Ziani, Khalid; Barish, Jeffrey A; McClements, David Julian; Goddard, Julie M
2011-08-01
The purpose of this study was to examine the interaction between lipid droplets and polyethylene surfaces, representative of those commonly used in food packaging. Lipid droplets with various surface charges were prepared by homogenizing corn oil and water in the presence of surfactants with different electrical characteristics: non-ionic (Tween 80, T80), cationic (lauric arginate, LAE), and/or anionic (sodium dodecyl sulfate, SDS). The ionic properties of polyethylene surfaces were modified by UV-treatment. Stable emulsions containing small droplets (d<200 nm) with nearly neutral (T80), cationic (T80: LAE), and anionic (T80: SDS) charges were prepared by adding different levels of the ionic surfactants to Tween 80 stabilized emulsions. Scanning electronic microscopy (SEM), confocal fluorescence microscopy, and ATR-FTIR showed that the number of droplets attached to the polyethylene surfaces depended on the droplet charge and the polyethylene surface characteristics. The greatest degree of droplet adsorption was observed for the cationic droplets to the UV-ozone treated polyethylene surfaces, which was attributed to electrostatic attraction. These results are important for understanding the behavior of encapsulated lipophilic components in food containers. Copyright © 2011 Elsevier Inc. All rights reserved.
Boncina, Matjaz; Rescic, Jurij; Vlachy, Vojko
2008-08-01
The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br(-), Cl(-), F(-), and H(2)PO(4)(-) (all in combination with Na(+)), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs(+), K(+), and Na(+) (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order F(-) < H(2)PO(4)(-) < Cl(-) < Br(-) (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs(+) < K(+) < Na(+)) in this situation.
Nanostructure of propylammonium nitrate in the presence of poly(ethylene oxide) and halide salts
NASA Astrophysics Data System (ADS)
Stefanovic, Ryan; Webber, Grant B.; Page, Alister J.
2018-05-01
Nanoscale structure of protic ionic liquids is critical to their utility as molecular electrochemical solvents since it determines the capacity to dissolve salts and polymers such as poly(ethylene oxide) (PEO). Here we use quantum chemical molecular dynamics simulations to investigate the impact of dissolved halide anions on the nanostructure of an archetypal nanostructured protic ionic liquid, propylammonium nitrate (PAN), and how this impacts the solvation of a model PEO polymer. At the molecular level, PAN is nanostructured, consisting of charged/polar and uncharged/nonpolar domains. The charged domain consists of the cation/anion charge groups, and is formed by their electrostatic interaction. This domain solvophobically excludes the propyl chains on the cation, which form a distinct, self-assembled nonpolar domain within the liquid. Our simulations demonstrate that the addition of Cl- and Br- anions to PAN disrupts the structure within the PAN charged domain due to competition between nitrate and halide anions for the ammonium charge centre. This disruption increases with halide concentration (up to 10 mol. %). However, at these concentrations, halide addition has little effect on the structure of the PAN nonpolar domain. Addition of PEO to pure PAN also disrupts the structure within the charged domain of the liquid due to hydrogen bonding between the charge groups and the terminal PEO hydroxyl groups. There is little other association between the PEO structure and the surrounding ionic liquid solvent, with strong PEO self-interaction yielding a compact, coiled polymer morphology. Halide addition results in greater association between the ionic liquid charge centres and the ethylene oxide components of the PEO structure, resulting in reduced conformational flexibility, compared to that observed in pure PAN. Similarly, PEO self-interactions increase in the presence of Cl- and Br- anions, compared to PAN, indicating that the addition of halide salts to PAN decreases its utility as a molecular solvent for polymers such as PEO.
Shang, Barry Z; Wang, Zuowei; Larson, Ronald G
2009-11-19
We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges on larger units in the polymer chain.
Synthesis and Properties of Highly Dispersed Ionic Silica–Poly(ethylene oxide) Nanohybrids
2013-01-01
We report an ionic hybrid based on silica nanoparticles as the anion and amine-terminated poly(ethylene oxide) (PEO) as a cation. The charge on the nanoparticle anion is carried by the surface hydroxyls. SAXS and TEM reveal an exceptional degree of dispersion of the silica in the polymer and high degree of order in both thin film and bulk forms. In addition to better dispersion, the ionic hybrid shows improved flow characteristics compared to silica/PEO mixtures in which the ionic interactions are absent. PMID:23351113
Mechanisms of Polyelectrolyte Enhanced Surfactant Adsorption at the Air-Water Interface
Stenger, Patrick C.; Palazoglu, Omer A.; Zasadzinski, Joseph A.
2009-01-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids. PMID:19366599
Mechanisms of polyelectrolyte enhanced surfactant adsorption at the air-water interface.
Stenger, Patrick C; Palazoglu, Omer A; Zasadzinski, Joseph A
2009-05-01
Chitosan, a naturally occurring cationic polyelectrolyte, restores the adsorption of the clinical lung surfactant Survanta to the air-water interface in the presence of albumin at much lower concentrations than uncharged polymers such as polyethylene glycol. This is consistent with the positively charged chitosan forming ion pairs with negative charges on the albumin and lung surfactant particles, reducing the net charge in the double-layer, and decreasing the electrostatic energy barrier to adsorption to the air-water interface. However, chitosan, like other polyelectrolytes, cannot perfectly match the charge distribution on the surfactant, which leads to patches of positive and negative charge at net neutrality. Increasing the chitosan concentration further leads to a reduction in the rate of surfactant adsorption consistent with an over-compensation of the negative charge on the surfactant and albumin surfaces, which creates a new repulsive electrostatic potential between the now cationic surfaces. This charge neutralization followed by charge inversion explains the window of polyelectrolyte concentration that enhances surfactant adsorption; the same physical mechanism is observed in flocculation and re-stabilization of anionic colloids by chitosan and in alternate layer deposition of anionic and cationic polyelectrolytes on charged colloids.
Process for separating and recovering an anionic dye from an aqueous solution
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1998-01-01
A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.
Process for separating and recovering an anionic dye from an aqueous solution
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1998-01-13
A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1999-01-01
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture.
Process for recovering chaotropic anions from an aqueous solution also containing other ions
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1999-03-30
A solid/liquid process for the separation and recovery of chaotropic anions from an aqueous solution is disclosed. The solid support comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the chaotropic anions are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved salt (lyotrope). A solid/liquid phase admixture of separation particles containing bound chaotropic anions in such an aqueous solution is also contemplated, as is a chromatography apparatus containing that solid/liquid phase admixture. 19 figs.
NASA Astrophysics Data System (ADS)
Sampora, Yulianti; Juwono, Ariadne L.; Haryono, Agus; Irawan, Yan
2017-11-01
Mechanical Enhanced Oil Recovery (EOR) through chemical injection is using an anionic surfactant to improve the recovery of oil residues, particularly in a reservoir area that has certain characteristics. This case led the authors to conduct research on the synthesis of an anionic surfactant based on oleic acid and polyethylene glycol 400 that could be applied as a chemical injection. In this work, we investigate the sulfonation of Polyethylene glycol oleate (PDO) in a sulfuric acid agent. PDO in this experiment was derived from Indonesian palm oil. Variation of mole reactant and reaction time have been studied. The surfactant has been characterized by measuring the interfacial tension, acid value, ester value, saponification value, iodine value, Fourier Transform Infrared (FTIR), and particle size analyzer. There is a new peak at 1170-1178 cm-1 indicating that S=O bond has formed. PDO sulfonate exhibits good surface activity due to interfacial tension of 0,003 mN/m. Thus, polyethylene glycol oleate sulfonate was successfully synthesized and it could be useful as a novel an anionic surfactant.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen
2017-11-01
It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.
Bitner-Michalska, Anna; Nolis, Gene M.; Żukowska, Grażyna; Zalewska, Aldona; Poterała, Marcin; Trzeciak, Tomasz; Dranka, Maciej; Kalita, Michał; Jankowski, Piotr; Niedzicki, Leszek; Zachara, Janusz; Marcinek, Marek; Wieczorek, Władysław
2017-01-01
A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic conductivities were observed. As an example, “liquid-like” high conductivities (>1 mS cm−1) were obtained above 70 °C for solid-polymer electrolyte with a PEO to NaTCP molar ratio of 16:1. All presented salts showed high thermal stability and suitable windows of electrochemical stability between 3 and 5 V. These new anions open a new class of compounds with non-covalent structure for electrolytes system applications. PMID:28067301
NASA Astrophysics Data System (ADS)
Bitner-Michalska, Anna; Nolis, Gene M.; Żukowska, Grażyna; Zalewska, Aldona; Poterała, Marcin; Trzeciak, Tomasz; Dranka, Maciej; Kalita, Michał; Jankowski, Piotr; Niedzicki, Leszek; Zachara, Janusz; Marcinek, Marek; Wieczorek, Władysław
2017-01-01
A new family of fluorine-free solid-polymer electrolytes, for use in sodium-ion battery applications, is presented. Three novel sodium salts withdiffuse negative charges: sodium pentacyanopropenide (NaPCPI), sodium 2,3,4,5-tetracyanopirolate (NaTCP) and sodium 2,4,5-tricyanoimidazolate (NaTIM) were designed andtested in a poly(ethylene oxide) (PEO) matrix as polymer electrolytes for anall-solid sodium-ion battery. Due to unique, non-covalent structural configurations of anions, improved ionic conductivities were observed. As an example, “liquid-like” high conductivities (>1 mS cm-1) were obtained above 70 °C for solid-polymer electrolyte with a PEO to NaTCP molar ratio of 16:1. All presented salts showed high thermal stability and suitable windows of electrochemical stability between 3 and 5 V. These new anions open a new class of compounds with non-covalent structure for electrolytes system applications.
Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A
2016-05-15
The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen
2017-01-01
Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Shihu; Kong, Xiangyu; Wang, Xue B.
2015-01-14
Due to fast solvent evaporation in electrospray ionization (ESI), the concentration of initially dilute electrolyte solutions rapidly increases to afford formation of supersaturated droplets and generating various pristine anhydrous salt clusters in the gas phase. The size, composition, and charge distributions of these clusters, in principle witness the nucleation evolution in solutions. Herein, we report a microscopic study on the initial stage of nucleation and crystallization of sodium/potassium thiocyanate salt solutions simulated in the ESI process. Singly charged M x(SCN)⁻ x+1, doubly charged M y(SCN)²⁻ y+2 (M = Na, K), and triply charged K z(SCN)³⁻ z+3 anion clusters were producedmore » via electrospray of the corresponding salt solutions, and were characterized by negative ion photoelectron spectroscopy (NIPES). The vertical detachment energies (VDEs) of these sodium/potassium thiocyanate cluster anions were obtained, and theoretical calculations were carried out for sodium thiocyanate clusters in assisting spectral identification. The measured VDEs of singly charged anions M x(SCN)⁻ x+1 (M = Na and K) demonstrate they are superhalogen anions. The existence of doubly charged anions M y (SCN)²⁻ y+2 (y = 2x, x ≥ 4 and 3 for M = Na and K, respectively) and triply charged anions K z(SCN)³⁻ z+3 (z = 3x, x ≥ 6) were initially discovered from the photoelectron spectra for those singly charged anions of Msub>x(SCN)⁻ x+1 with the same mass-to-charge ratio (m/z), and later independently confirmed by observation of their distinct mass spectral distributions and by taking their NIPE spectra for those pure multiply charged anions with their m/z different from the singly charged species. For large clusters, multiply charged clusters are found to become preferred, but at higher temperatures those multiply charged clusters are suppressed. The series of anion clusters investigated here range from molecular-like M₁(SCN)⁻ 2 to nano-sized K₂₂(SCN)³⁻ 25, providing a vivid molecular-level growth pattern reflecting the initial salt nucleation process.« less
NASA Astrophysics Data System (ADS)
LeRoy, S.; Segur, P.; Teyssedre, G.; Laurent, C.
2004-01-01
We present a conduction model aimed at describing bipolar transport and space charge phenomena in low density polyethylene under dc stress. In the first part we recall the basic requirements for the description of charge transport and charge storage in disordered media with emphasis on the case of polyethylene. A quick review of available conduction models is presented and our approach is compared with these models. Then, the bases of the model are described and related assumptions are discussed. Finally, results on external current, trapped and free space charge distributions, field distribution and recombination rate are presented and discussed, considering a constant dc voltage, a step-increase of the voltage, and a polarization-depolarization protocol for the applied voltage. It is shown that the model is able to describe the general features reported for external current, electroluminescence and charge distribution in polyethylene.
Reagent Anions for Charge Inversion of Polypeptide/Protein Cations in the Gas Phase
He, Min; Emory, Joshua F.; McLuckey, Scott A.
2005-01-01
Various reagent anions capable of converting polypeptide cations to anions via ion/ion reactions have been investigated. The major charge inversion reaction channels include multiple proton transfer and adduct formation. Dianions composed of sulfonate groups as the negative charge carriers show essentially exclusive adduct formation in converting protonated peptides and proteins to anions. Dianions composed of carboxylate groups, on the other hand, show far more charge inversion via multiple proton transfer, with the degree of adduct formation dependent upon both the size of the polypeptide and the spacings between carboxylate groups in the dianion. More highly charged carboxylate-containing anions, such as those derived from carboxylate-terminated polyamidoamine half-generation dendrimers show charge inversion to give anion charges as high in magnitude as −4, with the degree of adduct formation being inversely related to dendrimer generation. All observations can be interpreted on the basis of charge inversion taking place via a long-lived chemical complex. The lifetime of this complex is related to the strengths and numbers of the interactions of the reactants in the complex. Calculations with model systems are fully consistent with sulfonate groups giving rise to more stable complexes. The kinetic stability of the complex can also be affected by the presence of electrostatic repulsion if it is multiply charged. In general, this situation destabilizes the complex and reduces the likelihood for observation of adducts. The findings highlight the characteristics of multiply charged anions that play roles in determining the nature of charge inversion products associated with protonated peptides and proteins. PMID:15889906
Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y
1995-01-01
Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, S. H. M.; Kong, Xiang-Yu; Wang, Xue-Bin, E-mail: xuebin.wang@pnnl.gov
2015-01-14
Due to the fast solvent evaporation in electrospray ionization (ESI), the concentration of initially dilute electrolyte solutions rapidly increases to afford the formation of supersaturated droplets and generation of various pristine anhydrous salt clusters in the gas phase. The size, composition, and charge distributions of these clusters, in principle, witness the nucleation evolution in solutions. Herein, we report a microscopic study on the initial stage of nucleation and crystallization of sodium/potassium thiocyanate salt solutions simulated in the ESI process. Singly charged M{sub x}(SCN){sub x+1}{sup −}, doubly charged M{sub y}(SCN){sub y+2}{sup 2−} (M = Na, K), and triply charged K{sub z}(SCN){submore » z+3}{sup 3−} anion clusters (x, y, and z stand for the number of alkali atoms in the singly, doubly, and triply charged clusters, respectively) were produced via electrospray of the corresponding salt solutions and were characterized by negative ion photoelectron spectroscopy (NIPES). The vertical detachment energies (VDEs) of these sodium/potassium thiocyanate cluster anions were obtained, and theoretical calculations were carried out for the sodium thiocyanate clusters in assisting spectral identification. The measured VDEs of singly charged anions M{sub x}(SCN){sub x+1}{sup −} (M = Na and K) demonstrate that they are superhalogen anions. The existence of doubly charged anions M{sub y}(SCN){sub y+2}{sup 2−} (y = 2x, x ≥ 4 and 3 for M = Na and K, respectively) and triply charged anions K{sub z}(SCN){sub z+3}{sup 3−} (z = 3x, x ≥ 6) was initially discovered from the photoelectron spectra for those singly charged anions of M{sub x}(SCN){sub x+1}{sup −} with the same mass-to-charge ratio (m/z), and later independently confirmed by the observation of their distinct mass spectral distributions and by taking their NIPE spectra for those pure multiply charged anions with their m/z different from the singly charged species. For large clusters, multiply charged clusters were found to become preferred, but at higher temperatures, those multiply charged clusters were suppressed. The series of anion clusters investigated here range from molecular-like M{sub 1}(SCN){sub 2}{sup −} to nano-sized K{sub 22}(SCN){sub 25}{sup 3−}, providing a vivid molecular-level growth pattern reflecting the initial salt nucleation process.« less
Ion counting in supercapacitor electrodes using NMR spectroscopy.
Griffin, John M; Forse, Alexander C; Wang, Hao; Trease, Nicole M; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P
2014-01-01
(19)F NMR spectroscopy has been used to study the local environments of anions in supercapacitor electrodes and to quantify changes in the populations of adsorbed species during charging. In the absence of an applied potential, anionic species adsorbed within carbon micropores (in-pore) are distinguished from those in large mesopores and spaces between particles (ex-pore) by a characteristic nucleus-independent chemical shift (NICS). Adsorption experiments and two-dimensional exchange experiments confirm that anions are in dynamic equilibrium between the in- and ex-pore environments with an exchange rate in the order of tens of Hz. (19)F in situ NMR spectra recorded at different charge states reveal changes in the intensity and NICS of the in-pore resonances, which are interpreted in term of changes in the population and local environments of the adsorbed anions that arise due to the charge-storage process. A comparison of the results obtained for a range of electrolytes reveals that several factors influence the charging mechanism. For a tetraethylammonium tetrafluoroborate electrolyte, positive polarisation of the electrode is found to proceed by anion adsorption at a low concentration, whereas increased ion exchange plays a more important role for a high concentration electrolyte. In contrast, negative polarization of the electrode proceeds by cation adsorption for both concentrations. For a tetrabutylammonium tetrafluoroborate electrolyte, anion expulsion is observed in the negative charging regime; this is attributed to the reduced mobility and/or access of the larger cations inside the pores, which forces the expulsion of anions in order to build up ionic charge. Significant anion expulsion is also observed in the negative charging regime for alkali metal bis(trifluoromethane)sulfonimide electrolytes, suggesting that more subtle factors also affect the charging mechanism.
On the mechanism of charge transport in low density polyethylene
NASA Astrophysics Data System (ADS)
Upadhyay, Avnish K.; Reddy, C. C.
2017-08-01
Polyethylene based polymeric insulators, are being increasingly used in the power industry for their inherent advantages over conventional insulation materials. Specifically, modern power cables are almost made with these materials, replacing the mass-impregnated oil-paper cable technology. However, for ultra-high dc voltage applications, the use of these polymeric cables is hindered by ununderstood charge transport and accumulation. The conventional conduction mechanisms (Pool-Frenkel, Schottky, etc.) fail to track high-field charge transport in low density polyethylene, which is semi-crystalline in nature. Until now, attention was devoted mainly to the amorphous region of the material. In this paper, authors propose a novel mechanism for conduction in low density polyethylene, which could successfully track experimental results. As an implication, a novel, substantial relationship is established for electrical conductivity that could be effectively used for understanding conduction and breakdown in polyethylene, which is vital for successful development of ultra-high voltage dc cables.
NASA Astrophysics Data System (ADS)
Costa, Luciano T.; Sun, Bing; Jeschull, Fabian; Brandell, Daniel
2015-07-01
This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li+ coordination and transportation were studied in the ternary electrolyte system, i.e., PEO16LiTFSIṡ1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.
Costa, Luciano T; Sun, Bing; Jeschull, Fabian; Brandell, Daniel
2015-07-14
This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li(+) coordination and transportation were studied in the ternary electrolyte system, i.e., PEO16LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generated significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Luciano T., E-mail: ltcosta@id.uff.br; Sun, Bing; Jeschull, Fabian
2015-07-14
This paper presents atomistic molecular dynamics simulation studies of lithium bis(trifluoromethane)sulfonylimide (LiTFSI) in a blend of 1-ethyl-3-methylimidazolium (EMIm)-TFSI and poly(ethylene oxide) (PEO), which is a promising electrolyte material for Li- and Li-ion batteries. Simulations of 100 ns were performed for temperatures between 303 K and 423 K, for a Li:ether oxygen ratio of 1:16, and for PEO chains with 26 EO repeating units. Li{sup +} coordination and transportation were studied in the ternary electrolyte system, i.e., PEO{sub 16}LiTFSI⋅1.0 EMImTFSI, by applying three different force field models and are here compared to relevant simulation and experimental data. The force fields generatedmore » significantly different results, where a scaled charge model displayed the most reasonable comparisons with previous work and overall consistency. It is generally seen that the Li cations are primarily coordinated to polymer chains and less coupled to TFSI anion. The addition of EMImTFSI in the electrolyte system enhances Li diffusion, associated to the enhanced TFSI dynamics observed when increasing the overall TFSI anion concentration in the polymer matrix.« less
Jiang, Yangwei; Zhang, Dong; Zhang, Yaoyang; Deng, Zhenyu; Zhang, Linxi
2014-05-28
The adsorption-desorption transition of DNA in DNA-dendrimer solutions is observed when high-valence anions, such as hexavalent anions, are added to the DNA-dendrimer solutions. In the DNA-dendrimer solutions with low-valence anions, dendrimers bind tightly with the V-shaped double-stranded DNA. When high-valence anions, such as pentavalent or hexavalent anions, are added to the DNA-dendrimer solutions, the double-stranded DNA chains can be stretched straightly and the dendrimers are released from the double-stranded DNA chains. In fact, adding high-valence anions to the solutions can change the charge spatial distribution in the DNA-dendrimer solutions, and weaken the electrostatic interactions between the positively charged dendrimers and the oppositely charged DNA chains. Adsorption-desorption transition of DNA is induced by the overcharging of dendrimers. This investigation is capable of helping us understand how to control effectively the release of DNA in gene/drug delivery because an effective gene delivery for dendrimers includes non-covalent DNA-dendrimer binding and the effective release of DNA in gene therapy.
Tamilvanan, Shunmugaperumal; Kumar, Balakrishnan Ajith
2011-09-01
Acetazolamide (ACZM)-loaded anionic, cationic, and neutral-charged oil-in-water nanosized emulsions were prepared and compared with their mean droplet diameter, surface charge, entrapment efficiency, freeze-thaw cycling stability, in vitro drug release, and transcorneal permeation. The present study aims to determine the influence of ACZM loading on the performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions. Regardless of charges, all of these emulsions exhibited a nanometer range mean particle diameter (240-443 nm) following autoclave sterilization. While the anionic and cationic emulsions did show high negative (-36.9 mV) and positive zeta potential (+41.4 mV) values, the neutral-charged emulsion did not. Presence of cryoprotectants (5% w/w sucrose + 5% w/w sorbitol) improved the stability of cationic emulsion to droplet aggregation during freeze-thaw cycling. The in vitro release kinetic behavior of drug exchange with physiological anions present in the simulated tear solution appears to be complex and difficult to characterize using mathematical fitting model equations. Augmentation in drug permeation through goat cornea, in vitro, was noticed for cationic emulsion. ACZM-loaded cationic nanosized emulsion could be suitable for topical application into eye to elicit better therapeutic effect in comparison with its anionic and neutral-charged emulsions.
Removal of dissolved organic matter by anion exchange: Effect of dissolved organic matter properties
Boyer, T.H.; Singer, P.C.; Aiken, G.R.
2008-01-01
Ten isolates of aquatic dissolved organic matter (DOM) were evaluated to determine the effect that chemical properties of the DOM, such as charge density, aromaticity, and molecular weight, have on DOM removal by anion exchange. The DOM isolates were characterized asterrestrial, microbial, or intermediate humic substances or transphilic acids. All anion exchange experiments were conducted using a magnetic ion exchange (MIEX) resin. The charge density of the DOM isolates, determined by direct potentiometric titration, was fundamental to quantifying the stoichiometry of the anion exchange mechanism. The results clearly show that all DOM isolates were removed by anion exchange; however, differences among the DOM isolates did influence their removal by MIEX resin. In particular, MIEX resin had the greatest affinity for DOM with high charge density and the least affinity for DOM with low charge density and low aromaticity. This work illustrates that the chemical characteristics of DOM and solution conditions must be considered when evaluating anion exchange treatment for the removal of DOM. ?? 2008 American Chemical Society.
Wu, Yefan; Chen, Miaomiao; Fang, Yun; Zhu, Meng
2017-03-17
It was inferred from aqueous solution behavior of nonionic polymers and anionic surfactants that the formation of charged polymer-bound surfactant micelle above critical aggregation concentration (cac) and the formation of free surfactant micelle beyond polymer saturation point (psp), but there was still a lack of direct experimental evidence for the considered equilibrium chemical species. Three modes of capillary electrophoresis are applied in this paper to study the complexation between nonionic polymers, polyvinylpyrrolidone (PVP) or polyethylene glycol (PEG), and sodium dodecylbenzenesulfonate (SDBS) by successfully distinguishing the imaginary charged polymer-bound SDBS micelle from nonionic polymer and SDBS molecule. Perhaps even more important, it is the action of SDBS as both a main surfactant and a UV probe that makes the free surfactant micelle emerged in electropherogram beyond psp, and thus makes it possible for the first time to provide the equilibrium relationship of the polymer-related and the surfactant-related species in the concentration regions divided into by cac and psp. Copyright © 2017 Elsevier B.V. All rights reserved.
Melgar, Dolores; Bandeira, Nuno A G; Bonet Avalos, Josep; Bo, Carles
2017-02-15
Keplerates are a family of anionic metal oxide spherical capsules containing up to 132 metal atoms and some hundreds of oxygen atoms. These capsules holding a high negative charge of -12 coordinate both mono-anionic and di-anionic ligands thus increasing their charge up to -42, even up to -72, which is compensated by the corresponding counter-cations in the X-ray structures. We present an analysis of the relative importance of several energy terms of the coordinate bond between the capsule and ligands like carbonate, sulphate, sulphite, phosphinate, selenate, and a variety of carboxylates, of which the overriding component is contributed by solvation/de-solvation effects.
NASA Astrophysics Data System (ADS)
Vinodha, M.; Senthilkumar, K.
2018-05-01
The structure-activity relationship of fused π-conjugated imidazolium cation with three counter anion molecules, BF4-, CF3SO3- and (CF3SO2)2N-, was studied using electronic structure calculations. The structural, opto-electronic and charge transport properties of these complexes were studied. The charge transfer from π-conjugated imidazolium(I) to counter anion was confirmed in all the studied complexes. Interaction energy varies significantly depending on the counter anion and the stability was found higher for I-BF4 complex than both I-CF3SO3 and I-(CF3SO2)2N complexes. The strong (C-H)+...F- hydrogen bond of length 1.95 Å between fused π-conjugated imidazolium and BF-4 anion is the driving force for the strongest interaction energy in I-BF4 complex. The energy decomposition analysis confirms that the interaction between imidazolium and counter anion is mainly driven by electrostatic and orbital interaction. It has been observed that the absorption spectra of the complex are independent of anion nature but the influence of anion character is observed on frontier molecular orbital pattern. The charge transport property of I-BF4 complex was studied by using tight-binding Hamiltonian approach and found that the hole mobility in I-BF4 is 1.13 × 10-4 cm2 V-1 s-1.
Interrelation of electret properties of polyethylene foam from the method of cross-linking
NASA Astrophysics Data System (ADS)
Gilmanov, I. R.; Galikhanov, M. F.; Gilmanova, A. R.
2017-09-01
The electret properties of chemically cross-linked polyethylene foam and physically cross-linked polyethylene foam have been studied. It has been shown that chemically cross-linked polyethylene foam has higher surface potential, effective surface charge density and electric field strength compared to physically bonded polyethylene foam. This is due to the presence of molecules and fragments of dicumyl peroxide, which can play the role of traps for injection charge carriers, a greater degree of cross-linking and with the oxidation of polyethylene, which occurs during irradiation during physical cross-linking. When the foam is deformed, its electret properties are reduced, and when the volume is relaxed, they are restored. This is due to the partial mutual compensation of homo- and heterocharge during compression and the return of the structure of the gas-filled polymer to its former position when the load is removed.
Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
NASA Astrophysics Data System (ADS)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
Room-Temperature Synthesis of GaN Driven by Kinetic Energy beyond the Limit of Thermodynamics.
Imaoka, Takane; Okada, Takeru; Samukawa, Seiji; Yamamoto, Kimihisa
2017-12-06
The nitridation reaction is significantly important to utilize the unique properties of nitrides and nitrogen-doped materials. However, nitridation generally requires a high temperature or highly reactive reagents (often explosive) because the energies of N-N bond cleavage and nitrogen anion formation (N 3- ) are very high. We demonstrate the first room-temperature synthesis of GaN directly from GaCl 3 by nanoscale atom exchange reaction. Nonequilibrium nitrogen molecules with very high translational energy were used as a chemically stable and safe nitrogen source. The irradiation of molecular nitrogen to the desired reaction area successfully provided a gallium nitride (GaN) nanosheet that exhibited a typical photoluminescence spectrum. Because this process retains the target substrate room temperature and does not involve any photon nor charged ion, it allows damage-less synthesis of the semiconducting metal nitrides, even directly on plastic substrates such as polyethylene terephthalate (PET).
Rouster, Paul; Pavlovic, Marko; Szilagyi, Istvan
2017-07-13
Ion specific effects on colloidal stability of titania nanosheets (TNS) were investigated in aqueous suspensions. The charge of the particles was varied by the pH of the solutions, therefore, the influence of mono- and multivalent anions on the charging and aggregation behavior could be studied when they were present either as counter or co-ions in the systems. The aggregation processes in the presence of inorganic salts were mainly driven by interparticle forces of electrostatic origin, however, chemical interactions between more complex ions and the surface led to additional attractive forces. The adsorption of anions significantly changed the surface charge properties and hence, the resistance of the TNS against salt-induced aggregation. On the basis of their ability in destabilization of the dispersions, the monovalent ions could be ordered according to the Hofmeister series in acidic solutions, where they act as counterions. However, the behavior of the biphosphate anion was atypical and its adsorption induced charge reversal of the particles. The multivalent anions destabilized the oppositely charged TNS more effectively and the aggregation processes followed the Schulze-Hardy rule. Only weak or negligible interactions were observed between the anions and the particles in alkaline suspensions, where the TNS possessed negative charge.
Electric Charge Accumulation in Polar and Non-Polar Polymers under Electron Beam Irradiation
NASA Astrophysics Data System (ADS)
Nagasawa, Kenichiro; Honjoh, Masato; Takada, Tatsuo; Miyake, Hiroaki; Tanaka, Yasuhiro
The electric charge accumulation under an electron beam irradiation (40 keV and 60 keV) was measured by using the pressure wave propagation (PWP) method in the dielectric insulation materials, such as polar polymeric films (polycarbonate (PC), polyethylene-naphthalate (PEN), polyimide (PI), and polyethylene-terephthalate (PET)) and non-polar polymeric films (polystyrene (PS), polypropylene (PP), polyethylene (PE) and polytetrafluoroethylene (PTFE)). The PE and PTFE (non-polar polymers) showed the properties of large amount of electric charge accumulation over 50 C/m3 and long saturation time over 80 minutes. The PP and PS (non-polar polymer) showed the properties of middle amount of charge accumulation about 20 C/m3 and middle saturation time about 1 to 20 minutes. The PC, PEN, PI and PET (polar polymers) showed the properties of small amount of charge accumulation about 5 to 20 C/m3 and within short saturation time about 1.0 minutes. This paper summarizes the relationship between the properties of charge accumulation and chemical structural formula, and compares between the electro static potential distribution with negative charged polymer and its chemical structural formula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarode, Himanshu N.; Yang, Yuan; Motz, Andrew R.
Herein, we report the anion and water transport properties of an anion-exchange membrane (AEM) comprising a block copolymer of polyethylene and poly- (vinylbenzyl trimethylammonium) (PE-b-PVBTMA) with an ion-exchange capacity (IEC) of 1.08 mequiv/g. The conductivity varied little among the anions CO3 2-, HCO3 -, and F-, with a value of Ea ≈ 20 kJ/mol and a maximum fluoride conductivity of 34 mS/cm at 90 °C and 95% relative humidity. The Br- conductivity showed a transition at 60 °C. Pulsed gradient stimulated spin echo nuclear magnetic resonance (PGSE NMR) experiments showed that water diffusion in this AEM is heterogeneous and ismore » affected by the anion present, being fastest in the presence of F-. We determined the methanol self-diffusion in this membrane and observed that it is lower than that in Nafion 117, because of the lower water uptake. This article reports the first measurements of 13C-labeled bicarbonate self-diffusion in an AEM using PGSE NMR spectrometry, which was found to be significantly slower than F- self-diffusion. Back-calculation of the bicarbonate conductivity using the Nernst-Einstein equation gave a value that was significantly lower than the measured value, implying that bicarbonate transport involves OH- in the transport mechanism. Fourier transform infrared spectroscopy, PGSE NMR spectrometry, and small-angle X-ray scattering (SAXS) indicated the presence of different types of waters present in the membrane at different length scales. The SAXS data indicated that there is a water-rich region within the hydrophilic domains of the polymer that has a temperature dependence in intensity at 95% relative humidity (RH).« less
Increasing Photovoltaic Performance of an Organic Cationic Chromophore by Anion Exchange
Gesevičius, Donatas; Neels, Antonia; Jenatsch, Sandra; Hack, Erwin; Viani, Lucas; Athanasopoulos, Stavros; Heier, Jakob
2017-01-01
Abstract A symmetrical cyanine dye chromophore is modified with different counteranions to study the effect on crystal packing, polarizability, thermal stability, optical properties, light absorbing layer morphology, and organic photovoltaic (OPV) device parameters. Four sulfonate‐based anions and the bulky bistriflylimide anion are introduced to the 2‐[5‐(1,3‐dihydro‐1,3,3‐trimethyl‐2H‐indol‐2‐ylidene)‐1,3‐pentadien‐1‐yl]‐1,3,3‐trimethyl‐3H‐indolium chromophore using an Amberlyst A26 (OH− form) anion exchanger. Anionic charge distribution clearly correlates with device performance, whereby an average efficiency of 2% was reached in a standard bilayer organic solar. Evidence is given that the negative charge of the anion distributed over a large number of atoms is significantly more important than the size of the organic moieties of the sulfonate charge carrying group. This provides a clear strategy for future design of more efficient cyanine dyes for OPV applications. PMID:29610723
Griffiths, Peter C; Paul, Alison; Fallis, Ian A; Wellappili, Champa; Murphy, Damien M; Jenkins, Robert; Waters, Sarah J; Nilmini, Renuka; Heenan, Richard K; King, Stephen M
2007-10-15
The physical properties of weak polyelectrolytes may be tailored via hydrophobic modification to exhibit useful properties under appropriate pH and ionic strength conditions as a consequence of the often inherently competing effects of electrostatics and hydrophobicity. Pulsed-gradient spin-echo NMR (PGSE-NMR), electron paramagnetic resonance (EPR), small-angle neutron scattering (SANS) surface tension, fluorescence, and pH titration have been used to examine the solution conformation and aggregation behavior of a series of hydrophobically modified hyperbranched poly(ethylene imine) (PEI) polymers in aqueous solution, and their interaction with sodium dodecylsulfate (SDS). PGSE-NMR gave a particularly insightful picture of the apparent molecular weight distribution. The presence of the hydrophobes led to a lower effective charge on the polymer at any given pH, compared to the (parent) nonmodified samples. Analysis of the SANS data showed that the propensity to form highly elliptical or rod-like aggregates at higher pHs, reflecting both the changes in protonation behavior induced by the hydrophobic modification and an hydrophobic interaction, but that these structures were disrupted with decreasing pH (increasing charge). The parent samples were not surface active yet the hydrophobically modified samples show pronounced surface activity and the presence of small hydrophobic domains. The surface activity increased with an increase in the degree of modification. On addition of SDS, the onset of the formation of polymer/surfactant complexes was insensitive to the degree of modification with the resultant PEI/SDS complexes resembling the size and shape of simple SDS micelles. Indeed, the presence of the SDS effectively nullifies the effects of the hydrophobe. Hydrophobic modification is therefore a viable option to tailor pH dependent properties, whose effects may be removed by the presence of surfactant.
Chattoraj, Joyjit; Knappe, Marisa; Heuer, Andreas
2015-06-04
It is known from experiments that in the polymer electrolyte system, which contains poly(ethylene oxide) chains (PEO), lithium-cations (Li(+)), and bis(trifluoromethanesulfonyl)imide-anions (TFSI(-)), the cation and the anion diffusion and the ionic conductivity exhibit a similar chain-length dependence: with increasing chain length, they start dropping steadily, and later, they saturate to constant values. These results are surprising because Li-cations are strongly correlated with the polymer chains, whereas TFSI-anions do not have such bonding. To understand this phenomenon, we perform molecular dynamics simulations of this system for four different polymer chain lengths. The diffusion results obtained from our simulations display excellent agreement with the experimental data. The cation transport model based on the Rouse dynamics can successfully quantify the Li-diffusion results, which correlates Li diffusion with the polymer center-of-mass motion and the polymer segmental motion. The ionic conductivity as a function of the chain length is then estimated based on the chain-length-dependent ion diffusion, which shows a temperature-dependent deviation for short chain lengths. We argue that in the first regime, counterion correlations modify the conductivity, whereas for the long chains, the system behaves as a strong electrolyte.
