relevant advantages of the proposed method are the simultaneous determination of the most common FOS in enriched products and a reduction of the time required for sample treatment since the method consists merely in addition of a precipitation solution for the removal of lipids and proteins. Furthermore, the method saves a substantial amount of reagents compared with other methods and sample manipulation is reduced. Two chromatographic separations are proposed. The first one is carried out on an amino phase column for liquid chromatography with refractive index detection (HPLC-RI) (concentration of analytes higher than 0.1 mg mL(-1)) and the second one on an anion-exchange Carbopac PA-1 column for high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) (concentration of FOS lower than 0.1 mg mL(-1)). The method was validated by recovery assays with spiked samples using matrix-matched calibration. The limits of quantification of the method ranged from 1.2 to 2.0 µg mL(-1) for HPAEC-PAD and from 140 to 200 µg mL(-1) for HPLC-RI, while inter- and intra-day variability was under 3.5% in all cases. The proposed method was applied to the determination of compounds in supplemented milk, infant formulas and milk related juices with good recoveries in all cases. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shah, Bhavana; Jiang, Xinzhao Grace; Chen, Louise; Zhang, Zhongqi
2014-06-01
Protein N-Glycan analysis is traditionally performed by high pH anion exchange chromatography (HPAEC), reversed phase liquid chromatography (RPLC), or hydrophilic interaction liquid chromatography (HILIC) on fluorescence-labeled glycans enzymatically released from the glycoprotein. These methods require time-consuming sample preparations and do not provide site-specific glycosylation information. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) peptide mapping is frequently used for protein structural characterization and, as a bonus, can potentially provide glycan profile on each individual glycosylation site. In this work, a recently developed glycopeptide fragmentation model was used for automated identification, based on their MS/MS, of N-glycopeptides from proteolytic digestion of monoclonal antibodies (mAbs). Experimental conditions were optimized to achieve accurate profiling of glycoforms. Glycan profiles obtained from LC-MS/MS peptide mapping were compared with those obtained from HPAEC, RPLC, and HILIC analyses of released glycans for several mAb molecules. Accuracy, reproducibility, and linearity of the LC-MS/MS peptide mapping method for glycan profiling were evaluated. The LC-MS/MS peptide mapping method with fully automated data analysis requires less sample preparation, provides site-specific information, and may serve as an alternative method for routine profiling of N-glycans on immunoglobulins as well as other glycoproteins with simple N-glycans.
Quantification of Soluble Sugars and Sugar Alcohols by LC-MS/MS.
Feil, Regina; Lunn, John Edward
2018-01-01
Sugars are simple carbohydrates composed primarily of carbon, hydrogen, and oxygen. They play a central role in metabolism as sources of energy and as building blocks for synthesis of structural and nonstructural polymers. Many different techniques have been used to measure sugars, including refractometry, colorimetric and enzymatic assays, gas chromatography, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy. In this chapter we describe a method that combines an initial separation of sugars by high-performance anion-exchange chromatography (HPAEC) with detection and quantification by tandem mass spectrometry (MS/MS). This combination of techniques provides exquisite specificity, allowing measurement of a diverse range of high- and low-abundance sugars in biological samples. This method can also be used for isotopomer analysis in stable-isotope labeling experiments to measure metabolic fluxes.
Wang, Haisong; Cheng, Xiangrong; Shi, Yonghui; Le, Guowei
2015-05-05
Poly-mannose with molecular weight of 2.457 kDa was synthesized using d-mannose as substrate and phosphoric acid as catalyst under the condition of microwave irradiation for the first time. The optimum reaction conditions were microwave output power of 900 W, temperature 115°C, proton concentration 2.5 mol/L, and microwave irradiation time 5 min. The actual maximum yield was 91.46%. After purified by Sepherdex G-25 column chromatography, the structural features of poly-mannose were investigated by high-performance anion-exchange chromatography (HPAEC), high-performance gel-permeation chromatography (HPGPC), infrared (IR) spectroscopy, methylation analysis and NMR spectroscopy analysis ((1)H, (13)C, COSY, TOCSY, HMQC, and HMBC). HPAEC analysis showed that the composition of synthetic polysaccharides was d-mannose, its purity was demonstrated by HPGPC as a single symmetrical sharp peak, and additionally IR spectra demonstrated the polymerization of d-mannose. Methylation analysis and NMR spectroscopy revealed that the backbone of poly-mannose consisting of (1→3)-linked β-d-Manp, (1→3)-linked α-d-Manp, and (1→6)-linked α-d-Manp residues, and the main chain were branched at the O-2, O-3, O-4, O-6 position. Copyright © 2014 Elsevier Ltd. All rights reserved.
Analysis of carbohydrates by anion exchange chromatography and mass spectrometry.
Bruggink, Cees; Maurer, Rolf; Herrmann, Heiko; Cavalli, Silvano; Hoefler, Frank
2005-08-26
A versatile liquid chromatographic platform has been developed for analysing underivatized carbohydrates using high performance anion exchange chromatography (HPAEC) followed by an inert PEEK splitter that splits the effluent to the integrated pulsed amperometric detector (IPAD) and to an on-line single quadrupole mass spectrometer (MS). Common eluents for HPAEC such as sodium hydroxide and sodium acetate are beneficial for the amperometric detection but not compatible with electrospray ionisation (ESI). Therefore a membrane-desalting device was installed after the splitter and prior to the ESI interface converting sodium hydroxide into water and sodium acetate into acetic acid. To enhance the sensitivity for the MS detection, 0.5 mmol/l lithium chloride was added after the membrane desalter to form lithium adducts of the carbohydrates. To compare sensitivity of IPAD and MS detection glucose, fructose, and sucrose were used as analytes. A calibration with external standards from 2.5 to 1000 pmole was performed showing a linear range over three orders of magnitude. Minimum detection limits (MDL) with IPAD were determined at 5 pmole levels for glucose to be 0.12 pmole, fructose 0.22 pmole and sucrose 0.11 pmole. With MS detection in the selected ion mode (SIM) the lithium adducts of the carbohydrates were detected obtaining MDL's for glucose of 1.49 pmole, fructose 1.19 pmole, and sucrose 0.36 pmole showing that under these conditions IPAD is 3-10 times more sensitive for those carbohydrates. The applicability of the method was demonstrated analysing carbohydrates in real world samples such as chicory inulin where polyfructans up to a molecular mass of 7000 g/mol were detected as quadrupoly charged lithium adducts. Furthermore mono-, di-, tri-, and oligosaccharides were detected in chicory coffee, honey and beer samples.
Bottelli, Susanna; Grillo, Gianluca; Barindelli, Edoardo; Nencioni, Alessandro; Di Maria, Alessandro; Fossati, Tiziano
2017-07-07
An efficient and sensitive analytical method based on high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was devised for the determination of glucosamine (GlcN) in sodium chondroitin sulfate (CS). Glucosamine (GlcN) is intended as marker of residual keratan sulfate (KS) and other impurities generating glucosamine by acidic hydrolyzation. The latter brings CS and KS to their respective monomers. Since GlcN is present only in KS we developed a method that separates GlcN from GalN, the principal hydrolytic product of CS, and then we validated it in order to quantify GlcN. Method validation was performed by spiking CS raw material with known amounts of KS. Detection limit was 0.5% of KS in CS (corresponding to 0.1μg/ml), and the linear range was 0.5-5% of KS in CS (corresponding to 0.1-1μg/ml). The optimized analysis was carried out on an ICS-5000 system (Dionex, Sunnyvale, CA, USA) equipped with a Dionex Amino Trap guard column (3mm×30mm), Dionex CarboPac-PA20 (3mm×30mm) and a Dionex CarboPac-PA20 analytical column (3mm×150mm) using gradient elution at a 0.5ml/min flow rate. Regression equations revealed good linear relationship (R 2 =0.99, n=5) within the test ranges. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated HPAEC-PAD method was readily applied for the quantification of residual KS in CS in several raw materials and USP/EP reference substance. Results confirmed that the HPAEC-PAD method is more specific than the electrophoretic method for related substance reported in EP and provides sensitive determination of KS in acid-hydrolyzed CS samples, enabling the quantitation of KS and other impurities (generating glucosamine) in CS. Copyright © 2017 Elsevier B.V. All rights reserved.
Harazono, Akira; Kobayashi, Tetsu; Kawasaki, Nana; Itoh, Satsuki; Tada, Minoru; Hashii, Noritaka; Ishii, Akiko; Arato, Teruyo; Yanagihara, Shigehiro; Yagi, Yuki; Koga, Akiko; Tsuda, Yuriko; Kimura, Mikiko; Sakita, Masashi; Kitamura, Satoshi; Yamaguchi, Hideto; Mimura, Hisashi; Murata, Yoshimi; Hamazume, Yasuki; Sato, Takayuki; Natsuka, Shunji; Kakehi, Kazuaki; Kinoshita, Mitsuhiro; Watanabe, Sakie; Yamaguchi, Teruhide
2011-05-01
The various monosaccharide composition analysis methods were evaluated as monosaccharide test for glycoprotein-based pharmaceuticals. Neutral and amino sugars were released by hydrolysis with 4-7N trifluoroacetic acid. The monosaccharides were N-acetylated if necessary, and analyzed by high-performance liquid chromatography (HPLC) with fluorometric or UV detection after derivatization with 2-aminopyridine, ethyl 4-aminobenzoate, 2-aminobenzoic acid or 1-phenyl-3-methyl-5-pyrazolone, or high pH anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Sialic acids were released by mild acid hydrolysis or sialidase digestion, and analyzed by HPLC with fluorometric detection after derivatization with 1,2-diamino-4,5-methylenedioxybenzene, or HPAEC-PAD. These methods were verified for resolution, linearity, repeatability, and accuracy using a monosaccharide standard solution, a mixture of epoetin alfa and beta, and alteplase as models. It was confirmed that those methods were useful for ensuring the consistency of glycosylation. It is considered essential that the analytical conditions including desalting, selection of internal standards, release of monosaccharides, and gradient time course should be determined carefully to eliminate interference of sample matrix. Various HPLC-based monosaccharide analysis methods were evaluated as a carbohydrate test for glycoprotein pharmaceuticals by an inter-laboratory study. Copyright © 2011 The International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Qualitative and Quantitative Analyses of Glycogen in Human Milk.
Matsui-Yatsuhashi, Hiroko; Furuyashiki, Takashi; Takata, Hiroki; Ishida, Miyuki; Takumi, Hiroko; Kakutani, Ryo; Kamasaka, Hiroshi; Nagao, Saeko; Hirose, Junko; Kuriki, Takashi
2017-02-22
Identification as well as a detailed analysis of glycogen in human milk has not been shown yet. The present study confirmed that glycogen is contained in human milk by qualitative and quantitative analyses. High-performance anion exchange chromatography (HPAEC) and high-performance size exclusion chromatography with a multiangle laser light scattering detector (HPSEC-MALLS) were used for qualitative analysis of glycogen in human milk. Quantitative analysis was carried out by using samples obtained from the individual milks. The result revealed that the concentration of human milk glycogen varied depending on the mother's condition-such as the period postpartum and inflammation. The amounts of glycogen in human milk collected at 0 and 1-2 months postpartum were higher than in milk collected at 3-14 months postpartum. In the milk from mothers with severe mastitis, the concentration of glycogen was about 40 times higher than that in normal milk.
Cai, Weirong; Xu, Huiling; Xie, Liangliang; Sun, Jian; Sun, Taotao; Wu, Xiaoyan; Fu, Qinbao
2016-04-20
Three water-soluble polysaccharide fractions (GSP-1, GSP-2 and GSP-3) were obtained from Gentiana scabra Bunge roots by DEAE-Sepharose CL-6B and Sepharose CL-6B column chromatography. Their chemical characterizations were determined by high performance gel permeation chromatography (HPGPC), high performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD) and Fourier transform infrared (FT-IR) spectrometer. Moreover, their in vitro anticoagulant activities were evaluated by activated partial thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) assays. GSP-1 and GSP-2 were composed of rhamnose, arabinose, galactose, glucose and galacturonic acid, while GSP-3 consisted of rhamnose, arabinose, galactose and galacturonic acid with a weight-average molecular weight of 5.8×10(4)Da. In comparison with the control group (saline), GSP, GSP-1, GSP-2 and GSP-3 could prolong APTT and TT, but not PT. Overall, GSP-3 exhibited potent anticoagulant activity and would be expected to be a potential source of anticoagulant. Copyright © 2015 Elsevier Ltd. All rights reserved.
Frommhagen, Matthias; van Erven, Gijs; Sanders, Mark; van Berkel, Willem J H; Kabel, Mirjam A; Gruppen, Harry
2017-08-07
Lytic polysaccharide monooxygenases (LPMOs) are able to cleave recalcitrant polysaccharides, such as cellulose, by oxidizing the C1 and/or C4 atoms. The analysis of the resulting products requires a variety of analytical techniques. Up to now, these techniques mainly focused on the identification of non-oxidized and C1-oxidized oligosaccharides. The analysis of C4-oxidized gluco-oligosaccharides is mostly performed by using high pressure anion exchange chromatography (HPAEC). However, the alkaline conditions used during HPAEC analysis lead to tautomerization of C4-oxidized gluco-oligosaccharides, which limits the use of this technique. Here, we describe the use of reverse phase-ultra high performance liquid chromatography (RP-UHPLC) in combination with non-reductive 2-aminobenzamide (2-AB) labeling. Non-reductive 2-AB labeling enabled separation of C4-oxidized gluco-oligosaccharides from their non-oxidized counterparts. Moreover, RP-UHPLC does not require buffered mobile phases, which reduce mass spectrometry (MS) sensitivity. The latter is seen as an advantage over other techniques such as hydrophilic interaction liquid chromatography and porous graphitized carbon coupled to MS. RP-UHPLC coupled to UV detection and mass spectrometry allowed the identification of both labeled non-oxidized and C4-oxidized oligosaccharides. Non-reductive labeling kept the ketone at the C4-position of LPMO oxidized oligosaccharides intact, while selective reducing agents such as sodium triacetoxyborohydride (STAB) reduced this ketone group. Our results show that RP-UHPLC-UV-ESI-MS in combination with non-reductively 2-AB labeling is a suitable technique for the separation and identification of LPMO-generated C4-oxidized gluco-oligosaccharides. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Xu, Ying; Zang, Ying; Jiang, Ting; Zheng, Zhaojuan; Quyang, Jia
2014-12-01
An analytical method for the determination of trehalose, maltose, and glucose in biotransformation samples was developed by using high performance anion exchange chromatography coupled with pulsed ampere detection (HPAEC-PAD). The analysis was performed on a CarboPac™ 10 column (250 mm x 2 mm) with the gradient elution of NaOH-NaAc as the mobile phase. The column temperature was set at 30 °C, the flow rate was 0. 30 mL/min. The results showed that trehalose, maltose, and glucose in biotransformation system were completely separated and determined in 15 min. The linear ranges and the working curves were determined by using standard samples. The correlation coefficients of three kinds of carbohydrates were over 0. 9998 . The detection limits (LODs) were 0. 010 - 0. 100 mg/L. Under the optimized separation conditions, the recoveries of saccharides in the transformation system at three different spiked levels ranged from 89. 4% to 103. 2%. In biotransformation system, 50 IU trehalose synthase were added into 200 g/L maltose for reaction of 8 h at 37 °C, pH 8. 0. Under the above conditions, the concentration of trehalose in biotransformation sample was 101. 084 g/L, and the conversion rate of trehalose reached 50. 5%. The method can be applied to determine the composition in the transformation system with the advantages of simplicity and convenience.
Wang, Li; Liu, Hua-Min; Qin, Guang-Yong
2017-11-01
In the present study, three polysaccharide fractions, QSMP-1, QSMP-2, and QSMP-3, were isolated and purified from the seed meal of Chinese quince. These fractions' structures were investigated by high performance anion exchange chromatography (HPAEC), gel permeation chromatography (GPC), Fourier transform infrared (FT-IR), and nuclear magnetic resonance (NMR), and their antioxidant activities were assessed. The results showed that QSMP-1 is a novel polysaccharide with a backbone mainly composed of →4)-Glcp-(1→, →6)-Glcp-(1→, →6)-Galp-(1→, →2, 3, 4)-Xylp-(1→. The side chains consist of →4)-Arap-(1→, →3, 4)-Arap-(1→, →2)-Galp-(1→, →4)-Manp-(1→, →3)-Galp-(1→, and →3, 6)-Glcp-(1→ with the non-reducing terminals Glcp and Galp. QSMP-1 exhibited effective antioxidant activities by ferrous ion chelation and superoxide anion-scavenging in a dose-dependent manner. These investigations of the polysaccharides from the seed meal of Chinese quince provide a scientific basis for the use of the by-products of quince seed oil processing, particularly as an ingredient in functional foods and medicines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gökçen, Anke; Vilcinskas, Andreas; Wiesner, Jochen
2013-01-01
The production of extracellular poly-β-1,6-N-acetyl-d-glucosamine (PNAG) by Staphylococcus epidermidis is the principal determinant of biofilm formation on indwelling medical devices. Enzymes that degrade PNAG therefore provide an attractive strategy for biofilm removal and for the manufacture of biofilm-resistant coatings. Here we present methods that allow the identification of PNAG-degrading enzymes with the ability to detach biofilms. Our protocol includes the preparation of soluble PNAG from S. epidermidis cultures, the incubation of soluble PNAG with candidate enzymes and assays that detect the release of N-acetyl-d-glucosamine using high-pH anion-exchange chromatography (HPAEC) followed in parallel by pulsed amperometric detection (PAD) and online electrospray ionization mass spectrometry (ESI-MS). We validated our procedures using dispersin B, which is currently the only known PNAG-degrading enzyme. PMID:23357872
Structural comparison of arabinoxylans from two barley side-stream fractions.
Pitkänen, Leena; Tuomainen, Päivi; Virkki, Liisa; Aseyev, Vladimir; Tenkanen, Maija
2008-07-09
The structures of barley ( Hordeum vulgare) arabinoxylans isolated from two industrial side fractions, barley husks (BH) and barley fiber (BF), were characterized. Arabinoxylans were extracted with saturated barium hydroxide after enzymatic pretreatment. Barium hydroxide was selective toward arabinoxylans, and only a minor amount of glucose-containing material was coextracted. Acid methanolysis followed by gas chromatography, 1H NMR spectroscopy, and specific enzymatic treatments followed by anion exchange chromatography with pulse amperometric detection (HPAEC-PAD) revealed that the chemical structure of barley husk arabinoxylan (BHAX) clearly differed from that of barley fiber arabinoxylan (BFAX). BFAX was more branched, containing more beta-D-xylopyranosyl (beta-D-Xylp) residues carrying alpha-L-arabinofuranosyl (alpha-L-Araf) units at both O-2 and O-3 positions. BHAX, on the other hand, contained more 2-O-beta-D-Xyl p-alpha-L-Ara f substituents than BFAX. BHAX and BFAX also differed with respect to the hydrodynamic properties investigated with multidetector size exclusion chromatography. BFAX had a higher weight-average molar mass and larger hydrodynamic volume, the latter indicating less dense conformation than BHAX. Mn, Mw /Mn, Rh, and the Mark-Houwink a value were also determined for both arabinoxylans.
Biswal, Ajaya K; Tan, Li; Atmodjo, Melani A; DeMartini, Jaclyn; Gelineo-Albersheim, Ivana; Hunt, Kimberly; Black, Ian M; Mohanty, Sushree S; Ryno, David; Wyman, Charles E; Mohnen, Debra
2017-01-01
The effective use of plant biomass for biofuel and bioproduct production requires a comprehensive glycosyl residue composition analysis to understand the different cell wall polysaccharides present in the different biomass sources. Here we compared four methods side-by-side for their ability to measure the neutral and acidic sugar composition of cell walls from herbaceous, grass, and woody model plants and bioenergy feedstocks. Arabidopsis, Populus , rice, and switchgrass leaf cell walls, as well as cell walls from Populus wood, rice stems, and switchgrass tillers, were analyzed by (1) gas chromatography-mass spectrometry (GC-MS) of alditol acetates combined with a total uronic acid assay; (2) carbodiimide reduction of uronic acids followed by GC-MS of alditol acetates; (3) GC-MS of trimethylsilyl (TMS) derivatives; and (4) high-pressure, anion-exchange chromatography (HPAEC). All four methods gave comparable abundance ranking of the seven neutral sugars, and three of the methods were able to quantify unique acidic sugars. The TMS, HPAEC, and carbodiimide methods provided comparable quantitative results for the specific neutral and acidic sugar content of the biomass, with the TMS method providing slightly greater yield of specific acidic sugars and high total sugar yields. The alditol acetate method, while providing comparable information on the major neutral sugars, did not provide the requisite quantitative information on the specific acidic sugars in plant biomass. Thus, the alditol acetate method is the least informative of the four methods. This work provides a side-by-side comparison of the efficacy of four different established glycosyl residue composition analysis methods in the analysis of the glycosyl residue composition of cell walls from both dicot (Arabidopsis and Populus ) and grass (rice and switchgrass) species. Both primary wall-enriched leaf tissues and secondary wall-enriched wood/stem tissues were analyzed for mol% and mass yield of the non-cellulosic sugars. The TMS, HPAEC, and carbodiimide methods were shown to provide comparable quantitative data on the nine neutral and acidic sugars present in all plant cell walls.
ANALYSIS OF GLYCANS DERIVED FROM GLYCOCONJUGATES BY CAPILLARY ELECTROPHORESIS-MASS SPECTROMETRY
Mechref, Yehia
2012-01-01
The high structural variation of glycan derived from glycoconjugates, which substantially increases with the molecular size of a protein, contributes to the complexity of glycosylation patterns commonly associated with glycoconjugates. In the case of glycoproteins, such variation originates from the multiple glycosylation sites of proteins and the number of glycan structures associated with each site (microheterogeneity). The ability to comprehensively characterize highly complex mixture of glycans has been analytically stimulating and challenging. Although the most powerful mass spectrometric (MS) and tandem MS techniques are capable of providing a wealth of structural information, they are still not able to readily identify isomeric glycan structures without high order tandem MS (MSn). The analysis of isomeric glycan structures has been attained using several separation methods, including high-pH anion exchange chromatography (HPAEC), hydrophilic interaction chromatography (HILIC) and gas chromatography (GC). However, capillary electrophoresis (CE) and microfluidics capillary electrophoresis (MCE) offer high separation efficiency and resolutions, allowing the separation of closely related glycan structures. Therefore, interfacing CE and MCE to MS is a powerful analytical approach, allowing potentially comprehensive and sensitive analysis of complex glycan samples. This review describes and discusses the utility of different CE and MCE approaches in the structural characterization of glycoproteins and the feasibility of interfacing these approaches to mass spectrometry. PMID:22180203
Prebiotic potential of Agave angustifolia Haw fructans with different degrees of polymerization.
Velázquez-Martínez, José Rodolfo; González-Cervantes, Rina M; Hernández-Gallegos, Minerva Aurora; Mendiola, Roberto Campos; Aparicio, Antonio R Jiménez; Ocampo, Martha L Arenas
2014-08-19
Inulin-type fructans are the most studied prebiotic compounds because of their broad range of health benefits. In particular, plants of the Agave genus are rich in fructans. Agave-derived fructans have a branched structure with both β-(2→1) and β-(2→6) linked fructosyl chains attached to the sucrose start unit with a degree of polymerization (DP) of up to 80 fructose units. The objective of this work was to assess the prebiotic potential of three Agave angustifolia Haw fructan fractions (AFF) with different degrees of polymerization. The three fructan fractions were extracted from the agave stem by lixiviation and then purified by ultrafiltration and ion exchange chromatography: AFF1, AFF2 and AFF3 with high (3-60 fructose units), medium (2-40) and low (2-22) DP, respectively. The fructan profile was determined with high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which confirmed a branched fructan structure. Structural elucidation was performed by Fourier Transform Infra-Red Spectroscopy. The AFF spectrum shows characteristic fructan bands. The prebiotic effect of these fractions was assessed in vitro through fermentation by Bifidobacterium and Lactobacillus strains. Four growth patterns were observed. Some bacteria did not grow with any of the AFF, while other strains grew with only AFF3. Some bacteria grew according to the molecular weight of the AFF and some grew indistinctly with the three fructan fractions.
Self-regenerating column chromatography
Park, Woo K.
1995-05-30
The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.
Lectin binding assays for in-process monitoring of sialylation in protein production.
Xu, Weiduan; Chen, Jianmin; Yamasaki, Glenn; Murphy, John E; Mei, Baisong
2010-07-01
Many therapeutic proteins require appropriate glycosylation for their biological activities and plasma half life. Coagulation factor VIII (FVIII) is a glycoprotein which has extensive post-translational modification by N-linked glycosylation. The terminal sialic acid in the N-linked glycans of FVIII is required for maximal circulatory half life. The extent of FVIII sialylation can be determined by high pH anion-exchange chromatography coupled with a pulse electrochemical detector (HPAEC-PED), but this requires a large amount of purified protein. Using FVIII as a model, the objective of the present study was to develop assays that enable detection and prediction of sialylation deficiency at an early stage in the process and thus prevent downstream product quality excursions. Lectin ECA (Erythrina Cristagalli) binds to unsialylated Galbeta1-4 GlcNAc and the ECA-binding level (i.e., terminal Gal(beta1-4) exposure) is inversely proportional to the level of sialylation. By using ECA, a cell-based assay was developed to measure the global sialylation profile in FVIII producing cells. To examine the Galbeta1-4 exposure on the FVIII molecule in bioreactor tissue culture fluid (TCF), an ELISA-based ECA-FVIII binding assay was developed. The ECA-binding specificity in both assays was assessed by ECA-specific sugar inhibitors and neuraminidase digestion. The ECA-binding specificity was also independently confirmed by a ST3GAL4 siRNA knockdown experiment. To establish the correlation between Galbeta1-4 exposure and the HPAEC-PED determined FVIII sialylation value, the FVIII containing bioreactor TCF and the purified FVIII samples were tested with ECA ELISA binding assay. The results indicated an inverse correlation between ECA binding and the corresponding HPAEC-PED sialylation value. The ECA-binding assays are cost effective and can be rapidly performed, thereby making them effective for in-process monitoring of protein sialylation.
Le Du, Alicia; Sabatié-Gogova, Andrea; Morgenstern, Alfred; Montavon, Gilles
2012-04-01
The interaction between thorium and human serum components was studied using difference ultraviolet spectroscopy (DUS), ultrafiltration and high-pressure-anion exchange chromatography (HPAEC) with external inductively conducted plasma mass spectrometry (ICP-MS) analysis. Experimental data are compared with modelling results based on the law of mass action. Human serum transferrin (HSTF) interacts strongly with Th(IV), forming a ternary complex including two synergistic carbonate anions. This complex governs Th(IV) speciation under blood serum conditions. Considering the generally used Langmuir-type model, values of 10(33.5) and 10(32.5) were obtained for strong and weak sites, respectively. We showed that trace amounts of diethylene triamine pentaacetic acid (DTPA) cannot complex Th(IV) in the blood serum at equilibrium. Unexpectedly this effect is not related to the competition with HSTF but is due to the strong competition with major divalent metal ions for DTPA. However, Th-DTPA complex was shown to be stable for a few hours when it is formed before addition in the biological medium; this is related to the high kinetic stability of the complex. This makes DTPA a potential chelating agent for synthesis of (226)Th-labelled biomolecules for application in targeted alpha therapy. Copyright © 2011 Elsevier Inc. All rights reserved.
Using ion exchange chromatography to purify a recombinantly expressed protein.
Duong-Ly, Krisna C; Gabelli, Sandra B
2014-01-01
Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. © 2014 Elsevier Inc. All rights reserved.
Freydank; Krasia; Tiddy; Patrickios
2000-05-01
A family of six near-monodisperse homopolymers of sodium methacrylate (Mn = 1100, 3200, 5500, 7200, 14100, and 21000) is characterized by linear salt gradient anion-exchange chromatography. Although the retention times depend on the initial and final salt concentrations of the gradient, they are almost independent of the molecular weight of poly(sodium methacrylate). This suggests that anion-exchange chromatography is incapable of resolving mixtures of a given polyelectrolyte to their components of various molecular weights, and it is therefore impossible to identify the polydispersity of such a sample using this method. The independence of the retention times from molecular weight is also predicted by a theory based on stoichiometric mass-action ion-exchange. Using this theory and our experimental retention times, the equilibrium anion-exchange constant and the corresponding Gibbs free energy of anion-exchange of the monomer repeat unit are calculated to be around 2.1 and -1.8 kJ/mol, respectively.
Mudrić, Sanja Ž; Gašić, Uroš M; Dramićanin, Aleksandra M; Ćirić, Ivanka Ž; Milojković-Opsenica, Dušanka M; Popović-Đorđević, Jelena B; Momirović, Nebojša M; Tešić, Živoslav Lj
2017-02-15
Spice peppers (Capsicum annuum L.) var. Lemeška and Lakošnička paprika were investigated to evaluate their polyphenolic and carbohydrate profiles and antioxidant activity. A total of forty-nine polyphenolics were identified using ultrahigh-performance liquid chromatography (UHPLC) coupled to LTQ OrbiTrap mass analyzer. Twenty-five of them were quantified using available standards, while the other compounds were confirmed by exact mass search of their deprotonated molecule [M-H](-) and its MS(4) fragmentation. Thirteen carbohydrates were quantified using high-performance anion exchange chromatography (HPAEC) with pulsed amperometric detection (PAD). Radical scavenging activity (RSA) ranged from 17.32 to 48.34mmol TE (Trolox equivalent)/kg DW (dry weight) and total phenolics content (TPC) was ranged between 7.03 and 14.92g GAE (gallic acid equivalents)/kg DW. To our best knowledge, five polyphenolic compounds were for the first time tentatively identified in paprika: 5-O-p-coumaroylquinic acid, luteolin 7-O-(2″-O-pentosyl-4″-O-hexosyl)hexoside, quercetin 3-O-(2″-O-hexosyl)rhamnoside, isorhamnetin 3-O-[6″-O-(5-hydroxyferuloyl)hexoside]-7-O-rhamnoside, and luteolin 7-O-[2″-O-(5'″-O-sinapoyl)pentosyl-6″-O-malonyl]hexoside. Copyright © 2016 Elsevier Ltd. All rights reserved.
Characterization and immunomodulatory activity of polysaccharides derived from Dendrobium tosaense.
Yang, Li-Chan; Lu, Ting-Jang; Hsieh, Chang-Chi; Lin, Wen-Chuan
2014-10-13
Dendrobium tosaense is a medicinal Dendrobium species widely used in traditional medicine. This study demonstrated some structural characterizations and immunomodulatory activity of the water-soluble polysaccharides derived from the stem of D. tosaense (DTP). DTP was fractioned using DEAE-650 M anion-exchange gel filtration chromatography, producing one neutral polysaccharide fraction (DTP-N), which was investigated for its structural characteristics, using HPAEC-PAD, HP-SEC, GC-MS, and NMR spectroscopy. DTP and DTP-N consisted of galactose, glucose, and mannose in ratios of 1:9.1:150.7 and 1:12.2:262.5, respectively. DTP-N comprised (1 → 4)Man as its main backbone, and its average molecular weight was 220 kDa. We also investigated the immunomodulatory effects of DTP administered orally to BALB/c mice for 3 weeks. DTP substantially boosted the population of splenic natural killer (NK) cells, NK cytotoxicity, macrophage phagocytosis, and cytokine induction in splenocytes. This is the first study to demonstrate the structural characteristics of an active polysaccharide derived from D. tosaense and its immunopharmacological effects in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Fast automated online xylanase activity assay using HPAEC-PAD.
Cürten, Christin; Anders, Nico; Juchem, Niels; Ihling, Nina; Volkenborn, Kristina; Knapp, Andreas; Jaeger, Karl-Erich; Büchs, Jochen; Spiess, Antje C
2018-01-01
In contrast to biochemical reactions, which are often carried out under automatic control and maintained overnight, the automation of chemical analysis is usually neglected. Samples are either analyzed in a rudimentary fashion using in situ techniques, or aliquots are withdrawn and stored to facilitate more precise offline measurements, which can result in sampling and storage errors. Therefore, in this study, we implemented automated reaction control, sampling, and analysis. As an example, the activities of xylanases on xylotetraose and soluble xylan were examined using high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The reaction was performed in HPLC vials inside a temperature-controlled Dionex™ AS-AP autosampler. It was started automatically when the autosampler pipetted substrate and enzyme solution into the reaction vial. Afterwards, samples from the reaction vial were injected repeatedly for 60 min onto a CarboPac™ PA100 column for analysis. Due to the rapidity of the reaction, the analytical method and the gradient elution of 200 mM sodium hydroxide solution and 100 mM sodium hydroxide with 500 mM sodium acetate were adapted to allow for an overall separation time of 13 min and a detection limit of 0.35-1.83 mg/L (depending on the xylooligomer). This analytical method was applied to measure the soluble short-chain products (xylose, xylobiose, xylotriose, xylotetraose, xylopentaose, and longer xylooligomers) that arise during enzymatic hydrolysis. Based on that, the activities of three endoxylanases (EX) were determined as 294 U/mg for EX from Aspergillus niger, 1.69 U/mg for EX from Bacillus stearothermophilus, and 0.36 U/mg for EX from Bacillus subtilis. Graphical abstract Xylanase activity assay automation.
Innovative analytical tools to characterize prebiotic carbohydrates of functional food interest.
Corradini, Claudio; Lantano, Claudia; Cavazza, Antonella
2013-05-01
Functional foods are one of the most interesting areas of research and innovation in the food industry. A functional food or functional ingredient is considered to be any food or food component that provides health benefits beyond basic nutrition. Recently, consumers have shown interest in natural bioactive compounds as functional ingredients in the diet owing to their various beneficial effects for health. Water-soluble fibers and nondigestible oligosaccharides and polysaccharides can be defined as functional food ingredients. Fructooligosaccharides (FOS) and inulin are resistant to direct metabolism by the host and reach the caecocolon, where they are used by selected groups of beneficial bacteria. Furthermore, they are able to improve physical and structural properties of food, such as hydration, oil-holding capacity, viscosity, texture, sensory characteristics, and shelf-life. This article reviews major innovative analytical developments to screen and identify FOS, inulins, and the most employed nonstarch carbohydrates added or naturally present in functional food formulations. High-performance anion-exchange chromatography with pulsed electrochemical detection (HPAEC-PED) is one of the most employed analytical techniques for the characterization of those molecules. Mass spectrometry is also of great help, in particularly matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), which is able to provide extensive information regarding the molecular weight and length profiles of oligosaccharides and polysaccharides. Moreover, MALDI-TOF-MS in combination with HPAEC-PED has been shown to be of great value for the complementary information it can provide. Some other techniques, such as NMR spectroscopy, are also discussed, with relevant examples of recent applications. A number of articles have appeared in the literature in recent years regarding the analysis of inulin, FOS, and other carbohydrates of interest in the field and they are critically reviewed.
Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang
2009-05-01
A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.
Iakovlev, Mikhail; van Heiningen, Adriaan
2012-08-01
SO(2)-ethanol-water (SEW) lignocellulosic fractionation has the potential to overcome the present techno-economic barriers that hinder the commercial implementation of renewable transportation fuel production. In this study, SEW fractionation of spruce wood chips is examined for its ability to separate the main wood components, hemicelluloses, lignin, and cellulose, and the potential to recover SO(2) and ethanol from the spent fractionation liquid. Therefore, overall sulfur and carbohydrate mass balances are established. 95-97 % of the charged SO(2) remains in the liquid and can be fully recovered by distillation. During fractionation, hemicelluloses and lignin are effectively dissolved, whereas cellulose is preserved in the solid (fibre) phase. Hemicelluloses are hydrolysed, producing up to 50 % monomeric sugars, whereas dehydration and oxidation of carbohydrates are insignificant. The latter is proven by the closed carbohydrate material balances as well as by the near absence of corresponding by-products (furfural, hydroxymethylfurfural (HMF) and aldonic acids). In addition, acid methanolysis/GC and acid hydrolysis/high performance anion exchange chromatography (HPAEC) methods for the carbohydrate determination are compared. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mekasha, Sophanit; Toupalová, Hana; Linggadjaja, Eka; Tolani, Harish A; Anděra, Ladislav; Arntzen, Magnus Ø; Vaaje-Kolstad, Gustav; Eijsink, Vincent G H; Agger, Jane W
2016-10-04
Enzymatic depolymerization of chitosan, a β-(1,4)-linked polycationic polysaccharide composed of d-glucosamine (GlcN) and N-acetyl-d-glucosamine (GlcNAc) provides a possible route to the exploitation of chitin-rich biomass. Complete conversion of chitosan to mono-sugars requires the synergistic action of endo- and exo- chitosanases. In the present study we have developed an efficient and cost-effective chitosan-degrading enzyme cocktail containing only two enzymes, an endo-attacking bacterial chitosanase, ScCsn46A, from Streptomyces coelicolor, and an exo-attacking glucosamine specific β-glucosaminidase, Tk-Glm, from the archaeon Thermococcus kodakarensis KOD1. Moreover, we developed a fast, reliable quantitative method for analysis of GlcN using high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The sensitivity of this method is high and less than 50 pmol was easily detected, which is about 1000-fold better than the sensitivity of more commonly used detection methods based on refractive index. We also obtained qualitative insight into product development during the enzymatic degradation reaction by means of ElectroSpray Ionization-Mass Spectrometry (ESI-MS). Copyright © 2016 Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A two-dimensional chromatography method for analyzing anionic targets (specifically phytate) in complex matrices is described. Prior to quantification by anion exchange chromatography, the sample matrix was prepared by size exclusion chromatography, which removed the majority of matrix complexities....
2013-01-01
Due to its compatibility and orthogonality to reversed phase (RP) liquid chromatography (LC) separation, ion exchange chromatography, and mainly strong cation exchange (SCX), has often been the first choice in multidimensional LC experiments in proteomics. Here, we have tested the ability of three strong anion exchanger (SAX) columns differing in their hydrophobicity to fractionate RAW264.7 macrophage cell lysate. IonPac AS24, a strong anion exchange material with ultralow hydrophobicity, demonstrated to be superior to other materials by fractionation and separation of tryptic peptides from both a mixture of 6 proteins as well as mouse cell lysate. The chromatography displayed very high orthogonality and high robustness depending on the hydrophilicity of column chemistry, which we termed hydrophilic strong anion exchange (hSAX). Mass spectrometry analysis of 34 SAX fractions from RAW264.7 macrophage cell lysate digest resulted in an identification of 9469 unique proteins and 126318 distinct peptides in one week of instrument time. Moreover, when compared to an optimized high pH/low pH RP separation approach, the method presented here raised the identification of proteins and peptides by 10 and 28%, respectively. This novel hSAX approach provides robust, reproducible, and highly orthogonal separation of complex protein digest samples for deep coverage proteome analysis. PMID:23294059
A protein with anion exchange properties found in the kidney proximal tubule.
Soleimani, M; Bizal, G L; Anderson, C C
1993-09-01
One important mechanism for reabsorption of chloride in the kidney proximal tubule involves anion exchange of chloride for a base. Anion exchange transport systems in general demonstrate sensitivity to inhibition by disulfonic stilbenes, probenecid, furosemide, and the arginyl amino group modifier phenylglyoxal. Using disulfonic stilbene affinity chromatography, we have identified and partially purified a protein with anion exchanger properties in luminal membrane vesicles isolated from rabbit kidney cortex. This protein has a molecular weight of 162 kD. The binding of the 162 kD protein to the stilbene affinity matrix is inhibited by disulfonic stilbenes, probenecid, furosemide, and phenylglyoxal. Reconstitution of the proteins eluted from the affinity matrix into liposomes demonstrates anion exchange activity as assayed by radiolabeled chloride influx. Deletion of the 162 kD protein from the eluted mixture by probenecid diminishes the anion exchanger activity in the reconstituted liposomes. Further purification of the disulfonic stilbene column eluant by Econo-Pac Q ion exchange chromatography resulted in significant enrichment in 162 kD protein abundance and also anion exchange activity in reconstituted liposomes. The results of the above experiments strongly suggest that the 162 kD protein is an anion exchanger. Insight into the functional and molecular characteristics of this protein should provide important information about the mechanism(s) of chloride reabsorption in the kidney proximal tubule.
NASA Astrophysics Data System (ADS)
Holden, Amanda S.; Sullivan, Amy P.; Munchak, Leigh A.; Kreidenweis, Sonia M.; Schichtel, Bret A.; Malm, William C.; Collett, Jeffrey L., Jr.
2011-02-01
Six-day integrated fine particle samples were collected at urban and rural sampling sites using Hi-Volume samplers during winter and summer 2004-2005 as part of the IMPROVE (Interagency Monitoring of PROtected Visual Environments) Radiocarbon Study. Filter samples from six sites (Grand Canyon, Mount Rainier, Phoenix, Puget Sound, Rocky Mountain National Park, and Tonto National Monument) were analyzed for levoglucosan, a tracer for biomass combustion, and other species by High-Performance Anion-Exchange Chromatography with Pulsed Amperometric Detection (HPAEC-PAD). Contemporary carbon concentrations were available from previous carbon isotope measurements at Lawrence Livermore National Laboratory. Primary contributions of biomass burning to measured fine particle contemporary carbon were estimated for residential wood burning (winter) and wild/prescribed fires (summer). Calculated contributions ranged from below detection limit to more than 100% and were typically higher at rural sites and during winter. Mannitol, a sugar alcohol emitted by fungal spores, was analyzed and used to determine contributions of fungal spores to fine particle contemporary carbon. Contributions reached up to 13% in summer samples, with higher contributions at rural sites. Concentrations of methyltetrols, oxidation products of isoprene, were also measured by HPAEC-PAD. Secondary organic aerosol (SOA) from isoprene oxidation was estimated to contribute up to 22% of measured contemporary carbon. For each sampling site, a substantial portion of the contemporary carbon was unexplained by primary biomass combustion, fungal spores, or SOA from isoprene oxidation. This unexplained fraction likely contains contributions from other SOA sources, including oxidation products of primary smoke emissions and plant emissions other than isoprene, as well as other primary particle emissions from meat cooking, plant debris, other biological aerosol particles, bio-diesel combustion, and other sources. Loss of levoglucosan during atmospheric aging of biomass burning emissions likely also results in an underestimate of apportioned primary smoke contributions.
Jilge, G; Unger, K K; Esser, U; Schäfer, H J; Rathgeber, G; Müller, W
1989-08-04
The linear solvent strength model of Snyder was applied to describe fast protein separations on 2.1-micron non-porous, silica-based strong anion exchangers. It was demonstrated on short columns packed with these anion exchangers that (i) a substantially higher resolution of proteins and nucleotides was obtained at gradient times of less than 5 min than on porous anion exchangers; (ii) the low external surface area of the non-porous anion exchanger is not a critical parameter in analytical separations and (iii) microgram-amounts of enzymes of high purity and full biological activity were isolated.
Cameron, Randall G; Luzio, Gary A; Vasu, Prasanna; Savary, Brett J; Williams, Martin A K
2011-03-23
Methyl ester distribution in pectin homogalacturonan has a major influence on functionality. Enzymatic engineering of the pectin nanostructure for tailoring functionality can expand the role of pectin as a food-formulating agent and the use of in situ modification in prepared foods. We report on the mode of action of a unique citrus thermally tolerant pectin methylesterase (TT-PME) and the nanostructural modifications that it produces. The enzyme was used to produce a controlled demethylesterification series from a model homogalacturonan. Oligogalacturonides released from the resulting demethylesterified blocks introduced by TT-PME using a limited endopolygalacturonase digestion were separated and quantified by high-pressure anion-exchange chromatography (HPAEC) coupled to an evaporative light-scattering detector (ELSD). The results were consistent with the predictions of a numerical simulation, which assumed a multiple-attack mechanism and a degree of processivity ∼10, at both pH 4.5 and 7.5. The average demethylesterified block size (0.6-2.8 nm) and number of average-sized blocks per molecule (0.8-1.9) differed, depending upon pH of the enzyme treatment. The mode of action of this enzyme and consequent nanostructural modifications of pectin differ from a previously characterized citrus salt-independent pectin methylesterase (SI-PME).
Yang, Xuejun; Baskin, Carol C; Baskin, Jerry M; Zhang, Wenhao; Huang, Zhenying
2012-05-01
In contrast to the extensive understanding of seed mucilage biosynthesis, much less is known about how mucilage is biodegraded and what role it plays in the soil where seeds germinate. We studied seed mucilage biodegradation by a natural microbial community. High-performance anion-exchange chromatography (HPAEC) was used to determine monosaccharide composition in achene mucilage of Artemisia sphaerocephala. Mucilage degradation by the soil microbial community from natural habitats was examined by monosaccharide utilization tests using Biolog plates, chemical assays and phospholipid fatty acid (PLFA) analysis. Glucose (29.4%), mannose (20.3%) and arabinose (19.5%) were found to be the main components of achene mucilage. The mucilage was biodegraded to CO(2) and soluble sugars, and an increase in soil microbial biomass was observed during biodegradation. Fluorescence microscopy showed the presence of mucilage (or its derivatives) in seedling tissues after growth with fluorescein isothiocyanate (FITC)-labelled mucilage. The biodegradation also promoted early seedling growth in barren sand dunes, which was associated with a large soil microbial community that supplies substances promoting seedling establishment. We conclude that biodegradation of seed mucilage can play an ecologically important role in the life cycles of plants especially in harsh desert environments to which A. sphaerocephala is well-adapted. © 2011 Blackwell Publishing Ltd.
Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo; Corsaro, Maria Michela; Trifuoggi, Marco; De Rosa, Mario; Schiraldi, Chiara
2017-03-15
Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Gilchrist, Elizabeth; Jongekrijg, Fleur; Harvey, Laura; Smith, Norman; Barron, Leon
2012-09-10
Gunshot residue (GSR) is commonly analysed in forensic casework using either scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) or gas chromatography-mass spectrometry (GC-MS). Relatively little work has been reported on the post-discharge GSR content of non-metallic inorganic or low molecular weight organic anions to distinguish between different ammunition types. The development of an analytical method using suppressed micro-bore anion exchange chromatography (IC) is presented for the analysis of GSR. A hydroxide gradient was optimised for the separation of 19 forensically relevant organic and inorganic anions in <23min and sensitivities of the order of 0.12-3.52ng of anion detected for all species were achieved. Along with an optimised extraction procedure, this method was applied to the analysis of post-ignition residues from three selected ammunition types. By profiling and comparing the anionic content in each ammunition residue, the possibility to distinguish between each type using their anionic profiles and absolute weight is presented. The potential for interference is also discussed with respect to sample types which are typically problematic in the analysis of GSR using SEM-EDX and GC-MS. To the best of our knowledge this represents the first study on the analysis of inorganic anions in GSR using suppressed ion chromatography. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Mixed mode HILIC/anion exchange separations on latex coated silica monoliths.
Ibrahim, Mohammed E A; Lucy, Charles A
2012-10-15
Bare silica monoliths do not possess anion exchange sites hence they show low retention for anions. Moreover, bare silica monoliths show low retention in hydrophilic interaction liquid chromatography (HILIC). Coating the silica surface with cationic nanoparticles e.g. AS9-SC (latex A), AS12A (latex B) and DNApac (latex C) increases the thickness of the water layer on the Onyx silica monolith 8-10 times enabling HILIC retention when a high % acetonitrile (ACN) mobile phase is used. The formed water layer by itself is not sufficient to perform good separation of the studied anions (acetate, formate, nitrate, bromate, thiocyanate and iodide). On the other hand, the latex nanoparticles introduce positively charged sites, making anion exchange chromatography possible, with the anion exchange capacity varying with the latex adsorbed (44.1 ± 0.2, 4.4 ± 0.1 and 14.0 ± 0.7 μeq/column for latex A, B and C, respectively). Latex A nanoparticles which provided the highest ion exchange capacity separated all tested anions with reasonable resolution. Fast separation (2.5 min) of acetate, formate, nitrate, bromate, thiocyanate and iodide was performed using the latex A coated silica monolith. The obtained efficiencies are 13,000-50,000 plates/m at 3 mL/min with a minimum resolution of 0.85. Retention is mixed mode under HILIC conditions with HILIC dominating for the kosmotropic anions and ion exchange dominating for the chaotropic anions. The two different brands of silica monoliths (Merck Chromolith and Phenomenex Onyx) coated with the same latex A nanoparticles displayed similar water layer volumes, ion exchange capacity and selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.
Purification Or Organic Acids Using Anion Exchange Chromatography.
Ponnampalam; Elankovan
2001-09-04
Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.
Characterization of nutraceuticals and functional foods by innovative HPLC methods.
Corradini, Claudio; Galanti, Roberta; Nicoletti, Isabella
2002-04-01
In recent years there is a growing interest in food and food ingredient which may provide health benefits. Food as well as food ingredients containing health-preserving components, are not considered conventional food, but can be defined as functional food. To characterise such foods, as well as nutraceuticals specific, high sensitive and reproducible analytical methodologies are needed. In light of this importance we set out to develop innovative HPLC methods employing reversed phase narrow bore column and high-performance anion-exchange chromatographic methods coupled with pulsed amperometric detection (HPAEC-PAD), which are specific for carbohydrate analysis. The developed methods were applied for the separation and quantification of citrus flavonoids and to characterize fructooligosaccharide (FOS) and fructans added to functional foods and nutraceuticals.
Instrumentation: Ion Chromatography.
ERIC Educational Resources Information Center
Fritz, James S.
1987-01-01
Discusses the importance of ion chromatography in separating and measuring anions. The principles of ion exchange are presented, along with some applications of ion chromatography in industry. Ion chromatography systems are described, as well as ion pair and ion exclusion chromatography, column packings, detectors, and programming. (TW)
Michalski, Rajmund; Lyko, Aleksandra; Kurzyca, Iwona
2012-07-01
Ion chromatography is the most popular instrumental analytical method used for the determination of anions and cations in water and wastewater. Isocratic ion chromatography with suppressed conductivity detection is frequently used in laboratories carrying out routine analyses of inorganic anions. The paper presents the results of the research into the influence of selected inorganic anions dominant in environmental samples (Cl(-), NO(3)(-), SO(4)(2-)) on the possibility of simultaneous determination of F(-), Cl(-), NO(2)(-), NO(3)(-), PO(4)(3-) and SO(4)(2-) with the application of this most popular ion chromatography type in standard separation conditions. Four Dionex and four Metrohm anion-exchange columns were tested in standard separation conditions recommended by their manufacturers with both standard solutions and environmental samples with complex matrix.
Method and apparatus for chromatographic quantitative analysis
Fritz, James S.; Gjerde, Douglas T.; Schmuckler, Gabriella
1981-06-09
An improved apparatus and method for the quantitative analysis of a solution containing a plurality of anion species by ion exchange chromatography which utilizes a single eluent and a single ion exchange bed which does not require periodic regeneration. The solution containing the anions is added to an anion exchange resin bed which is a low capacity macroreticular polystyrene-divinylbenzene resin containing quarternary ammonium functional groups, and is eluted therefrom with a dilute solution of a low electrical conductance organic acid salt. As each anion species is eluted from the bed, it is quantitatively sensed by conventional detection means such as a conductivity cell.
Yan, Chunyan; Yin, Yin; Zhang, Dawei; Yang, Wei; Yu, Rongmin
2013-07-25
The shrub, Taxus yunnanensis is famed as the source of the important anticancer drug, paclitaxel. But research on its polysaccharides contents has been scarce. The present research aimed to investigate the polysaccharide content of T. yunnanensis leaves and study the antitumor activities of isolated polysaccharide(s) using human tumor cells (K-562 and MCF). A novel heteropolysaccharide (TMP70W) was isolated and purified by anion-exchange and gel-permeation chromatography. Its molecular weight was 36.94 kDa and structural features were elucidated by partial acid hydrolysis, periodate oxidation-Smith degradation, methylation analysis, GC-MS, HPAEC-PAD, FT-IR, and NMR. The repeating unit of TMP70W had a backbone composed of (1→5)-linked-α-l-Araf, (1→2,5)-linked-α-l-Araf, and (1→6)-linked-β-d-Galp with a branch of α-d-Glcp-(1→2)-α-d-Galp-(1→ at the position of C-2 of arabinose. TMP70W displayed mild cytotoxicity against K562 cells with the IC50 value of 39.63 ± 2.37 μg/mL and inhibitory activity against MCF-7 cells (32.08 ± 0.39% at the concentration of 400 μg/mL) in a concentration-dependent manner. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cellodextrin utilization by bifidobacterium breve UCC2003.
Pokusaeva, Karina; O'Connell-Motherway, Mary; Zomer, Aldert; Macsharry, John; Fitzgerald, Gerald F; van Sinderen, Douwe
2011-03-01
Cellodextrins, the incomplete hydrolysis products from insoluble cellulose, are accessible as a carbon source to certain members of the human gut microbiota, such as Bifidobacterium breve UCC2003. Transcription of the cldEFGC gene cluster of B. breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating this cluster in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this commensal. Moreover, our results suggest that transcription of the cld cluster is controlled by a LacI-type regulator encoded by cldR, located immediately upstream of cldE. Gel mobility shift assays using purified CldR(His) (produced by the incorporation of a His(12)-encoding sequence into the 3' end of the cldC gene) indicate that the cldEFGC promoter is subject to negative control by CldR(His), which binds to two inverted repeats. Analysis by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose, and cellopentaose, with cellotriose apparently representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 is, to the best of our knowledge, the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity toward various cellodextrins.
Interaction of S-layer proteins of Lactobacillus kefir with model membranes and cells.
Hollmann, Axel; Delfederico, Lucrecia; Santos, Nuno C; Disalvo, E Anibal; Semorile, Liliana
2018-06-01
In previous works, it was shown that S-layer proteins from Lactobacillus kefir were able to recrystallize and stabilize liposomes, this feature reveling a great potential for developing liposomal-based carriers. Despite previous studies on this subject are important milestones, a number of questions remain unanswered. In this context, the feasibility of S-layer proteins as a biomaterial for drug delivery was evaluated in this work. First, S-layer proteins were fully characterized by electron microscopy, 2D-electrophoresis, and anionic exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Afterward, interactions of S-layer proteins with model lipid membranes were evaluated, showing that proteins adsorb to the lipid surface following a non-fickean or anomalous diffusion, when positively charged lipid were employed, suggesting that electrostatic interaction is a key factor in the recrystallization process on these proteins. Finally, the interaction of S-layer coated liposomes with Caco-2 cell line was assessed: First, cytotoxicity of formulations was tested showing no cytotoxic effects in S-layer coated vesicles. Second, by flow cytometry, it was observed an increased ability to transfer cargo molecules into Caco-2 cells from S-layer coated liposomes in comparison to control ones. All data put together, supports the idea that a combination of adhesive properties of S-layer proteins concomitant with higher stability of S-layer coated liposomes represents an exciting starting point in the development of new drug carriers.
Application of the zeta potential for stationary phase characterization in ion chromatography.
Buszewski, Bogusław; Jaćkowska, Magdalena; Bocian, Szymon; Dziubakiewicz, Ewelina
2013-01-01
Two series of homemade stationary bonded phases for ion chromatography were investigated according to their zeta potential. One set of dendrimer anion exchanger was synthesized on the polymer support whereas the second material was prepared on the silica gel. The zeta potential data in water environment as well as buffered water solution were obtained. The influence of the length of anion-exchanger chains, the type of the support of the modified surface, and charge distribution on these data was investigated. Additionally, the zeta potential was correlated with retention factor of inorganic ions to describe their influence on the retention mechanism in ion chromatography. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Improved method and apparatus for chromatographic quantitative analysis
Fritz, J.S.; Gjerde, D.T.; Schmuckler, G.
An improved apparatus and method are described for the quantitative analysis of a solution containing a plurality of anion species by ion exchange chromatography which utilizes a single element and a single ion exchange bed which does not require periodic regeneration. The solution containing the anions is added to an anion exchange resin bed which is a low capacity macroreticular polystyrene-divinylbenzene resin containing quarternary ammonium functional groups, and is eluted therefrom with a dilute solution of a low electrical conductance organic acid salt. As each anion species is eluted from the bed, it is quantitatively sensed by conventional detection means such as a conductivity cell.
Walch, Nicole; Jungbauer, Alois
2017-06-01
Truly continuous biomanufacturing processes enable an uninterrupted feed stream throughout the whole production without the need for holding tanks. We have utilized microporous anion and cation exchangers into which only salts, but not proteins, can penetrate into the pores for desalting of protein solutions, while diafiltration or dilution is usually employed for feed adjustments. Anion exchange and cation exchange chromatography columns were connected in series to remove both anions and cations. To increase operation performance, a continuous process was developed comprised of four columns. Continuous mode was achieved by staggered cycle operation, where one set of columns, consisting of one anion exchange and one cation exchange column, was loaded during the regeneration of the second set. Refolding, desalting and subsequent ion exchange capturing with a scFv as the model protein was demonstrated. The refolding solution was successfully desalted resulting in a consistent conductivity below 0.5 mS/cm from initial values of 10 to 11 mS/cm. With continuous operation process time could be reduced by 39% while productivity was increased to 163% compared to batch operation. Desalting of the protein solution resulted in up to 7-fold higher binding capacities in the subsequent ion exchange capture step with conventional protein binding resins. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mori, Masanobu; Tanaka, Kazuhiko; Satori, Tatsuya; Ikedo, Mikaru; Hu, Wenzhi; Itabashi, Hideyuki
2006-06-16
Influence of acidic eluent on retention behaviors of common anions and cations by ion-exclusion/cation-exchange chromatography (ion-exclusion/CEC) were investigated on a weakly acidic cation-exchange resin in the H(+)-form with conductivity. Sensitivities of analyte ions, especially weak acid anions (F(-) and HCOO(-)), were affected with degree of background conductivity level with pK(a1) (first dissociation constant) of acid in eluent. The retention behaviors of anions and cations were related to that of elution dip induced after eluting acid to separation column and injecting analyte sample. These results were largely dependent on the natures of acid as eluent. Through this study, succinic acid as the eluent was suitable for simultaneous separation of strong acid anions (SO(4)(2-), Cl(-), NO(3)(-) and I(-)), weak acid anions (F(-), HCOO(-) and CH(3)COO(-)), and cations (Na(+), K(+), NH(4)(+), Mg(2+) and Ca(2+)). The separation was achieved in 20 min under the optimum eluent condition, 20 mM succinic acid/2 mM 18-crown-6. Detection limits at S/N=3 ranged from 0.10 to 0.51 microM for strong acid anions, 0.20 to 5.04 microM for weak acid anions and 0.75 to 1.72 microM for cations. The relative standard deviations of peak areas in the repeated chromatographic runs (n=10) were in the range of 1.1-2.9% for anions and 1.8-4.5% for cations. This method was successfully applied to hot spring water containing strong acid anions, weak acid anions and cations, with satisfactory results.
Weak partitioning chromatography for anion exchange purification of monoclonal antibodies.
Kelley, Brian D; Tobler, Scott A; Brown, Paul; Coffman, Jonathan L; Godavarti, Ranga; Iskra, Timothy; Switzer, Mary; Vunnum, Suresh
2008-10-15
Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved. (c) 2008 Wiley Periodicals, Inc.
Guan, Y-G; Yu, P; Yu, S-J; Xu, X-B; Wu, X-L
2012-11-01
A simultaneous analysis of reducing sugars and 5-hydroxymethyl-2-furaldehyde of the Maillard reaction products was detailed. It was based on a high performance anion exchange chromatography with electrochemical detector system and an HPLC with refractive index detector. Results showed that high performance anion exchange chromatography with electrochemical detector using a CarboPac PA-1 column (Dionex Corp., Sunnyvale, CA) was more suitable for reducing sugars and 5-hydroxymethyl-2-furaldehyde determination, especially for trace analysis. The lowest detectable limit of reducing sugars and 5-hydroxymethyl-2-furaldehyde was 0.00005 mol/L in this experiment. However, HPLC with a refractive index detector always produces a tailing peak for 5-hydroxymethyl-2-furaldehyde, and mannose and fructose cannot be absolutely separated. The results of the present study could provide a more sensitive means for 5-hydroxymethyl-2-furaldehyde and reducing sugar detection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Ho, Mei M; Mawas, Fatme; Bolgiano, Barbara; Lemercinier, Xavier; Crane, Dennis T; Huskisson, Rachel; Corbel, Michael J
2002-10-04
The thermal stability of meningococcal C (MenC)- and Haemophilus influenzae b (Hib)-tetanus toxoid (TT) conjugate vaccines was investigated using spectroscopic and chromatographic techniques and immunogenicity assays in animal models. In this stability study, both the bulk concentrate and final fills were incubated at -20, 4, 23, 37 or 55 degrees C for 5 weeks or subjected to cycles of freeze-thawing. The structural stability, hydrodynamic size and molecular integrity of the treated vaccines were monitored by circular dichroism (CD), fluorescence and nuclear magnetic resonance (NMR) spectroscopic techniques, size exclusion chromatography (FPLC-SEC), and high performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). Only storage at 55 degrees C for 5 weeks caused some slight unfolding and modification in the tertiary structure of the carrier protein in the MenC-TT conjugate. Substantial loss of saccharide content from the MenC conjugates was observed at 37 and 55 degrees C. Unexpectedly, the experimental immunogenicity of MenC-TT vaccine adsorbed to Alhydrogel was significantly reduced only by repeated freeze-thawing, but not significantly decreased by thermal denaturation. Neither the molecular integrity nor the immunogenicity of the lyophilised Hib-TT vaccines was significantly affected by freeze-thawing or by storage at high temperature. In conclusion, the MenC- and Hib-TT conjugate vaccines were relatively stable when stored at higher temperatures, though when MenC-TT vaccine was adsorbed to Alhydrogel, it was more vulnerable to repeated freeze-thawing. When compared with CRM(197) conjugate vaccines studied previously using similar techniques, the tetanus toxoid conjugates were found to have higher relative thermal stability in that they retained immunogenicity following storage at elevated temperatures.
Mellado-Mojica, Erika; López, Mercedes G
2015-01-15
Agave syrups are gaining popularity as new natural sweeteners. Identification, classification and discrimination by infrared spectroscopy coupled to chemometrics (NIR-MIR-SIMCA-PCA) and HPAEC-PAD of agave syrups from natural sweeteners were achieved. MIR-SIMCA-PCA allowed us to classify the natural sweeteners according to their natural source. Natural syrups exhibited differences in the MIR spectra region 1500-900 cm(-1). The agave syrups displayed strong absorption in the MIR spectra region 1061-1,063 cm(-1), in agreement with their high fructose content. Additionally, MIR-SIMCA-PCA allowed us to differentiate among syrups from different Agave species (Agavetequilana and Agavesalmiana). Thin-layer chromatography and HPAEC-PAD revealed glucose, fructose, and sucrose as the principal carbohydrates in all of the syrups. Oligosaccharide profiles showed that A. tequilana syrups are mainly composed of fructose (>60%) and fructooligosaccharides, while A. salmiana syrups contain more sucrose (28-32%). We conclude that MIR-SIMCA-PCA and HPAEC-PAD can be used to unequivocally identify and classified agave syrups. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.
Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan
2016-10-14
This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.
Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.
Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong
2016-09-30
To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie
1999-04-01
A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several differentmore » eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.« less
Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki
2016-09-30
Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.
In situ modification of chromatography adsorbents using cold atmospheric pressure plasmas
NASA Astrophysics Data System (ADS)
Olszewski, P.; Willett, T. C.; Theodosiou, E.; Thomas, O. R. T.; Walsh, J. L.
2013-05-01
Efficient manufacturing of increasingly sophisticated biopharmaceuticals requires the development of new breeds of chromatographic materials featuring two or more layers, with each layer affording different functions. This letter reports the in situ modification of a commercial beaded anion exchange adsorbent using atmospheric pressure plasma generated within gas bubbles. The results show that exposure to He-O2 plasma in this way yields significant reductions in the surface binding of plasmid DNA to the adsorbent exterior, with minimal loss of core protein binding capacity; thus, a bi-layered chromatography material exhibiting both size excluding and anion exchange functionalities within the same bead is produced.
Determination of "net carbohydrates" using high-performance anion exchange chromatography.
Lilla, Zach; Sullivan, Darryl; Ellefson, Wayne; Welton, Kevin; Crowley, Rick
2005-01-01
For labeling purposes, the carbohydrate content of foods has traditionally been determined by difference. This value includes sugars, starches, fiber, dextrins, sugar alcohols, polydextrose, and various other organic compounds. In some cases, the current method may lack sufficient specificity, precision, and accuracy. These are subsequently quantitated by high performance anion exchange chromatography with pulsed amperometric detection and expressed as total nonfiber saccharides or percent "net carbohydrates." In this research, a new method was developed to address this need. The method consists of enzyme digestions to convert starches, dextrins, sugars, and polysaccharides to their respective monosaccharide components. These are subsequently quantified by high-performance anion exchange chromatography with pulsed amperometric detector and expressed as total nonfiber saccharides or percent "net carbohydrates." Hydrolyzed end products of various novel fibers and similar carbohydrates have been evaluated to ensure that they do not register as false positives in the new test method. The data generated using the "net carbohydrate" method were, in many cases, significantly different than the values produced using the traditional methodology. The recoveries obtained in a fortified drink matrix ranged from 94.9 to 105%. The coefficient of variation was 3.3%.
ERIC Educational Resources Information Center
Clark, Daniel D.; Edwards, Daniel J.
2018-01-01
This article describes a simple exercise using a free, easy-to-use, established online program. The exercise helps to reinforce protein purification concepts and introduces undergraduates to pH as a parameter that affects anion-exchange chromatography. The exercise was tested with biochemistry majors at California State University-Chico. Given the…
Li, Ming; Fan, Hua; Liu, Jiahua; Wang, Minhong; Wang, Lili; Wang, Chaozhan
2012-03-01
Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.
The Lactose and Galactose Content of Cheese Suitable for Galactosaemia: New Analysis.
Portnoi, P A; MacDonald, A
2016-01-01
The UK Medical Advisory Panel of the Galactosaemia Support Group report the lactose and galactose content of 5 brands of mature Cheddar cheese, Comte and Emmi Emmental fondue mix from 32 cheese samples. The Medical Advisory Panel define suitable cheese in galactosaemia to have a lactose and galactose content consistently below 10 mg/100 g. A total of 32 samples (5 types of mature Cheddar cheese, Comte and "Emmi Swiss Fondue", an emmental fondue mix) were analysed by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technology used to perform lactose and galactose analysis. Cheddar cheese types: Valley Spire West Country, Parkham, Lye Cross Vintage, Lye Cross Mature, Tesco West Country Farmhouse Extra Mature and Sainsbury's TTD West Country Farmhouse Extra Mature had a lactose and galactose content consistently below 10 mg/100 g (range <0.05 to 12.65 mg). All Comte samples had a lactose content below the lower limit of detection (<0.05 mg) with galactose content from <0.05 to 1.86 mg/100 g; all samples of Emmi Swiss Fondue had lactose below the lower limit of detection (<0.05 mg) and galactose between 2.19 and 3.04 mg/100 g. All of these cheese types were suitable for inclusion in a low galactose diet for galactosaemia. It is possible that the galactose content of cheese may change over time depending on its processing, fermentation time and packaging techniques.
Cellodextrin Utilization by Bifidobacterium breve UCC2003▿ †
Pokusaeva, Karina; O'Connell-Motherway, Mary; Zomer, Aldert; MacSharry, John; Fitzgerald, Gerald F.; van Sinderen, Douwe
2011-01-01
Cellodextrins, the incomplete hydrolysis products from insoluble cellulose, are accessible as a carbon source to certain members of the human gut microbiota, such as Bifidobacterium breve UCC2003. Transcription of the cldEFGC gene cluster of B. breve UCC2003 was shown to be induced upon growth on cellodextrins, implicating this cluster in the metabolism of these sugars. Phenotypic analysis of a B. breve UCC2003::cldE insertion mutant confirmed that the cld gene cluster is exclusively required for cellodextrin utilization by this commensal. Moreover, our results suggest that transcription of the cld cluster is controlled by a LacI-type regulator encoded by cldR, located immediately upstream of cldE. Gel mobility shift assays using purified CldRHis (produced by the incorporation of a His12-encoding sequence into the 3′ end of the cldC gene) indicate that the cldEFGC promoter is subject to negative control by CldRHis, which binds to two inverted repeats. Analysis by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) of medium samples obtained during growth of B. breve UCC2003 on a mixture of cellodextrins revealed its ability to utilize cellobiose, cellotriose, cellotetraose, and cellopentaose, with cellotriose apparently representing the preferred substrate. The cldC gene of the cld operon of B. breve UCC2003 is, to the best of our knowledge, the first described bifidobacterial β-glucosidase exhibiting hydrolytic activity toward various cellodextrins. PMID:21216899
Cielecka, Emilia Katarzyna; Pierzchalska, Małgorzata; Żyła, Krzysztof
2015-01-01
Summary Preparations of 6-phytase A (EC 3.1.3.26) and phytase B (acid phosphatase, EC 3.1.3.2) were applied alone and combined in the preparation of dough to estimate their catalytic potential for myo-inositol liberation from rye flour in the breadmaking technology. The experimental bread samples were ground after baking and subjected to determination of myo-inositol bioavailability by an in vitro method that simulated digestion in a human alimentary tract, followed by measurements of myo-inositol transport through enterocyte- -like differentiated Caco-2 cells to determine its bioaccessibility. Myo-inositol content was measured by a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technique. The concentration of myo-inositol in the dialysates of control bread was 25.3 µg/mL, whereas in the dialysates of bread sample baked with 6-phytase A, the concentration increased to 35.4 µg/mL, and in the bread baked with phytase B to 64.98 µg/mL. Simultaneous application of both enzymes resulted in myo-inositol release of 64.04 µg/mL. The highest bioaccessibility of myo-inositol, assessed by the measurement of the passage through the Caco-2 monolayer was determined in the bread baked with the addition of 6-phytase A. Enzymatically modified rye bread, particularly by the addition of 6-phytase A, may be therefore a rich source of a highly bioaccessible myo- -inositol. PMID:27904333
Duliński, Robert; Cielecka, Emilia Katarzyna; Pierzchalska, Małgorzata; Żyła, Krzysztof
2015-03-01
Preparations of 6-phytase A (EC 3.1.3.26) and phytase B (acid phosphatase, EC 3.1.3.2) were applied alone and combined in the preparation of dough to estimate their catalytic potential for myo- inositol liberation from rye flour in the breadmaking technology. The experimental bread samples were ground after baking and subjected to determination of myo- inositol bioavailability by an in vitro method that simulated digestion in a human alimentary tract, followed by measurements of myo- inositol transport through enterocyte- -like differentiated Caco-2 cells to determine its bioaccessibility. Myo- inositol content was measured by a high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) technique. The concentration of myo- inositol in the dialysates of control bread was 25.3 µg/mL, whereas in the dialysates of bread sample baked with 6-phytase A, the concentration increased to 35.4 µg/mL, and in the bread baked with phytase B to 64.98 µg/mL. Simultaneous application of both enzymes resulted in myo- inositol release of 64.04 µg/mL. The highest bioaccessibility of myo- inositol, assessed by the measurement of the passage through the Caco-2 monolayer was determined in the bread baked with the addition of 6-phytase A. Enzymatically modified rye bread, particularly by the addition of 6-phytase A, may be therefore a rich source of a highly bioaccessible myo - -inositol.
Illustrating Chromatography with Colorful Proteins
ERIC Educational Resources Information Center
Lefebvre, Brian G.; Farrell, Stephanie; Dominiak, Richard S.
2007-01-01
Advances in biology are prompting new discoveries in the biotechnology, pharmaceutical, medical technology, and chemical industries. This paper presents a detailed description of an anion exchange chromatography experiment using a pair of colorful proteins and summarizes the effect of operating parameters on protein separation. This experiment…
NASA Technical Reports Server (NTRS)
Rounds, M. A.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)
1993-01-01
The use of gradient anion-exchange HPLC, with a simple post-column detection system, is described for the separation of myo-inositol phosphates, including "phytic acid" (myo-inositol hexaphosphate). Hexa-, penta-, tetra-, tri- and diphosphate members of this homologous series are clearly resolved within 30 min. This method should facilitate analysis and quantitation of "phytic acid" and other inositol phosphates in plant, food, and soil samples.
Kabytaev, Kuanysh; Durairaj, Anita; Shin, Dmitriy; Rohlfing, Curt L; Connolly, Shawn; Little, Randie R; Stoyanov, Alexander V
2016-02-01
A liquid chromatography with mass spectrometry on-line platform that includes the orthogonal techniques of ion exchange and reversed phase chromatography is applied for C-peptide analysis. Additional improvement is achieved by the subsequent application of cation- and anion-exchange purification steps that allow for isolating components that have their isoelectric points in a narrow pH range before final reversed-phase mass spectrometry analysis. The utility of this approach for isolating fractions in the desired "pI window" for profiling complex mixtures is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Pribil, M.J.; Wanty, R.B.; Ridley, W.I.; Borrok, D.M.
2010-01-01
An increased interest in high precision Cu isotope ratio measurements using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has developed recently for various natural geologic systems and environmental applications, these typically contain high concentrations of sulfur, particularly in the form of sulfate (SO42-) and sulfide (S). For example, Cu, Fe, and Zn concentrations in acid mine drainage (AMD) can range from 100??g/L to greater than 50mg/L with sulfur species concentrations reaching greater than 1000mg/L. Routine separation of Cu, Fe and Zn from AMD, Cu-sulfide minerals and other geological matrices usually incorporates single anion exchange resin column chromatography for metal separation. During chromatographic separation, variable breakthrough of SO42- during anion exchange resin column chromatography into the Cu fractions was observed as a function of the initial sulfur to Cu ratio, column properties, and the sample matrix. SO42- present in the Cu fraction can form a polyatomic 32S-14N-16O-1H species causing a direct mass interference with 63Cu and producing artificially light ??65Cu values. Here we report the extent of the mass interference caused by SO42- breakthrough when measuring ??65Cu on natural samples and NIST SRM 976 Cu isotope spiked with SO42- after both single anion column chromatography and double anion column chromatography. A set of five 100??g/L Cu SRM 976 samples spiked with 500mg/L SO42- resulted in an average ??65Cu of -3.50?????5.42??? following single anion column separation with variable SO42- breakthrough but an average concentration of 770??g/L. Following double anion column separation, the average SO42-concentration of 13??g/L resulted in better precision and accuracy for the measured ??65Cu value of 0.01?????0.02??? relative to the expected 0??? for SRM 976. We conclude that attention to SO42- breakthrough on sulfur-rich samples is necessary for accurate and precise measurements of ??65Cu and may require the use of a double ion exchange column procedure. ?? 2010.
Methods for the separation of rhenium, osmium and molybdenum applicable to isotope geochemistry
Morgan, J.W.; Golightly, D.W.; Dorrzapf, A.F.
1991-01-01
Effective methods are described for the chemical separation of rhenium, osmium and molybdenum. The methods are based on distillation and anion-exchange chromatography, and have been the basis for rhenium-osmium isotope studies of ore deposits and meteorites. Successful anion-exchange separation of osmium requires both recognition and careful control of the osmium species in solution; thus, distillation of osmium tetroxide from a mixture of sulfuric acid and hydrogen peroxide is preferred to anion-exchange. Distribution coefficients measured for perrhenate in sulfuric acid media are sufficiently high (Kd > 500) for rhenium to be directly loaded onto an ion-exchange column from a distillation residue and subsequently eluted with nitric acid. Polymerization of molybdenum species during elution is prevented by use of a solution that is 1M in hydrochloric acid and 1M in sodium chloride. ?? 1991.
Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi
2007-08-24
We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.
ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY
A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...
Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang
2008-08-01
Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.
Stone, Melani C.; Borman, Jon; Ferreira, Gisela
2017-01-01
Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process‐related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ‐650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6–8), conductivity (2–15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a “size exclusion qPCR assay.” Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141–149, 2018 PMID:28884511
Characterization of Low-Molecular-Weight Heparins by Strong Anion-Exchange Chromatography.
Sadowski, Radosław; Gadzała-Kopciuch, Renata; Kowalkowski, Tomasz; Widomski, Paweł; Jujeczka, Ludwik; Buszewski, Bogusław
2017-11-01
Currently, detailed structural characterization of low-molecular-weight heparin (LMWH) products is an analytical subject of great interest. In this work, we carried out a comprehensive structural analysis of LMWHs and applied a modified pharmacopeial method, as well as methods developed by other researchers, to the analysis of novel biosimilar LMWH products; and, for the first time, compared the qualitative and quantitative composition of commercially available drugs (enoxaparin, nadroparin, and dalteparin). For this purpose, we used strong anion-exchange (SAX) chromatography with spectrophotometric detection because this method is more helpful, easier, and faster than other separation techniques for the detailed disaccharide analysis of new LMWH drugs. In addition, we subjected the obtained results to statistical analysis (factor analysis, t-test, and Newman-Keuls post hoc test).
Enhancement of anion-exchange chromatography of DNA using compaction agents
NASA Technical Reports Server (NTRS)
Murphy, Jason C.; Fox, George E.; Willson, Richard C.
2003-01-01
The use of adsorptive chromatography for preparative nucleic acid separations is often limited by low capacity. The possibility that the adsorbent surface area sterically accessible to nucleic acid molecules could be increased by reducing their radius of gyration with compaction agents has been investigated. The equilibrium adsorption capacity of Q Sepharose anion-exchange matrix for plasmid DNA at 600 mM NaCl was enhanced by up to ca. 40% in the presence of 2.5 mM spermine. In addition, compaction agent selectivity has been demonstrated. Spermine, for example, enhances the adsorption of both plasmid and genomic DNA, spermidine enhances binding only of plasmid, and hexamine cobalt enhances only the binding of genomic DNA. Compaction may be generally useful for enhancing adsorptive separations of nucleic acids.
Hanko, Valoran P; Rohrer, Jeffrey S
2004-07-14
Sucralose is a chlorinated carbohydrate nonnutritive sweetener of food and beverage products. The determination of sucralose in food and beverages is important to ensure consistency in product quality. Sucralose was determined in two commercial products without sample preparation using high-performance anion-exchange (HPAE) chromatography coupled with pulsed amperometric detection (PAD). Sucralose was determined with a 10 min isocratic separation. To determine sucralose and other carbohydrates (e.g., dextrose) simultaneously, a gradient separation was developed. The linear range of electrochemical response extended over 3 orders of magnitude, from 0.01 (LOD) to 40 microM (16 microg/mL; 25 microL injection). High precision, high spike recovery, and method ruggedness were observed for both samples.
Casella, Innocenzo G; Contursi, Michela
2003-07-01
A cobalt oxyhydroxide film dispersed on a carbon electrode surface was characterized and proposed as an amperometric sensor for determination of alditols and carbohydrates in flowing streams. Complex mixtures of carbohydrates were separated by anion-exchange chromatography using a moderately alkaline solution as mobile phase. The cobalt modified electrode (GC-Co) was employed under a constant applied potential of 0.5 V (vs Ag/AgCl). Under these experimental conditions the detection limits (S/N=3) for all analyzed electroactive molecules ranged between 0.3 micromol L(-1) and 1.5 micromol L(-1) and the dynamic linear ranges spanned generally three orders of magnitude above the relevant detection limits. Analytical determinations of carbohydrates and alditols in red and white wines, are reported.
The first use of a HPLC system at a Louisiana Sugarcane Factory: What it can do for you
USDA-ARS?s Scientific Manuscript database
Alma Plantation sugarcane factory established and operated the first High Performance Liquid Chromatography (HPLC) system in Louisiana in 2015. Although many HPLC systems exist, the factory opted for a ThermoFisherTM ion chromatography (anion exchange) system with integrated pulsed amperometric det...
Ladd Effio, Christopher; Hahn, Tobias; Seiler, Julia; Oelmeier, Stefan A; Asen, Iris; Silberer, Christine; Villain, Louis; Hubbuch, Jürgen
2016-01-15
Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%. Copyright © 2015 Elsevier B.V. All rights reserved.
Bishop, Michael Jason; Crow, Brian S; Kovalcik, Kasey D; George, Joe; Bralley, James A
2007-04-01
A rapid and accurate quantitative method was developed and validated for the analysis of four urinary organic acids with nitrogen containing functional groups, formiminoglutamic acid (FIGLU), pyroglutamic acid (PYRGLU), 5-hydroxyindoleacetic acid (5-HIAA), and 2-methylhippuric acid (2-METHIP) by liquid chromatography tandem mass spectrometry (LC/MS/MS). The chromatography was developed using a weak anion-exchange amino column that provided mixed-mode retention of the analytes. The elution gradient relied on changes in mobile phase pH over a concave gradient, without the use of counter-ions or concentrated salt buffers. A simple sample preparation was used, only requiring the dilution of urine prior to instrumental analysis. The method was validated based on linearity (r2>or=0.995), accuracy (85-115%), precision (C.V.<12%), sample preparation stability (
Ion-Exchange Chromatography: Basic Principles and Application.
Cummins, Philip M; Rochfort, Keith D; O'Connor, Brendan F
2017-01-01
Ion-Exchange Chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline basic laboratory protocols to partially purify a soluble serine peptidase from bovine whole brain tissue, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described.
Qiu, Hongdeng; Jiang, Qiong; Wei, Zheng; Wang, Xusheng; Liu, Xia; Jiang, Shengxiang
2007-09-07
A new zwitterionic stationary phase based on silica bonded with 1-alkyl-3-(propyl-3-sulfonate) imidazolium was synthesized and characterized in this paper. The materials have been confirmed and evaluated by elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. Potassium and calcium were separated simultaneously with several common inorganic anions including an iodate, chloride, bromide, nitrate and iodide on the phase. The effects of the concentration, organic solvent and pH of the eluent on the separation of anions were studied. Operated in the anion-exchange mode, this new stationary phase shows considerable promise for the separation of anions. Bases, vitamins and three imidazolium ionic liquids with different alkyl chains are also separated successfully on this column. The stationary phase has multiple retention mechanisms, such as anion-exchange, electrostatic attraction and repulsion interactions, and hydrophobic interaction between the zwitterionic stationary phase and specimens.
Purification of Bacteriophages Using Anion-Exchange Chromatography.
Vandenheuvel, Dieter; Rombouts, Sofie; Adriaenssens, Evelien M
2018-01-01
In bacteriophage research and therapy, most applications ask for highly purified phage suspensions. The standard technique for this is ultracentrifugation using cesium chloride gradients. This technique is cumbersome, elaborate and expensive. Moreover, it is unsuitable for the purification of large quantities of phage suspensions.The protocol described here, uses anion-exchange chromatography to bind phages to a stationary phase. This is done using an FLPC system, combined with Convective Interaction Media (CIM ® ) monoliths. Afterward, the column is washed to remove impurities from the CIM ® disk. By using a buffer solution with a high ionic strength, the phages are subsequently eluted from the column and collected. In this way phages can be efficiently purified and concentrated.This protocol can be used to determine the optimal buffers, stationary phase chemistry and elution conditions, as well as the maximal capacity and recovery of the columns.
Hung, Chuan-Hsi; Zukowski, Janusz; Jensen, David S; Miles, Andrew J; Sulak, Clayton; Dadson, Andrew E; Linford, Matthew R
2015-09-01
Three mixed-mode high-performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine-polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18 ), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed-mode column (C18 ) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed-mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18 ) mixed-mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett
2014-08-01
Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of poly(allylamine) as a polymeric ligand for ion-exchange protein chromatography.
Li, Ming; Li, Yanying; Yu, Linling; Sun, Yan
2017-02-24
This work reports poly(allylamine) (PAA), as a polymeric ion-exchange ligand for protein chromatography. Sepharose FF was modified with PAA, and six anion exchangers with ionic capacities (ICs) from 165 to 618mmol/L were prepared. Inverse size exclusion chromatography, adsorption equilibrium, uptake kinetics and column elution were performed. It was found that both the adsorption capacity and effective diffusivity maintained low values in the IC range of 165-373mmol/L, but they started to increase beyond 373mmol/L, and increased by 80% and 23 times, respectively, when the IC reached 618mmol/L. Interestingly, a drastic decrease of pore size was observed around the IC of 373mmol/L. The results suggest that the PAA chains played an important role in protein adsorption by altering the inner pore structure of the gels. It is considered that, PAA chains turn from inextensible states with multipoint-grafting on the pore surface at low coupling densities (IC<373mmol/L) to closer, extended and flexible grafting states with less coupling points at higher coupling densities (IC>373mmol/L). These characters of the grafted chains at higher IC values benefit in protein adsorption by three-dimensional binding and encouraged the happening of "chain delivery" of bound proteins on the chains. Besides, the ion exchangers showed favorable adsorption and uptake properties in a wide ionic strength range, 0-500mmol/L NaCl, indicating much better salt tolerance feature than the so-far reported ion exchangers. Moreover, a mild condition of pH 5.0 offered effective recovery of bound proteins in elution chromatography. The results indicate that the PAA-based anion exchanger of a high IC value is promising for high-capacity protein chromatography dealing with feedstock of a wide range of ionic strengths. Copyright © 2016 Elsevier B.V. All rights reserved.
Nakatani, Nobutake; Kozaki, Daisuke; Mori, Masanobu; Hasebe, Kiyoshi; Nakagoshi, Nobukazu; Tanaka, Kazuhiko
2011-01-01
Simultaneous determinations of common inorganic anionic species (SO(4)(2-), Cl(-), NO(3)(-), phosphate and silicate) and cations (Na(+), NH(4)(+), K(+), Mg(2+) and Ca(2+)) were conducted using an ion-chromatography system with dual detection of conductivity and spectrophotometry in tandem. The separation of ionic species on a weakly acidic cation-exchange resin was accomplished using a mixture of 100 mM ascorbic acid and 4 mM 18-crown-6 as an acidic eluent (pH 2.6), after which the ions were detected using a conductivity detector. Subsequently, phosphate and silicate were analyzed based on derivatization with molybdate and spectrophotometry at 700 nm. The detection limits at S/N = 3 ranged from 0.11 to 2.9 µM for analyte ionic species. This method was applied to practical river water and wastewater with acceptable criteria for the anion-cation balance and comparisons of the measured and calculated electrical conductivity, demonstrating the usefulness of the present method for water quality monitoring.
Use of proteomics for validation of the isolation process of clotting factor IX from human plasma.
Clifton, James; Huang, Feilei; Gaso-Sokac, Dajana; Brilliant, Kate; Hixson, Douglas; Josic, Djuro
2010-01-03
The use of proteomic techniques in the monitoring of different production steps of plasma-derived clotting factor IX (pd F IX) was demonstrated. The first step, solid-phase extraction with a weak anion-exchange resin, fractionates the bulk of human serum albumin (HSA), immunoglobulin G, and other non-binding proteins from F IX. The proteins that strongly bind to the anion-exchange resin are eluted by higher salt concentrations. In the second step, anion-exchange chromatography, residual HSA, some proteases and other contaminating proteins are separated. In the last chromatographic step, affinity chromatography with immobilized heparin, the majority of the residual impurities are removed. However, some contaminating proteins still remain in the eluate from the affinity column. The next step in the production process, virus filtration, is also an efficient step for the removal of residual impurities, mainly high molecular weight proteins, such as vitronectin and inter-alpha inhibitor proteins. In each production step, the active component, pd F IX and contaminating proteins are monitored by biochemical and immunochemical methods and by LC-MS/MS and their removal documented. Our methodology is very helpful for further process optimization, rapid identification of target proteins with relatively low abundance, and for the design of subsequent steps for their removal or purification.
Automated chromatographic laccase-mediator-system activity assay.
Anders, Nico; Schelden, Maximilian; Roth, Simon; Spiess, Antje C
2017-08-01
To study the interaction of laccases, mediators, and substrates in laccase-mediator systems (LMS), an on-line measurement was developed using high performance anion exchange chromatography equipped with a CarboPac™ PA 100 column coupled to pulsed amperometric detection (HPAEC-PAD). The developed method was optimized for overall chromatographic run time (45 to 120 min) and automated sample drawing. As an example, the Trametes versicolor laccase induced oxidation of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)-1,3-dihydroxypropane (adlerol) using 1-hydroxybenzotriazole (HBT) as mediator was measured and analyzed on-line. Since the Au electrode of the PAD detects only hydroxyl group containing substances with a limit of detection being in the milligram/liter range, not all products are measureable. Therefore, this method was applied for the quantification of adlerol, and-based on adlerol conversion-for the quantification of the LMS activity at a specific T. versicolor laccase/HBT ratio. The automated chromatographic activity assay allowed for a defined reaction start of all laccase-mediator-system reactions mixtures, and the LMS reaction progress was automatically monitored for 48 h. The automatization enabled an integrated monitoring overnight and over-weekend and minimized all manual errors such as pipetting of solutions accordingly. The activity of the LMS based on adlerol consumption was determined to 0.47 U/mg protein for a laccase/mediator ratio of 1.75 U laccase/g HBT. In the future, the automated method will allow for a fast screening of combinations of laccases, mediators, and substrates which are efficient for lignin modification. In particular, it allows for a fast and easy quantification of the oxidizing activity of an LMS on a lignin-related substrate which is not covered by typical colorimetric laccase assays. ᅟ.
Rosskopf, U; Daas, A; Terao, E; von Hunolstein, C
2017-01-01
Before release onto the market, it must be demonstrated that the total and free polysaccharide (poly ribosyl-ribitol-phosphate, PRP) content of Haemophilus influenzae type b (Hib) vaccine complies with requirements. However, manufacturers use different methods to assay PRP content: a national control laboratory must establish and validate the relevant manufacturer methodology before using it to determine PRP content. An international study was organised by the World Health Organization (WHO), in collaboration with the Biological Standardisation Programme (BSP) of the Council of Europe/European Directorate for the Quality of Medicines & HealthCare (EDQM) and of the European Union Commission, to verify the suitability of a single method for determining PRP content in liquid pentavalent vaccines (DTwP-HepB-Hib) containing a whole-cell pertussis component. It consists of HCl hydrolysis followed by chromatographic separation and quantification of ribitol on a CarboPac MA1 column using high-performance anion exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD). The unconjugated, free, PRP is separated from the total PRP using C4 solid-phase extraction cartridges (SPE C4). Ten quality control laboratories performed two independent analyses applying the proposed analytical test protocol to five vaccine samples, including a vaccine lot with sub-potent PRP content and very high free PRP content. Both WHO PRP standard and ribitol reference standard were included as calibrating standards. A significant bias between WHO PRP standard and ribitol reference standard was observed. Study results showed that the proposed analytical method is, in principle, suitable for the intended use provided that a validation is performed as usually expected from quality control laboratories.
Gilchrist, Elizabeth S; Nesterenko, Pavel N; Smith, Norman W; Barron, Leon P
2015-03-20
There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5-50 mM hydroxide with 0-80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20-45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30-40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks. Copyright © 2015 Elsevier B.V. All rights reserved.
Zhu, Lina; Luo, Xi; Tang, Qingjiu; Liu, Yanfang; Zhou, Shuai; Yang, Yan; Zhang, Jingsong
2013-01-01
To obtain a low-molecular-weight polysaccharide with immuno-enhancing activity, hot water extract of Ganoderma lucidum fruit bodies was separated by membrane ultrafiltration, anion exchange, and gel filtration chromatography, and the immunological activities of fractions were assessed on the basis of nitric oxide production by RAW 264.7 macrophages. A novel polysaccharide (TB3-2-2) was successfully isolated and purified. TB3-2-2 is a homogeneous polysaccharide, with a relative molecular weight of 5.11 × 103 Da, identified by high-performance liquid chromatography and was composed of galactose and glucose in a molar ratio of 2:3 determined by high-performance anion exchange chromatography. TB3-2-2 had a carbohydrate content of 99%, as measured using the phenol-sulfuric acid method. Proliferation of mouse spleen lymphocytes and the expression level of interleukin-6 was significantly increased by TB3-2-2. Results indicate that the low-molecular-weight polysaccharide with immunological activity in G. lucidum is worthy of further research and development.
Mixed retention mechanism of proteins in weak anion-exchange chromatography.
Liu, Peng; Yang, Haiya; Geng, Xindu
2009-10-30
Using four commercial weak anion-exchange chromatography (WAX) columns and 11 kinds of different proteins, we experimentally examined the involvement of hydrophobic interaction chromatography (HIC) mechanism in protein retention on the WAX columns. The HIC mechanism was found to operate in all four WAX columns, and each of these columns had a better resolution in the HIC mode than in the corresponding WAX mode. Detailed analysis of the molecular interactions in a chromatographic system indicated that it is impossible to completely eliminate hydrophobic interactions from a WAX column. Based on these results, it may be possible to employ a single WAX column for protein separation by exploiting mixed modes (WAX and HIC) of retention. The stoichiometric displacement theory and two linear plots were used to show that mechanism of the mixed modes of retention in the system was a combination of two kinds of interactions, i.e., nonselective interactions in the HIC mode and selective interactions in the IEC mode. The obtained U-shaped elution curve of proteins could be distinguished into four different ranges of salt concentration, which also represent four retention regions.
Ion-exchange chromatography purification of extracellular vesicles.
Kosanović, Maja; Milutinović, Bojana; Goč, Sanja; Mitić, Ninoslav; Janković, Miroslava
2017-08-01
Despite numerous studies, isolating pure preparations of extracellular vesicles (EVs) has proven challenging. Here, we compared ion-exchange chromatography (IEC) to the widely used sucrose density gradient (SDG) centrifugation method for the purification of EVs. EVs in bulk were isolated from pooled normal human amniotic fluid (AF) by differential centrifugation followed by IEC or sucrose density gradient separation. The purity of the isolated EVs was evaluated by electrophoresis and lectin blotting/immuno blotting to monitor the distribution of total proteins, different EVs markers, and selected N-glycans. Our data showed efficient separation of negatively charged EVs from other differently charged molecules, while comparative profiling of EVs using SDG centrifugation confirmed anion-exchange chromatography is advantageous for EV purification. Finally, although this IEC-based method was validated using AF, the approach should be readily applicable to isolation of EVs from other sources as well.
Royer, A; Laporte, F; Bouchonnet, S; Communal, P-Y
2006-03-03
An analytical method has been developed for the determination of residues of ethephon (2-chloroethyl phosphonic acid) in drinking and surface water. The procedure is based on de-ionisation with an anion/cation-exchange resin, solid phase extraction by means of anion-exchange polystyrene-divinylbenzene extraction disks, elution with a mixture of methanol and 10 M hydrochloric acid (98/2, v/v), redisolution into acetonitrile after evaporation and silylation with N-(tert-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA). Quantification is performed by gas chromatography with ion-trap cubic mass spectrometric detection in the electron impact mode (GC-EI-MS3). Method validation was conducted using samples of mineral, tap, and river water that were fortified with ethephon at concentration levels ranging from 0.1 to 1.0 microg/L. The mean recovery from all the fortified samples (n = 36) amounted to 88% with a relative standard deviation of 17%. The method, therefore, was shown to allow accurate determination of ethephon residues in drinking and surface water with a limit of quantification of 0.1 microg/L.
Separation of anionic oligosaccharides by high-performance liquid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, E.D.; Baenziger, J.U.
1986-10-01
The authors have developed methods for rapid fractionation of anionic oligosaccharides containing sulfate and/or sialic acid moieties by high-performance liquid chromatography (HPLC). Ion-exchange HPLC on amine-bearing columns (Micropak AX-10 and AX-5) at pH 4.0 is utilized to separate anionic oligosaccharides bearing zero, one, two, three, or four charges, independent of the identity of the anionic moieties (sulfate and/or sialic acid). Ion-exchange HPLC at pH 1.7 allows separation of neutral, mono-, di-, and tetrasialylated, monosulfated, and disulfated oligosaccharides. Oligosaccharides containing three sialic acid residues and those bearing one each of sulfate and sialic acid, however, coelute at pH 1.7. Since themore » latter two oligosaccharide species separate at pH 4.0, analysis at pH 4.0 followed by analysis at pH 1.7 can be utilized to completely fractionate complex mixtures of sulfated and sialylated oligosaccharides. Ion-suppression amine adsorption HPLC has previously been shown to separate anionic oligosaccharides on the basis of net carbohydrate content (size). In this study they demonstrate the utility of ion-suppression amine adsorption HPLC for resolving sialylated oligosaccharide isomers which differ only in the linkages of sialic acid residues (..cap alpha..2,3 vs ..cap alpha..2,6) and/or location of ..cap alpha..2,3- and ..cap alpha..2,6-linked sialic acid moieties on the peripheral branches of oligosaccharides. These two methods can be used in tandem to separate oligosaccharides, both analytically and preparatively, based on their number, types, and linkages of anionic moieties.« less
Characterization of inositol phosphates in carrot (Daucus carota L. ) cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rincon, M.; Chen, Q.; Boss, W.F.
1989-01-01
We have shown previously that inositol-1,4,5-trisphosphate (IP{sub 3}) stimulates an efflux of {sup 45}Ca{sup 2+} from fusogenic carrot protoplasts. In light of these results, we suggested that IP{sub 3} might serve as a second messenger for the mobilization of intracellular Ca{sup 2+} in higher plant cells. To determine whether or not IP{sub 3} and other inositol phosphates were present in the carrot cells, the cells were labeled with myo-(2-{sup 3}H)inositol for 18 hours and extracted with ice-cold 10% trichloroacetic acid. The inositol metabolites were separated by anion exchange chromatography and by paper electrophoresis. We found that ({sup 3}H)inositol metabolites coelutedmore » with inositol bisphosphate (IP{sub 2}) and IP{sub 3} when separated by anion exchange chromatography. However, we could not detect IP{sub 2} or IP{sub 3} when the inositol metabolites were analyzed by paper electrophoresis even though the polyphosphoinositides, which are the source of IP{sub 2} and IP{sub 3}, were present in these cells. Thus, ({sup 3}H)inositol metabolites other than IP{sub 2} and IP{sub 3} had coeluted on the anion exchange columns. The data indicate that either IP{sub 3} is rapidly metabolized or that it is not present at a detectable level in the carrot cells.« less
Peng, S; Shan, X Q; Zheng, Y; Jin, L Z; Xu, W B
1991-12-06
A rapid method is described for the determination of dietary cadmium-induced metallothioneins (MTs) in rabbit kidneys by anion-exchange high-performance liquid chromatography. Rabbit kidney MT-I and MT-II were eluted at ca. 15.0 and 18.8 min, respectively, from a DEAE-5PW anion-exchange column with a Tris-HCl buffer (0.01-0.25 M, pH 8.6) and detected by ultraviolet absorbance at 254 nm. A standard calibration curve was constructed using purified standard MT isoforms, which demonstrated an excellent linear correlation between UV absorbance peak heights and the amounts of MT isoforms. Feeding a dose of cadmium for some days resulted in an increase in MT concentrations in rabbit kidneys, but not in the livers. The cadmium concentrations in MT-I and MT-II elutions were determined by graphite furnace atomic absorption spectrometry. MT-I and MT-II showed some differences associated with the oral intake of cadmium. Dietary cadmium also caused zinc to accumulate in kidneys to some extent. The effects of dietary oleic acid on the synthesis of MTs were also studied. Based on the method of standard additions, the recovery of MTs exceeded 93% and replicated injection of samples yielded a relative standard deviation of 2.4% at an MT level of 280 micrograms/g.
High-performance cation-exchange chromatofocusing of proteins.
Kang, Xuezhen; Frey, Douglas D
2003-03-28
Chromatofocusing using high-performance cation-exchange column packings, as opposed to the more commonly used anion-exchange column packings, is investigated with regard to the performance achieved and the range of applications possible. Linear or convex gradients in the range from pH 2.6 to 9 were formed using a variety of commercially available column packings that provide a buffering capacity in different pH ranges, and either polyampholytes or simple mixtures having a small number (three or fewer) of buffering species as the elution buffer. The resolutions achieved using cation-exchange or anion-exchange chromatofocusing were in general comparable, although for certain pairs of proteins better resolution could be achieved using one type of packing as compared to the other, evidently due to the way electrostatic charges are distributed on the protein surface. Several chromatofocusing methods were investigated that take advantage of the acid-base properties of commercially available cation-exchange column packings. These include the use of gradients with a composite shape, the use of very low pH ranges, and the use of elution buffers containing a single buffering species. The advantages of chromatofocusing over ion-exchange chromatography using a salt gradient at constant pH were illustrated by employing the former method and a cation-exchange column packing to separate beta-lactoglobulins A and B, which is a separation reported to be impossible using the latter method and a cation-exchange column packing. Trends in the apparent isoelectric points determined using cation- and anion-exchange chromatofocusing were interpreted using applicable theories. Results of this study indicate that cation-exchange chromatofocusing is a useful technique which is complementary to anion-exchange chromatofocusing and isoelectric focusing for separating proteins at both the analytical and preparative scales.
Dumanli, Rukiye; Attar, Azade; Erci, Vildan; Isildak, Ibrahim
2016-01-01
A microliter dead-volume flow-through cell as a potentiometric detector is described in this article for sensitive, selective and simultaneous detection of common monovalent anions and cations in single column ion chromatography for the first time. The detection cell consisted of less selective anion- and cation-selective composite membrane electrodes together with a solid-state composite matrix reference electrode. The simultaneous separation and sensitive detection of sodium (Na+), potassium (K+), ammonium (NH4+), chloride (Cl−) and nitrate (NO3−) in a single run was achieved by using 98% 1.5 mM MgSO4 and 2% acetonitrile eluent with a mixed-bed ion-exchange separation column without suppressor column system. The separation and simultaneous detection of the anions and cations were completed in 6 min at the eluent flow-rate of 0.8 mL/min. Detection limits, at S/N = 3, were ranged from 0.2 to 1.0 µM for the anions and 0.3 to 3.0 µM for the cations, respectively. The developed method was successfully applied to the simultaneous determination of monovalent anions and cations in several environmental and biological samples. PMID:26786906
Romarís-Hortas, Vanessa; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio
2012-05-04
Anion exchange high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry has been novelly applied to assess inorganic (iodide and iodate) and organic (3-iodotyrosine - MIT, and 3,5-diiodotyrosine - DIT) iodine species in a single chromatographic run. The optimized operating conditions (Dionex IonPac AS7, gradient elution with 175 mM ammonium nitrate plus 15% (v/v) methanol, pH 3.8, as a mobile phase and flow rates within the 0.5-1.5 mL min(-1) range) have also been used to perform inorganic bromine speciation analysis (bromide and bromate). The developed method has been applied for determining the bio-available contents of iodine and bromine species in dialyzates from edible seaweed. Reverse phase high performance liquid chromatography (Zorbax Eclipse XDB-C8, gradient elution with 0.2% (m/m) acetic acid, and 0.2% (m/m) acetic acid in methanol, as mobile phases, and a constant flow rate of 0.75 mL min(-1)) also hyphenated with inductively coupled plasma-mass spectrometry was used to confirm the presence of organic iodine species (MIT and DIT) in the dialyzates. The verification of the presence of iodinated amino acids (MIT and DIT) in the extracts was also performed by reverse phase high performance liquid chromatography-electrospray ionization-mass spectrometry (LTQ Orbitrap). The developed methods have provided good repeatability (RSD values lower than 10% for both anion exchange and reverse phase separations) and analytical recoveries within the 90-105% range for all cases. The in vitro bio-availability method consisted of a simulated gastric and an intestinal digestion/dialysis (10 kDa molecular weight cut-off - MWCO) two-stage procedure. Iodide and MIT were the main bio-available species quantified, whereas bromide was the major bromine species found in the extracts. Copyright © 2012 Elsevier B.V. All rights reserved.
Qiao, Lizhen; Li, Hua; Shan, Yuanhong; Wang, Shuangyuan; Shi, Xianzhe; Lu, Xin; Xu, Guowang
2014-02-21
In the present study, several geminal dicationic ionic liquids based on 1,4-bis(3-allylimidazolium)butane and 1,8-bis(3-allylimidazolium)octane in combination with different anions bromide and bis(trifluoromethanesulphonyl)imide were prepared and then bonded to the surface of 3-mercaptopropyl modified silica materials through the "thiol-ene" click chemistry as stationary phases for hydrophilic interaction chromatography (HILIC). Compared with their monocationic analogues, the dicationic ionic liquids stationary phases presented effective retention and good selectivity for typical hydrophilic compounds under HILIC mode with the column efficiency as high as 130,000 plates/m. Moreover, the influence of different alkyl chain spacer between dications and combined anions on the retention behavior and selectivity of the dicationic ionic liquids stationary phases under HILIC mode was displayed. The results indicated that the longer linkage chain would decrease the hydrophilicity and retention on the dicationic ionic liquid stationary phase, and while differently combined anions had no difference due to the exchangeability under the common HILIC mobile phase with buffer salt. Finally, the retention mechanism was investigated by evaluating the effect of chromatographic factors on retention, including the water content in the mobile phase, the mobile phase pH and buffer salt concentration. The results showed that the dicationic ionic liquids stationary phases presented a mixed-mode retention behavior with HILIC mechanism and anion exchange. Copyright © 2014 Elsevier B.V. All rights reserved.
Purification of adenoviral vectors by combined anion exchange and gel filtration chromatography.
Eglon, Marc N; Duffy, Aoife M; O'Brien, Timothy; Strappe, Padraig M
2009-11-01
Adenoviral vectors are used extensively in human gene therapy trials and in vaccine development. Large-scale GMP production requires a downstream purification process, and liquid chromatography is emerging as the most powerful mode of purification, enabling the production of vectors at a clinically relevant scale and quality. The present study describes the development of a two-step high-performance liquid chromatography (HPLC) process combining anion exchange (AIEX) and gel filtration (GF) in comparison with the caesium chloride density gradient method. HEK-293 cells were cultured in ten-layer CellStacks() and infected with 10 pfu/cell of adenoviral vector expressing green fluorescent protein (Ad5-GFP). Cell-bound virus was harvested and benzonase added to digest DNA, crude lysate was clarified by centrifugation and filtration prior to HPLC. Chromatography fractions were added to HEK-293 cells and GFP expression measured using a fluorescent plate reader. Using AIEX then GF resulted in an adenoviral vector with purity comparable to Ad5-GFP purified by CsCl, whereas the reverse process (GF-AIEX) showed a reduced purity by electrophoresis and required further buffer exchange of the product. The optimal process (AIEX-GF) resulted in a vector yield of 2.3 x 10(7) pfu/cm(2) of cell culture harvested compared to 3.3 x 10(7) pfu/cm(2) for CsCl. The process recovery for the HPLC process was 36% compared to 27.5% for CsCl and total virion to infectious particle ratios of 18 and 11, respectively, were measured. We present a simple two-step chromatography process that is capable of producing high-quality adenovirus at a titre suitable for scale-up and clinical translation.
Jin, Weihua; Wang, Jing; Ren, Sumei; Song, Ni; Zhang, Quanbin
2012-01-01
A fucoidan extracted from Saccharina japonica was fractionated by anion exchange chromatography. The most complex fraction F0.5 was degraded by dilute sulphuric acid and then separated by use of an activated carbon column. Fraction Y1 was fractionated by anion exchange and gel filtration chromatography while Fraction Y2 was fractionated by gel filtration chromatography. The fractions were determined by ESI-MS and analyzed by ESI-CID-MS/MS. It was concluded that F0.5 had a backbone of alternating 4-linked GlcA and 2-linked Man with the first Man residue from the nonreducing end accidentally sulfated at C6. In addition, F0.5 had a 3-linked glucuronan, in accordance with a previous report by NMR. Some other structural characteristics included GlcA 1→3 Man 1→4 GlcA, Man 1→3 GlcA 1→4 GlcA, Fuc 1→4 GlcA and Fuc 1→3 Fuc. Finally, it was shown that fucose was sulfated at C2 or C4 while galactose was sulfated at C2, C4 or C6. PMID:23170074
Gu, Huimin; Yin, Dezhong; Ren, Jie; Zhang, Baoliang; Zhang, Qiuyu
2016-10-15
Large size virion is unable to diffuse into pores of conventional porous chromatography particles. Therefore, separation of virion by conventional column-packing materials is not quite efficient. To solve this problem, a monolithic column with large convective pores and quaternary amine groups was prepared and was applied to separate Enterovirus 71 (EV71, ≈5700-6000kDa). Cross-section, pore structure, hydrodynamic performance, adsorption property and dynamic binding capacity of prepared monolithic column were determined. Double-pore structures, macropore at 2472nm and mesopore at 5-60nm, were formed. The porosity was up to 63.3%, which enable higher permeability and lower back pressure of the monolithic column than commercial UNO™ Q1 column. Based on the breakthrough curves, the loading capacity of bovine serum albumin was calculated to be 42.0mg per column. In addition, prepared quaternary amine monolithic column was proved to be suitable for the separation of protein mixture by strong anion-exchange chromatography. As a practical application, prepared monolith column presents excellent performance to the separation of EV71 from virus-proteins mixture. Copyright © 2016 Elsevier B.V. All rights reserved.
Purification of bacteriophage M13 by anion exchange chromatography.
Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang
2010-07-01
M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.
Meng, Hong-Bo; Wang, Tian-Ran; Guo, Bao-Yuan; Hashi, Yuki; Guo, Can-Xiong; Lin, Jin-Ming
2008-07-15
A non-suppressed ion chromatographic method by connecting anion-exchange and cation-exchange columns directly was developed for the separation and determination of five inorganic anions (sulfate, nitrate, chloride, nitrite, and chlorate) and three cations (sodium, ammonium, and potassium) simultaneously in explosive residues. The mobile phase was composed of 3.5mM phthalic acid with 2% acetonitrile and water at flow rate of 0.2 mL/min. Under the optimal conditions, the eight inorganic ions were completely separated and detected simultaneously within 16 min. The limits of detection (S/N=3) of the anions and cations were in the range of 50-100 microg/L and 150-320 microg/L, respectively, the linear correlation coefficients were 0.9941-0.9996, and the R.S.D. of retention time and peak area were 0.10-0.29% and 5.65-8.12%, respectively. The method was applied successfully to the analysis of the explosive samples with satisfactory results.
Mojarrad Moghanloo, Gol Mohammad; Khatami, Maryam; Javidanbardan, Amin; Hosseini, Seyed Nezamedin
2018-01-01
In biopharmaceutical science, ion-exchange chromatography (IEC) is a well-known purification technique to separate the impurities such as host cell proteins from recombinant proteins. However, IEC is one of the limiting steps in the purification process of recombinant hepatitis B surface antigen (rHBsAg), due to its low recovery rate (<50%). In the current study, we hypothesized that ionic strengths of IEC buffers are easy-to-control parameters which can play a major role in optimizing the process and increasing the recovery. Thus, we investigated the effects of ionic strengths of buffers on rHBsAg recovery via adjusting Tris-HCl and NaCl concentrations. Increasing the conductivity of equilibration (Eq.), washing (Wash.) and elution (Elut.) buffers from their initial values of 1.6 mS/cm, 1.6 mS/cm, and 7.0 mS/cm to 1.6 mS/cm, 7 mS/cm and 50 mS/cm, respectively yielded an average recovery rate of 82% in both lab-scale and large-scale weak anion-exchange chromatography without any harsh effect on the purity percentage of rHBsAg. The recovery enhancement via increasing the conductivity of Eq. and Wash. buffers can be explained by their roles in reducing the binding strength and aggregation of retained particles in the column. Moreover, further increase in the salt concentration of Elut. Buffer could substantially promote the ion exchange process and the elution of retained rHBsAg. Copyright © 2017 Elsevier Inc. All rights reserved.
Zimmermann, Aleksandra; Greco, Roberto; Walker, Isabel; Horak, Jeannie; Cavazzini, Alberto; Lämmerhofer, Michael
2014-08-08
Synthetic oligonucleotides gain increasing importance in new therapeutic concepts and as probes in biological sciences. If pharmaceutical-grade purities are required, chromatographic purification using ion-pair reversed-phase chromatography is commonly carried out. However, separation selectivity for structurally closely related impurities is often insufficient, especially at high sample loads. In this study, a "mixed-mode" reversed-phase/weak anion exchanger stationary phase has been investigated as an alternative tool for chromatographic separation of synthetic oligonucleotides with minor sequence variations. The employed mixed-mode phase shows great flexibility in method development. It has been run in various gradient elution modes, viz. one, two or three parameter (mixed) gradients (altering buffer pH, buffer concentration, and organic modifier) to find optimal elution conditions and gain further insight into retention mechanisms. Compared to ion-pair reversed-phase and mere anion-exchange separation, enhanced selectivities were observed with the mixed-mode phase for 20-23 nucleotide (nt) long oligonucleotides with similar sequences. Oligonucleotides differing by 1, 2 or 3 nucleotides in length could be readily resolved and separation factors for single nucleotide replacements declined in the order Cytosine (C)/Guanine (G)>Adenine (A)/Guanine∼Guanine/Thymine (T)>Adenine/Cytosine∼Cytosine/Thymine>Adenine/Thymine. Selectivities were larger when the modification was at the 3' terminal-end, declined when it was in the middle of the sequence and was smallest when it was located at the 5' terminus. Due to the lower surface area of the 200Å pore size mixed-mode stationary phase compared to the corresponding 100Å material, lower retention times with equal selectivities under milder elution conditions were achievable. Considering high sample loading capacities of the mixed-mode anion-exchanger phase, it should have great potential for chromatographic oligonucleotide separation and purification. Copyright © 2014 Elsevier B.V. All rights reserved.
Zakaria, Philip; Dicinoski, Greg W; Ng, Boon Khing; Shellie, Robert A; Hanna-Brown, Melissa; Haddad, Paul R
2009-09-18
The ion-exchange separation of organic anions of varying molecular mass has been demonstrated using ion chromatography with isocratic, gradient and multi-step eluent profiles on commercially available columns with UV detection. A retention model derived previously for inorganic ions and based solely on electrostatic interactions between the analytes and the stationary phase was applied. This model was found to accurately describe the observed elution of all the anions under isocratic, gradient and multi-step eluent conditions. Hydrophobic interactions, although likely to be present to varying degrees, did not limit the applicability of the ion-exchange retention model. Various instrumental configurations were investigated to overcome problems associated with the use of organic modifiers in the eluent which caused compatibility issues with the electrolytically derived, and subsequently suppressed, eluent. The preferred configuration allowed the organic modifier stream to bypass the eluent generator, followed by subsequent mixing before entering the injection valve and column. Accurate elution prediction was achieved even when using 5-step eluent profiles with errors in retention time generally being less than 1% relative standard deviation (RSD) and all being less than 5% RSD. Peak widths for linear gradient separations were also modelled and showed good agreement with experimentally determined values.
Kojima, Yuka; Várnai, Anikó; Ishida, Takuya; Sunagawa, Naoki; Petrovic, Dejan M; Igarashi, Kiyohiko; Jellison, Jody; Goodell, Barry; Alfredsen, Gry; Westereng, Bjørge; Eijsink, Vincent G H; Yoshida, Makoto
2016-11-15
Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct GtLPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses using high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed that GtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of GtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, NcLPMO9C from Neurospora crassa revealed that GtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of NcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities of GtLPMO9A-2. These results provide insight into the LPMO potential of G. trabeum and provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity. Currently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall. Copyright © 2016 Kojima et al.
Separation of Uncharged Oligodeoxynucleotide Analogs by Anion-Exchange Chromatography at High pH
NASA Technical Reports Server (NTRS)
Schmidt, Jurgen G.; Nielsen, Peter E.; Orgel, Leslie
1996-01-01
Ion-exchange chromatography is a well-established method for the analysis and purification of phosphodiester-linked oligonucleotides. If elution is carried out under alkaline conditions, the secondary structure of G- and C-rich oligomers is disrupted. Furthermore, elution times become more sensitive to the G and T content of the oligomer, because G and T are deprotonated at pH 10. In recent work on peptide-nucleic acids (PNAs) we noted that mixtures of PNA oligomers G(sub 4), G(Sub 6), G(sub 8), and G(sub 10) are readily separated by elution at pH 12 on an RPC-5 column. Here we show that this separation method is more generally applicable.
Kröner, Frieder; Hubbuch, Jürgen
2013-04-12
pH gradient protein separations are widely used techniques in the field of protein analytics, of which isoelectric focusing is the most well known application. The chromatographic variant, based on the formation of pH gradients in ion exchange columns is only rarely applied due to the difficulties to form controllable, linear pH gradients over a broad pH range. This work describes a method for the systematic generation of buffer compositions with linear titration curves, resulting in well controllable pH gradients. To generate buffer compositions with linear titration curves an in silico method was successfully developed. With this tool, buffer compositions for pH gradient ion exchange chromatography with pH ranges spanning up to 7.5 pH units were established and successfully validated. Subsequently, the buffer systems were used to characterize the elution behavior of 22 different model proteins in cation and anion exchange pH gradient chromatography. The results of both chromatographic modes as well as isoelectric focusing were compared to describe differences in between the methods. Copyright © 2013 Elsevier B.V. All rights reserved.
Lock, Martin; Alvira, Mauricio R.
2012-01-01
Abstract Advances in adeno-associated virus (AAV)-mediated gene therapy have brought the possibility of commercial manufacturing of AAV vectors one step closer. To realize this prospect, a parallel effort with the goal of ever-increasing sophistication for AAV vector production technology and supporting assays will be required. Among the important release assays for a clinical gene therapy product, those monitoring potentially hazardous contaminants are most critical for patient safety. A prominent contaminant in many AAV vector preparations is vector particles lacking a genome, which can substantially increase the dose of AAV capsid proteins and lead to possible unwanted immunological consequences. Current methods to determine empty particle content suffer from inconsistency, are adversely affected by contaminants, or are not applicable to all serotypes. Here we describe the development of an ion-exchange chromatography-based assay that permits the rapid separation and relative quantification of AAV8 empty and full vector particles through the application of shallow gradients and a strong anion-exchange monolith chromatography medium. PMID:22428980
Fractionation of sheep cheese whey by a scalable method to sequentially isolate bioactive proteins.
Pilbrow, Jodi; Bekhit, Alaa El-Din A; Carne, Alan
2016-07-15
This study reports a procedure for the simultaneous purification of glyco(caseino)macropeptide, immunoglobulin, lactoperoxidase, lactoferrin, α-lactalbumin and β-lactoglobulin from sheep cheese sweet whey, an under-utilized by-product of cheese manufacture generated by an emerging sheep dairy industry in New Zealand. These proteins have recognized value in the nutrition, biomedical and health-promoting supplements industries. A sequential fractionation procedure using economical anion and cation exchange chromatography on HiTrap resins was evaluated. The whey protein fractionation is performed under mild conditions, requires only the adjustment of pH between ion exchange chromatography steps, does not require buffer exchange and uses minimal amounts of chemicals. The purity of the whey protein fractions generated were analyzed by reversed phase-high performance liquid chromatography and the identity of the proteins was confirmed by mass spectrometry. This scalable procedure demonstrates that several proteins of recognized value can be fractionated in reasonable yield and purity from sheep cheese whey in one streamlined process. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-performance liquid chromatography of human glycoprotein hormones.
Chlenov, M A; Kandyba, E I; Nagornaya, L V; Orlova, I L; Volgin, Y V
1993-02-12
The chromatographic behavior of the glycoprotein hormones from human pituitary glands and of placental origin [thyroid-stimulating hormone, luteinizing hormone and chorionic gonadotropin (CG)] was studied. It was shown that hydrophobic interaction chromatography on a microparticulate packing and anion-exchange HPLC can be applied for the purification of these hormones. Reversed-phase HPLC on wide-pore C4-bonded silica at neutral pH can be applied for the determination of the above hormones and for the isolation of pure CG and its subunits.
Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions.
Cornelissen, E R; Moreau, N; Siegers, W G; Abrahamse, A J; Rietveld, L C; Grefte, A; Dignum, M; Amy, G; Wessels, L P
2008-01-01
Early elimination of natural organic matter (NOM) by ion exchange (IEX) in water treatment is expected to improve subsequent water treatment processes and the final drinking water quality. Nine anionic exchange resins were investigated to remove NOM and specific NOM fractions determined by liquid chromatography in combination with organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (EEM). Breakthrough of NOM was predicted by model calculations using Freundlich isotherms and IEX rate experiments. The time to breakthrough varied from 4 to 38 days. Removal of specific NOM fractions proved to vary considerably for the different types of IEX resins, ranging from 1% to almost 60%. The removal of NOM fractions, specifically humic substances, increased with an increase in water content of the investigated IEX resins and with a decrease in resin size. The best-performing IEX resins consisted of the smallest resins and/or those with the highest water content. The worst-performing IEX resins reflected the highest exchanging capacities and the lowest water contents.
Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan
2014-11-28
The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.
Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J
2005-04-01
The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.
Cruz-Cárdenas, Carlos I.; Miranda-Ham, María L.; Castro-Concha, Lizbeth A.; Ku-Cauich, José R.; Vergauwen, Rudy; Reijnders, Timmy; Van den Ende, Wim; Escobedo-GraciaMedrano, Rosa M.
2015-01-01
The water soluble carbohydrates (WSC) glucose, fructose, and sucrose are well-known to the great public, but fructans represent another type of WSC that deserves more attention given their prebiotic and immunomodulatory properties in the food context. Although the occurrence of inulin-type fructo-oligosaccharides (FOS) was proposed in the fruit of some banana accessions, little or no information is available neither on the exact identity of the fructan species, nor on the fructan content in different parts of banana plants and among a broader array of banana cultivars. Here, we investigated the WSC composition in leaves, pulp of ripe fruits and rhizomes from mature banana plants of 11 accessions (I to XI), including both cultivated varieties and wild Musa species. High performance anion exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD) showed the presence of 1-kestotriose [GF2], inulobiose [F2], inulotriose [F3], 6-kestotriose and 6G-kestotriose (neokestose) fructan species in the pulp of mature fruits of different accessions, but the absence of 1,1-nystose and 1,1,1 kestopentaose and higher degree of polymerization (DP) inulin-type fructans. This fructan fingerprint points at the presence of one or more invertases that are able to use fructose and sucrose as alternative acceptor substrates. Quantification of glucose, fructose, sucrose and 1-kestotriose and principal component analysis (PCA) identified related banana groups, based on their specific WSC profiles. These data provide new insights in the biochemical diversity of wild and cultivated bananas, and shed light on potential roles that fructans may fulfill across species, during plant development and adaptation to changing environments. Furthermore, the promiscuous behavior of banana fruit invertases (sucrose and fructose as acceptor substrates besides water) provides a new avenue to boost future work on structure-function relationships on these enzymes, potentially leading to the development of genuine banana fructosyltransferases that are able to increase fructan content in banana fruits. PMID:26106398
Evaluation of fungal spore characteristics in Beijing, China, based on molecular tracer measurements
NASA Astrophysics Data System (ADS)
Liang, Linlin; Engling, Guenter; He, Kebin; Du, Zhenyu; Cheng, Yuan; Duan, Fengkui
2013-03-01
PM2.5 (particulate matter with aerodynamic diameters less than 2.5 μm) and PM10 (particulate matter with aerodynamic diameters less than 10 μm) samples were collected by high-volume air samplers simultaneously at a rural site and an urban site in Beijing, China. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the sugar alcohols mannitol and arabitol, recently proposed as molecular tracers for fungal aerosol. The annual average concentrations of arabitol in PM2.5 and PM10 at the urban site were 7.4 ± 9.4 and 21.0 ± 20.4 ng m-3, and the respective mannitol concentrations were 10.3 ± 9.5 and 31.9 ± 26.9 ng m-3. During summer and autumn, higher arabitol and mannitol levels than during spring and winter were observed in coarse particles, probably due to different dominant sources of fungal spores in different seasons. In the dry season (i.e., winter and spring) in Beijing, probably only the suspension from exposed surfaces (e.g., soil resuspension, transported dust, etc) can be regarded as the main sources for fungal aerosols. On the other hand, in summer and autumn, fungal spores in the atmosphere can be derived from more complex sources, including plants, vegetation decomposition and agricultural activity, such as ploughing; these fungal spore sources may contribute more to coarse PM. Moreover, statistical analysis according to typical seasonal patterns, including a dry season (December 2010 to March 2011) and a wet season (July to September 2011), revealed different variations of fungal spores in different seasons. Although fungal spore levels at rural sites were reported to be consistently higher than those at urban sites in other studies, our findings showed the opposite pattern, indicating a high abundance of fungal spores in the urban area of this Chinese megacity.