Hassell, Kerry M; LeBlanc, Yves; McLuckey, Scott A
2009-11-01
Charge inversion ion/ion reactions can convert several cation types associated with a single analyte molecule to a single anion type for subsequent mass analysis. Specifically, analyte ions present with one of a variety of cationizing agents, such as an excess proton, excess sodium ion, or excess potassium ion, can all be converted to the deprotonated molecule, provided that a stable anion can be generated for the analyte. Multiply deprotonated species that are capable of exchanging a proton for a metal ion serve as the reagent anions for the reaction. This process is demonstrated here for warfarin and for a glutathione conjugate. Examples for several other glutathione conjugates are provided as supplementary material to demonstrate the generality of the reaction. In the case of glutathione conjugates, multiple metal ions can be associated with the singly-charged analyte due to the presence of two carboxylate groups. The charge inversion reaction involves the removal of the excess cationizing agent, as well as any metal ions associated with anionic groups to yield a singly deprotonated analyte molecule. The ability to convert multiple cation types to a single anion type is analytically desirable in cases in which the analyte signal is distributed among several cation types, as is common in the electrospray ionization of solutions with relatively high salt contents. For analyte species that undergo efficient charge inversion, such as glutathione conjugates, there is the additional potential advantage for significantly improved signal-to-noise ratios when species that give rise to 'chemical noise' in the positive ion spectrum do not undergo efficient charge inversion.
Rogers, T Ryan; Wang, Feng
2017-10-28
An atomic version of the Millikan oil drop experiment is performed computationally. It is shown that for planar molecules, the atomic version of the Millikan experiment can be used to define an atomic partial charge that is free from charge flow contributions. We refer to this charge as the Millikan-Thomson (MT) charge. Since the MT charge is directly proportional to the atomic forces under a uniform electric field, it is the most relevant charge for force field developments. The MT charge shows good stability with respect to different choices of the basis set. In addition, the MT charge can be easily calculated even at post-Hartree-Fock levels of theory. With the MT charge, it is shown that for a planar water dimer, the charge transfer from the proton acceptor to the proton donor is about -0.052 e. While both planar hydrated cations and anions show signs of charge transfer, anions show a much more significant charge transfer to the hydration water than the corresponding cations. It might be important to explicitly model the ion charge transfer to water in a force field at least for the anions.
Space charge characteristics of fluorinated polyethylene: Different effects of fluorine and oxygen
NASA Astrophysics Data System (ADS)
Zhao, Ni; Nie, Yongjie; Li, Shengtao
2018-04-01
Direct fluorination are proved having obvious effect on space charge characteristics of polyethylene. It is believed that fluorine has a positive effect on suppressing space charge injection while oxygen impurity has a negative effect. However, the mechanism for the opposite effect of fluorine and oxygen is still not clear. In this paper, the different effects of fluorine and oxygen on space charge characteristics of fluorinated low density polyethylene (LDPE) are investigated on the basis of dielectric property, chemical constitutes and trap performance of surface fluorinated layers. The results show that direct fluorination has obvious effect on chemical constitutes and dielectric properties of surface fluorinated layer. Introduced fluorine is the main factor for suppressing charge injection from the electrodes, because it seriously changes the chemical constitutes and further the trap properties of the surface fluorinated layer. While introduction of oxygen results in heterocharges and makes space charge distribution complex, due to the ionization of generated small groups like C=O containing groups. Moreover, direct fluorination will result in cleavage of some LDPE molecules whatever there is oxygen impurity or not.
NASA Technical Reports Server (NTRS)
Charnley, Steven B.
2011-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-07-02
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including V xO y n– and V xO yCl n– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V 14O 36Cl(L) 5 (L = Et 4N +, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged V xO yCl n– and V xOmore » yCl(L) (n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller V xO yCl (1–2)– and V xO y (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged V xO yCl and V xO y species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of V xO yCl and V xO y anions through low-energy CID. Finally and furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.« less
2007-01-01
density polyethylene bottles prerinsed with deionized water for anions, and prerinsed with 5% nitric acid (HNO3) then deionized water for metals and...silica. The aliquots for metal and silica were acidified to pH ~1 with ultrex-grade nitric acid (HNO3). Sample aliquots for dissolved organic carbon (DOC...Br, NO3, PO4, SO4, and organic carboxylic acid anions (acetate, butyrate, formate, malonate, oxalate , propionate, and succinate) were determined by
Depth profile of halide anions under highly charged biological membrane
NASA Astrophysics Data System (ADS)
Sung, Woongmo; Wang, Wenjie; Lee, Jonggwan; Vaknin, David; Kim, Doseok
2015-03-01
Halide ion (Cl- and I-) distribution under a cationic Langmuir monolayer consisting of 1,2-dipalmitoyl-3 trimethylammonium-propane (DPTAP) molecules was investigated by vibrational sum-frequency generation (VSFG) and X-ray spectroscopy. From VSFG spectra, it was observed that large halide anions (I-) screen surface charge more efficiently so that interfacial water alignment becomes more randomized. On the other hand, number density of ions directly measured by X-ray fluorescence spectroscopy at grazing incidence angle reveals that the ion densities within 6 ~ 8 nm are the same for both I- and Cl-. Since the observed ion densities in both cases are almost equal to the charge density of the DPTAP monolayer, we propose that larger halide anions are attracted closer to the surface making direct binding with the charged headgroups of the molecules in the monolayer, accomplishing charge neutrality in short distance. This direct adsorption of anions also disturbs the monolayer structure both in terms of the conformation of alkyl chains and the vertical configuration of the monolayer, with iodine having the stronger effect. Our study shows that the length scale that ions neutralize a charged interface varies significantly and specifically even between monovalent ions.
Singh-Rawal, Pooja; Zsiros, Ottó; Bharti, Sudhakar; Garab, Gyozo; Jajoo, Anjana
2011-04-01
With an aim to improve our understanding of the mechanisms behind specific anion effects in biological membranes, we have studied the effects of sodium salts of anions of varying valency in thylakoid membranes. Rates of electron transport of PS II and PS I, 77K fluorescence emission and excitation spectra, cyclic electron flow around PS I and circular dichroism (CD) spectra were measured in thylakoid membranes in order to elucidate a general mechanism of action of inorganic anions on photosynthetic electron transport chain. Re-distribution of absorbed excitation energy has been observed as a signature effect of inorganic anions. In the presence of anions, such as nitrite, sulphate and phosphate, distribution of absorbed excitation energy was found to be more in favor of Photosystem I (PS I). The amount of energy distributed towards PS I depended on the valency of the anion. In this paper, we propose for the first time that energy re-distribution and its valence dependence may not be the effect of anions per se. The entry of negative charge (anion) is accompanied by influx of positive charge (protons) to maintain a balance of charge across the thylakoid membranes. As reflected by the CD spectra, the observed energy re-distribution could be a result of structural rearrangements of the protein complexes of PS II caused by changes in the ionic environment of the thylakoid lumen.
Singh, Prabhat K; Kumbhakar, Manoj; Pal, Haridas; Nath, Sukhendu
2008-07-03
Effect of electrostatic interaction on the location of a solubilized molecular probe with ionic character in a supramolecular assembly composed of a triblock copolymer, P123 ((ethylene oxide) 20-(propylene oxide) 70-(ethylene oxide) 20) and a cosurfactant cetyltrimethylammonium chloride (CTAC) in aqueous medium has been studied using steady-state and time-resolved fluorescence measurements. Coumarin-343 dye in its anionic form has been used as the molecular probe. In the absence of the surfactant, CTAC, the probe C343 prefers to reside at the surface region of the P123 micelle, showing a relatively less dynamic Stokes' shift, as a large part of the Stokes' shift is missed in the present measurements due to faster solvent relaxation at micellar surface region. As the concentration of CTAC is increased in the solution, the percentage of the total dynamic Stokes' shift observed from time-resolved measurements gradually increases until it reaches a saturation value. Observed results have been rationalized on the basis of the mixed micellar structure of the supramolecular assembly, where the hydrocarbon chain of the CTAC surfactant dissolves into the nonpolar poly(propylene oxide) (PPO) core of the P123 micelle and the positively charged headgroup of CTAC resides at the interfacial region between the central PPO core and the surrounding hydrated poly(ethylene oxide) (PEO) shell or the corona region. The electrostatic attraction between the anionic probe molecule and the positively charged surface of the PPO core developed by the presence of CTAC results in a gradual shift of the probe in the deeper region of the micellar corona region with an increase in the CTAC concentration, as clearly manifested from the solvation dynamics results.
Wang, Yong-Lei; Golets, Mikhail; Li, Bin; Sarman, Sten; Laaksonen, Aatto
2017-02-08
Atomistic molecular dynamics simulations have been performed to study microscopic the interfacial ionic structures, molecular arrangements, and orientational preferences of trihexyltetradecylphosphonium-bis(mandelato)borate ([P 6,6,6,14 ][BMB]) ionic liquid confined between neutral and charged gold electrodes. It was found that both [P 6,6,6,14 ] cations and [BMB] anions are coabsorbed onto neutral electrodes at different temperatures. The hexyl and tetradecyl chains in [P 6,6,6,14 ] cations lie preferentially flat on neutral electrodes. The oxalato and phenyl rings in [BMB] anions are characterized by alternative parallel-perpendicular orientations in the mixed innermost ionic layer adjacent to neutral electrodes. An increase in temperature has a marginal effect on the interfacial ionic structures and molecular orientations of [P 6,6,6,14 ][BMB] ionic species in a confined environment. Electrifying gold electrodes leads to peculiar changes in the interfacial ionic structures and molecular orientational arrangements of [P 6,6,6,14 ] cations and [BMB] anions in negatively and positively charged gold electrodes, respectively. As surface charge density increases (but lower than 20 μC/cm 2 ), the layer thickness of the mixed innermost interfacial layer gradually increases due to a consecutive accumulation of [P 6,6,6,14 ] cations and [BMB] anions at negatively and positively charged electrodes, respectively, before the formation of distinct cationic and anionic innermost layers. Meanwhile, the molecular orientations of two oxalato rings in the same [BMB] anions change gradually from a parallel-perpendicular feature to being partially characterized by a tilted arrangement at an angle of 45° from the electrodes and finally to a dominant parallel coordination pattern along positively charged electrodes. Distinctive interfacial distribution patterns are also observed accordingly for phenyl rings that are directly connected to neighboring oxalato rings in [BMB] anions.
Jiang, Jian-Bing; Bian, Guo-Qing; Zhang, Ya-Ping; Luo, Wen; Zhu, Qin-Yu; Dai, Jie
2011-10-07
Three anion-cation compounds 1-3 with formula [M(phen)(3)][Cd(4)(SPh)(10)]·Sol (M = Ru(2+), Fe(2+), and Ni(2+), Sol = MeCN and H(2)O) have been synthesized and characterized by single-crystal analysis. Both the cations and anion are well-known ions, but the properties of the co-assembled compounds are interesting. Molecular structures and charge-transfer between the cations and anions in crystal and even in solution are discussed. These compounds are isomorphous and short inter-ion interactions are found in these crystals, such as π···π stacking and C-H···π contacts. Both spectroscopic and theoretical calculated results indicate that there is anion-cation charge-transfer (ACCT) between the Ru-phen complex dye and the Cd-SPh cluster, which plays an important role in their photophysical properties. The intensity of the fluorescent emission of the [Ru(phen)(3)](2+) is enhanced when the cation interacts with the [Cd(4)(SPh)(10)](2-) anion. The mechanism for the enhancement of photoluminescence has been proposed.
Anion-exchange behavior of several alkylsilica reversed-phase columns.
Marchand, D H; Snyder, L R
2008-10-31
Some alkylsilica columns carry a positive charge at low pH, as determined by anion-exchange with nitrate ion. In the present study, the relative positive charge for 14 alkylsilica columns was measured for a mobile-phase pH 3.0. All but 3 of these columns were found to carry a significant positive charge under these conditions. The relative positive charge on these columns was found to correlate approximately with two other column characteristics: relative cation-exchange behavior as measured by the hydrophobic-subtraction model (values of C-2.8), and slow equilibration of the column to changes in the mobile-phase-as evidenced by a slow change in the retention of anionic and cationic solutes with time. The origin of this positive charge may arise from the bonding process, with incorporation of some cationic entity into the stationary phase.
Tamilvanan, Shunmugaperumal; Khanum, Ramona; Senthilkumar, Sudalimuthu Ramachandran; Muthuraman, Marimuthu; Rajasekharan, Thenrajan
2013-10-01
Ocular and parenteral application potentials of azithromycin-containing, non-phospholipid-based cationic nanosized emulsion in comparison to the phospholipid-based anionic and neutral-charged nanosized emulsions were investigated. Various physical, chemical, nonclinical toxicity and antimicrobial activity studies (mean droplet diameter, surface charge, creaming index, entrapment efficiency, accelerated, long-term and freeze-thaw cycling stabilities, TLC study, modified hen's egg chorioallantoic membrane (HET-CAM) test, in vitro hemolysis test, in vitro and in vivo myotoxicity, and in vitro antimicrobial activity) were conducted for assessing the potentials of these three types of emulsions. Following autoclave sterilization, all of these emulsions exhibited a nanometer range mean particle diameter (200 ± 29 to 434 ± 13 nm). While the anionic and cationic emulsions did show high negative (-34.2 ± 1.23 mV) and positive zeta potential (42.6 ± 1.45 mV) values, the neutral-charged emulsion did not. Even with 5 freeze-thaw cycles, the cationic emulsion remained stable whereas other two emulsions underwent phase-separation. The hen's egg chorioallantoic membrane test revealed an irritation score value that was higher for the anionic emulsion than for cationic or neutral-charged emulsion. A significantly higher % hemolysis value was also noticed for the anionic emulsion when compared to the % hemolysis value of cationic emulsion (ANOVA, P ‹ 0.05). However, all of the emulsions showed a lesser intracellular creatine kinase (CK) release/plasma CK level in comparison to the positive control (phenytoin) indicating their lesser myotoxicity at the injection site . When compared to anionic and neutral-charged emulsions, the possible controlled drug release from cationic emulsion delayed the in vitro antimicrobial action against H.influenzae and S.pneumoniae.
Kimura, Hiroyuki; Sampei, Sotaro; Matsuoka, Daiko; Harada, Naoya; Watanabe, Hiroyuki; Arimitsu, Kenji; Ono, Masahiro; Saji, Hideo
2016-05-15
Prostate-specific membrane antigen (PSMA) is expressed strongly in prostate cancers and is, therefore, an attractive diagnostic and radioimmunotherapeutic target. In contrast to previous reports of PMSA-targeting (99m)Tc-tricarbonyl complexes that are cationic or lack a charge, no anionic (99m)Tc-tricarbonyl complexes have been reported. Notably, the hydrophilicity conferred by both cationic and anionic charges leads to rapid hepatobiliary clearance, whereas an anionic charge might better enhance renal clearance relative to a cationic charge. Therefore, an improvement in rapid clearance would be expected with either cationic or anionic charges, particularly anionic charges. In this study, we designed and synthesized a novel anionic (99m)Tc-tricarbonyl complex ([(99m)Tc]TMCE) and evaluated its use as a single-photon emission computed tomography (SPECT) imaging probe for PSMA detection. Direct synthesis of [(99m)Tc]TMCE from dimethyl iminodiacetate, which contains both the asymmetric urea and succinimidyl moiety important for PSMA binding, was performed using our microwave-assisted one-pot procedure. The chelate formation was successfully achieved even though the precursor included a complicated bioactive moiety. The radiochemical yield of [(99m)Tc]TMCE was 12-17%, with a radiochemical purity greater than 98% after HPLC purification. [(99m)Tc]TMCE showed high affinity in vitro, with high accumulation in LNCaP tumors and low hepatic retention in biodistribution and SPECT/CT studies. These findings warrant further evaluation of [(99m)Tc]TMCE as an imaging agent and support the benefit of this strategy for the design of other PSMA imaging probes. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunaratne, Kalupathirannehelage Don D.; Johnson, Grant E.; Andersen, Amity
2014-12-04
We investigate the controlled deposition of Keggin polyoxometalate (POM) anions, PMo12O403- and PMo12O402-, onto different self-assembled monolayer (SAM) surfaces via soft landing of mass-selected ions. Utilizing in situ infrared reflection absorption spectroscopy (IRRAS), ex situ cyclic voltammetry (CV) and electronic structure calculations, we examine the structure and charge retention of supported multiply-charged POM anions and characterize the redox properties of the modified surfaces. SAMs of alkylthiol (HSAM), perfluorinated alkylthiol (FSAM), and alkylthiol terminated with NH3+ functional groups (NH3+SAM) are chosen as model substrates for soft landing to examine the factors which influence the immobilization and charge retention of multiply chargedmore » anionic molecules. The distribution of charge states of POMs on different SAM surfaces are determined by comparing the IRRAS spectra with vibrational spectra calculated using density functional theory (DFT). In contrast to the results obtained previously for multiply charged cations, soft landed anions are found to retain charge on all three SAM surfaces. This charge retention is attributed to the substantial electron binding energy of the POM anions. Investigation of redox properties by CV reveals that, while surfaces prepared by soft landing exhibit similar features to those prepared by adsorption of POM from solution, the soft landed POM2- has a pronounced shift in oxidation potential compared to POM3- for one of the redox couples. These results demonstrate that ion soft landing is uniquely suited for precisely controlled preparation of substrates with specific electronic and chemical properties that cannot be achieved using conventional deposition techniques.« less
Rannulu, Nalaka S; Cole, Richard B
2012-09-01
The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion](-) adducts of these steroids revealed that fluoride adduct [M + F](-) precursors first lose HF to produce [M - H](-) and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d(4)-pregnenolone, are also discussed.
NASA Astrophysics Data System (ADS)
Rannulu, Nalaka S.; Cole, Richard B.
2012-09-01
The analysis of several bifunctional neutral steroids, 5-α-pregnane diol (5-α-pregnane-3α-20βdiol), estradiol (3,17α-dihydroxy-1,3,5(10)-estratriene), progesterone (4-pregnene-3,20-dione), lupeol (3β-hydroxy-20(29)-lupene), pregnenolone (5-pregnen-3β-ol-20-one), and pregnenolone acetate (5-pregnen-3β-ol-20-one acetate) was accomplished by negative ion electrospray mass spectrometry (ESI-MS) employing adduct formation with various anions: fluoride, bicarbonate, acetate, and chloride. Fluoride yielded higher abundances of anionic adducts and more substantial abundances of deprotonated molecules compared with other investigated anions. Collision-induced dissociation (CID) of precursor [M + anion]- adducts of these steroids revealed that fluoride adduct [M + F]- precursors first lose HF to produce [M - H]- and then undergo consecutive decompositions to yield higher abundances of structurally-informative product ions than the other tested anions. In addition to charge-remote fragmentations, the majority of CID pathways of estradiol are deduced to occur via charge-induced fragmentation. Most interestingly, certain anions exhibit preferential attachment to a specific site on these bifunctional steroid molecules, which we are calling "regioselective anion attachment." Regioselective anion attachment is evidenced by subsequent regiospecific decomposition. Regioselective attachment of fluoride (and acetate) anions to low (and moderate) acidity functional groups of pregnenolone, respectively, is demonstrated using deuterated compounds. Moreover, the formation of unique intermediate ion-dipole complexes leading to novel fragmentation pathways of fluoride adducts of pregnenolone acetate, and bicarbonate adducts of d4-pregnenolone, are also discussed.
Abney, Kent D.; Kinkead, Scott A.; Mason, Caroline F. V.; Rais, Jiri
1997-01-01
Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.
Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.
1997-09-09
Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuboi, Masaki; Hibino, Mitsuhiro; Mizuno, Noritaka
2016-02-15
Crystalline polyoxometalate (POM)–polyethylene glycol (PEG) composites aimed as non-humidified intermediate-temperature proton conductors were synthesized and characterized by single crystal and powder XRD, solid state MASNMR, and TG-DTA measurements. Among the POM–PEG composites, Cs{sub 2.7}H{sub 0.3}[PW{sub 12}O{sub 40}]·1.2PEG1000 (CsHPW-PEG1000) possessed one-dimensional channels with diameters of ca. 6 and 8 Å, where PEG probably resided, and showed the best performance as a proton conductor (1.2×10{sup −5} S cm{sup −1} at 443 K). Proton conductivities of POM–PEG composites decreased by the increase in molecular weights of PEG (CsHPW-PEG12,000) or anion charges (CsHSiW-PEG1000). Variable contact time {sup 13}C-CP (cross polarization) MASNMR revealed that localmore » mobility (i.e., segmental motion) of PEG is related to the trends in proton conductivities. These results show that amount of acidic protons (H{sup +}) is not the primary factor in proton conduction and that segmental motion of PEG assists the proton hopping among POMs in the crystal lattice of POM–PEG composites. - Graphical abstract: Non-humidified intermediate-temperature proton conduction in crystalline polyoxometalate (POM)–polyethylene (PEG) composites are assisted by the segmental motion of PEG. - Highlights: • Crystalline polyoxometalate–polyethlene glycol (PEG) composites were synthesized. • CsHPW-PEG1000 possessed one-dimensional channels and showed the highest proton conductivity. • {sup 13}C CPMASNMR revealed that segmental motion of PEG is related to the proton conduction.« less
Role of Anions Associated with the Formation and Properties of Silver Clusters.
Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan
2015-06-16
Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties including electron communication, luminescent thermochromism, single-molecule magnet, and intercluster charge transfer associated with anion-directed silver clusters have been discussed. We intend to attract chemists' attention to the role that anions could play in determining the structures and properties of metal complexes, especially clusters. We hope that this Account will stimulate more efforts in exploiting new role of anions in various metal cluster systems. Anions can do much more than counterions for charge balance, and they should be considered in the design and synthesis of cluster-based functional materials.
Manna, Anamika; Sahoo, Dibakar; Chakravorti, Sankar
2012-03-01
We report an interesting pH-tunable energy transfer between an acceptor ionic styryl dye 2-(4-(dimethylamino)styryl)-1-methylpyridinium iodide and a donor charge-transfer dye 1,8-naphthalimide in a vesicular medium. The polyethylene-b-polyethylene glycol block copolymer intercalates with the sodium dodecyl sulfate anionic surfactant to form self-aggregated nanocomposites. These nanocomposites interact with the donor molecules in aqueous solution to form "vesicles", and the donor molecules become attached on the outer wall by hydrogen bonding. The acceptor molecules are observed to be loaded in the vesicular interior. By controlling the spectral overlap of the donor and acceptor molecules by changing the pH of the medium, the energy-transfer efficiency in vesicles has been studied. The efficiency of energy transfer in vesicular media (55%) is found to be less compared to that in aqueous media (80%) at pH 7. The fall in efficiency has been attributed to the perturbation imparted by the vesicular wall due to the good matching of the donor-acceptor distance with the wall thickness. At low pH, the efficiency shows an abrupt increase (95%) due to the release of the acceptor molecules from the vesicular medium causing subsequent reduction of donor-acceptor separation and an increase of the spectral overlap at that pH.
NASA Astrophysics Data System (ADS)
Milliere, L.; Maskasheva, K.; Laurent, C.; Despax, B.; Boudou, L.; Teyssedre, G.
2016-01-01
The aim of this work is to limit charge injection from a semi-conducting electrode into low density polyethylene (LDPE) under dc field by tailoring the polymer surface using a silver nanoparticles-containing layer. The layer is composed of a plane of silver nanoparticles embedded in a semi-insulating organosilicon matrix deposited on the polyethylene surface by a plasma process. Size, density and surface coverage of the nanoparticles are controlled through the plasma process. Space charge distribution in 300 μm thick LDPE samples is measured by the pulsed-electroacoustic technique following a short term (step-wise voltage increase up to 50 kV mm-1, 20 min in duration each, followed by a polarity inversion) and a longer term (up to 12 h under 40 kV mm-1) protocols for voltage application. A comparative study of space charge distribution between a reference polyethylene sample and the tailored samples is presented. It is shown that the barrier effect depends on the size distribution and the surface area covered by the nanoparticles: 15 nm (average size) silver nanoparticles with a high surface density but still not percolating form an efficient barrier layer that suppress charge injection. It is worthy to note that charge injection is detected for samples tailored with (i) percolating nanoparticles embedded in organosilicon layer; (ii) with organosilicon layer only, without nanoparticles and (iii) with smaller size silver particles (<10 nm) embedded in organosilicon layer. The amount of injected charges in the tailored samples increases gradually in the samples ranking given above. The mechanism of charge injection mitigation is discussed on the basis of complementary experiments carried out on the nanocomposite layer such as surface potential measurements. The ability of silver clusters to stabilize electrical charges close to the electrode thereby counterbalancing the applied field appears to be a key factor in explaining the charge injection mitigation effect.
Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.
Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R
2016-10-12
A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian; ...
2018-10-02
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
Ionic liquid compatibility in polyethylene oxide/siloxane ion gel membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kusuma, Victor A.; Macala, Megan K.; Liu, Jian
Ion gel films were prepared by incorporating eight commercially available ionic liquids in two different cross-linked polymer matrices to evaluate their phase miscibility, gas permeability and ionic conductivity for potential applications as gas separation membranes and solid electrolyte materials. The ionic liquids cations were 1-ethyl-3-methylimidazolium, 1-ethyl-3-methylpyridinium, 1-butyl-1-methylpyrrolidinium, tributylmethylphosphonium, and butyltrimethylammonium with a common anion (bis(trifluoromethylsulfonyl)imide). In addition, ionic liquids with 1-ethyl-3-methylimidazolium cation with acetate, dicyanamide and tetrafluoroborate counterions were evaluated. The two polymers were cross-linked poly(ethylene oxide) and cross-linked poly(ethylene oxide)/siloxane copolymer. Differential scanning calorimetry, X-ray diffractometry and visual observations were performed to evaluate the ion gels’ miscibility, thermal stabilitymore » and homogeneity. Ionic liquids with the least basic anion (bis(trifluoromethylsulfonyl)imide) and aromatic cations containing acidic proton (e.g. imidazolium and pyridinium) gave the most stable and miscible ion gels. Phase stability was shown to be a function of both ionic liquid content and temperature, with phase separation observed at elevated temperatures. In conclusion, gas permeability testing with carbon dioxide and nitrogen and ionic conductivity measurements confirmed that these ionic liquids increased the gas permeability and ionic conductivity of the polymers.« less
Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy
Mani, Tomoyasu; Grills, David C.
2017-07-05
Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we showmore » that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1. IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.« less
Models for Cometary Comae Containing Negative Ions
NASA Technical Reports Server (NTRS)
Cordiner, M. A.; Charnley, S. B.
2012-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [I]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of our new models for the chemistry of cometary comae that include atomic and molecular anions. We calculate the impact of these anions on the charge balance and examine their importance for cometary coma chemistry.
Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions
NASA Astrophysics Data System (ADS)
Weber, J. Mathias; Adams, Christopher L.
2010-06-01
We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.
NASA Astrophysics Data System (ADS)
Wang, Weiwang; Li, Shengtao; Min, Daomin
2016-04-01
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al2O3 nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al2O3 nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and the strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al2O3 nanodielectrics is improved.
In situ NMR spectroscopy of supercapacitors: insight into the charge storage mechanism.
Wang, Hao; Forse, Alexander C; Griffin, John M; Trease, Nicole M; Trognko, Lorie; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P
2013-12-18
Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode-electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations.
In Situ NMR Spectroscopy of Supercapacitors: Insight into the Charge Storage Mechanism
2013-01-01
Electrochemical capacitors, commonly known as supercapacitors, are important energy storage devices with high power capabilities and long cycle lives. Here we report the development and application of in situ nuclear magnetic resonance (NMR) methodologies to study changes at the electrode–electrolyte interface in working devices as they charge and discharge. For a supercapacitor comprising activated carbon electrodes and an organic electrolyte, NMR experiments carried out at different charge states allow quantification of the number of charge storing species and show that there are at least two distinct charge storage regimes. At cell voltages below 0.75 V, electrolyte anions are increasingly desorbed from the carbon micropores at the negative electrode, while at the positive electrode there is little change in the number of anions that are adsorbed as the voltage is increased. However, above a cell voltage of 0.75 V, dramatic increases in the amount of adsorbed anions in the positive electrode are observed while anions continue to be desorbed at the negative electrode. NMR experiments with simultaneous cyclic voltammetry show that supercapacitor charging causes marked changes to the local environments of charge storing species, with periodic changes of their chemical shift observed. NMR calculations on a model carbon fragment show that the addition and removal of electrons from a delocalized system should lead to considerable increases in the nucleus-independent chemical shift of nearby species, in agreement with our experimental observations. PMID:24274637
Mote, Nilesh R; Patel, Ketan; Shinde, Dinesh R; Gaikwad, Shahaji R; Koshti, Vijay S; Gonnade, Rajesh G; Chikkali, Samir H
2017-10-16
Self-assembly of two neutral ligands on a metal to mimic bidentate ligand coordination has been frequently encountered in the recent past, but self-assembly of an anionic ligand on a metal template alongside a neutral ligand remains an elusive target. Such a self-assembly is hampered by additional complexity, wherein a highly negatively charged anion can form intermolecular hydrogen bonding with the supramolecular motif, leaving no scope for self-assembly with neutral ligand. Presented here is the self-association of anionic ligand 3-ureidobenzoic acid (2a) and neutral ligand 1-(3-(diphenylphosphanyl)phenyl)urea (1a) on a metal template to yield metal complex [{COOC 6 H 4 NH(CO)NH 2 }{Ph 2 PC 6 H 4 NH(CO)NH 2 }PdMeDMSO] (4a). The identity of 4a was established by NMR and mass spectroscopy. Along the same lines, 3-(3-phenylureido)benzoic acid (2b) and 1-(3-(diphenylphosphanyl)phenyl)-3-phenylurea (1b) self-assemble on a metal template to produce palladium complex [{COOC 6 H 4 NH(CO)NHPh}{Ph 2 PC 6 H 4 NH(CO)NHPh}PdMePy] (5c). The existence of 5c was confirmed by Job plot, 1-2D NMR spectroscopy, deuterium labeling, IR spectroscopy, UV-vis spectroscopy, model complex synthesis, and DFT calculations. These solution and gas phase investigations authenticated the presence of intramolecular hydrogen bonding between hydrogen's of 1b and carbonyl oxygen of 2b. The generality of the supramolecular approach has been validated by preparing six complexes from four monodentate ligands, and their synthetic utility was demonstrated in ethylene polymerization. Complex 4a was found to be the most active, leading to the production of highly branched polyethylene with a molecular weight of 55700 g/mol and melting temperature of 112 °C.
Extracellular determinants of anion discrimination of the Cl-/H+ antiporter protein CLC-5.
De Stefano, Silvia; Pusch, Michael; Zifarelli, Giovanni
2011-12-23
Mammalian CLC proteins comprise both Cl- channels and Cl-/H+ antiporters that carry out fundamental physiological tasks by transporting Cl- across plasma membrane and intracellular compartments. The NO3- over Cl- preference of a plant CLC transporter has been pinpointed to a conserved serine residue located at Scen and it is generally assumed that the other two binding sites of CLCs, Sext and Sin, do not substantially contribute to anion selectivity. Here we show for the Cl-/H+ antiporter CLC-5 that the conserved and extracellularly exposed Lys210 residue is critical to determine the anion specificity for transport activity. In particular, mutations that neutralize or invert the charge at this position reverse the NO3- over Cl- preference of WT CLC-5 at a concentration of 100 mm, but do not modify the coupling stoichiometry with H+. The importance of the electrical charge is shown by chemical modification of K210C with positively charged cysteine-reactive compounds that reintroduce the WT preference for Cl-. At saturating extracellular anion concentrations, neutralization of Lys210 is of little impact on the anion preference, suggesting an important role of Lys210 on the association rate of extracellular anions to Sext.
2015-01-01
The effects of different anions on the extent of electrothermal supercharging of proteins from aqueous ammonium and sodium salt solutions were investigated. Sulfate and hydrogen phosphate are the most effective anions at producing high charge state protein ions from buffered aqueous solution, whereas iodide and perchlorate are ineffective with electrothermal supercharging. The propensity for these anions to produce high charge state protein ions follows the following trend: sulfate > hydrogen phosphate > thiocyanate > bicarbonate > chloride > formate ≈ bromide > acetate > iodide > perchlorate. This trend correlates with the reverse Hofmeister series over a wide range of salt concentrations (1 mM to 2 M) and with several physical properties, including solvent surface tension, anion viscosity B-coefficient, and anion surface/bulk partitioning coefficient, all of which are related to the Hofmeister series. The effectiveness of electrothermal supercharging does not depend on bubble formation, either from thermal degradation of the buffer or from coalescence of dissolved gas. These results provide evidence that the effect of different ions in the formation of high charge state ions by electrothermal supercharging is largely a result of Hofmeister effects on protein stability leading to protein unfolding in the heated ESI droplet. PMID:24410546
Ion exchange polymers for anion separations
Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.
1997-01-01
Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.
Ion exchange polymers for anion separations
Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.
1997-09-23
Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.
Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes.
Savoie, Brett M; Webb, Michael A; Miller, Thomas F
2017-02-02
Solid polymer electrolytes (SPEs) have the potential to increase both the energy density and stability of lithium-based batteries, but low Li + conductivity remains a barrier to technological viability. SPEs are designed to maximize Li + diffusivity relative to the anion while maintaining sufficient salt solubility. It is thus remarkable that poly(ethylene oxide) (PEO), the most widely used SPE, exhibits Li + diffusivity that is an order of magnitude smaller than that of typical counterions at moderate salt concentrations. We show that Lewis-basic polymers like PEO favor slow cation and rapid anion diffusion, while this relationship can be reversed in Lewis-acidic polymers. Using molecular dynamics, polyboranes are identified that achieve up to 10-fold increases in Li + diffusivities and significant decreases in anion diffusivities, relative to PEO in the dilute-ion regime. These results illustrate a general principle for increasing Li + diffusivity and transference number with chemistries that exhibit weaker cation and stronger anion coordination.
Takada, Koji; Yamada, Yuki; Watanabe, Eriko; Wang, Jianhui; Sodeyama, Keitaro; Tateyama, Yoshitaka; Hirata, Kazuhisa; Kawase, Takeo; Yamada, Atsuo
2017-10-04
The passivation of negative electrodes is key to achieving prolonged charge-discharge cycling with Na-ion batteries. Here, we report the unusual passivation ability of superconcentrated Na-salt electrolytes. For example, a 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte enables highly reversible Na + insertion into a hard carbon negative electrode without any electrolyte additive, functional binder, or electrode pretreatment. Importantly, an anion-derived passivation film is formed via preferential reduction of the anion upon charging, which can effectively suppress further electrolyte reduction. As a structural characteristic of the electrolyte, most anions are coordinated to multiple Na + cations at high concentration, which shifts the lowest unoccupied molecular orbitals of the anions downward, resulting in preferential anion reduction. The present work provides a new understanding of the passivation mechanism with respect to the coordination state of the anion.
Gastrointestinal bioavailability of 2.0 nm diameter gold nanoparticles.
Smith, Candice A; Simpson, Carrie A; Kim, Ganghyeok; Carter, Carly J; Feldheim, Daniel L
2013-05-28
The use of gold nanoparticles as imaging agents and therapeutic delivery systems is growing rapidly. However, a significant limitation of gold nanoparticles currently is their low absorption efficiencies in the gastrointestinal (GI) tract following oral administration. In an attempt to identify ligands that facilitate gold nanoparticle absorption in the GI tract, we have studied the oral bioavailability of 2.0 nm diameter gold nanoparticles modified with the small molecules p-mercaptobenzoic acid and glutathione, and polyethylene glycols (PEG) of different lengths and charge (neutral and anionic). We show that GI absorption of gold nanoparticles modified with the small molecules tested was undetectable. However, the absorption of PEGs depended upon PEG length, with the shortest PEG studied yielding gold nanoparticle absorptions that are orders-of-magnitude larger than observed previously. As the oral route is the most convenient one for administering drugs and diagnostic reagents, these results suggest that short-chain PEGs may be useful in the design of gold nanoparticles for the diagnosis and treatment of disease.