Separation of 'Uncharged' Oligodeoxynucleotide Analogs by Anion-Exchange Chromatography at High pH
NASA Technical Reports Server (NTRS)
Schmidt, Jurgen G.; Orgel, Leslie E.; Nielsen, Peter E.
1996-01-01
Ion-exchange chromatography is a well-established method for the analysis and purification of phosphodiester-linked oligonucleotides. If elution is carried out under alkaline conditions, the secondary structure of G- and C-rich oligomers is disrupted. Furthermore, elution times become more sensitive to the G and T content of the oligomer, because G and T are deprotonated at pH 10. In recent work on peptide-nucleic acids (PNAs) we noted that mixtures of PNA oligomers G(sub 4), G(sub 6), G(sub 8), and G9(sub 10) are readily separated by elution at pH 12 on an RPC-5 column. Here we show that this separation method is more generally applicable.
Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fassbender, Michael E.; Radchenko, Valery
Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fractionmore » of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.« less
High-performance liquid chromatography of oligoguanylates at high pH
NASA Technical Reports Server (NTRS)
Stribling, R.; Deamer, D. (Principal Investigator)
1991-01-01
Because of the stable self-structures formed by oligomers of guanosine, standard high-performance liquid chromatography techniques for oligonucleotide fractionation are not applicable. Previously, oligoguanylate separations have been carried out at pH 12 using RPC-5 as the packing material. While RPC-5 provides excellent separations, there are several limitations, including the lack of a commercially available source. This report describes a new anion-exchange high-performance liquid chromatography method using HEMA-IEC BIO Q, which successfully separates different forms of the guanosine monomer as well as longer oligoguanylates. The reproducibility and stability at high pH suggests a versatile role for this material.
Tsonev, Latchezar I; Hirsh, Allen G
2008-07-25
pISep is a major new advance in low ionic strength ion exchange chromatography. It enables the formation of externally controlled pH gradients over the very broad pH range from 2 to 12. The gradients can be generated on either cationic or anionic exchangers over arbitrary pH ranges wherein the stationary phases remain totally charged. Associated pISep software makes possible the calculation of either linear, nonlinear or combined, multi-step, multi-slope pH gradients. These highly reproducible pH gradients, while separating proteins and glycoproteins in the order of their electrophoretic pIs, provide superior chromatographic resolution compared to salt. This paper also presents a statistical mechanical model for protein binding to ion exchange stationary phases enhancing the electrostatic interaction theory for the general dependence of retention factor k, on both salt and pH simultaneously. It is shown that the retention factors computed from short time isocratic salt elution data of a model protein can be used to accurately predict its salt elution concentration in varying slope salt elution gradients formed at varying isocratic pH as well as the pH at which it will be eluted from an anionic exchange column by a pISep pH gradient in the absence of salt.
Suzuki, Y
1987-04-10
A high-performance anion-exchange liquid chromatograph coupled to visible-range (370 nm) and UV (280 nm) detectors and an atomic-absorption spectrometer allowed the rapid determination of CrVI and/or complexes of CrIII in rat plasma, erythrocyte lysate and liver supernatant treated with CrVI or CrIII in vitro. CrVI in the eluates was determined using both the visible-range detector and atomic-absorption spectrometer (AAS). The detection limits of CrVI in standard solutions using these methods were 2 and 5 ng (signal-to-noise ratio = 2), respectively. Separations of the biological components and of CrIII complexes were monitored by UV and AAS analyses, respectively. Time-related decreases of CrVI accompanied by increases in CrIII complexes were observed, indicating the reduction of CrVI by some of the biological components. The reduction rates were considerably higher in the liver supernatant and erythrocyte lysate than in the plasma. These results indicate that the anion-exchange high-performance liquid chromatographic system is useful for simultaneous determination of CrVI and CrIII complexes in biological materials.
Liao, Benjamin S; Sram, Jacqueline C; Files, Darin J
2013-01-01
A simple and effective anion ion chromatography (IC) method with anion exchange column and conductivity detector has been developed to determine free sulfites (SO3-2) in dried fruits processed with sulfur dioxide. No oxidation agent, such as hydrogen peroxide, is used to convert sulfites to sulfates for IC analysis. In addition, no stabilizing agent, such as formaldehyde, fructose or EDTA, is required during the sample extraction. This method uses aqueous 0.2 N NaOH as the solvent for standard preparation and sample extraction. The sulfites, either prepared from standard sodium sulfite powder or extracted from food samples, are presumed to be unbound SO3-2 in aqueous 0.2 N NaOH (pH > 13), because the bound sulfites in the sample matrix are released at pH > 10. In this study, sulfites in the standard solutions were stable at room temperature (i.e., 15-25 degrees C) for up to 12 days. The lowest standard of the linear calibration curve is set at 1.59 microg/mL SO3-2 (equivalent to 6.36 microg/g sample with no dilution) for analysis of processed dried fruits that would contain high levels (>1000 microg/g) of sulfites. As a consequence, this method typically requires significant dilution of the sample extract. Samples are prepared with a simple procedure of sample compositing, extraction with aqueous 0.2 N NaOH, centrifugation, dilution as needed, and filtration prior to IC. The sulfites in these sample extracts are stable at room temperature for up to 20 h. Using anion IC, the sulfites are eluted under isocratic conditions with 10 mM aqueous sodium carbonate solution as the mobile phase passing through an anion exchange column. The sulfites are easily separated, with an analysis run time of 18 min, regardless of the dried fruit matrix. Recoveries from samples spiked with sodium sulfites were demonstrated to be between 81 and 105% for five different fruit matrixes (apricot, golden grape, white peach, fig, and mango). Overall, this method is simple to perform and effective for the determination of high levels of sulfites in dried fruits.
Bian, Liujiao; Yang, Jianting; Sun, Yu
2015-10-01
Monosialotetrahexosylganglioside (GM1), one of glycosphingolipids containing sialic acid, plays particularly important role in fighting against paralysis, dementia and other diseases caused by brain and nerve damage. In this work, a simple and highly efficient method with high yield was developed for isolation and purification of GM1 from pig brain. The method consisted of an extraction by chloroform-methanol-water and a two-step chromatographic separation by DEAE-Sepharose Fast Flow anion-exchange medium and Sephacryl S-100 HR size-exclusion medium. The purified GM1 was proved to be homogeneous and had a purity of >98.0% by high-performance anion-exchange and size-exclusion chromatography. The molecular weight was 30.0 kDa by high-performance size-exclusion chromatography and 1546.9 Da by electrospray ionization mass spectrometry. The chromogenic reaction by resorcinol-hydrochloric acid solution indicated that the purified GM1 showed a specific chromogenic reaction of sialic acid. Through this isolation and purification program, ~1.0 mg of pure GM1 could be captured from 500 g wet pig brain tissue and the yield of GM1 was around 0.022%, which was higher than the yields by other methods. The method may provide an alternative for isolation and purification of GM1 in other biological tissues. Copyright © 2015 John Wiley & Sons, Ltd.
Water quality monitoring of Jialing-River in Chongqing using advanced ion chromatographic system.
Tanaka, Kazuhiko; Shi, Chao-Hong; Nakagoshi, Nobukazu
2012-04-01
The water quality monitoring operation to evaluate the water quality of polluted river is an extremely important task for the river-watershed management/control based on the environmental policy. In this study, the novel, simple and convenient water quality monitoring of Jialing-River in Chongqing, China was carried out using an advanced ion chromatography (IC) consisting of ion-exclusion/cation-exchange chromatography (IEC/CEC) with conductivity detection for determining simultaneously the common anions such as SO4(2-), Cl(-), and NO3(-) and the cations such as Na+, NH4+, K+, Mg2+, and Ca2+, the ion-exclusion chromatography (IEC) with visible detection for determining simultaneously the nutrient components such as phosphate and silicate ions, and the IEC with the enhanced conductivity detection using a post column of K+-form cation-exchange resin for determining HCO3(-)-alkalinity as an inorganic-carbon source for biomass synthesis in biological reaction process under the aerobic conditions. According to the ionic balance theory between the total equivalent concentrations of anions and cations, the water quality evaluation of the Jialing-River waters taking at different sampling sites in Chongqing metropolitan area was carried out using the advanced IC system. As a result, the effectiveness of this novel water quality monitoring methodology using the IC system was demonstrated on the several practical applications to a typical biological sewage treatment plant on Jialing-River of Chongqing.
Lemaire, Julien; Blanc, Claire-Line; Lutin, Florence; Théoleyre, Marc-André; Stambouli, Moncef; Pareau, Dominique
2016-08-05
Bio-based organic acids are promising renewable carbon sources for the chemical industry. However energy-consuming purification processes are used, like distillation or crystallization, to reach high purities required in some applications. That is why preparative chromatography was studied as an alternative separation technique. In a previous work dealing with the purification of lactic, succinic and citric acids, the Langmuir model was insufficient to explain the elution profiles obtained with a strong anionic resin. Consequently the Langmuir model was coupled with a usual ion-exchange model to take into account the retention of their conjugate bases (<2%), which are commonly neglected at low pH (<1.5). Elution simulations with both uptake mechanisms fitted very well with experimental pulse tests. Only two parameters were optimized (equilibrium constant of acid uptake and ion-exchange selectivity coefficient of conjugate base) and their value were coherent with experimental and resin suppliers' data. These results confirmed that the singular tailing and apparent delay observed with succinic and citric acids can be explained by the high affinity of succinate and citrate for resin cationic sites. The model was implemented in a preparative chromatography simulation program in order to optimize operating parameters of our pilot-scale ISMB unit (Improved Simulated Moving Bed). The comparison with experimental ISMB profiles was conclusive. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morrison, Samuel S.; Clark, Sue B.; Eggemeyer, Tere A.
Activation analysis of gold (Au) is used to estimate neutron fluence resulting from a criticality event; however, such analyses are complicated by simultaneous production of other gamma-emitting fission products. Confidence in neutron fluence estimates can be increased by quantifying additional activation products such as platinum (Pt), tantalum (Ta), and tungsten (W). This work describes a radiochemical separation procedure for the determination of these activation products. Anion exchange chromatography is used to separate anionic forms of these metals in a nitric acid matrix; thiourea is used to isolate the Au and Pt fraction, followed by removal of the Ta fraction usingmore » hydrogen peroxide. W, which is not retained on the first anion exchange column, is transposed to an HCl/HF matrix to enhance retention on a second anion exchange column and finally eluted using HNO3/HF. Chemical separations result in a reduction in the minimum detectable activity by a factor of 287, 207, 141, and 471 for 182Ta, 187W, 197Pt, and 198Au respectively, with greater than 90% recovery for all elements. These results represent the highest recoveries and lowest minimum detectable activities for 182Ta, 187W, 197Pt, and 198Au from mixed fission-activation product samples to date, enabling considerable refinement in the measurement uncertainties for neutron fluences in highly complex sample matrices.« less
NASA Astrophysics Data System (ADS)
Bylyku, Elida
2009-04-01
In Albania in recent years it has been of increasing interest to determine various pollutants in the environment and their possible effects on human health. The radiochemical procedure used to identify Pu, Am, U, Th, and Sr radioisotopes in soil, sediment, water, coal, and milk samples is described. The analysis is carried out in the presence of respective tracer solutions and combines the procedure for Pu analysis based on anion exchange, the selective method for Sr isolation based on extraction chromatography using Sr-Spec resin, and the application of the TRU-Spec column for separation of Am fraction. An acid digestion method has been applied for the decomposition of samples. The radiochemical procedure involves the separation of Pu from Th, Am, and Sr by anion exchange, followed by the preconcentration of Am and Sr by coprecipitation with calcium oxalate. Am is separated from Sr by extraction chromatography. Uranium is separated from the bulk elements by liquid-liquid extraction using UTEVA® resin. Thin sources for alpha spectrometric measurements are prepared by microprecipitation with NdF3. Two International Atomic Energy Agency reference materials were analyzed in parallel with the samples.
Endo, K; Yamanaka, A; Mitsumasu, K; Sakurama, T; Tanaka, D
1997-02-21
A neuropeptide from brain-suboesophageal ganglion (Br-SG) complexes of the silkmoth, Bombyx mori, shows summer-morph-producing hormone (SMPH) activity in the Asian comma butterfly, P. c-aureum. The SMPH-active peptide was extracted and demonstrated to be almost the same molecular size as bombyxin (4-5kD), a nueropeptide which shows prothoracicotropic hormone (PTTH) activity when assayed in vitro with prothoracic glands (PGs) of 4th-instar B. mori larvae in vitro. A Sephadex G-50 fraction of 3-8kD molecules prepared from Br-SG complexes of B. mori adults was applied to CM-, SP-, DEAE- or QAE- Toyoperal columns at pH 5.6 (or pH 6.9). The SMPH-activity could be separated from the PTTH-activity (or bombyxin) by subjecting a SMPH- and PTTH-active preparation of B. mori to anion-exchange chromatography at pH 6.9. By reversed-phase HPLC following an anion-exchange chromatography, SMPH-activity was recovered in two fractions of 40-45% acetonitril. Results demonstrate that the B. mori peptide showing the SMPH-activity in P. c-aureum is a different molecule than bombyxin.
Chang, Po-Chih; Reddy, P Muralidhar; Ho, Yen-Peng
2014-09-01
Stable-isotope dimethyl labeling was applied to the quantification of genetically modified (GM) soya. The herbicide-resistant gene-related protein 5-enolpyruvylshikimate-3-phosphate synthase (CP4 EPSPS) was labeled using a dimethyl labeling reagent, formaldehyde-H2 or -D2. The identification and quantification of CP4 EPSPS was performed using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The CP4 EPSPS protein was separated from high abundance proteins using strong anion exchange chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Then, the tryptic peptides from the samples and reference were labeled with formaldehyde-H2 and formaldehyde-D2, respectively. The two labeled pools were mixed and analyzed using MALDI-MS. The data showed a good correlation between the peak ratio of the H- and D-labeled peptides and the GM soya percentages at 0.5, 1, 3, and 5 %, with R (2) of 0.99. The labeling reagents are readily available. The labeling experiments and the detection procedures are simple. The approach is useful for the quantification of GM soya at a level as low as 0.5 %.
Ongkudon, Clarence M; Danquah, Michael K
2010-10-15
Anion exchange monolithic chromatography is increasingly becoming a prominent tool for plasmid DNA purification but no generic protocol is available to purify all types of plasmid DNA. In this work, we established a simple framework and used it to specifically purify a plasmid DNA model from a clarified alkaline-lysed plasmid-containing cell lysate. The framework involved optimising ligand functionalisation temperature (30-80°C), mobile phase flow rate (0.1-1.8mL/min), monolith pore size (done by changing the porogen content in the polymerisation reaction by 50-80%), buffer pH (6-10), ionic strength of binding buffer (0.3-0.7M) and buffer gradient elution slope (1-10% buffer B/min). We concluded that preferential pcDNA3F adsorption and optimum resolution could be achieved within the tested conditions by loading the clarified cell lysate into 400nm pore size of monolith in 0.7M NaCl (pH 6) of binding buffer followed by increasing the NaCl concentration to 1.0M at 3%B/min. Copyright © 2010 Elsevier B.V. All rights reserved.
Mommen, Geert P M; Meiring, Hugo D; Heck, Albert J R; de Jong, Ad P J M
2013-07-16
In proteomics, comprehensive analysis of peptides mixtures necessitates multiple dimensions of separation prior to mass spectrometry analysis to reduce sample complexity and increase the dynamic range of analysis. The main goal of this work was to improve the performance of (online) multidimensional protein identification technology (MudPIT) in terms of sensitivity, compatibility and recovery. The method employs weak anion and strong cation mixed-bed ion exchange chromatography (ACE) in the first separation dimension and reversed phase chromatography (RP) in the second separation dimension (Motoyama et.al. Anal. Chem 2007, 79, 3623-34.). We demonstrated that the chromatographic behavior of peptides in ACE chromatography depends on both the WAX/SCX mixing ratio as the ionic strength of the mobile phase system. This property allowed us to replace the conventional salt gradient by a (discontinuous) salt-free, pH gradient. First dimensional separation of peptides was accomplished with mixtures of aqueous formic acid and dimethylsulfoxide with increasing concentrations. The overall performance of this mobile phase system was found comparable to ammonium acetate buffers in application to ACE chromatography, but clearly outperformed strong cation exchange for use in first dimensional peptide separation. The dramatically improved compatibility between (salt-free) ion exchange chromatography and reversed phase chromatography-mass spectrometry allowed us to downscale the dimensions of the RP analytical column down to 25 μm i.d. for an additional 2- to 3-fold improvement in performance compared to current technology. The achieved levels of sensitivity, orthogonality, and compatibility demonstrates the potential of salt-free ACE MudPIT for the ultrasensitive, multidimensional analysis of very modest amounts of sample material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Xiangmei; Mort, Andrew
A comore » mmercial apple pectin was sequentially digested with the cloned enzymes endopolygalacturonase, galactanase, arabinofuranosidase, xylogalacturonase, and rhamnogalacturonan hydrolase. The rhamnogalacturonan hydrolase-generated oligosaccharides were separated by ultrafiltration, anion exchange, and size-exclusion chromatography. Fractions from the ion exchange chromatography were pooled, lyophilized, and screened by MALDI-TOF MS. An oligosaccharide (RGP14P3) was identified and its structure, α -D-Gal p A- ( 1 → 2 ) - α -L-Rha p - ( 1 → 4 ) - α -D-Gal p A- ( 1 → 2 ) - α -L-Rha p - ( 1 → 4 ) - α -D-Gal p A, determined by 1D and 2D NMR spectrometry. This oligosaccharide probably represents a direct connection between homogalacturonan and rhamnogalacturonan in pectin. Alternatively, it could indicate that the nonreducing end of rhamnogalacturonan starts with a galacturonic acid residue.« less
Recent development of ionic liquid stationary phases for liquid chromatography.
Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang
2015-11-13
Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.
Liu, Yongjian; Mou, Shifen; Heberling, Shawn
2002-05-17
A simple sample preconcentration technique employing microwave-based evaporation for the determination of trace level bromate and perchlorate in drinking water with ion chromatography is presented. With a hydrophilic anion-exchange column and a sodium hydroxide eluent in linear gradient, bromate and perchlorate can be determined in one injection within 35 min. Prior to ion chromatographic analysis, the drinking water sample was treated with an OnGuard-Ag cartridge to remove the superfluous chloride and concentrated 20-fold using a PTFE beaker in a domestic microwave oven for 15 min. The recoveries of the anions ranged from 94.6% for NO2- to 105.2% for F-. The detection limits for bromate, perchlorate, iodate and chlorate were 0.1, 0.2, 0.1 and 0.2 microg/l, respectively. The developed method is applicable for the quantitation of bromate and perchlorate in drinking water samples.
Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang
2008-11-15
In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.
Ion-exchange equilibrium of N-acetyl-D-neuraminic acid on a strong anionic exchanger.
Wu, Jinglan; Ke, Xu; Zhang, Xudong; Zhuang, Wei; Zhou, Jingwei; Ying, Hanjie
2015-09-15
N-acetyl-D-neuraminic acid (Neu5Ac) is a high value-added product widely applied in the food industry. A suitable equilibrium model is required for purification of Neu5Ac based on ion-exchange chromatography. Hence, the equilibrium uptake of Neu5Ac on a strong anion exchanger, AD-1 was investigated experimentally and theoretically. The uptake of Neu5Ac by the hydroxyl form of the resin occurred primarily by a stoichiometric exchange of Neu5Ac(-) and OH(-). The experimental data showed that the selectivity coefficient for the exchange of Neu5Ac(-) with OH(-) was a non-constant quantity. Subsequently, the Saunders' model, which took into account the dissociation reactions of Neu5Ac and the condition of electroneutrality, was used to correlate the Neu5Ac sorption isotherms at various solution pHs and Neu5Ac concentrations. The model provided an excellent fit to the binary exchange data for Cl(-)/OH(-) and Neu5Ac(-)/OH(-), and an approximate prediction of equilibrium in the ternary system Cl(-)/Neu5Ac(-)/OH(-). This basic information combined with the general mass transfer model could lay the foundation for the prediction of dynamic behavior of fixed bed separation process afterwards. Copyright © 2015 Elsevier Ltd. All rights reserved.
Song, Shiming; Zhang, Cuifang; Chen, Zhaojie; He, Fengmei; Wei, Jie; Tan, Huihua; Li, Xuesheng
2018-07-06
In this study, we developed an anion exchanger-disposable pipette extraction (DPX) method to detect the residual concentrations of eight neonicotinoid insecticides (dinotefuran, acetamiprid, clothianidin, thiacloprid, imidachloprid, imidaclothiz, nitenpyram, and thiamethoxam) and eight insect growth regulators (IGRs; triflumuron, cyromazine, buprofezin, methoxyfenozide, tebufenozide, chromafenozide, fenoxycarb, and RH 5849) in Chinese honey samples collected from different floral sources and different geographical regions using liquid chromatography tandem mass spectrometry (LC-MS/MS). QAE Sephadex A-25 was used as the anion exchanger in the DPX column for the purification and cleanup of honey samples. Analytes were eluted with a mixture of acetonitrile and 0.1 M HCl, and the elution was subjected to LC analysis. This method was thoroughly validated for its reproducibility, linearity, trueness, and recovery. Satisfactory recovery of pesticides was obtained ranging from 72% to 111% with intraday RSDs (n = 5) of 1%-10%. High linearity (R 2 ≥ 0.9987) was observed for all 16 pesticides. Limits of detection and quantification for all 16 compounds ranged from 0.3 to 3 μg/kg and from 1 to 10 μg/kg, respectively. Pesticide residues (9-113 μg/kg) were found in Chinese honey samples. The anion exchanger-DPX method was effective for removing sugars and retaining target analytes. Moreover, this method was highly reliable and sensitive for detecting neonicotinoids and IGRs in different floral sources of honey and will be applicable to matrixes with high sugar content. Copyright © 2018 Elsevier B.V. All rights reserved.
Structural characterization of a novel glucan from Achatina fulica and its antioxidant activity.
Liao, Ningbo; Chen, Shiguo; Ye, Xingqian; Zhong, Jianjun; Ye, Xuan; Yin, Xinzi; Tian, Jenny; Liu, Donghong
2014-03-19
A novel glucan designated AFPS-IB was purified from Achatina fulica (China white jade snail) by anion-exchange and gel-permeation chromatography. Chemical composition analysis indicated AFPS-IB was composed of glucose, fucose, rhamnose, mannose, and galactose in a molar ratio of 189:2:1:1:2 and with an average molecular weight of 128 kDa. Its structural characteristics were investigated by Fourier transform infrared spectroscopy (FTIR), high performance liquid chromatography (HPLC), gas chromatography mass spectrometry (GC-MS), methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H,( 13)C, H-H COSY, HSQC, TOCSY, and NOESY), and atomic force microscopy (AFM). The glucan mainly consisted of a backbone of repeating (1→4)-α-d-glucose residues with (1→6)-β-d glucosyl branches at random points on the backbone glucose. Antioxidant studies revealed AFPS-IB showed significant DPPH (2,2-diphenyl-1-picrylhydrazyl) radical, superoxide anion (O2(-)) scavenging activities and high reduction potential. This study suggested that AFPS-IB could be a new source of dietary antioxidants.
Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J
2016-06-01
Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Cummins, Philip M; Dowling, Oonagh; O'Connor, Brendan F
2011-01-01
Ion-exchange chromatography (IEC) allows for the separation of ionizable molecules on the basis of differences in charge properties. Its large sample-handling capacity, broad applicability (particularly to proteins and enzymes), moderate cost, powerful resolving ability, and ease of scale-up and automation have led to it becoming one of the most versatile and widely used of all liquid chromatography (LC) techniques. In this chapter, we review the basic principles of IEC, as well as the broader criteria for selecting IEC conditions. By way of further illustration, we outline protocols necessary to partially purify a serine peptidase from bovine whole brain cytosolic fraction, covering crude tissue extract preparation through to partial purification of the target enzyme using anion-exchange chromatography. Protocols for assaying total protein and enzyme activity in both pre- and post-IEC fractions are also described. The target serine peptidase, prolyl oligopeptidase (POP, EC3.4.21.26), is an 80-kDa enzyme with endopeptidase activity towards peptide substrates of ≤30 amino acids. POP is a ubiquitous post-proline cleaving enzyme with particularly high expression levels in the mammalian brain, where it participates in the metabolism of neuroactive peptides and peptide-like hormones (e.g. thyroliberin, gonadotropin-releasing hormone).
Brion, F; Rogerieux, F; Noury, P; Migeon, B; Flammarion, P; Thybaud, E; Porcher, J M
2000-01-14
A two-step purification protocol was developed to purify rainbow trout (Oncorhynchus mykiss) vitellogenin (Vtg) and was successfully applied to Vtg of chub (Leuciscus cephalus) and gudgeon (Gobio gobio). Capture and intermediate purification were performed by anion-exchange chromatography on a Resource Q column and a polishing step was performed by gel permeation chromatography on Superdex 200 column. This method is a rapid two-step purification procedure that gave a pure solution of Vtg as assessed by silver staining electrophoresis and immunochemical characterisation.
Wu, Cuiqin; Yuan, Dongxing; Liu, Baomin
2006-12-01
An analytical method involving anion exchange high performance liquid chromatographic determination of vitellogenin (Vtg) in fish plasma after postcolumn fluorescence derivatization with o-phthalaldehyde (OPA) was developed. The retention time of Vtg was about 11 min. The reagent variables for derivatization were optimized. The fluorophore was excited at 335 nm and detected at 435 nm. A calibration curve was established ranging from 0.13 to 11.28 microg. The determination limit of Vtg was found to be as low as 0.13 microg. The spiked recovery was 93.6% and interassay variability was less than 4%. The method developed was used to determine Vtg in fish plasma obtained from red sea bream (Pagrosomus major), black porgy (Sparus macrocephalus) and skew band grunt (Hapalogenys nitens), without complicated sample pretreatment. The results confirmed that the method showed advantages of being simple, rapid, reproducible and sensitive.
Lee, Micky Fu Xiang; Chan, Eng Seng; Tan, Wen Siang; Tam, Kam Chiu; Tey, Beng Ti
2015-10-09
Poly(oligo(ethylene glycol) methacrylate) (POEGMA), an inert polymer was grafted onto an anion exchange adsorbent for the exclusion of relatively larger hepatitis B virus-like particles (HB-VLPs) from the anion exchange ligand (Q) and at the same time this process allowed the selective adsorption of smaller size Escherichia coli host cell proteins (HCPs). The chain lengths of the POEGMA grafted were modulated by varying the amount of monomers used in the polymer grafting. The purification factor and yield of the HB-VLPs obtained from the flow-through of negative chromatography were 2.3 and 66.0±3.1%, respectively, when shorter chain length of POEGMA (SQ) was grafted. Adsorbent grafted with longer chain of POEGMA (LQ) excluded some HCPs that are larger in size together with the HB-VLPs, reducing the purity of the recovered HB-VLPs. Further heat-treatment of the flow-through pool from SQ followed by centrifugation increased the purity of heat stable HB-VLPs to 87.5±1.1%. Heat-treatment of the flow through sample resulted in thermal denaturation and aggregation of HCPs, while the heat stable HB-VLPs still remained intact as observed under a transmission electron microscope. The performance of the negative chromatography together with heat treatment in the purification of HB-VLPs is far better than the reported bind-and-elute techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
Jin, Weihua; Liu, Bing; Li, Shuai; Chen, Jing; Tang, Hong; Jiang, Di; Zhang, Quanbin; Zhong, Weihong
2018-03-01
Polysaccharide (ST) was prepared from Sargassum thunbergii using hot water. Two fractions (ST-1 and ST-2) were prepared using anion exchange chromatography. One desulfated polysaccharide (ST-1-DS) was also prepared. Electrospray ionization mass spectrometry (ESI-MS) performed on ST-1-DS showed that the desulfated polysaccharides contained methyl glycosides of mono-sulfated and di-sulfated galacto-fucooligosaccharides. This result suggested that ST-1 might contain sulfated galactofucan, which consists of a backbone of alternating (Gal) n and (Fuc) n and sulfated randomly on Gal and mainly on C-2 in Fuc. In addition, ST-1 was degraded in 1M sulfuric acid. The solution was centrifuged, and the supernatant was concentrated and precipitated in ethanol to obtain the precipitate (ST-1-P). ST-1-P was then separated using gel chromatography and anion exchange chromatography to obtain the oligomers. ESI-MS spectra of oligomers indicated that ST-1 mostly contained sulfated glucuronomannan and fucoglucuronan. ESI-MS with collision-induced dissociation tandem mass spectrometry (ESI-CID-MS/MS) suggested that glucuronomannan contained alternating 2-linked Man and 4-linked GlcA, while fucoglucuronan contained 4-linked glucuronan with branched Fuc at C-3. Finally, the neuroprotective activities of ST, ST-1, ST-2 and MIX (a mixture of ST-1 and ST-2) were determined. ST showed the most neuroprotective activity, which indicated that ST might be a good candidate for curing neurodegenerative diseases. Copyright © 2017 Elsevier B.V. All rights reserved.
Toxic isolectins from the mushroom Boletus venenatus.
Horibe, Masashi; Kobayashi, Yuka; Dohra, Hideo; Morita, Tatsuya; Murata, Takeomi; Usui, Taichi; Nakamura-Tsuruta, Sachiko; Kamei, Masugu; Hirabayashi, Jun; Matsuura, Masanori; Yamada, Mina; Saikawa, Yoko; Hashimoto, Kimiko; Nakata, Masaya; Kawagishi, Hirokazu
2010-04-01
Ingestion of the toxic mushroom Boletus venenatus causes a severe gastrointestinal syndrome, such as nausea, repetitive vomiting, diarrhea, and stomachache. A family of isolectins (B. venenatus lectins, BVLs) was isolated as the toxic principles from the mushroom by successive 80% ammonium sulfate-precipitation, Super Q anion-exchange chromatography, and TSK-gel G3000SW gel filtration. Although BVLs showed a single band on SDS-PAGE, they were further divided into eight isolectins (BVL-1 to -8) by BioAssist Q anion-exchange chromatography. All the isolectins showed lectin activity and had very similar molecular weights as detected by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis. Among them, BVL-1 and -3 were further characterized with their complete amino acid sequences of 99 amino acids determined and found to be identical to each other. In the hemagglutination inhibition assay, both proteins failed to bind to any mono- or oligo-saccharides tested and showed the same sugar-binding specificity to glycoproteins. Among the glycoproteins examined, asialo-fetuin was the strongest inhibitor. The sugar-binding specificity of each isolectin was also analyzed by using frontal affinity chromatography and surface plasmon resonance analysis, indicating that they recognized N-linked sugar chains, especially Galbeta1-->4GlcNAcbeta1-->4Manbeta1-->4GlcNAcbeta1-->4GlcNAc (Type II) residues in N-linked sugar chains. BVLs ingestion resulted in fatal toxicity in mice upon intraperitoneal administration and caused diarrhea upon oral administration in rats. Copyright 2009 Elsevier Ltd. All rights reserved.
Rüdt, Matthias; Gillet, Florian; Heege, Stefanie; Hitzler, Julian; Kalbfuss, Bernd; Guélat, Bertrand
2015-09-25
Application of model-based design is appealing to support the development of protein chromatography in the biopharmaceutical industry. However, the required efforts for parameter estimation are frequently perceived as time-consuming and expensive. In order to speed-up this work, a new parameter estimation approach for modelling ion-exchange chromatography in linear conditions was developed. It aims at reducing the time and protein demand for the model calibration. The method combines the estimation of kinetic and thermodynamic parameters based on the simultaneous variation of the gradient slope and the residence time in a set of five linear gradient elutions. The parameters are estimated from a Yamamoto plot and a gradient-adjusted Van Deemter plot. The combined approach increases the information extracted per experiment compared to the individual methods. As a proof of concept, the combined approach was successfully applied for a monoclonal antibody on a cation-exchanger and for a Fc-fusion protein on an anion-exchange resin. The individual parameter estimations for the mAb confirmed that the new approach maintained the accuracy of the usual Yamamoto and Van Deemter plots. In the second case, offline size-exclusion chromatography was performed in order to estimate the thermodynamic parameters of an impurity (high molecular weight species) simultaneously with the main product. Finally, the parameters obtained from the combined approach were used in a lumped kinetic model to simulate the chromatography runs. The simulated chromatograms obtained for a wide range of gradient lengths and residence times showed only small deviations compared to the experimental data. Copyright © 2015 Elsevier B.V. All rights reserved.
Kojima, Yuka; Várnai, Anikó; Ishida, Takuya; Sunagawa, Naoki; Petrovic, Dejan M.; Igarashi, Kiyohiko; Jellison, Jody; Goodell, Barry; Alfredsen, Gry; Westereng, Bjørge
2016-01-01
ABSTRACT Fungi secrete a set of glycoside hydrolases and lytic polysaccharide monooxygenases (LPMOs) to degrade plant polysaccharides. Brown-rot fungi, such as Gloeophyllum trabeum, tend to have few LPMOs, and information on these enzymes is scarce. The genome of G. trabeum encodes four auxiliary activity 9 (AA9) LPMOs (GtLPMO9s), whose coding sequences were amplified from cDNA. Due to alternative splicing, two variants of GtLPMO9A seem to be produced, a single-domain variant, GtLPMO9A-1, and a longer variant, GtLPMO9A-2, which contains a C-terminal domain comprising approximately 55 residues without a predicted function. We have overexpressed the phylogenetically distinct GtLPMO9A-2 in Pichia pastoris and investigated its properties. Standard analyses using high-performance anion-exchange chromatography–pulsed amperometric detection (HPAEC-PAD) and mass spectrometry (MS) showed that GtLPMO9A-2 is active on cellulose, carboxymethyl cellulose, and xyloglucan. Importantly, compared to other known xyloglucan-active LPMOs, GtLPMO9A-2 has broad specificity, cleaving at any position along the β-glucan backbone of xyloglucan, regardless of substitutions. Using dynamic viscosity measurements to compare the hemicellulolytic action of GtLPMO9A-2 to that of a well-characterized hemicellulolytic LPMO, NcLPMO9C from Neurospora crassa revealed that GtLPMO9A-2 is more efficient in depolymerizing xyloglucan. These measurements also revealed minor activity on glucomannan that could not be detected by the analysis of soluble products by HPAEC-PAD and MS and that was lower than the activity of NcLPMO9C. Experiments with copolymeric substrates showed an inhibitory effect of hemicellulose coating on cellulolytic LPMO activity and did not reveal additional activities of GtLPMO9A-2. These results provide insight into the LPMO potential of G. trabeum and provide a novel sensitive method, a measurement of dynamic viscosity, for monitoring LPMO activity. IMPORTANCE Currently, there are only a few methods available to analyze end products of lytic polysaccharide monooxygenase (LPMO) activity, the most common ones being liquid chromatography and mass spectrometry. Here, we present an alternative and sensitive method based on measurement of dynamic viscosity for real-time continuous monitoring of LPMO activity in the presence of water-soluble hemicelluloses, such as xyloglucan. We have used both these novel and existing analytical methods to characterize a xyloglucan-active LPMO from a brown-rot fungus. This enzyme, GtLPMO9A-2, differs from previously characterized LPMOs in having broad substrate specificity, enabling almost random cleavage of the xyloglucan backbone. GtLPMO9A-2 acts preferentially on free xyloglucan, suggesting a preference for xyloglucan chains that tether cellulose fibers together. The xyloglucan-degrading potential of GtLPMO9A-2 suggests a role in decreasing wood strength at the initial stage of brown rot through degradation of the primary cell wall. PMID:27590806
Structure of a Rhamnogalacturonan Fragment from Apple Pectin: Implications for Pectin Architecture
Wu, Xiangmei; Mort, Andrew
2014-01-01
A comore » mmercial apple pectin was sequentially digested with the cloned enzymes endopolygalacturonase, galactanase, arabinofuranosidase, xylogalacturonase, and rhamnogalacturonan hydrolase. The rhamnogalacturonan hydrolase-generated oligosaccharides were separated by ultrafiltration, anion exchange, and size-exclusion chromatography. Fractions from the ion exchange chromatography were pooled, lyophilized, and screened by MALDI-TOF MS. An oligosaccharide (RGP14P3) was identified and its structure, α -D-Gal p A- ( 1 → 2 ) - α -L-Rha p - ( 1 → 4 ) - α -D-Gal p A- ( 1 → 2 ) - α -L-Rha p - ( 1 → 4 ) - α -D-Gal p A, determined by 1D and 2D NMR spectrometry. This oligosaccharide probably represents a direct connection between homogalacturonan and rhamnogalacturonan in pectin. Alternatively, it could indicate that the nonreducing end of rhamnogalacturonan starts with a galacturonic acid residue.« less
Stojanovic, Anja; Lämmerhofer, Michael; Kogelnig, Daniel; Schiesel, Simone; Sturm, Martin; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Lindner, Wolfgang
2008-10-31
Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.
Purification of bacteriophage lambda repressor
Gao, Ning; Shearwin, Keith; Mack, John; Finzi, Laura; Dunlap, David
2013-01-01
Bacteriophage lambda repressor controls the lysogeny/lytic growth switch after infection of E. coli by lambda phage. In order to study in detail the looping of DNA mediated by the protein, tag-free repressor and a loss-of-cooperativity mutant were expressed in E.coli and purified by (1) ammonium sulfate fractionation, (2) anion-exchange chromatography and (3) heparin affinity chromatography. This method employs more recently developed and readily available chromatography resins to produce highly pure protein in good yield. In tethered particle motion looping assays and atomic force microscopy “footprinting” assays, both the wild-type protein and a C-terminal His-tagged variant, purified using immobilized metal affinity chromatography, bound specifically to high affinity sites to mediate loop formation. In contrast the G147D loss-of-cooperativity mutant bound specifically but did not secure loops. PMID:23831434
Method for preparing radionuclide-labeled chelating agent-ligand complexes
Meares, Claude F.; Li, Min; DeNardo, Sally J.
1999-01-01
Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.
2005-12-31
No. carbons Pore volume data. Resolution of complex monosaccharide mixtures from plant cell wall isolates by high pH anion exchange chromatography. To...interwoven polysaccharide chains embedded in a gel matrix of galacturonic acid rich polysaccharides connected by calcium bridges. This network also...picomolar levels). Also, it allows the determination of intact monosaccharides without pre or post column derivatisation, decreasing the time of
Genzel, Yvonne; König, Susanne; Reichl, Udo
2004-12-01
The direct separation detection of amino acids by anion exchange chromatography with integrated pulsed amperometric detection was optimized for the analysis of typical mammalian cell culture broth samples. Existing gradient elution conditions were adapted, considering the additions of peptone (2 g/L) and 10 vol% fetal calf serum to the medium as well as changing concentrations of glucose from 5.5 g/L up to complete consumption. Samples had to be analyzed in two dilutions with water (1:33.3 and 1:200) due to the strongly varying amino acid concentrations in the samples as a result of the medium composition and cell metabolism. The method was validated in a linear working range for the most common amino acids (2.5-7.5 and 1.25-3.75 microM for cystine/cysteine with 15 microl injection volume). The relative standard deviation of the method for all amino acids was less than 5%, with detection limits of less than 0.6 microM and quantitation limits of less than 1.6 microM. As an example, data for the amino acid composition of different media used for the production of inactivated influenza vaccines in cell culture are shown.
Localization of ATP Sulfurylase and O-Acetylserine(thiol)lyase in Spinach Leaves.
Lunn, J E; Droux, M; Martin, J; Douce, R
1990-11-01
The intracellular compartmentation of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach (Spinacia oleracea L.) leaves has been investigated by isolation of organelles and fractionation of protoplasts. ATP sulfurylase is located predominantly in the chloroplasts, but is also present in the cytosol. No evidence was found for ATP sulfurylase activity in the mitochondria. Two forms of ATP sulfurylase were separated by anion-exchange chromatography. The more abundant form is present in the chloroplasts, the second is cytosolic. O-Acetylserine(thiol)lyase activity is located primarily in the chloroplasts and cytosol, but is also present in the mitochondria. Three forms of O-acetylserine(thiol)lyase were separated by anion-exchange chromatography, and each was found to be specific to one intracellular compartment. The cytosolic ATP sulfurylase may not be active in vivo due to the unfavorable equilibrium constant of the reaction, and the presence of micromolar concentrations of inorganic pyrophosphate in the cytosol, therefore its role remains unknown. It is suggested that the plant cell may be unable to transport cysteine between the different compartments, so that the cysteine required for protein synthesis must be synthesized in situ, hence the presence of O-acetylserine(thiol)lyase in the three compartments where proteins are synthesized.
Localization of ATP Sulfurylase and O-Acetylserine(thiol)lyase in Spinach Leaves
Lunn, John E.; Droux, Michel; Martin, Jacqueline; Douce, Roland
1990-01-01
The intracellular compartmentation of ATP sulfurylase and O-acetylserine(thiol)lyase in spinach (Spinacia oleracea L.) leaves has been investigated by isolation of organelles and fractionation of protoplasts. ATP sulfurylase is located predominantly in the chloroplasts, but is also present in the cytosol. No evidence was found for ATP sulfurylase activity in the mitochondria. Two forms of ATP sulfurylase were separated by anion-exchange chromatography. The more abundant form is present in the chloroplasts, the second is cytosolic. O-Acetylserine(thiol)lyase activity is located primarily in the chloroplasts and cytosol, but is also present in the mitochondria. Three forms of O-acetylserine(thiol)lyase were separated by anion-exchange chromatography, and each was found to be specific to one intracellular compartment. The cytosolic ATP sulfurylase may not be active in vivo due to the unfavorable equilibrium constant of the reaction, and the presence of micromolar concentrations of inorganic pyrophosphate in the cytosol, therefore its role remains unknown. It is suggested that the plant cell may be unable to transport cysteine between the different compartments, so that the cysteine required for protein synthesis must be synthesized in situ, hence the presence of O-acetylserine(thiol)lyase in the three compartments where proteins are synthesized. PMID:16667839
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doucet, L.; De Veyrac, B.; Delaage, M.
1990-08-01
Perindopril (P) is a prodrug whose active metabolite perindoprilat (PT) is an antihypertensive agent which acts by inhibition of angiotensin-converting enzyme (ACE). Anti-PT antiserum was produced in a rabbit immunized against PT that was covalently linked to bovine serum albumin. The radioligand is an iodinated ({sup 125}I) derivative of PT-glycyltyrosinamide. Both the drug (PT) and the prodrug (P) are assayed in the same sample; PT is assayed as is and P is assayed after quantitative alkaline hydrolysis into PT. Certain data obtained from such assays suggest the occurrence in plasma and urine of a third immunoreactive component. A chromatographic fractionationmore » of samples allowed us to isolate a new immunoreactive metabolite which was further identified as a glucuronide of PT (PT-G). Therefore, the whole assay was carried out as follows: biological samples were fractionated by stepwise chromatography on a anion-exchange resin (the first fraction contained P, the second contained PT, and the third contained PT-G); and RIA was performed on fractions 2 and 3 as is, and on fraction 1 after alkaline hydrolysis. Performances and assessments of this method are presented together with an example of a pharmacokinetic profile.« less
Adsorption of plasmid DNA on anion exchange chromatography media.
Tarmann, Christina; Jungbauer, Alois
2008-08-01
Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.
Hanko, Valoran P.; Heckenberg, Andrea; Rohrer, Jeffrey S.
2004-01-01
Anion-exchange chromatography with integrated pulsed amperometric detection (AE-IPAD) separates and directly detects amino acids, carbohydrates, alditols, and glycols in the same injection without pre- or post-column derivatization. These separations use a combination of NaOH and NaOH/sodium acetate eluents. We previously published the successful use of this technique, also known as AAA-Direct, to determine free amino acids in cell culture and fermentation broth media. We showed that retention of carbohydrates varies with eluent NaOH concentration differently than amino acids, and thus separations can be optimized by varying the initial NaOH concentration and its duration. Unfortunately, some amino acids eluting in the acetate gradient portion of the method were not completely resolved from system-related peaks and from unknown peaks in complex cell culture and fermentation media. In this article, we present changes in method that improve amino acid resolution and system ruggedness. The success of these changes and their compatibility with the separations previously designed for fermentation and cell culture are demonstrated with yeast extract-peptone-dextrose broth, M199, Dulbecco’s modified Eagle’s (with F-12), L-15 (Leibovitz), and McCoy’s 5A cell culture media. PMID:15585828
Ma, Li; Yang, Zhaoguang; Tang, Jie; Wang, Lin
2016-06-01
The simultaneous separation and determination of arsenite As(III), arsenate As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), and arsenocholine (AsC) in rice samples have been carried out in one single anion-exchange column run by high-performance liquid chromatography with inductively coupled plasma mass spectrometry. To estimate the effect of variables on arsenic (As) speciation, the chromatographic conditions including type of competing anion, ionic strength, pH of elution buffer, and flow rate of mobile phase have been investigated by a univariate approach. Under the optimum chromatographic conditions, baseline separation of six As species has been achieved within 10 min by gradient elution program using 4 mM NH4 HCO3 at pH 8.6 as mobile phase A and 4 mM NH4 HCO3 , 40 mM NH4 NO3 at pH 8.6 as mobile phase B. The method detection limits for As(III), As(V), MMA, DMA, AsB, and AsC were 0.4, 0.9, 0.2, 0.4, 0.5, and 0.3 μg/kg, respectively. The proposed method has been applied to separation and quantification of As species in real rice samples collected from Hunan Province, China. The main As species detected in all samples were As(III), As(V) and DMA, with inorganic As accounting for over 80% of total As in these samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large-scale preparation of plasmid DNA.
Heilig, J S; Elbing, K L; Brent, R
2001-05-01
Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.
Using an FPLC to promote active learning of the principles of protein structure and purification.
Robinson, Rebekah L; Neely, Amy E; Mojadedi, Wais; Threatt, Katie N; Davis, Nicole Y; Weiland, Mitch H
2017-01-02
The concepts of protein purification are often taught in undergraduate biology and biochemistry lectures and reinforced during laboratory exercises; however, very few reported activities allow students to directly gain experience using modern protein purification instruments, such as Fast Protein Liquid Chromatography (FPLC). This laboratory exercise uses size exclusion chromatography (SEC) and ion exchange (IEX) chromatography to separate a mixture of four different proteins. Students use an SEC chromatogram and corresponding SDS-PAGE gel to understand how protein conformations change under different conditions (i.e. native and non-native). Students explore strategies to separate co-eluting proteins by IEX chromatography. Using either cation or anion exchange, one protein is bound to the column while the other is collected in the flow-through. In this exercise, undergraduate students gain hands-on experience with experimental design, buffer and sample preparation, and implementation of instrumentation that is commonly used by experienced researchers while learning and applying the fundamental concepts of protein structure, protein purification, and SDS-PAGE. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):60-68, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.
Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; ...
2015-10-01
Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less
ITE inhibits growth of human pulmonary artery endothelial cells.
Pang, Ling-Pin; Li, Yan; Zou, Qing-Yun; Zhou, Chi; Lei, Wei; Zheng, Jing; Huang, Shi-An
2017-10-01
Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.
Generator for ionic gallium-68 based on column chromatography
Neirinckx, Rudi D.; Davis, Michael A.
1981-01-01
A physiologically acceptable solution of gallium-68 fluorides, having an activity of 0.1 to 50 millicuries per milliliter of solution is provided. The solution is obtained from a generator comprising germanium-68 hexafluoride bound to a column of an anion exchange resin which forms gallium-68 in situ by eluting the column with an acid solution to form a solution containing .sup.68 Ga-fluorides. The solution then is neutralized prior to administration.
NASA Astrophysics Data System (ADS)
Szpunar, Joanna; McSheehy, Shona; Połeć, Kasia; Vacchina, Véronique; Mounicou, Sandra; Rodriguez, Isaac; Łobiński, Ryszard
2000-07-01
Recent advances in the coupling of gas chromatography (GC) and high performance liquid chromatography (HPLC) with inductively coupled plasma mass spectrometry (ICP MS) and their role in trace element speciation analysis of environmental materials are presented. The discussion is illustrated with three research examples concerning the following topics: (i) development and coupling of multicapillary microcolumn GC with ICP MS for speciation of organotin in sediment and biological tissue samples; (ii) speciation of arsenic in marine algae by size-exclusion-anion-exchange HPLC-ICP MS; and (iii) speciation of cadmium in plant cell cultures by size-exclusion HPLC-ICP MS. Particular attention is paid to the problem of signal identification in ICP MS chromatograms; the potential of electrospray MS/MS for this purpose is highlighted.
Rosner, B M; Schink, B
1995-10-01
Acetylene hydratase of the mesophilic fermenting bacterium Pelobacter acetylenicus catalyzes the hydration of acetylene to acetaldehyde. Growth of P. acetylenicus with acetylene and specific acetylene hydratase activity depended on tungstate or, to a lower degree, molybdate supply in the medium. The specific enzyme activity in cell extract was highest after growth in the presence of tungstate. Enzyme activity was stable even after prolonged storage of the cell extract or of the purified protein under air. However, enzyme activity could be measured only in the presence of a strong reducing agent such as titanium(III) citrate or dithionite. The enzyme was purified 240-fold by ammonium sulfate precipitation, anion-exchange chromatography, size exclusion chromatography, and a second anion-exchange chromatography step, with a yield of 36%. The protein was a monomer with an apparent molecular mass of 73 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was at pH 4.2. Per mol of enzyme, 4.8 mol of iron, 3.9 mol of acid-labile sulfur, and 0.4 mol of tungsten, but no molybdenum, were detected. The Km for acetylene as assayed in a coupled photometric test with yeast alcohol dehydrogenase and NADH was 14 microM, and the Vmax was 69 mumol.min-1.mg of protein-1. The optimum temperature for activity was 50 degrees C, and the apparent pH optimum was 6.0 to 6.5. The N-terminal amino acid sequence gave no indication of resemblance to any enzyme protein described so far.
Rosner, B M; Schink, B
1995-01-01
Acetylene hydratase of the mesophilic fermenting bacterium Pelobacter acetylenicus catalyzes the hydration of acetylene to acetaldehyde. Growth of P. acetylenicus with acetylene and specific acetylene hydratase activity depended on tungstate or, to a lower degree, molybdate supply in the medium. The specific enzyme activity in cell extract was highest after growth in the presence of tungstate. Enzyme activity was stable even after prolonged storage of the cell extract or of the purified protein under air. However, enzyme activity could be measured only in the presence of a strong reducing agent such as titanium(III) citrate or dithionite. The enzyme was purified 240-fold by ammonium sulfate precipitation, anion-exchange chromatography, size exclusion chromatography, and a second anion-exchange chromatography step, with a yield of 36%. The protein was a monomer with an apparent molecular mass of 73 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric point was at pH 4.2. Per mol of enzyme, 4.8 mol of iron, 3.9 mol of acid-labile sulfur, and 0.4 mol of tungsten, but no molybdenum, were detected. The Km for acetylene as assayed in a coupled photometric test with yeast alcohol dehydrogenase and NADH was 14 microM, and the Vmax was 69 mumol.min-1.mg of protein-1. The optimum temperature for activity was 50 degrees C, and the apparent pH optimum was 6.0 to 6.5. The N-terminal amino acid sequence gave no indication of resemblance to any enzyme protein described so far. PMID:7592321
Rodríguez-Serrano, María; Romero-Puertas, María C; Pastori, Gabriela M; Corpas, Francisco J; Sandalio, Luisa M; del Río, Luis A; Palma, José M
2007-01-01
In this work the manganese superoxide dismutase (Mn-SOD) bound to peroxisomal membranes of watermelon cotyledons (Citrullus lanatus Schrad.) was purified to homogeneity and some of its molecular properties were determined. The stepwise purification procedure consisted of ammonium sulphate fractionation, batch anion-exchange chromatography, and anion-exchange and gel-filtration column chromatography using a fast protein liquid chromatography system. Peroxisomal membrane Mn-SOD (perMn-SOD; EC 1.15.1.1) was purified 5600-fold with a yield of 2.6 mug of enzyme g(-1) of cotyledons, and had a specific activity of 480 U mg(-1) of protein. The native molecular mass determined for perMn-SOD was 108 000 Da, and it was composed of four equal subunits of 27 kDa, which indicates that perMn-SOD is a homotetramer. Ultraviolet and visible absorption spectra of the enzyme showed a shoulder at 275 nm and two absorption maxima at 448 nm and 555 nm, respectively. By isoelectric focusing, a pI of 5.75 was determined for perMn-SOD. In immunoblot assays, purified perMn-SOD was recognized by a polyclonal antibody against Mn-SOD from pea leaves, and the peroxisomal enzyme rapidly dissociated in the presence of dithiothreitol and SDS. The potential binding of the Mn-SOD isozyme to the peroxisomal membrane was confirmed by immunoelectron microscopy analysis. The properties of perMn-SOD and the mitMn-SOD are compared and the possible function in peroxisomal membranes of the peripheral protein Mn-SOD is discussed.
Nguyen, Hoang-Minh; Mathiesen, Geir; Stelzer, Elena Maria; Pham, Mai Lan; Kuczkowska, Katarzyna; Mackenzie, Alasdair; Agger, Jane W; Eijsink, Vincent G H; Yamabhai, Montarop; Peterbauer, Clemens K; Haltrich, Dietmar; Nguyen, Thu-Ha
2016-10-04
Lactobacillus plantarum is considered as a potential cell factory because of its GRAS (generally recognized as safe) status and long history of use in food applications. Its possible applications include in situ delivery of proteins to a host, based on its ability to persist at mucosal surfaces of the human intestine, and the production of food-related enzymes. By displaying different enzymes on the surface of L. plantarum cells these could be used as whole-cell biocatalysts for the production of oligosaccharides. In this present study, we aimed to express and display a mannanase and a chitosanase on the cell surface of L. plantarum. ManB, a mannanase from Bacillus licheniformis DSM13, and CsnA, a chitosanase from Bacillus subtilis ATCC 23857 were fused to different anchoring motifs of L. plantarum for covalent attachment to the cell surface, either via an N-terminal lipoprotein anchor (Lp_1261) or a C-terminal cell wall anchor (Lp_2578), and the resulting fusion proteins were expressed in L. plantarum WCFS1. The localization of the recombinant proteins on the bacterial cell surface was confirmed by flow cytometry and immunofluorescence microscopy. The highest mannanase and chitosanase activities obtained for displaying L. plantarum cells were 890 U and 1360 U g dry cell weight, respectively. In reactions with chitosan and galactomannans, L. plantarum CsnA- and ManB-displaying cells produced chito- and manno-oligosaccharides, respectively, as analyzed by high performance anion exchange chromatography (HPAEC) and mass spectrometry (MS). Surface-displayed ManB is able to break down galactomannan (LBG) into smaller manno-oligosaccharides, which can support growth of L. plantarum. This study shows that mannanolytic and chitinolytic enzymes can be anchored to the cell surface of L. plantarum in active forms. L. plantarum chitosanase- and mannanase-displaying cells should be of interest for the production of potentially 'prebiotic' oligosaccharides. This approach, with the enzyme of interest being displayed on the cell surface of a food-grade organism, may also be applied in production processes relevant for food industry.
Stöber, Paul; Bénet, Sylvie; Hischenhuber, Claudia
2004-04-21
A simplified method to determine total fructans in food and pet food has been developed and validated. It follows the principle of AOAC method 997.08, i.e., high-performance anion exchange chromatographic (HPAEC) determination of total fructose released from fructans (F(f)) and total glucose released from fructans (G(f)) after enzymatic fructan hydrolysis. Unlike AOAC method 997.08, calculation of total fructans is based on the determination of F(f) alone. This is motivated by the inherent difficulty to accurately determine low amounts of G(f) since many food and pet food products contain other sources of total glucose (e.g., starch and sucrose). In this case, a correction factor g can be used (1.05 by default) to take into account the theoretical contribution of G(f). At levels >5% of total fructans and in commercial fructan ingredients, both F(f) and G(f) can and should be accurately determined; hence, no correction factor g is required. The method is suitable to quantify total fructans in various food and pet food products at concentrations >or=0.2% providing that the product does not contain other significant sources of total fructose such as free fructose or sucrose. Recovery rates in commercial fructan ingredients and in selected food and pet food ranged from 97 to 102%. As part of a measurement uncertainty estimation study, individual contributions to the total uncertainty (u) of the total fructan content were identified and quantified by using the validation data available. As a result, a correlation between the sucrose content and the total uncertainty of the total fructan content was established allowing us to define a limit of quantitation as a function of the sucrose content. One can conclude that this method is limited to food products where the sucrose content does not exceed about three times the total fructan content. Despite this limitation, which is inherent to any total fructan method based on the same approach, this procedure represents an excellent compromise with regard to accuracy, applicability, and convenience.
Hirsh, Allen G; Tsonev, Latchezar I
2017-04-28
This paper details the use of a method of creating controlled pH gradients (pISep) to improve the separation of protein isoforms on ion exchange (IEX) stationary phases in the presence of various isocratic levels of urea. The pISep technology enables the development of computer controlled pH gradients on both cationic (CEX) and anionic (AEX) IEX stationary phases over the very wide pH range from 2 to 12. In pISep, titration curves generated by proportional mixing of the acidic and basic pISep working buffers alone, or in the presence of non-buffering solutes such as the neutral salt NaCl (0-1M), polar organics such as urea (0-8M) or acetonitrile (0-80 Vol%), can be fitted with high fidelity using high order polynomials which, in turn allows construction of a mathematical manifold %A (% acidic pISep buffer) vs. pH vs. [non-buffering solute], permitting precise computer control of pH and the non-buffering solute concentration allowing formation of dual uncoupled liquid chromatographic (LC) gradients of arbitrary shape (Hirsh and Tsonev, 2012 [1]). The separation of protein isoforms examined in this paper by use of such pH gradients in the presence of urea demonstrates the fractionation power of a true single step two dimensional liquid chromatography which we denote as Stability-Influenced Ion Exchange Chromatography (SIIEX). We present evidence that SIIEX is capable of increasing the resolution of protein isoforms difficult to separate by ordinary pH gradient IEX, and potentially simplifying the development of laboratory and production purification strategies involving on-column simultaneous pH and urea unfolding or refolding of targeted proteins. We model some of the physics implied by the dynamics of the observed protein fractionations as a function of both urea concentration and pH assuming that urea-induced native state unfolding competes with native state electrostatic interaction binding to an IEX stationary phase. Implications for in vivo protein-membrane interactions are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Ball, J.W.; Bassett, R.L.
2000-01-01
A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.
Field, Nicholas; Konstantinidis, Spyridon; Velayudhan, Ajoy
2017-08-11
The combination of multi-well plates and automated liquid handling is well suited to the rapid measurement of the adsorption isotherms of proteins. Here, single and binary adsorption isotherms are reported for BSA, ovalbumin and conalbumin on a strong anion exchanger over a range of pH and salt levels. The impact of the main experimental factors at play on the accuracy and precision of the adsorbed protein concentrations is quantified theoretically and experimentally. In addition to the standard measurement of liquid concentrations before and after adsorption, the amounts eluted from the wells are measured directly. This additional measurement corroborates the calculation based on liquid concentration data, and improves precision especially under conditions of weak or moderate interaction strength. The traditional measurement of multicomponent isotherms is limited by the speed of HPLC analysis; this analytical bottleneck is alleviated by careful multivariate analysis of UV spectra. Copyright © 2017. Published by Elsevier B.V.
Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Wang, Xiaojin; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei
2017-04-15
A silica stationary phase was designed and synthesized through the co-functionalization of silica with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography applications. The as-synthesized stationary phase was characterized by elemental analysis and Fourier Transform-InfraRed Spectroscopy (FT-IR). Retention mechanisms, including boronate affinity (BA), reversed-phase (RP) and anion-exchange (AE), were involved. Retention mechanism switching was easily realized by adjustment of the mobile phase constitution. Cis-diol compounds could be selectively captured under neutral conditions in BA mode and off-line separated in RP mode. Neutral, basic, acidic and amphiprotic compounds were chromatographed on the column in RP chromatography, while inorganic anions were chromatographed in AE chromatography to characterize the mixed-mode nature of the prepared stationary phase. In addition, the RP performance was compared with an octadecyl silica column in terms of column efficiency (N/m), asymmetry factor (A f ), retention factor (k) and resolution (Rs). The prepared stationary phase offered multiple interactions with analytes in addition to hydrophobic interactions under RP elution conditions. Based on the mixed-mode properties, off-line 2D-LC, for selective capture and separation of urinary nucleosides, was successfully realized on a single column, demonstrating its powerful application potential for complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Szabo, Zoltan; Thayer, James R; Agroskin, Yury; Lin, Shanhua; Liu, Yan; Srinivasan, Kannan; Saba, Julian; Viner, Rosa; Huhmer, Andreas; Rohrer, Jeff; Reusch, Dietmar; Harfouche, Rania; Khan, Shaheer H; Pohl, Christopher
2017-05-01
Characterization of glycans present on glycoproteins has become of increasing importance due to their biological implications, such as protein folding, immunogenicity, cell-cell adhesion, clearance, receptor interactions, etc. In this study, the resolving power of high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) was applied to glycan separations and coupled to mass spectrometry to characterize native glycans released from different glycoproteins. A new, rapid workflow generates glycans from 200 μg of glycoprotein supporting reliable and reproducible annotation by mass spectrometry (MS). With the relatively high flow rate of HPAE-PAD, post-column splitting diverted 60% of the flow to a novel desalter, then to the mass spectrometer. The delay between PAD and MS detectors is consistent, and salt removal after the column supports MS. HPAE resolves sialylated (charged) glycans and their linkage and positional isomers very well; separations of neutral glycans are sufficient for highly reproducible glycoprofiling. Data-dependent MS 2 in negative mode provides highly informative, mostly C- and Z-type glycosidic and cross-ring fragments, making software-assisted and manual annotation reliable. Fractionation of glycans followed by exoglycosidase digestion confirms MS-based annotations. Combining the isomer resolution of HPAE with MS 2 permitted thorough N-glycan annotation and led to characterization of 17 new structures from glycoproteins with challenging glycan profiles.
Structural characterization of alkali-soluble polysaccharides from Panax ginseng C. A. Meyer
Ji, Li; Jie, Zhenjing; Ying, Xin; Yue, Qi; Zhou, Yifa
2018-01-01
Panax ginseng C. A. Meyer (ginseng) has been widely used as a herb and functional food in the world. Polysaccharides are the main active components of ginseng. In this paper, the polysaccharides were sequentially extracted by 50 mM Na2CO3, 1 M KOH and 4 M KOH from ginseng roots treated sequentially with hot water, α-amylase and ethylenediaminetetraacetic acid extraction. Na2CO3-soluble ginseng polysaccharide (NGP) was fractionated into one neutral and three acidic fractions by anion exchange and gel permeation chromatography. Fourier transform infrared, NMR and methylation analysis indicated acidic fractions in NGP were highly branched rhamnogalacturonan-I domains, with → 4)-α-GalpA-(1 → 2)-α-Rhap-(1 → disaccharide repeating units as backbone and β-1,4-galactan, α-1,5/1,3,5-arabinan and type II arabinogalactan as side chains. 1-KGP (1 M KOH-soluble ginseng polysaccharide) and 4-KGP (4 M KOH-soluble ginseng polysaccharide) were mainly composed of hemicellulose besides starch-like polysaccharides and minor pectin. Antibody detection, enzymic hydrolysis, high performance anion exchange chromatography and methylation analysis demonstrated xylan was the major component in 1-KGP, while xyloglucan was predominant in 4-KGP. Comparing the polysaccharides obtained by different solvent extractions, we have a comprehensive understanding about total ginseng polysaccharides. PMID:29657770
Ando, Masaki; Imadzu, Sakiyo; Kitagawa, Shinya; Ohtani, Hajime
2010-08-06
A particulate formation-laser scattering detector (PFLSD) was developed and used for evaluating the crystallization efficiency of inorganic polyphosphates (PPs) that reacted with either magnesium or calcium cations. As the solutions for reactive crystallization, 0.5 M ammonium buffer (pH 9.6) containing either 0.15 M MgCl(2) or 0.15 M CaCl(2) (MAP: magnesium ammonium phosphate and HAP: hydroxyapatite solution) were used. In the case of mono- and diphosphate (P1 and P2), the significant dependences of the particulate formation efficiency on various types of both P1/P2 and MAP/HAP reaction solutions were observed with the direct sample injection mode. The PFLSD was hyphenated with the anion-exchange chromatography and the dependence of the particulate formation efficiency on the polymerization degree (n(p)) of PP oligomers, separated chromatographically, was evaluated sequentially. The significant suppression of the particulate formation for PP oligomers was clearly confirmed, i.e., the MAP and HAP reaction solutions did not produce the particulates of the PP oligomers having an n(p) value of more than 3 and 5, respectively. As the overall tendency, the particulate formation efficiency in the case of the HAP solution was superior to that in the case of the MAP solution. Copyright 2010 Elsevier B.V. All rights reserved.
Accounting for host cell protein behavior in anion-exchange chromatography.
Swanson, Ryan K; Xu, Ruo; Nettleton, Daniel S; Glatz, Charles E
2016-11-01
Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis provided data on the three physicochemical properties most commonly exploited during DSP for each HCP: pI (isoelectric point), molecular weight, and surface hydrophobicity. The protein separation behaviors of two alternative expression host extracts (corn germ and E. coli) were characterized. A multivariate random forest (MVRF) statistical methodology was then applied to the database of characterized proteins creating a tool for predicting the AEX behavior of a mixture of proteins. The accuracy of the MVRF method was determined by calculating a root mean squared error value for each database. This measure never exceeded a value of 0.045 (fraction of protein populating each of the multiple separation fractions) for AEX. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1453-1463, 2016. © 2016 American Institute of Chemical Engineers.
Shields, T P; Mollova, E; Ste Marie, L; Hansen, M R; Pardi, A
1999-01-01
An improved method is presented for the preparation of milligram quantities of homogenous-length RNAs suitable for nuclear magnetic resonance or X-ray crystallographic structural studies. Heterogeneous-length RNA transcripts are processed with a hammerhead ribozyme to yield homogenous-length products that are then readily purified by anion exchange high-performance liquid chromatography. This procedure eliminates the need for denaturing polyacrylamide gel electrophoresis, which is the most laborious step in the standard procedure for large-scale production of RNA by in vitro transcription. The hammerhead processing of the heterogeneous-length RNA transcripts also substantially improves the overall yield and purity of the desired RNA product. PMID:10496226
Charlton, Andrew J A; Stuckey, Vicki; Sykes, Mark D
2009-06-01
An analytical method was developed to determine the phenoxyacid herbicides 2,4-D, MCPA and mecoprop in kidney tissue from animals where poisoning is suspected. Samples were Soxhlet extracted using diethyl ether and the extracts cleaned-up using anion exchange solid phase extraction cartridges. Analysis was performed using liquid chromatography with negative-ion electrospray tandem mass spectrometry (LC-MS/MS). The method was evaluated by analysing control kidney samples fortified at 1 and 5 mg/kg. Mean recoveries ranged from 82 to 93% with relative standard deviations from 3.2 to 19%. The limit of detection was estimated to be 0.02 mg/kg.
Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus
2013-05-07
An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.
Tsonev, Latchezar I; Hirsh, Allen G
2016-10-14
We have previously described a liquid chromatographic (LC) method for uncoupling controlled, wide range pH gradients and simultaneous controlled gradients of a non-buffering solute on ion exchange resins (Hirsh and Tsonev, 2012) [1]. Here we report the application of this two dimensional LC technique to the problem of resolving Human Transferrin (HT) isoforms. This important iron transporting protein should theoretically occur in several thousand glycoforms, but only about a dozen have been reported. Using dual simultaneous independent gradients (DSIGs) of acetonitrile (ACN) and pH on a mixed bed stationary phase (SP) consisting of a mixture of an anion exchange resin and a reversed phase (RP) resin we partially resolve about 60 isoforms. These are likely to be partially refolded glycoforms generated by interaction of HT with the highly hydrophobic RP SP, as well as distinct folded glycoforms. Thus this study should have interesting implications for both glycoform separation and the study of protein folding. Copyright © 2016 Elsevier B.V. All rights reserved.
Kabir, Syed Rashel; Zubair, Md Abu; Nurujjaman, Md; Haque, Md Azizul; Hasan, Imtiaj; Islam, Md Farhadul; Hossain, Md Tanvir; Hossain, Md Anowar; Rakib, Md Abdur; Alam, Mohammad Taufiq; Shaha, Ranajit Kumar; Hossain, Md Tofazzal; Kimura, Yoshinobu; Absar, Nurul
2011-12-01
A lectin (termed NNTL) was purified from the extracts of Nymphaea nouchali tuber followed by anion-exchange chromatography on DEAE-cellulose, hydrophobic chromatography on HiTrap Phenyl HP and by repeated anion-exchange chromatography on HiTrap Q FF column. The molecular mass of the purified lectin was 27.0 ± 1.0 kDa, as estimated by SDS/PAGE both in the presence and in the absence of 2-mercaptoethanol. NNTL was an o-nitrophenyl β-D-galactopyranoside sugar-specific lectin that agglutinated rat, chicken and different groups of human blood cells and exhibited high agglutination activity over the pH range 5-9 and temperatures of 30-60 °C. The N-terminal sequence of NNTL did not show sequence similarity with any other lectin and the amino acid analysis revealed that NNTL was rich in leucine, methionine and glycine residues. NNTL was a glycoprotein containing 8% neutral sugar and showed toxicity against brine shrimp nauplii with an LC(50) value of 120 ± 29 μg/ml and exerted strong agglutination activity against four pathogenic bacteria (Bacillus subtilis, Sarcina lutea, Shigella shiga and Shigella sonnei). In addition, antiproliferative activity of this lectin against EAC (Ehrlich ascites carcinoma) cells showed 56% and 76% inhibition in vivo in mice at 1.5 and 3 mg·kg(-1)·day(-1) respectively. NNTL was a divalent ion-dependent glycoprotein, which lost its activity markedly in the presence of denaturants. Furthermore, measurement of fluorescence spectra in the presence and absence of urea and CaCl(2) indicated the requirement of Ca(2+) for the stability of NNTL. © The Authors Journal compilation © 2011 Biochemical Society
Mondal, S K; Ray, B; Thakur, S; Ghosal, P K
2001-03-01
The water-soluble polysaccharides isolated from the vascular gel of Musa paradisiaca, were fractionated via anion exchange chromatography into four fractions. Fractionated polymers contained arabinose, xylose and galacturonic acid as major sugars, together with traces of galactose, rhamnose, mannose and glucose residues. Methylation analysis revealed the presence of a highly branched arabinoxylan with a significant amount of terminal arabinopyranosyl units and an arabinogalactan type I pectin. Periodate oxidation studies supported the results of methylation analysis.
Tang, Lei; Wang, Chenchen; Huang, Jiabao; Zhang, Jianhua; Mao, Zhonggui; Wang, Haiou
2013-01-15
Plant peroxidases (EC 1.11.1.7) with different isoforms catalyze various reactions in plant growth and development. However, it is difficult to elucidate the function of each isozyme in one plant. Here, we compared profiles of entire isozyme in young seedling and mature leaves of Chinese kale (Brassica alboglabra L.) on zymogram and ion exchange chromatography in order to investigate leaf growth related peroxidase isozymes. The results showed that four isozymes were constitutively expressed in kale leaves, whereas other two isozymes were induced in the mature leaves. The Mono Q ion exchange chromatography separated the six isozymes into two major groups due to the difference in their isoelectric points. The results suggested that although there were several isozymes in the leaves of Chinese kale, one isozyme functioned mainly through the leaf development. Two anionic isozymes with molecular weights lower than 32 kDa were considered mature related. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kafirin adsorption on ion-exchange resins: isotherm and kinetic studies.
Kumar, Prashant; Lau, Pei Wen; Kale, Sandeep; Johnson, Stuart; Pareek, Vishnu; Utikar, Ranjeet; Lali, Arvind
2014-08-22
Kafirin is a natural, hydrophobic and celiac safe prolamin protein obtained from sorghum seeds. Today kafirin is found to be useful in designing delayed delivery systems and coatings of pharmaceuticals and nutraceuticals where its purity is important and this can be obtained by adsorptive chromatography. This study is the first scientific insight into the isotherm and kinetic studies of kafirin adsorption on anion- and cation-exchange resins for practical applications in preparative scale chromatography. Adsorption isotherms of kafirin were determined for five anion- and two cation-exchange resins in batch systems. Isotherm parameters such as maximum binding capacity and dissociation constant were determined from Langmuir isotherm, and adsorptive capacity and affinity constant from Freundlich isotherm. Langmuir isotherm was found to fit the adsorption equilibrium data well. Batch uptake kinetics for kafirin adsorption on these resins was also carried out and critical parameters including the diffusion coefficient, film mass transfer coefficient, and Biot number for film-pore diffusion model were calculated. Both the isotherm and the kinetic parameters were considered for selection of appropriate resin for kafirin purification. UNOsphere Q (78.26 mg/ml) and Toyopearl SP-650M (57.4 mg/ml) were found to offer better kafirin binding capacities and interaction strength with excellent uptake kinetics under moderate operating conditions. With these adsorbents, film diffusion resistance was found to be major governing factor for adsorption (Bi<10 and δ<1). Based on designer objective function, UNOsphere Q was found be best adsorbent for binding of kafirin. The data presented is valuable for designing large scale preparative adsorptive chromatographic kafirin purification systems. Copyright © 2014 Elsevier B.V. All rights reserved.
Kutner, Robert H; Puthli, Sharon; Marino, Michael P; Reiser, Jakob
2009-01-01
Background During the past twelve years, lentiviral (LV) vectors have emerged as valuable tools for transgene delivery because of their ability to transduce nondividing cells and their capacity to sustain long-term transgene expression in target cells in vitro and in vivo. However, despite significant progress, the production and concentration of high-titer, high-quality LV vector stocks is still cumbersome and costly. Methods Here we present a simplified protocol for LV vector production on a laboratory scale using HYPERFlask vessels. HYPERFlask vessels are high-yield, high-performance flasks that utilize a multilayered gas permeable growth surface for efficient gas exchange, allowing convenient production of high-titer LV vectors. For subsequent concentration of LV vector stocks produced in this way, we describe a facile protocol involving Mustang Q anion exchange membrane chromatography. Results Our results show that unconcentrated LV vector stocks with titers in excess of 108 transduction units (TU) per ml were obtained using HYPERFlasks and that these titers were higher than those produced in parallel using regular 150-cm2 tissue culture dishes. We also show that up to 500 ml of an unconcentrated LV vector stock prepared using a HYPERFlask vessel could be concentrated using a single Mustang Q Acrodisc with a membrane volume of 0.18 ml. Up to 5.3 × 1010 TU were recovered from a single HYPERFlask vessel. Conclusion The protocol described here is easy to implement and should facilitate high-titer LV vector production for preclinical studies in animal models without the need for multiple tissue culture dishes and ultracentrifugation-based concentration protocols. PMID:19220915
Sun, Jian; Ng, Tzi-Bun; Wang, Hexiang; Zhang, Guoqing
2014-01-01
Little was known about bioactive compounds from the hallucinogenic mushroom Boletus speciosus. In the present study, a hemagglutinin (BSH, B. speciosus hemagglutinin) was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg(2+) and slightly inhibited by Fe(2+), Ca(2+), and Pb(2+). None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210) in vitro, with IC50 of 4.7 μ M and 7.0 μ M, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 μ M.
Sharp, Christopher A; Linder, Cecilia; Magnusson, Per
2007-04-01
Several isoforms of alkaline phosphatase (ALP) can be identified in human tissues and serum after separation by anion-exchange HPLC and isoelectric focusing (IEF). We purified four soluble bone ALP (BALP) isoforms (B/I, B1x, B1 and B2) from human SaOS-2 cells, determined their specific pI values by broad range IEF (pH 3.5-9.5), compared these with commercial preparations of bone, intestinal and liver ALPs and established the effects of neuraminidase and wheat germ lectin (WGA) on enzyme activity. Whilst the isoforms B1x (pI=4.48), B1 (pI=4.32) and B2 (pI=4.12) resolved as well-defined bands, B/I resolved as a complex (pI=4.85-6.84). Neuraminidase altered the migration of all BALP isoforms to pI=6.84 and abolished their binding to the anion-exchange matrix, but increased their enzymatic activities by 11-20%. WGA precipitated the BALP isoforms in IEF gels and the HPLC column and attenuated their enzymatic activities by 54-73%. IEF resolved the commercial BALP into 2 major bands (pI=4.41 and 4.55). Migration of BALP isoforms is similar in IEF and anion-exchange HPLC and dependent on sialic acid content. HPLC is preferable in smaller scale research applications where samples containing mixtures of BALP isoforms are analysed. Circulating liver ALP (pI=3.85) can be resolved from BALP by either method. IEF represents a simpler approach for routine purposes even though some overlapping of the isoforms may occur.
Feasibility of Isotope Harvesting at a Projectile Fragmentation Facility: 67Cu
Mastren, Tara; Pen, Aranh; Peaslee, Graham F.; Wozniak, Nick; Loveless, Shaun; Essenmacher, Scott; Sobotka, Lee G.; Morrissey, David J.; Lapi, Suzanne E.
2014-01-01
The work presented here describes a proof-of-principle experiment for the chemical extraction of 67Cu from an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL). A 76 MeV/A 67Cu beam was stopped in water, successfully isolated from the aqueous solution through a series of chemical separations involving a chelating disk and anion exchange chromatography, then bound to NOTA-conjugated Herceptin antibodies, and the bound activity was validated using instant thin-layer chromatography (ITLC). The chemical extraction efficiency was found to be 88 ± 3% and the radiochemical yield was ≥95%. These results show that extraction of radioisotopes from an aqueous projectile-fragment beam dump is a feasible method for obtaining radiochemically pure isotopes. PMID:25330839
Wang, Yan; Zou, Tingting; Xiang, Minghui; Jin, Chenzhong; Zhang, Xuejiao; Chen, Yong; Jiang, Qiuqing; Hu, Yihong
2016-10-02
A soluble glycoprotein was purified to homogeneity from ripe garlic (Allium sativum) bulbs using ammonium sulfate precipitation, Sephadex G-100 gel filtration, and diethylaminoethyl-52 cellulose anion-exchange chromatography. A native mass of 55.7 kDa estimated on gel permeation chromatography and a molecular weight of 13.2 kDa observed on sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported that the glycoprotein is a homotetramer. β-Elimination reaction result suggested that the glycoprotein is an N-linked type. Fourier-transform infrared spectroscopy proved that it contains sugar. Gas chromatography-mass spectrometer analysis showed that its sugar component was galactose. The glycoprotein has 1,1-diphenyl-2-picrylhydrazil free radical scavenging activity and the peroxidation inhibition ability to polyunsaturated fatty acid. These results indicated that the glycoprotein has potential for food additives, functional foods, and even biotechnological and medical applications.
Kawano, M; Kuwabara, T
2000-09-15
The redox enzyme violaxanthin de-epoxidase (VDE) was found to be sensitive to pepstatin, a specific inhibitor of aspartic protease. The inhibition was similar to that of aspartic protease in that it was reversible and accompanied by the protonation of the enzyme. Of the two peaks of VDE appearing on anion exchange chromatography, VDE-I predominated at pH 7.2. On lowering the pH of the chromatography, VDE-I decreased and VDE-II increased. Furthermore, re-chromatography of either peak yielded both peaks. These results suggest that VDE-I and VDE-II are interconvertible depending on pH, and thus, they represent the de-protonated and protonated forms of the enzyme, respectively. Presumably the protonation-induced structural change of the enzyme is responsible for the interaction with pepstatin, and also with substrate.
Perchlorate as an environmental contaminant.
Urbansky, Edward Todd
2002-01-01
Perchlorate anion (ClO4-) has been found in drinking water supplies throughout the southwestern United States. It is primarily associated with releases of ammonium perchlorate by defense contractors, military operations, and aerospace programs. Ammonium perchlorate is used as a solid oxidant in missile and rocket propulsion systems. Traces of perchlorate are found in Chile saltpeter, but the use of such fertilizer has not been associated with large scale contamination. Although it is a strong oxidant, perchlorate anion is very persistent in the environment due to the high activation energy associated with its reduction. At high enough concentrations, perchlorate can affect thyroid gland functions, where it is mistakenly taken up in place of iodide. A safe daily exposure has not yet been set, but is expected to be released in 2002. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed by anion exchange or membrane filtration. It is destroyed by some biological and chemical processes. The environmental occurrence, toxicity, analytical chemistry, and remediative approaches are discussed.
Affinity Chromatography in Nonionic Detergent Solutions
NASA Astrophysics Data System (ADS)
Robinson, Jack B.; Strottmann, James M.; Wick, Donald G.; Stellwagen, Earle
1980-10-01
Anionic dye affinity chromatography is commonly unproductive in the presence of nonionic detergents used to extract particulate proteins. Using lactate dehydrogenase as a model protein, Cibacron blue F3GA as a model dye, and Triton X-100 as a model detergent, we find that the dye is encapsulated in nonionic detergent micelles, rendering the dye incapable of ligation with the enzyme. However, the dye can be liberated from the micelles without altering the nonionic detergent concentration by addition of an anionic detergent, such as deoxycholate or sodium dodecyl sulfate, forming mixed anionic/nonionic micelles that displace the anionic dye. Encapsulation of the anionic detergents prevents their activity as protein denaturants. These observations have been successfully translated to the dye affinity chromatography of a detergent extract of brain particulate cyclic nucleotide phosphodiesterase.
NASA Astrophysics Data System (ADS)
Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.
2014-07-01
The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan, and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood vs. hardwood burning, the variability only ranged from 3.5 to 24%. To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- on filter samples, a constituent that has been analyzed by numerous laboratories for several decades, typically by ion chromatography, and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wild fires and/or agricultural fires.
NASA Astrophysics Data System (ADS)
Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.
2015-01-01
The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the laboratories the mean PE was within ±10%. For galactosan, the mean PE for the participating laboratories ranged from -84 to 593%, and as for mannosan 33% of the laboratories reported a mean PE within ±10%. The variability of the various analytical methods, as defined by their minimum and maximum PE value, was typically better for levoglucosan than for mannosan and galactosan, ranging from 3.2 to 41% for levoglucosan, from 10 to 67% for mannosan and from 6 to 364% for galactosan. For the levoglucosan to mannosan ratio, which may be used to assess the relative importance of softwood versus hardwood burning, the variability only ranged from 3.5 to 24 . To our knowledge, this is the first major intercomparison on analytical methods used to quantify monosaccharide anhydrides in ambient aerosol filter samples conducted and reported in the scientific literature. The results show that for levoglucosan the accuracy is only slightly lower than that reported for analysis of SO42- (sulfate) on filter samples, a constituent that has been analysed by numerous laboratories for several decades, typically by ion chromatography and which is considered a fairly easy constituent to measure. Hence, the results obtained for levoglucosan with respect to accuracy are encouraging and suggest that levels of levoglucosan, and to a lesser extent mannosan and galactosan, obtained by most of the analytical methods currently used to quantify monosaccharide anhydrides in ambient aerosol filter samples, are comparable. Finally, the various analytical methods used in the current study should be tested for other aerosol matrices and concentrations as well, the most obvious being summertime aerosol samples affected by wildfires and/or agricultural fires.
Zheng, Jian; Yamada, Masatoshi
2006-01-15
The determination of uranium is important for environmental radioactivity monitoring, which investigates the releases of uranium from nuclear facilities and of naturally occurring radioactive materials by the coal, oil, natural gas, mineral, ore refining and phosphate fertilizer industries, and it is also important for studies on the biogeochemical behavior of uranium in the environment. In this paper, we describe a quadrupole ICP-MS (ICP-QMS)-based analytical procedure for the accurate determination of U isotope ratios ((235)U/(238)U atom ratio and (234)U/(238)U activity ratio) in sediment samples. A two-stage sample cleanup using anion-exchange and TEVA extraction chromatography was employed in order to obtain accurate and precise (234)U/(238)U activity ratios. The factors that affect the accuracy and precision of U isotope ratio analysis, such as detector dead time, abundance sensitivity, dwell time and mass bias were carefully evaluated and corrected. With natural U, a precision lower than 0.5% R.S.D. for (235)U/(238)U atom ratio and lower than 2.0% R.S.D. for (234)U/(238)U activity ratio was obtained with less than 90 ng uranium. The developed analytical method was validated using an ocean sediment reference material and applied to an investigation into the uranium isotopic compositions in a sediment core in a brackish lake in the vicinity of U-related nuclear facilities in Japan.
Yuen, Chun-Ting; Zhou, Yong; Wang, Qing-Zhou; Hou, Ji-Feng; Bristow, Adrian; Wang, Jun-Zhi
2011-11-01
N-Glycosylation of many glycoprotein drugs is important for biological activity and should therefore be the target of specific and quantitative analytical methods. In this study, we focus on the two N-glycan mapping approaches that are used in pharmacopoeial monograph to analyse N-glycans released from fifteen preparations of recombinant human erythropoietin supplied by ten Chinese manufacturers. Underivatised N-glycans were analysed by high performance anion-exchange chromatography with pulsed amperometric detection and fluorophore-labelled N-glycans were analysed by weak anion-exchange and normal-phase high performance liquid chromatography. N-glycans were also analysed by matrix assisted laser desorption ionisation mass spectrometry. The release of N-glycans by PNGase F was shown to be consistent. Z number, a mathematical expression of the total negatively charged N-glycans composition has provided a convenient way to summarise the complex dataset and it might be suitable for product consistency monitoring. However, this Z number reduces the information of individual acidic N-glycan structure and is also found to be method dependent. Therefore, its use requires clear specification and validation. In this study, we only found weak but positive correlation between the Z number and its bioactivity. Wide range of N-glycans yields were obtained from the fifteen preparations but the significance of their differences is unclear. Copyright © 2011 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asnin, Leonid; Kaczmarski, Krzysztof; Guiochon, Georges A
The retention mechanism of the enantiomers of naproxen on a Pirkle-type chiral stationary phase (CSP) was studied. This CSP is made of a porous silica grafted with quinidine carbamate. It can interact with the weak organic electrolyte naproxen either by adsorbing it or by ion-exchange. Using frontal chromatography, we explored the adsorption equilibrium under such experimental conditions that naproxen dissociates or cannot dissociate. Under conditions preventing ionic dissociation, the adsorption isotherms were measured, the adsorption energy distributions determined, and the chromatographic profiles calculated. Three different types of the adsorption sites were found for both enantiomers. The density and the bindingmore » energy of these sites depend on the nature of the organic modifier. Different solute species, anions, neutral molecules, solvent-ion associates, and solute dimers can coexist in solution, giving rise to different forms of adsorption. This study showed the unexpected occurrence of secondary steps in the breakthrough profiles of S-naproxen in the adsorption mode at high concentrations. Being enantioselective, this phenomenon was assumed to result from the association of solute molecules involving a chiral selector moiety. A multisite Langmuir adsorption model was used to calculate band profiles. Although this model accounts excellently for the experimental adsorption isotherms, it does not explain all the features of the breakthrough profiles. A comparison between the calculated and experimental profiles allowed useful conclusions concerning the effects of the adsorbate-adsorbate and adsorbate-solvent interactions on the adsorption mechanism.« less
Schütz, Katrin; Muks, Erna; Carle, Reinhold; Schieber, Andreas
2006-12-01
The profile of fructooligosaccharides and fructopolysaccharides in artichoke heads and dandelion roots was investigated. For this purpose, a suitable method for high-performance anion exchange chromatography with pulsed amperometic detection was developed. The separation of monomers, oligomers and polymers up to a chain length of 79 sugar residues was achieved in one single run. Glucose, fructose, sucrose and individual fructooligosaccharides (kestose, nystose, fructofuranosylnystose) were quantified in six different artichoke cultivars and in dandelion roots. The contents ranged from 12.9 g/kg DM to 71.7 g/kg DM for glucose, from 15.8 g/kg DM to 67.2 g/kg DM for fructose, and from 16.8 g/kg DM to 55.2 g/kg DM for sucrose in the artichoke heads. Kestose was the predominant fructooligosaccharide, followed by nystose and fructofuranosylnystose. In four cultivars fructofuranosylnystose was only detectable in traces and reached its maximum value of 3.6 g/kg DM in the cultivar Le Castel. Furthermore, an average degree of polymerization of 5.3 to 16.7 was calculated for the individual artichoke cultivars, which is noticeably lower than hitherto reported. In contrast, the contents of kestose, nystose and fructofuranosylnystose in dandelion root exceeded that of artichoke, reflecting the short chain characteristic of the inulin, which was confirmed by chromatographic analysis. Copyright (c) 2006 John Wiley & Sons, Ltd.
Thornton, D J; Khan, N; Mehrotra, R; Howard, M; Veerman, E; Packer, N H; Sheehan, J K
1999-03-01
The MG1 population of mucins was isolated from human whole salivas by gel chromatography followed by isopycnic density gradient centrifugation. The reduced and alkylated MG1 mucins, separated by anion exchange chromatography, were of similar size (radius of gyration 55-64 nm) and molecular weight (2.5-2.9 x 10(6) Da). Two differently-charged populations of MG1 subunits were observed which showed different reactivity with monoclonal antibodies to glycan epitopes. Monosaccharide and amino acid compositional analyses indicated that the MG1 subunits had similar glycan structures on the same polypeptide. An antiserum recognizing the MUC5B mucin was reactive across the entire distribution, whereas antisera raised against the MUC2 and MUC5AC mucins showed no reactivity. Western blots of agarose gel electrophoresis of fractions across the anion exchange distribution indicated that the polypeptide underlying the mucins was the product of the MUC5B gene. Amino acid analysis and peptide mapping performed on the fragments produced by trypsin digestion of the two MG1 populations yielded data similar to that obtained for MUC5B mucin subunits prepared from respiratory mucus (Thornton et al., 1997) and confirmed that the MUC5B gene product was the predominant mucin polypeptide present. Isolation of the MG1 mucins from the secretions of the individual salivary glands (palatal, sublingual, and submandibular) indicate that the palatal gland is the source of the highly charged population of the MUC5B mucin.
Purification of foot-and-mouth disease virus by heparin as ligand for certain strains.
Du, Ping; Sun, Shiqi; Dong, Jinjie; Zhi, Xiaoying; Chang, Yanyan; Teng, Zhidong; Guo, Huichen; Liu, Zaixin
2017-04-01
The goal of this project was to develop an easily operable and scalable process for the recovery and purification of foot-and-mouth disease virus (FMDV) from cell culture. Heparin resins HipTrap Heparin HP and AF-Heparin HC-650 were utilized to purify FMDV O/HN/CHA/93. Results showed that the purity of AF-Heparin HC-650 was ideal. Then, the O/HN/CHA/93, O/Tibet/CHA/99, Asia I/HN/06, and A/CHA/HB/2009 strains were purified by AF-Heparin HC-650. Their affinity/virus recoveries were approximately 51.2%/45.8%, 71.5%/70.9%, 96.4%/73.5, and 59.5%/42.1%, respectively. During a stepwise elution strategy, the viral particles were mainly eluted at 300mM ionic strength peaks. The heparin affinity chromatography process removed more than 94% of cellular and medium proteins. Anion exchange resin Capto Q captured four FMD virus particles; 40% of binding proteins and 80%-90% of viral particles were eluted at 450mM NaCl. Moreover, ionic strength varied from 30 to 450mM had no effect on the immunity to FMDV. The results revealed that heparin sulfate may be the main receptor for CHA/99 strain attachment-susceptible cells. Heparin affinity chromatography can reach perfect results, especially when used as a ligand of the virus. Anion exchange is useful only as previous step for further purification. Copyright © 2016. Published by Elsevier B.V.
Polyelectrolyte-coated ion exchangers for cell-resistant expanded bed adsorption.
Dainiak, Maria B; Galaev, Igor Yu; Mattiasson, Bo
2002-01-01
Adsorption chromatography in expanded beds is a widely used technology for direct capture of target proteins from fermentation broths. However, in many cases this method cannot be applied as a result of the strong tendency of cells or cell debris to interact with the adsorbent beads. To prevent contamination of the expanded bed with the biomass, STREAMLINE DEAE, anion exchanger designed for expanded bed adsorption, was modified with a layer of poly(acrylic acid) (PAA). The shielding layer of polyelectrolyte was attached to the surface of the matrix beads via electrostatic interactions. PAA with a high degree of polymerization was chosen to prevent diffusion of large polymer molecules into the pores of adsorbent. Thus, the shielding layer of PAA was adsorbed only at the mouth of the pores of STREAMLINE DEAE beads and only marginally decreased the binding capacity of the ion exchanger for bovine serum albumin, the model protein in this study. PAA-coated STREAMLINE DEAE practically did not interact with yeast cells, which otherwise bound strongly to the native adsorbent at neutral conditions. Cell-resistant PAA-coated anion exchanger was successfully used for isolation of BSA from the model protein mixture containing BSA, lysozyme (positively charged at applied conditions), and yeast cells. The layer of PAA was stable under mild elution conditions, and the modified adsorbent could be used in the repeated purification cycles.
Mahut, Marek; Lindner, Wolfgang; Lämmerhofer, Michael
2012-01-18
We recently discovered the molecular recognition capability of a quinine carbamate ligand attached to silica as a powerful chemoaffinity material for the chromatographic separation of circular plasmid topoisomers of different linking numbers. In this paper we develop structure-selectivity relationship studies to figure out the essential structural features for topoisomer recognition. By varying different moieties of the original cinchonan-derived selector, it was shown that intercalation by the quinoline moiety of the ligand as assumed initially as the working hypothesis is not an essential feature for topoisomer recognition during chromatography. We found that the key elements for topoisomer selectivity are the presence of a rigid weak anion-exchange site and a H-donor site separated from each other in a defined distance by a 4-atom spacer. Additionally, incorporation of the weak anion-exchange site into a cyclic ring structure provides greater rigidity of the ligand molecule and turned out to be advantageous, if not mandatory, for (close to) baseline separation. © 2011 American Chemical Society
Taylor, Wesley G; Fields, Paul G; Elder, James L
2004-12-15
Chromatographic fractionation of crude extracts (C8 extracts) from the protein-enriched flour of commercial field peas (Pisum sativum L.) has been shown here to yield peptide mixtures related to the pea albumin 1b (PA1b) family of cysteine-rich plant peptides. The mixtures were obtained initially by flash chromatography with silica gel. Following elution of soyasaponins and lysolecithins, the end fractions obtained with the use of two flash chromatographic solvent systems displayed activity in a flour disk antifeedant bioassay with the rice weevil [Sitophilus oryzae (L.)]. Chemical properties of these mixtures were compared by thin-layer chromatography, high-performance liquid chromatography (HPLC), IR, MS, and amino acid analyses. The major peptides of C8 extracts, with average masses of 3752, 3757, and 3805 Da, were isolated by anion exchange chromatography. Samples enriched in the peptide of mass 3752 were isolated by cation exchange chromatography. Reduction plus alkylation experiments in combination with electrospray ionization mass spectrometry showed that C8 extracts contained about 10 peptides and, like PA1b, each peptide possessed six cysteine residues (three disulfide bonds). Disulfide bond reduction with 2-mercaptoethanol destroyed the antifeedant activity. The native peptides of C8 extracts were found to be resolved into nine peaks with XTerra HPLC columns operating at alkaline pH. These columns were employed to assess the distribution of pea peptides in the isolated fractions, with photodiode array and electrospray detection.
Simultaneous Extraction of Lithium and Hydrogen from Seawater
2011-01-26
ion chromatography . Anions were analyzed by Anion Ion Chromatography (Instrument Dionex ...Cation Ion Chromatography (Instrument Dionex DX-500, Cation Column Dionex CS12A; CG12A Guard, eluent: 20.00 mM methanesulfonic acid, flow rate:1.25...for 2 hours and sprayed (P=6psig) with an air-sprayer on Nafion. The dimension of sprayed area is 1˝ x 1˝. Ion Chromatography (IC): Ions
Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties
Boyer, T.H.; Singer, P.C.; Aiken, G.R.
2008-01-01
Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.
Purification and Characterization of a Lectin from Green Split Peas (Pisum sativum).
Ng, Tzi Bun; Chan, Yau Sang; Ng, Charlene Cheuk Wing; Wong, Jack Ho
2015-11-01
Lectins have captured the attention of a large number of researchers on account of their various exploitable activities, including antitumor, immunomodulatory, antifungal, as well as HIV reverse transcriptase inhibitory activities. A mannose/glucose-specific lectin was isolated from green split peas (a variety of Pisum sativum) and characterized. The purification step involved anion-exchange chromatography on a DEAE-cellulose column, cation-exchange chromatography on an SP-Sepharose column, and gel filtration by fast protein liquid chromatography (FPLC) on Superdex 200. The purified lectin had a native molecular mass of around 50 kDa as determined by size exclusion chromatography. It appeared as a heterotetramer, composed of two distinct polypeptide bands with a molecular mass of 6 and 19 kDa, respectively, in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The N-terminal sequence of green split pea lectin shows some degree of homology compared to lectins from other legume species. Its hemagglutinating activity was inhibited by glucose, mannose, and sucrose, and attenuated at pH values higher than 12 or lower than 3. Hemagglutinating activity was preserved at temperatures lower than 80 °C. The lectin did not show antifungal activity toward fungi including Fusarium oxysporum, Botrytis cinerea, and Mycosphaerella arachidicola. Green split pea lectin showed a mitogenic effect toward murine splenocytes and could inhibit the activity of HIV-1 reverse transcriptase.
Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants.
Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E
2015-12-01
Modeling ion exchange chromatography (IEC) behavior has generated significant interest because of the wide use of IEC as an analytical technique as well as a preparative protein purification process; indeed there is a need for better understanding of what drives the unique behavior of protein charge variants. We hypothesize that a complex protein molecule, which contains both hydrophobic and charged moieties, would interact strongly with an in silico designed resin through charged electrostatic patches on the surface of the protein. In the present work, variants of recombinant human growth hormone that mimic naturally-occurring deamidation products were produced and characterized in silico. The study included these four variants: rhGH, N149D, N152D, and N149D/N152D. Poisson-Boltzmann calculations were used to determine surface electrostatic potential. Metropolis Monte Carlo simulations were carried out with the resulting variants to simulate IEC systems, examining the free energy of the interaction of the protein with an in silico anion exchange column represented by polylysine polypeptide. The results show that the charge variants have different average binding energies and the free energy of interaction can be used to predict the retention time for the different variants. Copyright © 2015 Elsevier B.V. All rights reserved.
Gjoka, Xhorxhi; Gantier, Rene; Schofield, Mark
2017-01-20
The goal of this study was to adapt a batch mAb purification chromatography platform for continuous operation. The experiments and rationale used to convert from batch to continuous operation are described. Experimental data was used to design chromatography methods for continuous operation that would exceed the threshold for critical quality attributes and minimize the consumables required as compared to batch mode of operation. Four unit operations comprising of Protein A capture, viral inactivation, flow-through anion exchange (AEX), and mixed-mode cation exchange chromatography (MMCEX) were integrated across two Cadence BioSMB PD multi-column chromatography systems in order to process a 25L volume of harvested cell culture fluid (HCCF) in less than 12h. Transfer from batch to continuous resulted in an increase in productivity of the Protein A step from 13 to 50g/L/h and of the MMCEX step from 10 to 60g/L/h with no impact on the purification process performance in term of contaminant removal (4.5 log reduction of host cell proteins, 50% reduction in soluble product aggregates) and overall chromatography process yield of recovery (75%). The increase in productivity, combined with continuous operation, reduced the resin volume required for Protein A and MMCEX chromatography by more than 95% compared to batch. The volume of AEX membrane required for flow through operation was reduced by 74%. Moreover, the continuous process required 44% less buffer than an equivalent batch process. This significant reduction in consumables enables cost-effective, disposable, single-use manufacturing. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Bray, Lane Allan; DesChane, Jaquetta R.
1998-01-01
A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.
Bray, L.A.; DesChane, J.R.
1998-05-05
A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.
Agarande, M; Benzoubir, S; Bouisset, P; Calmet, D
2001-08-01
Trace levels (pg kg(-1)) of 241Am in sediments were determined by isotope dilution high resolution inductively coupled plasma mass spectrometry (ID HR ICP-MS) using a microconcentric nebulizer. 241Am was isolated from major elements like Ca and Fe by different selective precipitations. In further steps. Am was first separated from other transuranic elements and purified by anion exchange and extraction chromatography prior to the mass spectrometric measurements. The ID HR ICP-MS results are compared with isotope dilution alpha spectrometry.
The fractionation of t-RNA on N,N′-bis(3-aminopropyl)-piperazine substituted-Sepharose
Leberman, Reuben; Giovanelli, Ruth; Acosta, Zenobio
1974-01-01
An anion exchange agarose has been prepared by modifying sepharose 6B with N,N′-bis (-3-aminopropyl) piperazine. This material (BAPP-Sepharose) has been used for the fractionation of t-RNA from E.coli by column chromatography. The results obtained with gram quantities of crude t-RNA at pH 4.6 and pH 8.0 as measured by the elution patterns of alanyl, arginyl, aspartyl, leucyl, lysyl, methionyl, phenylalanyl, prolyl, seryl, tyrosyl, and valyl t-RNA are described. PMID:10793731
Pinilla, V; Luu, B
1999-08-01
The water-soluble crude extract prepared from Imperata cylindrica (Beauv.) was investigated for its immunomodulating activity. A set of polysaccharides with high molecular weights has been isolated by fractionation using gel filtration and anion-exchange chromatography. Each step of purification was monitored by bioassays. The presence of six monosaccharides has been established by chemical analysis. Quantitative analysis showed that the ratio of these monosaccharides differed from one polysaccharide to another. The crude extract as well as some of the purified polysaccharides enhance the proliferation of murine splenocytes.
Vetchinkina, Elena P; Pozdnyakova, Natalia N; Nikitina, Valentina E
2008-10-01
The white-rot fungus Lentinus edodes produced D-melibiose-specific lectins and two laccase forms in a lignin-containing medium. The maxima of laccase and lectin activities coincided, falling within the period of active mycelial growth. The enzymes and lectins were isolated and purified by gel filtration followed by anion-exchange chromatography. The L. edodes lectins were found to be able to stabilize the activity of the fungus's own laccases. Lectin activity during the formation of lectin-enzyme complexes remained unchanged.
Suppression of H-/O2- exchange by incorporated nitride anions in the perovskite lattice
NASA Astrophysics Data System (ADS)
Takeiri, Fumitaka; Yajima, Takeshi; Yamamoto, Takafumi; Kobayashi, Yoji; Matsui, Toshiaki; Hester, James; Kageyama, Hiroshi
2017-12-01
We investigate the low temperature anion exchange behavior of hydride and oxide in perovskite oxynitrides. CaH2 reduction of (Sr1-xLax)Ti(O3-xNx) (0
Li, Wen-Tao; Xu, Zi-Xiao; Shuang, Chen-Dong; Zhou, Qing; Li, Hai-Bo; Li, Ai-Min
2016-03-01
The efficiency and mechanism of anion exchange resin Nanda Magnetic Polymer (NDMP) for removal of fluorescent dissolved organic matter in biologically treated textile effluents were studied. The bench-scale experiments showed that as well as activated carbon, anion exchange resin could efficiently remove both aniline-like and humic-like fluorescent components, which can be up to 40 % of dissolved organic matter. The humic-like fluorescent component HS-Em460-Ex3 was more hydrophilic than HS-Em430-Ex2 and contained fewer alkyl chains but more acid groups. As a result, HS-Em460-Ex3 was eliminated more preferentially by NDMP anion exchange. However, compared with adsorption resins, the polarity of fluorescent components had a relatively small effect on the performance of anion exchange resin. The long-term pilot-scale experiments showed that the NDMP anion exchange process could remove approximately 30 % of the chemical oxygen demand and about 90 % of color from the biologically treated textile effluents. Once the issue of waste brine from resin desorption is solved, the NDMP anion exchange process could be a promising alternative for the advanced treatment of textile effluents.
Feasibility of Isotope Harvesting at a Projectile Fragmentation Facility: 67Cu
Mastren, Tara; Pen, Aranh; Peaslee, Graham F.; ...
2014-10-21
The work presented here describes a proof-of-principle experiment for the chemical extraction of 67Cu from an aqueous beam stop at the National Superconducting Cyclotron Laboratory (NSCL). A 76 MeV/A 67Cu beam was stopped in water, successfully isolated from the aqueous solution through a series of chemical separations involving a chelating disk and anion exchange chromatography, then bound to NOTA-conjugated Herceptin antibodies, and the bound activity was validated using instant thin-layer chromatography (ITLC). The chemical extraction efficiency was found to be 88 ± 3% and the radiochemical yield was ≥95%. These results show that extraction of radioisotopes from an aqueous projectile-fragmentmore » beam dump is a feasible method for obtaining radiochemically pure isotopes.« less
Separation of Be and Al for AMS using single-step column chromatography
NASA Astrophysics Data System (ADS)
Binnie, Steven A.; Dunai, Tibor J.; Voronina, Elena; Goral, Tomasz; Heinze, Stefan; Dewald, Alfred
2015-10-01
With the aim of simplifying AMS target preparation procedures for TCN measurements we tested a new extraction chromatography approach which couples an anion exchange resin (WBEC) to a chelating resin (Beryllium resin) to separate Be and Al from dissolved quartz samples. Results show that WBEC-Beryllium resin stacks can be used to provide high purity Be and Al separations using a combination of hydrochloric/oxalic and nitric acid elutions. 10Be and 26Al concentrations from quartz samples prepared using more standard procedures are compared with results from replicate samples prepared using the coupled WBEC-Beryllium resin approach and show good agreement. The new column procedure is performed in a single step, reducing sample preparation times relative to more traditional methods of TCN target production.
Sun, Yingying; Wang, Hui; Guo, Ganlin; Pu, Yinfang; Yan, Binlun
2014-11-26
Three polysaccharides, IPSI-A, IPSI-B and IPSII, were successfully isolated from the marine microalgae Isochrysis galbana through a combination of anion-exchange column chromatography and repeated gel chromatography. These three polysaccharides were demonstrated to have moderate scavenging activities against superoxide and hydroxyl radicals and moderate reductive power in a concentration-dependent manner. The IPSII demonstrated more effective antioxidant activities than IPSI-A and IPSI-B. IPSII had a molecular weight of 15.934 kDa belonging to a β-type heteropolysaccharide with a pyran group and primarily contained mannose with variable amounts of glucose, galactose and rhamnose based on an analysis of infrared spectroscopy (IR), electrospray ionization-mass spectrometry (ESI-MS) and (1)H nuclear magnetic resonance ((1)H NMR). Copyright © 2014 Elsevier Ltd. All rights reserved.
Uemura, Yusuke; Asakuma, Sadaki; Nakamura, Tadashi; Arai, Ikichi; Taki, Michihiro; Urashima, Tadasu
2005-10-10
Crude oligosaccharides were recovered from bottlenose dolphin (Tursiops truncatus) colostrum after chloroform/methanol extraction of lipids and protein precipitation, and purified using gel filtration, anion exchange chromatography and high performance liquid chromatography (HPLC). Their chemical structures characterized by NMR spectroscopy were as follows: GalNAc(beta1-4)[Neu5Ac(alpha2-3)]Gal(beta1-4)Glc, Neu5Ac(alpha2-3)Gal(beta1-4)Glc, Neu5Ac(alpha2-6)Gal(beta1-4)Glc and Gal(alpha1-4)Gal(beta1-4)Glc. The monosialyltetrasaccharide and neutral trisaccharide have not previously been found as free forms in any natural sources including milk or colostrum, although these structures have been found in the carbohydrate units of glycosphingolipids GM2 and Gb3.
Zhou, Yonghong; Peisker, Helga
2016-01-01
Cardiolipin (CL), an anionic phospholipid of the inner mitochondrial membrane, provides essential functions for stabilizing respiratory complexes and is involved in mitochondrial morphogenesis and programmed cell death in animals. The role of CL and its metabolism in plants are less well understood. The measurement of CL in plants, including its molecular species composition, is hampered by the fact that CL is of extremely low abundance, and that plants contain large amounts of interfering compounds including galactolipids, neutral lipids, and pigments. We used solid phase extraction by anion exchange chromatography to purify CL from crude plant lipid extracts. LC/MS was used to determine the content and molecular species composition of CL. Thus, up to 23 different molecular species of CL were detected in different plant species, including Arabidopsis, mung bean, spinach, barley, and tobacco. Similar to animals, plant CL is dominated by highly unsaturated species, mostly containing linoleic and linolenic acid. During phosphate deprivation or exposure to an extended dark period, the amount of CL decreased in Arabidopsis, accompanied with an increased degree in unsaturation. The mechanism of CL remodeling during stress, and the function of highly unsaturated CL molecular species, remains to be defined. PMID:27179363
Characterization and in vitro antioxidant activities of polysaccharides from Pleurotus ostreatus.
Zhang, Yunxia; Dai, Ling; Kong, Xiaowei; Chen, Liangwen
2012-10-01
Two polysaccharide fractions (PSPO-1a and PSPO-4a) were isolated from the fruiting bodies of Pleurotus ostreatus using ethanol precipitation, anion-exchange chromatography and gel permeation chromatography. Both fractions were heteropolysaccharide containing protein and uronic acid. PSPO-1a was composed of mannose, glucose, galactose, xylose and rhamnose with a molar ratio of 2.47:0.91:1.00:1.66:3.87. PSPO-4a was composed of only three monosaccharides: rhamnose, mannose and galactose with a molar ratio of 0.92:2.69:1.00. The average molecular weight of PSPO-1a and PSPO-4a determined by HPLC were estimated to be 1.8 × 10(4)Da and 1.1 × 10(6)Da respectively. The in vitro tests revealed that two polysaccharides were natural potential antioxidant. Both polysaccharides presented stronger DPPH radical and superoxide anion radical scavenging activity with increasing concentrations, but less effective on scavenging hydroxyl radical. Compared with PSPO-4a, PSPO-1a was the more effective free-radical scavenger. In conclusion, the two polysaccharides may be useful as a naturally potential antioxidant agent for application in food and medicinal fields. Copyright © 2012 Elsevier B.V. All rights reserved.
Simultaneous Extraction of Lithium and Hydrogen from Seawater
2011-04-26
chromatography . Anions were analyzed by Anion Ion Chromatography (Instrument Dionex ICS-1500, Column Dionex AS9-HC; AG9-HC Guard, eluent: 9.00 mM Na2CO3, flow...rate: 1.25 mL/min, and sample loop was 25 μL). Cations were analyzed by Cation Ion Chromatography (Instrument Dionex DX-500, Cation Column Dionex ...the amount was measured volumetrically. Ion chromatography : Ions in seawater diffused from/to the anode and cathode were determined by ion
Ng, Tzi-Bun; Wang, Hexiang; Zhang, Guoqing
2014-01-01
Little was known about bioactive compounds from the hallucinogenic mushroom Boletus speciosus. In the present study, a hemagglutinin (BSH, B. speciosus hemagglutinin) was isolated from its fruiting bodies and enzymatic properties were also tested. The chromatographic procedure utilized comprised anion exchange chromatography on Q-Sepharose, cation exchange chromatography on CM-Cellulose, cation exchange chromatography on SP-Sepharose, and gel filtration by FPLC on Superdex 75. The hemagglutinin was a homodimer which was estimated to be approximately 31 kDa in size. The activity of BSH was stable up to 60°C, while there was a precipitous drop in activity when the temperature was elevated to 70°C. BSH retained 25% hemagglutinating activity when exposed to 100 mM NaOH and 25 mM HCl. The activity was potently inhibited by 1.25 mM Hg2+ and slightly inhibited by Fe2+, Ca2+, and Pb2+. None of the sugars tested showed inhibition towards BSH. Its hemagglutinating activity towards human erythrocytes type A, type B, and type AB was higher than type O. The hemagglutinin showed antiproliferative activity towards hepatoma Hep G2 cells and mouse lymphocytic leukemia cells (L1210) in vitro, with IC50 of 4.7 μM and 7.0 μM, respectively. It also exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 μM. PMID:24977148
Dalmark, Mads; Wieth, Jens Otto
1972-01-01
1. The temperature dependence of the steady-state self-exchange of chloride between human red cells and a plasma-like electrolyte medium has been studied by measuring the rate of 36Cl- efflux from radioactively labelled cells. Between 0 and 10° C the rate increased by a factor of eight corresponding to an Arrhenius activation energy of 33 kcal/mole. 2. The rate of chloride exchange decreased significantly in experiments where 95% of the chloride ions in cells and medium were replaced by other monovalent anions of a lyotropic series. The rate of chloride self-exchange was increasingly reduced by bromide, bicarbonate, nitrate, iodide, thiocyanate, and salicylate. The latter aromatic anion was by far the most potent inhibitor, reducing the rate of chloride self-exchange to 0·2% of the value found in a chloride medium. 3. The temperature sensitivity of the chloride self-exchange was not affected significantly by the anionic inhibitors. The Arrhenius activation energies of chloride exchange were between 30 and 40 kcal/mole in the presence of the six inhibitory anions mentioned above. 4. The rate of self-exchange of bromide, thiocyanate, and iodide between human red cells and media was determined after washing and labelling cells in media containing 120 mM bromide, thiocyanate, or iodide respectively. The rate of self-exchange of the three anions were 12, 3, and 0·4% of the rate of chloride self-exchange found in the chloride medium. 5. The Arrhenius activation energies of the self-exchange of bromide, iodide, and thiocyanate were all between 29 and 37 kcal/mole, the same magnitude as found for the self-exchange of chloride. 6. Although approximately 40% of the intracellular iodide and salicylate ions appeared to be adsorbed to intracellular proteins, the rate of tracer anion efflux followed first order kinetics until at least 98% of the intracellular anions had been exchanged. 7. The self-exchange of salicylate across the human red cell membrane occurred by a different mechanism than the one utilized by the inorganic monovalent anions. The activation energy of salicylate exchange (13·2 kcal/mole) was significantly lower than that of inorganic anion exchange. Salicylate exchange increased with decreasing pH in contrast to the exchange of chloride, which decreases when pH is lowered. PMID:5071931
Unfolding of a model protein on ion exchange and mixed mode chromatography surfaces.
Gospodarek, Adrian M; Hiser, Diana E; O'Connell, John P; Fernandez, Erik J
2014-08-15
Recent studies with proteins indicate that conformational changes and aggregation can occur during ion exchange chromatography (IEC). Such behavior is not usually expected, but could lead to decreased yield and product degradation from both IEC and multi mode chromatography (MMC) that has ligands of both hydrophobic and charged functionalities. In this study, we used hydrogen exchange mass spectrometry to investigate unfolding of the model protein BSA on IEC and MMC surfaces under different solution conditions at 25°C. Increased solvent exposure, indicating greater unfolding relative to that in solution, was found for protein adsorbed on cationic IEC and MMC surfaces in the pH range of 3.0 to 4.5, where BSA has decreased stability in solution. There was no effect of anionic surfaces at pH values in the range from 6.0 to 9.0. Differences of solvent exposure of whole molecules when adsorbed and in solution suggest that adsorbed BSA unfolds at lower pH values and may show aggregation, depending upon pH and the surface type. Measurements on digested peptides showed that classifications of stability can be made for various regions; these are generally retained as pH is changed. When salt was added to MMC systems, where electrostatic interactions would be minimized, less solvent exposure was seen, implying that it is the cationic moieties, rather than the hydrophobic ligands, which cause greater surface unfolding at low salt concentrations. These results suggest that proteins of lower stability may exhibit unfolding and aggregation during IEC and MMC separations, as they can with hydrophobic interaction chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.
Antimicrobial activity of buttermilk and lactoferrin peptide extracts on poultry pathogens.
Jean, Catherine; Boulianne, Martine; Britten, Michel; Robitaille, Gilles
2016-11-01
Antibiotics are commonly used in poultry feed as growth promoters. This practice is questioned given the arising importance of antibiotic resistance. Antimicrobial peptides can be used as food additives for a potent alternative to synthetic or semi-synthetic antibiotics. The objective of this study was to develop a peptide production method based on membrane adsorption chromatography in order to produce extracts with antimicrobial activity against avian pathogens (Salmonella enterica var. Enteritidis, Salmonella enterica var. Typhimurium, and two Escherichia coli strains, O78:H80 and TK3 O1:K1) as well as Staphylococcus aureus. To achieve this, buttermilk powder and purified lactoferrin were digested with pepsin. The peptide extracts (<10 kDa) were fractionated depending on their charges through high-capacity cation-exchange and anion-exchange adsorptive membranes. The yields of cationic peptide extracts were 6·3 and 15·4% from buttermilk and lactoferrin total peptide extracts, respectively. Antimicrobial activity was assessed using the microdilution technique on microplates. Our results indicate that the buttermilk cationic peptide extracts were bactericidal at less than 5 mg/ml against the selected avian strains, with losses of 1·7 log CFU/ml (Salm. Typhimurium) to 3 log CFU/ml (E. coli O78:H80); viability decreased by 1·5 log CFU/ml for Staph. aureus, a Gram-positive bacterium. Anionic and non-adsorbed peptide extracts were inactive at 5 mg/ml. These results demonstrate that membrane adsorption chromatography is an effective way to prepare a cationic peptide extract from buttermilk that is active against avian pathogens.
Backe, Will J; Day, Thomas C; Field, Jennifer A
2013-05-21
A new analytical method was developed to quantify 26 newly-identified and 21 legacy (e.g. perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, and fluorotelomer sulfonates) per and polyfluorinated alkyl substances (PFAS) in groundwater and aqueous film forming foam (AFFF) formulations. Prior to analysis, AFFF formulations were diluted into methanol and PFAS in groundwater were micro liquid-liquid extracted. Methanolic dilutions of AFFF formulations and groundwater extracts were analyzed by large-volume injection (900 μL) high-performance liquid chromatography tandem mass spectrometry. Orthogonal chromatography was performed using cation exchange (silica) and anion exchange (propylamine) guard columns connected in series to a reverse-phase (C18) analytical column. Method detection limits for PFAS in groundwater ranged from 0.71 ng/L to 67 ng/L, and whole-method accuracy ranged from 96% to 106% for analytes for which matched authentic analytical standards were available. For analytes without authentic analytical standards, whole-method accuracy ranged from 78 % to 144 %, and whole-method precision was less than 15 % relative standard deviation for all analytes. A demonstration of the method on groundwater samples from five military bases revealed eight of the 26 newly-identified PFAS present at concentrations up to 6900 ng/L. The newly-identified PFAS represent a minor fraction of the fluorinated chemicals in groundwater relative to legacy PFAS. The profiles of PFAS in groundwater differ from those found in fluorotelomer- and electrofluorination-based AFFF formulations, which potentially indicates environmental transformation of PFAS.
Zhu, Hong-Yan; Chen, Guang-Tong; Meng, Guo-Liang; Xu, Ji-Liang
2015-03-01
The polysaccharides from pumpkin fruit (PP) were obtained and purified by hot-water extraction, anion-exchange chromatography, and gel column chromatography. The physicochemical properties of PP were determined by gel filtration chromatography, gas chromatography, fourier transform infrared (FTIR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy. Results indicated that the molecular weight of PP was about 23 kDa and PP was composed of D-Arabinose, D-Mannose, D-Glucose, and D-Galactose with a molar ratio of 1 : 7.79 : 70.32 : 7.05. FTIR and NMR spectra indicated that PP was the polysaccharide containing pyranose ring. Additionally, PP protected islets cells from streptozotocin (STZ) injury in vitro via increasing the levels of super-oxide dismutase (SOD) and malondialdehyde (MDA) and reducing the production of NO. The experiment of reverse transcriptase-polymerase chain reaction further proved that PP inhibited apoptosis via modulating the expression of Bax/Bcl-2 in STZ-damaged islet cells. In conclusion, PP could be explored as a novel agent for the treatment of diabetes mellitus. Copyright © 2015 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Westereng, Bjørge; Arntzen, Magnus Ø; Aachmann, Finn L; Várnai, Anikó; Eijsink, Vincent G H; Agger, Jane Wittrup
2016-05-06
Lytic polysaccharide monooxygenases play a pivotal role in enzymatic deconstruction of plant cell wall material due to their ability to catalyze oxidative cleavage of glycosidic bonds. LPMOs may release different products, often in small amounts, with various oxidation patterns (C1 or C4) and with varying stabilities, making accurate analysis of product profiles a major challenge. So far, HPAEC has been the method of choice but it has limitations with respect to analysis of C4-oxidized products. Here, we compare various HPLC methods and present procedures that allow efficient separation of intact C1- and C4-oxidized products. We demonstrate that both PGC and HILIC (in WAX-mode) can separate C1- and C4-oxidized products and that PGC gives superior chromatographic performance. In contrast to HPAEC, these methods are directly compatible with mass spectroscopy and charged aerosol detection (CAD), which enables online peak validation and quantification with LOD levels in the low ng range. While the novel methods show lower resolution than HPAEC, this is compensated by easy peak identification, allowing, for example, discrimination between chromatographically highly similar native and C4-oxidized cello-oligomers. HPAEC-MS studies revealed chemical oxidation of C4-geminal diol products, which implies that peaks commonly believed to be C4-oxidized cello-oligomers, in fact are on-column generated derivatives. Non-destructive separation of C4-oxidized cello-oligosaccharides on the PGC column allowed us, for the first time, to isolate C4-oxidized standards. HPAEC fractionation of a purified C4-oxidized tetramer revealed that on-column decomposition leads to formation of the native trimer, which may explain why product mixtures generated by C4-oxidizing LPMOs seem to be rich in native oligosaccharides when analyzed by HPAEC. The findings and methods described here will aid in future studies in the emerging LPMO field. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Layton, Meredith J.; Cross, Bronwyn A.; Metcalf, Donald; Ward, Larry D.; Simpson, Richard J.; Nicola, Nicos A.