He, Xiulan; Zhang, Kailin; Liu, Yang; Wu, Fei; Yu, Ping; Mao, Lanqun
2018-04-16
A nonintuitive observation of monovalent anion-induced ion current rectification inversion at polyimidazolium brush (PimB)-modified nanopipettes is presented. The rectification inversion degree is strongly dependent on the concentration and species of monovalent anions. For chaotropic anions (for example, ClO 4 - ), the rectification inversion is easily observed at a low concentration (5 mm), while there is no rectification inversion observed for kosmotropic anions (Cl - ) even at a high concentration (1 m). Moreover, at the specific concentration (for example, 10 mm), the variation of rectification ratio on the type of anions is ranged by Hofmeister series (Cl - ≥NO 3 - >BF 4 - >ClO 4 - >PF 6 - >Tf 2 N - ). Estimation of the electrokinetic charge density (σ ek ) demonstrates that rectification inversion originates from the charge inversion owing to the over-adsorption of chaotropic monovalent anion. To qualitatively understand this phenomenon, a concentration-dependent adsorption mechanism is proposed. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Polar and Electrical Nature of Dye Binding Sites on Human Red Blood Cell Membranes.
positive charges at the binding sites. By increasing the concentration of the anionic BPB (or by the addition of the anionic detergent sodium lauryl ... sulfate ) these positive charges appear to be successively titrated, rendering the membrane binding sites electrically neutral at this pH. The average
Mandapalli, Praveen K; Labala, Suman; Vanamala, Deekshith; Koranglekar, Manali P; Sakimalla, Lakshmi A; Venuganti, Venkata Vamsi K
2014-12-01
The objective of this study is to investigate the influence of charge of model small molecules on their encapsulation and release behavior in layer-by-layer microcapsules (LbL-MC). Poly(styrene sulfonate) and poly(ethylene imine) were sequentially adsorbed on calcium carbonate sacrificial templates to prepare LbL-MC. Model molecules with varying charge, anionic - ascorbic acid, cationic - imatinib mesylate (IM) and neutral - 5-fluorouracil were encapsulated in LbL-MC. Free and encapsulated LbL-MC were characterized using zetasizer, FTIR spectroscope and differential scanning calorimeter. The influence of IM-loaded LbL-MC on cell viability was studied in B16F10 murine melanoma cells. Furthermore, biodistribution of IM-loaded LbL-MC with and without PEGylation was studied in BALB/c mice. Results showed spherical LbL-MC of 3.0 ± 0.4 μm diameter. Encapsulation efficiency of LbL-MC increased linearly (R(2 )= 0.89-0.99) with the increase in solute concentration. Increase in pH from 2 to 6 increased the encapsulation of charged molecules in LbL-MC. Charged molecules showed greater encapsulation efficiency in LbL-MC compared with neutral molecule. In vitro release kinetics showed Fickian and non-Fickian diffusion of small molecules, depending on the nature of molecular interactions with LbL-MC. At 50 μM concentration, free IM showed significantly (p < 0.05) more cytotoxicity compared with IM-loaded LbL-MC. Biodistribution studies showed that PEGylation of LbL-MC decreased the liver and spleen uptake of IM-encapsulated LbL-MC. In conclusion, LbL-MC can be developed as a potential carrier for small molecules depending on their physical and chemical properties.
An assessment of athrombogenic properties of electret polyethylene film.
Lowkis, B; Szymonowicz, M
1998-01-01
This paper shows the results of an investigation into the effect of an electric charge on blood platelet adhesion. All of the experiments were made on a polyethylene film. The electrets were formed using the electron beam method. The assessment of the electret effect on blood platelet adhesion was performed microscopically. It was found out that an electric charge plays a major role in the process of adhesion of blood morphological elements.
Kerres, Jochen A.; Krieg, Henning M.
2017-01-01
In view of the many possible applications such as fuel cells and electrolysers, recent interest in novel anion exchange membranes (AEMs) has increased significantly. However, their low conductivity and chemical stability limits their current suitability. In this study, the synthesis and characterization of several three- and four-component anion exchange blend membranes (AEBMs) is described, where the compositions have been systematically varied to study the influence of the AEBM’s composition on the anion conductivities as well as chemical and thermal stabilities under strongly alkaline conditions. It was shown that the epoxide-functionalized poly(ethylene glycol)s that were introduced into the four-component AEBMs resulted in increased conductivity as well as a marked improvement in the stability of the AEBMs in an alkaline environment. In addition, the thermal stability of the novel AEBMs was excellent showing the suitability of these membranes for several electrochemical applications. PMID:28621717
Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo
NASA Astrophysics Data System (ADS)
Brodbeck, William G.; Patel, Jasmine; Voskerician, Gabriela; Christenson, Elizabeth; Shive, Matthew S.; Nakayama, Yasuhide; Matsuda, Takehisa; Ziats, Nicholas P.; Anderson, James M.
2002-08-01
An in vivo rat cage implant system was used to identify potential surface chemistries that prevent failure of implanted biomedical devices and prostheses by limiting monocyte adhesion and macrophage fusion into foreign-body giant cells while inducing adherent-macrophage apoptosis. Hydrophobic, hydrophilic, anionic, and cationic surfaces were used for implantation. Analysis of the exudate surrounding the materials revealed no differences between surfaces in the types or levels of cells present. Conversely, the proportion of adherent cells undergoing apoptosis was increased significantly on anionic and hydrophilic surfaces (46 ± 3.7 and 57 ± 5.0%, respectively) when compared with the polyethylene terephthalate base surface. Additionally, hydrophilic and anionic substrates provided decreased rates of monocyte/macrophage adhesion and fusion. These studies demonstrate that biomaterial-adherent cells undergo material-dependent apoptosis in vivo, rendering potentially harmful macrophages nonfunctional while the surrounding environment of the implant remains unaffected.
Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere
NASA Astrophysics Data System (ADS)
Desai, R. T.; Coates, A. J.; Wellbrock, A.; Vuitton, V.; Crary, F. J.; González-Caniulef, D.; Shebanits, O.; Jones, G. H.; Lewis, G. R.; Waite, J. H.; Cordiner, M.; Taylor, S. A.; Kataria, D. O.; Wahlund, J.-E.; Edberg, N. J. T.; Sittler, E. C.
2017-08-01
Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q-1. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950-1300 km. We report on detections consistently centered between 25.8 and 26.0 u q-1 and between 49.0-50.1 u q-1 which are identified as belonging to the carbon chain anions, CN-/C3N- and/or C2H-/C4H-, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73-74 u q-1 could be attributed to the further carbon chain anions C5N-/C6H- but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q-1) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.
NASA Astrophysics Data System (ADS)
Kalinovskaya, I. V.; Zadorozhnaya, A. N.; Karasev, V. E.
2008-11-01
Polyethylene films activated with europium(III) complexes with carboxylic acids and Eu(L)3 · nD · xH2O + ANT compositions, where L is the trifluoroacetic, toluyl, or cinnamic acid anion and ANT is anthranilic acid, were prepared. The intensity of luminescence of the polymeric compositions depended on the content of luminophores (molar ratio between europium compounds and anthranilic acid). An analysis of the excitation spectra showed that, in polymer—Eu(L)3 · nPhen · xH2O + ANT compositions, there was effective energy transfer from phenanthroline to anthranilic acid levels.
Ionic conductivity of β-cyclodextrin-polyethylene-oxide/alkali-metal-salt complex.
Yang, Ling-Yun; Fu, Xiao-Bin; Chen, Tai-Qiang; Pan, Li-Kun; Ji, Peng; Yao, Ye-Feng; Chen, Qun
2015-04-20
Highly conductive, crystalline, polymer electrolytes, β-cyclodextrin (β-CD)-polyethylene oxide (PEO)/LiAsF6 and β-CD-PEO/NaAsF6 , were prepared through supramolecular self-assembly of PEO, β-CD, and LiAsF6 /NaAsF6 . The assembled β-CDs form nanochannels in which the PEO/X(+) (X=Li, Na) complexes are confined. The nanochannels provide a pathway for directional motion of the alkali metal ions and, at the same time, separate the cations and the anions by size exclusion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Tomoyasu; Grills, David C.
Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we showmore » that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1. IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.« less
NASA Astrophysics Data System (ADS)
Marichev, V. A.
2005-08-01
In DFT calculation of the charge transfer (Δ N), anions pose a special problem since their electron affinities are unknown. There is no method for calculating reasonable values of the absolute electronegativity ( χA) and chemical hardness ( ηA) for ions from data of species themselves. We propose a new approach to the experimental measurement of χA at the condition: Δ N = 0 at which η values may be neglected and χA = χMe. Electrochemical parameters corresponding to this condition may be obtained by the contact electric resistance method during in situ investigation of anion adsorption in the particular system anion-metal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Weiwang; Li, Shengtao, E-mail: sli@xjtu.edu.cn; Min, Daomin
2016-04-15
This work studies the correlation between secondary electron emission (SEE) characteristics and impulse surface flashover in polyethylene nanodielectrics both theoretically and experimentally, and illustrates the enhancement of flashover voltage in low-density polyethylene (LDPE) through incorporating Al{sub 2}O{sub 3} nanoparticles. SEE characteristics play key roles in surface charging and gas desorption during surface flashover. This work demonstrates that the presence of Al{sub 2}O{sub 3} nanoparticles decreases the SEE coefficient of LDPE and enhances the impact energy at the equilibrium state of surface charging. These changes can be explained by the increase of surface roughness and of surface ionization energy, and themore » strong interaction between nanoparticles and the polymer dielectric matrix. The surface charge and flashover voltage are calculated according to the secondary electron emission avalanche (SEEA) model, which reveals that the positive surface charges are reduced near the cathode triple point, while the presence of more nanoparticles in high loading samples enhances the gas desorption. Consequently, the surface flashover performance of LDPE/Al{sub 2}O{sub 3} nanodielectrics is improved.« less
Extracellular Determinants of Anion Discrimination of the Cl−/H+ Antiporter Protein CLC-5*
De Stefano, Silvia; Pusch, Michael; Zifarelli, Giovanni
2011-01-01
Mammalian CLC proteins comprise both Cl− channels and Cl−/H+ antiporters that carry out fundamental physiological tasks by transporting Cl− across plasma membrane and intracellular compartments. The NO3− over Cl− preference of a plant CLC transporter has been pinpointed to a conserved serine residue located at Scen and it is generally assumed that the other two binding sites of CLCs, Sext and Sin, do not substantially contribute to anion selectivity. Here we show for the Cl−/H+ antiporter CLC-5 that the conserved and extracellularly exposed Lys210 residue is critical to determine the anion specificity for transport activity. In particular, mutations that neutralize or invert the charge at this position reverse the NO3− over Cl− preference of WT CLC-5 at a concentration of 100 mm, but do not modify the coupling stoichiometry with H+. The importance of the electrical charge is shown by chemical modification of K210C with positively charged cysteine-reactive compounds that reintroduce the WT preference for Cl−. At saturating extracellular anion concentrations, neutralization of Lys210 is of little impact on the anion preference, suggesting an important role of Lys210 on the association rate of extracellular anions to Sext. PMID:21921031
Nanoengineered field induced charge separation membranes manufacture thereof
O'Brien, Kevin C.; Haslam, Jeffery J.; Bourcier, William L.; Floyd, III, William Clary
2016-08-02
A device according to one embodiment includes a porous membrane having a surface charge and pore configuration characterized by a double layer overlap effect being present in pores of the membrane, where the porous membrane includes functional groups that preferentially interact with either cations or anions. A device according to another embodiment includes a porous membrane having a surface charge in pores thereof sufficient to impart anion or cation selectivity in the pores. Additional devices, systems and methods are also presented.
Adsorption of poly(ethylene oxide) on smectite: Effect of layer charge.
Su, Chia-Chi; Shen, Yun-Hwei
2009-04-01
The adsorption of polymers on clay is important in many applications. However the mechanisms of poly(ethylene oxide) (PEO) adsorption on smectite is not well elucidated at present. The aim of this study was to investigate the effect of layer charge density on the adsorption of PEO by smectite. The results indicated that both the hydrophobic interaction (between CH(2)CH(2) groups and siloxane surface) and the hydrogen bonding (between ether oxygen of PEO and structure OH of smectite) lead to PEO preferential adsorption on the surface of low-charge smectite. In addition, the delamination of low-charge smectite in water is enhanced upon PEO adsorption presumably due to the hydrophilic ether oxygen of adsorbed PEO.
NASA Astrophysics Data System (ADS)
Singh, R.; Yadav, R. A.
2014-09-01
Raman and FTIR spectra of solid 2,4-Dithiouracil (DTU) at room temperature have been recorded. DFT calculations were carried out to compute the optimized molecular geometries, GAPT charges and fundamental vibrational frequencies along with their corresponding IR intensities, Raman activities and depolarization ratios of the Raman bands for the neutral DTU molecule and its cation (DTU+) and anion (DTU-) using the Gaussian-03 software. Addition of one electron leads to increase in the atomic charges on the sites N1 and N3 and decrease in the atomic charges on the sites S8 and S10. Due to ionization of DTU molecule, the charge at the site C6 decreases in the cationic and anionic radicals of DTU as compared to its neutral species. As a result of anionic radicalization, the C5sbnd C6 bond length increases and loses its double bond character while the C4sbnd C5 bond length decreases. In the case of the DTU+ ion the IR and Raman band corresponding to the out-of-phase coupled Nsbnd H stretching mode is strongest amongst the three species. The anionic DTU radical is found to be the most stable. The two NH out-of-plane bending modes are found to originate due to out-of-phase and in-phase coupling of the two NH bonds in the anion and cation contrary to the case of the neutral DTU molecule in which the out-of-plane bending motions of the two NH bonds are not coupled.
Singh, R; Yadav, R A
2014-09-15
Raman and FTIR spectra of solid 2,4-Dithiouracil (DTU) at room temperature have been recorded. DFT calculations were carried out to compute the optimized molecular geometries, GAPT charges and fundamental vibrational frequencies along with their corresponding IR intensities, Raman activities and depolarization ratios of the Raman bands for the neutral DTU molecule and its cation (DTU+) and anion (DTU-) using the Gaussian-03 software. Addition of one electron leads to increase in the atomic charges on the sites N1 and N3 and decrease in the atomic charges on the sites S8 and S10. Due to ionization of DTU molecule, the charge at the site C6 decreases in the cationic and anionic radicals of DTU as compared to its neutral species. As a result of anionic radicalization, the C5C6 bond length increases and loses its double bond character while the C4C5 bond length decreases. In the case of the DTU+ ion the IR and Raman band corresponding to the out-of-phase coupled NH stretching mode is strongest amongst the three species. The anionic DTU radical is found to be the most stable. The two NH out-of-plane bending modes are found to originate due to out-of-phase and in-phase coupling of the two NH bonds in the anion and cation contrary to the case of the neutral DTU molecule in which the out-of-plane bending motions of the two NH bonds are not coupled. Copyright © 2014 Elsevier B.V. All rights reserved.
Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus
2013-05-07
An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.
NASA Astrophysics Data System (ADS)
Setifi, Fatima; Ota, Akira; Ouahab, Lahcéne; Golhen, Stèphane; Yamochi, Hideki; Saito, Gunzi
2002-11-01
The preparation, X-ray structures and magnetic properties of two isostructural new charge transfer salts: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III(1), Fe III(2) and isoq=isoquinoline are reported. Their structure consists of alternate organic and inorganic layers, each layer being formed by mixed columns of BO radical cations and paramagnetic metal complex anions. There are short intermolecular contacts between donor and anion (S2 anion· · ·S4 BO<3.5 Å) and between adjacent BO molecules (O· · · O1<3.2 Å). The two compounds are insulators. ESR measurements show single signal without separating the donor and anion spins. The magnetic measurements obey the Curie-Weiss law and revealed dominant antiferromagnetic interactions between anion spin and donor spin, but long-range magnetic ordering did not occur down to 2 K. This is directly related to structural reasons which were deduced from a comparison of the title compounds with other 1:1 salts containing same anion complexes and different donors.
Probing Polyoxometalate-Protein Interactions Using Molecular Dynamics Simulations.
Solé-Daura, Albert; Goovaerts, Vincent; Stroobants, Karen; Absillis, Gregory; Jiménez-Lozano, Pablo; Poblet, Josep M; Hirst, Jonathan D; Parac-Vogt, Tatjana N; Carbó, Jorge J
2016-10-17
The molecular interactions between the Ce IV -substituted Keggin anion [PW 11 O 39 Ce(OH 2 ) 4 ] 3- (CeK) and hen egg-white lysozyme (HEWL) were investigated by molecular dynamics simulations. The analysis of CeK was compared with the Ce IV -substituted Keggin dimer [(PW 11 O 39 ) 2 Ce] 10- (CeK 2 ) and the Zr IV -substituted Lindqvist anion [W 5 O 18 Zr(OH 2 )(OH)] 3- (ZrL) to understand how POM features such as shape, size, charge, or type of incorporated metal ion influence the POM⋅⋅⋅protein interactions. Simulations revealed two regions of the protein in which the CeK anion interacts strongly: cationic sites formed by Arg21 and by Arg45 and Arg68. The POMs chiefly interact with the side chains of the positively charged (arginines, lysines) and the polar uncharged residues (tyrosines, serines, aspargines) via electrostatic attraction and hydrogen bonding with the oxygen atoms of the POM framework. The CeK anion shows higher protein affinity than the CeK 2 and ZrL anions, because it is less hydrophilic and it has the right size and shape for establishing interactions with several residues simultaneously. The larger, more negatively charged CeK 2 anion has a high solvent-accessible surface, which is sub-optimal for the interaction, while the smaller ZrL anion is highly hydrophilic and cannot efficiently interact with several residues simultaneously. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
ac aging and space-charge characteristics in low-density polyethylene polymeric insulation
NASA Astrophysics Data System (ADS)
Chen, G.; Fu, M.; Liu, X. Z.; Zhong, L. S.
2005-04-01
In the present work efforts have been made to investigate the influence of ac aging on space-charge dynamics in low-density polyethylene (LDPE). LDPE films with 200 μm were aged under various electric stress levels at 50 Hz for various times at ambient temperature. Space-charge dynamics in the samples after aging were monitored using the pulsed electroacoustic technique. It has been revealed that the space charge under ac aging conditions is related to the level of the applied field, duration of the voltage application, as well as the electrode materials. By comparing with the results of unaged sample the results from aged sample provide a direct evidence of changing trapping characteristics after ac aging. Negative space charge is present in the bulk of the material and the total amount of charge increases with the aging time. The amount of charge increases with the applied field. Charge decay test indicates that the charges are captured in deep traps. These deep traps are believed to form during the aging and related to change caused by injected charge. By using different electrode materials such as gold, brass alloy, and polyethylene loaded with carbon black, it was found that the electrode has an important role in the formation of charge, hence subsequent changes caused by charge. The charge dynamics of the aged samples under dc bias differ from the sample without ac aging, indicating changes brought in by ac aging. Chemical analysis by Fourier transform infrared spectroscope and Raman microscope reveals no detectable chemical changes taken place in the bulk of the material after ac aging. Finally, the consequence of the accumulation of space charge under ac conditions on the lifetime of the material has been discussed. The presence of deeply trapped space charge leads to an electric stress enhancement which may shorten the lifetime of the insulation system.
Charge retention of soft-landed phosphotungstate Keggin anions on self-assembled monolayers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunaratne, K. Don D.; Prabhakaran, Venkateshkumar; Andersen, Amity
Soft landing of mass-selected ions onto surfaces often results in partial loss of charge that may affect the structure and reactivity of deposited species. In this study, Keggin phosphotungstate anions in two selected charge states, PW12O403- (WPOM3-) and PW12O402- (WPOM2-), were soft-landed onto different self-assembled monolayer (SAM) surfaces and examined using in situ infrared reflection absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations. Partial retention of the 3- charge was observed when WPOM3- was soft-landed onto the fluorinated SAM (FSAM), while the charge state distribution was dominated by the 2- charge after both WPOM3- and WPOM2- were deposited ontomore » a hydrophilic alkylthiol SAM terminated with cationic NH3+ functional groups (NH3+SAM). We found that during the course of the soft landing of WPOM3-, the relative abundance of WPOM3- on FSAM decreased while that of WPOM2- increased. We propose that the higher stability of immobilized WPOM2- in comparison with WPOM3- makes it the preferred charge state of WPOM on both the FSAM and NH3+SAM. We also observe weaker binding of WPOM anions to SAMs in comparison with phosphomolybdate ions (MoPOM) reported previously (J. Phys. Chem. C 2014, 118, 27611–27622). The weaker binding of WPOM to SAMs is attributed to the lower reactivity of WPOM reported in the literature. This study demonstrates that both the charge retention and the reactivity of deposited anionic POM clusters on surfaces are determined by the type of addenda metal atoms in the cluster.« less
An ab initio study on BeX 3- superhalogen anions (X = F, Cl, Br)
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Skurski, Piotr
2002-06-01
The vertical electron detachment energies (VDE) of 10 BeX 3- (X = F, Cl, Br) anions were calculated at the outer valence Green function (OVGF) level with the 6-311++G(3df) basis sets. The largest vertical electron binding energy was found for BeF 3- system (7.63 eV). All negatively charged species possess the vertical electron detachment energies that are larger than 5.5 eV and thus may be termed superhalogen anions. The strong dependence of the VDE of the BeX 3- species on the ligand-central atom (Be-X) distance and on the partial atomic charge localized on Be was observed and discussed, as well as the other factors that may influence the electronic stability of such anions. In addition, the usefulness of the various theoretical treatments for estimating the VDEs of superhalogen anions was tested and analyzed.
Influence of polyethylene glycol on percolation dynamics of reverse microemulsions
NASA Astrophysics Data System (ADS)
Geethu, P. M.; Yadav, Indresh; Aswal, V. K.; Satapathy, D. K.
2018-04-01
We explore the influence of a hydrophilic polymer, polyethylene glycol (PEG), on the structure and the percolation dynamics of reverse microemulsions (ME) stabilized by an anionic surfactant AOT (sodium bis(2-ethylhexyl) sulfosuccinate). The percolation transition of MEs is probed using dielectric relaxation spectroscopy (DRS). Notably, an increase in percolation temperature is observed by the incorporation of PEG-polymer into larger ME droplets which is explained by considering the model of polymer adsorption at surfactant-water interface. The stability of the droplet phase of microemulsion after the incorporation of PEG is confirmed by small-angle neutron scattering (SANS) experiment. Further, a net decrease in percolation transition temperature is observed with the addition of PEG polymer for smaller ME droplets and is discussed in relation with the destabilization of droplets owing to the polymer induced bridging and the associated clustering of droplets. We conjecture that the adsorption of PEG polymer chains at the surfactant-water interface as well as the PEG-induced bridging of droplets are due to the strong ion-dipole interaction between anionic head group of AOT surfactant and dipoles present in PEG polymer chains.
Pereira, Jorge F B; Kurnia, Kiki A; Freire, Mara G; Coutinho, João A P; Rogers, Robin D
2015-07-20
The formation of aqueous biphasic systems (ABS) when mixing aqueous solutions of polyethylene glycol (PEG) and an ionic liquid (IL) can be controlled by modifying the hydrogen-bond-donating/-accepting ability of the polymer end groups. It is shown that the miscibility/immiscibility in these systems stems from both the solvation of the ether groups in the oxygen chain and the ability of the PEG terminal groups to preferably hydrogen bond with water or the anion of the salt. The removal of even one hydrogen bond in PEG can noticeably affect the phase behavior, especially in the region of the phase diagram in which all the ethylene oxide (EO) units of the polymeric chain are completely solvated. In this region, removing or weakening the hydrogen-bond-donating ability of PEG results in greater immiscibility, and thus, in a higher ability to form ABS, as a result of the much weaker interactions between the IL anion and the PEG end groups. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bagby, Taryn R.; Cai, Shuang; Duan, Shaofeng; Yang, Qiuhong; Thati, Sharadvi; Berkland, Cory; Aires, Daniel J.; Forrest, M. Laird
2015-01-01
Targeted lymphatic delivery of nanoparticles for drug delivery and imaging is primarily dependent on size and charge. Prior studies have observed increased lymphatic uptake and retentions of over 48 hrs for negatively charged particles compared to neutral and positively charged particles. We have developed new polymeric materials that extend retention over a more pharmaceutically relevant 7-day period. We used whole body fluorescence imaging to observe in mice the lymphatic trafficking of a series of anionic star poly-(6-O-methacryloyl-D-galactose) polymer-NIR dye (IR820) conjugates. The anionic charge of polymers was increased by modifying galactose moieties in the star polymers with succinic anhydride. Increasing anionic nature was associated with enhanced lymphatic uptake up to a zeta potential of ca. -40 mV; further negative charge did not affect lymphatic uptake. Compared to the 20% acid-conjugate, the 40 to 90% acid-star-polymer conjugates exhibited a 2.5- to 3.5-fold increase in lymphatic uptake in both the popliteal and iliac nodes. The polymer conjugates exhibited node half-lives of 2 to 20 hrs in the popliteal nodes and 19 to 114 hrs in the deeper iliac nodes. These polymer conjugates can deliver drugs or imaging agents with rapid lymphatic uptake and prolonged deep-nodal retention; thus they may provide a useful vehicle for sustained intralymphatic drug delivery with low toxicity. PMID:22546180
Adler, S; Baker, P; Pritzl, P; Couser, W G
1985-07-01
Reduction of the negative charge of the glomerular capillary wall alters its charge- and size-selective properties. To investigate the effect of alteration in glomerular charge properties on antibody localization, we prepared cationic and anionic fractions of antibodies to subepithelial and glomerular basement membrane (GBM) antigens, and compared their deposition in normal rats and rats treated with protamine sulfate or aminonucleoside of puromycin to reduce capillary wall charge. IgG antibodies were eluted from kidneys of rats with active Heymann's nephritis (AICN), passive Heymann's nephritis (PHN), or anti-GBM nephritis (NTN), separated into cationic and anionic fractions, and radiolabeled with iodine 125 or iodine 131. Relative antibody content of each fraction was determined by incubation with an excess of glomerular antigen. Varying amounts of cationic and anionic IgG eluted from kidneys of rats with AICN or PHN were injected into 24 normal or protamine sulfate-treated rats. Glomerular binding of all antibodies was highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 4 hours was 1.08 +/- 0.07 for AICN eluate and 0.37 +/- 0.04 for PHN eluate. The ratios were not significantly different in animals pretreated with protamine sulfate (1.15 +/- 0.06 and 0.44 +/- 0.06, respectively; P greater than 0.05). Varying amounts of cationic and anionic IgG eluted from kidneys of rats with NTN were injected into 10 normal rats and four rats treated with aminonucleoside of puromycin. Glomerular binding of antibody was again highly correlated with IgG delivery to the kidney. The ratio of cationic to anionic antibody deposited in the glomeruli of normal rats after 1 hour was 1.03 +/- 0.06, and was not significantly altered in rats treated with aminonucleoside of puromycin (1.05 +/- 0.03, P greater than 0.5). Proteinuria in PHN rats was also unaffected by treatment with protamine sulfate for 5 days (controls: 68 +/- 21 mg/day; protamine sulfate-treated: 65 +/- 14 mg/day; n = 25, P greater than 0.08). These results demonstrate that treatment to reduce glomerular polyanion does not significantly alter the ratio of cationic to anionic antibodies to fixed glomerular antigens that deposit in the glomerulus, or reduce proteinuria caused by deposition of antibody to a fixed subepithelial antigen.
Silambarasan, Krishnamoorthy; Narendra Kumar, Alam Venugopal; Joseph, James
2016-03-14
Charge transport in polymeric films bound by redox reagents is a topic of current interest. The dynamics of electroinactive ions across the interface is studied by immobilizing ferrocyanide anion in a polysilsesquioxanes (PSQs) modified electrode. Redox reagents can stay in the polymeric film by either physical forces or electrostatic binding. The present work describes the immobilization of ferro/ferricyanide redox couples in PSQ films possessing protonated amine functional groups by electrostatic interactions. Charge transport in [Fe(CN)6](4-)-PSQs film was found to be anion dependent, and its formal potential value varied with the relative hydrophilic or hydrophobic nature of the anion used in the supporting electrolyte, unlike the observed dependence on solution cation for electrodes modified with metal hexacyanoferrates (Prussian Blue analogues). The [Fe(CN)6](4-) bound PSQs films were extensively characterized by varying different supporting electrolytes anions using cyclic voltammetry. The redox peak currents were linearly proportional to the square root of the scan rate, implying that the transport of charge carriers is accompanied with redox ion diffusion and electron hopping in a confined space. dsDNA molecules were found to interact with this polymer matrix through anionic phosphate groups. Both voltammetry and A.C. impedance spectroscopy studies revealed that these interactions could be exploited for the determination of ultra-low level (0.5 attomolar) of dsDNA present in aqueous solution.
Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, R. T.; Coates, A. J.; Wellbrock, A.
Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q{sup −1}. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950–1300 km. We report on detections consistently centered between 25.8 and 26.0 u q{sup −1} and between 49.0–50.1 u q{sup −1} which are identified as belonging to the carbon chain anions, CN{sup −}/C{sub 3}N{sup −} and/or C{sub 2}H{sup −}/C{sub 4}H{sup −},more » in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73–74 u q{sup −1} could be attributed to the further carbon chain anions C{sub 5}N{sup −}/C{sub 6}H{sup −} but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q{sup −1}) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.« less
Structure and Liquid Fragility in Sodium Carbonate.
Wilson, Mark; Ribeiro, Mauro C C; Wilding, Martin C; Benmore, Chris; Weber, J K R; Alderman, Oliver; Tamalonis, Anthony; Parise, J B
2018-02-01
The relationship between local structure and dynamics is explored for molten sodium carbonate. A flexible fluctuating-charge model, which allows for changes in the shape and charge distribution of the carbonate molecular anion, is developed. The system shows the evolution of highly temperature-dependent complex low-dimensional structures which control the dynamics (and hence the liquid fragility). By varying the molecular anion charge distribution, the key interactions responsible for the formation of these structures can be identified and rationalized. An increase in the mean charge separation within the carbonate ions increases the connectivity of the emerging structures and leads to an increase in the system fragility.
Electron transfer from alpha-keggin anions to dioxygen
Yurii V. Geletii; Rajai H. Atalla; Craig L. Hill; Ira A. Weinstock
2004-01-01
Polyoxometalates (POMs), of which alpha-Keggin anions are representative, are a diverse and rapidly growing class of water-soluble cluster-anion structures with applications ranging from molecular catalysis to materials. [1] POMs are inexpensive, minimally or non-toxic, negatively charged clusters comprised of early transition-metals, usually in their do electronic...
Guilty as charged: unmeasured urinary anions in a case of pyroglutamic acidosis.
Rolleman, E J; Hoorn, E J; Didden, P; Zietse, R
2008-09-01
A patient developed an unexplained metabolic acidosis with the characteristics of renal tubular acidosis. By correcting the serum anion gap for hypoalbuminaemia and analysing the urinary anions and cations, the presence of unmeasured anions was revealed. The diagnosis of pyroglutamic acidosis, caused by a combination of flucloxacillin and acetaminophen, was established. Strategies for solving complex cases of metabolic acidosis are discussed.
Eriksen, Anne Z; Brewer, Jonathan; Andresen, Thomas L; Urquhart, Andrew J
2017-04-30
The diffusion dynamics of nanocarriers in the vitreous and the influence of nanocarrier physicochemical properties on these dynamics is an important aspect of the efficacy of intravitreal administered nanomedicines for the treatment of posterior segment eye diseases. Here we use fluorescence correlation spectroscopy (FCS) to determine liposome diffusion coefficients in the intact vitreous (D Vit ) of ex vivo porcine eyes using a modified Miyake-Apple technique to minimize the disruption of the vitreous fine structure. We chose to investigate whether the zeta potential of polyethylene glycol functionalized (i.e. PEGylated) liposomes altered liposome in situ diffusion dynamics in the vitreous. Non-PEGylated cationic nanocarriers have previously shown little to no diffusion in the vitreous, whilst neutral and anionic have shown diffusion. The liposomes investigated had diameters below 150nm and zeta potentials ranging from -20 to +12mV. We observed that PEGylated cationic liposomes had significantly lower D Vit values (1.14μm 2 s -1 ) than PEGylated neutral and anionic liposomes (2.78 and 2.87μm 2 s -1 ). However, PEGylated cationic liposomes had a similar biodistribution profile across the vitreous to the other systems. These results show that PEGylated cationic liposomes with limited cationic charge can diffuse across the vitreous and indicate that the vitreous as a barrier to nanocarriers (Ø<500nm) is more complicated than simply an electrostatic barrier as previously suggested. Copyright © 2017 Elsevier B.V. All rights reserved.
Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian
2018-04-12
Space charge migration characteristics play an important role in the evaluation of polymer insulation performance. However, an accurate description of charge carrier mobility in several typical insulating polymers such as polyethylene, polypropylene is currently not available. Recently, with the observation of a series of negative charge packet movements associated with the negative differential resistance characteristic of charge mobility in LDPE films, the extraction of charge mobility from the apparent charge packet movement has been attempted using appropriate methods. Based on the previous report of the successful derivation of charge mobility from experimental results using numerical methods, the present research improves the derivation accuracy and describes the details of the charge mobility derivation procedure. Back simulation results under several typical polarizing fields using the derived charge mobility are exhibited. The results indicate that both the NDR theory and the simulation models for the polyethylene materials are reasonable. A significant migration velocity difference between the charge carrier and the charge packet is observed. Back simulations of the charge packet under several typical polarizing fields using the obtained E-v curve show good agreement with the experimental results. The charge packet shapes during the migrations were also found to vary with the polarizing field.
An ab initio study on MgX 3- and CaX 3- superhalogen anions (X=F, Cl, Br)
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Sobczyk, Monika; Dąbkowska, Iwona; Skurski, Piotr
2003-06-01
The vertical electron detachment energies (VDEs) of twenty MX 3- (M=Mg, Ca; X=F, Cl, Br) anions were calculated at the OVGF level with the 6-311++G(3df) basis sets. The largest vertical electron binding energy was found for MgF 3- system (8.793 eV). All negatively charged species possess the VDEs that are larger than 5.9 eV and thus may be termed superhalogen anions. The strong dependence of the VDE of the MX 3- species on the ligand-central atom (M-X) distance and on the partial atomic charge localized on Mg or Ca was observed and discussed, as well as the other factors that may influence the electronic stability of such anions.
Temperature increase and charging current in polyethylene film during application of high voltage
NASA Astrophysics Data System (ADS)
Zhang, Chao; Kaneko, Kazue; Mizutani, Teruyoshi
2001-12-01
Temperature increase in a low density polyethylene film during the application of high dc voltage was estimated by measuring the sound velocity with a pulsed electroacoustic method. The temperature shows no change under the electric field of 50 MVm-1 at ambient temperature of 30 °C. However, the temperature increases with time, and rises to 63.7 °C in 90 min of the voltage application at ambient temperature of 60 °C. The temperature increase was caused by Joule heating and it resulted in the increase of charging current during the application of high dc voltage. The increase in charging current calculated from the temperature increase agreed well with the experimental one.