1992-09-01
A protein that specifically binds leukemia inhibitory factor (LIF) has been isolated from normal mouse serum by using four successive fractionation steps: chromatography on a LIF affinity matrix, anion-exchange chromatography, size-exclusion chromatography, and preparative native gel electrophoresis. The purified LIF-binding protein (LBP) is a glycoprotein with an apparent molecular mass of 90 kDa that specifically binds 125I-labeled murine LIF with an affinity comparable to that of the low-affinity cellular LIF receptor (K_d = 600 pM). N-terminal sequencing has identified this protein as a soluble truncated form of the α chain of the cellular LIF receptor. LBP is present in normal mouse serum at high levels (1 μg/ml) and these levels are elevated in pregnant mice and reduced in neonatal mice. Since normal serum concentrations of LBP can block the biological actions of LIF in culture, LBP may serve as an inhibitor of the systemic effects of locally produced LIF.
Microfluidic integration of parallel solid-phase liquid chromatography.
Huft, Jens; Haynes, Charles A; Hansen, Carl L
2013-03-05
We report the development of a fully integrated microfluidic chromatography system based on a recently developed column geometry that allows for robust packing of high-performance separation columns in poly(dimethylsiloxane) microfluidic devices having integrated valves made by multilayer soft lithography (MSL). The combination of parallel high-performance separation columns and on-chip plumbing was used to achieve a fully integrated system for on-chip chromatography, including all steps of automated sample loading, programmable gradient generation, separation, fluorescent detection, and sample recovery. We demonstrate this system in the separation of fluorescently labeled DNA and parallel purification of reverse transcription polymerase chain reaction (RT-PCR) amplified variable regions of mouse immunoglobulin genes using a strong anion exchange (AEX) resin. Parallel sample recovery in an immiscible oil stream offers the advantage of low sample dilution and high recovery rates. The ability to perform nucleic acid size selection and recovery on subnanogram samples of DNA holds promise for on-chip genomics applications including sequencing library preparation, cloning, and sample fractionation for diagnostics.
Tuomivaara, Sami T; Yaoi, Katsuro; O'Neill, Malcolm A; York, William S
2015-01-30
Xyloglucans are structurally complex plant cell wall polysaccharides that are involved in cell growth and expansion, energy metabolism, and signaling. Determining the structure-function relationships of xyloglucans would benefit from the availability of a comprehensive and structurally diverse collection of rigorously characterized xyloglucan oligosaccharides. Here, we present a workflow for the semi-preparative scale generation and purification of neutral and acidic xyloglucan oligosaccharides using a combination of enzymatic and chemical treatments and size-exclusion chromatography. Twenty-six of these oligosaccharides were purified to near homogeneity and their structures validated using a combination of matrix-assisted laser desorption/ionization mass spectrometry, high-performance anion exchange chromatography, and 1H nuclear magnetic resonance spectroscopy. Mass spectrometry and analytical chromatography were compared as methods for xyloglucan oligosaccharide quantification. 1H chemical shifts were assigned using two-dimensional correlation spectroscopy. A comprehensive update of the nomenclature describing xyloglucan side-chain structures is provided for reference. Copyright © 2014 Elsevier Ltd. All rights reserved.
Characterization of galactomannan derivatives in roasted coffee beverages.
Nunes, Fernando M; Reis, Ana; Domingues, M Rosário M; Coimbra, Manuel A
2006-05-03
In this work, the galactomannans from roasted coffee infusions were purified by 50% ethanol precipitation, anion exchange chromatography, and phenylboronic acid-immobilized Sepharose chromatography. Specific enzymatic hydrolysis of the beta-(1-->4)-D-mannan backbone allowed us to conclude that the galactomannans of roasted coffee infusions are high molecular weight supports of low molecular weight brown compounds. Also, the molecular weight of the brown compounds linked to the galactomannan increases with the increase of the coffee degree of roast. The reaction pathways of galactomannans during the coffee roasting process were inferred from the detection of specific chemical markers by gas chromatography-electron impact mass spectrometry and/or electrospray ionization tandem mass spectrometry. Maillard reaction, caramelization, isomerization, oxidation, and decarboxylation pathways were identified by detection of Amadori compounds, 1,6-beta-anhydromannose, fructose, glucose, mannonic acid, 2-ketogluconic acid, and arabinonic acid in the reducing end of the obtained oligosaccharides. The implication of the several competitive reaction pathways is discussed and related to the structural changes of the galactomannans present in the roasted coffee infusions.
A rapid method for isolation and purification of an anticoagulant from Whitmania pigra.
Zhong, Shan; Cui, Zheng; Sakura, Naoki; Wang, Dong; Li, Jianlin; Zhai, Yan
2007-05-01
Whitmania pigra is common in China and has been used as a traditional Chinese anticoagulant medicine for years, but its effective components are unknown to scientists. In this article we report a rapid method for isolation and purification of an anticoagulant from W. pigra for the first time. An acetone-water extract of W. pigra was subjected to anion-exchange chromatography on a Sephadex DEAE A-50 column, and gel permeation chromatography on Sephadex G-25 and Sephadex LH-20 columns successively, which afforded a fraction with potent anticoagulant activity. An anticoagulant was isolated and purified from this fraction by reversed-phase high-performance liquid chromatography (RP-HPLC). It was identified as a single pure substance by RP-HPLC and sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE). This component was named whitmanin and its molecular weight was determined as 8608 Da by matrix-assisted laser desorption ionization/time-of-flight mass spectrometry (MALDI-TOF-MS). (c) 2006 John Wiley & Sons, Ltd.
8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE ...
8. VIEW OF GLOVE BOXES USED IN THE ANION EXCHANGE PROCESS. THE ANION EXCHANGE PROCESS PURIFIED AND CONCENTRATED PLUTONIUM-BEARING NITRIC ACID SOLUTIONS TO MAKE THEM ACCEPTABLE AS FEED FOR CONVERSION TO METAL. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
Nałecz, K A; Kamińska, J; Nałecz, M J; Azzi, A
1992-08-15
The pyruvate carrier, of molecular mass 34 kDa, was purified from mitochondria isolated from rat liver, rat brain, and bovine heart, by affinity chromatography on immobilized 2-cyano-4-hydroxycinnamate. Its activity after reconstitution in phosphatidylcholine vesicles was measured either as uptake of [1-14C]pyruvate or as exchange with different 2-oxoacids. All preparations exhibited similar apparent Km values for pyruvate, but somewhat different V(max) values. The ability to exchange different anions of physiological significance, including branched-chain 2-oxoacids, confirmed the known substrate specificity described for the pyruvate carrier in mitochondria. The sensitivity of pyruvate transport toward phenylglyoxal suggested an important role of arginyl residues in the transport activity, while a role of lysyl and histidyl residues was not confirmed.
Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan
2014-08-15
A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.
Ion exchange polymers for anion separations
Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.
1997-01-01
Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.
Ion exchange polymers for anion separations
Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.
1997-09-23
Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.
Wei, Zhishen; Fu, Qing; Cai, Jianfeng; Huan, Liyun; Zhao, Jianchao; Shi, Hui; Jin, Yu; Liang, Xinmiao
2016-06-01
In this study, two mixed-mode chromatography stationary phases (C8SAX and C8SCX) were evaluated and used to establish a two-dimensional liquid chromatography system for the separation of traditional Chinese medicine. The chromatographic properties of the mixed-mode columns were systematically evaluated by comparing with other three columns of C8, strong anion exchanger, and strong cation exchanger. The result showed that C8SAX and C8SCX had a mixed-mode retention mechanism including electrostatic interaction and hydrophobic interaction. Especially, they were suitable for separating acidic and/or basic compounds and their separation selectivities could be easily adjusted by changing pH value. Then, several off-line 2D-LC systems based on the C8SAX in the first dimension and C8SAX, C8SCX, or C8 columns in the second dimension were developed to analyze a traditional Chinese medicine-Uncaria rhynchophylla. The two-dimensional liquid chromatography system of C8SAX (pH 3.0) × C8SAX (pH 6.0) exhibited the most effective peak distribution. Finally, fractions of U. rhynchophylla prepared from the first dimension were successfully separated on the C8SAX column with a gradient pH. Thus, the mixed-mode stationary phase could provide a platform to separate the traditional Chinese medicine in practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fundamental characteristics study of anion-exchange PVDF-SiO(2) membranes.
Zuo, Xingtao; Shi, Wenxin; Yu, Shuili; He, Jiajie
2012-01-01
A new type of poly(vinylidene fluoride)(PVDF)-SiO(2) hybrid anion-exchange membrane was prepared by blending method. The anion-exchange groups were introduced by the reaction of epoxy groups with trimethylamine (TMA). Contact angle between water and the membrane surface was measured to characterize the hydrophilicity change of the membrane surface. The effects of nano-sized SiO(2) particles in the membrane-forming materials on the membrane mechanical properties and conductivity were also investigated. The experimental results indicated that PVDF-SiO(2) anion-exchange membranes exhibited better water content, ion-exchange capacity, conductivity and mechanic properties, and so may find potential applications in alkaline membrane fuel cells and water treatment processes.
Thermodynamic derivation of open circuit voltage in vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
Pavelka, Michal; Wandschneider, Frank; Mazur, Petr
2015-10-01
Open circuit voltage of vanadium redox flow batteries is carefully calculated using equilibrium thermodynamics. This analysis reveals some terms in the Nernst relation which are usually omitted in literature. Due to the careful thermodynamic treatment, all uncertainties about the form of Nernst relation are removed except for uncertainties in activity coefficients of particular species. Moreover, it is shown (based again on equilibrium thermodynamics) that batteries with anion-exchange membranes follow different Nernst relation than batteries with cation-exchange membranes. The difference is calculated, and it is verified experimentally that the formula for anion-exchange membranes describes experiments with anion-exchange membranes better than the corresponding formula for cation-exchange membranes. In summary, careful thermodynamic calculation of open circuit voltage of vanadium redox flow batteries is presented, and the difference between voltage for anion-exchange and cation-exchange membranes is revealed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezhov, E.A.; Reimarov, G.A.; Rubisov, V.N.
1987-05-01
On the basis of a statistical treatment of the entire set of published data on anion exchange extraction constants, the authors have refined and expanded the scale of the hydration parameters for the anions ..delta..G/sub hydr/ (the effective free energies of hydration for the anions). The authors have estimated the parameters ..delta..G for 93 anions and the coefficients % for 94 series of extraction systems, which are distinguished within each series only by the nature of the exchanging anions. The series are distinguished from one another by the nature of the cation extraction agent and the diluent.
Kamil, Atif; Falk, Knut; Sharma, Animesh; Raae, Arnt; Berven, Frode; Koppang, Erling Olaf; Hordvik, Ivar
2011-09-01
Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) possess two distinct subpopulations of IgM which can be separated by anion exchange chromatography. Accordingly, there are two isotypic μ genes in these species, related to ancestral tetraploidy. In the present work it was verified by mass spectrometry that IgM of peak 1 (subpopulation 1) have heavy chains previously designated as μB type whereas IgM of peak 2 (subpopulation 2) have heavy chains of μA type. Two adjacent cysteine residues are present near the C-terminal part of μB, in contrast to one cysteine residue in μA. Salmon IgM of both peak 1 and peak 2 contain light chains of the two most common isotypes: IgL1 and IgL3. In contrast to salmon and brown trout, IgM of rainbow trout (Oncorhynchus mykiss) is eluted in a single peak when subjected to anion exchange chromatography. Surprisingly, a monoclonal antibody MAb4C10 against rainbow trout IgM, reacted with μA in salmon, whereas in brown trout it reacted with μB. It is plausible to assume that DNA has been exchanged between the paralogous A and B loci during evolution while maintaining the two sub-variants, with and without the extra cysteine. MAb4C10 was conjugated to magnetic beads and used to separate cells, demonstrating that μ transcripts residing from captured cells were primarily of A type in salmon and B type in brown trout. An analysis of amino acid substitutions in μA and μB of salmon and brown trout indicated that the third constant domain is essential for MAb4C10 binding. This was supported by 3D modeling and was finally verified by studies of MAb4C10 reactivity with a series of recombinant μ3 constructs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Lee, M H; Ahn, H J; Park, J H; Park, Y J; Song, K
2011-02-01
This paper presents a quantitative and rapid method of sequential separation of Pu, (90)Sr and (241)Am nuclides in environmental soil samples with an anion exchange resin and Sr Spec resin. After the sample solution was passed through an anion exchange column connected to a Sr Spec column, Pu isotopes were purified from the anion exchange column. Strontium-90 was separated from other interfering elements by the Sr Spec column. Americium-241 was purified from lanthanides by the anion exchange resin after oxalate co-precipitation. Measurement of Pu and Am isotopes was carried out using an α-spectrometer. Strontium-90 was measured by a low-level liquid scintillation counter. The radiochemical procedure of Pu, (90)Sr and (241)Am nuclides investigated in this study validated by application to IAEA reference materials and environmental soil samples. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bifunctional anion-exchange resins with improved selectivity and exchange kinetics
Alexandratos, Spiro D.; Brown, Gilbert M.; Bonnesen, Peter V.; Moyer, Bruce A.
2000-01-01
Disclosed herein are a class of anion exchange resins containing two different exchange sites with improved selectivity and sorptive capability for chemical species in solution, such as heptavalent technetium (as pertechnetate anion, TcO.sub.4.sup.-). The resins are prepared by first reacting haloalkylated crosslinked copolymer beads with a large tertiary amine in a solvent in which the resin beads can swell, followed by reaction with a second, smaller, tertiary amine to more fully complete the functionalization of the resin. The resins have enhanced selectivity, capacity, and exchange kinetics.
Single-stage separation and esterification of cation salt carboxylates using electrodeionization
Lin, YuPo J.; Henry, Michael; Hestekin, Jamie; Snyder, Seth W.; St. Martin, Edward J.
2006-11-28
A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.
Ou, Yunfu; Yin, Pinghe; Zhao, Ling
2006-07-01
Sargassum hemiphyllum polysaccharides (SHP) was extracted from dry Sargassum hemiphyllum (Turner) C. Ag. powder using 60 - 80 degrees C purified water and then hydrolyzed with 4.0 g/L trifluoroacetic acid at 80 degrees C. Without any derivatization reaction, the determination of monosaccharides in SHP was developed by anion-exchange chromatography with pulsed amperometric detection with an Au working electrode and an Ag/AgCl reference electrode. Monosaccharides were separated on a CarboPac PA10 anion-column (2 mm i. d. x 250 mm) by using isocratic elution consisting of 14 mmol/L sodium hydroxide at a flow rate of 0.20 mL/min. Six monosaccharides, xylose, galactose, arabinose, glucose, rhamnose and fructose, contained in SHP were separated and determined. Their contents in SHP were 2 200, 820, 98, 4 560, 358 and 740 mg/kg, respectively. The recoveries of the six monosaccharides were in the range 86.0% - 108.0%. The detection limits for these monosaccharides ranged from 5.6 to 89.6 microg/kg. The experimental results showed that SHP mainly consisted of xylose and glucose with smaller quantities of galactose, arabinose, rhamnose and fructose. This method is suitable for the determination of monosaccharides without any derivatization reaction at the level of microg/kg in dry algae with high sensitivity and good precision.
Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M
2016-03-18
Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. Copyright © 2016 Elsevier B.V. All rights reserved.
Cobb, J; Warwick, P; Carpenter, R C; Morrison, R T
1995-12-01
Strontium-90 may be determined by beta-counting its yttrium-90 daughter following separation by ion-chromatography, using a three column system comprising a chelating concentrator column, a cation-exchange column and an anion-exchange separator column. The column system has previously been applied to the determination of strontium-90 in water and urine samples. The applicability of the system to the analysis of milk is hampered by the large concentrations of calcium present, which significantly reduces the extraction of yttrium-90 by the concentrator column. A maximum of approximately 200 mg of calcium can be present for the successful extraction of yttrium-90, which greatly limits the quantity of milk that can be analysed. The quantity of milk analysed can be increased by the inclusion of a controlled precipitation step prior to the ion-chromatographic separation. The precipitation is carried out on acid digested milk samples by the addition of ammonia solution until the addition of one drop causes a reduction in pH resulting in the precipitation of calcium hydrogenphosphate. Under these conditions, approximately 20% of the calcium present in the original milk sample is precipitated, yttrium-90 is precipitated whereas strontium-90 is not precipitated. Dissolution of the precipitate, followed by separation of yttrium-90 using the ion-chromatography system facilitates the analysis of a litre of milk with recoveries of greater than 80%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hindocha, Sheena A.; McIntyre, Laura J.; Fogg, Andrew M., E-mail: afogg@liverpool.ac.u
2009-05-15
Layered lanthanide hydroxynitrate anion exchange host lattices have been prepared via a room temperature precipitation synthesis. These materials have the composition Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O and are formed for Y and the lanthanides from Eu to Er and as such include the first Eu containing nitrate anion exchange host lattice. The interlayer separation of these materials, approximately 8.5 A, is lower than in the related phases Ln{sub 2}(OH){sub 5}NO{sub 3}.1.5H{sub 2}O which have a corresponding value of 9.1 A and is consistent with the reduction in the co-intercalated water content of these materials. These new intercalation hosts have beenmore » shown to undergo facile anion exchange reactions with a wide range of organic carboxylate and sulfonate anions. These reactions produce phases with up to three times the interlayer separation of the host lattice demonstrating the flexibility of these materials. - Graphical abstract: New anion exchangeable layered hydroxynitrates, Ln{sub 2}(OH){sub 5}NO{sub 3}.H{sub 2}O (Ln=Y, Eu - Er) have been synthesized via a precipitation route. These materials have been shown to be very flexible intercalation hosts undergoing facile exchange reactions with organic carboxylate and sulfonate anions.« less
Bukholm, G; Tannaes, T; Nedenskov, P; Esbensen, Y; Grav, H J; Hovig, T; Ariansen, S; Guldvog, I
1997-05-01
Differences in expression of disease after infection with Helicobacter pylori have so far been connected with host factors and bacterial interstrain variation. In this study, spontaneous and ecology-mediated intrastrain variation was examined. Four clinical isolates of H. pylori were shown to give rise to two colony forms. Bacterial morphology was examined by electron microscopy. Bacterial fractions were examined for proteins using ion exchange chromatography and SDS-PAGE; for lipids using thin-layer chromatography, lipid anion-exchange chromatography, column chromatography on silica gel, 31P-NMR, gas chromatography and mass spectrometry. Bacterial in vitro invasiveness and adhesiveness were examined in two different systems, and urease and VacA toxin were assayed by Western blot analysis. H. pylori was shown to give rise to two colony forms: at normal pH the population was dominated by L colonies. One strain was chosen for further studies. Bacteria from L colonies retained VacA toxin and urease, did not invade or adhere to epithelial cells, and contained normal quantities of phosphatidylethanolamine. In a small frequency, spontaneous S colonies were formed. Bacteria from these colonies released VacA and urease, adhered to and invaded epithelial cells and contained increased amounts of lysophosphatidyl ethanolamine and phosphatidyl serine. After addition of HCl to the culture medium (pH6), almost only S colonies were formed. The results demonstrate that environmental factors, such as HCl, can change the bacterial cell wall, and thereby enhance expression of virulence factors of H. pylori in vitro. A similar in vivo variation would have implications for our understanding of the interaction between HCl secretion in the gastric mucosa and H. pylori in the development of peptic ulcer disease.
Tsai, Yun-ni; Lin, Cheng-hsing; Hsu, I-hsiang; Sun, Yuh-chang
2014-01-02
We have developed an on-line sequential photocatalyst-assisted digestion and vaporization device (SPADVD), which operates through the nano-TiO2-catalyzed photo-oxidation and reduction of selenium (Se) species, for coupling between anion exchange chromatography (LC) and inductively coupled plasma mass spectrometry (ICP-MS) systems to provide a simple and sensitive hyphenated method for the speciation analysis of Se species without the need for conventional chemical digestion and vaporization techniques. Because our proposed on-line SPADVD allows both organic and inorganic Se species in the column effluent to be converted on-line into volatile Se products, which are then measured directly through ICP-MS, the complexity of the procedure and the probability of contamination arising from the use of additional chemicals are both low. Under the optimized conditions for SPADVD - using 1g of nano-TiO2 per liter, at pH 3, and illuminating for 80 s - we found that Se(IV), Se(VI), and selenomethionine (SeMet) were all converted quantitatively into volatile Se products. In addition, because the digestion and vaporization efficiencies of all the tested selenicals were improved when using our proposed on-line LC/SPADVD/ICP-MS system, the detection limits for Se(IV), Se(VI), and SeMet were all in the nanogram-per-liter range (based on 3σ). A series of validation experiments - analysis of neat and spiked extracted samples - indicated that our proposed methods could be applied satisfactorily to the speciation analysis of organic and inorganic Se species in the extracts of Se-enriched supplements. Copyright © 2013. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sullivan, A. P.; Frank, N.; Kenski, D. M.; Collett, J. L., Jr.
2011-04-01
Carbohydrate measurements of ambient samples can provide insights into the biogenic fraction of the organic carbon (OC) aerosol. However, lack of measurement on a routine basis limits data analysis. In a companion paper, 1 year of archived 1-in-6 day FRM (Federal Reference Monitor) filter samples from the PM2.5 NAAQS compliance monitoring network collected at 10 sites in the upper Midwest were analyzed using high-performance anion-exchange chromatography with pulsed amperometric detection to determine the regional impact of biomass burning. Along with levoglucosan, 13 other carbohydrates were simultaneously measured, including two more anhydrosugars (mannosan and galactosan), five sugars (arabinose, galactose, glucose, mannose, xylose), and six sugar alcohols/polyols (glycerol, methyltetrols, threitol/erythritol, xylitol, sorbitol, mannitol). This paper focuses on the results from these carbohydrates in order to investigate their sources and trends both spatially and temporally. Mannosan, galactosan, arabinose, xylose, and threitol/erythritol all correlated with levoglucosan (R2 from 0.43 to 0.97), suggesting biomass burning as their main source. Glucose and mannitol exhibited higher concentrations in summer and at more southern sites, likely due to vegetation differences at the sites. Using mannitol, the contribution of spores to OC was found to be <1%. Methyltetrols were highly correlated with water-soluble OC (R2 from 0.63 to 0.95) and in higher concentrations at more eastern sites. This spatial pattern is possibly due to these sites being downwind of the high isoprene emission zones that occur in the western part of the Midwest from oak forests in the Ozarks and spruce forests in the northern lake states.
Quéméner, Bernard; Désiré, Cédric; Debrauwer, Laurent; Rathahao, Estelle
2003-01-17
The off-line coupling of high-performance anion-exchange chromatography to electrospray ion trap mass spectrometry (ESI-IT-MS) is described. Two sets of isocratic conditions were optimised for the semi-preparative purification of oligogalacturonates of degree of polymerisation from 4 to 6 by monitoring eluates with either pulsed amperometric detection or evaporative light scattering detection in the presence of an online Dionex Carbohydrate Membrane Desalter (CMD). In these conditions, purified oligogalacturonate solutions were suitable, without further desalting steps, for infusion ESI-IT-MS experiments. This paper provides some interesting features of positive and negative ESI-IT-multiple MS (MSn) of these acidic oligosaccharides. The spectra acquired in both ion modes show characteristic fragments resulting from glycosidic bond and cross-ring cleavages. Under negative ionization conditions, the fragmentation of the singly-charged [M-H]- ions, as well as the Ci-, and Zi-, fragment ions through sequential MSn experiments, was always dominated by product ions from C- and Z-type glycosidic cleavages. All spectra also displayed 0.2 A-type cross-ring cleavage ions which carry linkage information. Collision-induced dissociation (CID) spectra of sodium-cationized species obtained under positive ionization conditions were more complex. Successive MSn experiments also led to the 0.2 A-type cross-ring cleavage ions observed together with B- and Y-type ions. The presence of the 0.2 A ion series was related to Mr 60 (C2H4O2) losses. Combined with the absence of the Mr 30 (CH2O) and the Mr 90 (C3H6O3) ions, these ions were indicative of 1-4 type glycosidic linkage.
Oda, Hitomi; Mori, Akihiro; Hirowatari, Yuji; Takoura, Toshie; Manita, Daisuke; Takahashi, Tomoya; Shono, Saori; Onozawa, Eri; Mizutani, Hisashi; Miki, Yohei; Itabashi, Yukiko; Sako, Toshinori
2017-10-01
Anion-exchange (AEX)-high-performance liquid chromatography (HPLC) for measurement of cholesterol can be used to separate serum lipoproteins (high-density lipoprotein (HDL); low-density lipoprotein (LDL); intermediate-density lipoprotein (IDL); very-low-density lipoprotein (VLDL)) in humans. However, AEX-HPLC has not been applied in veterinary practice. We had three objectives: (i) the validation of AEX-HPLC methods including the correlation of serum cholesterol concentration in lipoprotein fraction measured by AEX-HPLC and gel permeation-HPLC (GP-HPLC) in healthy dogs and those with hypercholesterolemia was investigated; (ii) the reference intervals of lipoprotein fractions measured by AEX-HPLC from healthy dogs (n=40) was established; (iii) lipoprotein fractions from the serum of healthy dogs (n=12) and dogs with hypercholesterolemia (n=23) were compared. Analytic reproducibility and precision of AEX-HPLC were acceptable. Positive correlation between serum concentrations of total cholesterol (Total-Chol), HDL cholesterol (HDL-Chol), LDL cholesterol (LDL-Chol)+IDL cholesterol (IDL-Chol), and VLDL cholesterol (VLDL-Chol) was noted for AEX-HPLC and GP-HPLC in healthy dogs and dogs with hypercholesterolemia. Reference intervals measured by AEX-HPLC for serum concentrations of Total-Chol, HDL-Chol, and LDL-Chol were determined to be 2.97-9.32, 2.79-6.57, 0.16-3.28mmol/L (2.5-97.5% interval), respectively. Furthermore, there was significant difference in lipoprotein profiles between healthy and dogs with hypercholesterolemia. These results suggest that AEX-HPLC can be used to evaluate lipoprotein profiles in dogs and could be a new useful indicator of hyperlipidemia in dogs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Chun; Fan, Kai; Ma, Xuefeng; Wei, Dongzhi
2012-01-01
Uricase has proven therapeutic value in treating hyperuricemia but sufficient reduction of its immunogenicity may be the largest obstacle to its chronic use. In this study, canine uricase was modified with 5 kDa mPEG-SPA and the impact of large aggregated uricases and cross-linked conjugates induced by difunctional PEG diol on immunogenicity was investigated. Recombinant canine uricase was first expressed and purified to homogeneity. Source 15Q anion-exchange chromatography was used to separate tetrameric and aggregated uricase prior to pegylation, while DEAE anion-exchange chromatography was used to remove Di-acid PEG (precursor of PEG diol) from unfractionated 5 kDa mPEG-propionic acid. Tetrameric and aggregated uricases were separately modified with the purified mPEG-SPA. In addition, tetrameric uricases was modified with unfractionated mPEG-SPA, resulting in three types of 5 kDa mPEG-SPA modified uricase. The conjugate size was evaluated by dynamic light scattering and transmission electron microscope. The influence of differently PEGylated uricases on pharmacokinetics and immunogenicity were evaluated in vivo. The accelerated blood clearance (ABC) phenomenon previously identified for PEGylated liposomes occurred in rats injected with PEGylated uricase aggregates. Anti-PEG IgM antibodies, rather than neutralizing antibodies, were found to mediate the ABC. The size of conjugates is important for triggering such phenomena and we speculate that 40-60 nm is the lower size limit that can trigger ABC. Removal of the uricase aggregates and the PEG diol contaminant and modifying with small PEG reagents enabled ABC to be successfully avoided and sufficient reduction in the immunogenicity of 5 kDa mPEG-modified tetrameric canine uricase.
Zhang, Chun; Fan, Kai; Ma, Xuefeng; Wei, Dongzhi
2012-01-01
Background Uricase has proven therapeutic value in treating hyperuricemia but sufficient reduction of its immunogenicity may be the largest obstacle to its chronic use. In this study, canine uricase was modified with 5 kDa mPEG-SPA and the impact of large aggregated uricases and cross-linked conjugates induced by difunctional PEG diol on immunogenicity was investigated. Methods and Findings Recombinant canine uricase was first expressed and purified to homogeneity. Source 15Q anion-exchange chromatography was used to separate tetrameric and aggregated uricase prior to pegylation, while DEAE anion-exchange chromatography was used to remove Di-acid PEG (precursor of PEG diol) from unfractionated 5 kDa mPEG-propionic acid. Tetrameric and aggregated uricases were separately modified with the purified mPEG-SPA. In addition, tetrameric uricases was modified with unfractionated mPEG-SPA, resulting in three types of 5 kDa mPEG-SPA modified uricase. The conjugate size was evaluated by dynamic light scattering and transmission electron microscope. The influence of differently PEGylated uricases on pharmacokinetics and immunogenicity were evaluated in vivo. The accelerated blood clearance (ABC) phenomenon previously identified for PEGylated liposomes occurred in rats injected with PEGylated uricase aggregates. Anti-PEG IgM antibodies, rather than neutralizing antibodies, were found to mediate the ABC. Conclusions The size of conjugates is important for triggering such phenomena and we speculate that 40–60 nm is the lower size limit that can trigger ABC. Removal of the uricase aggregates and the PEG diol contaminant and modifying with small PEG reagents enabled ABC to be successfully avoided and sufficient reduction in the immunogenicity of 5 kDa mPEG-modified tetrameric canine uricase. PMID:22745806
De Borba, Brian M; Jack, Richard F; Rohrer, Jeffrey S; Wirt, Joan; Wang, Dongmei
2014-11-21
An ion chromatography (IC) method was developed for the simultaneous determination of total nitrogen and total phosphorus after alkaline persulfate digestion. This study takes advantage of advances in construction of high-resolution, high-capacity anion-exchange columns that can better tolerate the matrices typically encountered when a determination of total nitrogen and total phosphorous is required. Here, we used an electrolytically generated hydroxide eluent combined with a high-capacity, hydroxide-selective, anion-exchange column for the determination of total nitrogen (as nitrate-N) and total phosphorus (as phosphate-P) in environmental samples by IC. This method yielded LODs for nitrate-N and phosphate-P of 1.0 and 1.3 μg/L, respectively. The LOQs determined for these analytes were 3.4 and 4.2 μg/L, respectively. Due to the dilution factor required and the blank nitrate-N concentration after the persulfate digestion, the quantification limits increased for nitrate-N and phosphate-P to 171 and 63 μg/L, respectively. The suitability of the method was evaluated by determining the nitrogen and phosphorus concentrations from known concentrations of organic-containing nitrogen and phosphorus compounds. In addition, environmental samples consisting of six different wastewaters and 48 reservoir samples were evaluated for total nitrogen and phosphorus. The recoveries of nitrogen and phosphorus from the organic-containing compounds ranged from 93.1 to 100.1% and 85.2 to 97.1%, respectively. In addition, good correlation between results obtained by the colorimetric method and IC was also observed. The linearity, accuracy, and evaluation of potential interferences for determining TN and TP will be discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Hybrid capacitive deionization with anion-exchange membranes for lithium extraction
NASA Astrophysics Data System (ADS)
Siekierka, Anna; Bryjak, Marek
2017-11-01
Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.
Simultaneous Extraction of Lithium and Hydrogen from Seawater
2011-08-22
to the anode and cathode were determined by ion chromatography . Anions were analyzed by Anion Ion Chromatography (Instrument Dionex ICS-1500, Column...and oxygen gases coming out of the cell were collected and the amount was measured volumetrically. Ion chromatography : Ions in seawater diffused from... Dionex AS9-HC; AG9-HC Guard, eluent: 9.00 mM Na2CO3, flow rate: 1.25 mL/min, and sample loop was 25 μL). Cations were analyzed by Cation Ion
Johnson, Eldin M; Kumar, Kanhaiya; Das, Debabrata
2014-08-01
The present study investigated the effects of several physicochemical parameters on the improvement of phycobiliproteins (especially phycocyanin) synthesis in a newly isolated species of Nostoc sp. Standard BG11₀ medium was modified to enhance the biomass productivity in different photobioreactors. The initial pH of 8, light intensity of 40 μmol m(-2)s(-1), temperature of 35 °C, diurnal cycle of 16:8 h (light:dark regime), 75.48 μM Na₂CO₃ and 17.65 mM NaNO₃ were found most suitable for the phycobiliproteins synthesis. Cyanobacteria exhibited chromatic adaptation, causing overexpression of phycocyanin in red and phycoerythrin in green light. The maximum phycobiliproteins yield of 0.13 gg(-1) dry cell weight was obtained in green light. Phycocyanin was further purified using thin layer chromatography (TLC), anion exchange chromatography and SDS-PAGE (denaturing gel) electrophoresis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lapshina, Elena V [Troitsk, RU; Zhuikov, Boris L [Troitsk, RU; Srivastava, Suresh C [Setauket, NY; Ermolaev, Stanislav V [Obninsk, RU; Togaeva, Natalia R [Obninsk, RU
2012-01-17
The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.
Qu, Jian-Bo; Wan, Xing-Zhong; Zhai, Yan-Qin; Zhou, Wei-Qing; Su, Zhi-Guo; Ma, Guang-Hui
2009-09-11
Using agarose coated gigaporous polystyrene microspheres as a base support, a novel anion exchanger (DEAE-AP) has been developed after functionalization with diethylaminoethyl chloride. The gigaporous structure, static adsorption behavior, and chromatographic properties of DEAE-AP medium were characterized and compared with those of commercially available resin DEAE Sepharose Fast Flow (DEAE-FF). The results implied that there existed some through pores in DEAE-AP microspheres, which effectively reduced resistance to stagnant mobile phase mass transfer by inducing convective flow of mobile phase in the gigapores of medium. As a consequence, the column packed with DEAE-AP exhibited low column backpressure, high column efficiency, high dynamic binding capacity and high protein resolution at high flow velocity up to 2600cm/h. In conclusion, all the results suggested that the gigaporous absorbent is promising for high-speed protein chromatography.
Schaner, Angela; Konecny, Jaclyn; Luckey, Laura; Hickes, Heidi
2007-01-01
The method presented uses reversed-phase liquid chromatography with negative electrospray ionization and tandem mass spectrometry to analyze 9 chlorinated acid herbicides in soil and vegetation matrixes: clopyralid, dicamba, MCPP, MCPA, 2,4-DP, 2,4-D, triclopyr, 2,4-DB, and picloram. A 20 g portion is extracted with a basic solution and an aliquot acidified and micropartitioned with 3 mL chloroform. Vegetation samples are subjected to an additional cleanup with a mixed-mode anion exchange solid-phase extraction cartridge. Two precursor product ion transitions per analyte are measured and evaluated to provide the maximum degree of confidence in results. Average recoveries for 3 different soil types tested ranged from 72 to 107% for all compounds with the exception of 2,4-DB at 56-99%. Average recoveries for the 3 different vegetation types studied were lower and ranged from 53 to 80% for all compounds.
Oligosaccharide formation during commercial pear juice processing.
Willems, Jamie L; Low, Nicholas H
2016-08-01
The effect of enzyme treatment and processing on the oligosaccharide profile of commercial pear juice samples was examined by high performance anion exchange chromatography with pulsed amperometric detection and capillary gas chromatography with flame ionization detection. Industrial samples representing the major stages of processing produced with various commercial enzyme preparations were studied. Through the use of commercially available standards and laboratory scale enzymatic hydrolysis of pectin, starch and xyloglucan; galacturonic acid oligomers, glucose oligomers (e.g., maltose and cellotriose) and isoprimeverose were identified as being formed during pear juice production. It was found that the majority of polysaccharide hydrolysis and oligosaccharide formation occurred during enzymatic treatment at the pear mashing stage and that the remaining processing steps had minimal impact on the carbohydrate-based chromatographic profile of pear juice. Also, all commercial enzyme preparations and conditions (time and temperature) studied produced similar carbohydrate-based chromatographic profiles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kemper, Jerome M; Westerhoff, Paul; Dotson, Aaron; Mitch, William A
2009-01-15
Strong base anion-exchange resins represent an important option for water utilities and homeowners to address growing concerns with nitrate, arsenate, and perchlorate contamination of source waters. Most commercially available anion-exchange resins employ quaternary amine functional groups. Previous research has provided contradictory evidence regarding whether these resins serve as sources of nitrosamines, considered as highly carcinogenic nitrogenous disinfection byproducts (N-DBPs), even without disinfectants. For three common varieties of commercial anion-exchange resins, we evaluated the importance of releases of nitrosamines, and two other N-DBPs (dimethylnitramine and chloropicrin), when the resins were subjected to typical column flow conditions with and without free chlorine or chloramine application upstream or downstream of the columns. In the absence of disinfectants, fresh trimethylamine- and tributylamine-based type 1 and dimethylethanolamine-based type 2 anion-exchange resins usually released 2-10 ng/L nitrosamines, likely due to shedding of manufacturing impurities, with excursions of up to 20 ng/L following regeneration. However, the lack of significant nitrosamine release in a full-scale anion-exchange treatment system after multiple regeneration cycles indicates that releases may eventually subside. Resins also shed organic precursors that might contribute to nitrosamine formation within distribution systems when chloramines are applied downstream. With free chlorine or chloramine application upstream, nitrosamine concentrations were more significant, at 20-100 ng/L for the type 1 resins and approximately 400 ng/L for the type 2 resin. However, chloropicrin formation was lowest for the type 2 resin. Dimethylnitramine formation was significant with free chlorine application upstream but negligible with chloramines. Although no N-DBPs were detected in cation-exchange-based consumer point-of-use devices exposed to chlorinated or chloraminated waters, our results indicate that inclusion of anion-exchange resins in these devices, as in laboratory deionized water systems, would likely be problematic.
Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen
2013-11-29
The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC. Copyright © 2013 Elsevier B.V. All rights reserved.
Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes
2013-06-25
membranes (AEMs) are being developed for potential use in fuel cell systems which include portable power applications. In a fuel cell , these membranes...Alkaline Anion Exchange Membranes Report Title ABSTRACT Anion exchange membranes (AEMs) are being developed for potential use in fuel cell systems which...include portable power applications. In a fuel cell , these membranes transport hydroxide ions from the cathode to the anode. If carbon dioxide is
Wang, Xiaoli; Zhang, Yifei; Liu, Zhikai; Zhao, Mingqin; Liu, Pengfei
2017-10-31
In this study, crude Cortex Periplocae polysaccharides (CCPPs) were extracted with water. CCPPs were decolored with AB-8 resin and deproteinated using papain-Sevage methods. Then, they were further purified and separated through DEAE-52 anion exchange chromatography and Sephadex G-100 gel filtration chromatography, respectively. Three main fractions-CPP1, CPP2, and CPP3, (CPPs)-were obtained. The average molecular weights, monosaccharide analysis, surface morphology, and chemical compositions of the CPPs were investigated by high-performance gel permeation chromatography (HPGPC), gas chromatography-mass spectrometry (GC/MS), UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectrum, and nuclear magnetic resonance (NMR). In addition, the antioxidant activities of these three polysaccharides were investigated. The results indicated that all of the CPPs were composed of rhamnose, arabinose, mannose, glucose, and galactose. These three polysaccharides exhibited antioxidant activities in four assays including 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, 2,2'-azino-bis(3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) radical, reducing power, and total antioxidant activity in vitro. The data indicated that these three polysaccharides could be utilized as potential natural sources of alternative additives in the functional food, cosmetics, and pharmaceutical industries.
Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett
2013-12-01
The comprehensive separation and detection of hydrophobic and hydrophilic active pharmaceutical ingredients (APIs), their counter-ions (organic, inorganic) and excipients, using a single mixed-mode chromatographic column, and a dual injection approach is presented. Using a mixed-mode Thermo Fisher Acclaim Trinity P1 column, APIs, their counter-ions and possible degradants were first separated using a combination of anion-exchange, cation-exchange and hydrophobic interactions, using a mobile phase consisting of a dual organic modifier/salt concentration gradient. A complementary method was also developed using the same column for the separation of hydrophilic bulk excipients, using hydrophilic interaction liquid chromatography (HILIC) under high organic solvent mobile phase conditions. These two methods were then combined within a single gradient run using dual sample injection, with the first injection at the start of the applied gradient (mixed-mode retention of solutes), followed by a second sample injection at the end of the gradient (HILIC retention of solutes). Detection using both ultraviolet absorbance and refractive index enabled the sensitive detection of APIs and UV-absorbing counter-ions, together with quantitative determination of bulk excipients. The developed approach was applied successfully to the analysis of a dry powder inhalers (Flixotide(®), Spiriva(®)), enabling comprehensive quantification of all APIs and excipients in the sample. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, Byeol-Nim; Son, Tae Yang; Park, Chi Hoon; Kim, Tae Hyun; Nam, Sang Yong
2018-09-01
In this study, various poly(ether ether ketone) were synthesized using three different monomers and the imidazolium group was introduced into synthesized poly(ether ether ketone)s by using substitution reaction. Synthesized polymers were used to prepare anion exchange membranes and to evaluate its properties. Thermal, chemical and structural properties were carried out using thermogravimetric analysis, nuclear magnetic resonance. The anion exchange membranes with different imidazolium moieties were characterized by several different analytical techniques such as water up take, ion exchange capacity, hydroxide conductivity for checking the possibility to apply the anion exchange membrane fuel cell. Consequently, results of characterization were studied to understand the correlation between stabilities of the membrane and functional group and polymer backbone structures. And we confirm membrane performance was improved by increasing imidazolium cation groups.
Peak distortion effects in analytical ion chromatography.
Wahab, M Farooq; Anderson, Jordan K; Abdelrady, Mohamed; Lucy, Charles A
2014-01-07
The elution profile of chromatographic peaks provides fundamental understanding of the processes that occur in the mobile phase and the stationary phase. Major advances have been made in the column chemistry and suppressor technology in ion chromatography (IC) to handle a variety of sample matrices and ions. However, if the samples contain high concentrations of matrix ions, the overloaded peak elution profile is distorted. Consequently, the trace peaks shift their positions in the chromatogram in a manner that depends on the peak shape of the overloading analyte. In this work, the peak shapes in IC are examined from a fundamental perspective. Three commercial IC columns AS16, AS18, and AS23 were studied with borate, hydroxide and carbonate as suppressible eluents. Monovalent ions (chloride, bromide, and nitrate) are used as model analytes under analytical (0.1 mM) to overload conditions (10-500 mM). Both peak fronting and tailing are observed. On the basis of competitive Langmuir isotherms, if the eluent anion is more strongly retained than the analyte ion on an ion exchanger, the analyte peak is fronting. If the eluent is more weakly retained on the stationary phase, the analyte peak always tails under overload conditions regardless of the stationary phase capacity. If the charge of the analyte and eluent anions are different (e.g., Br(-) vs CO3(2-)), the analyte peak shapes depend on the eluent concentration in a more complex pattern. It was shown that there are interesting similarities with peak distortions due to strongly retained mobile phase components in other modes of liquid chromatography.
Arend, J; Warzecha, H; Stöckigt, J
2000-01-01
Plant cell suspension cultures of Rauvolfia are able to produce a high amount of arbutin by glucosylation of exogenously added hydroquinone. A four step purification procedure using anion exchange, hydrophobic interaction, hydroxyapatite-chromatography and chromatofocusing delivered in a yield of 0.5%, an approximately 390 fold enrichment of the involved glucosyltransferase. SDS-PAGE showed a M(r) for the enzyme of 52 kDa. Proteolysis of the pure enzyme with endoproteinase LysC revealed six peptide fragments with 9-23 amino acids which were sequenced. Sequence alignment of the six peptides showed high homologies to glycosyltransferases from other higher plants.
Robins, R J; Bachmann, P; Robinson, T; Rhodes, M J; Yamada, Y
1991-11-04
Tropine (tropan-3 alpha-ol) is an intermediate in the formation of hyoscyamine. An acyltransferase activity that can acetylate tropine using acetylcoenzyme A as cosubstrate has been found in transformed root cultures of Datura stramonium. A further acyltransferase activity that acetylates pseudotropine (tropan-3 beta-ol) with acetyl-coenzyme A is also present. These two activities can be partially resolved by anion-exchange chromatography, some fractions containing only the pseudotropine-utilizing activity. The basic properties of these two enzymes are reported and their roles in forming the observed alkaloid spectrum of D. stramonium roots discussed.
Xie, Jian-Hua; Liu, Xin; Shen, Ming-Yue; Nie, Shao-Ping; Zhang, Hui; Li, Chang; Gong, De-Ming; Xie, Ming-Yong
2013-02-15
A Cyclocarya paliurus (Batal.) Iljinskaja polysaccharide (CPP) was isolated and purified by hot water extraction, ethanol precipitation, deproteinisation and anion-exchange chromatography. Its physicochemical properties were characterised by gel permeation chromatography (GPC), gas chromatography-mass spectrometry (GC-MS), thermal gravimetric analysis (TGA), Fourier transform infrared spectrometry (FTIR), UV-visible spectrophotometry, dynamic light scattering (DLS) and viscometry analysis. The anticancer effect of CPP in human gastric cancer HeLa cells was also evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the molecular weight of CPP was 900 kDa, and it contained 64.8% total sugar, 23.5% uronic acid, 9.26% protein, and six kinds of monosaccharides, including glucose, rhamnose, arabinose, xylose, mannose and galactose, with molar percentages of 32.7%, 9.33%, 30.6%, 3.48%, 10.4%, and 13.5%, respectively. Furthermore, the results showed that CPP exhibited a strong inhibition effect on the growth of human gastric cancer HeLa cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ethanol precipitation for purification of recombinant antibodies.
Tscheliessnig, Anne; Satzer, Peter; Hammerschmidt, Nikolaus; Schulz, Henk; Helk, Bernhard; Jungbauer, Alois
2014-10-20
Currently, the golden standard for the purification of recombinant humanized antibodies (rhAbs) from CHO cell culture is protein A chromatography. However, due to increasing rhAbs titers alternative methods have come into focus. A new strategy for purification of recombinant human antibodies from CHO cell culture supernatant based on cold ethanol precipitation (CEP) and CaCl2 precipitation has been developed. This method is based on the cold ethanol precipitation, the process used for purification of antibodies and other components from blood plasma. We proof the applicability of the developed process for four different antibodies resulting in similar yield and purity as a protein A chromatography based process. This process can be further improved using an anion-exchange chromatography in flowthrough mode e.g. a monolith as last step so that residual host cell protein is reduced to a minimum. Beside the ethanol based process, our data also suggest that ethanol could be replaced with methanol or isopropanol. The process is suited for continuous operation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Anion exchange of the cationic layered material [Pb2F2]2+.
Fei, Honghan; Pham, Catherine H; Oliver, Scott R J
2012-07-04
We demonstrate the complete exchange of the interlamellar anions of a 2-D cationic inorganic material. The α,ω-alkanedisulfonates were exchanged for α,ω-alkanedicarboxylates, leading to two new cationic materials with the same [Pb(2)F(2)](2+) layered architecture. Both were solved by single crystal X-ray diffraction and the transformation also followed by in situ optical microscopy and ex situ powder X-ray diffraction. This report represents a rare example of metal-organic framework displaying highly efficient and complete replacement of its anionic organic linker while retaining the original extended inorganic layer. It also opens up further possibilities for introducing other anions or abatement of problematic anions such as pharmaceuticals and their metabolites.
Organotin-mediated exchange diffusion of anions in human red cells
1979-01-01
Organotin cations (R3Sn+) form electrically neutral ion pairs with monovalent anions. It is demonstrated that the tin derivatives induce exchange diffusion of chloride in red cells and resealed ghosts, without any detectable increase of membrane permeability to net movements of chloride ions. The obligatory anion exchange is believed to be due to the permeation of electroneural ion pairs, whereas the organic cation (R3Sn+) has an extremely low membrane permeability. Exchange fluxes of chloride increased with the lipophilicity of the substituting group (R3). At the same molar concentration of organotin, the relative potencies of the tin derivatives as anion carriers (with trimethyltin as a reference) were: methyl 1, ethyl 30, propyl = phenyl 1,00, and butyl 10,000. Tributyltin-mediated anion exchange was studied in detail. The organotin-induced anion transport increased through the sequence: F- less than Cl- less than Br- less than I- = SCN- less than OH-. Partitioning of tributyltin into red cell membranes was greater in iodide than in chloride media (partition coefficients 6.6 and 1.7 x 10(- 3) cm, respectively). Bicarbonate, fluoride, nitrate, phosphate, and sulphate did not exchange with chloride in the presence of tributyltin. Chloride exchange fluxes increased linearly with tributylin concentrations up to 10(-5) M, and with chloride concentrations up to at least 0.9 M. The apparent turnover number for tributyltin-mediated chloride exchange increased from 15 to 1,350 s-1 between 0 and 38 degrees C. These figures are minimum turnover numbers, because it is not known what fraction of the organotin in the membrane exists as chloride ion pairs. PMID:479814
Synthesis and Characterization of Perfluoro Quaternary Ammonium Anion Exchange Membranes
2012-01-01
study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer with various quaternary ammonium cations attached with...ammonium anion exchange membranes Report Title ABSTRACT In this study, new alkaline exchange membranes were prepared from the perfluorinated 3M ionomer...exchange membranes were prepared from the perfluorinated 3M ionomer with vari- ous quaternary ammonium cations attached with sulfonamide linkage. The
Yb3O(OH)6Cl·2H2O: an anion-exchangeable hydroxide with a cationic inorganic framework structure.
Goulding, Helen V; Hulse, Sarah E; Clegg, William; Harrington, Ross W; Playford, Helen Y; Walton, Richard I; Fogg, Andrew M
2010-10-06
The first anion-exchangeable framework hydroxide, Yb(3)O(OH)(6)Cl·2H(2)O, has been synthesized hydrothermally. This material has a three-dimensional cationic ytterbium oxyhydroxide framework with one-dimensional channels running through the structure in which the chloride anions and water molecules are located. The framework is thermally stable below 200 °C and can be reversibly dehydrated and rehydrated with no loss of crystallinity. Additionally, it is able to undergo anion-exchange reactions with small ions such as carbonate, oxalate, and succinate with retention of the framework structure.
Uteng, Marianne; Hauge, Håvard Hildeng; Brondz, Ilia; Nissen-Meyer, Jon; Fimland, Gunnar
2002-01-01
A rapid and simple two-step procedure suitable for both small- and large-scale purification of pediocin-like bacteriocins and other cationic peptides has been developed. In the first step, the bacterial culture was applied directly on a cation-exchange column (1-ml cation exchanger per 100-ml cell culture). Bacteria and anionic compounds passed through the column, and cationic bacteriocins were subsequently eluted with 1 M NaCl. In the second step, the bacteriocin fraction was applied on a low-pressure, reverse-phase column and the bacteriocins were detected as major optical density peaks upon elution with propanol. More than 80% of the activity that was initially in the culture supernatant was recovered in both purification steps, and the final bacteriocin preparation was more than 90% pure as judged by analytical reverse-phase chromatography and capillary electrophoresis. PMID:11823243
Adsorption behavior of plasmid DNA onto perfusion chromatographic matrix.
Limonta, Miladys; Zumalacárregui, Lourdes; Soler, Dayana
2012-05-01
Anion exchange chromatography is the most popular chromatographic method for plasmid separation. POROS RI 50 is a perfusion chromatographic support which is a reversed phase matrix and is an alternative to conventional ones due to its mass transfer properties. The adsorption and elution of the pIDKE2 plasmid onto reversed phase POROS R1 50 was studied. Langmuir isotherm model was adjusted in order to get the maximum adsorption capacity and the dissociation constant for POROS R1 50-plasmid DNA (pDNA) system. Breakthrough curves were obtained for volumetric flows between 0.69-3.33 mL/min, given dynamic capacity up to 2.3 times higher than those reported for ionic exchange matrix used during the purification process of plasmids with similar size to that of pIDKE2. The efficiency was less than 45% for the flow conditions and initial concentration studied, which means that the support will not be operated under saturation circumstances.
Subramaniyan, S
2012-04-01
Low molecular weight endo-xylanase from Bacillus pumilus SSP-34 was purified to homogeneity using ion exchange and size exclusion chromatographies. Xylanases were isolated by novel purification protocol which includes the use of anion exchange matrix such as DEAE Sepharose CL 6B with less affinity towards enzyme protein. The purified B. pumilus SSP-34 have a molecular weight of 20 kDa, with optimum pH and temperature at 6.0 and 50 °C, respectively. The enzyme was stable at 50 °C for 30 min. It showed remarkable stability at pH values ranging from 4.5 to 9 when the reaction was carried out at 50 °C. K (m) and V (max) values, determined with oats spelts xylan were 6.5 mg ml⁻¹ and 1,233 μmol min⁻¹ mg⁻¹ protein, respectively, and the specific activity was 1,723 U mg⁻¹.
High-throughput screening of chromatographic separations: IV. Ion-exchange.
Kelley, Brian D; Switzer, Mary; Bastek, Patrick; Kramarczyk, Jack F; Molnar, Kathleen; Yu, Tianning; Coffman, Jon
2008-08-01
Ion-exchange (IEX) chromatography steps are widely applied in protein purification processes because of their high capacity, selectivity, robust operation, and well-understood principles. Optimization of IEX steps typically involves resin screening and selection of the pH and counterion concentrations of the load, wash, and elution steps. Time and material constraints associated with operating laboratory columns often preclude evaluating more than 20-50 conditions during early stages of process development. To overcome this limitation, a high-throughput screening (HTS) system employing a robotic liquid handling system and 96-well filterplates was used to evaluate various operating conditions for IEX steps for monoclonal antibody (mAb) purification. A screening study for an adsorptive cation-exchange step evaluated eight different resins. Sodium chloride concentrations defining the operating boundaries of product binding and elution were established at four different pH levels for each resin. Adsorption isotherms were measured for 24 different pH and salt combinations for a single resin. An anion-exchange flowthrough step was then examined, generating data on mAb adsorption for 48 different combinations of pH and counterion concentration for three different resins. The mAb partition coefficients were calculated and used to estimate the characteristic charge of the resin-protein interaction. Host cell protein and residual Protein A impurity levels were also measured, providing information on selectivity within this operating window. The HTS system shows promise for accelerating process development of IEX steps, enabling rapid acquisition of large datasets addressing the performance of the chromatography step under many different operating conditions. (c) 2008 Wiley Periodicals, Inc.
CATALYTIC PROMOTION OF THE ADSORPTION OF VANADIUM ON AN ANIONIC EXCHANGE RESIN
Bailes, R.H.; Ellis, D.A.
1958-08-26
An improvement in the process for the recovery of vanadium from acidic phosphatic solutions is presented. In this process the vanadium is first oxidized to the pentavaleat state, and is then separated by contacting such solutions with an anion exchange resin whereby adsorption of the complexed pentavalent vanadium is effected. The improvement lies in the fact that adsorp tion of the vanadium complex by the anion exchange resin is promoted and improved by providing fiuoride ions in solution to be contacted.
Role of urea on recombinant Apo A-I stability and its utilization in anion exchange chromatography.
Angarita, Monica; Arosio, Paolo; Müller-Späth, Thomas; Baur, Daniel; Falkenstein, Roberto; Kuhne, Wolfgang; Morbidelli, Massimo
2014-08-08
Apolipoprotein A-I (Apo A-I) is an important lipid-binding protein involved in the transport and metabolism of cholesterol. High protein purity, in particular with respect to endotoxins is required for therapeutic applications. The use of urea during the purification process of recombinant Apo A-I produced in Escherichia coli has been suggested so as to provide high endotoxin clearance. In this work, we show that urea can be used as a sole modifier during the ion exchange chromatographic purification of Apo A-I and we investigate the molecular mechanism of elution by correlating the effect of urea on self-association, conformation and adsorption equilibrium properties of a modified model Apo A-I. In the absence of urea the protein was found to be present as a population of oligomers represented mainly by trimers, hexamers and nonamers. The addition of urea induced oligomer dissociation and protein structure unfolding. We correlated the changes in protein association and conformation with variations of the adsorption equilibrium of the protein on a strong anion exchanger. It was confirmed that the adsorption isotherms, described by a Langmuir model, were dependent on both protein and urea concentrations. Monomers, observed at low urea concentration (0.5M), were characterized by larger binding affinity and adsorption capacity compared to both protein oligomers (0M) and unfolded monomers (2-8M). The reduction of both the binding strength and maximum adsorption capacity at urea concentrations larger than 0.5M explains the ability of urea of inducing elution of the protein from the ion exchange resin. The dissociation of the protein complexes occurring during the elution could likely be the origin of the effective clearance of endotoxins originally trapped inside the oligomers. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Shuai; Zhao, Tianbo; Wang, Jia; Qu, Xiaoling; Chen, Wei; Han, Yin
2013-01-01
A method for routine determination of fluorine, chlorine and bromine in household products was developed and validated. In this work, halogen analyses were made based on oxygen bomb combustion followed by ion chromatography (IC). The chromatographic analysis was performed by an IonPac AS19 hydroxide-selective anion-exchange column, a reagent free ion chromatograph eluent generator and an anion self-regenerating suppressor in 10 min. The response was linear (r ≥ 0.9995) in the entire investigated domain. The limit of detection for the halogens was in the range of 2 to 9 × 10(-3) mg/L and the limit of quantification was lower than 8 mg/Kg with 20 µL of injection volume. The certified reference material of ERM-EC 681k was pretreated using an oxygen bomb combustion procedure to demonstrate the precision of the proposed method. The quantitative analysis results obtained by IC for the target elements were 797 ± 9 mg/Kg chlorine and 786 ± 25 mg/Kg bromine, which were in good agreement with the certified values of 800 ± 4 mg/Kg chlorine, 770 ± 5 mg/Kg bromine for ERM-EC 681k, respectively. This validated method was successfully applied for the analysis of fluorine, chlorine and bromine in household product samples, and the variation of halogen contained among the tested samples was remarkable.
Identification of persisten anionic surfactant-derived chemicals in sewage effluent and groundwater
Field, J.A.; Leenheer, J.A.; Thorn, K.A.; Barber, L.B.; Rostad, C.; Macalady, D.L.; Daniel, S.R.
1992-01-01
Preparative isolation and fractionation procedures coupled with spectrometric analyses were used to identify surfactant-derived contaminants in sewage effluent and sewage-contaminated groundwater from a site located on Cape Cod, Massachusetts. Anionic surfactants and their biodegradation intermediates were isolated from field samples by ion exchange and fractionated by solvent extraction and adsorption chromatography. Fractions were analyzed by 13C nuclear magnetic resonance spectrometry and gas chromatography-mass spectrometry. Carboxylated residues of alkylphenol polyethoxylate surfactants were detected in sewage effluent and contaminated groundwater. Linear alkylbenzenesulfonates (LAS) were identified in sewage effluent and groundwater. Groundwater LAS composition suggested preferential removal of select isomers and homologs due to processes of biodegradation and partitioning. Tetralin and indane sulfonates (DATS), alicyclic analogs of LAS, were also identified in field samples. Although DATS are a minor portion of LAS formulations, equivalent concentrations of LAS and DATS in groundwater suggested persistence of alicyclic contaminant structures over those of linear structure. Sulfophenyl-carboxylated (SPC) LAS biodegradation intermediates were determined in sewage effluent and groundwater. Homolog distributions suggested that SPC containing 3-10 alkyl-chain carbons persist during infiltration and groundwater transport. Surfactant-derived residues detected in well F300-50 groundwater have a minimum residence time in the range of 2.7-4.6 yr. LAS detected in groundwater at 500 m from infiltration has been stable over an estimated 50-500 half lives.
Identification of persistent anionic surfactant-derived chemicals in sewage effluent and groundwater
Field, Jennifer A.; Leenheer, Jerry A.; Thorn, Kevin A.; Barber, Larry B.; Rostad, Colleen; Macalady, Donald L.; Daniel, Stephen R.
1992-01-01
Preparative isolation and fractionation procedures coupled with spectrometric analyses were used to identify surfactant-derived contaminants in sewage effluent and sewage-contaminated groundwater from a site located on Cape Cod, Massachusetts. Anionic surfactants and their biodegradation intermediates were isolated from field samples by ion exchange and fractionated by solvent extraction and adsorption chromatography. Fractions were analyzed by 13C nuclear magnetic resonance spectrometry and gas chromatography-mass spectrometry. Carboxylated residues of alkylphenol polyethoxylate surfactants were detected in sewage effluent and contaminated groundwater. Linear alkylbenzenesulfonates (LAS) were identified in sewage effluent and groundwater. Groundwater LAS composition suggested preferential removal of select isomers and homologs due to processes of biodegradation and partitioning. Tetralin and indane sulfonates (DATS), alicyclic analogs of LAS, were also identified in field samples. Although DATS are a minor portion of LAS formulations, equivalent concentrations of LAS and DATS in groundwater suggested persistence of alicyclic contaminant structures over those of linear structure. Sulfophenyl-carboxylated (SPC) LAS biodegradation intermediates were determined in sewage effluent and groundwater. Homolog distributions suggested that SPC containing 3–10 alkyl-chain carbons persist during infiltration and groundwater transport. Surfactant-derived residues detected in well F300-50 groundwater have a minimum residence time in the range of 2.7–4.6 yr. LAS detected in groundwater at 500 m from infiltration has been stable over an estimated 50–500 half lives.
Method of separating short half-life radionuclides from a mixture of radionuclides
Bray, Lane A.; Ryan, Jack L.
1999-01-01
The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.
Method of separating short half-life radionuclides from a mixture of radionuclides
Bray, L.A.; Ryan, J.L.
1999-03-23
The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.