A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries
Zhang, Weidong; Zhuang, Houlong L.; Fan, Lei; Gao, Lina; Lu, Yingying
2018-01-01
Dendritic Li deposition has been “a Gordian knot” for almost half a century, which significantly hinders the practical use of high-energy lithium metal batteries (LMBs). The underlying mechanisms of this dendrite formation are related to the preferential lithium deposition on the tips of the protuberances of the anode surface and also associated with the concentration gradient or even depletion of anions during cycling. Therefore, a synergistic regulation of cations and anions at the interface is vital to promoting dendrite-free Li anodes. An ingenious molecular structure is designed to realize the “cation-anion regulation” with strong interactions between adsorption sites and ions at the molecular level. A quaternized polyethylene terephthalate interlayer with a “lithiophilic” ester building block and an “anionphilic” quaternary ammonium functional block can guide ions to form dendrite-free Li metal deposits at an ultrahigh current density of 10 mA cm−2, enabling stable LMBs. PMID:29507888
Block copolymers for alkaline fuel cell membrane materials
NASA Astrophysics Data System (ADS)
Li, Yifan
Alkaline fuel cells (AFCs) using anion exchange membranes (AEMs) as electrolyte have recently received considerable attention. AFCs offer some advantages over proton exchange membrane fuel cells, including the potential of non-noble metal (e.g. nickel, silver) catalyst on the cathode, which can dramatically lower the fuel cell cost. The main drawback of traditional AFCs is the use of liquid electrolyte (e.g. aqueous potassium hydroxide), which can result in the formation of carbonate precipitates by reaction with carbon dioxide. AEMs with tethered cations can overcome the precipitates formed in traditional AFCs. Our current research focuses on developing different polymer systems (blend, block, grafted, and crosslinked polymers) in order to understand alkaline fuel cell membrane in many aspects and design optimized anion exchange membranes with better alkaline stability, mechanical integrity and ionic conductivity. A number of distinct materials have been produced and characterized. A polymer blend system comprised of poly(vinylbenzyl chloride)-b-polystyrene (PVBC-b-PS) diblock copolymer, prepared by nitroxide mediated polymerization (NMP), with poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) or brominated PPO was studied for conversion into a blend membrane for AEM. The formation of a miscible blend matrix improved mechanical properties while maintaining high ionic conductivity through formation of phase separated ionic domains. Using anionic polymerization, a polyethylene based block copolymer was designed where the polyethylene-based block copolymer formed bicontinuous morphological structures to enhance the hydroxide conductivity (up to 94 mS/cm at 80 °C) while excellent mechanical properties (strain up to 205%) of the polyethylene block copolymer membrane was observed. A polymer system was designed and characterized with monomethoxy polyethylene glycol (mPEG) as a hydrophilic polymer grafted through substitution of pendent benzyl chloride groups of a PVBC-b-PS. The incorporation of the hydrophilic polymer allows for an investigation of the effect of hydration on ionic conductivity, resulting in the increase in membrane water affinity, enhancement of conductivity and reduced dependence of conductivity on relative humidity. A study of crosslinking of block copolymers was done wherein the crosslinking occurs in the non-matrix phase in order to maintain mechanical properties. The formation of a cationic crosslinked structure improves the mechanical integrity of the membrane in water while showing little deleterious effect on ionic conductivity and mechanical properties.
Xin, Xing; Ito, Kimihiko; Kubo, Yoshimi
2017-08-09
The main issues with Li-O 2 batteries are the high overpotential at the cathode and the dendrite formation at the anode during charging. Various types of redox mediators (RMs) have been proposed to reduce the charging voltage. However, the RMs tend to lose their activity during cycling owing to not only decomposition reactions but also undesirable discharge (shuttle effect) at the Li metal anode. Moreover, the dendrite growth of the Li metal anode is not resolved by merely adding RMs to the electrolytes. Here we report a simple yet highly effective method to reduce the charge overpotential while protecting the Li metal anode by incorporating LiBr and LiNO 3 in a tetraglyme solvent as the electrolyte for Li-O 2 cells. The Br - /Br 3 - couple acts as an RM to oxidize the discharge product Li 2 O 2 at the cathode, whereas the NO 3 - anion oxidizes the Li metal surface to prevent the shuttle reaction. In this work, we found that both anions work synergistically in the mixed Br - /NO 3 - electrolyte to dramatically suppress both parasitic reactions and dendrite formation by generating a solid Li 2 O thin film on the Li metal anode. As a result, the charge voltage was reduced to below 3.6 V over 40 cycles. The O 2 evolution during charging was more than 80% of the theoretical value, and CO 2 emission during charging was negligible. After cycling, the Li metal anode showed smooth surfaces with no indication of dendrite formation. These observations clearly demonstrate that the Br - /NO 3 - dual-anion electrolyte can solve the problems associated with both the overpotential at the cathode and the dendrite formation at the anode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.
2011-11-15
Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate wasmore » more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: > LDH-PET compatibility is enhanced by preintercalation of organic anions. > Dodecylsulphate performance is much better than that of terephthalate. > Microwave heating improves the thermal stability of the composites. > Microwave heating improves as well the dispersion of the inorganic phase.« less
Structure of cyano-anion ionic liquids: X-ray scattering and simulations.
Dhungana, Kamal B; Faria, Luiz F O; Wu, Boning; Liang, Min; Ribeiro, Mauro C C; Margulis, Claudio J; Castner, Edward W
2016-07-14
Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN(-), SCN(-), N(CN)2 (-), C(CN)3 (-), and B(CN)4 (-). By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)4 (-) anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 (+)/B(CN)4 (-) is cationic.
Cassini observations of carbon-based anions in Titan's ionosphere
NASA Astrophysics Data System (ADS)
Desai, Ravindra; Lewis, Gethyn; Waite, J. Hunter; Kataria, Dhiren; Wellbrock, Anne; Jones, Geraint; Coates, Andrew
2016-07-01
Cassini observations of Titan's ionosphere revealed an atmosphere rich in positively and negatively charged ions and organic molecules. The detection of large quantities of negatively charged ions was particularly surprising and adds Titan to the growing list of locations where anion chemistry has been observed to play an important role. In this study we present updated analysis on these negatively charged ions through an enhanced understanding of the Cassini CAPS Electron Spectrometer (CAPS-ELS) instrument response. The ionisation of Titan's dominant atmospheric constituent, N2, by the HeII Solar line, results in an observable photoelectron population at 24.1eV which we use to correct for differential spacecraft charging. Correcting for further energy-angle signatures within this dataset, we use an updated fitting procedure to show how the ELS mass spectrum, previously grouped into broad mass ranges, can be resolved into specific peaks at multiples of carbon-based anion species up to over 100amu/q. These peaks are shown to be ubiquitous within Titan's upper atmosphere and reminiscent of carbon-based anions identified in dense molecular clouds beyond our Solar System. It is thus shown how the moon Titan in the Outer Solar System can be used as an analogue to study these even more remote and exotic astrophysical environments.
Manipulation and Biological Applications of Gold Nanorods
NASA Astrophysics Data System (ADS)
Rostro-Kohanloo, Betty Catalina
This thesis compared anionic polyelectrolyte wrapping stabilization with poly(sodium 4-stryene-sulfonate), (PSS), polyelectrolyte and methoxy (polyethylene glycol)-thiol (mPEG(5000)-SH) strategies. From this data the critical gold nanorod (GNR) and cetyl-trimethylammonium bromide (CTAB) concentration ratio needed for GNR stabilization was determined using optical and chemical extraction methods. This was followed by functionalization with a heterobifunctional Polyethylene glycol (PEG) linker, such as a-thio-w-carboxy poly(ethylene glycol) termed t-PEG-c and carbodiimide chemistries for antibody linkage with Immunoglobulin G (IgG), and epidermal growth factor receptor (EGFR) based Human Epidermal growth factor Receptor 2 (Her2), and Cetuximab (C225) antibodies, for in vitro cancer cell targeting. Confocal, two-photon luminescence (TPL), and dark scattering microscopy, and fluorescence, zeta potential, and Nanoparticle Enzyme-linked immunosorbent assay (ELISA) were used to monitor changes to the GNR surface. An untreatable form of bladder cancer was then studied using the t-GNR-PEG-c-Ab bioconjugates with C225 antibody, which housed a glyceraldehyde-3-phosphate (GAPDH), Fluorescein isothiocyanate (FITC) labeled siRNA, termed GAPDH-siRNA-FITC, which was included within a Luciferase based plasmid. A salt based electrostatic heating method was used to trap the GAPDH-siRNA-FITC from the PEG layer by activating the PEG polymer pour point, while a laser based heating system was used for in vitro release inside cancer cells. The down regulation of the GAPDH gene was targeted by the siRNA. as GAPDH has been shown to be up-regulated in many cancers and down-regulated by chemotherapeutic drugs. Cell culture, and subsequent imaging by transmission electron microscopy (TEM), TPL and confocal microscopy were used to view the internalized conjugates, and reverse transcriptase polymerase chain reaction (RT-PCR) were used to determine if the release of the GAPDH-siRNA caused a reduction in the expression of GAPDH-mRNA. Plasmonic gene silencing of the gene by the GAPDH-siRNA was then compared to a lipid based Dharmafect control in terms of transfection ability. RT-PCR results evidenced gene silencing of the plasmonic-GAPDH-siRNA vector when compared to the Dharmafect control. Silencing likely resulted from the zwitterionic charges of the plasmonic vector and the encapsulated GAPDH-siRNA, which yielded near neutral charge tendencies. This differs significantly from the Dharmafect lipid vector, which is cationic in nature. Endosomal release of the plasmonic vector is further enhanced by the laser excitation of the GNR at the longitudinal surface plasmon resonance (LSPR), which allows for the endosomal release of the GAPDH-siRNA through pore formation leading to cytoplasmic transport and subsequent gene silencing. Near neutral charges were welcomed in this plasmonic gene therapy study as they tend to favor endosomal release, pore formation, and transport.
Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite
NASA Technical Reports Server (NTRS)
West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.
2007-01-01
We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.
Genetics Home Reference: SLC4A1-associated distal renal tubular acidosis
... exchanger 1 (AE1) protein, which transports negatively charged atoms (anions) across cell membranes. Specifically, AE1 exchanges negatively charged atoms of chlorine (chloride ions) for negatively charged bicarbonate ...
Tang, Lidan; Sun, Runing; Shi, Di; Webster, Thomas J; Tu, Jiasheng; Sun, Chunmeng
2017-01-01
To achieve enhanced physical stability of poly(ethylene glycol)-poly(d,l-lactide) polymeric micelles (PEG-PDLLA PMs), a mixture of methoxy PEG-PDLLA-polyglutamate (mPEG-PDLLA-PLG) and mPEG-PDLLA-poly(l-lysine) (mPEG-PDLLA-PLL) copolymers was applied to self-assembled stable micelles with polyion-stabilized cores. Prior to micelle preparation, the synthetic copolymers were characterized by 1H-nuclear magnetic resonance (NMR) and infrared spectroscopy (IR), and their molecular weights were calculated by 1H-NMR and gel permeation chromatography (GPC). Dialysis was used to prepare PMs with deoxypodophyllotoxin (DPT). Transmission electron microscopy (TEM) images showed that DPT polyion complex micelles (DPT-PCMs) were spherical, with uniform distribution and particle sizes of 36.3±0.8 nm. In addition, compared with nonpeptide-modified DPT-PMs, the stability of DPT-PCMs was significantly improved under various temperatures. In the meantime, the pH sensitivity induced by charged peptides allowed them to have a stronger antitumor effect and a pH-triggered release profile. As a result, the dynamic characteristic of DPT-PCM was retained, and high biocompatibility of DPT-PCM was observed in an in vivo study. These results indicated that the interaction of anionic and cationic charged polyionic segments could be an effective strategy to control drug release and to improve the stability of polymer-based nanocarriers. PMID:29133981
Wang, Yutong; Huang, Liping; Shen, Yan; Tang, Lidan; Sun, Runing; Shi, Di; Webster, Thomas J; Tu, Jiasheng; Sun, Chunmeng
2017-01-01
To achieve enhanced physical stability of poly(ethylene glycol)-poly(d,l-lactide) polymeric micelles (PEG-PDLLA PMs), a mixture of methoxy PEG-PDLLA-polyglutamate (mPEG-PDLLA-PLG) and mPEG-PDLLA-poly(l-lysine) (mPEG-PDLLA-PLL) copolymers was applied to self-assembled stable micelles with polyion-stabilized cores. Prior to micelle preparation, the synthetic copolymers were characterized by 1 H-nuclear magnetic resonance (NMR) and infrared spectroscopy (IR), and their molecular weights were calculated by 1 H-NMR and gel permeation chromatography (GPC). Dialysis was used to prepare PMs with deoxypodophyllotoxin (DPT). Transmission electron microscopy (TEM) images showed that DPT polyion complex micelles (DPT-PCMs) were spherical, with uniform distribution and particle sizes of 36.3±0.8 nm. In addition, compared with nonpeptide-modified DPT-PMs, the stability of DPT-PCMs was significantly improved under various temperatures. In the meantime, the pH sensitivity induced by charged peptides allowed them to have a stronger antitumor effect and a pH-triggered release profile. As a result, the dynamic characteristic of DPT-PCM was retained, and high biocompatibility of DPT-PCM was observed in an in vivo study. These results indicated that the interaction of anionic and cationic charged polyionic segments could be an effective strategy to control drug release and to improve the stability of polymer-based nanocarriers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lai-Sheng, E-mail: Lai-Sheng-Wang@brown.edu
2015-07-28
Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent developmentmore » in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.« less
NASA Astrophysics Data System (ADS)
Shibaev, A. V.; Makarov, A. V.; Aleshina, A. L.; Rogachev, A. V.; Kuklin, A. I.; Philippova, O. E.
2017-05-01
In this work, a combination of small-angle neutron scattering, dynamic light scattering and rheometry was applied in order to investigate the structure and oil responsiveness of anionic/cationic wormlike surfactant micelles formed in a mixture of potassium oleate and n-octyltrimethylammonium bromide (C8TAB). A new facile method of calculating the structure factor of charged interacting wormlike micelles was proposed. It was shown that the mean distance between the micelles decreases upon the increase of the amount of cationic co-surfactant and lowering of the net micellar charge. It was demonstrated that highly viscous fluids containing mixed anionic/cationic wormlike micelles are highly responsive to oil due to its solubilization inside the micellar cores, which leads to the disruption of micelles and formation of microemulsion droplets. Experimental data suggest that solubilization of oil proceeds differently in the case of mixed anionic/cationic micelles in the absence of salt, and anionic micelles of the same surfactant in the presence of KCl.
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
Ions are promising building blocks for tunable self-organizing materials with advanced technological applications. However, because of strong Coulomb attraction with counterions, the intrinsic properties of ions are difficult to exploit for preparation of bulk materials. Here, we report the precisely-controlled preparation of macroscopic surface layers by soft landing of mass selected complex anions which determine the self organization of the layers with their molecular properties. The family of halogenated dodecaborates [B12X12]2- (X = F, Cl, Br, I), in which the internal charge distribution between core and shell regions of the molecular ions systematically vary, was deposited on different self assembledmore » monolayer surfaces (SAMs) on gold at high coverage. Layers of anions were found to be stabilized by accumulation of neutral molecules. Different phases, self-organization mechanisms and optical properties were observed to depend upon the internal charge distribution of the deposited anions, the underlying surface and the coadsorbed molecules. This demonstrates rational control of the properties of anion based layers.« less
Affinity Electrophoresis Using Ligands Attached To Polymers
NASA Technical Reports Server (NTRS)
Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.
1990-01-01
In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.
Dou, Qingyun; Liu, Lingyang; Yang, Bingjun; Lang, Junwei; Yan, Xingbin
2017-12-19
Supercapacitors based on activated carbon electrodes and ionic liquids as electrolytes are capable of storing charge through the electrosorption of ions on porous carbons and represent important energy storage devices with high power delivery/uptake. Various computational and instrumental methods have been developed to understand the ion storage behavior, however, techniques that can probe various cations and anions of ionic liquids separately remain lacking. Here, we report an approach to monitoring cations and anions independently by using silica nanoparticle-grafted ionic liquids, in which ions attaching to silica nanoparticle cannot access activated carbon pores upon charging, whereas free counter-ions can. Aided by this strategy, conventional electrochemical characterizations allow the direct measurement of the respective capacitance contributions and acting potential windows of different ions. Moreover, coupled with electrochemical quartz crystal microbalance, this method can provide unprecedented insight into the underlying electrochemistry.
Does the liquid method of electret forming influence the adhesion of blood platelets?
Lowkis, B; Szymanowicz, M
1995-01-01
This work presents the results of the effect of the electric charge on the adhesion of blood platelets. All experiments were carried out on polyethylene foil. The liquid method was used to form electrets. The evaluation of the electret effect influence on the adhesion of blood platelets was made on the basis of the observation of the electret surface after the contact with fresh citrate human blood group O Rh+ in an electron scanning microscope. Experimental results confirmed the essential influence of the electric charge on the process of adhesion of blood platelets. It was noticed that the preliminary aging of electrets decreases the density of the surface charge and improves the athrombogenic characteristics of polyethylene foil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Lijing; Xu Xiangyu; Evans, David G.
2010-05-15
An MgAl-NO{sub 3}-layered double hydroxide (LDH) precursor has been prepared by a method involving separate nucleation and aging steps (SNAS). Reaction with iminodiacetic acid (IDA) under weakly acidic conditions led to the replacement of the interlayer nitrate anions by iminodiacetic acid anions. The product was characterized by XRD, FT-IR, TG-DTA, ICP, elemental analysis and SEM. The results show that the original interlayer nitrate anions of LDHs precursor were replaced by iminodiacetic acid anions and that the resulting intercalation product MgAl-IDA-LDH has an ordered crystalline structure. MgAl-IDA-LDH was mixed with low density polyethylene (LDPE) using a masterbatch method. LDPE films filledmore » with MgAl-IDA-LDH showed a higher mid to far infrared absorption than films filled with MgAl-CO{sub 3}-LDH in the 7-25 {mu}m range, particularly in the key 9-11 {mu}m range required for application in agricultural plastic films. - Graphical abstract: Intercalation of iminodiacetic acid (IDA) anions in a MgAl-NO{sub 3}-layered double hydroxide host leads to an enhancement of its infrared absorbing ability for application in agricultural plastic films.« less
Laser cooling of molecular anions.
Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel
2015-05-29
We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.
NASA Astrophysics Data System (ADS)
Seminovski, Yohanna; Amaral, Rafael C.; Tereshchuk, Polina; Da Silva, Juarez L. F.
2018-01-01
Platinum (Pt) atoms in the bulk face-centered cubic structure have neutral charge because they are equivalent by symmetry, however, in clean Pt surfaces, the effective charge on Pt atoms can turn slightly negative (anionic) or positive (cationic) while increasing substantially in magnitude for defected (low-coordinated) Pt sites. The effective charge affect the adsorption properties of molecular species on Pt surfaces and it can compete in importance with the coupling of the substrate-molecule electronic states. Although several studies have been reported due to the importance of Pt for catalysis, our understanding of the role played by low-coordinated sites is still limited. Here, we employ density functional theory within the Perdew-Burke-Ernzerhof exchange-correlation functional and the D3 van der Waals (vdW) correction to investigate the role of the cationic and anionic Pt sites on the adsorption properties of ethanol and water on defected Pt4/Pt(111) substrates. Four substrates were carefully selected, namely, two two-dimensional (2D) Pt4 configurations (2D-strand and 2D-island) and two tri-dimensional (3D) Pt4 (3D-fcc and 3D-hcp), to understand the role of coordination, effective charge, and coupling of the electronic states in the adsorption properties. From the Bader charge analysis, we identified the cationic and anionic sites among the Pt atoms exposed to the vacuum region in the Pt4/Pt(111) substrates. We found that ethanol and water bind via the anionic O atoms to the low-coordinated defected Pt sites of the substrates, where the angle PtOH is nearly 100° for most configurations. In the 3D-fcc or 3D-hcp defected configurations, the lowest-coordinated Pt atoms are anionic, hence, those Pt sites are not preferable for the adsorption of O atoms. The charge transfer from water and ethanol to the Pt substrates has similar magnitude for all cases, which implies similar Coulomb contribution to the adsorption energy. Moreover, we found a correlation of the adsorption energy with the shift of the center of gravity of the occupied d-states of Pt sites.
CuC1 thermochemical cycle for hydrogen production
Fan, Qinbai [Chicago, IL; Liu, Renxuan [Chicago, IL
2012-01-03
An electrochemical cell for producing copper having a dense graphite anode electrode and a dense graphite cathode electrode disposed in a CuCl solution. An anion exchange membrane made of poly(ethylene vinyl alcohol) and polyethylenimine cross-linked with a cross-linking agent selected from the group consisting of acetone, formaldehyde, glyoxal, glutaraldehyde, and mixtures thereof is disposed between the two electrodes.
Jackson, Michael R; Beahm, Robert; Duvvuru, Suman; Narasimhan, Chandrasegara; Wu, Jun; Wang, Hsin-Neng; Philip, Vivek M; Hinde, Robert J; Howell, Elizabeth E
2007-07-19
Noncovalent interactions are quite important in biological structure-function relationships. To study the pairwise interaction of aromatic amino acids (phenylalanine, tyrosine, tryptophan) with anionic amino acids (aspartic and glutamic acids), small molecule mimics (benzene, phenol or indole interacting with formate) were used at the MP2 level of theory. The overall energy associated with an anion-quadrupole interaction is substantial (-9.5 kcal/mol for a benzene-formate planar dimer at van der Waals contact distance), indicating the electropositive ring edge of an aromatic group can interact with an anion. Deconvolution of the long-range coplanar interaction energy into fractional contributions from charge-quadrupole interactions, higher-order electrostatic interactions, and polarization terms was achieved. The charge-quadrupole term contributes between 30 to 45% of the total MP2 benzene-formate interaction; most of the rest of the interaction arises from polarization contributions. Additional studies of the Protein Data Bank (PDB Select) show that nearly planar aromatic-anionic amino acid pairs occur more often than expected from a random angular distribution, while axial aromatic-anionic pairs occur less often than expected; this demonstrates the biological relevance of the anion-quadrupole interaction. While water may mitigate the strength of these interactions, they may be numerous in a typical protein structure, so their cumulative effect could be substantial.
Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul
2016-06-29
A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.
Usrey, Monica L; Nair, Nitish; Agnew, Daniel E; Pina, Cesar F; Strano, Michael S
2007-07-03
The electrophoretic mobilities of single-walled carbon nanotubes (SWNTs) in agarose gels subjected to negatively charged covalent functionalization and noncovalent anionic surfactant adsorption are compared using a simplified hydrodynamic model. Net charges are calculated on the basis of estimated friction coefficients for cylindrical rodlike particles. The effects of functionalization with negatively charged 4-hydroxybenzene diazonium and anionic sodium cholate are quantified and compared with model predictions. The adsorption of Na+ counterions into the nonionic surfactant layer adsorbed on SWNTs (Triton-X-405) is shown to induce a positive charge and reverse the mobility under select conditions. This effect has not been identified or quantified for nanoparticle systems and may be important in the processing of these systems.
Simulation of Space Charge Dynamic in Polyethylene Under DC Continuous Electrical Stress
NASA Astrophysics Data System (ADS)
Boukhari, Hamed; Rogti, Fatiha
2016-10-01
The space charge dynamic plays a very important role in the aging and breakdown of polymeric insulation materials under high voltage. This is due to the intensification of the local electric field and the attendant chemical-mechanical effects in the vicinity around the trapped charge. In this paper, we have investigated the space charge dynamic in low-density polyethylene under high direct-current voltage, which is evaluated by experimental conditions. The evaluation is on the basis of simulation using a bipolar charge transport model consisting of charge injection, transports, trapping, detrapping, and recombination phenomena. The theoretical formulation of the physical problem is based on the Poisson, the continuity, and the transport equations. Numerical results provide temporal and local distributions of the electric field, the space charge density for the different kinds of charges (net charge density, mobile and trapped of electron density, mobile hole density), conduction and displacement current densities, and the external current. The result shows the appearance of the negative packet-like space charge with a large amount of the bulk under the dc electric field of 100 kV/mm, and the induced distortion of the electric field is largely near to the anode, about 39% higher than the initial electric field applied.
Fluorescent and colorimetric molecular recognition probe for hydrogen bond acceptors.
Pike, Sarah J; Hunter, Christopher A
2017-11-22
The association constants for formation of 1 : 1 complexes between a H-bond donor, 1-naphthol, and a diverse range of charged and neutral H-bond acceptors have been measured using UV/vis absorption and fluorescence emission titrations. The performance of 1-naphthol as a dual colorimetric and fluorescent molecular recognition probe for determining the H-bond acceptor (HBA) parameters of charged and neutral solutes has been investigated in three solvents. The data were employed to establish self-consistent H-bond acceptor parameters (β) for benzoate, azide, chloride, thiocyanate anions, a series of phosphine oxides, phosphate ester, sulfoxide and a tertiary amide. The results demonstrate both the transferability of H-bond parameters between different solvents and the utility of the naphthol-based dual molecular recognition probe to exploit orthogonal spectroscopic techniques to determine the HBA properties of neutral and charged solutes. The benzoate anion is the strongest HBA studied with a β parameter of 15.4, and the neutral tertiary amide is the weakest H-bond acceptor investigated with a β parameter of 8.5. The H-bond acceptor strength of the azide anion is higher than that of chloride (12.8 and 12.2 respectively), and the thiocyanate anion has a β value of 10.8 and thus is a significantly weaker H-bond acceptor than both the azide and chloride anions.
Eckenrode, Heather M; Jen, Shih-Hui; Han, Jun; Yeh, An-Gong; Dai, Hai-Lung
2005-03-17
Nonlinear optical probe, second harmonic generation (SHG), of the adsorption of the dye molecule malachite green (MG), in cationic form at pH < or = 5, on polystyrene microspheres in aqueous solution is used to study the effect of surface charge and composition on molecular adsorption. Three types of polystyrene microspheres with different surface composition are investigated: (1) a sulfate terminated, anionic surface, (2) a neutral surface without any functional group termination, and (3) an amine terminated, cationic surface. The cationic dye was found to adsorb at all three surfaces, regardless of surface charge. The adsorption free energies, DeltaG's, measured for the three surfaces are -12.67, -12.39, and -10.46 kcal/mol, respectively, with the trend as expected from the charge interactions. The adsorption density on the anionic surface, where attractive charge-charge interaction dominates, is determined by the surface negative charge density. The adsorption densities on the neutral and cationic surfaces are on the other hand higher, perhaps as a result of a balance between minimizing repulsive charge interaction and maximizing attractive molecule-substrate and intermolecular interactions. The relative strength of the SH intensity per molecule, in combination of a model calculation, reveals that the C(2) axis of the MG molecule is nearly perpendicular to the surface on the anionic surface and tilts away from the surface norm when the surface is neutral and further away when cationic. Changing the pH of the solution may alter the surface charge and subsequently affect the adsorption configuration and SH intensity.
Gokarn, Yatin R; Fesinmeyer, R Matthew; Saluja, Atul; Razinkov, Vladimir; Chase, Susan F; Laue, Thomas M; Brems, David N
2011-01-01
Specific-ion effects are ubiquitous in nature; however, their underlying mechanisms remain elusive. Although Hofmeister-ion effects on proteins are observed at higher (>0.3M) salt concentrations, in dilute (<0.1M) salt solutions nonspecific electrostatic screening is considered to be dominant. Here, using effective charge (Q*) measurements of hen-egg white lysozyme (HEWL) as a direct and differential measure of ion-association, we experimentally show that anions selectively and preferentially accumulate at the protein surface even at low (<100 mM) salt concentrations. At a given ion normality (50 mN), the HEWL Q* was dependent on anion, but not cation (Li+, Na+, K+, Rb+, Cs+, GdnH+, and Ca2+), identity. The Q* decreased in the order F− > Cl− > Br− > NO3− ∼ I− > SCN− > ClO4− ≫ SO42−, demonstrating progressively greater binding of the monovalent anions to HEWL and also show that the SO42− anion, despite being strongly hydrated, interacts directly with the HEWL surface. Under our experimental conditions, we observe a remarkable asymmetry between anions and cations in their interactions with the HEWL surface. PMID:21432935
Stability of multiply charged fullerene anions and cations
NASA Astrophysics Data System (ADS)
Wang, Yang; Zettergren, Henning; Alcamí, Manuel; Martín, Fernando
2009-09-01
We present a systematic study of the stability of highly charged cationic and anionic fullerenes whose most stable neutral counterparts follow the isolated pentagon rule (IPR). In agreement with recent studies, we have found that, for many highly charged fullerenes, non-IPR isomers are significantly more stable than the IPR ones. To understand this behavior, we compare the results of elaborate density-functional theory (DFT) calculations to those of a simple Hückel molecular-orbital theory in which the DFT energies of the corresponding neutral systems are used as a reference. The model leads to a reasonable estimate of the relative stability of the IPR and non-IPR isomers as a function of charge, which can be used to identify, among the thousands of possible isomers and charge states, the non-IPR species that are likely more stable than the IPR isomers.
Bush, M S; Reid, A R; Allt, G
1991-09-01
Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, Tom; Huang, Xin; Wang, Xue B.
2006-09-21
Two polyoxometalate Keggin-type anions, a-PM12O403- (M = Mo, W), were transferred to the gas phase by electrospray; their electronic structure and stability were probed by photoelectron spectroscopy. These triply charged anions were found to be highly stable in the gas phase with large adiabatic electron detachment energies of 1.7 and 2.1 eV for M = Mo and W, respectively. The magnitude of the repulsive Coulomb barrier was measured as ~3.4 eV for both anions, providing an experimental estimate for the intramolecular Coulomb repulsion present in these highly charged anions. Density functional theory calculations were carried out and compared with themore » experimental data, providing insight into the electronic structure and valence molecular orbitals of the two Keggin anions. The calculations indicated that the highest occupied molecular orbital and other frontier orbitals for PM12O403- are localized primarily on the u2-oxo bridging ligands of the polyoxometalate framework, consistent with the reactivity on the u2-oxo sites observed in solution. It was shown that the HOMO of PW12O403- is stabilized relative to that of PMo12O403- by ~0.35 eV. The experimental adiabatic electron detachment energies of PM12O403- (i.e., the electron affinities of PM12O402-) are combined with recent calculations on the proton affinity of PM12O403- to yield O-H bond dissociation energies in PM12O39(OH)2- as ~5.1 eV« less
Sweet, Deborah M; Kolhatkar, Rohit B; Ray, Abhijit; Swaan, Peter; Ghandehari, Hamidreza
2009-08-19
The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired.
Sweet, Deborah M.; Kolhatkar, Rohit B.; Ray, Abhijit; Swaan, Peter; Ghandehari, Hamidreza
2009-01-01
The purpose of this work was to assess the impact of PEGylation on transepithelial transport of anionic poly(amidoamine) dendrimers. Cytotoxicity, uptake and transport across Caco-2 cells of PEGylated G3.5 and G4.5 PAMAM dendrimers were studied. Methoxy polyethylene glycol (750 Da) was conjugated to carboxylic acid-terminated PAMAM dendrimers at feed ratios of 1, 2 and 4 PEG per dendrimer. Compared to the control, PEGylation of anionic dendrimers did not significantly alter cytotoxicity up to a concentration of 0.1 mM. PEGylation of G3.5 dendrimers significantly decreased cellular uptake and transepithelial transport while PEGylation of G4.5 dendrimers led to a significant increase in uptake, but also a significant decrease in transport. Dendrimer PEGylation reduced the opening of tight junctions as evidenced by confocal microscopy techniques. Modulation of the tight junctional complex correlated well with changes in PEGylated dendrimer transport and suggests that anionic dendrimers are transported primarily through the paracellular route. PEGylated dendrimers show promise in oral delivery applications where increased functionality for drug conjugation and release is desired. PMID:19393702
Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field
NASA Astrophysics Data System (ADS)
Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.
2007-10-01
A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).
Chloride Anions Regulate Kinetics but Not Voltage-Sensor Qmax of the Solute Carrier SLC26a5.
Santos-Sacchi, Joseph; Song, Lei
2016-06-07
In general, SLC26 solute carriers serve to transport a variety of anions across biological membranes. However, prestin (SLC26a5) has evolved, now serving as a motor protein in outer hair cells (OHCs) of the mammalian inner ear and is required for cochlear amplification, a mechanical feedback mechanism to boost auditory performance. The mechanical activity of the OHC imparted by prestin is driven by voltage and controlled by anions, chiefly intracellular chloride. Current opinion is that chloride anions control the Boltzmann characteristics of the voltage sensor responsible for prestin activity, including Qmax, the total sensor charge moved within the membrane, and Vh, a measure of prestin's operating voltage range. Here, we show that standard narrow-band, high-frequency admittance measures of nonlinear capacitance (NLC), an alternate representation of the sensor's charge-voltage (Q-V) relationship, is inadequate for assessment of Qmax, an estimate of the sum of unitary charges contributed by all voltage sensors within the membrane. Prestin's slow transition rates and chloride-binding kinetics adversely influence these estimates, contributing to the prevalent concept that intracellular chloride level controls the quantity of sensor charge moved. By monitoring charge movement across frequency, using measures of multifrequency admittance, expanded displacement current integration, and OHC electromotility, we find that chloride influences prestin kinetics, thereby controlling charge magnitude at any particular frequency of interrogation. Importantly, however, this chloride dependence vanishes as frequency decreases, with Qmax asymptoting at a level irrespective of the chloride level. These data indicate that prestin activity is significantly low-pass in the frequency domain, with important implications for cochlear amplification. We also note that the occurrence of voltage-dependent charge movements in other SLC26 family members may be hidden by inadequate interrogation timescales, and that revelation of such activity could highlight an evolutionary means for kinetic modifications within the family to address hearing requirements in mammals. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Self-regenerating column chromatography
Park, Woo K.
1995-05-30
The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.
Kemper, Travis W.; Gennett, Thomas; Larsen, Ross E.
2016-10-19
Here we performed molecular dynamics simulations to understand the effects of solvent swelling and state of charge (SOC) on the redox active, organic radical cathode material poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA). We show that the polar solvent acetonitrile primarily solvates the nitroxide radical without disrupting the packing of the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) pendant groups of PTMA. We also simulated bulk PTMA in different SOC, 25%, 50%, 75%, and 100%, by converting the appropriate number of TEMPO groups to the cation charge state and adding BF 4 - counterions to the simulation. At each SOC the packing of PTMA, the solvent, and the counterionsmore » were examined. The binding of the anion to the nitroxide cation site was examined using the potential of mean force and found to be on the order of tens of meV, with a binding energy that decreased with increasing SOC. Additionally, we found that the cation state is stabilized by the presence of a nearby anion by more than 1 eV, and the implications of this stabilization on charge transport are discussed. Finally, we describe the implications of our results for how the SOC of an organic electrode affects electron and anion charge transport during the charging and discharging processes.« less
Hard X-ray photoemission study of the Fabre salts (TMTTF)2X (X = SbF6 and PF6)
NASA Astrophysics Data System (ADS)
Medjanik, Katerina; de Souza, Mariano; Kutnyakhov, Dmytro; Gloskovskii, Andrei; Müller, Jens; Lang, Michael; Pouget, Jean-Paul; Foury-Leylekian, Pascale; Moradpour, Alec; Elmers, Hans-Joachim; Schönhense, Gerd
2014-11-01
Core-level photoemission spectra of the Fabre salts with X = SbF6 and PF6 were taken using hard X-rays from PETRA III, Hamburg. In these salts TMTTF layers show a significant stack dimerization with a charge transfer of 1 e per dimer to the anion SbF6 or PF6. At room temperature and slightly below the core-level spectra exhibit single lines, characteristic for a well-screened metallic state. At reduced temperatures progressive charge localization sets in, followed by a 2nd order phase transition into a charge-ordered ground state. In both salts groups of new core-level signals occur, shifted towards lower kinetic energies. This is indicative of a reduced transverse-conductivity across the anion layers, visible as layer-dependent charge depletion for both samples. The surface potential was traced via shifts of core-level signals of an adsorbate. A well-defined potential could be established by a conducting cap layer of 5 nm aluminum which appears "transparent" due to the large probing depth of HAXPES (8-10 nm). At the transition into the charge-ordered phase the fluorine 1 s line of (TMTTF)2SbF6 shifts by 2.8 eV to higher binding energy. This is a spectroscopic fingerprint of the loss of inversion symmetry accompanied by a cooperative shift of the SbF6 anions towards the more positively charged TMTTF donors. This shift does not occur for the X = PF6 compound, most likely due to smaller charge disproportion or due to the presence of charge disorder.
NASA Astrophysics Data System (ADS)
Duan, Xiaozheng; Li, Yunqi; Zhang, Ran; Shi, Tongfei; An, Lijia; Huang, Qingrong
2013-06-01
We employ Monte Carlo simulations to investigate the interaction between an adsorbing linear flexible cationic polyelectrolyte and a binary fluid membrane. The membrane contains neutral phosphatidyl-choline, PC) and multivalent anionic (phosphatidylinositol, PIP2) lipids. We systematically study the influences of the solution ionic strength, the chain length and the bead charge density of the polyelectrolyte on the lateral rearrangement and the restricted mobility of the multivalent anionic lipids in the membrane. Our findings show that, the cooperativity effect and the electrostatic interaction of the polyelectrolyte beads can significantly affect the segregation extent and the concentration gradients of the PIP2 molecules, and further cooperate to induce the complicated hierarchical mobility behaviors of PIP2 molecules. In addition, when the polyelectrolyte brings a large amount of charges, it can form a robust electrostatic well to trap all PIP2 and results in local overcharge of the membrane. This work presents a mechanism to explain the membrane heterogeneity formation induced by the adsorption of charged macromolecule.
NASA Astrophysics Data System (ADS)
Matsui, Masaki; Dokko, Kaoru; Akita, Yasuhiro; Munakata, Hirokazu; Kanamura, Kiyoshi
2012-07-01
Surface layer formation processes on a LiCoO2 thin film electrode in a non-aqueous electrolyte containing lithium bis(oxalate)borate (LiBOB) were investigated using in situ FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). The in situ FTIR spectra of the electrolyte solution containing LiBOB showed that the adsorption of BOB anions on the electrode surface occurred during the charge process of the LiCoO2 thin film electrode above 4.0 V. XPS analysis for the LiCoO2 thin film electrode charged in an electrolyte containing LiBOB suggested that the adsorbed BOB anions on the electrode surface prevent the continuous decomposition of hexafluorophosphate (PF6) anions resulting in the formation of a very thin surface layer containing organic species, while the LiCoO2 charged in a LiPF6 solution had a relatively thick surface layer containing organic species and inorganic species.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Zhen; Bai Jing; Xu Yuhong
2008-07-11
Bacteriorhodopsin (BR) was reconstituted into artificial lipid membrane containing various charged lipid compositions. The proton pumping activity of BR under flash and continuous illumination, proton permeability across membrane, as well as the decay kinetics of the photocycle intermediate M{sub 412} were studied. The results showed that lipid charges would significantly affect the orientation of BR inserted into lipid membranes. In liposomes containing anionic lipids, BRs were more likely to take natural orientation as in living cells. In neutral or positively charged liposomes, most BRs were reversely assembled, assuming an inside out orientation. Moreover, the lipids charges also affect BR's Mmore » intermediate kinetics, especially the slow component in M intermediate decay. The half-life M{sub 412s} increased significantly in BRs in liposomes containing cationic lipids, while decreased in those in anionic liposomes.« less
Structure of cyano-anion ionic liquids: X-ray scattering and simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhungana, Kamal B.; Faria, Luiz F. O.; Wu, Boning
2016-07-14
Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790–14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN-, SCN-, N(CN)-2N(CN)2-, C(CN)-3C(CN)3-, and B(CN)-4B(CN)4-. By combining molecular dynamics simulations, high-energy X-ray scattering measurements,more » and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)-4B(CN)4- anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im+2,1Im2,1+/B(CN)-4B(CN)4- is cationic.« less
NASA Astrophysics Data System (ADS)
Lafhaj, Z.; Filippov, L. O.; Filippova, I. V.
2017-07-01
The flotation separation of salt type calcium minerals is problematic, due to the similarities in their same active Ca2+ related site for interaction with anionic collectors and similar physicochemical characteristics such as solubility, zero-point charge, surface speciation and Ca-site density. The work was performed to achieve effective and selective separation of the calcium-minerals using pure minerals samples: orange calcite with Mg impurities, optic calcite with impurities level and an apatite. The pure samples surface was examined using techniques sensitive near-surface like infrared spectroscopy (FTIR) and chemical composition was obtained by ICPMS. The isoelectric point (IEP) and point of zero charge (PZC) in electrolyte were recorded using electrophoresis method at different ionic strengths of the solution. Mechanisms of charge development at the mineral-water interface are discussed. The time of contact as important parameter for the charge equilibrium was deduced from kinetics study and fixed to 30 minutes. The difference in the values obtained between IEP and PZSE can be explained by the presence of a specific adsorption of cations and anions on the surface. The effect of pure anionic collectors such as oleic and linoleic acid were studied. At low pH, both collectors lead to a good recovery for the calcites. The flotation recovery of optic calcite at pH 9 with sodium oleate is higher than with sodium linoleate. At alkaline pH, apatite showed a better recovery with sodium linoleate.
Tayade, Rajratna P; Sekar, Nagaiyan
2017-05-01
A novel thiazole based carbaldehyde bearing benzimidazole fluorophore as the receptor unit for F - anion was prepared by multi steps synthesis. Density functional theory was used to understand the structural and electronic properties the receptor. The anion sensing activities of receptor 4 were studied for various anions in acetonitrile solvent. The receptor showed fluorescence enhancement in the presence of fluoride anion due to intramolecular charge transfer (ICT) mechanism. No significant changes were observed upon addition of less basic anions such as OAc - , Cl - , Br - , I - , HSO 4 - . After the interaction of fluoride anion with the receptor 4 leads to an 88 nm red shift in emission maxima. [TBA]OH and 1 H NMR titration experiments indicated that deprotonation of N-H in the benzimidazole due to interaction with fluoride anions.
Tanabe, T; Noda, K; Saito, M; Starikov, E B; Tateno, M
2004-07-23
Electron-DNA anion collisions were studied using an electrostatic storage ring with a merging electron-beam technique. The rate of neutral particles emitted in collisions started to increase from definite threshold energies, which increased regularly with ion charges in steps of about 10 eV. These threshold energies were almost independent of the length and sequence of DNA, but depended strongly on the ion charges. Neutral particles came from breaks of DNAs, rather than electron detachment. The step of the threshold energy increase approximately agreed with the plasmon excitation energy. It is deduced that plasmon excitation is closely related to the reaction mechanism. Copyright 2004 The American Physical Society
Electrostatic control of phospholipid polymorphism.
Tarahovsky, Y S; Arsenault, A L; MacDonald, R C; McIntosh, T J; Epand, R M
2000-12-01
A regular progression of polymorphic phase behavior was observed for mixtures of the anionic phospholipid, cardiolipin, and the cationic phospholipid derivative, 1, 2-dioleoyl-sn-glycero-3-ethylphosphocholine. As revealed by freeze-fracture electron microscopy and small-angle x-ray diffraction, whereas the two lipids separately assume only lamellar phases, their mixtures exhibit a symmetrical (depending on charge ratio and not polarity) sequence of nonlamellar phases. The inverted hexagonal phase, H(II,) formed from equimolar mixtures of the two lipids, i.e., at net charge neutrality (charge ratio (CR((+/-))) = 1:1). When one type of lipid was in significant excess (CR((+/-)) = 2:1 or CR((+/-)) = 1:2), a bicontinuous cubic structure was observed. These cubic phases were very similar to those sometimes present in cellular organelles that contain cardiolipin. Increasing the excess of cationic or anionic charge to CR((+/-)) = 4:1 or CR((+/-)) = 1:4 led to the appearance of membrane bilayers with numerous interlamellar contacts, i.e., sponge structures. It is evident that interactions between cationic and anionic moieties can influence the packing of polar heads and hence control polymorphic phase transitions. The facile isothermal, polymorphic interconversion of these lipids may have important biological and technical implications.
Yin, Shi; Bernstein, Elliot R
2016-10-21
A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeS m (SH) n - ; m, n = 0-3, 0 < (m + n) ≤ 3] cluster anions, obtained at 2.331 eV (532 nm) and 3.492 eV (355 nm) photon energies, are reported. The electronic structure and bonding properties of these clusters are additionally investigated at different levels of density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH) 1-3 - cluster anions are lower than those found for their respective FeS 1-3 - cluster anions. The experimental first VDEs for FeS 1-3 - clusters are observed to increase for the first two S atoms bound to Fe - ; however, due to the formation of an S-S bond for the FeS 3 - cluster, its first VDE is found to be ∼0.41 eV lower than the first VDE for the FeS 2 - cluster. The first VDEs of Fe(SH) 1-3 - cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS 1-3 - and Fe(SH) 1-3 - clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH) - is lower than that for FeS 2 - , but higher than that for Fe(SH) 2 - ; the first VDEs for FeS 2 (SH) - and FeS(SH) 2 - are close to that for FeS 3 - , but higher than that for Fe(SH) 3 - . The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeS m (SH) n - ; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE; however, cluster S-S bonding and more (SH) ligands in the cluster lower the cluster anion first VDE.
NASA Astrophysics Data System (ADS)
Yin, Shi; Bernstein, Elliot R.
2016-10-01
A new magnetic-bottle time-of-flight photoelectron spectroscopy (PES) apparatus is constructed in our laboratory. The PES spectra of iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] cluster anions, obtained at 2.331 eV (532 nm) and 3.492 eV (355 nm) photon energies, are reported. The electronic structure and bonding properties of these clusters are additionally investigated at different levels of density functional theory. The most probable structures and ground state spin multiplicity for these cluster anions are tentatively assigned by comparing their theoretical first vertical detachment energies (VDEs) with their respective experiment values. The behavior of S and (SH) as ligands in these iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide cluster anions is investigated and compared. The experimental first VDEs for Fe(SH)1-3- cluster anions are lower than those found for their respective FeS1-3- cluster anions. The experimental first VDEs for FeS1-3- clusters are observed to increase for the first two S atoms bound to Fe-; however, due to the formation of an S-S bond for the FeS3- cluster, its first VDE is found to be ˜0.41 eV lower than the first VDE for the FeS2- cluster. The first VDEs of Fe(SH)1-3- cluster anions are observed to increase with the increasing numbers of SH groups. The calculated partial charges of the Fe atom for ground state FeS1-3- and Fe(SH)1-3- clusters are apparently related to and correlated with their determined first VDEs. The higher first VDE is correlated with a higher, more positive partial charge for the Fe atom of these cluster anions. Iron sulfide/hydrosulfide mixed cluster anions are also explored in this work: the first VDE for FeS(SH)- is lower than that for FeS2-, but higher than that for Fe(SH)2-; the first VDEs for FeS2(SH)- and FeS(SH)2- are close to that for FeS3-, but higher than that for Fe(SH)3-. The first VDEs of general iron sulfide, hydrosulfide, and mixed sulfide/hydrosulfide clusters [FeSm(SH)n-; m, n = 0-3, 0 < (m + n) ≤ 3] are dependent on three properties of these anions: 1. the partial charge on the Fe atom, 2. disulfide bond formation (S-S) in the cluster, and 3. the number of hydrosulfide ligands in the cluster. The higher the partial charge on the Fe atom of these clusters, the larger the first VDE; however, cluster S-S bonding and more (SH) ligands in the cluster lower the cluster anion first VDE.
Attygalle, Athula B; Ruzicka, Josef; Varughese, Deepu; Bialecki, Jason B; Jafri, Sayed
2007-09-01
Collision-induced dissociation (CID) mass spectra of anions derived from several hydroxyphenyl carbaldehydes and ketones were recorded and mechanistically rationalized. For example, the spectrum of m/z 121 ion of deprotonated ortho-hydroxybenzaldehyde shows an intense peak at m/z 93 for a loss of carbon monoxide attributable to an ortho-effect mediated by a charge-directed heterolytic fragmentation mechanism. In contrast, the m/z 121 ion derived from meta and para isomers undergoes a charge-remote homolytic cleavage to eliminate an *H and form a distonic anion radical, which eventually loses CO to produce a peak at m/z 92. In fact, for the para isomer, this two-step homolytic mechanism is the most dominant fragmentation pathway. The spectrum of the meta isomer on the other hand, shows two predominant peaks at m/z 92 and 93 representing both homolytic and heterolytic fragmentations, respectively. (18)O-isotope-labeling studies confirmed that the oxygen in the CO molecule that is eliminated from the anion of meta-hydroxybenzaldehyde originates from either the aldehydic or the phenolic group. In contrast, anions of ortho-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde, both of which show two consecutive CO eliminations, specifically lose the carbonyl oxygen first, followed by that of the phenolic group. Anions from 2-hydroxyphenyl alkyl ketones lose a ketene by a hydrogen transfer predominantly from the alpha position. Interestingly, a very significant charge-remote 1,4-elimination of a H(2) molecule was observed from the anion derived from 2,4-dihydroxybenzaldehyde. For this mechanism to operate, a labile hydrogen atom should be available on the hydroxyl group adjacent to the carbaldehyde functionality.
Dietrich, Undine; Krüger, Peter; Käs, Josef A
2011-05-01
The presence of charged lipids in the cell membrane constitutes the background for the interaction with numerous membrane proteins. As a result, the valence of the lipids plays an important role concerning their lateral organization in the membrane and therefore the very manner of this interaction. This present study examines this aspect, particularly regarding to the interaction of the anionic lipid DPPS with the highly basic charged effector domain of the MARCKS protein, examined in monolayer model systems. Film balance, fluorescence microscopy and X-ray reflection/diffraction measurements were used to study the behavior of DPPS in a mixture with DPPC for its dependance on the presence of MARCKS (151-175). In the mixed monolayer, both lipids are completely miscible therefore DPPS is incorporated in the ordered crystalline DPPC domains as well. The interaction of MARCKS peptide with the mixed monolayer leads to the formation of lipid/peptide clusters causing an elongation of the serine group of the DPPS up to 7Å in direction to surface normal into the subphase. The large cationic charge of the peptide pulls out the serine group of the interface which simultaneously causes an elongation of the phosphodiester group of the lipid fraction too. The obtained results were used to compare the interaction of MARCKS peptide with the polyvalent PIP(2) in mixed monolayers. On this way we surprisingly find out, that the relative small charge difference of the anionic lipids causes a significant different interaction with MARCKS (151-175). The lateral arrangement of the anionic lipids depends on their charge values and determines the diffusion of the electrostatic binding clusters within the membrane. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarubin, Dmitri P., E-mail: dmitri.zarubin@mtu-net.ru
2014-04-01
Theoretical calculations of the structure and Brønsted acidity of SiOH groups in silica clusters have never addressed the question if these vary with the degree of SiOH deprotonation. In this connection, a statistical analysis is presented of Si–OH bond lengths in crystalline hydrogen silicates with well-determined structures with a special emphasis placed on effects of the silicate composition. It is found that among hydrogen silicates of large cations with low charges the Si–OH bonds are always longer than terminal Si–O bonds in the same anion and correlate in length with the anionic charge per tetrahedron. The findings are explained bymore » steric limitations on charge balancing at oxygen atoms by hydrogen bonds and/or cations. It is suggested that similar limitations and imbalances may underlie the well-known trends in the Brønsted acidity of silicic acids and silicas in aqueous media: decreased acidity with increased SiOH deprotonation and increased acidity with increased tetrahedra connectivity. - Graphical abstract: Si–OH bonds in crystalline silicates lengthen with the anionic charge per tetrahedron, which is in parallel with the well-known trend of decreased acidity of silicic acids and silicas in solution with increased degree of deprotonation. - Highlights: • Si–OH bonds in alkali hydrogen silicates are always longer than terminal Si–O bonds. • Si–OH bonds in silicates lengthen with the anionic charge per tetrahedron. • The Si–OH bond elongation results from inherent underbonding of terminal O atoms. • The longer the Si–OH bond, the less acidic the OH group is.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning, E-mail: nl4g12@soton.ac.uk; He, Miao; Alghamdi, Hisham
2015-08-14
Trapping parameters can be considered as one of the important attributes to describe polymeric materials. In the present paper, a more accurate charge dynamics model has been developed, which takes account of charge dynamics in both volts-on and off stage into simulation. By fitting with measured charge data with the highest R-square value, trapping parameters together with injection barrier of both normal and aged low-density polyethylene samples were estimated using the improved model. The results show that, after long-term ageing process, the injection barriers of both electrons and holes is lowered, overall trap depth is shallower, and trap density becomesmore » much greater. Additionally, the changes in parameters for electrons are more sensitive than those of holes after ageing.« less
Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md. Rakibul
2016-01-01
A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days. PMID:27367738
NASA Astrophysics Data System (ADS)
Wang, Si-Jiao; Zha, Jun-Wei; Li, Wei-Kang; Dang, Zhi-Min
2016-02-01
The sandwich-structured Al2O3/low density polyethylene (Al2O3/LDPE) nanocomposite dielectrics consisting of layer-by-layer with different concentration Al2O3 loading were prepared by melt-blending and following hot pressing method. The space charge distribution from pulsed electro-acoustic method and breakdown strength of the nanocomposites were investigated. Compared with the single-layer Al2O3/LDPE nanocomposites, the sandwich-structured nanocomposites remarkably suppressed the space charge accumulation and presented higher breakdown strength. The charges in the sandwich-structured nanocomposites decayed much faster than that in the single-layer nanocomposites, which was attributed to an effective electric field caused by the formation of the interfacial space charges. The energy depth of shallow and deep traps was estimated as 0.73 eV and 1.17 eV in the sandwich-structured nanocomposites, respectively, according to the thermal excitation theoretical model we proposed. This work provides an attractive strategy of design and fabrication of polymer nanocomposites with excellent space charge suppression.
NASA Astrophysics Data System (ADS)
Gilbert, Joshua D.; Prentice, Boone M.; McLuckey, Scott A.
2015-05-01
The use of ion/ion reactions to effect gas-phase alkylation is demonstrated. Commonly used fixed-charge "onium" cations are well-suited for ion/ion reactions with multiply deprotonated analytes because of their tendency to form long-lived electrostatic complexes. Activation of these complexes results in an SN2 reaction that yields an alkylated anion with the loss of a neutral remnant of the reagent. This alkylation process forms the basis of a general method for alkylation of deprotonated analytes generated via electrospray, and is demonstrated on a variety of anionic sites. SN2 reactions of this nature are demonstrated empirically and characterized using density functional theory (DFT). This method for modification in the gas phase is extended to the transfer of larger and more complex R groups that can be used in later gas-phase synthesis steps. For example, N-cyclohexyl- N'-(2-morpholinoethyl)carbodiimide (CMC) is used to transfer a carbodiimide functionality to a peptide anion containing a carboxylic acid. Subsequent activation yields a selective reaction between the transferred carbodiimide group and a carboxylic acid, suggesting the carbodiimide functionality is retained through the transfer process. Many different R groups are transferable using this method, allowing for new possibilities for charge manipulation and derivatization in the gas phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waters, Tom; Wang, Xue B.; Yang, Xin
2004-04-21
Photodetachment photoelectron spectroscopy was used to investigate the electronic structure of the doubly charged complexes [MIVO(mnt)2]2- (M=Mo, W;mnt=1,2 dicyanoethenedithiolato). These dianions are stable in the gas phase and are minimal models for the active sites of the dimethyl sulfoxide reductase family of molybdenum enzymes and of related tungsten enzymes. Adiabatic and vertical electron binding energies for both species were measured, providing detailed information about molecular orbital energy levels of the parent dianions as well as the ground and excited states of the product anions [MvO(mnt)2]. Density functional theory calculations were used to assist assignment of the detachment features.
NO3- anions can act as Lewis acid in the solid state
NASA Astrophysics Data System (ADS)
Bauzá, Antonio; Frontera, Antonio; Mooibroek, Tiddo J.
2017-02-01
Identifying electron donating and accepting moieties is crucial to understanding molecular aggregation, which is of pivotal significance to biology. Anions such as NO3- are typical electron donors. However, computations predict that the charge distribution of NO3- is anisotropic and minimal on nitrogen. Here we show that when the nitrate's charge is sufficiently dampened by resonating over a larger area, a Lewis acidic site emerges on nitrogen that can interact favourably with electron rich partners. Surveys of the Cambridge Structural Database and Protein Data Bank reveal geometric preferences of some oxygen and sulfur containing entities around a nitrate anion that are consistent with this `π-hole bonding' geometry. Computations reveal donor-acceptor orbital interactions that confirm the counterintuitive Lewis π-acidity of nitrate.
Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong
2013-05-01
This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.
Khatib, Tala O.; Stevenson, Heather; Yeaman, Michael R.; Bayer, Arnold S.
2016-01-01
The cytoplasmic membrane of Staphylococcus aureus contains ∼20 mol% of the net cationic lipid lysyl-phosphatidylglycerol (LPG). Elevated fractions of LPG are associated with increased resistance to cationic antibiotics, including the lipopeptide daptomycin (DAP). Although the surface charge of the bacterial cytoplasmic membrane is altered by LPG, surface binding of DAP was found to be only moderately affected in anionic vesicles containing 20 mol% LPG. These results suggest that charge repulsion cannot fully explain LPG-mediated resistance to cationic peptides. PMID:27216066
Attraction between like-charged monovalent ions.
Zangi, Ronen
2012-05-14
Ions with like-charges repel each other with a magnitude given by the Coulomb law. The repulsion is also known to persist in aqueous solutions albeit factored by the medium's dielectric constant. In this paper, we report results from molecular dynamics simulations of alkali halides salt solutions indicating an effective attraction between some of the like-charged monovalent ions. The attraction is observed between anions, as well as between cations, leading to the formation of dimers with lifetimes on the order of few picoseconds. Two mechanisms have been identified to drive this counterintuitive attraction. The first is exhibited by high-charge density ions, such as fluoride, at low salt concentrations, yielding effective attractions with magnitude up to the order of 1-2 kT. In this case, the stronger local electric field generated when the two ions are in contact augments the alignment of neighboring waters toward the ions. This results in a gain of substantial favorable ion-water interaction energy. For fluorides, this interaction constitutes the major change among the different energy components compensating for the anion-anion repulsion, and therefore, rendering like-charge association possible. The second mechanism involves mediation by counterions, the attractions increase with salt concentration and are characterized by small magnitudes. In particular, clusters of ion triplets, in which a counterion is either bridging the two like-charged ions or is paired to only one of them, are formed. Although these two mechanisms may not yield net attractions in many cases, they might still be operational and significant, explaining effective repulsions between like-charged ions with magnitudes much smaller than expected based on continuum electrostatics.
Kostritskii, Andrei Yu; Kondinskaia, Diana A; Nesterenko, Alexey M; Gurtovenko, Andrey A
2016-10-11
Although synthetic cationic polymers represent a promising class of effective antibacterial agents, the molecular mechanisms behind their antimicrobial activity remain poorly understood. To this end, we employ atomic-scale molecular dynamics simulations to explore adsorption of several linear cationic polymers of different chemical structure and protonation (polyallylamine (PAA), polyethylenimine (PEI), polyvinylamine (PVA), and poly-l-lysine (PLL)) on model bacterial membranes (4:1 mixture of zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) lipids). Overall, our findings show that binding of polycations to the anionic membrane surface effectively neutralizes its charge, leading to the reorientation of water molecules close to the lipid/water interface and to the partial release of counterions to the water phase. In certain cases, one has even an overcharging of the membrane, which was shown to be a cooperative effect of polymer charges and lipid counterions. Protonated amine groups of polycations are found to interact preferably with head groups of anionic lipids, giving rise to formation of hydrogen bonds and to a noticeable lateral immobilization of the lipids. While all the above findings are mostly defined by the overall charge of a polymer, we found that the polymer architecture also matters. In particular, PVA and PEI are able to accumulate anionic PG lipids on the membrane surface, leading to lipid segregation. In turn, PLL whose charge twice exceeds charges of PVA/PEI does not induce such lipid segregation due to its considerably less compact architecture and relatively long side chains. We also show that partitioning of a polycation into the lipid/water interface is an interplay between its protonation level (the overall charge) and hydrophobicity of the backbone. Therefore, a possible strategy in creating highly efficient antimicrobial polymeric agents could be in tuning these polycation's properties through proper combination of protonated and hydrophobic blocks.
Moazzami-Gudarzi, Mohsen; Adam, Pavel; Smith, Alexander M; Trefalt, Gregor; Szilágyi, István; Maroni, Plinio; Borkovec, Michal
2018-04-04
Direct force measurements involving amidine latex (AL) and sulfate latex (SL) particles in aqueous solutions containing multivalent ferrocyanide anions are presented. These measurements feature three different pairs of particles, namely SL-SL, AL-SL, and AL-AL. The force profiles are quantitatively interpreted in terms of the theory by Derjaguin, Landau, Verwey, and Overbeek (DLVO) that is combined with a short-ranged exponential attraction. In monovalent salt solutions, the AL particles are positively charged, while the SL particles are negatively charged. In solutions containing ferrocyanide, the charge of the AL particles is reversed as the concentration is increased. The longer-ranged component of all force profiles is fully compatible with DLVO theory, provided effects of charge regulation are included. At shorter distances, an additional exponential attraction must be introduced, whereby the respective decay length is about 2 nm for the AL-AL pair, and below 1 nm for the SL-SL pair. This non-DLVO force is intermediate for the asymmetric AL-SL pair. These additional forces are probably related to charge fluctuations, patch-charged interactions, or hydrophobic forces.
1-anilino-8-naphthalene sulfonate as a protein conformational tightening agent.
Matulis, D; Baumann, C G; Bloomfield, V A; Lovrien, R E
1999-05-01
1-Anilino-8-naphthalene sulfonate (ANS) anion is conventionally considered to bind to preexisting hydrophobic (nonpolar) surfaces of proteins, primarily through its nonpolar anilino-naphthalene group. Such binding is followed by an increase in ANS fluorescence intensity, similar to that occurring when ANS is dissolved in organic solvents. It is generally assumed that neither the negative sulfonate charge on the ANS, nor charges on the protein, participate significantly in ANS-protein interaction. However, titration calorimetry has demonstrated that most ANS binding to a number of proteins occurs through electrostatic forces, in which ion pairs are formed between ANS sulfonate groups and cationic groups on the proteins (D. Matulis and R. E. Lovrien, Biophys. J., 1998, Vol. 74, pp. 1-8). Here we show by viscometry and diffusion coefficient measurements that bovine serum albumin and gamma-globulin, starting from their acid-expanded, most hydrated conformations, undergo extensive molecular compaction upon ANS binding. As the cationic protein binds negatively charged ANS anion it also takes up positively charged protons from water to compensate the effect of the negative charge, and leaves the free hydroxide anions in solution thus shifting pH upward (the Scatchard-Black effect). These results indicate that ANS is not always a definitive reporter of protein molecular conformation that existed before ANS binding. Instead, ANS reports on a conformationally tightened state produced by the interplay of ionic and hydrophobic characters of both protein and ligand.
Trap Modulated Charge Carrier Transport in Polyethylene/Graphene Nanocomposites.
Li, Zhonglei; Du, Boxue; Han, Chenlei; Xu, Hang
2017-06-21
The role of trap characteristics in modulating charge transport properties is attracting much attentions in electrical and electronic engineering, which has an important effect on the electrical properties of dielectrics. This paper focuses on the electrical properties of Low-density Polyethylene (LDPE)/graphene nanocomposites (NCs), as well as the corresponding trap level characteristics. The dc conductivity, breakdown strength and space charge behaviors of NCs with the filler content of 0 wt%, 0.005 wt%, 0.01 wt%, 0.1 wt% and 0.5 wt% are studied, and their trap level distributions are characterized by isothermal discharge current (IDC) tests. The experimental results show that the 0.005 wt% LDPE/graphene NCs have a lower dc conductivity, a higher breakdown strength and a much smaller amount of space charge accumulation than the neat LDPE. It is indicated that the graphene addition with a filler content of 0.005 wt% introduces large quantities of deep carrier traps that reduce charge carrier mobility and result in the homocharge accumulation near the electrodes. The deep trap modulated charge carrier transport attributes to reduce the dc conductivity, suppress the injection of space charges into polymer bulks and enhance the breakdown strength, which is of great significance in improving electrical properties of polymer dielectrics.
NASA Astrophysics Data System (ADS)
Luque-Caballero, Germán; Martín-Molina, Alberto; Quesada-Pérez, Manuel
2014-05-01
Both experiments and theory have evidenced that multivalent cations can mediate the interaction between negatively charged polyelectrolytes and like-charged objects, such as anionic lipoplexes (DNA-cation-anionic liposome complexes). In this paper, we use Monte Carlo simulations to study the electrostatic interaction responsible for the trivalent-counterion-mediated adsorption of polyelectrolytes onto a like-charged planar surface. The evaluation of the Helmholtz free energy allows us to characterize both the magnitude and the range of the interaction as a function of the polyelectrolyte charge, surface charge density, [3:1] electrolyte concentration, and cation size. Both polyelectrolyte and surface charge favor the adsorption. It should be stressed, however, that the adsorption will be negligible if the surface charge density does not exceed a threshold value. The effect of the [3:1] electrolyte concentration has also been analyzed. In certain range of concentrations, the counterion-mediated attraction seems to be independent of this parameter, whereas very high concentrations of salt weaken the adsorption. If the trivalent cation diameter is doubled the adsorption moderates due to the excluded volume effects. The analysis of the integrated charge density and ionic distributions suggests that a delicate balance between charge inversion and screening effects governs the polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent cations.
USDA-ARS?s Scientific Manuscript database
A two-dimensional chromatography method for analyzing anionic targets (specifically phytate) in complex matrices is described. Prior to quantification by anion exchange chromatography, the sample matrix was prepared by size exclusion chromatography, which removed the majority of matrix complexities....
NASA Astrophysics Data System (ADS)
Fu, Guopeng; Dempsey, Janel; Izaki, Kosuke; Adachi, Kaoru; Tsukahara, Yasuhisa; Kyu, Thein
2017-08-01
In an effort to fabricate highly conductive, stable solid-state polymer electrolyte membranes (PEM), polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction between polyethylene glycol diamine and ethylene carbonate. Subsequently, dimethacrylate groups were chemically attached to both ends of PEGBC to afford polyethylene glycol-bis-carbamate dimethacrylate (PEGBCDMA) precursor having crosslinking capability. The melt-mixed ternary mixtures consisting of PEGBCDMA, succinonitrile plasticizer, and lithium trifluorosulphonyl imide salt were completely miscible in a wide compositional range. Upon photo-crosslinking, the neat PEGBCDMA network was completely amorphous exhibiting higher tensile strength, modulus, and extensibility relative to polyethylene glycol diacrylate (PEGDA) counterpart. Likewise, the succinonitrile-plasticized PEM network containing PEGBCDMA remained completely amorphous and transparent upon photo-crosslinking, showing superionic conductivity, improved thermal stability, and superior tensile properties with improved capacity retention during charge/discharge cycling as compared to the PEGDA-based PEM.
NASA Astrophysics Data System (ADS)
Yabunaka, Shunsuke; Onuki, Akira
2017-09-01
We examine an electric double layer containing an antagonistic salt in an aqueous mixture, where the cations are small and hydrophilic but the anions are large and hydrophobic. In this situation, a strong coupling arises between the charge density and the solvent composition. As a result, the anions are trapped in an oil-rich adsorption layer on a hydrophobic wall. We then vary the surface charge density σ on the wall. For σ >0 the anions remain accumulated, but for σ <0 the cations are attracted to the wall with increasing |σ |. Furthermore, the electric potential drop Ψ (σ ) is nonmonotonic when the solvent interaction parameter χ (T ) exceeds a critical value χc determined by the composition and the ion density in the bulk. This leads to a first-order phase transition between two kinds of electric double layers with different σ and common Ψ . In equilibrium such two-layer regions can coexist. The steric effect due to finite ion sizes is crucial in these phenomena.
NASA Astrophysics Data System (ADS)
Teyssedre, G.; Vu, T. T. N.; Laurent, C.
2015-12-01
Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are model of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30-60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10-14-10-13 m2 V-1 s-1 for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.
Simons, Jack
2008-07-24
The experimental and theoretical study of molecular anions has undergone explosive growth over the past 40 years. Advances in techniques used to generate anions in appreciable numbers as well as new ion-storage, ion-optics, and laser spectroscopic tools have been key on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now allow one to achieve higher accuracy and to study electronically metastable states, thus bringing theory in close collaboration with experiment in this field. In this article, many of the experimental and theoretical challenges specific to studying molecular anions are discussed. Results from many research groups on several classes of molecular anions are overviewed, and both literature citations and active (in online html and pdf versions) links to numerous contributing scientists' Web sites are provided. Specific focus is made on the following families of anions: dipole-bound, zwitterion-bound, double-Rydberg, multiply charged, metastable, cluster-based, and biological anions. In discussing each kind of anion, emphasis is placed on the structural, energetic, spectroscopic, and chemical-reactivity characteristics that make these anions novel, interesting, and important.
Enhanced Anion Transport Using Some Expanded Porphyrins as Carriers.
1991-01-01
is able to bind a smaller chemical species. The substrate is the specie whose binding is being sought. It can be neutral as well as charged , such as a...34ligand- protein -central metal cation-guest anion" ternary interactions. 6 To date, non-biological, synthetically made polyammonium macrocycles and... complementarity between these spherical anions and the ellipsoidal cavity of 6-6H+ . The cavity of the bis-tren receptor is best suited for the linear
Anionic pH-Sensitive Lipoplexes.
Mignet, Nathalie; Scherman, Daniel
2017-01-01
To provide long circulating nanoparticles able to carry a gene to tumors, we have designed anionic pegylated lipoplexes which are pH sensitive. Anionic pegylated lipoplexes have been prepared from the combined formulation of cationic lipoplexes and pegylated anionic liposomes. The neutralization of the particle surface charge as a function of the pH was monitored by light scattering in order to determine the ratio between anionic and cationic lipids that would give pH sensitive complexes. This ratio has been optimized to form particles sensitive to pH change in the range 5.5-6.5. Compaction of DNA into these newly formed anionic complexes is checked by DNA accessibility to picogreen. The transfection efficiency and pH sensitive property of these formulations has been shown in vitro using bafilomycin, a vacuolar H + -ATPase inhibitor.
Preparation and Characterization of Single Ion Conductors from High Surface Area Fumed Silica
NASA Technical Reports Server (NTRS)
Zhang, H.; Maitra, P.; Liu, B.; Wunder, S. L.; Lin, H.-P.; Salomon, M.; Hagedorn, Norman H. (Technical Monitor)
2002-01-01
Anions that can form dissociative salts with Li(+) have been prepared and covalently attached to high surface area fumed silica. When blended with polyethylene oxide (PEO), the functionalized fumed silica suppresses the crystallization of the PEO, provides dimensional stability, and serves as a single ion conductor. Since functionalized fumed silica is easily dispersed in common polar solvents, it can be incorporated in both the polymer electrolyte and the electrodes.
Tris[4-(dimethylamino)pyridinium] hexakis(thiocyanato-κN)ferrate(III) monohydrate
Wöhlert, Susanne; Jess, Inke; Näther, Christian
2013-01-01
In the title compound, (C7H11N2)3[Fe(NCS)6]·H2O, the FeIII cation is coordinated by six terminal N-bonded thiocyanate anions into a discrete threefold negatively charged complex. Charge balance is achieved by three protonated 4-(dimethylamino)pyridine cations. The asymmetric unit consists of one FeIII cation, six thiocyanate anions, three 4-(dimethylamino)pyridinium cations and one water molecule, all of them located in general positions. PMID:23476331
Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers
McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; ...
2014-12-11
Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [ mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small anglemore » x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.« less
Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F
2012-05-17
The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.
Atwal, O S; Viel, L; Minhas, K J
1990-07-01
The present study has investigated ultrastructural localization of anionic sites on the luminal surface of the alveolar epithelium of goat lung by direct airway instillation of cationized ferritin (CF) in the cranial lobe of the right lung through a bronchoscope. The cationic probe decorated preferentially the luminal plasmalemmal vesicles and plasmalemma proper of alveolar type I cell. This indicated the presence of highly charged anionic microdomains at these binding sites. The ligand was internalized in the free plasmalemmal vesicles of alveolar type I cell within 2 min. Heavy decoration of vesicles at 5 min of perfusion indicated that the amount of CF internalization increased with its concentration in the alveoli. It is suggested that exposure of alveolar surface to several gases of ruminal-origin induces changes in the surface charge of luminal plasmalemma of alveolar type I cells. The significance of these anionic plasmalemmal sites is discussed in relation to the adjustment of osmotic pressure gradient across the alveolar-capillary membrane of the ruminant lung.
Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes
NASA Astrophysics Data System (ADS)
Wang, Jing; Gu, Jiande; Leszczynski, Jerzy
2007-07-01
The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; ...
2017-07-26
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less
NASA Astrophysics Data System (ADS)
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.
2017-10-01
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.
Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J
2018-06-04
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.
Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions
NASA Astrophysics Data System (ADS)
Williams, Peggy E.; Marshall, David L.; Poad, Berwyck L. J.; Narreddula, Venkateswara R.; Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.
2018-06-01
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.
NASA Astrophysics Data System (ADS)
Zhang, Ling; Khani, Mohammad M.; Krentz, Timothy M.; Huang, Yanhui; Zhou, Yuanxiang; Benicewicz, Brian C.; Nelson, J. Keith; Schadler, Linda S.
2017-03-01
Incorporating inorganic nanoparticles (NPs) into polymer matrices provides a promising solution for suppressing space charge effects that can lead to premature failure of electrical insulation used in high voltage direct current engineering. However, realizing homogeneous NP dispersion is a great challenge especially in high-molecular-weight polymers. Here, we address this issue in crosslinked polyethylene by grafting matrix-compatible polymer brushes onto spherical colloidal SiO2 NPs (10-15 nm diameter) to obtain a uniform NP dispersion, thus achieving enhanced space charge suppression, improved DC breakdown strength, and restricted internal field distortion (≤10.6%) over a wide range of external DC fields from -30 kV/mm to -100 kV/mm at room temperature. The NP dispersion state is the key to ensuring an optimized distribution of deep trapping sites. A well-dispersed system provides sufficient charge trapping sites and shows better performance compared to ones with large aggregates. This surface ligand strategy is attractive for future nano-modification of many engineering insulating polymers.