Li, Fei; Xia, Zhiguo; Pan, Caofeng; Gong, Yue; Gu, Lin; Liu, Quanlin; Zhang, Jin Z
2018-04-11
The unification of tunable band edge (BE) emission and strong Mn 2+ doping luminescence in all-inorganic cesium lead halide perovskite nanocrystals (NCs) CsPbX 3 (X = Cl and Br) is of fundamental importance in fine tuning their optical properties. Herein, we demonstrate that benefiting from the differentiation of the cation/anion exchange rate, ZnBr 2 and preformed CsPb 1- x Cl 3 : xMn 2+ NCs can be used to obtain high Br - content Cs(Pb 1- x- z Zn z )(Cl y Br 1- y ) 3 : xMn 2+ perovskite NCs with strong Mn 2+ emission, and the Mn 2+ substitution ratio can reach about 22%. More specifically, the fast anion exchange could be realized by the soluble halide precursors, leading to anion exchange within a few seconds as observed from the strong BE emission evolution, whereas the cation exchange instead generally required at least a few hours; moreover, their exchange mechanism and dynamics process have been evaluated. The Mn 2+ emission intensity could be further varied by controlling the replacement of Mn 2+ by Zn 2+ with prolonged ion exchange reaction time. White light emission of the doped perovskite NCs via this cation/anion synergistic exchange strategy has been realized, which was also successfully demonstrated in a prototype white light-emitting diode (LED) device based on a commercially available 365 nm LED chip.
Kataoka, M; Tsuge, K; Seto, Y
2000-09-08
A pretreatment procedure, using a macroporous strong anion-exchange resin (MSA) has been established for the determination of nerve gas hydrolysis products by gas chromatography-mass spectrometry (GC-MS) after tert.-butyldimethylsilyl (TBDMS) derivatization. Aqueous solutions of methylphosphonic acid (MPA) and three alkyl methylphosphonic acids (AMPAs) (ethyl, isopropyl and pinacolyl methylphosphonic acid), were retained on the MSA column, and then quantitatively eluted with 0.1 M hydrochloric acid. The neutralized column eluate was dried, and MPA and AMPAs were derivatized with N-methyl-N-(tert.-butyldimethylsilyl)-trifluoroacetamide and analyzed by GC-MS. The column eluate was also analyzed in order to determine the exact hydrolysis product levels by capillary electrophoresis using borate and benzoate buffer (pH 6). The MSA pretreatment was examined for the clean-up of aqueous extracts of three types of soils and an aqueous solution containing 10% sucrose, which is regarded as model for a typical soft drink, after spiking with MPA and AMPAs. MPA and AMPAs were quantitatively recovered in the MSA eluate fraction from those samples, except for MPA from volcanic acid and alluvial soils. The yields of TBDMS derivatives were remarkably improved, compared with for which no pretreatment was used and also for those in which a strong cation-exchange resin was used. The achieved detection limits of MPA and AMPAs ranged from 0.12 to 0.18 microg/g of soil (S/N=3). The established MSA method was applied to the pretreatment of spiked sea water, two types of beverages, Pepsi Cola and canned coffee. Although the yields of TBDMS derivatives of MPA and AMPAs in sea water (in a range between 44 and 96%) and AMPAs in Pepsi Cola (in a range between 58 and 92%) were rather high, those for MPA in the Pepsi Cola (27%) and those for MPA and AMPAs in the canned coffee (in a range between 5 and 17%) were low.
New Gel-Like Polymers as Selective Weak-Base Anion Exchangers
Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej
2015-01-01
A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220
NASA Astrophysics Data System (ADS)
Panagiotopoulos, C.; Sempéré, R.
2003-04-01
Particulate samples were collected by using floating sediment traps (50--300 m) and in situ pumps (30 and 200 m) in the Southern Indian Ocean (Polar Front Zone (PFZ) and Sub-Tropical Zone (STZ)), Mediterranean Sea (Ligurian and Ionian Seas) and Atlantic Ocean (Upwelling (UPW) of Agadir-Morocco). They were studied for monosaccharide composition after acid hydrolysis (HCl 0.09 M, 20 h, 100^oC) by using High Performance Anion Exchange Chromatography followed by Pulsed Amperometric Detection (HPAEC-PAD). Our results indicated that higher PCHO yields (calculated as PCHO-C/POC ratios) were associated to higher C:N ratios (Med. Sea sample, PCHO yields = 12.7 ± 7.7%; C:N ratios = 8.3 ± 1.6; n = 12) whether the opposite trend was found for Southern Ocean samples (PCHO yields = 3.3 ± 0.75%; C:N ratios = 5.7 ± 0.59, n = 5) indicating significant variability in the sugar content of particles which might be due to the degradation degree of the particles as well as to the initial chemical composition of plankton. Alternatively, other processes such as high production of extracellular polysaccharides (type transparent exopolymer polysaccharides (TEP)) due to phosphorus limitation of some phytoplanktonic species may increase the sugar content in Mediterranean particles and the C/N ratio. In any case, glucose appeared to be the most abundant monosaccharide in Mediterranean Sea or UPW samples (range 23--59 wt% of the total aldoses) whereas ribose (17--39 wt%) and galactose (range 10--28 wt%) were the predominant aldoses in Southern Indian Ocean. These sugars (glucose + ribose) exhibited a strong negative relationship with C:N (r = -0.53, p >0.01; n = 30) in sediment traps (data from this study) and sediment (data from literature) particulate material which further indicates that these two monosaccharides are selectively extracted from the carbohydrate pool in sediment. In vitro biodegradation experiments performed with large particles (>60 μm) sampled using in situ pumps in Polar Front and Sub-Antarctic Zones indicated that ribose seems to be a labile sugar, rapidly degraded especially in Polar Front Zone whereas it was below the detection limit in Sub-Antarctic zone where a high bacterial activity was recorded in surface waters. Our results also showed that the relative abundance of deoxysugars (fucose + rhamnose) increased overtime in Sub-Antarctic Zone (deoxyinitial = 18%, deoxyfinal = 23%) and Polar Front Zone (deoxyinitial = 6%, deoxyfinal = 21%) indicating that these sugars are preserved during organic matter decomposition.
NASA Astrophysics Data System (ADS)
Ila Gosselin, Marie; Rathnayake, Chathurika M.; Crawford, Ian; Pöhlker, Christopher; Fröhlich-Nowoisky, Janine; Schmer, Beatrice; Després, Viviane R.; Engling, Guenter; Gallagher, Martin; Stone, Elizabeth; Pöschl, Ulrich; Huffman, J. Alex
2016-12-01
Bioaerosols pose risks to human health and agriculture and may influence the evolution of mixed-phase clouds and the hydrological cycle on local and regional scales. The availability and reliability of methods and data on the abundance and properties of atmospheric bioaerosols, however, are rather limited. Here we analyze and compare data from different real-time ultraviolet laser/light-induced fluorescence (UV-LIF) instruments with results from a culture-based spore sampler and offline molecular tracers for airborne fungal spores in a semi-arid forest in the southern Rocky Mountains of Colorado. Commercial UV-APS (ultraviolet aerodynamic particle sizer) and WIBS-3 (wideband integrated bioaerosol sensor, version 3) instruments with different excitation and emission wavelengths were utilized to measure fluorescent aerosol particles (FAPs) during both dry weather conditions and periods heavily influenced by rain. Seven molecular tracers of bioaerosols were quantified by analysis of total suspended particle (TSP) high-volume filter samples using a high-performance anion-exchange chromatography system with pulsed amperometric detection (HPAEC-PAD). From the same measurement campaign, Huffman et al. (2013) previously reported dramatic increases in total and fluorescent particle concentrations during and immediately after rainfall and also showed a strong relationship between the concentrations of FAPs and ice nuclei (Huffman et al., 2013; Prenni et al., 2013). Here we investigate molecular tracers and show that during rainy periods the atmospheric concentrations of arabitol (35.2 ± 10.5 ng m-3) and mannitol (44.9 ± 13.8 ng m-3) were 3-4 times higher than during dry periods. During and after rain, the correlations between FAP and tracer mass concentrations were also significantly improved. Fungal spore number concentrations on the order of 104 m-3, accounting for 2-5 % of TSP mass during dry periods and 17-23 % during rainy periods, were obtained from scaling the tracer measurements and from multiple analysis methods applied to the UV-LIF data. Endotoxin concentrations were also enhanced during rainy periods, but showed no correlation with FAP concentrations. Average mass concentrations of erythritol, levoglucosan, glucose, and (1 → 3)-β-D-glucan in TSP samples are reported separately for dry and rainy weather conditions. Overall, the results indicate that UV-LIF measurements can be used to infer fungal spore concentrations, but substantial development of instrumental and data analysis methods appears to be required for improved quantification.
Characterizations of atmospheric fungal aerosol in Beijing, China
NASA Astrophysics Data System (ADS)
Liang, Linlin; Engling, Guenter; He, Kebin; Du, Zhenyu
2013-04-01
Fungal aerosols constitute the most abundant fraction of biological aerosols in the atmosphere, influencing human health, the biosphere, atmospheric chemistry and climate. However, the total abundance of fungal spores in the atmosphere is still poorly understood and quantified. PM10 and PM2.5 samples were collected by high volume samplers simultaneously at a rural site (MY) and an urban site (THU) in Beijing, China. Various carbohydrates were quantified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), including the sugar alcohols mannitol and arabitol, proposed as molecular tracers for fungal aerosol. The annual average concentrations of arabitol in PM2.5 and PM10 at the THU site were 7.4±9.4 ng/m3 and 10.3±9.5 ng/m3, and the respective mannitol concentrations were 21.0±20.4 ng/m3 and 31.9±26.9 ng/m3. Compared to PM10, the monthly average concentrations of arabitol and mannitol in PM2.5 did not vary significantly and were present at nearly consistent levels in the different seasons. Moreover, during summer and autumn higher arabitol and mannitol levels than during spring and winter were observed in coarse particles, probably due to different dominant sources of fungal spores in different seasons. In the dry period (i.e., winter and spring) in Beijing, probably only the suspension from exposed surfaces, (e.g., soil resuspension, transported dust, etc.) can be regarded as the main sources for fungal aerosols. On the other hand, in summer and autumn, fungal spores in the atmosphere can be derived from more complex sources, including plants, vegetation decomposition and agricultural activity, such as ploughing; these fungal spore sources may contribute more to coarse PM. Mannitol and arabitol correlated well with each other, both in PM10 (R2 = 0.71) and PM2.5 (R2 = 0.81). Although fungal spore levels at rural sites were consistently higher than those at urban sites in other studies, the findings in our study were reversed, indicating a high abundance of fungal spores in the urban area of Beijing, China. Meteorological conditions were shown to have complex effects on the ambient concentrations of fungal spores: the concentrations of arabitol exhibited positive correlation with temperature below 30.0 °C, negative correlation with wind speed higher than 0.6 m/s, no relationship with solar radiation and the highest arabitol levels were mainly associated with RH in the range of 51-70%.
Rexer, Thomas F T; Schildbach, Anna; Klapproth, Jan; Schierhorn, Angelika; Mahour, Reza; Pietzsch, Markus; Rapp, Erdmann; Reichl, Udo
2018-01-01
Glycosylation of proteins is a key function of the biosynthetic-secretory pathway in the endoplasmic reticulum (ER) and Golgi apparatus. Glycosylated proteins play a crucial role in cell trafficking and signaling, cell-cell adhesion, blood-group antigenicity, and immune response. In addition, the glycosylation of proteins is an important parameter in the optimization of many glycoprotein-based drugs such as monoclonal antibodies. In vitro glycoengineering of proteins requires glycosyltransferases as well as expensive nucleotide sugars. Here, we present a designed pathway consisting of five enzymes, glucokinase (Glk), phosphomannomutase (ManB), mannose-1-phosphate-guanyltransferase (ManC), inorganic pyrophosphatase (PmPpA), and 1-domain polyphosphate kinase 2 (1D-Ppk2) expressed in E. coli for the cell-free production and regeneration of GDP-mannose from mannose and polyphosphate with catalytic amounts of GDP and ADP. It was shown that GDP-mannose is produced at various conditions, that is pH 7-8, temperature 25-35°C and co-factor concentrations of 5-20 mM MgCl 2 . The maximum reaction rate of GDP-mannose achieved was 2.7 μM/min at 30°C and 10 mM MgCl 2 producing 566 nmol GDP-mannose after a reaction time of 240 min. With respect to the initial GDP concentration (0.8 mM) this is equivalent to a yield of 71%. Additionally, the cascade was coupled to purified, transmembrane-deleted Alg1 (ALG1ΔTM), the first mannosyltransferase in the ER-associated lipid-linked oligosaccharide (LLO) assembly. Thereby, in a one-pot reaction, phytanyl-PP-(GlcNAc) 2 -Man 1 was produced with efficient nucleotide sugar regeneration for the first time. Phytanyl-PP-(GlcNAc) 2 -Man 1 can serve as a substrate for the synthesis of LLO for the cell-free in vitro glycosylation of proteins. A high-performance anion exchange chromatography method with UV and conductivity detection (HPAEC-UV/CD) assay was optimized and validated to determine the enzyme kinetics. The established kinetic model enabled the optimization of the GDP-mannose regenerating cascade and can further be used to study coupling of the GDP-mannose cascade with glycosyltransferases. Overall, the study envisages a first step towards the development of a platform for the cell-free production of LLOs as precursors for in vitro glycoengineering of proteins. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
OXIDATIVE STRESS ACTIVATES ANION EXCHANGE PROTEIN 2 AND AP-1 IN AIRWAY EPITHELIAL CELLS
Anion exchange protein 2 (AE2) is a membrane-bound protein that mediates chloride-bicarbonate exchange. In addition to regulating intracellular pH and cell volume, AE2 exports superoxide (O.) to the extracellular matrix in an HCO-dependent process. Given this ability to export O....
ZEOLITE PERFORMANCE AS AN ANION EXCHANGER FOR ARSENIC SEQUESTRATION IN WATER
Zeolites are well known for their use in ion exchange and acid catalysis reactions. The use of zeolites in anion or ligand exchange reactions is less studied. The NH4+ form of zeolite Y (NY6, Faujasite) has been tested in this work to evaluate its performance for arsenic removal...
Electrodialysis potential for fractionation of multicomponent aqueous solutions
NASA Astrophysics Data System (ADS)
Grzegorzek, Martyna; Majewska-Nowak, Katarzyna
2017-11-01
The paper aimed at the evaluation of the batch electrodialysis (ED) run in the course of treatment and desalination of various aqueous mixtures containing both mineral (sodium fluoride, sodium chloride) and organic substances (dyes or humic acids). The commercial ED stack (PCCell Bed) equipped with standard anion-exchange and cation-exchange membranes or monovalent selective anion-exchange membranes was used. The ED experiments were performed at a constant current density (1.56 or 1.72 mA/cm2). The mechanism of ion migration as well as membrane deposition for variable solution composition and various membrane types was analyzed The calculated mass balance and electrical energy demand for each ED run were helpful in evaluating the membrane fouling intensity. It was found that the presence of organic substances in the treated solution had a minor impact on energy consumption, but rather strongly affected chloride flux. The extent of organics deposition was significantly lower for monovalent selective anion-exchange membranes than for classic anion-exchange membranes.
Hanko, Valoran P; Rohrer, Jeffrey S
2010-01-05
The current USP National Formulary contains 65 Monographs for drug formulations containing neomycin. All 65 Monographs prescribe a bioassay for neomycin assay. This bioassay, based on cell culture, is labor intensive, has poor precision, and cannot be adapted for purity or identification. High-performance anion-exchange chromatography with integrated pulsed amperometric detection (HPAE-IPAD), a liquid chromatography technique, has been shown to be suitable for neomycin purity analysis and neomycin assay of an over-the-counter first aid cream (Hanko and Rohrer [17]). Here we propose that an HPAE-IPAD assay can replace the bioassay in the 65 neomycin-containing Monographs. We applied the HPAE-IPAD assay to four neomycin-containing drug products representing the four classes of formulations found in the 65 Monographs, liquid, solid, suspension, and cream. Each drug was analyzed with two chromatography systems, and on 3 separate days. For all products, HPAE-IPAD measurements were precise and accurate with respect to the label concentrations. There was also high accuracy for spike recovery of neomycin from the four drug products throughout 70-150% of the labeled concentration. These results suggest that an HPAE-IPAD assay would be an accurate assay for neomycin, and would be faster and more precise than the current bioassay.
Ponce de León, Claudia A; DeNicola, Katie; Montes Bayón, Maria; Caruso, Joseph A
2003-06-01
Different techniques have been employed in order to evaluate the most efficient procedure for the extraction of selenium from soil as required for speciation. Selenium contaminated sediments from Stewart Lake Wetland, California were used. A strong acid mineralization of the samples gives quantitative total selenium, which is then used to estimate recoveries for the milder extraction methods. The different extraction methodologies involve the sequential use of water, buffer (phosphate, pH 7) and either acid solution (e.g. HNO3 or HCl) or basic solutions (e.g. ammonium acetate, NaOH or TMAH). Pyrophosphate extraction was also evaluated and showed that selenium was not associated with humic acids. The extractants were subsequently analyzed by size exclusion chromatography (SEC) with UV (254 and 400 nm) and on-line ICP-MS detection; anion exchange chromatography, and ion-pair reversed phase chromatography with ICP-MS detection. For sequential extractions the extraction efficiencies showed that the basic extractions were more efficient than the acidic. The difference between the acidic and the basic extraction efficiency is carried to the sulfite extraction, suggesting that whatever is not extracted by the acid is subsequently extracted by the sulfite. The species identified with the different chromatographies were selenate, selenite, elemental selenium and some organic selenium.
Lamb, John D; Simpson, David; Jensen, Bryce D; Gardner, Joseph S; Peterson, Quinn P
2006-06-16
Macrocycle-based ion chromatography provides a convenient, reliable method for the determination of perchlorate ion, which is currently of great interest to the environmental community. This study shows that effective perchlorate determinations can be made using standard conductimetric detection by combining an 18-crown-6-based mobile phase with an underivatized reversed-phase mobile phase ion chromatography (MPIC) column. One unique feature of this method is the flexibility in column capacity that is achieved through simple variations in eluent concentrations of 18-crown-6 and KOH, facilitating the separation of target analyte anions such as perchlorate. Using a standard anion exchange column as concentrator makes possible the determination of perchlorate as low as 0.2 ug/L in low ionic strength matrices. Determination of perchlorate at the sub-ug/L level in pure water and in spiked local city hard water samples with high background ion concentrations can be achieved this way. However, like other IC techniques, this method is challenged to achieve analyses at the ug/L level in the demanding high ionic strength matrix described by the United States Environmental Protection Agency (EPA) (1,000 mg/L chloride, sulfate and carbonate). We approached this challenge by use of the Cryptand C1 concentrator column, provided by Dionex Corporation, to effectively preconcentrate perchlorate while reducing background ion concentrations in the high ionic strength matrix. The retention characteristics of the concentrator column were studied in order to maximize its effectiveness for perchlorate determinations. The method makes possible the determination of perchlorate at the 5 ug/L level in the highest ionic strength matrix described by the EPA.
Stewart, Andrew K.; Shmukler, Boris E.; Vandorpe, David H.; Reimold, Fabian; Heneghan, John F.; Nakakuki, M.; Akhavein, Arash; Ko, Shigeru; Ishiguro, Hiroshi
2011-01-01
The secretin-stimulated human pancreatic duct secretes HCO3−-rich fluid essential for normal digestion. Optimal stimulation of pancreatic HCO3− secretion likely requires coupled activities of the cystic fibrosis transmembrane regulator (CFTR) anion channel and apical SLC26 Cl−/HCO3− exchangers. However, whereas stimulated human and guinea pig pancreatic ducts secrete ∼140 mM HCO3− or more, mouse and rat ducts secrete ∼40–70 mM HCO3−. Moreover, the axial distribution and physiological roles of SLC26 anion exchangers in pancreatic duct secretory processes remain controversial and may vary among mammalian species. Thus the property of high HCO3− secretion shared by human and guinea pig pancreatic ducts prompted us to clone from guinea pig pancreatic duct cDNAs encoding Slc26a3, Slc26a6, and Slc26a11 polypeptides. We then functionally characterized these anion transporters in Xenopus oocytes and human embryonic kidney (HEK) 293 cells. In Xenopus oocytes, gpSlc26a3 mediated only Cl−/Cl− exchange and electroneutral Cl−/HCO3− exchange. gpSlc26a6 in Xenopus oocytes mediated Cl−/Cl− exchange and bidirectional exchange of Cl− for oxalate and sulfate, but Cl−/HCO3− exchange was detected only in HEK 293 cells. gpSlc26a11 in Xenopus oocytes exhibited pH-dependent Cl−, oxalate, and sulfate transport but no detectable Cl−/HCO3− exchange. The three gpSlc26 anion transporters exhibited distinct pharmacological profiles of 36Cl− influx, including partial sensitivity to CFTR inhibitors Inh-172 and GlyH101, but only Slc26a11 was inhibited by PPQ-102. This first molecular and functional assessment of recombinant SLC26 anion transporters from guinea pig pancreatic duct enhances our understanding of pancreatic HCO3− secretion in species that share a high HCO3− secretory output. PMID:21593449
NASA Astrophysics Data System (ADS)
Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei
2017-05-01
Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.
Rolland, N; Droux, M; Douce, R
1992-03-01
The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs.
Rolland, Norbert; Droux, Michel; Douce, Roland
1992-01-01
The subcellular localization of O-acetyiserine(thiol)lyase (EC 4.2.99.8) in nongreen tissue from higher plants has been studied using purified proplastids, mitochondria, and protoplasts from cauliflower (Brassica oleracea L.) buds as a source of subcellular fractions. O-Acetylserine(thiol)lyase has been detected in both organelles (proplastids and mitochondria) and a cytosolic extract obtained by protoplast fractionation. We confirmed these observations, demonstrating that a form of the enzyme different in global charge and separated from others by anion-exchange chromatography corresponded to each subcellular location. Our observations are consistent with the need for cysteine biosynthesis in each subcellular compartment where the synthesis of proteins occurs. ImagesFigure 1 PMID:16668766
Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.
Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C
2016-09-28
Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.
la Marca, Giancarlo; Rizzo, Cristiano
2011-01-01
The analysis of organic acids in urine is commonly included in routine procedures for detecting many inborn errors of metabolism. Many analytical methods allow for both qualitative and quantitative determination of organic acids, mainly in urine but also in plasma, serum, whole blood, amniotic fluid, and cerebrospinal fluid. Liquid-liquid extraction and solid-phase extraction using anion exchange or silica columns are commonly employed approaches for sample treatment. Before analysis can be carried out using gas chromatography-mass spectrometry, organic acids must be converted into more thermally stable, volatile, and chemically inert forms, mainly trimethylsilyl ethers, esters, or methyl esters.
Molecular Basis for Differential Anion Binding and Proton Coupling in the Cl−/H+ Exchanger ClC-ec1
Jiang, Tao; Han, Wei; Maduke, Merritt; Tajkhorshid, Emad
2016-01-01
Cl−/H+ transporters of the CLC superfamily form a ubiquitous class of membrane proteins that catalyze stoichiometrically coupled exchange of Cl− and H+ across biological membranes. CLC transporters exchange H+ for halides and certain polyatomic anions, but exclude cations, F−, and larger physiological anions, such as PO43− and SO42−. Despite comparable transport rates of different anions, the H+ coupling in CLC transporters varies significantly depending on the chemical nature of the transported anion. Although the molecular mechanism of exchange remains unknown, studies on bacterial ClC-ec1 transporter revealed that Cl− binding to the central anion-binding site (Scen) is crucial for the anion-coupled H+ transport. Here, we show that Cl−, F−, NO3−, and SCN− display distinct binding coordinations at the Scen site and are hydrated in different manners. Consistent with the observation of differential bindings, ClC-ec1 exhibits markedly variable ability to support the formation of the transient water wires, which are necessary to support the connection of the two H+ transfer sites (Gluin and Gluex), in the presence of different anions. While continuous water wires are frequently observed in the presence of physiologically transported Cl−, binding of F− or NO3− leads to the formation of pseudo-water-wires that are substantially different from the wires formed with Cl−. Binding of SCN−, however, eliminates the water wires altogether. These findings provide structural details of anion binding in ClC-ec1 and reveal a putative atomic-level mechanism for the decoupling of H+ transport to the transport of anions other than Cl−. PMID:26880377
Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors.
Bazri, Mohammad Mahdi; Martijn, Bram; Kroesbergen, Jan; Mohseni, Madjid
2016-02-01
The formation potential of carbonaceous and nitrogenous disinfection by-products (C-DBPs, N-DBPs) after ion exchange treatment (IEX) of three different water types in multiple consecutive loading cycles was investigated. Liquid chromatography with organic carbon detector (LC-OCD) was employed to gauge the impact of IEX on different natural organic matter (NOM) fractions and data obtained were used to correlate these changes to DBPs Formation Potential (FP) under chlorination. Humic (-like) substances fractions of NOM were mainly targeted by ion exchange resins (40-67% removal), whereas hydrophilic, non-ionic fractions such as neutrals and building blocks were poorly removed during the treatment (12-33% removal). Application of ion exchange resins removed 13-20% of total carbonaceous DBPs FP and 3-50% of total nitrogenous DBPs FP. Effect of the inorganic nitrogen (i.e., Nitrate) presence on N-DBPs FP was insignificant while the presence of dissolved organic nitrogen (DON) was found to be a key parameter affecting the formation of N-DBPs. DON especially the portion affiliated with humic substances fraction, was reduced effectively (∼77%) as a result of IEX treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aoyagi, Wataru; Omiya, Masaki
2016-01-01
An ionic polymer-metal composite (IPMC) actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators. PMID:28773599
Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Li-Wei; Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan; Luo, Tzuoo-Tsair
2016-07-15
A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presencemore » of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.« less
Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan
2015-05-01
The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hou, Xiudan; Liu, Shujuan; Zhou, Panpan; Li, Jin; Liu, Xia; Wang, Licheng; Guo, Yong
2016-07-22
A solid-phase extraction method for the efficient analysis of the excretion-dynamics of flavonoids in urine was established and described. In this work, in situ surface radical chain-transfer polymerization and in situ anion exchange were utilized to tune the extraction performance of poly(1-vinyl-3-hexylimidazolium bromide)-graphene oxide-grafted silica (poly(VHIm(+)Br(-))@GO@Sil). Graphene oxide (GO) was first coated onto the silica using a layer-by-layer fabrication method, and then the anion of poly(VHIm(+)Br(-))@GO@Sil was changed into hexafluorophosphate (PF6(-)) by in situ anion exchange. The interaction energies between two PILs and four flavonoids were calculated with the Gaussian09 suite of programs. A Box-Behnken design was used for the optimization of four greatly influential parameters after single-factor experiments to obtain more accurate and precise results. Coupled to high performance liquid chromatography, the poly(VHIm(+)PF6(-))@GO@Sil method showed acceptable extraction recoveries for the four flavonoids, with limits of detection in the range of 0.1-0.5μgL(-1), and wide linear ranges with correlation coefficients (R) ranging from 0.9935 to 0.9987. Under the optimum conditions, the proposed method was applied to analyze the urines collected from a healthy volunteer. The excretion amount-time profiles revealed that 4-15h was the main excretion time for the detected flavonoids. The results indicated that the newly developed method offered the advantages of being feasible, green and cost-effective, and could be successfully applied to the extraction and enrichment of flavonoids in human body systems allowing the study of the metabolic kinetics. Copyright © 2016. Published by Elsevier B.V.
Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J
2013-12-12
The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.
Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe.
Ma, Bin; Fernandez-Martinez, Alejandro; Grangeon, Sylvain; Tournassat, Christophe; Findling, Nathaniel; Claret, Francis; Koishi, Ayumi; Marty, Nicolas C M; Tisserand, Delphine; Bureau, Sarah; Salas-Colera, Eduardo; Elkaïm, Erik; Marini, Carlo; Charlet, Laurent
2017-05-16
Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO 4 2- ) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO 4 precipitation. Meanwhile, Mo geometry evolves from tetrahedral to octahedral on the edge, and back to tetrahedral coordination at higher Mo loadings, indicated by Mo K-edge X-ray absorption spectra. Moreover, an anion exchange process on both CaAl LDHs was followed by in situ time-resolved synchrotron-based X-ray diffraction, remarkably agreeing with the sorption isotherm. This detailed molecular view shows that different uptake mechanisms-edge sorption, interfacial dissolution-reprecipitation-are at play and control anion uptake under environmentally relevant conditions, which is contrast to the classical view of anion exchange as the primary retention mechanism. This work puts all these mechanisms in perspective, offering a new insight into the complex interplay of anion uptake mechanisms by LDH phases, by using changes in Mo geometry as powerful molecular-scale probe.
Zhang, Mingliang; Mallik, Abul K; Takafuji, Makoto; Ihara, Hirotaka; Qiu, Hongdeng
2015-08-05
Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.
Guo, C; Hu, J-Y; Chen, X-Y; Li, J-Z
2008-02-01
An analytical method for the determination imazaquin residues in soybeans was developed. The developed liquid/liquid partition and strong anion exchange solid-phase extraction procedures provide the effective cleanup, removing the greatest number of sample matrix interferences. By optimizing mobile-phase pH water/acetonitrile conditions with phosphoric acid, using a C-18 reverse-phase chromatographic column and employing ultraviolet detection, excellent peak resolution was achieved. The combined cleanup and chromatographic method steps reported herein were sensitive and reliable for determining the imazaquin residues in soybean samples. This method is characterized by recovery >88.4%, precision <6.7% CV, and sensitivity of 0.005 ppm, in agreement with directives for method validation in residue analysis. Imazaquin residues in soybeans were further confirmed by high performance liquid chromatography-mass spectrometry (LC-MS). The proposed method was successfully applied to the analysis of imazaquin residues in soybean samples grown in an experimental field after treatments of imazaquin formulation.
Shao, Ping; Liu, Jia; Chen, Xiaoxiao; Fang, Zhongxiang; Sun, Peilong
2015-02-01
A polysaccharide fraction (SHPSA) was obtained from Sargassum horneri by hot-water extraction and sequential purification of anion-exchange chromatography and gel-filtration chromatography. SHPSA was found to be a neutral polysaccharide fraction with an average molecular weight of 5.78×10(5) Da and composed of T-D-Glcp, 1,3-D-Glcp, 1,6-D-Glcp and 1,3,6-D-Glcp in a molar percentage of 1.00:4.17:1.17:0.89, respectively. Based on the results from chemical analysis, NMR, and SHPSA was determined to be a glucan with β-(1→6) side chains linked to a β-(1→3) backbone with relatively few branch points. Moreover, SHPSA could inhibit the growth of human colon cancer DLD cells in a dose-dependent manner by inducing the apoptosis of DLD cells. So, SHPSA was promising for future use as a natural antitumor agent. Copyright © 2014 Elsevier B.V. All rights reserved.
Sugiura, Mutsumi; Hirai, Hirofumi; Nishida, Tomoaki
2003-07-29
We characterized kinetics and substrate oxidation of a novel lignin peroxidase (YK-LiP) isolated from white-rot fungus Phanerochaete sordida YK-624. YK-LiP enzyme was identified and purified to homogeneity by anion-exchange chromatography and gel permeation chromatography. The molecular mass of YK-LiP was approximately 50 kDa, and the absorption spectrum of YK-LiP was almost the same as that of the LiP (Pc-LiP) from Phanerochaete chrysosporium. Steady-state kinetics of veratryl alcohol oxidation by YK-LiP (unlike that by Pc-LiP) revealed a bi-reactant sequential mechanism, although reactivity of YK-LiP to various monomeric substituted aromatic compounds was similar to that of Pc-LiP. Degradation of dimeric lignin model compounds was more effective by YK-LiP than by Pc-LiP, and the oxidation rate of sinapyl alcohol oligomer by YK-LiP was much faster than that by Pc-LiP.
Murugan, K; Arunkumar, N S; Mohankumar, C
2004-01-01
Cinnamyl alcohol-NADPH-dehydrogenase (CAD), the marker enzyme of lignin biosynthesis was purified from the leaf tissues of a basin mangrove Lumnitzera racemosa by ammonium sulphate precipitation, followed by anion-exchange, gel filtration and affinity chromatography. The molecular mass of the CAD enzyme was determined as 89 kDa, by size elution chromatography. SDS-PAGE of CAD revealed two closely associated bands of 45 kDa and 42 kDa as heterogenous subunits. The optimum pH of CAD was found to be 4.0. Km for the substrates cinnamaldehyde, coniferaldehyde and sinapaldehyde was determined. Cinnamaldehyde showed higher Km value than sinapaldehyde and coniferaldehyde. The correlation of activity of CAD with the amount of lignin was found less significant in L. racemosa, compared to plant species of other habitats viz., mesophytes, xerophytes and hydrophytes, suggesting that CAD possibly exhibits physiological suppression due to the saline habitat of the plant.
Specific determination of bromate in bread by ion chromatography with ICP-MS.
Akiyama, Takumi; Yamanaka, Michiko; Date, Yukiko; Kubota, Hiroki; Nagaoka, Megumi Hamano; Kawasaki, Yoko; Yamazaki, Takeshi; Yomota, Chikako; Maitani, Tamio
2002-12-01
A sensitive method for detecting bromate in bread by ion chromatography with inductively-coupled plasma mass spectrometry (IC/ICP-MS) was developed. Bromate was extracted from bread with water. The clean-up procedure included a 0.2 micron filter, a C18 cartridge for defatting, a silver cartridge to remove halogen anions, a centrifugal ultrafiltration unit to remove proteins, and a cation-exchange cartridge to remove silver ions. A 500 microL sample solution was applied to IC/ICP-MS. The detection limit and the quantitation limit of bromate in the solution were 0.3 ng/mL and 1.0 ng/mL, expressed as HBrO3, respectively, which corresponded to 2 ng/g and 5 ng/g, respectively, in bread. Recovery of bromate was about 90%, and the CV was about 2%. Based on the detection limit in solution and recovery from bread, the detection limit of bromate in bread was estimated to be 2 ng/g.
Li, Wen-Tao; Jin, Jing; Li, Qiang; Wu, Chen-Fei; Lu, Hai; Zhou, Qing; Li, Ai-Min
2016-04-15
Online monitoring dissolved organic matter (DOM) is urgent for water treatment management. In this study, high performance size exclusion chromatography with multi-UV absorbance and multi-emission fluorescence scans were applied to spectrally characterize samples from 16 drinking water sources across Yangzi River and Huai River Watersheds. The UV absorbance indices at 254 nm and 280 nm referred to the same DOM components and concentration, and the 280 nm UV light could excite both protein-like and humic-like fluorescence. Hence a novel UV fluorescence sensor was developed out using only one UV280 light-emitting diode (LED) as light source. For all samples, enhanced coagulation was mainly effective for large molecular weight biopolymers; while anion exchange further substantially removed humic substances. During chlorination tests, UVA280 and UVA254 showed similar correlations with yields of disinfection byproducts (DBPs); the humic-like fluorescence obtained from LED sensors correlated well with both trihalomethanes and haloacetic acids yields, while the correlation between protein-like fluorescence and trihalomethanes was relatively poor. Anion exchange exhibited more reduction of DBPs yields as well as UV absorbance and fluorescence signals than enhanced coagulation. The results suggest that the LED UV fluorescence sensors are very promising for online monitoring DOM and predicting DBPs formation potential during water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xue, Shu-Wen; Li, Jing; Xu, Li
2017-05-01
Magnetic melamine-formaldehyde resin was prepared via water-in-oil emulsification approach by entrapping Fe 3 O 4 magnetic nanoparticles as the core. The preparation of the magnetic resin was optimized by investigating the amount of polyethylene glycol 20000 and Fe 3 O 4 nanoparticles, the concentration of the catalyst (hydrochloric acid), as well as the mechanical stirring rate. The prepared material was characteristic of excellent anion-exchange capacity, good water wettability, and proper magnetism. Its application was demonstrated by magnetic solid-phase extraction of nonsteroidal anti-inflammatory drugs coupled to high performance liquid chromatography-UV analysis. Under the optimal conditions, the proposed method showed broad linear range of 1-5000 ng mL -1 of milk and urine samples, satisfactory reproducibility with intra-day and inter-day relative standard deviations less than 12.4% and 9.7%, respectively, and low limits of detection of 0.2 ng mL -1 for the studied nonsteroidal anti-inflammatory drugs. The developed method was successfully used for the determination of the nonsteroidal anti-inflammatory drugs in spiked urine and milk samples. The magnetic melamine-formaldehyde resin was promising for the sample pretreatment of acidic analytes via anion-exchange interaction with convenient operation from complex sample matrix. Graphical abstract Magnetic solid-phase extraction based on melamine-formaldehyde resin.
Advanced purification strategy for CueR, a cysteine containing copper(I) and DNA binding protein.
Balogh, Ria K; Gyurcsik, Béla; Hunyadi-Gulyás, Éva; Christensen, Hans E M; Jancsó, Attila
2016-07-01
Metal ion regulation is essential for living organisms. In prokaryotes metal ion dependent transcriptional factors, the so-called metalloregulatory proteins play a fundamental role in controlling the concentration of metal ions. These proteins recognize metal ions with an outstanding selectivity. A detailed understanding of their function may be exploited in potential health, environmental and analytical applications. Members of the MerR protein family sense a broad range of mostly late transition and heavy metal ions through their cysteine thiolates. The air sensitivity of latter groups makes the expression and purification of such proteins challenging. Here we describe a method for the purification of the copper-regulatory CueR protein under optimized conditions. In order to avoid protein precipitation and/or eventual aggregation and to get rid of the co-purifying Escherichia coli elongation factor, our procedure consisted of four steps supplemented by DNA digestion. Subsequent anion exchange on Sepharose FF Q 16/10, affinity chromatography on Heparin FF 16/10, second anion exchange on Source 30 Q 16/13 and gel filtration on Superdex 75 26/60 resulted in large amounts of pure CueR protein without any affinity tag. Structure and functionality tests performed with mass spectrometry, circular dichroism spectroscopy and electrophoretic gel mobility shift assays approved the success of the purification procedure. Copyright © 2016 Elsevier Inc. All rights reserved.
Day, Jason A; Montes-Bayón, María; Vonderheide, Anne P; Caruso, Joseph A
2002-08-01
Regulating arsenic species in drinking waters is a reasonable objective, since the various species have different toxicological impacts. However, developing robust and sensitive speciation methods is mandatory prior to any such regulations. Numerous arsenic speciation publications exist, but the question of robustness or ruggedness for a regulatory method has not been fully explored. The present work illustrates the use of anion exchange chromatography coupled to ICP-MS with a commercially available "speciation kit" option. The mobile phase containing 2 mM NaH(2)PO(4) and 0.2 mM EDTA at pH 6 allowed adequate separation of four As species (As(III), As(V), MMAA, DMAA) in less than 10 min. The analytical performance characteristics studied, including method detection limits (lower than 100 ng L(-1) for all the species evaluated), proved the suitability of the method to fulfill the current regulation. Other parameters evaluated such as laboratory fortified blanks, spiked recoveries, and reproducibility over a certain period of time produced adequate results. The samples analyzed were taken from water utilities in different areas of the United States and were provided by the U.S. EPA. The data suggests the speciation setup performs to U.S. EPA specifications but sample treatment and chemistry are also important factors for achieving good recoveries for samples spiked with As(III) as arsenite and As(V) as arsenate.
Hutta, Milan; Ráczová, Janka; Góra, Róbert; Pessl, Juraj
2015-08-21
Novel anion-exchange liquid chromatographic method with step gradient of aqueous EDTA(4-) based mobile phase elution has been developed to profile available Slovak soil humic substances and alkaline extracts of various soils. The method utilize short glass column (30mm×3mm) filled in with hydrolytically stable particles (60μm diameter) Separon HEMA-BIO 1000 having (diethylamino)ethyl functional groups. Step gradient was programmed by mixing mobile phase composed of aqueous solution of sodium EDTA (pH 12.0; 5mmolL(-1)) and mobile phase constituted of aqueous solution of sodium EDTA (pH 12.0, 500mmolL(-1)). The FLD of HSs was set to excitation wavelength 480nm and emission wavelength 530nm (λem). Separation mechanism was studied by use of selected aromatic acids related to humic acids with the aid of UV spectrophotometric detection at 280nm. The proposed method benefits from high ionic strength (I=5molL(-1)) of the end mobile phase buffer and provides high recovery of humic acids (98%). Accurate and reproducible profiling of studied humic substances, alkaline extracts of various types of soils enables straightforward characterization and differentiation of HSs in arable and forest soils. Selected model aromatic acids were used for separation mechanism elucidation. Copyright © 2015 Elsevier B.V. All rights reserved.
Pello-Palma, Jairo; González-Álvarez, Jaime; Gutiérrez-Álvarez, María Dolores; Dapena de la Fuente, Enrique; Mangas-Alonso, Juan José; Méndez-Sánchez, Daniel; Gotor-Fernández, Vicente; Arias-Abrodo, Pilar
2017-04-01
A chromatographic method for the separation of volatile compounds in Asturian cider apple juices has been developed. For this separation purpose, a monocationic imidazolium-based ionic liquid bearing a reactive terminal iodine atom was synthesized by a quaternization-anion exchange chemical sequence. Next, the gas chromatography (GC) stationary phase was prepared by covalently linking the imidazolium monolith to the reactive silanol groups of the inner capillary wall at 70 °C. This coated GC column exhibited good thermal stability (290 °C), as well as good efficiency (2000 plates/m) in the separation of volatile compounds from Asturian apple cider juices, and was characterized using the Abraham solvation parameter model. The intra-day and inter-day precision of the chromatographic method was evaluated, obtaining relative standard deviations from 3.7 to 12.9% and from 7.4 to 18.0%, respectively. Furthermore, recoveries from 82.5 to 122% were achieved. Graphical Abstract Covalent bonding of an ionic liquid to inner column wall led to a great improvement of the separation efficiencies of stationary phases in gas chromatography.
Ravi, Ayswarya; Guo, Shengchun; Rasala, Beth; Tran, Miller; Mayfield, Stephen; Nikolov, Zivko L.
2018-01-01
Correct folding and post-translational modifications are vital for therapeutic proteins to elicit their biological functions. Osteopontin (OPN), a bone regenerative protein present in a range of mammalian cells, is an acidic phosphoprotein with multiple potential phosphorylation sites. In this study, the ability of unicellular microalgae, Chlamydomonas reinhardtii, to produce phosphorylated recombinant OPN in its chloroplast is investigated. This study further explores the impact of phosphorylation and expression from a “plant-like” algae on separation of OPN. Chromatography resins ceramic hydroxyapatite (CHT) and Gallium-immobilized metal affinity chromatography (Ga-IMAC) were assessed for their binding specificity to phosphoproteins. Non-phosphorylated recombinant OPN expressed in E. coli was used to compare the specificity of interaction of the resins to phosphorylated OPN. We observed that CHT binds OPN by multimodal interactions and was better able to distinguish phosphorylated proteins in the presence of 250 mM NaCl. Ga-IMAC interaction with OPN was not selective to phosphorylation, irrespective of salt, as the resin bound OPN from both algal and bacterial sources. Anion exchange chromatography proved an efficient capture method to partially separate major phosphorylated host cell protein impurities such as Rubisco from OPN. PMID:29462927
Contreras-Acuña, M; García-Barrera, T; García-Sevillano, M A; Gómez-Ariza, J L
2013-03-22
Arsenic species have been investigated in Anemonia sulcata, which is frequently consumed food staple in Spain battered in wheat flour and fried with olive oil. Speciation in tissue extracts was carried out by anion/cation exchange chromatography with inductively coupled plasma mass spectrometry (HPLC-(AEC/CEC)-ICP-MS). Three methods for the extraction of arsenic species were investigated (ultrasonic bath, ultrasonic probe and focused microwave) and the optimal one was applied. Arsenic speciation was carried out in raw and cooked anemone and the dominant species are dimethylarsinic acid (DMA(V)) followed by arsenobetaine (AB), As(V), monomethylarsonic acid (MA(V)), tetramethylarsonium ion (TETRA) and trimethylarsine oxide (TMAO). In addition, arsenocholine (AsC), glyceryl phosphorylarsenocholine (GPAsC) and dimethylarsinothioic acid (DMAS) were identified by liquid chromatography coupled to triple quadrupole mass spectrometry (HPLC-MS). These results are interesting since GPAsC has been previously reported in marine organisms after experimental exposure to AsC, but not in natural samples. In addition, this paper reports for the first time the identification of DMAS in marine food. Copyright © 2013 Elsevier B.V. All rights reserved.
Porcine Circovirus (PCV) Removal by Q Sepharose Fast Flow Chromatography
Yang, Bin; Wang, Hua; Ho, Cintia; Lester, Philip; Chen, Qi; Neske, Florian; Baylis, Sally A; Blümel, Johannes
2013-01-01
The recently discovered contamination of oral rotavirus vaccines led to exposure of millions of infants to porcine circovirus (PCV). PCV was not detected by conventional virus screening tests. Regulatory agencies expect exclusion of adventitious viruses from biological products. Therefore, methods for inactivation/removal of viruses have to be implemented as an additional safety barrier whenever feasible. However, inactivation or removal of PCV is difficult. PCV is highly resistant to widely used physicochemical inactivation procedures. Circoviruses such as PCV are the smallest viruses known and are not expected to be effectively removed by currently-used virus filters due to the small size of the circovirus particles. Anion exchange chromatography such as Q Sepharose® Fast Flow (QSFF) has been shown to effectively remove a range of viruses including parvoviruses. In this study, we investigated PCV1 removal by virus filtration and by QSFF chromatography. As expected, PCV1 could not be effectively removed by virus filtration. However, PCV1 could be effectively removed by QSFF as used during the purification of monoclonal antibodies (mAbs) and a log10 reduction value (LRV) of 4.12 was obtained. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1464–1471, 2013 PMID:24039195
Vivès, R R; Goodger, S; Pye, D A
2001-02-15
Heparan sulphates are highly sulphated linear polysaccharides involved in many cellular functions. Their biological properties stem from their ability to interact with a wide range of proteins. An increasing number of studies, using heparan sulphate-derived oligosaccharides, suggest that specific structural features within the polysaccharide are responsible for ligand recognition and regulation. In the present study, we show that strong anion-exchange HPLC alone, a commonly used technique for purification of heparan sulphate-derived oligosaccharides, may not permit the isolation of highly pure heparan sulphate oligosaccharide species. This was determined by PAGE analysis of hexa-, octa- and decasaccharide samples deemed to be pure by strong anion-exchange HPLC. In addition, subtle differences in the positioning of sulphate groups within heparan sulphate hexasaccharides were impossible to detect by strong anion-exchange HPLC. PAGE analysis on the other hand afforded excellent resolution of these structural isomers. The precise positioning of specific sulphate groups has been implicated in determining the specificity of heparan sulphate interactions and biological activities; hence, the purification of oligosaccharide species that differ in this way becomes an important issue. In this study, we have used strong anion-exchange HPLC and PAGE techniques to allow production of the homogeneous heparan sulphate oligosaccharide species that will be required for the detailed study of structure/activity relationships.
Brown, Alistair K; Wong, Charles S
2017-11-24
A solids extraction method, using sonication in combination with weak anion exchange solid phase extraction, was created to extract thyroxine (T4) and thyroxine-O-β-d-glucuronide (T4-Glc) simultaneously from wastewaters and sludges, and to quantify these compounds via reversed-phase ultra-high performance liquid chromatography-tandem mass spectrometry. The method limits of quantification were all in the low ng/g (dry weight solids) range for both T4 and T4-Glc: 2.13 and 2.63ng/g respectively in primary wastewater, 4.3 and 28.3ng/g for primary suspended solids, for 1.1 and 3.7ng/g for return activated sludge. Precision for measurements of T4 and T4-Glc were 2.6 and 6.5% (intraday) and 9.6 and 5.7% (interday) respectively, while linearity was 0.9967 and 0.9943 respectively. Overall recoveries for T4 and T4-Glc in primary suspended solids were 94% and 95%, and 86 and 101% in primary wastewater, respectively. Extraction efficiency tests using primary sludge determined that one methanol aliquot was sufficient during the extraction process as opposed to 2 or 3 aliquots. Mass loadings at the North Main Wastewater Treatment Plant in Winnipeg, Canada showed 316%, 714%, and 714% greater T4-Glc than T4 associated with the suspended solids of the primary, secondary, and final effluent respectively, yet 765% more T4 than T4-Glc associated with the solids of the mixed liquor. Moreover, 26% of T4 and 49% of T4-Glc were associated with the suspended solids during the treatment process. This method demonstrates the need to assess accurately both metabolite conjugates of contaminants of emerging concern, as well as the sorbed levels of particle-reactive analytes such as T4 in the aquatic environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Hao, Chunyan; Morse, David; Morra, Franca; Zhao, Xiaoming; Yang, Paul; Nunn, Brian
2011-08-19
Analysis of the broad-spectrum herbicide glyphosate and its related compounds is quite challenging. Tedious and time-consuming derivatization is often required for these substances due to their high polarity, high water solubility, low volatility and molecular structure which lacks either a chromophore or fluorophore. A novel liquid chromatography/tandem mass spectrometry (LC/MS-MS) method has been developed for the determination of glyphosate, aminomethylphosphonic acid (AMPA) and glufosinate using a reversed-phase and weak anion-exchange mixed-mode Acclaim® WAX-1 column. Aqueous environmental samples are directly injected and analyzed in 12 min with no sample concentration or derivatization steps. Two multiple reaction monitoring (MRM) channels are monitored in the method for each target compound to achieve true positive identification, and ¹³C, ¹⁵N-glyphosate is used as an internal standard to carry out isotope dilution mass spectrometric (IDMS) measurement for glyphosate. The instrument detection limits (IDLs) for glyphosate, AMPA and glufosinate are 1, 2 and 0.9 μg/L, respectively. Linearity of the detector response with a minimum coefficient of determination (R² value (R² > 0.995) was demonstrated in the range of ∼10 to 10³ μg/L for each analytes. Spiked drinking water, surface water and groundwater samples were analyzed using this method and the average recoveries of analytes in three matrices ranged from 77.0 to 102%, 62.1 to 101%, 66.1 to 93.7% while relative standard deviation ranged from 6.3 to 10.2%, 2.7 to 14.8%, 2.9 to 10.7%, respectively. Factors that may affect method performance, such as metal ions, sample preservation, and storage time, are also discussed. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Gasse, Angela; Pfeiffer, Heidi; Köhler, Helga; Schürenkamp, Jennifer
2016-07-01
The aim of this work was to develop and validate a solid-phase extraction (SPE) method for the analysis of cannabinoids with emphasis on a very extensive and effective matrix reduction in order to ensure constant good results in selectivity and sensitivity regardless of the applied measuring technology. This was obtained by the use of an anion exchange sorbent (AXS) and the purposive ionic interaction between matrix components and this sorbent material. In a first step, the neutral cannabinoids ∆9-tetrahydrocannabinol (THC) and 11-hydroxy-∆9-tetrahydrocannabinol (11-OH-THC) were eluted, leaving 11-nor-9-carboxy-∆9-tetrahydrocannabinol (THC-COOH) and the main interfering matrix components bound to the AXS. In a second step, exploiting differences in pH and polarity, it was possible to separate matrix components and THC-COOH, thereby yielding a clean elution of THC-COOH into the same collecting tube as THC and 11-OH-THC. Even when using a simple measuring technology like gas chromatography with single quadrupole mass spectrometry, this two-step elution allows for an obvious decrease in number and intensity of matrix interference in the chromatogram. Hence, in both plasma and serum, the AXS extracts resulted in very good selectivity. Limits of detection and limits of quantification were below 0.25 and 0.35 ng/mL for the neutral cannabinoids in both matrices, 2.0 and 3.0 ng/mL in plasma and 1.6 and 3.3 ng/mL in serum for THC-COOH. The recoveries were ≥79.8 % for all analytes. Interday and intraday imprecisions ranged from 0.8 to 6.1 % relative standard deviation, and accuracy bias ranged from -12.6 to 3.6 %.
NASA Astrophysics Data System (ADS)
Larsen, Erik H.
1998-02-01
Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the seperation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for reference materials certified for elemental species is stressed.
Structural analysis of fructans from Agave americana grown in South Africa for spirit production.
Ravenscroft, Neil; Cescutti, Paola; Hearshaw, Meredith A; Ramsout, Ronica; Rizzo, Roberto; Timme, Elizabeth M
2009-05-27
Fructans isolated from Agave americana grown in South Africa are currently used for spirit production. Structural studies on water-soluble fructans were performed to facilitate the development of other applications including its use as a prebiotic. Acid hydrolysis followed by HPAEC-PAD analysis confirmed that the fructan was composed of glucose and fructose, and size analysis by HPAEC-PAD and size exclusion chromatography indicated that the saccharides have a DP range from 6 to 50. An average DP of 14 was estimated by (1)H NMR analysis. Linkage analysis and ESI-MS studies suggest that A. americana has a neofructan structure consisting of a central sucrose to which (2 → 1)- and (2 → 6)-linked β-D-Fruf chains are attached. The (2 → 1)-linked units extend from C-1 of Fru and C-6 of glucose, whereas the (2 → 6)-linked β-D-Fruf units are attached to C-6 of the central Fru. This structure accounts for the presence of equimolar amounts of 1,6-linked Glu and 1,2,6-linked Fru found in linkage analysis and the multiplicity of the NMR signals observed. Detailed ESI-MS studies were performed on fructan fractions: native, periodate oxidized/reduced, and permethylated oligomers. These derivatizations introduced mass differences between Glc and Fru following oxidation and between 1,2-, 1,6-, 2,6-, and 1,2,6-linked units after methylation. Thus, ESI-MS showed the presence of a single Glc per fructan chain and that it is predominantly internal, rather than terminal as found in inulin. These structural features were confirmed by the use of 1D and 2D NMR experiments.
SELENIUM REMOVAL FROM DRINKING WATER BY ION EXCHANGE
Strong-base anion exchangers were shown to remove selenate and selenite ions from drinking water. Because selenium species are usually present at low concentrations, the efficiency of removal is controlled by the concentration of the common drinking water anions, the most importa...
2013-01-01
exchange resins and as membranes for water purification [1], Li–air batteries, and in polymer exchange membrane ( PEM ) fuel cells [2]. PEM Fuel cells show...SUBJECT TERMS Anion exchange membrane, Fuel Cell , Poly(ethyleneimine), Quaternary ammonium caton, Hydroxide Ashley M. Maes, Tara P. Pandey, Melissa...membrane Fuel cell Poly(ethyleneimine) Quaternary ammonium cation Hydroxide a b s t r a c t A new randomly crosslinked polymer is investigated
Engelmann, B
1993-11-01
The blood group antigen H (blood group O) and fucose-specific lectin Ulex europaeus agglutinin I (UEA1) (10 micrograms/ml) was found to increase the rate constant of Cl- efflux into 100 mM Na+ oxalate media by about 40% in erythrocytes taken from antigen H donors. In 100 mM K+ oxalate, 150 mM Na+ pyruvate and in 150 mM Na+ acetate media the lectin elevated the rate constant of Cl- efflux by 20-50%. The acceleration of Cl- efflux by UEA1 was completely blocked by 10 microM 4,4'-diisothiocyanato-stilbene-2,2'-disulfonic acid (DIDS) indicating that the effect of the lectin is mediated by the anion exchanger of human erythrocytes (band 3 protein). In antigen A1 erythrocytes no significant stimulation of anion exchange by UEA1 was seen. The activation of Cl- efflux was completely prevented by addition of 1 mM fucose to the medium. These results suggest that the effect of UEA1 is mediated through interaction with the fucose residues of H antigens. Increasing extracellular Ca++ from 0.5 to 5 mM in Na+ pyruvate or Na+ acetate media slightly reduced the acceleration of anion exchange by the lectin. On the other hand, replacing part of extracellular chloride by bicarbonate did not considerably alter the (previously reported) stimulatory effect of UEA1 on red blood cell Ca++ uptake. This suggests that the acceleration of anion exchange and of Ca++ uptake by UEA1, respectively, are mediated by different mechanisms. It is concluded that UEA1 activates anion exchange of human erythrocytes most probably by a direct interaction with H antigens present on extracellular domains of the band 3 protein.
Guo, Zhong-Xian; Cai, Qiantao; Yang, Zhaoguang
2005-12-30
Quantitative determination of trace glyphosate and phosphate in waters was achieved by coupling ion chromatography (IC) separation with inductively coupled plasma mass spectrometry (ICP-MS) detection. The separation of glyphosate and phosphate on a polymer anion-exchange column (Dionex IonPac AS16, 4.0 mm x 250 mm) was obtained by eluting them with 20 mM citric acid at 0.50 mL min(-1), and the analytes were detected directly and selectively by ICP-MS at m/z = 31. Parameters affecting their chromatographic behaviors and ICP-MS characteristics were systematically examined. Based on a 500-microL sample injection volume, the detection limits were 0.7 microgL(-1) for both glyphosate and phosphate, and the calibrations were linear up to 400 microgL(-1). Polyphosphates, aminomethylphosphonic acid (the major metabolite of glyphosate), non-polar and other polar phosphorus-containing pesticides showed different chromatographic behaviors from the analytes of interest and therefore did not interference. The determination was also interference free from the matrix anions (nitrate, nitrite, sulphate, chloride, etc.) and metallic ions. The analysis of certified reference material, drinking water, reservoir water and Newater yielded satisfactory results with spiked recoveries of 97.1-107.0% and relative standard deviations of < or = 7.4% (n = 3). Compared to other reported methods for glyphosate and phosphate, the developed IC-ICP-MS method is sensitive and simple, and does not require any chemical derivatization, sample preconcentration and mobile phase conductivity suppression.
Isolation and characterization of metallothioneins in calves ingesting Zn toxic diets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, T.W.; Clegg, M.S.; Lonnerdal, B.
1986-03-05
The authors have recently described an outbreak of Zn toxicosis in 95 Holstein bull calves which occurred as a result of an accidental over-supplementation of the diet with Zn. Signs of Zn toxicosis including anorexia, polydipsia, polyphagia, polyurea and diarrhea, began to appear 23 days after initiation of the diet. Liver, kidney, muscle and brain were collected from animals that died or were euthanized. Multielement analysis indicated that liver had the highest concentration of Zn (362 ..mu..g Zn/g wet wt.) followed by kidney (233 ..mu..g Zn/g wet wt.), muscle (22 ..mu..g Zn/g wet wt.) and brain (10 ..mu..g Zn/g wetmore » wt.). To examine the toxic effects of Zn at the molecular level, liver was fractionated by conventional molecular sieve (Sephadex G75) and anion exchange chromatography (DEAE Sephadex A-25). In addition, Fast Protein Liquid Chromatography (FPLC) was used to verify the results obtained by conventional methods. The principle advantages of FPLC are that the molecular sieve (Superose 12) and anion (Mono Q) steps are performed in 1 h as opposed to several hours, thus substantially minimizing artifacts resulting from oxidative degradation of labile proteins. Zn was primarily associated with two peaks, designated metallothionein (MT) I and MT II, in a ratio of 10 to 1. The results show that one effect of Zn toxicity in calves can be a preferential induction of MT I.« less
Dehghani, M; Haghighi, A Binaee; Zamanian, Z
2010-06-01
The aim of this research is to study the feasibility of removing nitrates from water by means of anion exchange. In the purposed work an attempt was made to utilize strong basic anion resin to remove nitrate in the presence of competitive anion. Amberjet Cl- 4200 ion exchange resin was used in a batch scale. The fixation rate of nitrate without the presences of any competitive anion was almost constant (94.60-96.43) when the nitrate concentrations are in the range of 100-150 mg L(-1). The fixation rate of nitrate in the presences of two competitive anions (sulphate and chloride) was reduced to 82% when the concentration of nitrate was 100 mg L(-1).
Application of Novel Anion-Exchange Blend Membranes (AEBMs) to Vanadium Redox Flow Batteries.
Cho, Hyeongrae; Krieg, Henning M; Kerres, Jochen A
2018-06-19
Both cation-exchange membranes and anion-exchange membranes are used as ion conducting membranes in vanadium redox flow batteries (VRFBs). Anion-exchange membranes (AEMs) are applied in vanadium redox flow batteries due to the high blocking property of vanadium ions via the Donnan exclusion effect. In this study, novel anion-exchange blend membranes (AEBMs) were prepared, characterized, and applied in VRFBs. Bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide), poly[(1-(4,4′-diphenylether)-5-oxybenzimidazole)-benzimidazole] (PBI-OO) and sulfonated polyether sulfone polymer were combined to prepare 3-component AEBMs with 1,2,4,5-tetramethylimidazole (TMIm) for quaternization. 3-component AEBMs showed significantly enhanced chemical and mechanical properties compared with those of 2-component AEBMs, resulting in an improved performance in VRFBs. The compositions of the anion-exchange polymers in 3-component AEBMs were systematically varied to optimize the AEBMs for the redox-flow battery application. While the 3-component AEBMs showed comparable efficiencies with Nafion ® 212 membranes, they displayed improved vanadium ions cross-over as was confirmed by open circuit voltage tests and capacity fade tests conducted in VRFBs. In addition, one of the synthesized 3-component AEBM had a superior coulombic efficiency and capacity retention in a charging⁻discharging test over 300 cycles at a current density of 40 mA/cm². It can thus be concluded that 3-component AEBMs are promising candidates for long-term operation in VRFBs.
Pu Anion Exchange Process Intensification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor-Pashow, Kathryn M. L.
This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through themore » large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.« less
Tribosupplementation with Lubricin in Prevention of Post-Traumatic Arthritis
2014-10-01
utilizing anion exchange, hydroxyapatite and a hydrophobic exchange media resins achieves a high level of purity. Explants of bovine articular cartilage...progress report and results in a highly purified product (Fig 1). It consists of all flow through steps utilizing anion exchange, hydroxyapatite and...Control), and the interaction between these two experimental parameters for each region of cartilage. Anterior COFs indicated near significance
Self-exchange reactions of radical anions in n-hexane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werst, D. W.; Chemistry
The formation and reactions of radical anions in n-hexane at 190 K were investigated by pulse radiolysis and time-resolved fluorescence-detected magnetic resonance (FDMR). Electron attachment was found to occur for compounds with gas-phase electron affinities (EA) more positive than -1.1 {+-} 0.1 eV. The FDMR concentration and time dependence are interpreted as evidence for self-exchange electron-transfer reactions, indicating that formation of dimer radical anions is not prevalent for the range of molecules studied. FDMR detection of radical anions is mainly restricted to electron acceptors with EA less than approximately 0.5 eV.
Cheng, Heyong; Shen, Lihuan; Liu, Jinhua; Xu, Zigang; Wang, Yuanchao
2018-04-01
Nanoliter high-performance liquid chromatography shows low consumption of solvents and samples, offering one of the best choices for arsenic speciation in precious samples in combination with inuctively coupled plasma mass spectrometry. A systematic investigation on coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry from instrument design to injected sample volume and mobile phase was performed in this study. Nanoflow mobile phase was delivered by flow splitting using a conventional high-pressure pump with reuse of mobile phase waste. Dead volume was minimized to 60 nL for the sheathless interface based on the previously developed nanonebulizer. Capillary columns for nanoliter high-performance liquid chromatography were found to be sensitive to sample loading volume. An apparent difference was also found between the mobile phases for nanoliter and conventional high-performance liquid chromatography. Baseline separation of arsenite, arsenate, monomethylarsenic, and dimethylarsenic was achieved within 11 min on a 15 cm C 18 capillary column and within 12 min on a 25 cm strong anion exchange column. Detection limits of 0.9-1.8 μg/L were obtained with precisions variable in the range of 1.6-4.2%. A good agreement between determined and certified values of a certified reference material of human urine (GBW 09115) validated its accuracy along with good recoveries (87-102%). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, T. E.; Nash, C. A.
It is desired to recover Cm-244 through Cm-248 from dissolved Mark-18A targets following anion exchange processing to remove the Pu. The Cm will be sent to Oak Ridge National Laboratory (ORNL) for additional R&D. Approximately 5-8 L per quarter of a Mark-18A target will have undergone anion exchange treatment and will contain Cm. A significant portion of this volume of anion exchange raffinate solution is dissolved fission products not desired to be recovered which could be sent to waste. To reduce the amount of material being sent to ORNL, a waste and volume minimization strategy was developed and is describedmore » in this report.« less
Lorenz, Dominic; Erasmy, Nicole; Akil, Youssef; Saake, Bodo
2016-04-20
A new method for the chemical characterization of xylans is presented, to overcome the difficulties in quantification of 4-O-methyl-α-D-glucuronic acid (meGlcA). In this regard, the hydrolysis behavior of xylans from beech and birch wood was investigated to obtain the optimum conditions for hydrolysis, using sulfuric acid. Due to varying linkage strengths and degradation, no general method for complete hydrolysis can be designed. Therefore, partial hydrolysis was applied, yielding monosaccharides and small meGlcA containing oligosaccharides. For a new method by HPAEC-UV/VIS, these samples were reductively aminated by 2-aminobenzoic acid. By quantification of monosaccharides and oligosaccharides, as well as comparison with borate-HPAEC and (13)C NMR-spectroscopy, we revealed that the concentrations meGlcA are significantly underestimated compared to conventional methods. The detected concentrations are 85.4% (beech) and 76.3% (birch) higher with the new procedure. Furthermore, the quantified concentrations of xylose were 9.3% (beech) and 6.5% (birch) higher by considering the unhydrolyzed oligosaccharides as well. Copyright © 2015 Elsevier Ltd. All rights reserved.
Akter, Fouzia; Saito, Shingo; Tasaki-Handa, Yuiko; Shibukawa, Masami
2018-01-01
A new analytical methodology for a simple and efficient on-line preconcentration of trace inorganic anions in water and salt samples prior to ion chromatographic determination is proposed. The preconcentration method is based on partition/ion-exclusion chromatographic ion stacking (PIEC ion stacking) with a hydrophilic polymer gel column containing a small amount of fixed anionic charges. The developed on-line PIEC ion stacking-ion chromatography method was validated by recovery experiments for the determination of nitrate in tap water in terms of both accuracy and precision, and the results showed the reliability of the method. The method proposed was also successfully applied to the determination of trace impurity nitrite and nitrate in reagent-grade salts of sodium sulfate. A low background level can be achieved since pure water is used as the eluant for the PIEC ion stacking. It is possible to reach sensitive detection at sub-μg L -1 levels by on-line PIEC ion stacking-ion chromatography.
Wei, Rongfei; Guo, Qingjun; Wen, Hanjie; Peters, Marc; Yang, Junxing; Tian, Liyan; Han, Xiaokun
2017-01-01
In this study, key factors affecting the chromatographic separation of Cd from plants, such as the resin column, digestion and purification procedures, were experimentally investigated. A technique for separating Cd from plant samples based on single ion-exchange chromatography has been developed, which is suitable for the high-precision analysis of Cd isotopes by multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The robustness of the technique was assessed by replicate analyses of Cd standard solutions and plant samples. The Cd yields of the whole separation process were higher than 95%, and the 114/110 Cd values of three Cd second standard solutions (Münster Cd, Spex Cd, Spex-1 Cd solutions) relative to the NIST SRM 3108 were measured accurately, which enabled the comparisons of Cd isotope results obtained in other laboratories. Hence, stable Cd isotope analyses represent a powerful tool for fingerprinting specific Cd sources and/or examining biogeochemical reactions in ecological and environmental systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson-Prouty, A.J.; Albersheim, P.
1975-01-01
A polysaccharide from the fungal pathogen Colletotrichum lindemuthianum causes browning and phytoalexin production when applied to the cut surfaces of bean (Phaseolus vulgaris) cotyledons and hypocotyls. The application of an amount of polysaccharide equivalent to less than 100 ng of glucose will elicit this response in the bean tissues. The polysaccharide has been isolated both from culture filtrates and from the mycelial walls of the fungus. Purification of the polysaccharide involved anion and cation exchange chromatography and gel filtration. The polysaccharide has an apparent molecular weight between 1,000,000 and 5,000,000 daltons, and consists predominantly of 3- and 4-linked glucosyl residues.more » (auth)« less
Method of producing .sup.67 Cu
O'Brien, Jr., Harold A.; Barnes, John W.; Taylor, Wayne A.; Thomas, Kenneth E.; Bentley, Glenn E.
1984-01-01
A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.
Perchlorate: Health Effects and Technologies for Its Removal from Water Resources
Srinivasan, Asha; Viraraghavan, Thiruvenkatachari
2009-01-01
Perchlorate has been found in drinking water and surface waters in the United States and Canada. It is primarily associated with release from defense and military operations. Natural sources include certain fertilizers and potash ores. Although it is a strong oxidant, perchlorate is very persistent in the environment. At high concentrations perchlorate can affect the thyroid gland by inhibiting the uptake of iodine. A maximum contaminant level has not been set, while a guidance value of 6 ppb has been suggested by Health Canada. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed from water by anion exchange or membrane filtration. Biological and chemical processes are also effective in removing this species from water. PMID:19440526
Belova, O V; Sergienko, V I; Arion, V Ya; Lukanidina, T A; Moskvina, S N; Zimina, I V; Borisenko, G G; Lutsenko, G V; Grechikhina, M V; Kovaleva, E V; Klyuchnikova, Zh I
2014-07-01
Subfraction with a molecular weight >250 kDa isolated from porcine skin and inhibiting the proliferation of A431 human carcinoma epidermoid cells was purified by DEAE 32 anion exchange chromatography with NaCl concentration step-gradient. The effects of the initial subfraction and fractions obtained by separation in DEAE 32 on the proliferation of A431 human carcinoma epidermoid cells were studied in vitro in two tests (MTT and fluorescent test). The more sensitive fluorescent test showed the highest inhibitory activity of fraction No. 2 released from the column at 0.15 M NaCl. One major protein component and a series of minor protein components were detected in this fraction by vertical PAAG-SDS electrophoresis.
INTRACELLULAR SYNTHESIS OF CHONDROITIN SULFATE
Dziewiatkowski, Dominic D.
1962-01-01
In autoradiograms of slices of costal cartilage, incubated for 4 hours in a salt solution containing S35-sulfate and then washed extensively and dehydrated, about 85 per cent of the radioactivity was assignable to the chondrocytes. From alkaline extracts of similarly prepared slices of cartilage, 64 to 83 per cent of the total sulfur-35 in the slices was isolated as chondroitin sulfate by chromatography on an anion-exchange resin. In view of the estimate that only about 15 per cent of the radioactivity was in the matrix, the isolation of 64 to 83 per cent of the total sulfur-35 as chondroitin sulfate is a strong argument that the chondrocytes are the loci in which chondroitin sulfate(s) is synthesized. PMID:13888910
Kim, Hyun-Do; Kim, Su-Mi; Choi, Jong-Il
2018-03-28
In this study, a 107 kDa protease from psychrophilic Janthinobacterium lividum PAMC 26541 was purified by anion-exchange chromatography. The specific activity of the purified protease was 264 U/mg, and the overall yield was 12.5%. The J. lividum PAMC 25641 protease showed optimal activity at pH 7.0-7.5 and 40°C. Protease activity was inhibited by PMSF, but not by DTT. On the basis of the N-terminal sequence of the purified protease, the gene encoding the cold-adapted protease from J. lividum PAMC 25641 was cloned into the pET-28a(+) vector and heterologously expressed in Escherichia coli BL21(DE3) as an intracellular soluble protein.
Method for the isolation of biologically active monomeric immunoglobulin A from a plasma fraction.
Leibl, H; Tomasits, R; Wolf, H M; Eibl, M M; Mannhalter, J W
1996-04-12
A purification method for immunoglobulin A (IgA) yielding monomeric IgA with a purity of over 97% has been developed. This procedure uses ethanol-precipitated plasma (Cohn fraction III precipitate) as the starting material and includes heparin-Sepharose adsorption, dextran sulfate and ammonium sulfate precipitation, hydroxyapatite chromatography, batch adsorption by an anion-exchange matrix and gel permeation. Additional protein G Sepharose treatment leads to an IgA preparation of greater than 99% purity. The isolated IgA presented with an IgA subclass distribution, equivalent to IgA in unfractionated plasma, and was biologically active, as was shown by its ability to down-modulate Haemophilus influenzae-b-induced IL-6 secretion of human monocytes.
Method for producing /sup 67/Cu
O'Brien, H.A. Jr.; Barnes, J.W.; Taylor, W.A.; Thomas, K.E.; Bentley, G.E.
A method of producing carrier-free /sup 67/Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including /sup 67/Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.
Compaction agent clarification of microbial lysates
NASA Technical Reports Server (NTRS)
DeWalt, Brad W.; Murphy, Jason C.; Fox, George E.; Willson, Richard C.
2003-01-01
Recombinant proteins are often purified from microbial lysates containing high concentrations of nucleic acids. Pre-purification steps such as nuclease addition or precipitation with polyethyleneimine or ammonium sulfate are normally required to reduce viscosity and to eliminate competing polyanions before anion exchange chromatography. We report that small polycationic compaction agents such as spermine selectively precipitate nucleic acids during or after Escherichia coli lysis, allowing DNA and RNA to be pelleted with the insoluble cell debris. Analysis by spectrophotometry and protein assay confirmed a significant reduction in the concentration of nucleic acids present, with preservation of protein. Lysate viscosity is greatly reduced, facilitating subsequent processing. We have used 5mM spermine to remove nucleic acids from E. coli lysate in the purification of a hexahistidine-tagged HIV reverse transcriptase.
Sea anemone Radianthus macrodactylus--a new source of palytoxin.
Mahnir, V M; Kozlovskaya, E P; Kalinovsky, A I
1992-11-01
A very potent non-protein toxin was isolated from the sea anemone Radianthus macrodactylus with the use of chromatography on polytetrafluoroethylene, CM-Sephadex C-25 and by cation and anion exchange HPLC. The toxin was identified as palytoxin by u.v.-, i.r.- and 500 MHz 1H NMR spectroscopy. Its LD50 was 0.74 +/- 0.29 micrograms/kg by i.v. injection into mice. So far, palytoxin has been associated with zoanthids only. The toxin caused the loss of haemoglobin from erythrocytes but only in about 2 hr after the beginning of incubation, which is characteristic for palytoxin from zoanthids. Sea anemone palytoxin was divided into major and minor components by HPLC. The latter proved to be a product of degradation of palytoxin.
Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; Rehman, Aziz Ur
2015-07-08
The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy ( ∆G° ), enthalpy ( ∆H° ) and entropy ( ∆S° ) were calculated for the adsorption of congo red, indicating an exothermic process.
Khan, Muhammad Imran; Akhtar, Shahbaz; Zafar, Shagufta; Shaheen, Aqeela; Khan, Muhammad Ali; Luque, Rafael; ur Rehman, Aziz
2015-01-01
The adsorption behavior of anionic dye congo red (CR) from aqueous solutions using an anion exchange membrane (EBTAC) has been investigated at room temperature. The effect of several factors including contact time, membrane dosage, ionic strength and temperature were studied. Kinetic models, namely pseudo-first-order and pseudo-second-order, liquid film diffusion and Elovich models as well as Bangham and modified freundlich Equations, were employed to evaluate the experimental results. Parameters such as adsorption capacities, rate constant and related correlation coefficients for every model were calculated and discussed. The adsorption of CR on anion exchange membranes followed pseudo-second-order Kinetics. Thermodynamic parameters, namely changes in Gibbs free energy (∆G°), enthalpy (∆H°) and entropy (∆S°) were calculated for the adsorption of congo red, indicating an exothermic process. PMID:28793430
Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers.
Heebøll-Nielsen, Anders; Justesen, Sune F L; Thomas, Owen R T
2004-09-30
In this study we describe the design, preparation and testing of superparamagnetic anion-exchangers, and their use together with cation-exchangers in the fractionation of bovine whey proteins as a model study for high-gradient magnetic fishing. Adsorbents prepared by attachment of trimethyl amine to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 microM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up to 337 mg g(-1) with a dissociation constant of 0.042 microM. The latter anion-exchanger was selected for studies of whey protein fractionation. In these, crude bovine whey was treated with a superparamagnetic cation-exchanger to adsorb basic protein species, and the supernatant arising from this treatment was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (< or = 0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein.
Liu, Zhaoping; Ma, Renzhi; Osada, Minoru; Iyi, Nobuo; Ebina, Yasuo; Takada, Kazunori; Sasaki, Takayoshi
2006-04-12
This paper describes a systematic study on the synthesis, anion exchange, and delamination of Co-Al layered double hydroxide (LDH), with the aim of achieving fabrication and clarifying the properties of LDH nanosheet/polyanion composite films. Co-Al-CO3 LDH hexagonal platelets of 4 mum in lateral size were synthesized by the urea method under optimized reaction conditions. The as-prepared CO3(2-)-LDH was converted to Cl- -LDH by treating with a NaCl-HCl mixed solution, retaining its high crystallinity and hexagonal platelike morphology. LDHs intercalated with a variety of anions (such as NO3-, ClO4-, acetate, lactate, dodecyl sulfate, and oleate) were further prepared from Cl- -LDH via an anion-exchange process employing corresponding salts. Exchanged products in various anion forms were found to show different delamination behaviors in formamide. Among them, best results were observed for NO3- -LDH in terms of the exfoliating degree and the quality of the exfoliated nanosheets. The delamination gave a pink transparent suspension containing well-defined nanosheets with lateral sizes of up to 2 microm. The resulting nanosheets were assembled layer-by-layer with an anionic polymer, poly(sodium styrene 4-sulfonate) (PSS), onto quartz glass substrates to produce composite films. Magnetic circular dichroism (MCD) measurements revealed that the assembled multilayer films exhibited an interesting magneto-optical response.
Determination of glycerophosphate and other anions in dentifrices by ion chromatography.
Chen, Yongxin; Ye, Mingli; Cui, Hairong; Wu, Feiyan; Zhu, Yan; Fritz, James S
2006-06-16
Simple, reliable and sensitive analytical methods to determine the anions, such as fluoride, monofluorophaosphate, glycerophosphate related to anticaries are necessary for basic investigations of anticaries and quality control of dentifrices. A method for the simultaneous determination of organic acids, organic anions and inorganic anions in the sample of commercial toothpaste is proposed. Nine anions (fluoride, chloride, nitrite, nitrate, sulfate, phosphate, monofluorophaosphate, glycerophosphate and oxalic acid) were analyzed by means of ion chromatography using a gradient elution with KOH as mobile phase, IonPac AS18 as the separation column and suppressed conductivity detection. Optimized analytical conditions were further validated in terms of accuracy, precision and total uncertainty and the results showed the reliability of the IC method. The relative standard deviations (RSD) of the retention time and peak area of all species were less than 0.170 and 1.800%, respectively. The correlation coefficients for target analytes ranged from 0.9985 to 0.9996. The detection limit (signal to noise ratio of 3:1) of this method was at low ppb level (<15 ppb). The spiked recoveries for the anions were 96-103%. The method was applied to toothpaste without interferences.
NASA Astrophysics Data System (ADS)
Bahrami, Hafez; Faghri, Amir
2012-11-01
A one-dimensional, isothermal, single-phase model is presented to investigate the mass transport in a direct ethanol fuel cell incorporating an alkaline anion exchange membrane. The electrochemistry is analytically solved and the closed-form solution is provided for two limiting cases assuming Tafel expressions for both oxygen reduction and ethanol oxidation. A multi-layer membrane model is proposed to properly account for the diffusive and electroosmotic transport of ethanol through the membrane. The fundamental differences in fuel crossover for positive and negative electroosmotic drag coefficients are discussed. It is found that ethanol crossover is significantly reduced upon using an alkaline anion exchange membrane instead of a proton exchange membrane, especially at current densities higher than 500 A m
Sharma, Arun; Raghavendra, Kamaraju; Adak, Tridibesh; Dash, Aditya P
2008-01-01
Background The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO) synthesis. NO metabolites, nitrite (NO2-) and nitrate (NO3-) are produced by the action of an inducible Anopheles culicifacies NO synthase (AcNOS) in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes. Method While exploring a plausible mechanism of refractoriness based on nitric oxide synthase physiology among the sibling species of An. culicifacies, a sensitive, specific and cost effective high performance liquid chromatography (HPLC) method was developed, which is not influenced by the presence of biogenic amines, for the determination of NO2- and NO3- from mosquito mid-guts and haemolymph. Results This method is based on extraction, efficiency, assay reproducibility and contaminant minimization. It entails de-proteinization by centrifugal ultra filtration through ultracel 3 K filter and analysis by high performance anion exchange liquid chromatography (Sphereclone, 5 μ SAX column) with UV detection at 214 nm. The lower detection limit of the assay procedure is 50 pmoles in all midgut and haemolymph samples. Retention times for NO2- and NO3- in standards and in mid-gut samples were 3.42 and 4.53 min. respectively. Assay linearity for standards ranged between 50 nM and 1 mM. Recoveries of NO2- and NO3- from spiked samples (1–100 μM) and from the extracted standards (1–100 μM) were calculated to be 100%. Intra-assay and inter assay variations and relative standard deviations (RSDs) for NO2- and NO3- in spiked and un-spiked midgut samples were 5.7% or less. Increased levels NO2- and NO3- in midguts and haemolymph of An. culicifacies sibling species B in comparison to species A reflect towards a mechanism of refractoriness based on AcNOS physiology. Conclusion HPLC is a sensitive and accurate technique for identification and quantifying pmole levels of NO metabolites in mosquito midguts and haemolymph samples that can be useful for clinical investigations of NO biochemistry, physiology and pharmacology in various biological samples. PMID:18442373
Yasukawa, Keiko; Shimosawa, Tatsuo; Okubo, Shigeo; Yatomi, Yutaka
2018-01-01
Background Human mercaptalbumin and human non-mercaptalbumin have been reported as markers for various pathological conditions, such as kidney and liver diseases. These markers play important roles in redox regulations throughout the body. Despite the recognition of these markers in various pathophysiologic conditions, the measurements of human mercaptalbumin and non-mercaptalbumin have not been popular because of the technical complexity and long measurement time of conventional methods. Methods Based on previous reports, we explored the optimal analytical conditions for a high-performance liquid chromatography method using an anion-exchange column packed with a hydrophilic polyvinyl alcohol gel. The method was then validated using performance tests as well as measurements of various patients' serum samples. Results We successfully established a reliable high-performance liquid chromatography method with an analytical time of only 12 min per test. The repeatability (within-day variability) and reproducibility (day-to-day variability) were 0.30% and 0.27% (CV), respectively. A very good correlation was obtained with the results of the conventional method. Conclusions A practical method for the clinical measurement of human mercaptalbumin and non-mercaptalbumin was established. This high-performance liquid chromatography method is expected to be a powerful tool enabling the expansion of clinical usefulness and ensuring the elucidation of the roles of albumin in redox reactions throughout the human body.
Narasimhan Janakiraman, Vignesh; Noubhani, Abdelmajid; Venkataraman, Krishnan; Vijayalakshmi, Mookambeswaran; Santarelli, Xavier
2016-01-01
A vast majority of the cardioprotective properties exhibited by High-Density Lipoprotein (HDL) is mediated by its major protein component Apolipoprotein A-I (ApoA1). In order to develop a simplified bioprocess for producing recombinant human Apolipoprotein A-I (rhApoA1) in its near-native form, rhApoA1was expressed without the use of an affinity tag in view of its potential therapeutic applications. Expressed in Pichia pastoris at expression levels of 58.2 mg ApoA1 per litre of culture in a reproducible manner, the target protein was purified by mixed-mode chromatography using Capto™ MMC ligand with a purity and recovery of 84% and 68%, respectively. ApoA1 purification was scaled up to Mixed-mode Expanded Bed Adsorption chromatography to establish an 'on-line' process for the efficient capture of rhApoA1 directly from the P. pastoris expression broth. A polishing step using anion exchange chromatography enabled the recovery of ApoA1 up to 96% purity. Purified ApoA1 was identified and verified by RPLC-ESI-Q-TOF mass spectrometry. This two-step process would reduce processing times and therefore costs in comparison to the twelve-step procedure currently used for recovering rhApoA1 from P. pastoris. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Regeneration of strong-base anion-exchange resins by sequential chemical displacement
Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.
2002-01-01
A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Zhang, Dun, E-mail: zhangdun@qdio.ac.cn
Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction andmore » Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.« less
Importance of balancing membrane and electrode water in anion exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.
2018-01-01
Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.
Chamkasem, Narong
2017-08-30
A simple high-throughput liquid chromatography/tandem mass spectrometry (LC-MS-MS) method was developed for the determination of maleic hydrazide, glyphosate, fosetyl aluminum, and ethephon in grapes using a reversed-phase column with weak anion-exchange and cation-exchange mixed mode. A 5 g test portion was shaken with 50 mM HOAc and 10 mM Na 2 EDTA in 1/3 (v/v) MeOH/H 2 O for 10 min. After centrifugation, the extract was passed through an Oasis HLB cartridge to retain suspended particulates and nonpolar interferences. The final solution was injected and directly analyzed in 17 min by LC-MS-MS. Two MS-MS transitions were monitored in the method for each target compound to achieve true positive identification. Four isotopically labeled internal standards corresponding to each analyte were used to correct for matrix suppression effects and/or instrument signal drift. The linearity of the detector response was demonstrated in the range from 10 to 1000 ng/mL for each analyte with a coefficient of determination (R 2 ) of ≥0.995. The average recovery for all analytes at 100, 500, and 2000 ng/g (n = 5) ranged from 87 to 111%, with a relative standard deviation of less than 17%. The estimated LOQs for maleic hydrazide, glyphosate, fosetyl-Al, and ethephon were 38, 19, 29, and 34 ng/g, respectively.
Kim, Minhee; Han, Junho; Hyun, Seunghun
2013-09-01
The cosolvency model was not applicable for predicting the sorption of organic carboxylic acids. The reason of inapplicability was investigated by analyzing the solubility (Sm) and sorption (Km) of benzoic acid, 2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,6-trichlorophenol (2,4,6-TCP). The Sm and Km by two iron-rich soils was measured as a function of methanol volume fraction (fc), electrolyte compositions, and pH(app). For 2,4,6-TCP, the Km of both neutral and anion species was well-explainable by the cosolvency model, exemplifying the knowledge of cosolvency power (σ) being sufficient to describe its sorption. However, for benzoic acid and 2,4-D, the Km of organic anions increased with fc, illustrating the organic carboxylate to be responsible for the deviation. The Sm of organic anions was not affected by the ionic valence (Ca(2+) vs. K(+)) of liquid phase. Among hydrophilic quantities of the 2,4-D sorption, the fraction of anion exchange increased with fc while the fraction of Ca-bridge decreased in the same range. Adding solvent in soil-water system is likely to render soil surface charge more positive, fortifying the anion exchange, but opposing the formation of Ca-bridging. Therefore, it can be concluded that the positive Km-fc relationship is due to the anion exchange of organic carboxylate with positively charged soil surface, whose contribution is >50% of overall sorption at solvent-free system and becomes greater with fc up to 82%. Copyright © 2013. Published by Elsevier Ltd.
Chubar, Natalia; Gilmour, Robert; Gerda, Vasyl; Mičušík, Matej; Omastova, Maria; Heister, Katja; Man, Pascal; Fraissard, Jacques; Zaitsev, Vladimir
2017-07-01
This work is the first report that critically reviews the properties of layered double hydroxides (LDHs) on the level of speciation in the context of water treatment application and dynamic adsorption conditions, as well as the first report to associate these properties with the synthetic methods used for LDH preparation. Increasingly stronger maximum allowable concentrations (MAC) of various contaminants in drinking water and liquid foodstuffs require regular upgrades of purification technologies, which might also be useful in the extraction of valuable substances for reuse in accordance with modern sustainability strategies. Adsorption is the main separation technology that allows the selective extraction of target substances from multicomponent solutions. Inorganic anion exchangers arrived in the water business relatively recently to achieve the newly approved standards for arsenic levels in drinking water. LDHs (or hydrotalcites, HTs) are theoretically the best anion exchangers due to their potential to host anions in their interlayer space, which increases their anion removal capacity considerably. This potential of the interlayer space to host additional amounts of target aqueous anions makes the LDHs superior to bulk anion exchanger. The other unique advantage of these layered materials is the flexibility of the chemical composition of the metal oxide-based layers and the interlayer anions. However, until now, this group of "classical" anion exchangers has not found its industrial application in adsorption and catalysis at the industrial scale. To accelerate application of LDHs in water treatment on the industrial scale, the authors critically reviewed recent scientific and technological knowledge on the properties and adsorptive removal of LDHs from water on the fundamental science level. This also includes review of the research tools useful to reveal the adsorption mechanism and the material properties beyond the nanoscale. Further, these properties are considered in association with the synthetic methods by which the LDHs were produced. Special attention is paid to the LDH properties that are particularly relevant to water treatment, such as exchangeability ease of the interlayer anions and the LDH stability at the solid-water interface. Notably, the LDH properties (e.g., rich speciation, hydration, and the exchangeability ease of the interlayer anions with aqueous anions) are considered in the synthetic strategy context applied to the material preparation. One such promising synthetic method has been developed by the authors who supported their opinions by the unpublished data in addition to reviewing the literature. The reviewing approach allowed for establishing regularities between the parameters: the LDH synthetic method-structure/surface/interlayer-removal-suitability for water treatment. Specifically, this approach allowed for a conclusion about either the unsuitability or promising potential of some synthetic methods (or the removal approaches) used for the preparation of LDHs for water purification at larger scales. The overall reviewing approach undertaken by the authors in this work mainly complements the other reviews on LDHs (published over the past seven to eight years) and for the first time compares the properties of these materials beyond the nanoscale. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dekel, Dario R.; Willdorf, Sapir; Ash, Uri; Amar, Michal; Pusara, Srdjan; Dhara, Shubhendu; Srebnik, Simcha; Diesendruck, Charles E.
2018-01-01
Anion exchange membrane fuel cells can potentially revolutionize energy storage and delivery; however, their commercial development is hampered by a significant technological impedance: the chemical decomposition of the anion exchange membranes during operation. The hydroxide anions, while transported from the cathode to the anode, attack the positively charged functional groups in the polymer membrane, neutralizing it and suppressing its anion-conducting capability. In recent years, several new quaternary ammonium salts have been proposed to address this challenge, but while they perform well in ex-situ chemical studies, their performance is very limited in real fuel cell studies. Here, we use experimental work, corroborated by molecular dynamics modeling to show that water concentration in the environment of the hydroxide anion, as well as temperature, significantly impact its reactivity. We compare different quaternary ammonium salts that have been previously studied and test their stabilities in the presence of relatively low hydroxide concentration in the presence of different amounts of solvating water molecules, as well as different temperatures. Remarkably, with the right amount of water and at low enough temperatures, even quaternary ammonium salts which are considered "unstable", present significantly improved lifetime.
Kerres, Jochen A.; Krieg, Henning M.
2017-01-01
In view of the many possible applications such as fuel cells and electrolysers, recent interest in novel anion exchange membranes (AEMs) has increased significantly. However, their low conductivity and chemical stability limits their current suitability. In this study, the synthesis and characterization of several three- and four-component anion exchange blend membranes (AEBMs) is described, where the compositions have been systematically varied to study the influence of the AEBM’s composition on the anion conductivities as well as chemical and thermal stabilities under strongly alkaline conditions. It was shown that the epoxide-functionalized poly(ethylene glycol)s that were introduced into the four-component AEBMs resulted in increased conductivity as well as a marked improvement in the stability of the AEBMs in an alkaline environment. In addition, the thermal stability of the novel AEBMs was excellent showing the suitability of these membranes for several electrochemical applications. PMID:28621717
NASA Astrophysics Data System (ADS)
Biswick, Timothy; Jones, William; Pacuła, Aleksandra; Serwicka, Ewa
2006-01-01
Anion exchange reactions of four structurally related hydroxy salts, Cu 2(OH) 3NO 3, Mg 2(OH) 3NO 3, Ni 2(OH) 3NO 3 and Zn 3(OH) 4(NO 3) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides.
Jiang, Liuwei; Marcus, R Kenneth
2016-02-01
Capillary-channeled polymer (C-CP) fiber stationary phases are finding utility in the realms of protein analytics as well as downstream processing. We have recently described the modification of poly(ethylene terephthalate) (PET) C-CP fibers to affect amine-rich phases for the weak anion-exchange (WAX) separation of proteins. Polyethylenimine (PEI) is covalently coupled to the PET surface, with subsequent cross-linking imparted by treatment with 1,4-butanediol diglycidyl ether (BUDGE). These modifications yield vastly improved dynamic binding capacities over the unmodified fibers. We have also previously employed native (unmodified) nylon 6 C-CP fibers as weak anion/cation-exchange (mixed-mode) and hydrophobic interaction chromatography (HIC) phases for protein separations. Polyamide, nylon 6, consists of amide groups along the polymer backbone, with primary amines and carboxylic acid end groups. The analytical separation characteristics of these three amine-based C-CP fiber phases are compared here. Each of the C-CP fiber columns in this study was shown to be able to separate a bovine serum albumin/hemoglobin/lysozyme mixture at high mobile phase linear velocity (∼70 mm s(-1)) but with different elution characteristics. These differences reflect the types of protein-surface interactions that are occurring, based on the active group composition of the fiber surfaces. This study provides important fundamental understanding for the development of surface-modified C-CP fiber columns for protein separation.
Li, Jing; Shi, Suan; Tu, Maobing; Via, Brain; Sun, Fubao Fuelbio; Adhikari, Sushil
2018-05-02
Bioconversion of lignocellulose to biofuels suffers from the degradation compounds formed during pretreatment and acid hydrolysis. In order to achieve an efficient biomass to biofuel conversion, detoxification is often required before enzymatic hydrolysis and microbial fermentation. Prehydrolysates from ethanol organosolv-pretreated pine wood were used as substrates in butanol fermentation in this study. Six detoxification approaches were studied and compared, including overliming, anion exchange resin, nonionic resin, laccase, activated carbon, and cysteine. It was observed that detoxification by anion exchange resin was the most effective method. The final butanol yield after anion exchange resin treatment was comparable to the control group, but the fermentation was delayed for 72 h. The addition of Ca(OH) 2 was found to alleviate this delay and improve the fermentation efficiency. The combination of Ca(OH) 2 and anion exchange resin resulted in completion of fermentation within 72 h and acetone-butanol-ethanol (ABE) production of 11.11 g/L, corresponding to a yield of 0.21 g/g sugar. The cysteine detoxification also resulted in good detoxification performance, but promoted fermentation towards acid production (8.90 g/L). The effect of salt on ABE fermentation was assessed and the possible role of Ca(OH) 2 was to remove the salts in the prehydrolysates by precipitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswick, Timothy; Jones, William; Pacula, Aleksandra
2006-01-15
Anion exchange reactions of four structurally related hydroxy salts, Cu{sub 2}(OH){sub 3}NO{sub 3}, Mg{sub 2}(OH){sub 3}NO{sub 3}, Ni{sub 2}(OH){sub 3}NO{sub 3} and Zn{sub 3}(OH){sub 4}(NO{sub 3}){sub 2} are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure frommore » one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides. -- Graphical abstract: PXRD patterns of exchange products of (a) Zn{sub 3}(OH){sub 4}(NO{sub 3}){sub 2} (b) Zn{sub 5}(OH){sub 8}(NO{sub 3}){sub 2}.2H{sub 2}O and (c) Cu{sub 2}(OH){sub 3}NO{sub 3} with benzoate anions.« less
Semon, Julie A; Nagy, Lauren H; Llamas, Claire B; Tucker, H Alan; Lee, Ryang Hwa; Prockop, Darwin J
2010-07-01
Multipotent mesenchymal stromal cells (MSCs) home to damaged tissue by processes partly regulated by integrins. Integrin subunits expressed by MSCs were identified by flow cytometry (FC), immunocytochemistry (IC), and a panel of integrin-binding antibodies. In subconfluent cultures, over 80% of MSCs expressed integrin subunits beta1, beta2, and alpha3, 20%-55% expressed alpha1, alpha2, alpha4, alpha5, alpha6, and alphaV, and about 10% expressed beta3 when assayed by FC. None of the cells expressed significant levels of 13 other integrins as assayed by FC, but seven of the 13 integrins were detected by IC: beta5, alpha7, alpha8, alpha9, alpha11, alphaX, and alphaD. Expression of some integrins changed with MSC confluency: integrins beta3, alpha1, alpha3, alpha5, and alphaV increased, and alpha6 decreased. Furthermore, alpha4 was the only integrin to vary among preparations of MSCs from different donors. The results resolved some discrepancies in the literature concerning integrin expression by MSCs. We also investigated the role of specific integrins in MSC adhesion to endothelial cells (ECs) from the pulmonary artery (HPAEC), cardiac-derived microvasculature (HMVEC-C), and umbilical veins (HUVEC). In experiments with blocking antibodies to beta integrins, anti-beta5 reduced MSC adhesion to all types of ECs, anti-beta1 to both HUVEC and HPAEC, anti-beta3 to HUVEC, and anti-beta2 to HMVEC-C. With blocking antibodies to alpha integrins, anti-alphaX reduced adhesion to HPAEC and HMVEC-C, anti-alphaV to HPAEC, and both anti-alpha7 and anti-alphaD to HMVEC-C. Thus, MSCs use diverse integrins to adhere to EC from various blood vessels in vitro.
Separation of the rare earths by anion-exchange in the presence of lactic acid
NASA Technical Reports Server (NTRS)
Faris, J. P.
1969-01-01
Investigation of adsorption of rare earths and a few other elements to an anion-exchange resin from mixed solvents containing lactic acid shows that the lanthanides are absorbed more strongly than from the alpha-hydroxyisobutryric acid system, but with less separation between adjacent members of the series.
ANION EXCHANGE METHOD FOR SEPARATION OF METAL VALUES
Hyde, E.K.; Raby, B.A.
1959-02-10
A method is described for selectively separating radium, bismuth, poloniums and lead values from a metallic mixture of thc same. The mixture is dissolved in aqueous hydrochloric acid and the acidity is adjusted to between 1 to 2M in hydrochloric acid to form the anionic polychloro complexes of polonium and bismuth. The solution is contacted with a first anion exchange resin such as strong base quaternary ammonia type to selectively absorb the polonium and bismuth leaving the radium and lead in the effluent. The effluent, after treatment in hydrochloric acid to increase the hydrochloric acid concentration to 6M is contacted with a second anion exchange iesin of the same type as the above to selectively adsorb the lead leaving the radium in the effluent. Radium is separately recovered from the effluent from the second exchange column. Lead is stripped from the loaded resin of the second column by treatment with 3M hydrochloric acid solution. The loaded resin of the first column is washed with 8M hydrochloric acid solution to recover bismuth and then treated with strong nitric acid solution to recover polonium.
Purification and characterization of substance P endopeptidase activities in the rat spinal cord.
Karlsson, K; Eriksson, U; Andrén, P; Nyberg, F
1997-02-01
Two enzymes with substance P degrading activity were purified from the membrane bound fraction of the rat spinal cord. The purified enzymes were characterized with regard to biochemical and kinetic properties. One of the enzymes exhibited close similarity to neutral endopeptidase 24.11 (NEP, EC 3.4.24.11), while the other resembled a substance P converting endopeptidase (SPE), which has previously been identified and purified from human cerebrospinal fluid (CSF). Detergent treated spinal cord homogenates from male Sprague Dawley rats were purified by anion-exchange chromatography (DEAE-sepharose CL-6B), hydrophobic-interaction chromatography (phenyl-sepharose CL-4B) and molecular sieving (Sephadex G-50). Two fractions with enzymes differing in size were recovered and allowed for further purification to apparent homogeneity by ion-exchange chromatography and molecular sieving on a micro-purification system (SMART). The enzyme activities were monitored by following the conversion of synthetic substance P using a radioimmunoassay specific for the heptapeptide product, substance P (1-7). By SDS-polyacrylamide gel electrophoresis of the purified enzymes molecular weights of 43 and 70 kDa were estimated for the SPE-like and NEP-like activity, respectively. A K(m) of 5 microM was determined for the conversion of substance P to its (1-7) fragment by the SPE-like activity. Reversed-phase HPLC together with mass spectrometry permitted identification of all fragments released from substance P by the peptidases. The released fragments were for both enzymes identified as substance P (1-7), substance P (8-11), substance P (1-8), substance P (9-11). The NEP-like enzyme preparation also gave substance P (1-6) as a major product.
Farchaus, J. W.; Ribot, W. J.; Jendrek, S.; Little, S. F.
1998-01-01
Bacillus anthracis, the etiologic agent for anthrax, produces two bipartite, AB-type exotoxins, edema toxin and lethal toxin. The B subunit of both exotoxins is an Mr 83,000 protein termed protective antigen (PA). The human anthrax vaccine currently licensed for use in the United States consists primarily of this protein adsorbed onto aluminum oxyhydroxide. This report describes the production of PA from a recombinant, asporogenic, nontoxigenic, and nonencapsulated host strain of B. anthracis and the subsequent purification and characterization of the protein product. Fermentation in a high-tryptone, high-yeast-extract medium under nonlimiting aeration produced 20 to 30 mg of secreted PA per liter. Secreted protease activity under these fermentation conditions was low and was inhibited more than 95% by the addition of EDTA. A purity of 88 to 93% was achieved for PA by diafiltration and anion-exchange chromatography, while greater than 95% final purity was achieved with an additional hydrophobic interaction chromatography step. The purity of the PA product was characterized by reversed-phase high-pressure liquid chromatography, sodium dodecyl sulfate (SDS)-capillary electrophoresis, capillary isoelectric focusing, native gel electrophoresis, and SDS-polyacrylamide gel electrophoresis. The biological activity of the PA, when combined with excess lethal factor in the macrophage cell lysis assay, was comparable to previously reported values. PMID:9501438
Kuwabara, T; Hasegawa, M; Kawano, M; Takaichi, S
1999-11-01
Violaxanthin de-epoxidase (VDE) was purified from thylakoid membranes of spinach by conventional column chromatography in the presence of Tween 20. The neutral detergent was necessary to prevent non-specific interaction of VDE with column resins. In anion-exchange chromatography on Mono Q, VDE appeared in two peaks. Both peaks exhibited a polypeptide of 41 kDa when fully reduced with 5 mM dithiothreitol. Re-chromatography of either peak gave rise to both peaks, suggesting that the two forms of VDE are interconvertible. VDE characteristically changed its electrophoretic mobility depending on the concentration of dithiothreitol with which the protein was treated. When non-reduced, it showed two polypeptides of 43 and 42 kDa. These polypeptides moved down to the position of 40 kDa, and then up to the position of 41 kDa, along with the increase in the dithiothreitol concentration from 0 to 2 mM. These findings suggest that VDE has more than one disulfide bond and takes multiple forms depending on the extent of the reduction. Studies with various types of protein-modifying reagent revealed that VDE is sensitive to pepstatin A, a specific inhibitor of aspartic protease. This finding suggests that the reaction center of VDE contains a reactive aspartic acid residue(s).
Yang, Li-Chan; Hsieh, Chang-Chi; Wen, Chi-Luan; Chiu, Chun-Hui; Lin, Wen-Chuan
2017-10-01
Dendrobium Taiseed Tosnobile, a new Dendrobium species developed by crossbreeding Dendrobium tosaense and Dendrobium nobile, exhibits the characteristics of high mass production and high polysaccharide content. This study investigated the structural characterization and immunostimulating effects of a polysaccharide isolated from D. Taiseed Tosnobile (DTTPS). DTTPS was fractioned using a DEAE-650M column to obtain the major neutral polysaccharide (DTTPS-N). The structural characteristics of DTTPS-N were investigated through high-performance anion exchange chromatography, high-performance size exclusion chromatography, gas chromatography-mass spectrometry, and nuclear magnetic resonance spectroscopy. In the immunostimulating experiment, BALB/c mice were administered DTTPS (100 and 300mg/kg) daily for 3 weeks. The results revealed that DTTPS-N comprised arabinose, galactose, glucose, mannose, and xylose at a ratio of 1:1.5:3.0:29.9:1.3. DTTPS-N comprised (1→3; 1→4)-Man as the backbone, and its average molecular weight was 281kDa. Pharmacological experiments demonstrated that DTTPS substantially increased the population of splenic natural killer (NK) cells, NK cytotoxicity, macrophage phagocytosis, and cytokine induction. This is the first study to demonstrate the structural characteristics and immunopharmacological effects of an active polysaccharide derived from D. Taiseed Tosnobile. Copyright © 2017 Elsevier B.V. All rights reserved.
Trinh, Khanh Son
2015-12-01
Gelatinized starches were recrystallized under hydrothermal treatment and their properties were characterized by X-ray diffractometry, solid-state (13)C cross-polarization and magic-angle spinning nuclear magnetic resonance, differential scanning calorimetry, gel-permeation chromatography, high-performance anion-exchange chromatography using pulsed amperomeric detection, high-performance size-exclusion chromatography with attached multiangle laser light scattering and refractive index detectors, and digestibility analysis. Amylopectin molecules of hylon (V, VII) and water yam starch contained long side-chains with high proportion of fb1 and fb2. Under hydrothermal treatment, the double helix proportion and relative crystallinity significantly increased and reached maxima of water yam (48.7 and 28.2 %, respectively). Except water yam starch, X-ray diffraction pattern of all starches exhibited the evidence of type 2 amylose-lipid complex. Besides, under DSC measurement, potato and hylon starches showed the endotherm of amylose-amylose interaction. The hydrothermal treatment caused the recrystallization resulting in the decrease of RDS, especially in case of hylon and water yam starch. HTT water yam contained highest SDS (48.3 %) and HTT hylon VII contained highest RS (44.5 %). The relationship between structure and digestibility was observed, in which, high amylose content and specific structures of amylopectin molecule were necessary for the production of RS and/or SDS of hydrothermally treated starches.
High Performance Liquid Chromatography Resolution of Ubiquitin Pathway Enzymes from Wheat Germ 1
Sullivan, Michael L.; Callis, Judy; Vierstra, Richard D.
1990-01-01
The highly conserved protein ubiquitin is involved in several cellular processes in eukaryotes as a result of its covalent ligation to a variety of target proteins. Here, we describe the purification of several enzymatic activities involved in ubiquitin-protein conjugate formation and disassembly from wheat germ (Triticum vulgare) by a combination of ubiquitin affinity chromatography and anion-exchange high performance liquid chromatography. Using this procedure, ubiquitin activating enzyme (E1), several distinct ubiquitin carrier proteins (E2s) with molecular masses of 16, 20, 23, 23.5, and 25 kilodaltons, and a ubiquitin-protein hydrolase (isopeptidase) were isolated. Purified E1 formed a thiol ester linkage with 125I-ubiquitin in an ATP-dependent manner and transferred bound ubiquitin to the various purified E2s. The ubiquitin protein hydrolase fraction was sensitive to hemin, and in an ATP-independent reaction, was capable of removing the ubiquitin moiety from both ubiquitin 125I-lysozyme conjugates (ε-amino or isopeptide linkage) and the ubiquitin 52-amino acid extension protein fusion (α-amino or peptide linkage). Using this procedure, wheat germ represents an inexpensive source from which enzymes involved in the ubiquitin pathway may be isolated. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:16667769
Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?
Šljukić, Biljana; Morais, Ana L.; Santos, Diogo M. F.; Sequeira, César A. C.
2012-01-01
Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC’s performance. Cell polarization, power density, stability, and durability tests are used in the membranes’ evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load. PMID:24958292
Anion- or Cation-Exchange Membranes for NaBH4/H2O2 Fuel Cells?
Sljukić, Biljana; Morais, Ana L; Santos, Diogo M F; Sequeira, César A C
2012-07-19
Direct borohydride fuel cells (DBFC), which operate on sodium borohydride (NaBH4) as the fuel, and hydrogen peroxide (H2O2) as the oxidant, are receiving increasing attention. This is due to their promising use as power sources for space and underwater applications, where air is not available and gas storage poses obvious problems. One key factor to improve the performance of DBFCs concerns the type of separator used. Both anion- and cation-exchange membranes may be considered as potential separators for DBFC. In the present paper, the effect of the membrane type on the performance of laboratory NaBH4/H2O2 fuel cells using Pt electrodes is studied at room temperature. Two commercial ion-exchange membranes from Membranes International Inc., an anion-exchange membrane (AMI-7001S) and a cation-exchange membrane (CMI-7000S), are tested as ionic separators for the DBFC. The membranes are compared directly by the observation and analysis of the corresponding DBFC's performance. Cell polarization, power density, stability, and durability tests are used in the membranes' evaluation. Energy densities and specific capacities are estimated. Most tests conducted, clearly indicate a superior performance of the cation-exchange membranes over the anion-exchange membrane. The two membranes are also compared with several other previously tested commercial membranes. For long term cell operation, these membranes seem to outperform the stability of the benchmark Nafion membranes but further studies are still required to improve their instantaneous power load.
Analysis of amino acids and carbohydrates in green coffee.
Murkovic, Michael; Derler, Karin
2006-11-30
The analysis of carbohydrates and amino acids in green coffee is of the utmost importance since these two classes of compounds act as precursors of the Maillard reaction during which the colour and aroma are formed. During the course of the Maillard reaction potentially harmful substances like acrylamide or 5-hydroxymethyl-furfural accrue as well. The carbohydrates were analysed by anion-exchange chromatography with pulsed amperometric detection and the amino acids by reversed phase chromatography after derivatization with 6-amino-quinolyl-N-hydroxysuccinimidyl carbamate and fluorescence detection. Both methods had to be optimized to obtain a sufficient resolution of the analytes for identification and quantification. Sucrose is the dominant carbohydrate in green coffee with a concentration of up to 90 mg/g (mean = 73 mg/g) in arabica beans and significantly lower amounts in robusta beans (mean=45 mg/g). Alanine is the amino acid with the highest concentration (mean = 1200 microg/g) followed by asparagine (mean = 680 microg/g) in robusta and 800 microg/g and 360 microg/g in arabica respectively. In general, the concentration of amino acids is higher in robusta than in arabica.
α-Amylase-assisted extraction of polysaccharides from Panax ginseng.
Sun, Lin; Wu, Di; Ning, Xin; Yang, Guang; Lin, Ziheng; Tian, Meihong; Zhou, Yifa
2015-04-01
In this paper, α-amylase-assisted extraction was used to isolate the polysaccharide that remained in hot water-extracted ginseng. The yield of the polysaccharide was 9.0%, almost equal to that of the hot water-extracted polysaccharide. Using anion exchange and gel permeation chromatography, the polysaccharide was fractionated into a neutral polysaccharide fraction and six pectic fractions. The neutral fraction accounted for 76% of the polysaccharide and contained both amylopectin and amylose. The pectic polysaccharide fractions were identified to be arabinogalactan, type-I rhamnogalacturonan and homogalacturonan-type pectin by high-performance liquid chromatography, Fourier transform-infrared and nuclear magnetic resonance analysis. Structural and lymphocyte proliferation activity results showed that these polysaccharides were different from those extracted by hot water, indicating that ginseng contains complex polysaccharides with diverse structures, which results in its diverse pharmacological activities. The α-amylase-assisted extraction is a novel method for preparing ginseng polysaccharides and could be applied toward the further study and exploration of ginseng. These findings provide technical and theoretical support for ginseng pharmacology. Copyright © 2015 Elsevier B.V. All rights reserved.
Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria.
Sørensen, Laila; Hantke, Andrea; Eriksen, Niels T
2013-09-01
The phycobiliprotein C-phycocyanin (C-PC) is used in cosmetics, diagnostics and foods and also as a nutraceutical or biopharmaceutical. It is produced in the cyanobacterium Arthrospira platensis grown phototrophically in open cultures. C-PC may alternatively be produced heterotrophically in the unicellular rhodophyte Galdieria sulphuraria at higher productivities and under improved hygienic standards if it can be purified as efficiently as C-PC from A. platensis. Ammonium sulfate fractionation, aqueous two-phase extraction, tangential flow ultrafiltration and anion exchange chromatography were evaluated with respect to the purification of C-PC from G. sulphuraria extracts. Galdieria sulphuraria C-PC showed similar properties to those described for cyanobacterial C-PC with respect to separation by all methodologies. The presence of micelles in G. sulphuraria extracts influenced the different procedures. Only chromatography was able to separate C-PC from a second phycobiliprotein, allophycocyanin. C-PC from heterotrophic G. sulphuraria shows similar properties to cyanobacterial C-PC and can be purified to the same standards, despite initial C-PC concentrations being low and impurity concentrations high in G. sulphuraria extracts. © 2013 Society of Chemical Industry.
Ordóñez, Edgar Y; Quintana, José Benito; Rodil, Rosario; Cela, Rafael
2012-09-21
The development and performance evaluation of an analytical method for the determination of six artificial sweeteners in environmental waters using solid-phase extraction (SPE) followed by liquid chromatography-tandem mass spectrometry are presented. To this end, different SPE alternatives have been evaluated: polymeric reversed-phase (Oasis HLB, Env+, Plexa and Strata X), and mixed-mode with either weak (Oasis WAX) or strong anionic-exchange (Oasis MAX and Plexa PAX) sorbents. Among them, reversed-phase sorbents, particularly Oasis HLB and Strata X, showed the best performance. Oasis HLB provided good trueness (recoveries: 73-112%), precision (RSD<10%) and limits of quantification (LOQ: 0.01-0.5 μg/L). Moreover, two LC separation mechanisms were evaluated: reversed-phase (RPLC) and hydrophilic interaction (HILIC), with RPLC providing better performance than HILIC. The final application of the method showed the presence of acesulfame, cyclamate, saccharin and sucralose in the wastewater and surface water samples analyzed at concentrations up to 54 μg/L. Copyright © 2012 Elsevier B.V. All rights reserved.
Xia, Xi; Li, Xiaowei; Ding, Shuangyang; Zhang, Suxia; Jiang, Haiyang; Li, Jiancheng; Shen, Jianzhong
2009-03-20
This work reports a rapid, reliable and sensitive multi-residue method for the simultaneous determination of six resorcylic acid lactones in bovine milk by ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The resorcylic acid lactones were extracted, purified, and concentrated from milk samples in one step using a solid-phase extraction (SPE) cartridge that contained a polymeric mixed-mode anion-exchange sorbent. The analysis was performed on a Waters Acquity BEH C(18) column utilizing a gradient elution profile. Each LC run was completed in 3.5 min. The analytes were detected by multiple reaction monitoring (MRM) using electrospray ionization (ESI) negative mode. Mean recoveries from fortified samples ranged from 92.6% to 112.5%, with relative standard deviations lower than 11.4%. Using 5 mL bovine milk, the limits of detection and quantification for resorcylic acid lactones were in the ranges of 0.01-0.05 and 0.05-0.2 microg/L, respectively. The application of this newly developed method was demonstrated by analyzing bovine milk samples from markets.
Villa-Lojo, M C; Alonso-Rodríguez, E; López-Mahía, P; Muniategui-Lorenzo, S; Prada-Rodríguez, D
2002-06-10
A high performance liquid chromatography-microwave digestion-hydride generation-atomic absorption spectrometry (HPLC-MW-HG-AAS) coupled method is described for As(III), As(V), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB) and arsenocholine (AsC) determination. A Hamilton PRP-X100 anion-exchange column is used for carrying out the arsenic species separation. As mobile phase 17 mM phosphate buffer (pH 6.0) is used for As(III), As(V), MMA and DMA separation, and ultrapure water (pH 6.0) for AsB and AsC separation. Prior to injection into the HPLC system AsB and AsC are isolated from the other arsenic species using a Waters Accell Plus QMA cartridge. A microwave digestion with K(2)S(2)O(8) as oxidizing agent is used for enhancing the efficiency of conversion of AsB and AsC into arsenate. Detection limits achieved were between 0.3 and 1.1 ng for all species. The method was applied to arsenic speciation in fish samples.
Radiochemical determination of 241Am and Pu(alpha) in environmental materials.
Warwick, P E; Croudace, I W; Oh, J S
2001-07-15
Americium-241 and plutonium determinations will become of greater importance over the coming decades as 137Cs and 241Pu decay. The impact of 137Cs on environmental chronology has been great, but its potency is waning as it decays and diffuses. Having 241Am and Pu as unequivocal markers for the 1963 weapon fallout maximum is important for short time scale environmental work, but a fast and reliable procedure is required for their separation. The developed method described here begins by digesting samples using a lithium borate fusion although an aqua regia leachate is also effective in many instances. Isolation of the Am and Pu is then achieved using a combination of extraction chromatography and conventional anion exchange chromatography. The whole procedure has been optimized, validated, and assessed for safety. The straightforwardness of this technique permits the analysis of large numbers of samples and makes 241Am-based techniques for high-resolution sediment accumulation rate studies attractive. In addition, the technique can be employed for the sequential measurement of Pu and Am in environmental surveillance programs, potentially reducing analytical costs and turnround times.
Structural analysis of a homogeneous polysaccharide from Achatina fulica.
Liu, Jie; Shang, Feineng; Yang, Zengming; Wu, Mingyi; Zhao, Jinhua
2017-05-01
Edible snails have been widely used as a health food and medicine in many countries. In our study, a water-soluble polysaccharide (AF-1) was isolated and purified from Achatina fulica by papain enzymolysis, alcohol precipitation and strong anion exchange chromatography. Structureof the polysaccharide was analyzed and characterized by chemical and instrumental methods, such as Fourier transform infrared spectroscopy, high performance liquid chromatography, analysis of monosaccharide composition, methylation analysis, and nuclear magnetic resonance (NMR) spectroscopy ( 1 H, 13 C, COSY, TOCSY, NOESY, HSQC and HMBC). Chemical composition analysis indicated that AF-1 is composed of glucose (Glc) and its average molecular weight is 1710kDa. Structural analysis suggested that AF-1 is mainly consisted of a linear repeating backbone of (1→4) linked α-d-Glc p residues with one branch, α-d-Glc p, attached to the main chain by (1→6) glycosidic bonds at every five main-chain units. Further studies on biological activities of the polysaccharide are currently in progress. Copyright © 2017 Elsevier B.V. All rights reserved.
Hellwege, Elke M.; Czapla, Sylvia; Jahnke, Anuschka; Willmitzer, Lothar; Heyer, Arnd G.
2000-01-01
The ability to synthesize high molecular weight inulin was transferred to potato plants via constitutive expression of the 1-SST (sucrose:sucrose 1-fructosyltransferase) and the 1-FFT (fructan: fructan 1-fructosyltransferase) genes of globe artichoke (Cynara scolymus). The fructan pattern of tubers from transgenic potato plants represents the full spectrum of inulin molecules present in artichoke roots as shown by high-performance anion exchange chromatography, as well as size exclusion chromatography. These results demonstrate in planta that the enzymes sucrose:sucrose 1-fructosyltransferase and fructan:fructan 1-fructosyltransferase are sufficient to synthesize inulin molecules of all chain lengths naturally occurring in a given plant species. Inulin made up 5% of the dry weight of transgenic tubers, and a low level of fructan production also was observed in fully expanded leaves. Although inulin accumulation did not influence the sucrose concentration in leaves or tubers, a reduction in starch content occurred in transgenic tubers, indicating that inulin synthesis did not increase the storage capacity of the tubers. PMID:10890908
Li, Han-Yin; Sun, Shao-Ni; Zhou, Xia; Peng, Feng; Sun, Run-Cang
2015-06-05
Eucalyptus was sequentially extracted with 70% ethanol containing 0.4, 1.0, 2.0, 3.0, and 5.0% NaOH for 2h at 80°C. The chemical composition and structural features of the hemicellulosic fractions obtained were comparatively characterized by the combination of high-performance anion-exchange chromatography, gel permeation chromatography, Fourier transform infrared, and nuclear magnetic resonance spectroscopies. Furthermore, the main component distribution and their changes in cell wall were investigated by confocal Raman microscopy. Based on the Fourier transform infrared and nuclear magnetic resonance analyses, the hemicelluloses extracted from Eucalyptus mainly have a linear backbone of (1→4)-linked-β-d-xylopyranosyl residues decorated with branch at O-2 of 4-O-methyl-α-glucuronic acid unit. Raman analysis revealed that the dissolution of hemicelluloses was different in the morphological regions, and the hemicelluloses released mainly originated from the secondary wall. The information obtained from the study conducted by combining chemical characterization with ultrastructure provides important basis for studying the mechanism of the alkali treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhou, Xi; Cui, Kunyan; Zeng, Feng; Li, Shoucong; Zeng, Zunxiang
2016-06-01
In the present study, solid-phase extraction cartridges including silica reversed-phase Isolute C18, polymeric reversed-phase Oasis HLB and mixed-mode anion-exchange Oasis MAX, and liquid-liquid extractions with ethyl acetate, n-hexane, dichloromethane and its mixtures were compared for clean-up of phthalate monoesters from vegetable samples. Best recoveries and minimised matrix effects were achieved using ethyl acetate/n-hexane liquid-liquid extraction for these target compounds. A simple and selective method, based on sample preparation by ultrasonic extraction and liquid-liquid extraction clean-up, for the determination of phthalate monoesters in vegetable samples by liquid chromatography/electrospray ionisation-tandem mass spectrometry was developed. The method detection limits for phthalate monoesters ranged from 0.013 to 0.120 ng g(-1). Good linearity (r(2)>0.991) between MQLs and 1000× MQLs was achieved. The intra- and inter-day relative standard deviation values were less than 11.8%. The method was successfully used to determine phthalate monoester metabolites in the vegetable samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Purification, characterization and immunomodulatory activity of polysaccharides from stem lettuce.
Nie, Chenzhipeng; Zhu, Peilei; Ma, Shuping; Wang, Mingchun; Hu, Youdong
2018-05-15
Stem lettuce has a long history of cultivation in China and possesses high nutritional and medicinal value. In our previous studies, extraction optimization, characterization, and bioactivities of stem lettuce polysaccharides (SLP) were investigated. In this study, SLP were further separated into two purified polysaccharides, SLP-1 and SLP-2, by anion exchange chromatography followed by size exclusion chromatography. SLP-1, with a molecular weight of 90 KDa, was mainly composed of galacturonic acid, galactose and arabinose in a molar ratio of 17.6:41.7:33.9. SLP-2, with a molecular weight of 44 KDa, was mainly composed of mannose, galacturonic acid, galactose and arabinose in a molar ratio of 11.5:69.5:9.3:8.2. In addition, both purified polysaccharides contain sulphate radicals, have triple helical structures and can promote macrophage proliferation without cytotoxicity. SLP-2 was better able to stimulate phagocytic and nitric oxide production than SLP-1. The results suggest that polysaccharides from stem lettuce could be explored as immunomodulatory agents in the field of pharmaceuticals and functional foods. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.
1998-01-01
Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Daiwon; Zhu, Chengzhou; Fu, Shaofang
2016-09-15
The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structuremore » of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).« less
Kazłowski, Bartosz; Ko, Yuan-Tih
2014-06-15
A series of linear glucan saccharides (GS) with defined quantity and degree of polymerization (DP) were synthesized from α-d-glucose 1-phosphate (α-d-Glc 1-P) by phosphorylase-a. The GS product fractions with average DP 11, 22, 38, 52, 60, 70, and 79 were measured by HPSEC-ELSD system. Then the same seven fractions were resolved into individual peaks with DP: 6-14, 10-32, 27-55, 37-67, 44-75, 49-83 and 53-89 by HPAEC-PAD system. Results showed that measurement of α-d-Glc 1-P amount consuming during GS synthesis by both systems enable calculation of reaction yield. The reaction yield for the 24h biosynthesis of the GS product was 25.3% (measured by HPSEC-ELSD) or 29.1% (measured by HPAEC-PAD). The HPSEC-ELSD and HPAEC-PAD systems were also successfully used for phosphorylase-a activity measurement in order to perform its kinetic characterization. This study established feasible systems for preparation of various sizes of the GS with defined DP and quantity as well as characterization of phosphorylase-a kinetics. Copyright © 2014. Published by Elsevier Ltd.