Kim, Minhee; Han, Junho; Hyun, Seunghun
2013-09-01
The cosolvency model was not applicable for predicting the sorption of organic carboxylic acids. The reason of inapplicability was investigated by analyzing the solubility (Sm) and sorption (Km) of benzoic acid, 2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,6-trichlorophenol (2,4,6-TCP). The Sm and Km by two iron-rich soils was measured as a function of methanol volume fraction (fc), electrolyte compositions, and pH(app). For 2,4,6-TCP, the Km of both neutral and anion species was well-explainable by the cosolvency model, exemplifying the knowledge of cosolvency power (σ) being sufficient to describe its sorption. However, for benzoic acid and 2,4-D, the Km of organic anions increased with fc, illustrating the organic carboxylate to be responsible for the deviation. The Sm of organic anions was not affected by the ionic valence (Ca(2+) vs. K(+)) of liquid phase. Among hydrophilic quantities of the 2,4-D sorption, the fraction of anion exchange increased with fc while the fraction of Ca-bridge decreased in the same range. Adding solvent in soil-water system is likely to render soil surface charge more positive, fortifying the anion exchange, but opposing the formation of Ca-bridging. Therefore, it can be concluded that the positive Km-fc relationship is due to the anion exchange of organic carboxylate with positively charged soil surface, whose contribution is >50% of overall sorption at solvent-free system and becomes greater with fc up to 82%. Copyright © 2013. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Manisha; Kafader, Jared O.; Topolski, Josey E.
The electronic structures of several small Ce–Pt oxide complexes were explored using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. Pt and Pt{sub 2} both accept electron density from CeO diatomic molecules, in which the cerium atom is in a lower-than-bulk oxidation state (+2 versus bulk +4). Neutral [CeO]Pt and [CeO]Pt{sub 2} complexes are therefore ionic, with electronic structures described qualitatively as [CeO{sup +2}]Pt{sup −2} and [CeO{sup +}]Pt{sub 2}{sup −}, respectively. The associated anions are described qualitatively as [CeO{sup +}]Pt{sup −2} and [CeO{sup +}]Pt{sub 2}{sup −2}, respectively. In both neutrals and anions, the most stable molecularmore » structures determined by calculations feature a distinct CeO moiety, with the positively charged Ce center pointing toward the electron rich Pt or Pt{sub 2} moiety. Spectral simulations based on calculated spectroscopic parameters are in fair agreement with the spectra, validating the computationally determined structures. In contrast, when Pt is coupled with CeO{sub 2}, which has no Ce-localized electrons that can readily be donated to Pt, the anion is described as [CeO{sub 2}]Pt{sup −}. The molecular structure predicted computationally suggests that it is governed by charge-dipole interactions. The neutral [CeO{sub 2}]Pt complex lacks charge-dipole stabilizing interactions, and is predicted to be structurally very different from the anion, featuring a single Pt–O–Ce bridge bond. The PE spectra of several of the complexes exhibit evidence of photodissociation with Pt{sup −} daughter ion formation. The electronic structures of these complexes are related to local interactions in Pt-ceria catalyst-support systems.« less
Cheung, Min; Akabas, Myles H.
1997-01-01
The cystic fibrosis transmembrane conductance regulator forms an anion-selective channel; the site and mechanism of charge selectivity is unknown. We previously reported that cysteines substituted, one at a time, for Ile331, Leu333, Arg334, Lys335, Phe337, Ser341, Ile344, Arg347, Thr351, Arg352, and Gln353, in and flanking the sixth membrane-spanning segment (M6), reacted with charged, sulfhydryl-specific, methanethiosulfonate (MTS) reagents. We inferred that these residues are on the water-accessible surface of the protein and may line the ion channel. We have now measured the voltage-dependence of the reaction rates of the MTS reagents with the accessible, engineered cysteines. By comparing the reaction rates of negatively and positively charged MTS reagents with these cysteines, we measured the extent of anion selectivity from the extracellular end of the channel to eight of the accessible residues. We show that the major site determining anion vs. cation selectivity is near the cytoplasmic end of the channel; it favors anions by ∼25-fold and may involve the residues Arg347 and Arg352. From the voltage dependence of the reaction rates, we calculated the electrical distance to the accessible residues. For the residues from Leu333 to Ser341 the electrical distance is not significantly different than zero; it is significantly different than zero for the residues Thr351 to Gln353. The maximum electrical distance measured was 0.6 suggesting that the channel extends more cytoplasmically and may include residues flanking the cytoplasmic end of the M6 segment. Furthermore, the electrical distance calculations indicate that R352C is closer to the extracellular end of the channel than either of the adjacent residues. We speculate that the cytoplasmic end of the M6 segment may loop back into the channel narrowing the lumen and thereby forming both the major resistance to current flow and the anion-selectivity filter. PMID:9089437
Anion-π Catalysis on Fullerenes.
López-Andarias, Javier; Frontera, Antonio; Matile, Stefan
2017-09-27
Anion-π interactions on fullerenes are about as poorly explored as the use of fullerenes in catalysis. However, strong exchange-correlation contributions and the localized π holes on their surface promise unique selectivities. To elaborate on this promise, tertiary amines are attached nearby. Dependent on their positioning, the resulting stabilization of anionic transition states on fullerenes is shown to accelerate disfavored enolate addition and exo Diels-Alder reactions enantioselectively. The found selectivities are consistent with computational simulations, particularly concerning the discrimination of differently planarized and charge-delocalized enolate tautomers by anion-π interactions. Enolate-π interactions on fullerenes are much shorter than standard π-π interactions and anion-π interactions on planar surfaces, and alternative cation-π interactions are not observed. These findings open new perspectives with regard to anion-π interactions in general and the use of carbon allotropes in catalysis.
Anion Order and Spontaneous Polarization in LaTiO2N Oxynitride Thin Films
NASA Astrophysics Data System (ADS)
Vonrüti, Nathalie; Aschauer, Ulrich
2018-01-01
The perovskite oxynitride LaTiO2N is a promising material for photocatalytic water splitting under visible light. One of the obstacles towards higher efficiencies of this and similar materials stems from charge-carrier recombination, which could be suppressed by the surface charges resulting from the dipolar field in polar materials. In this study, we investigate the spontaneous polarization in epitaxially strained LaTiO2N thin films via density functional theory calculations. The effect of epitaxial strain on the anion order, resulting out-of-plane polarization, energy barriers for polarization reversal, and corresponding coercive fields are studied. We find that for compressive strains larger than 4% the thermodynamically stable anion order is polar along the out-of-plane direction and has a coercive field comparable to other switchable ferroelectrics. Our results show that strained LaTiO2N could indeed suppress carrier recombination and lead to enhanced photocatalytic activities.
Intercalation of sulfonated melamine formaldehyde polycondensates into a hydrocalumite LDH structure
NASA Astrophysics Data System (ADS)
von Hoessle, F.; Plank, J.; Leroux, F.
2015-05-01
A series of sulfonated melamine formaldehyde (SMF) polycondensates possessing different anionic charge amounts and molecular weights was synthesized and incorporated into a hydrocalumite type layered double hydroxide structure using the rehydration method. For this purpose, tricalcium aluminate was dispersed in water and hydrated in the presence of these polymers. Defined inorganic-organic hybrid materials were obtained as reaction products. All SMF polymers tested intercalated readily into the hydrocalumite structure, independent of their different molecular weights (chain lengths) and anionic charge amounts. X-ray diffraction revealed typical patterns for weakly ordered, highly polymer loaded LDH materials which was confirmed via elemental analysis and thermogravimetry. IR spectroscopy suggests that the SMF polymers are interleaved between the [Ca2Al(OH)6]+ main sheets via electrostatic interaction, and that no chemical bond between the host matrix and the guest anion is formed. The SMF polymers well ensconced within the LDH structure exhibit significantly slower thermal degradation.
Pilia, P A; Swain, R P; Williams, A V; Loadholt, C B; Ainsworth, S K
1985-12-01
The cationic ultrastructural tracer polyethyleneimine (PEI: pI approximately equal to 11.0), binds electrophysically to uniformly spaced discrete electron-dense anionic sites present in the laminae rarae of the rat glomerular basement membrane (GBM), mesangial reflections of the GBM, Bowman's capsule, and tubular basement membranes when administered intravenously. Computer-assisted morphometric analysis of glomerular anionic sites reveals that the maximum concentration of stainable lamina rara externa (lre) sites (21/10,000 A GBM) occurs 60 minutes after PEI injection with a site-site interspacing of 460 A. Lamina rara interna (lri) sites similarly demonstrate a maximum concentration (20/10,000 A GBM) at 60 minutes with a periodicity of 497 A. The concentration and distribution of anionic sites within the lri was irregular in pattern and markedly decreased in number, while the lre possesses an electrical field that is highly regular at all time intervals analyzed (15, 30, 60, 120, 180, 240, and 300 minutes). Immersion and perfusion of renal tissue with PEI reveals additional heavy staining of the epithelial and endothelial cell sialoprotein coatings. PEI appears to bind to glomerular anionic sites reversibly: ie, between 60 and 180 minutes the concentration of stained sites decreases. At 300 minutes, the interspacing once again approaches the 60-minute concentration. This suggests a dynamic turnover or dissociation followed by a reassociation of glomerular negatively charged PEI binding sites. In contrast, morphometric analysis of anionic sites stained with lysozyme and protamine sulfate reveals interspacings of 642 A and 585 A, respectively; in addition, these tracers produce major glomerular ultrastructural alterations and induce transient proteinuria. PEI does not induce proteinuria in rats, nor does it produce glomerular morphologic alterations when ten times the tracer dosage is administered intravenously. These findings indicate that the choice of ultrastructural charge tracer, the method of administering the tracer, and the time selected for analysis of tissue after administration of tracer significantly influences results. Morphometric analysis of the distribution of glomerular anionic sites in nonproteinuric rats provides a method of evaluating quantitative alterations of the glomerular charge barrier in renal disease models.
Xu, Lu; Chen, Jingfei; Feng, Lei; Dong, Shuli; Hao, Jingcheng
2014-12-07
Cationic and anionic (catanionic) vesicles were constructed from the mixtures of sodium laurate (SL) and alkyltrimethylammonium bromide (CnTAB, n = 12, 14, and 16) and were used to control the loading capacity of DNA. The binding saturation point (BSP) of DNA to catanionic vesicles increases with the chain length of cationic surfactants, which is at 1.0, 1.3 and 1.5 for CnTAB with n = 12, 14, and 16, respectively. Our measurements showed that the loading capacity and affinity of DNA can be controlled by catanionic vesicles. It increases with the chain length of cationic surfactants. Because of a large reduction in surface charge density, catanionic vesicles are prone to undergo re-aggregation or fusion with the addition of DNA. DNA molecules can still maintain original coil state during the interaction with catanionic CnTAL vesicles. (1)H NMR data reveals that the obvious dissociation of anionic ions, L(-), from catanionic C14TAL vesicles is due to the interaction with DNA; however, this phenomenon cannot be observed in C12TAB-SL vesicles. Agarose gel electrophoresis (AGE) results demonstrate that the electrostatic interaction between the two oppositely charged cationic and anionic surfactants is stronger than that between DNA and cationic surfactant, CnTAB (n = 12, 14, and 16). Not only is the dissociation of L(-) simply determined by the charge competition, but it also depends largely on the variations in the surface charge density as well as the cationic and anionic surfactant competing ability in geometry configuration of catanionic vesicles. The complicated interaction between DNA and catanionic vesicles induces the deformation of cationic vesicles. Our results should provide clear guidance for choosing more proper vectors for DNA delivery and gene therapy in cell experiments.
The Al(I) molecule, Ph2COAl and its anion
NASA Astrophysics Data System (ADS)
Zhang, Xinxing; Eichhorn, Bryan; Schnöckel, Hansgeorg; Bowen, Kit
2016-08-01
We have formed the Al(I)-containing molecule, benzophenone-aluminum, i.e., Ph2COAl, and studied it by conducting density functional theory calculations on both its neutral and anionic forms and by measuring the photoelectron spectrum of its anion. Our calculations identified two nearly iso-energetic anion isomers, (Ph2COAl)-, the vertical detachment energies (VDE) of which are in excellent agreement with our photoelectron spectrum. Natural population analysis (NPA) of Ph2COAl found the Al moiety to be positively charged by +0.81 e, indicating a strongly ionic bond between Al and Ph2CO, i.e., Ph2CO-Al+.
Photoelectron spectroscopy of color centers in negatively charged cesium iodide nanocrystals
NASA Astrophysics Data System (ADS)
Sarkas, Harry W.; Kidder, Linda H.; Bowen, Kit H.
1995-01-01
We present the photoelectron spectra of negatively charged cesium iodide nanocrystals recorded using 2.540 eV photons. The species examined were produced using an inert gas condensation cluster ion source, and they ranged in size from (CsI)-n=13 to nanocrystal anions comprised of 330 atoms. Nanocrystals showing two distinct types of photoemission behavior were observed. For (CsI)-n=13 and (CsI)-n=36-165, a plot of cluster anion photodetachment threshold energies vs n-1/3 gives a straight line extrapolating (at n-1/3=0, i.e., n=∞) to 2.2 eV, the photoelectric threshold energy for F centers in bulk cesium iodide. The linear extrapolation of the cluster anion data to the corresponding bulk property implies that the electron localization in these gas-phase nanocrystals is qualitatively similar to that of F centers in extended alkali halide crystals. These negatively charged cesium iodide nanocrystals are thus shown to support embryonic forms of F centers, which mature with increasing cluster size toward condensed phase impurity centers. Under an alternative set of source conditions, nanocrystals were produced which showed significantly lower photodetachment thresholds than the aforementioned F-center cluster anions. For these species, containing 83-131 atoms, a plot of their cluster anion photodetachment threshold energies versus n-1/3 gives a straight line which extrapolates to 1.4 eV. This value is in accord with the expected photoelectric threshold energy for F' centers in bulk cesium iodide, i.e., color centers with two excess electrons in a single defect site. These nanocrystals are interpreted to be the embryonic F'-center containing species, Cs(CsI)-n=41-65.
Wang, Shih-Hong; Lin, Yong-Yi; Teng, Chiao-Yi; Chen, Yen-Ming; Kuo, Ping-Lin; Lee, Yuh-Lang; Hsieh, Chien-Te; Teng, Hsisheng
2016-06-15
This study reports on a high ionic-conductivity gel polymer electrolyte (GPE), which is supported by a TiO2 nanoparticle-decorated polymer framework comprising poly(acrylonitrile-co-vinyl acetate) blended with poly(methyl methacrylate), i.e. , PAVM: TiO2. High conductivity TiO2 is achieved by causing the PAVM:TiO2 polymer framework to swell in 1 M LiPF6 in carbonate solvent. Raman analysis results demonstrate that the poly(acrylonitrile) (PAN) segments and TiO2 nanoparticles strongly adsorb PF6(-) anions, thereby generating 3D percolative space-charge pathways surrounding the polymer framework for Li(+)-ion transport. The ionic conductivity of TiO2 is nearly 1 order of magnitude higher than that of commercial separator-supported liquid electrolyte (SLE). TiO2 has a high Li(+) transference number (0.7), indicating that most of the PF6(-) anions are stationary, which suppresses PF6(-) decomposition and substantially enlarges the voltage that can be applied to TiO2 (to 6.5 V vs Li/Li(+)). Immobilization of PF6(-) anions also leads to the formation of stable solid-electrolyte interface (SEI) layers in a full-cell graphite|electrolyte|LiFePO4 battery, which exhibits low SEI and overall resistances. The graphite|electrolyte|LiFePO4 battery delivers high capacity of 84 mAh g(-1) even at 20 C and presents 90% and 71% capacity retention after 100 and 1000 charge-discharge cycles, respectively. This study demonstrates a GPE architecture comprising 3D space charge pathways for Li(+) ions and suppresses anion decomposition to improve the stability and lifespan of the resulting LIBs.
Chen, Yang; Young, Paul M; Fletcher, David F; Chan, Hak Kim; Long, Edward; Lewis, David; Church, Tanya; Traini, Daniela
2014-05-01
To investigate the influence of different actuator materials and nozzle designs on the electrostatic charge properties of a series of solution metered dose inhaler (pMDI) aerosols. Actuators were manufactured with flat and cone nozzle designs using five different materials from the triboelectric series (Nylon, Polyethylene terephthalate, Polyethylene-High density, Polypropylene copolymer and Polytetrafluoroethylene). The electrostatic charge profiles of pMDI containing beclomethasone dipropionate (BDP) as model drug in HFA-134a propellant, with different concentrations of ethanol were studied. Electrostatic measurements were taken using a modified electrical low-pressure impactor (ELPI) and the deposited drug mass assayed chemically using HPLC. The charge profiles of HFA 134a alone have shown strong electronegativity with all actuator materials and nozzle designs, at an average of -1531.34 pC ± 377.34. The presence of co-solvent ethanol significantly reduced the negative charge magnitude. BDP reduced the suppressing effect of ethanol on the negative charging of the propellant. For all tested formulations, the flat nozzle design showed no significant differences in net charge between different actuator materials, whereas the charge profiles of cone designs followed the triboelectric series. The electrostatic charging profiles from a solution pMDI containing BDP and ethanol can be significantly influenced by the actuator material, nozzle design and formulation components. Ethanol concentration appears to have the most significant impact. Furthermore, BDP interactions with ethanol and HFA have an influence on the electrostatic charge of aerosols. By choosing different combinations of actuator materials and orifice design, the fine particle fractions of formulations can be altered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teyssedre, G., E-mail: gilbert.teyssedre@laplace.univ-tlse.fr; Laurent, C.; CNRS, LAPLACE, F-31062 Toulouse
Among features observed in polyethylene materials under relatively high field, space charge packets, consisting in a pulse of net charge that remains in the form of a pulse as it crosses the insulation, are repeatedly observed but without complete theory explaining their formation and propagation. Positive charge packets are more often reported, and the models based on negative differential mobility(NDM) for the transport of holes could account for some charge packets phenomenology. Conversely, NDM for electrons transport has never been reported so far. The present contribution reports space charge measurements by pulsed electroacoustic method on miniature cables that are modelmore » of HVDC cables. The measurements were realized at room temperature or with a temperature gradient of 10 °C through the insulation under DC fields on the order 30–60 kV/mm. Space charge results reveal systematic occurrence of a negative front of charges generated at the inner electrode that moves toward the outer electrode at the beginning of the polarization step. It is observed that the transit time of the front of negative charge increases, and therefore the mobility decreases, with the applied voltage. Further, the estimated mobility, in the range 10{sup −14}–10{sup −13} m{sup 2} V{sup −1} s{sup −1} for the present results, increases when the temperature increases for the same condition of applied voltage. The features substantiate the hypothesis of negative differential mobility used for modelling space charge packets.« less
Khan, Imran; Batista, Marta L S; Carvalho, Pedro J; Santos, Luís M N B F; Gomes, José R B; Coutinho, João A P
2015-08-13
Isobaric vapor-liquid equilibria of 1-butyl-3-methylimidazolium thiocyanate ([C4C1im][SCN]), 1-butyl-3-methylimidazolium dicyanamide ([C4C1im][N(CN)2]), 1-butyl-3-methylimidazolium tricyanomethanide ([C4C1im][C(CN)3]), and 1-ethyl-3-methylimidazolium tetracyanoborate ([C2C1im][B(CN)4]), with water and ethanol were measured over the whole concentration range at 0.1, 0.07, and 0.05 MPa. Activity coefficients were estimated from the boiling temperatures of the binary systems, and the data were used to evaluate the ability of COSMO-RS for describing these molecular systems. Aiming at further understanding the molecular interactions on these systems, molecular dynamics (MD) simulations were performed. On the basis of the interpretation of the radial and spatial distribution functions along with coordination numbers obtained through MD simulations, the effect of the increase of CN-groups in the IL anion in its capability to establish hydrogen bonds with water and ethanol was evaluated. The results obtained suggest that, for both water and ethanol systems, the anion [N(CN)2](-) presents the higher ability to establish favorable interactions due to its charge, and that the ability of the anions to interact with the solvent, decreases with further increasing of the number of cyano groups in the anion. The ordering of the partial charges in the nitrogen atoms from the CN-groups in the anions agrees with the ordering obtained for VLE and activity coefficient data.
Formation of Carbamate Anions by the Gas-phase Reaction of Anilide Ions with CO2
NASA Astrophysics Data System (ADS)
Liu, Chongming; Nishshanka, Upul; Attygalle, Athula B.
2016-05-01
The anilide anion ( m/z 92) generated directly from aniline, or indirectly as a fragmentation product of deprotonated acetanilide, captures CO2 readily to form the carbamate anion ( m/z 136) in the collision cell, when CO2 is used as the collision gas in a tandem-quadrupole mass spectrometer. The gas-phase affinity of the anilide ion to CO2 is significantly higher than that of the phenoxide anion ( m/z 93), which adds to CO2 only very sluggishly. Our results suggest that the efficacy of CO2 capture depends on the natural charge density on the nitrogen atom, and relative nucleophilicity of the anilide anion. Generally, conjugate bases generated from aniline derivatives with proton affinities (PA) less than 350 kcal/mol do not tend to add CO2 to form gaseous carbamate ions. For example, the anion generated from p-methoxyaniline (PA = 367 kcal/mol) reacts significantly faster than that obtained from p-nitroaniline (PA = 343 kcal/mol). Although deprotonated p-aminobenzoic acid adds very poorly because the negative charge is now located primarily on the carboxylate group, it reacts more efficiently with CO2 if the carboxyl group is esterified. Moreover, mixture of CO2 and He as the collision gas was found to afford more efficient adduct formation than CO2 alone, or as mixtures made with nitrogen or argon, because helium acts as an effective "cooling" gas and reduces the internal energy of reactant ions.
Organic hydrogels as potential sorbent materials for water purification
NASA Astrophysics Data System (ADS)
Linardatos, George; Bekiari, Vlasoula; Bokias, George
2014-05-01
Hydrogels are three-dimensional, hydrophilic, polymeric networks capable to adsorb large amounts of water or biological fluids. The networks are composed of homopolymers or copolymers and are insoluble due to the presence of chemical or physical cross-links. Depending on the nature of the structural units, swelling or shrinking of these gels can be activated by several external stimuli, such as solvent, heat, pH, electric stimuli. As a consequence, these materials are attractive for several applications in a variety of fields: drug delivery, muscle mimetic soft linear actuators, hosts of nanoparticles and semiconductors, regenerative medicine etc. Of special interest is the application of hydrogels for water purification, since they can effectively adsorb several water soluble pollutants such as metal ions, inorganic or organic anions, organic dyestaff, etc. In the present work, anionic hydrogels bearing negatively charged -COO- groups were prepared and investigated. These are based on the anionic monomer sodium acrylate (ANa) and the nonionic one N,N-dimethylacrylamide (DMAM). A series of copolymeric hydrogels (P(DMAM-co-ANax) were synthesized. The molar content x of ANa units (expressing the molar charged content of the hydrogel) varies from 0 (nonionic poly(N,N-dimethylacrylamide), PDMAM, hydrogel) up to 1 (fully charged poly(sodium acrylate), PANa, hydrogel). The hydrogels were used to extract organic or inorganic solutes from water. Cationic and anionic model dyes, as well as multivalent inorganic ions, have been studied. It is found that cationic dyes are strongly adsorbed and retained by the hydrogels, while adsorbance of anionic dyes was negligible. Both maximum adsorption and equilibrium binding constant depend on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. In the case of metal cations, adsorption depends mostly on the charge of the cation. In addition, crucial factors controlling the adsorption efficiency is the charge content of the hydrogel x, as well as the pH of the aqueous solution, since acrylic acid is a weak acid. ACKNOWLEDGMENTS. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Archimedes III. Investing in knowledge society through the European Social Fund; research project Archimedes III: "Synthesis and characterization of novel nanostructured materials and study of their use as water purification systems".
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Hua Jin; Huang, Xin; Waters, Tom
2005-11-24
We produced both doubly and singly charged Group VIB dimetalate species-M2O7 2-, MM'O72-, and M2O7 - (M, M'=) Cr, Mo, W)susing two different experimental techniques (electrospray ionization for the doubly charged anions and laser vaporization for the singly charged anions) and investigated their electronic and geometric structures using photoelectron spectroscopy and density functional calculations. Distinct changes in the electronic and geometric structures were observed as a function of the metal and charge state. The electron binding energies of the heteronuclear dianions MM'O7 2- were observed to be roughly the average of those of their homonuclear counterparts (M2O7 2- and M'2O7more » 2-). Density functional calculations indicated that W2O7 2-, W2O7-, and W2O7 possess different ground-state structures: the dianion is highly symmetric (D3d,1A1g) with a single bridging oxo ligand, the monoanion is a doublet (C1, 2A) with two bridging oxo ligands and a radical terminal oxo ligand, whereas the neutral is a singlet (C1, 1A) with two bridging oxo ligands and a terminal peroxo ligand. The combined experimental and theoretical study provides insights into the evolution of geometric and electronic structures as a function of charge state. The clusters identified might provide insights into the possible structures of reactive species present in early transition-metal oxide catalysts that are relevant to their reactivity and catalytic function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Haifeng; Tang, Pinggui; Feng, Yongjun, E-mail: yjfeng@mail.buct.edu.cn
2012-03-15
Highlights: Black-Right-Pointing-Pointer PMIDA anions were intercalated into Mg{sub 2}Al-NO{sub 3} LDH by anion-exchange method. Black-Right-Pointing-Pointer The prepared material has highly selective IR absorption property in 9-11 {mu}m. Black-Right-Pointing-Pointer The obtained material has practical applications as heat-retaining additive. -- Abstract: N-phosphonomethyl aminodiacetic acid (PMIDA) was intercalated into the interlayer spacing of layered double hydroxides (LDH) by an anion-exchange method. The intercalated LDHs were characterized by various techniques such as powder X-ray diffraction (XRD), FT-IR spectroscopy, elemental analysis and simultaneous thermogravimetric and mass spectrometry (TG-MS) in details. The results show the formation of Mg{sub 2}Al-PMIDA LDH based on the expansion of d-spacingmore » from 0.89 nm to 1.22 nm and the disappearance of the characteristic IR absorption band at 1384 cm{sup -1} for NO{sub 3}{sup -} anions. The incorporation of Mg{sub 2}Al-PMIDA LDH into the low density polyethylene (LDPE) as an additive enhances the selectivity of IR absorption in the main wavelength region 9-11 {mu}m for radiant heat loss at night. Mg{sub 2}Al-PMIDA LDH as a heat-retaining additive has practical application in agricultural plastic films.« less
Norgren, Magnus; Gärdlund, Linda; Notley, Shannon M; Htun, Myat; Wågberg, Lars
2007-03-27
For the first time to the knowledge of the authors, well-defined and stable lignin model surfaces have been utilized as substrates in polyelectrolyte adsorption studies. The adsorption of polyallylamine (PAH), poly(acrylic acid) (PAA), and polyelectrolyte complexes (PECs) was monitored using quartz crystal microgravimetry with dissipation (QCM-D). The PECs were prepared by mixing PAH and PAA at different ratios and sequences, creating both cationic and anionic PECs with different charge levels. The adsorption experiments were performed in 1 and 10 mM sodium chloride solutions at pH 5 and 7.5. The highest adsorption of PAH and cationic PECs was found at pH 7.5, where the slightly negatively charged nature of the lignin substrate is more pronounced, governing electrostatic attraction of oppositely charged polymeric substances. An increase in the adsorption was further found when the electrolyte concentration was increased. In comparison, both PAA and the anionic PEC showed remarkably high adsorption to the lignin model film. The adsorption of PAA was further studied on silica and was found to be relatively low even at high electrolyte concentrations. This indicated that the high PAA adsorption on the lignin films was not induced by a decreased solubility of the anionic polyelectrolyte. The high levels of adsorption on lignin model surfaces found both for PAA and the anionic PAA-PAH polyelectrolyte complex points to the presence of strong nonionic interactions in these systems.
Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi
2013-01-02
Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively.
Jikihara, Atsushi; Ohashi, Reina; Kakihana, Yuriko; Higa, Mitsuru; Kobayashi, Kenichi
2012-01-01
Random-type anion-exchange membranes (AEMs) have been prepared by blending poly(vinyl alcohol) (PVA) and the random copolymer-type polycation, poly(vinyl alcohol-co-methacryloyl aminopropyl trimethyl ammonium chloride) at various molar percentages of anion-exchange groups to vinyl alcohol groups, Cpc, and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations, CGA. The characteristics of the random-type AEMs were compared with blend-type AEMs prepared in our previous study. At equal molar percentages of the anion exchange groups, the water content of the random-type AEMs was lower than that of the blend-type AEMs. The effective charge density of the random-type AEMs increased with increasing Cpc and reached a maximum value. Further, the maximum value of the effective charge density increased with increasing CGA. The maximum value of the effective charge density, 0.42 mol/dm3, was obtained for the random-type AEM with Cpc = 4.2 mol % and CGA = 0.15 vol %. A comparison of the random-type and blend-type AEMs with almost the same Cpc showed that the random-type AEMs had lower membrane resistance than the blend-type ones. The membrane resistance and dynamic transport number of the random-type AEM with Cpc = 6.0 mol % and CGA = 0.15 vol % were 4.8 Ω cm2 and 0.83, respectively. PMID:24958543
NASA Astrophysics Data System (ADS)
Muráth, Szabolcs; Somosi, Zoltán; Tóth, Ildikó Y.; Tombácz, Etelka; Sipos, Pál; Pálinkó, István
2017-07-01
The delamination-restacking properties of MgAl-layered double hydroxide (MgAl-LDH) were studied in various solvents. The LDH samples were successfully delaminated in polar amides (formamide, N-methylformamide, N-methylacetamide). Usually, delamination was finalized by ultrasonic treatment. As rehydrating solutions, numerous Na-salts with single-, double- and triple-charged anions were used. Reconstruction was accomplished with anions of one or two negative charges, but triple-charged ones generally disrupted the rebuilding process, likely, because their salts with the metals of the LDH are very stable, and the thin layers can more readily transform to salts than the ordered materials. Samples and delamination-restacking processes were characterized by X-ray diffractometry (XRD), infrared spectroscopy (IR), dynamic light scattering (DLS), scanning electron microscopy (SEM) and energy-dispersive X-ray analysis (EDX).
Molecular dynamics study of the adsorption of anionic surfactant in a nonionic polymer brush.
Wang, Hua; Zhang, Heng; Yuan, Shiling; Liu, Chengbu; Xu, Zhen
2014-06-01
The adsorption of the anionic surfactant, sodium dodecylsulfate (SDS) in poly(ethylene oxide) (PEO) brush was studied by molecular dynamics simulations. Our simulations revealed that surfactant can adsorb in polymer brush as micellar aggregates and the polymer would reside at the hydrocarbon-water interface of SDS micelles. This association between surfactant and polymer was mainly driven by the hydrophobic interaction between the polymer and surfactant tails. In the simulation, with the increasing of surfactant concentration, a plateau value representing saturated adsorption was observed. The height of polymer brush was mainly affected by the adsorbed surfactant at low grafting density of polymer; however, it was primarily controlled by the grafting density at high grafting density. Our conclusions at the molecular level were in close agreement with experiment about the adsorption of surfactant in polymer brushes.
NASA Astrophysics Data System (ADS)
Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.
2015-07-01
Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.
Laucirica, Gregorio; Marmisollé, Waldemar A; Azzaroni, Omar
2017-03-22
Although not always considered a preponderant interaction, amine-phosphate interactions are omnipresent in multiple chemical and biological systems. This study aims to answer questions that are still pending about their nature and consequences. We focus on the description of the charge state as surface charges constitute directing agents of the interaction of amine groups with either natural or synthetic counterparts. Our results allow us to quantitatively determine the relative affinities of HPO 4 2- and H 2 PO 4 - from the analysis of the influence of phosphates on the zeta-potential of amino-functionalized surfaces in a broad pH range. We show that phosphate anions enhance the protonation of amino groups and, conversely, charged amines induce further proton dissociation of phosphates, yielding a complex dependence of the surface effective charge on the pH and phosphate concentration. We also demonstrate that phosphate-amine interaction is specific and the modulation of surface charge occurs in the physiological phosphate concentration range, emphasizing its biochemical and biotechnological relevance and the importance of considering this veiled association in both in vivo and in vitro studies.
NASA Astrophysics Data System (ADS)
Griffin, John M.; Forse, Alexander C.; Tsai, Wan-Yu; Taberna, Pierre-Louis; Simon, Patrice; Grey, Clare P.
2015-08-01
Supercapacitors store charge through the electrosorption of ions on microporous electrodes. Despite major efforts to understand this phenomenon, a molecular-level picture of the electrical double layer in working devices is still lacking as few techniques can selectively observe the ionic species at the electrode/electrolyte interface. Here, we use in situ NMR to directly quantify the populations of anionic and cationic species within a working microporous carbon supercapacitor electrode. Our results show that charge storage mechanisms are different for positively and negatively polarized electrodes for the electrolyte tetraethylphosphonium tetrafluoroborate in acetonitrile; for positive polarization charging proceeds by exchange of the cations for anions, whereas for negative polarization, cation adsorption dominates. In situ electrochemical quartz crystal microbalance measurements support the NMR results and indicate that adsorbed ions are only partially solvated. These results provide new molecular-level insight, with the methodology offering exciting possibilities for the study of pore/ion size, desolvation and other effects on charge storage in supercapacitors.
A bambusuril macrocycle that binds anions in water with high affinity and selectivity.
Yawer, Mirza Arfan; Havel, Vaclav; Sindelar, Vladimir
2015-01-02
Synthetic receptors that function in water are important for the qualitative and quantitative detection of anions, which may act as pollutants in the environment or play important roles in biological processes. Neutral receptors are particularly appealing because they are often more selective than positively charged receptors; however, their affinity towards anions in pure water is only in range of 1-10(3) L mol(-1) . The anion-templated synthesis of a water-soluble bambusuril derivative is shown to be an outstanding receptor for various inorganic anions in pure water, with association constants of up to 10(7) L mol(-1) . Furthermore, the macrocycle discriminates between anions with unprecedented selectivity (up to 500 000-fold). We anticipate that the combination of remarkable affinity and selectivity of this macrocycle will enable the efficient detection and isolation of diverse anions in aqueous solutions, which is not possible with current supramolecular systems. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The influence of pre-conditioning on space charge formation in LDPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleming, R.J.; Henriksen, M.; Holboell, J.T.
1996-12-31
In this paper the authors present space charge accumulation data for planar low density polyethylene samples subjected to 20kV/mm dc fields at room temperature. The data were obtained using the laser-induced-pressure-pulse (LIPP) technique. Some of the samples were conditioned by holding them at 40 C in short-circuit at rotary pump pressure for 48hr prior to measurement. Such conditioning had no consistent effect on the space charge. The extent of charge injection/extraction at the semicon electrodes appeared to vary considerably between samples.
Hybrid capacitive deionization with anion-exchange membranes for lithium extraction
NASA Astrophysics Data System (ADS)
Siekierka, Anna; Bryjak, Marek
2017-11-01
Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.
Interaction of proteins with weak amphoteric charged membrane surfaces: effect of pH.
Matsumoto, Hidetoshi; Koyama, Yoshiyuki; Tanioka, Akihiko
2003-08-01
Weak amphoteric charged membranes were prepared by the graft copolymerization of poly(ethylene glycol) (PEG) derivatives with pendant ionizable groups onto polyethylene (PE) porous membranes. Two types of weak amphoteric charged membranes and two types of weak single charged membranes were prepared. The pH dependence of the protein (fluorescein isothiocyanate-labeled bovine serum albumin, FITC-BSA) adsorption onto the membranes was investigated by fluorescence spectroscopy. The interfacial charge properties of the membranes and protein were also characterized at different pH values by streaming potential and electrophoretic light scattering (ELS) measurements, respectively. The adsorbed amount onto each ionic PEG chain grafted membrane showed a uniform maximum value near the isoelectric point (IEP) of the protein (pH 4.1). On both sides of the IEP (pHs 3.3 and 7.2), the adsorption experiments and zeta (zeta) potential measurements were well correlated: the contribution of electrostatic interaction was dominant for the protein adsorption behavior. In the alkaline condition (pH 10.2), the adsorption experiments contradict the zeta potential measurements. It suggested that the conformational change of protein molecule influenced the adsorption behavior. Finally, these results indicated the potential of controlling the protein-ionic PEG chain interaction on the membrane surfaces by the pH adjustment of the outer solution.