Vascular endothelial cells express isoforms of protein kinase A inhibitor.
Lum, Hazel; Hao, Zengping; Gayle, Dave; Kumar, Priyadarsini; Patterson, Carolyn E; Uhler, Michael D
2002-01-01
The expression and function of the endogenous inhibitor of cAMP-dependent protein kinase (PKI) in endothelial cells are unknown. In this study, overexpression of rabbit muscle PKI gene into endothelial cells inhibited the cAMP-mediated increase and exacerbated thrombin-induced decrease in endothelial barrier function. We investigated PKI expression in human pulmonary artery (HPAECs), foreskin microvessel (HMECs), and brain microvessel endothelial cells (HBMECs). RT-PCR using specific primers for human PKI alpha, human PKI gamma, and mouse PKI beta sequences detected PKI alpha and PKI gamma mRNA in all three cell types. Sequencing and BLAST analysis indicated that forward and reverse DNA strands for PKI alpha and PKI gamma were of >96% identity with database sequences. RNase protection assays showed protection of the 542 nucleotides in HBMEC and HPAEC PKI alpha mRNA and 240 nucleotides in HBMEC, HPAEC, and HMEC PKI gamma mRNA. Western blot analysis indicated that PKI gamma protein was detected in all three cell types, whereas PKI alpha was found in HBMECs. In summary, endothelial cells from three different vascular beds express PKI alpha and PKI gamma, which may be physiologically important in endothelial barrier function.
Enhanced methodology for porting ion chromatography retention data.
Park, Soo Hyun; Shellie, Robert A; Dicinoski, Greg W; Schuster, Georg; Talebi, Mohammad; Haddad, Paul R; Szucs, Roman; Dolan, John W; Pohl, Christopher A
2016-03-04
Porting is a powerful methodology to recalibrate an existing database of ion chromatography (IC) retention times by reflecting the changes of column behavior resulting from either batch-to-batch variability in the production of the column or the manufacture of new versions of a column. This approach has been employed to update extensive databases of retention data of inorganic and organic anions forming part of the "Virtual Column" software marketed by Thermo Fisher Scientific, which is the only available commercial optimization tool for IC separation. The current porting process is accomplished by performing three isocratic separations with two representative analyte ions in order to derive a porting equation which expresses the relationship between old and new data. Although the accuracy of retention prediction is generally enhanced on new columns, errors were observed on some columns. In this work, the porting methodology was modified in order to address this issue, where the porting equation is now derived by using six representative analyte ions (chloride, bromide, iodide, perchlorate, sulfate, and thiosulfate). Additionally, the updated porting methodology has been applied on three Thermo Fisher Scientific columns (AS20, AS19, and AS11HC). The proposed approach showed that the new porting methodology can provide more accurate and robust retention prediction on a wide range of columns, where average errors in retention times for ten test anions under three eluent conditions were less than 1.5%. Moreover, the retention prediction using this new approach provided an acceptable level of accuracy on a used column exhibiting changes in ion-exchange capacity. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Method of separating thorium from plutonium
Clifton, David G.; Blum, Thomas W.
1984-01-01
A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
1984-07-10
A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Water permeation through anion exchange membranes
NASA Astrophysics Data System (ADS)
Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven
2018-01-01
An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).
9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ...
9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ANION EXCHANGE PROCESS IN ROOM 149. THE GLOVE BOXES ON THE LEFT CONTAIN MIXER STIRRERS THAT AID IN THE DISSOLUTION PROCESS THAT OCCURRED PRIOR TO ANION EXCHANGE. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO
Sangawa, Takeshi; Tabata, Sanae; Suzuki, Kei; Saheki, Yasushi; Tanaka, Keiji; Takagi, Junichi
2013-01-01
Expression and purification of aggregation-prone and disulfide-containing proteins in Escherichia coli remains as a major hurdle for structural and functional analyses of high-value target proteins. Here, we present a novel gene-fusion strategy that greatly simplifies purification and refolding procedure at very low cost using a unique hyperacidic module derived from the human amyloid precursor protein. Fusion with this polypeptide (dubbed FATT for Flag-Acidic-Target Tag) results in near-complete soluble expression of variety of extracellular proteins, which can be directly refolded in the crude bacterial lysate and purified in one-step by anion exchange chromatography. Application of this system enabled preparation of functionally active extracellular enzymes and antibody fragments without the need for condition optimization. PMID:23526492
Functional purification of the monocarboxylate transporter of the yeast Candida utilis.
Baltazar, Fátima; Cássio, Fernanda; Leão, Cecília
2006-08-01
Plasma membranes of the yeast, Candida utilis, were solubilized with octyl-beta-D-glucopyranoside and a fraction enriched in the lactate carrier was obtained with DEAE-Sepharose anion-exchange chromatography, after elution with 0.4 M NaCl. The uptake of lactic acid into proteoliposomes, containing the purified protein fraction and cytochrome c oxidase, was dependent on a proton-motive force and the transport specificity was consistent with the one of C. utilis intact cells. Overall, we have obtained a plasma membrane fraction enriched in the lactate carrier of C. utilis in which the transport properties were preserved. Given the similarities between the lactate transport of C. utilis and the one of mammalian cells, this purified system could be further explored to screen for specific lactate inhibitors, with potential therapeutic applications.
Studies of proteoglycan involvement in CPP-mediated delivery.
Wittrup, Anders; Zhang, Si-He; Belting, Mattias
2011-01-01
Cell-penetrating peptides (CPPs) are widely used to deliver macromolecular cargoes to intracellular sites of action. Many CPPs have been demonstrated to rely on cell surface heparan sulfate proteoglycans (HSPGs) for efficient cellular entry and delivery. In this chapter, we describe methods for the study of PG involvement in CPP uptake. We provide descriptions of how to determine whether uptake of a CPP of interest is dependent on PGs. We also provide detailed protocols for the purification of PGs by anion-exchange chromatography as well as the characterization of the HSPG core protein composition of a cell line of interest. Finally, we present methods for modulating the expression level of specific HSPG core proteins as a means to determine the core protein specificity in the uptake of a particular CPP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Tengchuan; Chen, Yu-Wei; Howard, Andrew
2008-07-01
The crystallization of ginnacin, the 11S seed storage protein from G. biloba, is reported. Ginkgo biloba, a well known ‘living fossil’ native to China, is grown worldwide as an ornamental shade plant. Medicinal and nutritional uses of G. biloba in Asia have a long history. However, ginkgo seed proteins have not been well studied at the biochemical and molecular level. In this study, the G. biloba 11S seed storage protein ginnacin was purified by sequential anion-exchange and gel-filtration chromatography. A crystallization screen was performed and well diffracting single crystals were obtained by the vapor-diffusion method. A molecular-replacement structural solution hasmore » been obtained. There are six protomers in an asymmetric unit. Structure refinement is currently in progress.« less
Wannet, W J; Hermans, J H; van Der Drift, C; Op Den Camp, H J
2000-02-01
A convenient and sensitive method was developed to separate and detect various types of carbohydrates (polyols, mono- and disaccharides, and phosphorylated sugars) simultaneously using high-performance liquid chromatography (HPLC). The method consists of a chromatographic separation on a CarboPac PA1 anion-exchange analytical column followed by pulsed amperometric detection. In a single run (43 min) 13 carbohydrates were readily resolved. Calibration plots were linear over the ranges of 5-25 microM to 1. 0-1.5 mM. The reliable and fast analysis technique, avoiding derivatization steps and long run times, was used to determine the levels of carbohydrates involved in mannitol and trehalose metabolism in the edible mushroom Agaricus bisporus. Moreover, the method was used to study the trehalose phosphorylase reaction.
Formation of RNA oligomers on montmorillonite: site of catalysis
NASA Technical Reports Server (NTRS)
Ertem, G.; Ferris, J. P.
1998-01-01
Certain montmorillonites catalyze the self condensation of the 5'-phosphorimidazolide of nucleosides in pH 8 aqueous electrolyte solutions at ambient temperatures leading to formation of RNA oligomers. In order to establish the nature of the sites on montmorillonite responsible for this catalytic activity, oligomerization reactions were run with montmorillonites which had been selectively modified (I) at the edges by (a) fluoride treatment, (b) silylation, (c) metaphosphate treatment of the anion exchange sites (II) in the interlayer by (a) saturation with quaternary alkylammonium ions of increasing size, (b) aluminum polyoxo cations. High pressure liquid chromatography, HPLC, analysis of condensation products for their chain lengths and yields indicated that modification at the edges did not affect the catalytic activity to a significant extent, while blocking the interlayer strongly inhibited product formation.
Enzymatic degradation of hybrid iota-/nu-carrageenan by Alteromonas fortis iota-carrageenase.
Jouanneau, Diane; Boulenguer, Patrick; Mazoyer, Jacques; Helbert, William
2010-05-07
Hybrid iota-/nu-carrageenan was water-extracted from Eucheuma denticulatum and incubated with Alteromonas fortis iota-carrageenase. The degradation products were then separated by anion-exchange chromatography. The three most abundant fractions of hybrid iota-/nu-carrageenan oligosaccharides were purified and their structures were analyzed by NMR. The smallest hybrid was an octasaccharide with a iota-iota-nu-iota structure. The second fraction was composed of two decasaccharides with iota-iota-iota-nu-iota and iota-[iota/nu]-iota-iota structures. The third fraction was a mixture of dodecasaccharides which contained at least a iota-iota-iota-iota-nu-iota oligosaccharide. The carbon and proton NMR spectra of the octasaccharides were completely assigned, thereby completely attributing the nu-carrabiose moiety for the first time.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1999-01-01
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1999-03-30
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.
Using Ion Exchange Chromatography to Separate and Quantify Complex Ions
ERIC Educational Resources Information Center
Johnson, Brian J.
2014-01-01
Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…
Dissolved Free Amino Acids in Hydrothermal Springs at Yellowstone National Park, U.S.A.
NASA Astrophysics Data System (ADS)
Cox, J. S.; Holland, M. E.; Shock, E. L.
2004-12-01
Insights into the organic geochemistry of hydrothermal systems, as well as the dynamics of biotic processes in hot spring ecosystems, can be gained by identifying and quantifying dissolved free amino acids (DFAA). Hydrothermal systems form a unique environmental subset relative to other aqueous settings due to their higher temperatures, largely uncharacterized and exotic microbiology, wider pH range, and elevated levels of rare metals, sulfur, and dissolved gases. Previous studies of hot spring and geothermal systems (e.g. Mukhin et al., 1979; Svensson et al., 2004) indicated the presence of micromolar quantities of various amino acids, but the underlying mechanisms controlling amino acid production and disappearance/consumption have continued to remain elusive. DFAA were identified and quantified in five hot springs at Yellowstone National Park that span a range of pH (2 to 8) and temperature (75 to 93° C/boiling). Biotic uptake experiments and enantiomeric analyses on samples from one location were also performed to elucidate biotic pathways. Analyses were performed using high pressure anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which is able to resolve amino acids as well as certain carbohydrates, oligopeptides, and a variety of related biological molecules. Preliminary data indicate that total DFAA concentrations are quite low (sub-micromolar range) and that amino acids with aliphatic and nitrogen-containing R-groups are predominant in the DFAA fraction. The types and concentrations of amino acids were variable across the sites. Obsidian Pool (pH 5.1, 77.5° C), where multiple microbiological studies have been conducted, was found to have a DFAA fraction consisting primarily of glycine with trace amounts of arginine, lysine, and histidine. In comparison, an acidic spring in the Sylvan Springs area (pH 1.9, 79.7° C) had higher total DFAA concentrations and was found to contain primarily arginine, lysine, and leucine, together with trace amounts of alanine, proline, and histidine. At least six other unknown compounds were also observed, one of them possibly at near-micromolar levels, and there was evidence for higher levels of organic compounds in general. The generally low concentrations observed in this study suggest that amino acids participate in highly dynamic biotic pathways in Yellowstone hot springs. Our observations of lower concentrations of amino acids and less diversity differ from literature results, but are consistent with suggestions of a positive correlation between acidic conditions and higher levels of DFAA (Svensson et al., 2004). References: Mukhin L.M., Bondarev V.B., Vakin E.A., Il'yukhina N.I., Kalinichenko V.I., Milekhina E.I., Safonova E.N. (1979) Doklady Akademii Nauk SSSR 244(4), 974-7. Svensson E., Skoog A., and Amend J.P. (2004) Organic Geochemistry 35, 1001-1014.
Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins.
Gomes, Helena I; Jones, Ashley; Rogerson, Mike; Greenway, Gillian M; Lisbona, Diego Fernandez; Burke, Ian T; Mayes, William M
2017-02-01
Leachable vanadium (V) from steel production residues poses a potential environmental hazard due to its mobility and toxicity under the highly alkaline pH conditions that characterise these leachates. This work aims to test the efficiency of anion exchange resins for vanadium removal and recovery from steel slag leachates at a representative average pH of 11.5. Kinetic studies were performed to understand the vanadium sorption process. The sorption kinetics were consistent with a pseudo-first order kinetic model. The isotherm data cannot differentiate between the Langmuir and Freundlich models. The maximum adsorption capacity (Langmuir value q max ) was 27 mg V g -1 resin. In column anion exchange, breakthrough was only 14% of the influent concentration after passing 90 L of steel slag leachate with 2 mg L -1 V through the column. When eluting the column 57-72% of vanadium was recovered from the resin with 2 M NaOH. Trials on the reuse of the anion exchange resin showed it could be reused 20 times without loss of efficacy, and on average 69% of V was recovered during regeneration. The results document for the first time the use of anion exchange resins to remove vanadium from steel slag leachate. As an environmental contaminant, removal of V from leachates may be an obligation for long-term management requirements of steel slag repositories. Vanadium removal coupled with the recovery can potentially be used to offset long-term legacy treatment costs. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Monsalves, María T; Amenábar, Maximiliano J; Ollivet-Besson, Gabriela P; Blamey, Jenny M
2013-07-01
A thermostable superoxide dismutase from a thermophilic bacterium, called Geobacillus wiegeli (GWE1), isolated from the interior of a sterilization drying oven, was purified by anion-exchange and molecular size-exclusion liquid chromatography. On the basis of SDS-PAGE, the purified enzyme was found to be homogeneous and showed an estimated subunit molecular mass of 23.9 kDa. The holoenzyme is a homotetramer of 97.3 kDa. Superoxide dismutase exhibited maximal activity at pH 8.5 and at temperature around 60 ºC. The enzyme was thermostable maintaining 50% of its activity even after 4.5 hours incubation at 60 ºC and more than 70% of its activity after 30 min at 80 ºC. When the microorganism was irradiated with UVA, an increase in the specific activity of superoxide dismutase was observed which was correlated with decreasing levels of anion superoxide, indicating the direct involvement of this enzyme in the capture of reactive oxygen species. This study reports the effects of UV radiation on a superoxide dismutase from a thermophilic bacterium isolated from an anthropogenic environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, E.D.; Baenziger, J.U.
1988-01-05
The authors have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB(/sup 3/H)/sub 4/. The /sup 3/H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneousmore » and displayed hormone- as well as animal species-specific features. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, they describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species.« less
Squillaci, Giuseppe; Finamore, Rosario; Diana, Paola; Restaino, Odile Francesca; Schiraldi, Chiara; Arbucci, Salvatore; Ionata, Elena; La Cara, Francesco; Morana, Alessandra
2016-01-01
We have isolated a novel exopolysaccharide (EPS) produced by the extreme halophilic archaeon Haloterrigena turkmenica. Some features, remarkable from an industrial point of view, such as emulsifying and antioxidant properties, were investigated. H. turkmenica excreted 20.68 mg of EPS per 100 ml of culture medium when grown in usual medium supplemented with glucose. The microorganism excreted the biopolymer mainly in the middle exponential growth phase and reached the maximal production in the stationary phase. Analyses by anion exchange chromatography and SEC-TDA Viscotek indicated that the EPS was composed of two main fractions of 801.7 and 206.0 kDa. It was a sulfated heteropolysaccharide containing glucose, galactose, glucosamine, galactosamine, and glucuronic acid. Studies performed utilizing the mixture of EPS anionic fractions showed that the biopolymer had emulsifying activity towards vegetable oils comparable or superior to that exhibited by the controls, moderate antioxidant power when tested with 2,2'-diphenyl-1-picrylhydrazyl (DPPH(·)), and moisture-retention ability higher than hyaluronic acid (HA). The EPS from H. turkmenica is the first exopolysaccharide produced by an archaea to be characterized in terms of properties that can have potential biotechnological applications.
Luo, Jiankai; Jankowski, Vera; Güngär, Nihayrt; Neumann, Joachim; Schmitz, Wilhelm; Zidek, Walter; Schlüter, Hartmut; Jankowski, Joachim
2004-05-01
Diadenosine polyphosphates have been characterized as extracellular mediators controlling numerous physiological effects. In this study, diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate were isolated and identified in human myocardial tissue. Human myocardial tissue was homogenized and fractionated by affinity chromatography, displacement chromatography, anion-exchange chromatography, and reversed-phase chromatography. In fractions purified to homogeneity, diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate were revealed by matrix-assisted laser desorption/ionization mass spectrometry and ultraviolet spectroscopy. These diadenosine polyphosphates were further identified by enzymatic analysis, which demonstrated an interconnection of the phosphate groups with the adenosines in the 5' positions of the riboses. Furthermore, diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate were found in human cardiac-specific granules, and the amount of diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate was estimated in the range of approximately 500 micromol/L. In conclusion, the experiments show that the diadenosine polyphosphates with 2 and 3 phosphate groups occur in human myocardial tissue, and so do the diadenosine polyphosphates with 4 to 6 phosphate groups. After being released by cholinergic stimulation, which is known to affect diadenosine polyphosphate release from secretory granules, diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate activate P2X purinoceptors in vascular smooth muscle; hence, they can act as vasoconstrictors. It may be inferred that the differential action of both predominantly vasodilator and vasoconstrictor diadenosine polyphosphates allow a fine-tuning of myocardial blood flow by locally released diadenosine polyphosphates.
NASA Technical Reports Server (NTRS)
Hodgdon, R. B.; Waite, W. A.; Alexander, S. S.
1984-01-01
Two polymer ion exchange membranes were synthesized to fulfill the needs of both electrical resistivity and anolyte/catholyte separation for utility load leveling utilizing the DOE/NASA mixed electrolyte REDOX battery. Both membranes were shown to meet mixed electrolyte utility load leveling criteria. Several modifications of an anion exchange membrane failed to meet utility load leveling REDOX battery criteria using the unmixed electrolyte REDOX cell.
Enhanced anion exchange for selective sulfate extraction: overcoming the Hofmeister bias.
Fowler, Christopher J; Haverlock, Tamara J; Moyer, Bruce A; Shriver, James A; Gross, Dustin E; Marquez, Manuel; Sessler, Jonathan L; Hossain, Md Alamgir; Bowman-James, Kristin
2008-11-05
In this communication, a new approach to enhancing the efficacy of liquid-liquid anion exchange is demonstrated. It involves the concurrent use of appropriately chosen hydrogen-bond-donating (HBD) anion receptors in combination with a traditional quaternary ammonium extractant. The fluorinated calixpyrroles 1 and 2 and the tetraamide macrocycle 4 were found to be particularly effective receptors. Specifically, their use allowed the extraction of sulfate by tricaprylmethylammonium nitrate to be effected in the presence of excess nitrate. As such, the present work provides a rare demonstration of overcoming the Hofmeister bias in a competitive environment and the first to the authors' knowledge wherein this difficult-to-achieve objective is attained using a neutral HBD-based anion binding agent under conditions of solvent extraction.
Increasing Photovoltaic Performance of an Organic Cationic Chromophore by Anion Exchange
Gesevičius, Donatas; Neels, Antonia; Jenatsch, Sandra; Hack, Erwin; Viani, Lucas; Athanasopoulos, Stavros; Heier, Jakob
2017-01-01
Abstract A symmetrical cyanine dye chromophore is modified with different counteranions to study the effect on crystal packing, polarizability, thermal stability, optical properties, light absorbing layer morphology, and organic photovoltaic (OPV) device parameters. Four sulfonate‐based anions and the bulky bistriflylimide anion are introduced to the 2‐[5‐(1,3‐dihydro‐1,3,3‐trimethyl‐2H‐indol‐2‐ylidene)‐1,3‐pentadien‐1‐yl]‐1,3,3‐trimethyl‐3H‐indolium chromophore using an Amberlyst A26 (OH− form) anion exchanger. Anionic charge distribution clearly correlates with device performance, whereby an average efficiency of 2% was reached in a standard bilayer organic solar. Evidence is given that the negative charge of the anion distributed over a large number of atoms is significantly more important than the size of the organic moieties of the sulfonate charge carrying group. This provides a clear strategy for future design of more efficient cyanine dyes for OPV applications. PMID:29610723
Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.
Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J
2004-01-01
Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.
Rey, M A
2001-06-22
One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Sloop Jr, Frederick; Fowler, Christopher J
2010-01-01
When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1more » receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.« less
Muhammad, Nadeem; Subhani, Qamar; Wang, Fenglian; Guo, Dandan; Zhao, Qiming; Wu, Shuchao; Zhu, Yan
2017-09-15
This work illustrates the introduction of a simple, rugged and flexible column-switching ion chromatography (IC) technique for an automated on-line QuEChERS extracted samples extracts washing followed by sensitive fluorescence (FLD) determination of five acidic pharmaceutical drugs namely; clofibric acid (CLO), ibuprofen (IBU), aspirin (ASP), naproxen (NAP) and flurobrofen (FLU) in three complex samples (spinach, apple and hospital sewage sludge). An old anion exchange column IonPac ® AS11-HC was utilized as a pre-treatment column for on-line washing of inorganic and organic interferences followed by isocratic separation of five acidic drugs with another anion exchange IonPac ® AS12A analytical column by exploiting the column-switching technique. This novel method exhibited good linearity with correlation coefficients (r 2 ) for all drugs were in the range 0.976-0.996. The limit of detection and quantification of all five acidic drugs were in the range 0.024μg/kg to 8.70μg/kg and 0.082μg/kg to 0.029mg/kg, respectively, and better recoveries in the range 81.17-112.5% with percentage relative standard deviations (RSDs) less than 17.8% were obtained. This on-line sample pre-treatment method showed minimum matrix effect in the range of 0.87-1.25 except for aspirin. This simple rugged and flexible column-switching system required only 28min for maximum elimination of matrices and interferences in three complex samples extracts, isocratic separation of five acidic drugs and for the continuous regeneration of pre-treatment column prior to every subsequent analysis. Finally, this simple automated IC system was appeared so rugged and flexible, which can eliminate and wash out most of interference, impurities and matrices in complex samples, simply by adjusting the NaOH and acetonitrile concentration in washing mobile phase with maximum recoveries of acidic analytes of interest. Copyright © 2017. Published by Elsevier B.V.
Large-scale production and properties of human plasma-derived activated Factor VII concentrate.
Tomokiyo, K; Yano, H; Imamura, M; Nakano, Y; Nakagaki, T; Ogata, Y; Terano, T; Miyamoto, S; Funatsu, A
2003-01-01
An activated Factor VII (FVIIa) concentrate, prepared from human plasma on a large scale, has to date not been available for clinical use for haemophiliacs with antibodies against FVIII and FIX. In the present study, we attempted to establish a large-scale manufacturing process to obtain plasma-derived FVIIa concentrate with high recovery and safety, and to characterize its biochemical and biological properties. FVII was purified from human cryoprecipitate-poor plasma, by a combination of anion exchange and immunoaffinity chromatography, using Ca2+-dependent anti-FVII monoclonal antibody. To activate FVII, a FVII preparation that was nanofiltered using a Bemberg Microporous Membrane-15 nm was partially converted to FVIIa by autoactivation on an anion-exchange resin. The residual FVII in the FVII and FVIIa mixture was completely activated by further incubating the mixture in the presence of Ca2+ for 18 h at 10 degrees C, without any additional activators. For preparation of the FVIIa concentrate, after dialysis of FVIIa against 20 mm citrate, pH 6.9, containing 13 mm glycine and 240 mm NaCl, the FVIIa preparation was supplemented with 2.5% human albumin (which was first pasteurized at 60 degrees C for 10 h) and lyophilized in vials. To inactivate viruses contaminating the FVIIa concentrate, the lyophilized product was further heated at 65 degrees C for 96 h in a water bath. Total recovery of FVII from 15 000 l of plasma was approximately 40%, and the FVII preparation was fully converted to FVIIa with trace amounts of degraded products (FVIIabeta and FVIIagamma). The specific activity of the FVIIa was approximately 40 U/ micro g. Furthermore, virus-spiking tests demonstrated that immunoaffinity chromatography, nanofiltration and dry-heating effectively removed and inactivated the spiked viruses in the FVIIa. These results indicated that the FVIIa concentrate had both high specific activity and safety. We established a large-scale manufacturing process of human plasma-derived FVIIa concentrate with a high yield, making it possible to provide sufficient FVIIa concentrate for use in haemophiliacs with inhibitory antibodies.
Bakry, R; Stöggl, W M; Hochleitner, E O; Stecher, G; Huck, C W; Bonn, G K
2006-11-03
In the paper we demonstrate a new approach for the preparation and application of continuous silica bed columns that involve encapsulation (entrapment) of functionalized silica microparticles, which can be used as packing material in micro high performance liquid chromatography (micro-HPLC) and capillary electrochromatography (CEC). Like traditional packed columns, these capillaries possess characterized silica particles that offer high phase ratio and narrow pore size distribution leading to high retention and separation efficiency, respectively. More importantly, immobilization of the microparticles stabilizes the separation bed and eliminates the need for retaining frits. The developed capillary columns were fabricated in exactly the same way as a packed capillary column (slurry packing) but with an additional entrapment step. This immobilization of the packed bed was achieved by in situ polymerization of styrene and divinylbenzene in presence of decanol as a porogen and azobisisobutyronitrile as thermal initiator. Silica particles with different particle sizes and pore sizes ranging from 60 to 4000 A were studied. In addition different modified silica was used, including C-18 reversed phase, anion exchange and chiral stationary phases. Efficient separation of polyphenolic compounds, peptides, proteins and even DNA mutation were achieved using the developed technique depending on the properties of the silica particles used (particles pore size). For example, using 3 microm ProntoSIL C-18 particles with 300 A pore size, separation efficiencies in the range of 120,000-200,000 plates/m were obtained for protein separation, in a 6 cm x 200 microm i.d. capillary column. Using encapsulated silica C-18 with 1000 A pore size, separation of DNA homo and hetero duplexes were achieved under denaturing HPLC conditions for mutation detection. In addition, nucleotides were separated using anion exchange material encapsulated with poly(styrene-divinylbenzene) (PS/DVB), which indicated that the chromatographic properties of the silica packing material were still active after polymerization. The prepared capillary columns were found to be stable and could easily be operated continuously up to a pressure of 350 bar without column damage and capillary can be cut to any desired length.
Cavallero, Gustavo J; Malamud, Mariano; Casabuono, Adriana C; Serradell, M de Los Ángeles; Couto, Alicia S
2017-06-06
In Gram-positive bacteria, such as lactic acid bacteria, general glycosylation systems have not been documented so far. The aim of this work was to characterize in detail the glycosylation of the S-layer protein of Lactobacillus kefiri CIDCA 83111. A reductive β-elimination treatment followed by anion exchange high performance liquid chromatography analysis was useful to characterize the O-glycosidic structures. MALDI-TOF mass spectrometry analysis confirmed the presence of oligosaccharides bearing from 5 to 8 glucose units carrying galacturonic acid. Further nanoHPLC-ESI analysis of the glycopeptides showed two O-glycosylated peptides: the peptide sequence SSASSASSA already identified as a signature glycosylation motif in L. buchneri, substituted on average with eight glucose residues and decorated with galacturonic acid and another O-glycosylated site on peptide 471-476, with a Glc 5-8 GalA 2 structure. As ten characteristic sequons (Asn-X-Ser/Thr) are present in the S-layer amino acid sequence, we performed a PNGase F digestion to release N-linked oligosaccharides. Anion exchange chromatography analysis showed mainly short N-linked chains. NanoHPLC-ESI in the positive and negative ion modes were useful to determine two different peptides substituted with short N-glycan structures. To our knowledge, this is the first description of the structure of N-glycans in S-layer glycoproteins from Lactobacillus species. A detailed characterization of protein glycosylation is essential to establish the basis for understanding and investigating its biological role. It is known that S-layer proteins from kefir-isolated L. kefiri strains are involved in the interaction of bacterial cells with yeasts present in kefir grains and are also capable to antagonize the adverse effects of different enteric pathogens. Therefore, characterization of type and site of glycosidic chains in this protein may help to understand these important properties. Furthermore, this is the first description of N-glycosidic chains in S-layer glycoprotein from Lactobacillus spp. Copyright © 2017 Elsevier B.V. All rights reserved.
Protein Glycosylation in Helicobacter pylori: Beyond the Flagellins?
Hopf, Patrick S.; Ford, Rachel S.; Zebian, Najwa; Merkx-Jacques, Alexandra; Vijayakumar, Somalinga; Ratnayake, Dinath; Hayworth, Jacqueline; Creuzenet, Carole
2011-01-01
Glycosylation of flagellins by pseudaminic acid is required for virulence in Helicobacter pylori. We demonstrate that, in H. pylori, glycosylation extends to proteins other than flagellins and to sugars other than pseudaminic acid. Several candidate glycoproteins distinct from the flagellins were detected via ProQ-emerald staining and DIG- or biotin- hydrazide labeling of the soluble and outer membrane fractions of wild-type H. pylori, suggesting that protein glycosylation is not limited to the flagellins. DIG-hydrazide labeling of proteins from pseudaminic acid biosynthesis pathway mutants showed that the glycosylation of some glycoproteins is not dependent on the pseudaminic acid glycosylation pathway, indicating the existence of a novel glycosylation pathway. Fractions enriched in glycoprotein candidates by ion exchange chromatography were used to extract the sugars by acid hydrolysis. High performance anion exchange chromatography with pulsed amperometric detection revealed characteristic monosaccharide peaks in these extracts. The monosaccharides were then identified by LC-ESI-MS/MS. The spectra are consistent with sugars such as 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Ac) previously described on flagellins, 5-acetamidino-7-acetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (Pse5Am7Ac), bacillosamine derivatives and a potential legionaminic acid derivative (Leg5AmNMe7Ac) which were not previously identified in H. pylori. These data open the way to the study of the mechanism and role of protein glycosylation on protein function and virulence in H. pylori. PMID:21984942
Cabrera-Muñoz, Aymara; Rojas, Laritza; Gil, Dayrom F; González-González, Yamile; Mansur, Manuel; Camejo, Ayamey; Pires, José R; Alonso-Del-Rivero Antigua, Maday
2016-10-01
Cenchritis muricatus protease inhibitor II (CmPI-II) is a tight-binding serine protease inhibitor of the Kazal family with an atypical broad specificity, being active against several proteases such as bovine pancreatic trypsin, human neutrophil elastase and subtilisin A. CmPI-II 3D structures are necessary for understanding the molecular basis of its activity. In the present work, we describe an efficient and straightforward recombinant expression strategy, as well as a cost-effective procedure for isotope labeling for NMR structure determination purposes. The vector pCM101 containing the CmPI-II gene, under the control of Pichia pastoris AOX1 promoter was constructed. Methylotrophic Pichia pastoris strain KM71H was then transformed with the plasmid and the recombinant protein (rCmPI-II) was expressed in benchtop fermenter in unlabeled or (15)N-labeled forms using ammonium chloride ((15)N, 99%) as the sole nitrogen source. Protein purification was accomplished by sequential cation exchange chromatography in STREAMLINE DirectHST, anion exchange chromatography on Hitrap Q-Sepharose FF and gel filtration on Superdex 75 10/30, yielding high quantities of pure rCmPI-II and (15)N rCmPI-II. Recombinant proteins displayed similar functional features as compared to the natural inhibitor and NMR spectra indicated folded and homogeneously labeled samples, suitable for further studies of structure and protease-inhibitor interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Kisley, Lydia; Chen, Jixin; Mansur, Andrea P.; Dominguez-Medina, Sergio; Kulla, Eliona; Kang, Marci; Shuang, Bo; Kourentzi, Katerina; Poongavanam, Mohan-Vivekanandan; Dhamane, Sagar; Willson, Richard C.; Landes, Christy F.
2014-01-01
The retention and elution of proteins in ion-exchange chromatography is routinely controlled by adjusting the mobile phase salt concentration. It has repeatedly been observed, as judged from adsorption isotherms, that the apparent heterogeneity of adsorption is lower at more-eluting, higher ionic strength. Here, we present an investigation into the mechanism of this phenomenon using a single-molecule, super-resolution imaging technique called motion-blur Points Accumulation for Imaging in Nanoscale Topography (mbPAINT). We observed that the number of functional adsorption sites was smaller at high ionic strength and that these sites had reduced desorption kinetic heterogeneity, and thus narrower predicted elution profiles, for the anion-exchange adsorption of α-lactalbumin on an agarose-supported, clustered-charge ligand stationary phase. Explanations for the narrowing of the functional population such as inter-protein interactions and protein or support structural changes were investigated through kinetic analysis, circular dichroism spectroscopy, and microscopy of agarose microbeads, respectively. The results suggest the reduction of heterogeneity is due to both electrostatic screening between the protein and ligand and tuning the steric availability within the agarose support. Overall, we have shown that single molecule spectroscopy can aid in understanding the influence of ionic strength on the population of functional adsorbent sites participating in the ion-exchange chromatographic separation of proteins. PMID:24751557
NASA Technical Reports Server (NTRS)
Otterson, D. A.
1977-01-01
The investigation of atmospheric pollution to determine the anion-containing particulates in the atmosphere at altitudes between 9.6 and 13.7 km is discussed. Air samples collected on cellulose fiber discs impregnated with dibutoxyethylphthalate require very sensitive methods of analysis. It is concluded that ion chromatography is suited for the determination of anions collected on the filters. Methods to control contamination and interfering side reactions are described.
Zou, Jianhua; Dai, Qiu; Wang, Jinhai; Liu, Xiong; Huo, Qun
2007-07-01
A solid phase modification method using anionic exchange resin as polymer support was developed for the synthesis of monofunctional gold nanoparticles. Based on a "catch and release" mechanism to control the number of functional groups attached to the nanoparticle surface, bifunctional thiol ligands with a carboxylic acid end group were first immobilized at a controlled density on anionic exchange resin through electrostatic interactions. Gold nanoparticles were then immobilized to the anionic exchange resin by a one-to-one place exchange reaction between resin-bound thiol ligands and butanethiol-protected gold nanoparticles in solution. After cleaving off from the resin under mild conditions, gold nanoparticles with a single carboxyl group attached to the surface were obtained as the major product. Experimental conditions such as the solvents used for ligand loading and solid phase place exchange reaction, and the loading density of the ligands, were found to play a critical role towards the successful synthesis of monofunctional nanoparticles. Overall, the noncovalent bond-based ligand immobilization technique reported here greatly simplified the process of solid phase monofunctionalization of nanoparticles compared to a previously reported covalent bond-based ligand immobilization technique.
Mechelke, Matthias; Herlet, Jonathan; Benz, J Philipp; Schwarz, Wolfgang H; Zverlov, Vladimir V; Liebl, Wolfgang; Kornberger, Petra
2017-12-01
The rising importance of accurately detecting oligosaccharides in biomass hydrolyzates or as ingredients in food, such as in beverages and infant milk products, demands for the availability of tools to sensitively analyze the broad range of available oligosaccharides. Over the last decades, HPAEC-PAD has been developed into one of the major technologies for this task and represents a popular alternative to state-of-the-art LC-MS oligosaccharide analysis. This work presents the first comprehensive study which gives an overview of the separation of 38 analytes as well as enzymatic hydrolyzates of six different polysaccharides focusing on oligosaccharides. The high sensitivity of the PAD comes at cost of its stability due to recession of the gold electrode. By an in-depth analysis of the sensitivity drop over time for 35 analytes, including xylo- (XOS), arabinoxylo- (AXOS), laminari- (LOS), manno- (MOS), glucomanno- (GMOS), and cellooligosaccharides (COS), we developed an analyte-specific one-phase decay model for this effect over time. Using this model resulted in significantly improved data normalization when using an internal standard. Our results thereby allow a quantification approach which takes the inevitable and analyte-specific PAD response drop into account. Graphical abstract HPAEC-PAD analysis of oligosaccharides and determination of PAD response drop leading to an improved data normalization.
ERIC Educational Resources Information Center
Gosink, Thomas A.
1975-01-01
Gas chromatography can be used to quantitate various gases, complex organic molecules, metals, anions, and pesticides in the lab or in the field. Important advances in gas chromatography and how they directly apply to environmental analyses plus suggestions where they will be of importance to environmental chemists are discussed. (BT)
ANALYSIS OF ELECTROLESS NICKEL SOLUTIONS BY ANION CHROMATOGRAPHY
The principal appeal of ion chromatography (IC) as analytical technique lies in the ability to rapidly analyze a mixture of ions of widely varying concentrations and properties in a single elution. It is therefore not surprising that IC has been hampered by the similar ion exchan...
Ion counting in supercapacitor electrodes using NMR spectroscopy.
Griffin, John M; Forse, Alexander C; Wang, Hao; Trease, Nicole M; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P
2014-01-01
(19)F NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in- and ex-pore environments with an exchange rate in the order of tens of Hz. (19)F in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane)sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism.
1990-01-01
The nature of the intracellular pH-regulatory mechanism after imposition of an alkaline load was investigated in isolated human peripheral blood neutrophils. Cells were alkalinized by removal of a DMO prepulse. The major part of the recovery could be ascribed to a Cl- /HCO3- counter-transport system: specifically, a one-for-one exchange of external Cl- for internal HCO3-. This exchange mechanism was sensitive to competitive inhibition by the cinnamate derivative UK-5099 (Ki approximately 1 microM). The half-saturation constants for binding of HCO3- and Cl- to the external translocation site of the carrier were approximately 2.5 and approximately 5.0 mM. In addition, other halides and lyotropic anions could substitute for external Cl-. These ions interacted with the exchanger in a sequence of decreasing affinities: HCO3- greater than Cl approximately NO3- approximately Br greater than I- approximately SCN- greater than PAH-. Glucuronate and SO4(2-) lacked any appreciable affinity. This rank order is reminiscent of the selectivity sequence for the principal anion exchanger in resting cells. Cl- and HCO3- displayed competition kinetics at both the internal and external binding sites of the carrier. Finally, evidence compatible with the existence of an approximately fourfold asymmetry (Michaelis constants inside greater than outside) between inward- and outward-facing states is presented. These results imply that a Cl-/HCO3- exchange mechanism, which displays several properties in common with the classical inorganic anion exchanger of erythrocytes, is primarily responsible for restoring the pHi of human neutrophils to its normal resting value after alkalinization. PMID:2280252
Anion-exchange behavior of several alkylsilica reversed-phase columns.
Marchand, D H; Snyder, L R
2008-10-31
Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.
Bower, Kenneth E.; Weeks, Donald R.
1997-01-01
Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity.
Bower, K.E.; Weeks, D.R.
1997-08-12
Apparatus for detecting the presence, in aqueous media, of substances which emit alpha and/or beta radiation and determining the oxidation state of these radioactive substances, that is, whether they are in cationic or anionic form. In one embodiment, a sensor assembly has two elements, one comprised of an ion-exchange material which binds cations and the other comprised of an ion-exchange material which binds anions. Each ion-exchange element is further comprised of a scintillation plastic and a photocurrent generator. When a radioactive substance to which the sensor is exposed binds to either element and emits alpha or beta particles, photons produced in the scintillation plastic illuminate the photocurrent generator of that element. Sensing apparatus senses generator output and thereby indicates whether cationic species or anionic species or both are present and also provides an indication of species quantity. 2 figs.
Intercalation of anionic organic ultraviolet ray absorbers into layered zinc hydroxide nitrate.
Cursino, Ana Cristina Trindade; Gardolinski, José Eduardo Ferreira da Costa; Wypych, Fernando
2010-07-01
Layered zinc hydroxide nitrate (ZHN) was synthesized and nitrate ions were topotactically exchanged with three different anionic species of commercial organic ultraviolet (UV) ray absorbers: 2-mercaptobenzoic acid, 2-aminobenzoic acid, and 4-aminobenzoic acid. The exchange reactions were confirmed by X-ray powder diffraction (XRPD), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible (UV-Vis) spectroscopy, and thermal analysis (thermogravimetry, TGA, and differential thermal analysis, DTA). In all the anionic exchanged products, evidence of grafting of the organic species onto the inorganic matrix was obtained. In general, after intercalation/grafting, the UV absorption ability was improved in relation to the use of the parent organic material, showing that layered hydroxide salts (LHS) can be good alternative matrixes for the immobilization of organic species with UV-blocking properties in cosmetic products. Copyright 2010 Elsevier Inc. All rights reserved.
A simple graphical representation of selectivity in hydrophilic interaction liquid chromatography.
Ibrahim, Mohammed E A; Liu, Yang; Lucy, Charles A
2012-10-19
This paper uses the HILIC selectivity data of Dinh et al. (J. Chromatogr. A 1218 (2011) 5880) to yield simple and easy to understand plots analogous to Neue plots for selectivity in HILIC. The plots categorize 21 previously studied HILIC phases (data from Dinh et al.), 8 additional HILIC columns and 4 reversed phase columns (our data) using selected probes for specific interactions. The relative retention of cytosine vs. uracil is used to probe the "hydrophilicity" of the HILIC phases; adenosine vs. adenine is used to probe the ability of the stationary phase to participate in hydrogen bonding; and benzyltrimethylammonium (BTMA) vs. cytosine is used to probe the cation exchange and anion exchange character of the column. Plots of kBTMA/kcytosine vs. kcytosine/kuracil successfully classify silica, amide, zwitterionic, diol and reverse phase columns in terms of their HILIC behavior. Polymeric columns including polymer substrate and polymer coated columns show low ion exchange character, but vary widely in their hydrophilicity. Alternatively a HILIC-Phase Selectivity Chart, in analogy to the Neue plot, is constructed by plotting log(kBTMA/kcytosine) vs. log(kcytosine). This plot enables classification of HILIC columns that will yield similar or significantly different separations. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radchenko, Valery; Engle, Jonathan Ward; Medvedev, Dmitri G.
Scandium-44 g (half-life 3.97 h) shows promise for application in positron emission tomography (PET), due to favorable decay parameters. One of the sources of 44gSc is the 44Ti/ 44gSc generator, which can conveniently provide this radioisotope on a daily basis at a diagnostic facility. Titanium-44 (half-life 60.0 a), in turn, can be obtained via proton irradiation of scandium metal targets. A substantial 44Ti product batch, however, requires high beam currents, long irradiation times and an elaborate chemical procedure for 44Ti isolation and purification. This study describes the production of a combined 175 MBq (4.7 mCi) batch yield of 44Ti inmore » week long proton irradiations at the Los Alamos Isotope Production Facility (LANL-IPF) and the Brookhaven Linac Isotope Producer (BNL-BLIP). A two-step ion exchange chromatography based chemical separation method is introduced: first, a coarse separation of 44Ti via anion exchange sorption in concentrated HCl results in a 44Tc/Sc separation factor of 10 2–10 3. A second, cation exchange based step in HCl media is then applied for 44Ti fine purification from residual Sc mass. In conclusion, this method yields a 90–97% 44Ti recovery with an overall Ti/Sc separation factor of ≥10 6.« less
Purification and Characterization of Carbaryl Hydrolase from Blastobacter sp. Strain M501
Hayatsu, Masahito; Nagata, Tadahiro
1993-01-01
A bacterium capable of hydrolyzing carbaryl (1-naphthyl-N-methylcarbamate) was isolated from a soil enrichment. This bacterium was characterized taxonomically as a Blastobacter sp. and designated strain M501. A carbaryl hydrolase present in this strain was purified to homogeneity by protamine sulfate treatment, ammonium sulfate precipitation, and hydrophobic, anion-exchange, gel filtration, and hydroxylapatite chromatographies. The native enzyme had a molecular mass of 166,000 Da and was composed of two subunits with molecular masses of 84,000 Da. The optimum pH and temperature of the enzyme activity were 9.0 and 45°C, respectively. The enzyme was not stable at temperatures above 40°C. The purified enzyme hydrolyzed seven N-methylcarbamate insecticides and also exhibited activity against 1-naphthyl acetate and 4-nitrophenyl acetate. Images PMID:16348989
Analysis of D3-,4-,5-phosphorylated phosphoinositides using HPLC.
Munnik, Teun
2013-01-01
Detection of polyphosphoinositides (PPIs) is difficult due to their low chemical abundancy. This problem is further complicated by the fact that PPIs are present as various, distinct isomers, which are difficult, if not impossible, to separate by conventional thin layer chromatography (TLC) systems. PPIs in plants include PtdIns3P, PtdIns4P, PtdIns5P, PtdIns(3,5)P 2, and PtdIns(4,5)P 2. Here, a protocol is described analyzing plant PPIs using (32)P-orthophosphorus pre-labeled material. After extraction, lipids are deacylated and the resulting glycerophosphoinositol polyphosphates (GroPInsPs) separated by HPLC using a strong anion-exchange column and a shallow salt gradient. Alternatively, PPIs are first separated by TLC, the lipids reisolated, deacylated, and the GroPInsPs then separated by HPLC.
Balasubramanian, M; Moorthy, Pon Sathya; Neelagandan, K; Ponnuswamy, M N
2009-03-01
Haemoglobin is a metalloprotein which plays a major role in the transportation of oxygen from the lungs to tissues and of carbon dioxide back to the lungs. The present work reports the preliminary crystallographic study of low oxygen-affinity haemoglobin from cat in different crystal forms. Cat blood was collected, purified by anion-exchange chromatography and crystallized in two different conditions by the hanging-drop vapour-diffusion method under unbuffered low-salt and buffered high-salt concentrations using PEG 3350 as a precipitant. Intensity data were collected using MAR345 and MAR345dtb image-plate detector systems. Cat haemoglobin crystallizes in monoclinic and orthorhombic crystal forms with one and two whole biological molecules (alpha(2)beta(2)), respectively, in the asymmetric unit.
Martínez-Castillo, Moisés; Cárdenas-Guerra, Rosa Elena; Arroyo, Rossana; Debnath, Anjan; Rodríguez, Mario Alberto; Sabanero, Myrna; Flores-Sánchez, Fernando; Navarro-Garcia, Fernando; Serrano-Luna, Jesús; Shibayama, Mineko
2017-07-01
The aim of this work was to identify, characterize and evaluate the pathogenic role of mucinolytic activity released by Naegleria fowleri. Zymograms, protease inhibitors, anion exchange chromatography, MALDI-TOF-MS, enzymatic assays, Western blot, and confocal microscopy were used to identify and characterize a secreted mucinase; inhibition assays using antibodies, dot-blots and mouse survival tests were used to evaluate the mucinase as a virulence factor. A 94-kDa protein with mucinolytic activity was inducible and abolished by p-hydroxymercuribenzoate. MALDI-TOF-MS identified a glycoside hydrolase. Specific antibodies against N. fowleri-glycoside hydrolase inhibit cellular damage and MUC5AC degradation, and delay mouse mortality. Our findings suggest that secretory products from N. fowleri play an important role in mucus degradation during the invasion process.
Ralet, Marie-Christine; Crépeau, Marie-Jeanne; Bonnin, Estelle
2008-06-01
Commercial acid-extracted sugar beet pectin was extensively hydrolysed using an endo-polygalacturonase (AnPGI from Aspergillus niger or AnPGII from A. niger or FmPG from Fusarium moniliforme) in combination with Aspergillus aculeatus pectin methyl-esterase (AaPME). The homogalacturonan-derived oligogalacturonates released were quantified by high-performance anion-exchange chromatography and their structure determined by mass spectrometry. The different endo-polygalacturonases exhibited variable tolerance towards acetyl groups. AnPGI was the most active and FmPG the less. A hypothetical homogalacturonan was constructed using the AnPGI-recovered oligogalacturonates as building blocks and the validity of the model was checked taking into account FmPG observed requirements and hydrolysis products. A blockwise repartition of the acetyl groups onto sugar beet pectin homogalacturonan is proposed.
Purification of recombinant ovalbumin from inclusion bodies of Escherichia coli.
Upadhyay, Vaibhav; Singh, Anupam; Panda, Amulya K
2016-01-01
Recombinant ovalbumin expressed in bacterial host is essentially free from post-translational modifications and can be useful in understanding the structure-function relationship of the protein. In this study, ovalbumin was expressed in Escherichia coli in the form of inclusion bodies. Ovalbumin inclusion bodies were solubilized using urea and refolded by decreasing the urea concentration by dilution. Refolded protein was purified by anion exchange chromatography. Overall recovery of purified recombinant ovalbumin from inclusion bodies was about 30% with 98% purity. Purified recombinant ovalbumin was characterized by mass spectrometry, circular dichroism and fluorescence spectroscopy. Recombinant ovalbumin was shown to be resistant to trypsin using protease resistance assay. This indicated proper refolding of ovalbumin from inclusion bodies of E. coli. This method provides a simple way of producing ovalbumin free of post-translational modifications. Copyright © 2015 Elsevier Inc. All rights reserved.
RNA isolation and fractionation with compaction agents
NASA Technical Reports Server (NTRS)
Murphy, J. C.; Fox, G. E.; Willson, R. C.
2001-01-01
A new approach to the isolation of RNA from bacterial lysates employs selective precipitation by compaction agents, such as hexammine cobalt and spermidine. Using 3.5 mM hexammine cobalt, total RNA can be selectively precipitated from a cell lysate. At a concentration of 2 mM hexammine cobalt, rRNA can be fractionated from low molecular weight RNA. The resulting RNA mixture is readily resolved to pure 5S and mixed 16S/23S rRNA by nondenaturing anion-exchange chromatography. Using a second stage of precipitation at 8 mM hexammine cobalt, the low molecular weight RNA fraction can be isolated by precipitation. Compaction precipitation was also applied to the purification of an artificial stable RNA derived from Escherichia coli 5S rRNA and to the isolation of an Escherichia coli-expressed ribozyme. Copyright 2001 Academic Press.
A thermostable trypsin inhibitor with antiproliferative activity from small pinto beans.
Chan, Yau Sang; Zhang, Yanbo; Sze, Stephen Cho Wing; Ng, Tzi Bun
2014-08-01
Small pinto bean is a cultivar of Phaseolus vulgaris. It produces a 16-kDa trypsin inhibitor that could be purified using anion exchange and size chromatography. Q-Sepharose, Mono Q and Superdex 75 columns were employed for the isolation process. Small pinto bean trypsin inhibitor demonstrated moderate pH stability (pH 2-10) and marked heat stability, with its trypsin inhibitory activity largely retained after exposure to 100 °C for half an hour. The activity was abolished in the presence of dithiothreitol, in a dose-dependent manner, implying that disulfide bonds in small pinto bean trypsin inhibitor are crucial for the activity. The trypsin inhibitor showed a blocked N-terminus. The trypsin inhibitor only slightly inhibited the viability of breast cancer MCF7 and hepatoma HepG2 cells at 125 μM.
Elaidate-Intercalated hydrotalcite as a sorbent material for metalaxyl immobilitzation in soil
NASA Astrophysics Data System (ADS)
López-Cabeza, Rocío; Cornejo, Juan; Hermosín, María C.; Cox, Lucía; Celis, Rafael
2015-04-01
Layered double hydroxides (LDHs), also known as hydrotalcite-like compounds (HTs), comprise a special group of layered materials. Their structure consists of positively charged layers of mixed divalent (MII) and trivalent (MIII) metal hydroxide [MII1-xMIIIx(OH)2]x+, with the positive charge being balanced by inorganic hydrated anions (An-x/n·mH2O), which occupy the interlayer space. LDHs have anion exchange properties and, therefore, are good sorbents for anionic pollutants. In addition, the anionic exchange properties of LDHs allow the intercalation of organic anions in the interlayer space to render the LDH surface hydrophobic. This increases its affinity to hydrophobic organic compounds. Pesticides with chiral centers are an emerging class of organic pollutants and it has become clear that addressing the different efficacy, toxicity, and environmental behavior of chiral pesticide enantiomers is necessary to avoid the incorrect assumption that enantiomers have identical environmental behavior. Appropriate soil remediation strategies accounting for the enantioselective behavior of chiral pesticide enantiomers are also needed. In this work, we evaluated the performance of elaidate-modified hydrotalcite (HT-ELA) as a sorbent to remove the chiral fungicide metalaxyl from aqueous solution and as an amendment for metalaxyl immobilization in soil. Analysis of metalaxyl by chiral high-performance liquid chromatography allowed us to monitor the sorption and mobility of the two enantiomers of metalaxyl, S-(+)-metalaxyl and R-(-)-metalaxyl, independently. Batch sorption experiments showed that HT-ELA [Mg3Al(OH)8ELA] displayed an excellent performance as an sorbent of the two enantiomers of metalaxyl from aqueous solution and that its addition to a sandy loam agricultural soil at a rate of 1% greatly enhanced the sorption of metalaxyl enantiomers by the soil. Column leaching experiments demonstrated that amending the soil top layer (0-2.5 cm) with HT-ELA at a rate of 1% reduced the leaching of S- and R-metalaxyl. The R-enantiomer of metalaxyl leached less than the S-enantiomer due to its faster degradation in the soil. Our results illustrate the ability of elaidate-modified hydrotalcite to enhance the retention of the two enantiomers of the fungicide metalaxyl in the tested soil, which may be useful in the design of immobilization strategies, particularly of the more persistent S-metalaxyl enantiomer, which may represent increased risk of ground water contamination. Acknowledgments: MINECO Project AGL2011-23779, FACCE-JPI Project Designchar4food, JA Research Group AGR-264 and FEDER-FSE (OP 2007-2013).
Doco, Thierry; Williams, Pascale; Meudec, Emmanuelle; Cheynier, Véronique; Sommerer, Nicolas
2015-01-21
The major neutral oligosaccharides of a Carignan red wine have been characterized for the first time. The oligosaccharides were prepared after removal of phenolic compounds by polyamide chromatography and of polysaccharides by alcohol precipitation and then were fractionated by anion exchange and size-exclusion chromatography. In a second step, the glycosyl composition and linkages of wine oligosaccharides were determined. Oligosaccharide fractions were analyzed by mass spectrometry (MS) with an electrospray ionization (ESI) source and an ion trap mass analyzer after separation by hydrophilic interaction liquid chromatography on a Nucleodur HILIC column (zwitterionic sulfoalkyl betaine stationary phase). Glycosyl residue composition analysis showed the predominant presence of arabinose, with galactose, rhamnose, and mannose in lower proportion. Neutral oligosaccharides were present at a concentration of 185 mg/L in this wine. The MS spectra in the negative ion mode of the oligosaccharide fractions showed a series of oligosaccharidic structures corresponding to oligo-arabinans often linked to the basic unit α-l-Rhap-(1 → 4)-α-d-GalpA. The wine oligosaccharides identified correspond to arabino-oligosaccharides, rhamno-arabino-oligosaccharides, and different rhamnogalacturonan-arabino-oligosaccharides with DP ranging from 5 to 49, resulting from the degradation of grape cell wall pectins. Oligosaccharides have an extreme diversity, with more than 100 peaks detected in HPLC-ESI-MS spectra corresponding each to at least one oligosaccharidic structure.
High-capacity composite adsorbents for nucleic acids.
Tiainen, Peter; Rokebul Anower, M; Larsson, Per-Olof
2011-08-05
Cytopore™ is a bead-shaped, macroporous and easily compressible cellulose-based anion-exchange material intended for cultivation of anchor-dependent animal cells. Reticulated vitreous carbon (RVC) is a strong, non-compressible, high voidage (97%) matrix material that can be cut to desired geometrical shapes. Cytopore and RVC were combined to cylindrical composites (25 mm × 10 mm) fitted inside chromatography columns. The composite combined the advantageous properties of both its constituents, making it suitable for column chromatography. The composite could withstand very high flow rates without compaction of the bed (>25 column volumes/min; 4000 cm h(-1)). Chromatography runs with tracers showed a low HETP value (0.3mm), suggesting that pore flow was in operation. The dynamic binding capacities (10% breakthrough) per gram of dry weight Cytopore were determined for several compounds including DNA and RNA and were found to be 240-370 mg/g. The composite was used to isolate pUC 18-type plasmids from a cleared alkaline lysate in a good yield. Confocal microscopy studies showed that plasmids were bound not only to the surface of the Cytopore material but also within the matrix walls, thus offering an explanation to the very high binding capacities observed. The concept of using a composite prepared from a mechanically weak, high-binding material and a strong scaffold material may be applied to other systems as well. Copyright © 2011 Elsevier B.V. All rights reserved.
A flow-through chromatography process for influenza A and B virus purification.
Weigel, Thomas; Solomaier, Thomas; Peuker, Alessa; Pathapati, Trinath; Wolff, Michael W; Reichl, Udo
2014-10-01
Vaccination is still the most efficient measure to protect against influenza virus infections. Besides the seasonal wave of influenza, pandemic outbreaks of bird or swine flu represent a high threat to human population. With the establishment of cell culture-based processes, there is a growing demand for robust, economic and efficient downstream processes for influenza virus purification. This study focused on the development of an economic flow-through chromatographic process avoiding virus strain sensitive capture steps. Therefore, a three-step process consisting of anion exchange chromatography (AEC), Benzonase(®) treatment, and size exclusion chromatography with a ligand-activated core (LCC) was established, and tested for purification of two influenza A virus strains and one influenza B virus strain. The process resulted in high virus yields (≥68%) with protein contamination levels fulfilling requirements of the European Pharmacopeia for production of influenza vaccines for human use. DNA was depleted by ≥98.7% for all strains. The measured DNA concentrations per dose were close to the required limits of 10ng DNA per dose set by the European Pharmacopeia. In addition, the added Benzonase(®) could be successfully removed from the product fraction. Overall, the presented downstream process could potentially represent a simple, robust and economic platform technology for production of cell culture-derived influenza vaccines. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Ya; Lucy, Charles A
2014-12-05
In HPLC, injection of solvents that differ from the eluent can result in peak broadening due to solvent strength mismatch or viscous fingering. Broadened, distorted or even split analyte peaks may result. Past studies of this injection-induced peak distortion in reversed phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography have led to the conclusion that the sample should be injected in the eluent or a weaker solvent. However, there have been no studies of injection-induced peak distortion in ion chromatography (IC). To address this, injection-induced effects were studied for six inorganic anions (F-, Cl-, NO2-, Br-, NO3- and SO4(2-)) on a Dionex AS23 IC column using a HCO3-/CO3(2-) eluent. The VanMiddlesworth-Dorsey injection sensitivity parameter (s) showed that IC of anions has much greater tolerance to the injection matrix (HCO3-/CO3(2-) herein) mismatch than RPLC or HILIC. Even when the injection contained a ten-fold greater concentration of HCO3-/CO3(2-) than the eluent, the peak shapes and separation efficiencies of six analyte ions did not change significantly. At more than ten-fold greater matrix concentrations, analyte anions that elute near the system peak of the matrix were distorted, and in the extreme cases exhibited a small secondary peak on the analyte peak front. These studies better guide the degree of dilution needed prior to IC analysis of anions. Copyright © 2014 Elsevier B.V. All rights reserved.
Determination of selected anions in water by ion chromatography
Fishman, Marvin J.; Pyen, Grace
1979-01-01
Ion chromatography is a rapid, sensitive, precise, and accurate method for the determination of major anions in rain water and surface waters. Simultaneous analyses of a single sample for bromide, chloride, fluoride, nitrate, nitrite, orthophosphate, and sulfate require approximately 20 minutes to obtain a chromatogram.Minimum detection limits range from 0.01 milligrams per liter for fluoride to 0.20 milligrams per liter for chloride and sulfate. Percent relative standard deviations were less than nine percent for all anions except nitrite in Standard Reference Water Samples. Only one reference sample contained nitrite and its concentration was near the minimum level of detection. Similar precision was found for chloride, nitrate, and sulfate at concentrations less than 5 milligrams per liter in rainfall samples. Precision for fluoride ranged from 12 to 22 percent, but is attributed to the low concentrations in these samples. The other anions were not detected.To determine accuracy of results, several samples were spiked with known concentrations of fluoride, chloride, nitrate, and sulfate; recoveries ranged from 96 to 103 percent. Known amounts of bromide and phosphate were added, separately, to several other waters, which contained bromide or phosphate. Recovery of added bromide and phosphate ranged from approximately 95 to 104 percent. No recovery data were obtained for nitrite.Chloride, nitrate, nitrite, orthophosphate, and sulfate, in several samples, were also determined independently by automated colorimetric procedures. An automated ion-selective electrode method was used to determine fluoride. Results are in agreement with results obtained by ion chromatography.
Thin Robust Anion Exchange Membranes for Fuel Cell Applications
2014-01-01
water diffsuion. Here we use a Polyphenylene Oxide dibock polymer co-polymerized with polyvinyl benzyl trimethyl ammonium blocks ( PPO -b-PVBTMA[F...in PPO -b-PVBTMA[F-] AEM under saturated humidity environment ECS Transactions, 64 (3) 1185-1194 (2014) 1191 Conductivity of this membrane was...makes it a promising material for applications in anion exchange membrane fuel cells. Figure 5: Conductivity of PPO -b-PVBTMA[F-] under 95% Relative