NASA Astrophysics Data System (ADS)
Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.
2008-10-01
Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.
Nojavan, Saeed; Pourahadi, Ahmad; Hosseiny Davarani, Saied Saeed; Morteza-Najarian, Amin; Beigzadeh Abbassi, Mojtaba
2012-10-01
This study has performed on electromembrane extraction (EME) of some zwitterionic compounds based on their acidic and basic properties. High performance liquid chromatography (HPLC) equipped with UV detection was used for determination of model compounds. Cetirizine (CTZ) and mesalazine (MS) were chosen as model compounds, and each of them was extracted from acidic (as a cation) and basic (as an anion) sample solutions, separately. 1-Octanol and 2-nitrophenyl octylether (NPOE) were used as the common supported liquid membrane (SLM) solvents. EME parameters, such as extraction time, extraction voltage and pH of donor and acceptor solutions were studied in details for cationic and anionic forms of each model compound and obtained results for two ionic forms (cationic and anionic) of each compound were compared together. Results showed that zwitterionic compounds could be extracted in both cationic and anionic forms. Moreover, it was found that the extraction of anionic form of each model compound could be done in low voltages when 1-octanol was used as the SLM solvent. Results showed that charge type was not highly effective on the extraction efficiency of model compounds whereas the position of charge within the molecule was the key parameter. In optimized conditions, enrichment factors (EF) of 27-60 that corresponded to recoveries ranging from 39 to 86% were achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yin, Qinqin; Ke, Bowen; Chen, Xiaobing; Guan, Yikai; Feng, Ping; Chen, Guo; Kang, Yi; Zhang, Wensheng; Nie, Yu
2016-12-01
N-methyl bromide of lidocaine (QX-314) is a potential local anaesthetic with compromised penetration through cell membranes due to its obligated positive charge. Liposomes have been widely used for drug delivery with promising efficacy and safety. Therefore we investigated the local anaesthetic effects and tissue reactions of QX-314 in combination with anionic, cationic or neutral liposomes in rat sciatic nerve block model, and explored the effects of these liposomes on cellular entry of QX-314 in human embryonic kidney 293 cells. The results demonstrated that anionic liposomes substantially prolonged the duration of sensory (25.7 ± 8.3 h) and motor (41.4 ± 6.1 h) blocks of QX-314, while cationic and neutral ones had little effects. Tissue reactions from QX-314 with anionic liposomes were similar to those with commonly used local anaesthetic bupivacaine. Consistent with in vivo results, the anionic liposomes produced the greatest promotion of cellular entry of QX-314 in a time-dependent manner. In conclusion, ultra-long lasting nerve blocks were achieved by a mixture of QX-314 and anionic liposomes with a satisfactory safety profile, indicating a potential approach to improve postoperative pain management. The liposome-induced enhancement in cellular uptake of QX-314 may underlie the in vivo effects.
2015-01-01
We explore anion-induced interface fluctuations near protein–water interfaces using coarse-grained representations of interfaces as proposed by Willard and Chandler (J. Phys. Chem. B2010, 114, 1954−195820055377). We use umbrella sampling molecular dynamics to compute potentials of mean force along a reaction coordinate bridging the state where the anion is fully solvated and one where it is biased via harmonic restraints to remain at the protein–water interface. Specifically, we focus on fluctuations of an interface between water and a hydrophobic region of hydrophobin-II (HFBII), a 71 amino acid residue protein expressed by filamentous fungi and known for its ability to form hydrophobically mediated self-assemblies at interfaces such as a water/air interface. We consider the anions chloride and iodide that have been shown previously by simulations as displaying specific-ion behaviors at aqueous liquid–vapor interfaces. We find that as in the case of a pure liquid–vapor interface, at the hydrophobic protein–water interface, the larger, less charge-dense iodide anion displays a marginal interfacial stability compared with that of the smaller, more charge-dense chloride anion. Furthermore, consistent with the results at aqueous liquid–vapor interfaces, we find that iodide induces larger fluctuations of the protein–water interface than chloride. PMID:24701961
Yin, Qinqin; Ke, Bowen; Chen, Xiaobing; Guan, Yikai; Feng, Ping; Chen, Guo; Kang, Yi; Zhang, Wensheng; Nie, Yu
2016-01-01
N-methyl bromide of lidocaine (QX-314) is a potential local anaesthetic with compromised penetration through cell membranes due to its obligated positive charge. Liposomes have been widely used for drug delivery with promising efficacy and safety. Therefore we investigated the local anaesthetic effects and tissue reactions of QX-314 in combination with anionic, cationic or neutral liposomes in rat sciatic nerve block model, and explored the effects of these liposomes on cellular entry of QX-314 in human embryonic kidney 293 cells. The results demonstrated that anionic liposomes substantially prolonged the duration of sensory (25.7 ± 8.3 h) and motor (41.4 ± 6.1 h) blocks of QX-314, while cationic and neutral ones had little effects. Tissue reactions from QX-314 with anionic liposomes were similar to those with commonly used local anaesthetic bupivacaine. Consistent with in vivo results, the anionic liposomes produced the greatest promotion of cellular entry of QX-314 in a time-dependent manner. In conclusion, ultra-long lasting nerve blocks were achieved by a mixture of QX-314 and anionic liposomes with a satisfactory safety profile, indicating a potential approach to improve postoperative pain management. The liposome-induced enhancement in cellular uptake of QX-314 may underlie the in vivo effects. PMID:27924842
Hu, Xin-jiang; Liu, Yun-guo; Zeng, Guang-ming; Wang, Hui; You, Shao-hong; Hu, Xi; Tan, Xiao-fei; Chen, An-wei; Guo, Fang-ying
2015-05-01
The present work evaluated the effects of six inorganic electrolyte anions on Cu(II) removal using aminated Fe3O4/graphene oxide (AMGO) in single- and multi-ion systems. A 2(6-2) fractional factorial design (FFD) was employed for assessing the effects of multiple anions on the adsorption process. The results indicated that the Cu(II) adsorption was strongly dependent on pH and could be significantly affected by inorganic electrolyte anions due to the changes in Cu(II) speciation and surface charge of AMGO. In the single-ion systems, the presence of monovalent anions (Cl(-), ClO4(-), and NO3(-)) slightly increased the Cu(II) adsorption onto AMGO at low pH, while the Cu(II) adsorption was largely enhanced by the presence of SO4(2-), CO3(2-), and HPO4(2-). Based on the estimates of major effects and interactions from FFD, the factorial effects of the six selected species on Cu(II) adsorption in multi-ion system were in the following sequence: HPO4(2-)>CO3(2-)>Cl(-)>SO4(2-)>NO3(-)=ClO4(-), and the combined factors of AD (Cl(-)×SO4(2-)) and EF (Cl(-)×SO4(2-)) had significant effects on Cu(II) removal. Copyright © 2015 Elsevier Ltd. All rights reserved.
A theoretical study of the stability of anionic defects in cubic ZrO 2 at extreme conditions
Samanta, Amit
2016-02-19
Using first principles density functional theory calculations, we present a study of the structure, mobility, and the thermodynamic stability of anionic defects in the high-temperature cubic phase of ZrO 2. Our results suggest that the local structure of an oxygen interstitial depends on the charge state and the cubic symmetry of the anionic sublattice is unstable at 0 K. In addition, the oxygen interstitials and the vacancies exhibit symmetry breaking transitions to low-energy structures with tetragonal distortion of the oxygen sublattice at 0 K. However, the vibrational entropy stabilizes the defect structures with cubic symmetry at 2600–2980 K. The formationmore » free energies of the anionic defects and Gibbs free energy changes associated with different defect reactions are calculated by including the vibrational free energy contributions and the effect of pressure on these defect structures. By analyzing the defect chemistry, we obtain the defect concentrations at finite temperature and pressure conditions using the zero temperature ab initio results as input and find that at low oxygen partial pressures, neutral oxygen vacancies are most dominant and at high oxygen partial pressures, doubly charged anionic defects are dominant. As a result, the relevance of the results to the thermal protective coating capabilities of zirconium-based ceramic composites is elucidated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie
1999-04-01
A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several differentmore » eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.« less
Propellant Containers and Expulsion Charges for M483A1 and M509 Projectiles.
1986-08-01
program. This malfunction occurred when a 58 g charge of MIO propellant misfired at -65*F. Phase II The celcon/acrylic bags had a history of a high...polyethylene loaded bags, making a total of 38 bags, each type containing 51 g of MIO propellant, were submitted to EMD, Chemistry Brioch for the following
Sircar, S; Aisenbrey, E; Bryant, S J; Bortz, D M
2015-01-07
We present an experimentally guided, multi-phase, multi-species polyelectrolyte gel model to make qualitative predictions on the equilibrium electro-chemical properties of articular cartilage. The mixture theory consists of two different types of polymers: poly(ethylene gylcol) (PEG), chondrotin sulfate (ChS), water (acting as solvent) and several different ions: H(+), Na(+), Cl(-). The polymer chains have covalent cross-links whose effect on the swelling kinetics is modeled via Doi rubber elasticity theory. Numerical studies on equilibrium polymer volume fraction and net osmolarity (difference in the solute concentration across the gel) show a complex interplay between ionic bath concentrations, pH, cross-link fraction and the average charge per monomer. Generally speaking, swelling is aided due to a higher average charge per monomer (or a higher particle fraction of ChS, the charged component of the polymer), low solute concentration in the bath, a high pH or a low cross-link fraction. A peculiar case arises at higher values of cross-link fraction, where it is observed that increasing the average charge per monomer leads to gel deswelling. Copyright © 2014 Elsevier Ltd. All rights reserved.
Glomerular disease augments kidney accumulation of synthetic anionic polymers.
Liu, Gary W; Prossnitz, Alexander N; Eng, Diana G; Cheng, Yilong; Subrahmanyam, Nithya; Pippin, Jeffrey W; Lamm, Robert J; Ngambenjawong, Chayanon; Ghandehari, Hamidreza; Shankland, Stuart J; Pun, Suzie H
2018-06-02
Polymeric drug carriers can alter the pharmacokinetics of their drug cargoes, thereby improving drug therapeutic index and reducing side effects. Understanding and controlling polymer properties that drive tissue-specific accumulation is critical in engineering targeted drug delivery systems. For kidney disease applications, targeted drug delivery to renal cells that reside beyond the charge- and size-selective glomerular filtration barrier could have clinical potential. However, there are limited reports on polymer properties that might enhance kidney accumulation. Here, we studied the effects of molecular weight and charge on the in vivo kidney accumulation of polymers in health and disease. We synthesized a panel of well-defined polymers by atom transfer radical polymerization to answer several questions. First, the biodistribution of low molecular weight (23-27 kDa) polymers composed of various ratios of neutral:anionic monomers (1:0, 1:1, 1:4) in normal mice was determined. Then, highly anionic (1:4 monomer ratio) low molecular and high molecular weight (47 kDa) polymers were tested in both normal and experimental focal segmental glomerulosclerosis (FSGS) mice, a model that results in loss of glomerular filtration selectivity. Through these studies, we observed that kidney-specific polymer accumulation increases with anionic monomer content, but not molecular weight; experimental FSGS increases kidney accumulation of anionic polymers; and anionic polymers accumulate predominantly in proximal tubule cells, with some distribution in kidney glomeruli. These findings can be applied to the design of polymeric drug carriers to enhance or mitigate kidney accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Development and evaluation of injectable nanosized drug delivery systems for apigenin.
Karim, Reatul; Palazzo, Claudio; Laloy, Julie; Delvigne, Anne-Sophie; Vanslambrouck, Stéphanie; Jerome, Christine; Lepeltier, Elise; Orange, Francois; Dogne, Jean-Michel; Evrard, Brigitte; Passirani, Catherine; Piel, Géraldine
2017-11-05
The purpose of this study was to develop different injectable nanosized drug delivery systems (NDDSs) i.e. liposome, lipid nanocapsule (LNC) and polymeric nanocapsule (PNC) encapsulating apigenin (AG) and compare their characteristics to identify the nanovector(s) that can deliver the largest quantity of AG while being biocompatible. Two liposomes with different surface characteristics (cationic and anionic), a LNC and a PNC were prepared. A novel tocopherol modified poly(ethylene glycol)-b-polyphosphate block-copolymer was used for the first time for the PNC preparation. The NDDSs were compared by their physicochemical characteristics, AG release, storage stability, stability in serum, complement consumption and toxicity against a human macrovascular endothelial cell line (EAhy926). The diameter and surface charge of the NDDSs were comparable with previously reported injectable nanocarriers. The NDDSs showed good encapsulation efficiency and drug loading. Moreover, the NDDSs were stable during storage and in fetal bovine serum for extended periods, showed low complement consumption and were non-toxic to EAhy926 cells up to high concentrations. Therefore, they can be considered as potential injectable nanocarriers of AG. Due to less pronounced burst effect and extended release characteristics, the nanocapsules could be favorable approaches for achieving prolonged pharmacological activity of AG using injectable NDDS. Copyright © 2017 Elsevier B.V. All rights reserved.
Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel
NASA Astrophysics Data System (ADS)
Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael
1993-06-01
Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.
New Horizons in C-F Activation by Main Group Electrophiles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozerov, Oleg V.
2016-02-13
This technical report describes progress on the DOE sponsored project "New Horizons in C-F Activation by Main Group Electrophiles" during the period of 09/15/2010 – 08/31/2015. The main goal of this project was to develop improved catalysts for conversion of carbon-fluorine bonds in potentially harmful compounds. The approach involved combining of a highly reactive positively charged main-group compound with a highly unreactive negatively charged species (anions) as a way to access potent catalysts for carbon-fluorine bond activation. This report details progress made in improving synthetic pathways to a variety of new anions with improved properties and analysis of their potentialmore » in catalysis.« less
Rotaxane and catenane host structures for sensing charged guest species.
Langton, Matthew J; Beer, Paul D
2014-07-15
CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an anion-induced conformational change can be used as a means of signal transduction. Electrochemical sensing has been realized by integration of the redox-active ferrocene functionality within a range of rotaxane and catenanes; binding of an anion perturbs the metallocene, leading to a cathodic shift in the ferrocene/ferrocenium redox couple. In order to obtain practical sensors for target charged guest species, confinement of receptors at a surface is necessary in order to develop robust, reuseable devices. Surface confinement also offers advantages over solution based receptors, including amplification of signal, enhanced guest binding thermodynamics and the negation of solubility problems. We have fabricated anion-templated rotaxanes and catenanes on gold electrode surfaces and demonstrated that the resulting mechanically bonded self-assembled monolayers are electrochemically responsive to the binding of anions, a crucial first step toward the advancement of sophisticated, highly selective, anion sensory devices. Rotaxane and catenane host molecules may be engineered to offer a superior level of molecular recognition, and the incorporation of optical or electrochemical reporter groups within these interlocked frameworks can allow for guest sensing. Advances in synthetic templation strategies has facilitated the synthesis of interlocked architectures and widened their interest as prototype molecular machines. However, their unique host-guest properties are only now beginning to be exploited as a sophisticated approach to chemical sensing. The development of functional host-guest sensory systems such as these is of great interest to the interdisciplinary field of supramolecular chemistry.
Dombrowski, T.R.; Wilson, G.S.; Thurman, E.M.
1998-01-01
Anion-exchange and immunoaffinity particle loaded membranes (PLMs) were investigated as a mechanism for the isolation of charged organic analytes from water. Kinetic properties determined theoretically included dynamic capacity, pressure drop (??P), residence and diffusion times (Tr, Td), and total membrane porosity (???T). These properties were confirmed through experimental evaluation, and the PLM method showed significant improvement over conventional solid-phase extraction (SPE) and ion-exchange formats. Recoveries of more than 90% were observed for a variety of test compounds at flow rates up to 70 mL/min (equipment-limited maximum flow rate). A fast-flow immunoaffinity column was developed using antibodies (Abs) attached to the PLMs. Reproducible recoveries (88% ?? 4%) were observed at flow rates up to 70 mL/min for the antibody (Ab)-loaded PLMs. Findings indicate increased selectivity over anion-exchange PLMs and conventional SPE or ion-exchange methods and rapid Ab-antigen binding rates given the excellent mass-transfer characteristics of the PLMs.
CaB2 S4 O16 : A Borosulfate Exhibiting a New Structure Type with Phyllosilicate Analogue Topology.
Bruns, Jörn; Podewitz, Maren; Schauperl, Michael; Joachim, Bastian; Liedl, Klaus R; Huppertz, Hubert
2017-11-27
The reaction of Ca(CO 3 ) with H 3 BO 3 in oleum (20 % SO 3 ) yielded colorless single-crystals of CaB 2 S 4 O 16 (monoclinic, P2 1 /c, a=5.5188(2), b=15.1288(6), c=13.2660(6) Å, β=92.88(1)°, V=1106.22(8) Å 3 ). X-ray single-crystal structure analysis revealed a phyllosilicate-analogue anionic sub-structure, forming 2D infinite anionic layers, which exhibit an unprecedented arrangement of condensed twelve-membered (zwölfer) and four-membered (vierer) rings of corner-shared (SO 4 ) and (BO 4 ) tetrahedra. Charge compensation is achieved by Ca 2+ cations, residing exclusively above the centers of the twelve-membered rings. DFT investigations on the solid-state structure corroborate the experimental findings and allow for a detailed valuation of charge distribution within the anionic network and an assignment of vibrational frequencies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoabsorption of green and red fluorescent protein chromophore anions in vacuo.
Wan, Songbo; Liu, Shasha; Zhao, Guangjiu; Chen, Maodu; Han, Keli; Sun, Mengtao
2007-09-01
Photoabsorption properties of green and red fluorescent protein chromophore anions in vacuo were investigated theoretically, based on the experimental results in gas phase [Phys. Rev. Lett. 2001, 87, 228102; Phys. Rev. Lett. 2003, 90, 118103]. Their calculated transition energies in absorption with TD-DFT and ZINDO methods are directly compared to the experimental reports in gas phase, and the calculations with ZINDO method can correctly reproduce the absorption spectra. The orientation and strength of their transition dipole moments were revealed with transition density. We also showed the orientation and result of their intramolecular charge transfer with transition difference density. The calculated results show that with the increase of the extended conjugated system, the orientation of transition dipole moments and the orientation of charge transfer can be reversed. They are the linear responds with the external electric fields. These theoretical results reveal the insight understanding of the photoinduced dynamics of green and red fluorescent protein chromophore anions and cations in vacuo.
Perchlorate adsorption and desorption on activated carbon and anion exchange resin.
Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee
2009-05-15
The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.
Complexes of carboxyl-containing polymer and monosubstituted bipyridinium salts
NASA Astrophysics Data System (ADS)
Merekalova, N. D.; Bondarenko, G. N.; Krylsky, D. W.; Zakirov, M. I.; Talroze, R. V.
2013-09-01
Semi-empirical PM3 method for the quantum calculations of molecular electronic structure based on NDDO integral approximation is used to investigate the complex formation of monosubstituted 4,4‧-bipyridinium salts BpyR (Hal) containing a halide anion interacting with the quaternary nitrogen atom and carboxylic group of the two-units construct. Significant effect of the BpyR (Hal) electronic structure is unveiled that contributes in two different structures of these salts, namely, partial charge transfer complex and ion pair structure, both having stable energy minima. We demonstrate that (i) the structure of the N-substituent modulates the energy and electronic characteristics of monosubstituted salts BpyR with chlorine and bromine anions and (ii) the coulomb interactions between quaternary N-atom, halogen anion, and the proton of carboxylic group stimulate the transformation of the charge transfer complex into the ion pair structure. Results of calculations are compared with the experimental FTIR spectra of blends of BpyR(Hal) with Eudragit copolymer.
Lydersen, Espen; Larssen, Thorjørn; Fjeld, Eirik
2004-06-29
Acid neutralizing capacity (ANC) is the parameter most commonly used as chemical indicator for fish response to acidification. Empirical relationships between fish status of surface waters and ANC have been documented earlier. ANC is commonly calculated as the difference between base cations ([BC]=[Ca2+]+[Mg2+]+[N+]+[K+]) and strong acid anions ([SAA]=[SO4(2)-]+[NO3-]+[Cl-]). This is a very robust calculation of ANC, because none of the parameters incorporated are affected by the partial pressure of CO2, in contrast to the remaining major ions in waters, pH ([H+]), aluminum ([Aln+]), alkalinity ([HCO3-/CO3(2)-]) and organic anions ([An-]). Here we propose a modified ANC calculation where the permanent anionic charge of the organic acids is assumed as a part of the strong acid anions. In many humic lakes, the weak organic acids are the predominant pH-buffering system. Because a significant amount of the weak organic acids have pK-values<3.0-3.5, these relatively strong acids will permanently be deprotonated in almost all natural waters (i.e. pH>4.5). This means that they will be permanently present as anions, equal to the strong acid inorganic anions, SO4(2)-, NO3- and Cl-. In the literature, natural organic acids are often described as triprotic acids with a low pK1 value. Assuming a triprotic model, we suggest to add 1/3 of the organic acid charge density to the strong acid anions in the ANC calculation. The suggested organic acid adjusted ANC (ANC(OAA)), is then calculated as follows: ANC(OAA)=[BC]-([SAA]+1/3CD*TOC) where TOC is total organic carbon (mg C L(-1)), and CD=10.2 is charge density of the organic matter (microeq/mg C), based on literature data from Swedish lakes. ANC(OAA) gives significant lower values of ANC in order to achieve equal fish status compared with the traditional ANC calculation. Using ANC(OAA) the humic conditions in lakes are better taken into account. This may also help explain observations of higher ANC needed to have reproducing fish populations in lakes with higher TOC concentrations. Copryright 2003 Elsevier B.V.
Nitrate determination using anion exchange membrane and mid-infrared spectroscopy.
Linker, Raphael; Shaviv, Avi
2006-09-01
This study investigates the combined use of an anion exchange membrane and transmittance mid-infrared spectroscopy for determining nitrate concentration in aqueous solutions and soil pastes. The method is based on immersing a small piece (2 cm(2)) of anion exchange membrane into 5 mL of solution or soil paste for 30 minutes, after which the membrane is removed, rinsed, and wiped dry. The absorbance spectrum of the charged membrane is then used to determine the amount of nitrate sorbed on the membrane. At the levels tested, the presence of carbonate or phosphate does not affect the nitrate sorption or the spectrum of the charged membrane in the vicinity of the nitrate band. Sulfate affects the spectrum of the charged membrane but does not prevent nitrate determination. For soil pastes, nitrate sorption is remarkably independent of the soil composition and is not affected by the level of soil constituents such as organic matter, clay, and calcium carbonate. Partial least squares analysis of the membrane spectra shows that there exists a strong correlation between the nitrate charge and the absorbance in the 1000-1070 cm(-1) interval, which includes the v(1) nitrate band located around 1040 cm(-1). The prediction errors range from 0.8 to 2.1 mueq, which, under the specific experimental conditions, corresponds to approximately 2 to 6 ppm N-NO(3)(-) on a solution basis or 2 to 5 mg [N]/kg [dry soil] on a dry soil basis.
Tuning of protein-surfactant interaction to modify the resultant structure.
Mehan, Sumit; Aswal, Vinod K; Kohlbrecher, Joachim
2015-09-01
Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (pH7) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.
Tuning of protein-surfactant interaction to modify the resultant structure
NASA Astrophysics Data System (ADS)
Mehan, Sumit; Aswal, Vinod K.; Kohlbrecher, Joachim
2015-09-01
Small-angle neutron scattering and dynamic light scattering studies have been carried out to examine the interaction of bovine serum albumin (BSA) protein with different surfactants under varying solution conditions. We show that the interaction of anionic BSA protein (p H 7 ) with surfactant and the resultant structure are strongly modified by the charge head group of the surfactant, ionic strength of the solution, and mixed surfactants. The protein-surfactant interaction is maximum when two components are oppositely charged, followed by components being similarly charged through the site-specific binding, and no interaction in the case of a nonionic surfactant. This interaction of protein with ionic surfactants is characterized by the fractal structure representing a bead-necklace structure of micellelike clusters adsorbed along the unfolded protein chain. The interaction is enhanced with ionic strength only in the case of site-specific binding of an anionic surfactant with an anionic protein, whereas it is almost unchanged for other complexes of cationic and nonionic surfactants with anionic proteins. Interestingly, the interaction of BSA protein with ionic surfactants is significantly suppressed in the presence of nonionic surfactant. These results with mixed surfactants thus can be used to fold back the unfolded protein as well as to prevent surfactant-induced protein unfolding. For different solution conditions, the results are interpreted in terms of a change in fractal dimension, the overall size of the protein-surfactant complex, and the number of micelles attached to the protein. The interplay of electrostatic and hydrophobic interactions is found to govern the resultant structure of complexes.
Highly Dynamic Anion-Quadrupole Networks in Proteins.
Kapoor, Karan; Duff, Michael R; Upadhyay, Amit; Bucci, Joel C; Saxton, Arnold M; Hinde, Robert J; Howell, Elizabeth E; Baudry, Jerome
2016-11-01
The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.
Lithium batteries using poly(ethylene oxide)-based non-aqueous electrolytes
Chen, Zonghai; Amine, Khalil
2015-09-08
Lithium-air cells employing poly(ethyleneoxide) phosphate-based electrolytes may be prepared and exhibit improved charge carrying capacity. Such PEO phosphates generally have the formulas IIa, IIb, IIc, where: ##STR00001##
Cytogenetic effects of energetic ions with shielding
NASA Astrophysics Data System (ADS)
Yang, T. C.; George, K. A.; Wu, H.; Miller, D.; Miller, J.
1998-11-01
In order to understand the effects of shielding on the induction of biological damages by charged particles, we conducted experiments with accelerated protons (250 MeV) and iron particles (1 GeV/u). Human lymphocytes in vitro were exposed to particle beams through polyethylene with various thickness, and chromosomal aberrations were determined using FISH technique. Dose response curves for chromosome aberrations were obtained and compared for various particle types. Experimental results indicated that for a given absorbed dose at the cell, the effectiveness of protons and iron particles in the induction of chromosomal aberrations was not significantly altered by polyethylene with thickness up to 30-cm and 15-cm respectively. Comparing with gamma rays, charged particles were very effective in producing complex chromosomal damages, which may be an important mechanism in alterating functions in non-dividing tissues, such as nervous systems.
EFFECT OF INORGANIC CATIONS ON BACTERICIDAL ACTIVITY OF ANIONIC SURFACTANTS
Voss, J. G.
1963-01-01
Voss, J. G. (Procter & Gamble Co., Cincinnati, Ohio). Effect of inorganic cations on bactericidal activity of anionic surfactants. J. Bacteriol. 86:207–211. 1963.—The bactericidal effectiveness of two alkyl benzene sulfonates and of three other types of anionic surfactants against Staphylococcus aureus is increased in the presence of low concentrations of divalent cations, especially alkaline earths and metals of group IIB of the periodic table. The cations may act by decreasing the negative charge at the cell surface and increasing adsorption of the surfactant anions, leading to damage to the cytoplasmic membrane and death of the cell. Increased adsorption of surfactant is also found with Escherichia coli, but does not lead to death of the cell. PMID:14058942
Mobilization of arsenic from contaminated sediment by anionic and nonionic surfactants.
Liang, Chuan; Peng, Xianjia
2017-06-01
The increasing manufacture of surfactants and their wide application in industry, agriculture and household detergents have resulted in large amounts of surfactant residuals being discharged into water and distributed into sediment. Surfactants have the potential to enhance arsenic mobility, leading to risks to the environment and even human beings. In this study, batch and column experiments were conducted to investigate arsenic mobilization from contaminated sediment by the commercial anionic surfactants sodium dodecylbenzenesulfonate (SDBS), sodium dodecyl sulfate (SDS), sodium laureth sulfate (AES) and nonionic surfactants phenyl-polyethylene glycol (Triton X-100) and polyethylene glycol sorbitan monooleate (Tween-80). The ability of surfactants to mobilize arsenic followed the order AES>SDBS>SDS≈Triton X-100>Tween 80. Arsenic mobilization by AES and Triton X-100 increased greatly with the increase of surfactant concentration and pH, while arsenic release by SDBS, SDS and Tween-80 slightly increased. The divalent ion Ca 2+ caused greater reduction of arsenic mobilization than Na + . Sequential extraction experiments showed that the main fraction of arsenic mobilized was the specifically adsorbed fraction. Solid phase extraction showed that arsenate (As(V)) was the main species mobilized by surfactants, accounting for 65.05%-77.68% of the total mobilized arsenic. The mobilization of arsenic was positively correlated with the mobilization of iron species. The main fraction of mobilized arsenic was the dissolved fraction, accounting for 70% of total mobilized arsenic. Copyright © 2016. Published by Elsevier B.V.
Yin, Shi; Bernstein, Elliot R
2017-12-20
Single hydrogen containing iron hydrosulfide cluster anions (FeS) m H - (m = 2-4) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by Density Functional Theory (DFT) calculations. The structural properties, relative energies of different spin states and isomers, and the first calculated vertical detachment energies (VDEs) of different spin states for these (FeS) m H - (m = 2-4) cluster anions are investigated at various reasonable theory levels. Two types of structural isomers are found for these (FeS) m H - (m = 2-4) clusters: (1) the single hydrogen atom bonds to a sulfur site (SH-type); and (2) the single hydrogen atom bonds to an iron site (FeH-type). Experimental and theoretical results suggest such available different SH- and FeH-type structural isomers should be considered when evaluating the properties and behavior of these single hydrogen containing iron sulfide clusters in real chemical and biological systems. Compared to their related, respective pure iron sulfur (FeS) m - clusters, the first VDE trend of the diverse type (FeS) m H 0,1 - (m = 1-4) clusters can be understood through (1) the different electron distribution properties of their highest singly occupied molecular orbital employing natural bond orbital analysis (NBO/HSOMO), and (2) the partial charge distribution on the NBO/HSOMO localized sites of each cluster anion. Generally, the properties of the NBO/HSOMOs play the principal role with regard to the physical and chemical properties of all the anions. The change of cluster VDE from low to high is associated with the change in nature of their NBO/HSOMO from a dipole bound and valence electron mixed character, to a valence p orbital on S, to a valence d orbital on Fe, and to a valence p orbital on Fe or an Fe-Fe delocalized valence bonding orbital. For clusters having the same properties for NBO/HSOMOs, the partial charge distributions at the NBO/HSOMO localized sites additionally affect their VDEs: a more negative or less positive localized charge distribution is correlated with a lower first VDE. The single hydrogen in these (FeS) m H - (m = 2-4) cluster anions is suggested to affect their first VDEs through the different structure types (SH- or FeH-), the nature of the NBO/HSOMOs at the local site, and the value of partial charge number at the local site of the NBO/HSOMO.
1985-01-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm. PMID:3968182
Ghinea, N; Simionescu, N
1985-02-01
To obtain small membrane markers easily accessible to the charged groups of the cell surface, we prepared, from hemeundecapeptide (HUP), three derivatives that maintain the peroxidatic activity: the anionized hemeundecapeptide, Mr 1,963, estimated diameter 1.68 nm, pl 3.5, for the detection of basic groups; and both a cationized hemeundecapeptide containing predominantly tertiary amino groups, Mr 2,215, estimated diameter 1.75 nm, pl 9.0, and a cationized hemeundecapeptide containing only primary amino groups, Mr 2,271, estimated diameter 1.75 nm, pl 10.6, for labeling acidic residues. The markers were perfused in situ in mice to label the luminal surface of fenestrated endothelium of pancreatic capillaries. Specimens were processed through the cytochemical reaction for peroxidatic activity and examined by electron microscopy. The anionized HUP and HUP (pl 4.85) marked the plasmalemma proper, the coated pits, and the membrane and diaphragms of plasmalemmal vesicles and transendothelial channels. The cationized HUP containing predominantly tertiary amino groups (pl 9.0) decorated all cell surface components with the exception of plasmalemmal vesicles and channels; the latter were, however, labeled by the cationized HUP containing only primary groups (pl 10.6), which suggests that these structures contain on their luminal surface very weak acidic residues of high pKa values. The fact that the membrane of plasmalemmal vesicles can discriminate against permeant cationic macromolecules only up to a pl of approximately 9.0 indicates that in the electrostatic restriction there is a charge limit. In the case of fenestrated capillary endothelium, the upper charge limit seems to be a pl of approximately 9.0. In these vessels, the charge discrimination is effective for molecules as small as 2 nm.
Highly Oxidizing Surface Radicals in Lunar Dust
NASA Astrophysics Data System (ADS)
Kulahci, I.; Freund, F. T.; Bose, M.; Loftus, D. J.
2007-12-01
Lunar rocks are generally believed to be very "dry" with little or no evidence for hydroxyl as indicators of traces of dissolved H2O. The absence of hydroxyl, however, is not a sure sign of the absence of dissolved H2O. The reason is that hydroxyl pairs in the structure of host minerals, O3X-OH HO-XO3, with X=Si4+, Al3+ etc., tend to undergo an electronic rearrangement (redox conversion) in the course of which two oxygen anions are oxidized from the 2- to the 1- valence, forming a peroxy link, O3X-OO-XO3, plus an H2 molecule. If the H2 molecules diffuse out (which they are expected to do from lunar rocks and lunar fines over the course of 4 Gyrs), the peroxy links remain as the only "memory" of a former solute H2O content. Hard UV causes peroxy links to dissociate. In the process an electron from a neighboring O2- jumps into the broken peroxy bond. This is equivalent to forming an O-, e.g. a defect electron in the oxygen anion sublattice. Such defect electrons, also known as positive holes or pholes for short, represent highly mobile charge carriers. When trapped at the surface of dust grains, these charge carriers turn into highly reactive, highly oxidizing O- radicals, which are of concern because of their toxicity when lunar dust is inhaled by astronauts. We propose a device to measure the UV-activation of peroxy links by dusting lunar fines onto a polyethylene base plate with Au electrodes sputtered onto both ends and an ammeter connecting the two electrodes. One end of the dust layer will be exposed to the ambient UV radiation, while the remainder will be shaded. During the lunar night no current is expected to flow between the two Au electrodes. During passage through the night-day terminator, a current is expected to flow between the Au electrodes carried by defect electrons activated in the irradiated portion of the dust layer. Such a current would be an indicator that lunar fines and, by implication, lunar rocks contain peroxy links as a memory of a former solute H2O content.
Self-organizing layers from complex molecular anions
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.; ...
2018-05-14
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
NASA Astrophysics Data System (ADS)
Tsukanov, A. A.; Psakhie, S. G.
2016-01-01
The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.
Intrinsic electrophilic properties of nucleosides: Photoelectron spectroscopy of their parent anions
NASA Astrophysics Data System (ADS)
Stokes, Sarah T.; Li, Xiang; Grubisic, Andrej; Ko, Yeon Jae; Bowen, Kit H.
2007-08-01
The nucleoside parent anions 2'-deoxythymidine-, 2'-deoxycytidine-, 2'-deoxyadenosine-, uridine-, cytidine-, adenosine-, and guanosine- were generated in a novel source, employing a combination of infrared desorption, electron photoemission, and a gas jet expansion. Once mass selected, the anion photoelectron spectrum of each of these was recorded. In the three cases in which comparisons were possible, the vertical detachment energies and likely adiabatic electron affinities extracted from these spectra agreed well with the values calculated both by Richardson et al. [J. Am. Chem. Soc. 126, 4404 (2004)] and by Li et al. [Radiat. Res. 165, 721 (2006)]. Through the combination of our experimental results and their theoretical calculations, several implications emerge. (1) With the possible exception of dG-, the parent anions of nucleosides exist, and they are stable. (2) These nucleoside anions are valence anions, and in most cases the negative charge is closely associated with the nucleobase moiety. (3) The nucleoside parent anions we have generated and studied are the negative ions of canonical, neutral nucleosides, similar to those found in DNA.
Stokes, Sarah T; Li, Xiang; Grubisic, Andrej; Ko, Yeon Jae; Bowen, Kit H
2007-08-28
The nucleoside parent anions 2(')-deoxythymidine(-), 2(')-deoxycytidine(-), 2(')-deoxyadenosine(-), uridine(-), cytidine(-), adenosine(-), and guanosine(-) were generated in a novel source, employing a combination of infrared desorption, electron photoemission, and a gas jet expansion. Once mass selected, the anion photoelectron spectrum of each of these was recorded. In the three cases in which comparisons were possible, the vertical detachment energies and likely adiabatic electron affinities extracted from these spectra agreed well with the values calculated both by Richardson et al. [J. Am. Chem. Soc. 126, 4404 (2004)] and by Li et al. [Radiat. Res. 165, 721 (2006)]. Through the combination of our experimental results and their theoretical calculations, several implications emerge. (1) With the possible exception of dG(-), the parent anions of nucleosides exist, and they are stable. (2) These nucleoside anions are valence anions, and in most cases the negative charge is closely associated with the nucleobase moiety. (3) The nucleoside parent anions we have generated and studied are the negative ions of canonical, neutral nucleosides, similar to those found in DNA.
Altering surface charge nonuniformity on individual colloidal particles.
Feick, Jason D; Chukwumah, Nkiru; Noel, Alexandra E; Velegol, Darrell
2004-04-13
Charge nonuniformity (sigmazeta) was altered on individual polystyrene latex particles and measured using the novel experimental technique of rotational electrophoresis. It has recently been shown that unaltered sulfated latices often have significant charge nonuniformity (sigmazeta = 100 mV) on individual particles. Here it is shown that anionic polyelectrolytes and surfactants reduce the native charge nonuniformity on negatively charged particles by 80% (sigmazeta = 20 mV), even while leaving the average surface charge density almost unchanged. Reduction of charge uniformity occurs as large domains of nonuniformity are minimized, giving a more random distribution of charge on individual particle surfaces. Targeted reduction of charge nonuniformity opens new opportunities for the dispersion of nanoparticles and the oriented assembly of particles.
Rojas, Ricardo; Bruna, Felipe; de Pauli, Carlos P; Ulibarri, M Ángeles; Giacomelli, Carla E
2011-07-01
Layered double hydroxides (LDHs) reactivity and interfacial behavior are closely interconnected and control particle properties relevant to the wide range of these solids' applications. Despite their importance, their relationship has been hardly described. In this work, chloride and dodecylsulfate (DDS(-)) intercalated LDHs are studied combining experimental data (electrophoretic mobility and contact angle measurements, hydroxyl and organic compounds uptake) and a simple mathematical model that includes anion-binding and acid-base reactions. This approach evidences the anion effect on LDHs interfacial behavior, reflected in the opposite particle charge and the different surface hydrophobic/hydrophilic character. LDHs reactivity are also determined by the interlayer composition, as demonstrated by the cation uptake capability of the DDS(-) intercalated sample. Consequently, the interlayer anion modifies the LDHs interfacial properties and reactivity, which in turn extends the customization capacity of these solids. Copyright © 2011 Elsevier Inc. All rights reserved.
Stojanovic, Anja; Lämmerhofer, Michael; Kogelnig, Daniel; Schiesel, Simone; Sturm, Martin; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Lindner, Wolfgang
2008-10-31
Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yandell, Margaret A.; King, Sarah B.; Neumark, Daniel M., E-mail: dneumark@berkeley.edu
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I{sup −}·CH{sub 3}CN) and iodide-nitromethane (I{sup −}·CH{sub 3}NO{sub 2}) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4–900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion speciesmore » then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.« less
Yandell, Margaret A; King, Sarah B; Neumark, Daniel M
2014-05-14
Decay dynamics of nascent dipole bound states of acetonitrile and nitromethane are examined using time-resolved photoelectron imaging of iodide-acetonitrile (I(-)·CH3CN) and iodide-nitromethane (I(-)·CH3NO2) complexes. Dipole-bound anions are created by UV-initiated electron transfer to the molecule of interest from the associated iodide ion at energies just below the vertical detachment energy of the halide-molecule complex. The acetonitrile anion is observed to decay biexponentially with time constants in the range of 4-900 ps. In contrast, the dipole bound state of nitromethane decays rapidly over 400 fs to form the valence bound anion. The nitromethane valence anion species then decays biexponentially with time constants of 2 ps and 1200 ps. The biexponential decay dynamics in acetonitrile are interpreted as iodine atom loss and autodetachment from the excited dipole-bound anion, followed by slower autodetachment of the relaxed metastable ion, while the dynamics of the nitromethane system suggest that a dipole-bound anion to valence anion transition proceeds via intramolecular vibrational energy redistribution to nitro group modes in the vicinity of the iodine atom.
The voltage-dependent anion channel as a biological transistor: theoretical considerations.
Lemeshko, V V; Lemeshko, S V
2004-07-01
The voltage-dependent anion channel (VDAC) is a porin of the mitochondrial outer membrane with a bell-shaped permeability-voltage characteristic. This porin restricts the flow of negatively charged metabolites at certain non-zero voltages, and thus might regulate their flux across the mitochondrial outer membrane. Here, we have developed a mathematical model illustrating the possibility of interaction between two steady-state fluxes of negatively charged metabolites circulating across the VDAC in a membrane. The fluxes interact by contributing to generation of the membrane electrical potential with subsequent closure of the VDAC. The model predicts that the VDAC might function as a single-molecule biological transistor and amplifier, because according to the obtained calculations a small change in the flux of one pair of different negatively charged metabolites causes a significant modulation of a more powerful flux of another pair of negatively charged metabolites circulating across the same membrane with the VDAC. Such transistor-like behavior of the VDAC in the mitochondrial outer membrane might be an important principle of the cell energy metabolism regulation under some physiological conditions.
Polarizability effects on the structure and dynamics of ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavalcante, Ary de Oliveira, E-mail: arycavalcante@ufam.edu.br; Departamento de Química, Universidade Federal do Amazonas, Av. Rodrigo Octávio, 6200, Coroado, Manaus, AM; Ribeiro, Mauro C. C.
2014-04-14
Polarization effects on the structure and dynamics of ionic liquids are investigated using molecular dynamics simulations. Four different ionic liquids were simulated, formed by the anions Cl{sup −} and PF{sub 6}{sup −}, treated as single fixed charge sites, and the 1-n-alkyl-3-methylimidazolium cations (1-ethyl and 1-butyl-), which are polarizable. The partial charge fluctuation of the cations is provided by the electronegativity equalization model (EEM) and a complete parameter set for the cations electronegativity (χ) and hardness (J) is presented. Results obtained from a non-polarizable model for the cations are also reported for comparison. Relative to the fixed charged model, the equilibriummore » structure of the first solvation shell around the imidazolium cations shows that inclusion of EEM polarization forces brings cations closer to each other and that anions are preferentially distributed above and below the plane of the imidazolium ring. The polarizable model yields faster translational and reorientational dynamics than the fixed charges model in the rotational-diffusion regime. In this sense, the polarizable model dynamics is in better agreement with the experimental data.« less
Ma, Ming; Li, Feng; Liu, Xiu-hong; Yuan, Zhe-fan; Chen, Fu-jie; Zhuo, Ren-xi
2010-10-01
Amphiphilic triblock copolymers monomethoxyl poly(ethylene glycol) (mPEG)-b-poly(ε-caprolactone) (PCL)-b-poly(aminoethyl methacrylate)s (PAMAs) (mPECAs) were synthesized as gene delivery vectors. They exhibited lower cytotoxicity and higher transfection efficiency in COS-7 cells in presence of serum compared to 25 kDa bPEI. The influence of mPEG and PCL segments in mPECAs was evaluated by comparing with corresponding diblock copolymers. The studies showed the incorporation of the hydrophobic PCL segment in triblock copolymers affected the binding capability to pDNA and surface charges of complexes due to the formation of micelles increasing the local charges. The presence of mPEG segment in gene vector decreased the surface charges of the complexes and increased the stability of the complexes in serum because of the steric hindrance effect. It was also found that the combination of PEG and PCL segments into one macromolecule might lead to synergistic effect for better transfection efficiency in serum.
NASA Astrophysics Data System (ADS)
Hoang, M.-Q.; Le Roy, S.; Boudou, L.; Teyssedre, G.
2016-06-01
One of the difficulties in unravelling transport processes in electrically insulating materials is the fact that the response, notably charging current transients, can have mixed contributions from orientation polarization and from space charge processes. This work aims at identifying and characterizing the polarization processes in a polar polymer in the time and frequency-domains and to implement the contribution of the polarization into a charge transport model. To do so, Alternate Polarization Current (APC) and Dielectric Spectroscopy measurements have been performed on poly(ethylene naphthalene 2,6-dicarboxylate) (PEN), an aromatic polar polymer, providing information on polarization mechanisms in the time- and frequency-domain, respectively. In the frequency-domain, PEN exhibits 3 relaxation processes termed β, β* (sub-glass transitions), and α relaxations (glass transition) in increasing order of temperature. Conduction was also detected at high temperatures. Dielectric responses were treated using a simplified version of the Havriliak-Negami model (Cole-Cole (CC) model), using 3 parameters per relaxation process, these parameters being temperature dependent. The time dependent polarization obtained from the CC model is then added to a charge transport model. Simulated currents issued from the transport model implemented with the polarization are compared with the measured APCs, showing a good consistency between experiments and simulations in a situation where the response comes essentially from dipolar processes.
Wang, Shih-Hong; Hou, Sheng-Shu; Kuo, Ping-Lin; Teng, Hsisheng
2013-09-11
Using gel polymer electrolytes (GPEs) for lithium-ion batteries usually encounters the drawback of poor mechanical integrity of the GPEs. This study demonstrates the outstanding performance of a GPE consisting of a commercial membrane (Celgard) incorporated with a poly(ethylene oxide)-co-poly(propylene oxide) copolymer (P(EO-co-PO)) swelled by a liquid electrolyte (LE) of 1 M LiPF6 in carbonate solvents. The proposed GPE stably holds LE with an amount that is three times that of the Celgard-P(EO-co-PO) composite. This GPE has a higher ionic conductivity (2.8×10(-3) and 5.1×10(-4) S cm(-1) at 30 and -20 °C, respectively) and a wider electrochemical voltage range (5.1 V) than the LE-swelled Celgard because of the strong ion-solvation power of P(EO-co-PO). The active ion-solvation role of P(EO-co-PO) also suppresses the formation of the solid-electrolyte interphase layer. When assembling the GPE in a Li/LiFePO4 battery, the P(EO-co-PO) network hinders anionic transport, producing a high Li+ transference number of 0.5 and decreased the polarization overpotential. The Li/GPE/LiFePO4 battery delivers a discharge capacity of 156-135 mAh g(-1) between 0.1 and 1 C-rates, which is approximately 5% higher than that of the Li/LE/LiFePO4 battery. The IR drop of the Li/GPE/LiFePO4 battery was 44% smaller than that of the Li/LE/LiFePO4. The Li/GPE/LiFePO4 battery is more stable, with only a 1.2% capacity decay for 150 galvanostatic charge-discharge cycles. The advantages of the proposed GPE are its high stability, conductivity, Li+ transference number, and mechanical integrity, which allow for the assembly of GPE-based batteries readily scalable to industrial levels.
Self-Activating, Capacitive Anion Intercalation Enables High-Power Graphite Cathodes.
Wang, Gang; Yu, Minghao; Wang, Jungang; Li, Debao; Tan, Deming; Löffler, Markus; Zhuang, Xiaodong; Müllen, Klaus; Feng, Xinliang
2018-05-01
Developing high-power cathodes is crucial to construct next-generation quick-charge batteries for electric transportation and grid applications. However, this mainly relies on nanoengineering strategies at the expense of low scalability and high battery cost. Another option is provided herein to build high-power cathodes by exploiting inexpensive bulk graphite as the active electrode material, where anion intercalation is involved. With the assistance of a strong alginate binder, the disintegration problem of graphite cathodes due to the large volume variation of >130% is well suppressed, making it possible to investigate the intrinsic electrochemical behavior and to elucidate the charge storage kinetics of graphite cathodes. Ultrahigh power capability up to 42.9 kW kg -1 at the energy density of >300 Wh kg -1 (based on graphite mass) and long cycling life over 10 000 cycles are achieved, much higher than those of conventional cathode materials for Li-ion batteries. A self-activating and capacitive anion intercalation into graphite is discovered for the first time, making graphite a new intrinsic intercalation-pseudocapacitance cathode material. The finding highlights the kinetical difference of anion intercalation (as cathode) from cation intercalation (as anode) into graphitic carbon materials, and new high-power energy storage devices will be inspired. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Aaronson, Barak D B; Wigmore, David; Johns, Marcus A; Scott, Janet L; Polikarpov, Igor; Marken, Frank
2017-09-25
Cellulose films as well as chitosan-modified cellulose films of approximately 5 μm thickness, reconstituted from ionic liquid media onto a poly(ethylene-terephthalate) (PET, 6 μm thickness) film with a 5, 10, 20, or 40 μm diameter laser-drilled microhole, show significant current rectification in aqueous NaCl. Reconstituted α-cellulose films provide "cationic diodes" (due to predominant cation conductivity) whereas chitosan-doped cellulose shows "anionic diode" effects (due to predominant anion conductivity). The current rectification, or "ionic diode" behaviour, is investigated as a function of NaCl concentration, pH, microhole diameter, and molecular weight of the chitosan dopant. Future applications are envisaged exploiting the surface charge induced switching of diode currents for signal amplification in sensing.
NASA Technical Reports Server (NTRS)
Dyall, Kenneth G.; Arnold, James (Technical Monitor)
1999-01-01
The dissociation of WF6 and the related singly-charged cations and anions into the lower fluorides and fluorine atoms has been investigated theoretically using density functional theory (B3LYP) and relativistic effective core potentials, with estimates of spin-orbit effects included using a simple model. The inclusion of spin-orbit is essential for a correct description of the thermochemistry. The total atomization energy of the neutral and anionic WF6 is reproduced to within 25 kcal/mol, but comparison of individual bond dissociation energies with available experimental data shows discrepancies of up to 10 kcal/mol. The results are nevertheless useful to help resolve discrepancies in experimental data and provide estimates of missing data.
NASA Astrophysics Data System (ADS)
Ghosh, Sumit
2010-11-01
Interaction between anionic surfactant, sodium dodecyl benzene sulphonate, (SDBS) and an anionic dye Eriochrome Black-T, (EBT) has been investigated by visible spectroscopy, conductometry, dynamic light scattering and zeta potential measurements. Spectral changes of EBT observed on addition of SDBS indicate formation of quinone-hydrazone tautomer at pH 7.0, whereas in absence of SDBS this change appears at pH ˜ 9.45. However, at pH 7.0 this change in tautomerism is not observed in presence of sodium dodecyl sulphate (SDS). Experimental results indicate presence of charge transfer interaction between less stable quinone-hydrazone tautomer of EBT and SDBS molecules, which is confirmed using Benesi-Hildebrand and Scott equations.
Colorimetric sensing of anions in water using ratiometric indicator-displacement assay.
Feng, Liang; Li, Hui; Li, Xiao; Chen, Liang; Shen, Zheng; Guan, Yafeng
2012-09-19
The analysis of anions in water presents a difficult challenge due to their low charge-to-radius ratio, and the ability to discriminate among similar anions often remains problematic. The use of a 3×6 ratiometric indicator-displacement assay (RIDA) array for the colorimetric detection and identification of ten anions in water is reported. The sensor array consists of different combinations of colorimetric indicators and metal cations. The colorimetric indicators chelate with metal cations, forming the color changes. Upon the addition of anions, anions compete with the indicator ligands according to solubility product constants (K(sp)). The indicator-metal chelate compound changes color back dramatically when the competition of anions wins. The color changes of the RIDA array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis and hierarchical clustering analysis. No confusion or errors in classification by hierarchical clustering analysis were observed in 44 trials. The limit of detection was calculated approximately, and most limits of detections of anions are well below μM level using our RIDA array. The pH effect, temperature influence, interfering anions were also investigated, and the RIDA array shows the feasibility of real sample testing. Copyright © 2012 Elsevier B.V. All rights reserved.
Nagy, Lajos; Kuki, Ákos; Deák, György; Purgel, Mihály; Vékony, Ádám; Zsuga, Miklós; Kéki, Sándor
2016-09-01
The gas-phase interaction of anions including fluoride, chloride, bromide, iodide, ethyl sulfate, chlorate, and nitrate with polyisobutylene (PIB) derivatives was studied using collision-induced dissociation (CID). The gas-phase adducts of anions with PIBs ([PIB + anion](-)) were generated from the electrosprayed solution of PIBs in the presence of the corresponding anions. The so-formed adducts subjected to CID showed a loss of anion at different characteristic collision energies, thus allowing the study of the strength of interaction between the anions and nonpolar PIBs having different end-groups. The values of characteristic collision energies (the energy needed to obtain 50% fragmentation) obtained by CID experiments correlated linearly with the binding enthalpies between the anion and PIB, as determined by density functional theory calculations. In the case of halide ions, the critical energies for dissociation, that is, the binding enthalpies for [PIB + anion](-) adducts, increased in the order of I(-) < Br(-) < Cl(-) < F(-). Furthermore, it was found that the binding enthalpies for the adducts formed with halide ions decreased approximately with the square radius of the halide ion, suggesting that the strength of interaction is mainly determined by the "surface" charge density of the halide ion. In addition, the characteristic collision energy versus the number of isobutylene units revealed a linear dependence.
Retrieval of charge mobility from apparent charge packet movements in LDPE thin films
NASA Astrophysics Data System (ADS)
Meng, Jia; Zhang, Yewen; Holé, Stéphane; Zheng, Feihu; An, Zhenlian
2017-03-01
The charge packet phenomenon observed in polyethylene materials has been reported extensively during the last decades. To explain its movement, Negative Differential Mobility (NDM) theory is a competitive model among several proposed mechanisms. However, as a key concept of this theory, a sufficiently acute relationship between charge mobility and electric field has never been reported until now, which makes it hard to precisely describe the migration of charge packets with this theory. Based on the substantial negative-charge packet observations with a sufficiently by wide electric field range from 15 kV/mm to 50 kV/mm, the present contribution successfully retrieved the negative-charge mobility from the apparent charge packet movements, which reveals a much closer relationship between the NDM theory and charge packet migrations. Back simulations of charge packets with the retrieved charge mobility offer a good agreement with the experimental data.
2015-10-18
developed models to fit this data and derive the bulk conductivity. [9-11, 19] After aging and measuring discharge rates we remove small pieces of...34Charge trapping in corona -charge polyethylene films," Journal of Physics D: Applied Physics, vol. 13, p. 1343, 1980. [20] R. Li, C. Li, S. He, M. Di
Interactions of anions and cations in carbon nanotubes.
Mohammadzadeh, L; Quaino, P; Schmickler, W
2016-12-12
We consider the insertion of alkali-halide ion pairs into a narrow (5,5) carbon nanotube. In all cases considered, the insertion of a dimer is only slightly exothermic. While the image charge induced on the surface of the tube favors insertion, it simultaneously weakens the Coulomb attraction between the two ions. In addition, the anion experiences a sizable Pauli repulsion. For a one dimensional chain of NaCl embedded in the tube the most favorable position for the anion is at the center, and for the cation near the wall. The phonon spectrum of such chains shows both an acoustic and an optical branch.
Photodetachment and Doppler laser cooling of anionic molecules
NASA Astrophysics Data System (ADS)
Gerber, Sebastian; Fesel, Julian; Doser, Michael; Comparat, Daniel
2018-02-01
We propose to extend laser-cooling techniques, so far only achieved for neutral molecules, to molecular anions. A detailed computational study is performed for {{{C}}}2- molecules stored in Penning traps using GPU based Monte Carlo simulations. Two cooling schemes—Doppler laser cooling and photodetachment cooling—are investigated. The sympathetic cooling of antiprotons is studied for the Doppler cooling scheme, where it is shown that cooling of antiprotons to subKelvin temperatures could becomes feasible, with impacts on the field of antimatter physics. The presented cooling schemes also have applications for the generation of cold, negatively charged particle sources and for the sympathetic cooling of other molecular anions.
Zhang, Zheng-Jie; Shi, Wei; Niu, Zheng; Li, Huan-Huan; Zhao, Bin; Cheng, Peng; Liao, Dai-Zheng; Yan, Shi-Ping
2011-06-14
An interesting new MOF, built with interpenetrating cationic (MOF-A(+)) and anionic (MOF-B(-)) nets that do not require counter ions to balance charge, together with an architectural strategy focused on the use of MOPs as nodes and MOCs as spacers for the generation of 3D frameworks, is reported. This journal is © The Royal Society of Chemistry 2011
Sakata, Sho; Inoue, Yuuki; Ishihara, Kazuhiko
2016-10-01
Various molecular interaction forces are generated during protein adsorption process on material surfaces. Thus, it is necessary to control them to suppress protein adsorption and the subsequent cell and tissue responses. A series of binary copolymer brush layers were prepared via surface-initiated atom transfer radical polymerization, by mixing the cationic monomer unit and anionic monomer unit randomly in various ratios. Surface characterization revealed that the constructed copolymer brush layers exhibited an uniform super-hydrophilic nature and different surface potentials. The strength of the electrostatic interaction forces operating on these mixed-charge copolymer brush surfaces was evaluated quantitatively using force-versus-distance (f-d) curve measurements by atomic force microscopy (AFM) and probes modified by negatively charged carboxyl groups or positively charged amino groups. The electrostatic interaction forces were determined based on the charge ratios of the copolymer brush layers. Notably, the surface containing equivalent cationic/anionic monomer units hardly interacted with both the charged groups. Furthermore, the protein adsorption force and the protein adsorption mass on these surfaces were examined by AFM f-d curve measurement and surface plasmon resonance measurement, respectively. To clarify the influence of the electrostatic interaction on the protein adsorption behavior on the surface, three kinds of proteins having negative, positive, and relatively neutral net charges under physiological conditions were used in this study. We quantitatively demonstrated that the amount of adsorbed proteins on the surfaces would have a strong correlation with the strength of surface-protein interaction forces, and that the strength of surface-protein interaction forces would be determined from the combination between the properties of the electrostatic interaction forces on the surfaces and the charge properties of the proteins. Especially, the copolymer brush surface composed of equivalent cationic/anionic monomer units exhibited no significant interaction forces, and dramatically suppressed the adsorption of proteins regardless of their charge properties. We conclude that the established methodology could elucidate relationship between the protein adsorption behavior and molecular interaction, especially the electrostatic interaction forces, and demonstrated that the suppression of the electrostatic interactions with the ionic functional groups would be important for the development of new polymeric biomaterials with a high repellency of protein adsorption. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Penta, Naresh K.; Amanapu, H. P.; Peethala, B. C.; Babu, S. V.
2013-10-01
Four different anionic surfactants, sodium dodecyl sulfate, dodecyl benzene sulfonic acid (DBSA), dodecyl phosphate and Sodium lauroyl sarcosine, selected from the sulfate, phosphate, and carboxylic family, were investigated as additives in silica dispersions for selective polishing of silicon dioxide over silicon nitride films. We found that all these anionic surfactants suppress the nitride removal rates (RR) for pH ≤4 while more or less maintaining the oxide RRs, resulting in high oxide-to-nitride RR selectivity. The RR data obtained as a function of pH were explained based on pH dependent distributions of surfactant species, change in the zeta potentials of oxide and nitride surfaces, and thermogravimetric data. It appears that the negatively charged surfactant species preferentially adsorb on the positively charged nitride surface below IEP through its electrostatic interactions and form a bilayer adsorption, resulting in the suppression of nitride RRs. In contrast to the surfactants, K2SO4 interacts only weakly with the nitride surface and hence cannot suppress its RR.
Communication: Nanoscale structure of tetradecyltrihexylphosphonium based ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hettige, Jeevapani J.; Araque, Juan C.; Margulis, Claudio J., E-mail: claudio-margulis@uiowa.edu
In a recent communication [J. J. Hettige et al., J. Chem. Phys. 140, 111102 (2014)], we investigated the anomalous temperature dependence of the X-ray first sharp diffraction peak (or prepeak) in the tetradecyltrihexylphosphonium bis(trifluoromethylsulfonyl)-amide ionic liquid. Contrary to what was expected and often observed, the first sharp diffraction peak in this system was shown to increase in intensity with increasing temperature. This implies higher intermediate-range periodicity at a higher temperature. Is this counter-intuitive behavior specific to the combination of cation and anion? The current work analyzes the structural behavior of the same cation coupled with six different anions ranging frommore » the small and spherically symmetric Cl{sup −} to the more structurally complex and charge-diffuse NTf{sub 2}{sup −}. In all cases, the same temperature behavior trend for the prepeak is observed independent of anionic nature. We will show that the intensity increase in the prepeak region is associated with the structural behavior of charged liquid subcomponents. Instead, upon a temperature increase, the apolar subcomponents contribute to what would be an expected decrease of prepeak intensity.« less
Single-Photon, Double Photodetachment of Nickel Phthalocyanine Tetrasulfonic Acid 4- Anions.
Daly, Steven; Girod, Marion; Vojkovic, Marin; Giuliani, Alexandre; Antoine, Rodolphe; Nahon, Laurent; O'Hair, Richard A J; Dugourd, Philippe
2016-07-07
Single-photon, two-electron photodetachment from nickel phthalocyanine tetrasulfonic acid tetra anions, [NiPc](4-), was examined in the gas-phase using a linear ion trap coupled to the DESIRS VUV beamline of the SOLEIL Synchrotron. This system was chosen since it has a low detachment energy, known charge localization, and well-defined geometrical and electronic structures. A threshold for two-electron loss is observed at 10.2 eV, around 1 eV lower than previously observed double detachment thresholds on multiple charged protein anions. The photodetachment energy of [NiPc](4-) has been previously determined to be 3.5 eV and the photodetachment energy of [NiPc](3-•) is determined in this work to be 4.3 eV. The observed single photon double electron detachment threshold is hence 5.9 eV higher than the energy required for sequential single electron loss. Possible mechanisms are for double photodetachment are discussed. These observations pave the way toward new, exciting experiments for probing double photodetachment at relatively low energies, including correlation measurements on emitted photoelectrons.
Coarse Graining to Investigate Membrane Induced Peptide Folding of Anticancer Peptides
NASA Astrophysics Data System (ADS)
Ganesan, Sai; Xu, Hongcheng; Matysiak, Silvina
Information about membrane induced peptide folding mechanisms using all-atom molecular dynamics simulations is a challenge due to time and length scale issues.We recently developed a low resolution Water Explicit Polarizable PROtein coarse-grained Model by adding oppositely charged dummy particles inside protein backbone beads.These two dummy particles represent a fluctuating dipole,thus introducing structural polarization into the coarse-grained model.With this model,we were able to achieve significant α- β secondary structure content de novo,without any added bias.We extended the model to zwitterionic and anionic lipids,by adding oppositely charged dummy particles inside polar beads, to capture the ability of the head group region to form hydrogen bonds.We use zwitterionic POPC and anionic POPS as our model lipids, and a cationic anticancer peptide,SVS1,as our model peptide.We have characterized the driving forces for SVS1 folding on lipid bilayers with varying anionic and zwitterionic lipid compositions.Based on our results, dipolar interactions between peptide backbone and lipid head groups contribute to stabilize folded conformations.Cooperativity in folding is induced by both intra peptide and membrane-peptide interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harush-Frenkel, Oshrat; Bivas-Benita, Maytal; Nassar, Taher
Nanoparticle (NP) based drug delivery systems provide promising opportunities in the treatment of lung diseases. Here we examined the safety and tolerability of pulmonary delivered NPs consisting of PEG-PLA as a function of particle surface charge. The rationale for such a comparison should be attributed to the differential pulmonary toxicity of positively and negatively charged PEG-PLA NP. Thus, the local and systemic effects of pulmonary administered NPs were investigated following 5 days of daily endotracheal instillation to BALB/c mice that were euthanized on the eighth or nineteenth day of the experiment. We collected bronchoalveolar lavages and studied hematological as wellmore » as histochemistry parameters. Notably, the cationic stearylamine based PEG-PLA NPs elicited increased local and systemic toxic effects both on the eighth and nineteenth day. In contrast, anionic NPs of similar size were much better tolerated with local inflammatory effects observed only on the eighth experimental day after pulmonary instillation. No systemic toxicity effect was observed although a moderate change was noted in the platelet count that was not considered to be of clinical significance. No pathological observations were detected in the internal organs following instillation of anionic NPs. Overall these observations suggest that anionic PEG-PLA NPs are useful pulmonary drug carriers that should be considered as a promising therapeutic drug delivery system.« less
A novel acrylamide-free flocculant and its application for sludge dewatering.
Lu, Lianghua; Pan, Zhida; Hao, Nan; Peng, Wenqing
2014-06-15
In the present research, copolymers of methyl acrylate (MA) with anionic or cationic monomers were synthesized via emulsion polymerization, and used as sludge dewatering aids in wastewater treatment. The copolymerization of different stoichiometry of two monomers afforded a variety of water soluble copolymers with charge densities ranging from 40% to 80%, which align with the charge density of current flocculant products. These copolymers resemble current commercial products, but provide a greener solution by eliminating acrylamide monomer, which is a suspected carcinogen. High molecular weight copolymers were achieved by applying powder-like synthesis process with intrinsic viscosity of final products as high as 12.98 dl/g for anionic flocculant and 10.74 dl/g for cationic flocculant. The copolymers of methyl acrylate and [2-(Acryloyloxy)ethyl]trimethylammonium chloride (AETAC) with 55% charge density exhibited comparable performance in clay settling test, real water jar test, and sludge dewatering, when compared to AM-based commercial product in the real wastewater treatment application. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wiaderek, Kamila M; Borkiewicz, Olaf J; Castillo-Martínez, Elizabeth; Robert, Rosa; Pereira, Nathalie; Amatucci, Glenn G; Grey, Clare P; Chupas, Peter J; Chapman, Karena W
2013-03-13
In-depth analysis of operando X-ray pair distribution function (PDF) data is combined with Li NMR spectroscopy to gain comprehensive insights into the electrochemical reaction mechanism of high-performance iron oxyfluoride electrodes. While the full discharge capacity could be recovered upon charge, implying reversibility of the electrochemical reaction, the atomic structure of the electrode formed after cycling (discharge-charge) differs from the pristine uncycled electrode material. Instead, the "active" electrode that forms upon cycling is a nanocomposite of an amorphous rutile phase and a nanoscale rock salt phase. Bond valence sum analysis, based on the precise structural parameters (bond lengths and coordination number) extracted from the in situ PDF data, suggests that anion partitioning occurs during the electrochemical reaction, with the rutile phase being F-rich and the rock salt phase being O-rich. The F- and O-rich phases react sequentially; Fe in a F-rich environment reacts preferentially during both discharge and charge.
Monte Carlo study of molten salt with charge asymmetry near the electrode surface.
Kłos, Jacek; Lamperski, Stanisław
2014-02-07
Results of the Monte Carlo simulation of the electrode | molten salt or ionic liquid interface are reported. The system investigated is approximated by the primitive model of electrolyte being in contact with a charged hard wall. Ions differ in charges, namely anions are divalent and cations are monovalent but they are of the same diameter d = 400 pm. The temperature analysis of heat capacity at a constant volume Cv and the anion radial distribution function, g2-/2-, allowed the choice of temperature of the study, which is T = 2800 K and corresponds to T(*) = 0.34 (definition of reduced temperature T(*) in text). The differential capacitance curve of the interface with the molten salt or ionic liquid at c = 5.79 M has a distorted bell shape. It is shown that with increasing electrolyte concentration from c = 0.4 to 5 M the differential capacitance curves undergo transition from U shape to bell shape.
Aquabis[1-hydroxy-2-(imidazol-3-ium-1-yl)-1,1′-ethylidenediphophonato-κ2 O,O′]zinc(II) dihydrate
Freire, Eleonora; Vega, Daniel R.
2009-01-01
In the title complex, [Zn(C5H9NO7P2)2(H2O)]·2H2O, the zinc atom is coordinated by two zoledronate anions [zoledronate = (2-(1-imidazole)-1-hydroxy-1,1′-ethylidenediphophonate)] and one water molecule. The coordination number is 5. There is one half-molecule in the asymmetric unit, the zinc atom being located on a twofold rotation axis passing through the metal centre and the coordinating water O atom. The anion exists as a zwitterion with an overall charge of −1; the protonated nitrogen in the ring has a positive charge and the two phosphonates groups each have a single negative charge. Intermolecular O—H⋯O hydrogen bonds link the molecules. An N—H⋯O interaction is also present. PMID:21578165
Spectroscopic and theoretical investigations of alkali metal linoleates and oleinates
NASA Astrophysics Data System (ADS)
Świsłocka, Renata; Regulska, Ewa; Jarońko, Paweł; Lewandowski, Włodzimierz
2017-11-01
The influence of lithium, sodium, potassium, rubidium and cesium on the electronic system of the linoleic (cis-9,cis-12-octadecadienoic) and oleic (cis-9-octadecenoic) acids was investigated. The complementary analytical methods: vibrational (IR, Raman) and electronic (UV) molecular absorption spectroscopy as well as DFT quantum mechanical calculations (charge distribution, angles between bonds, bond lengths, theoretical IR and NMR spectra) were carried out. The regular shifts of bands connected with carboxylate anion in the spectra of studied salts were observed. Some bonds and angles reduced or elongated in the series: acid→Li→Na→K linoleates/oleinates. The highest changes were noted for bond lengths and angles concerning COO- ion. The electronic charge distribution in studied molecules was also discussed. Total atomic charges of carboxylate anion decrease as a result of the replacement of hydrogen atom with alkali metal cation. The increasing values of dipole moment and decreasing values of total energy in the order: linoleic/oleic acid→lithium→sodium→potassium linoleates/oleinates indicate an increase in stability of the compounds.
Modeling of protein-anion exchange resin interaction for the human growth hormone charge variants.
Lapelosa, Mauro; Patapoff, Thomas W; Zarraga, Isidro E
2015-12-01
Modeling ion exchange chromatography (IEC) behavior has generated significant interest because of the wide use of IEC as an analytical technique as well as a preparative protein purification process; indeed there is a need for better understanding of what drives the unique behavior of protein charge variants. We hypothesize that a complex protein molecule, which contains both hydrophobic and charged moieties, would interact strongly with an in silico designed resin through charged electrostatic patches on the surface of the protein. In the present work, variants of recombinant human growth hormone that mimic naturally-occurring deamidation products were produced and characterized in silico. The study included these four variants: rhGH, N149D, N152D, and N149D/N152D. Poisson-Boltzmann calculations were used to determine surface electrostatic potential. Metropolis Monte Carlo simulations were carried out with the resulting variants to simulate IEC systems, examining the free energy of the interaction of the protein with an in silico anion exchange column represented by polylysine polypeptide. The results show that the charge variants have different average binding energies and the free energy of interaction can be used to predict the retention time for the different variants. Copyright © 2015 Elsevier B.V. All rights reserved.
Molecular mechanism of tau aggregation induced by anionic and cationic dyes.
Lira-De León, Karla I; García-Gutiérrez, Ponciano; Serratos, Iris N; Palomera-Cárdenas, Marianela; Figueroa-Corona, María Del P; Campos-Peña, Victoria; Meraz-Ríos, Marco A
2013-01-01
Abnormal tau filaments are a hallmark of Alzheimer's disease. Anionic dyes such as Congo Red, Thiazine Red, and Thioflavin S are able to induce tau fibrillization in vitro. SH-SY5Y cells were incubated with each dye for seven days leading to intracellular aggregates of tau protein, with different morphological characteristics. Interestingly, these tau aggregates were not observed when the Methylene Blue dye was added to the cell culture. In order to investigate the molecular mechanisms underlying this phenomenon, we developed a computational model for the interaction of the tau paired helical filament (PHF) core with every dye by docking analysis. The polar/electrostatic and nonpolar contribution to the free binding energy in the tau PHF core-anionic dye interaction was determined. We found that the tau PHF core can generate a positive net charge within the binding site localized at residuesLys311 and Lys340 (numbering according to the longest isoform hTau40). These residues are important for the binding affinity of the negative charges present in the anionic dyes causing an electrostatic environment that stabilizes the complex. Tau PHF core protofibril-Congo Red interaction has a stronger binding affinity compared to Thiazine Red or Thioflavin S. By contrast, the cationic dye Methylene Blue does not bind to nor stabilize the tau PHF core protofibrils. These results characterize the driving forces responsible for the binding of tau to anionic dyes leading to their self-aggregation and suggest that Methylene Blue may act as a destabilizing agent of tau aggregates.
Zhang, Le; Zhang, Jifeng
2012-09-04
The perturbation of salt ions on the solubility of a monoclonal antibody was systematically studied at various pHs in Na(2)SO(4), NaNO(3), NaCl, NaF, MgSO(4), Mg(NO(3))(2) and MgCl(2) solutions below 350 mM. At pH 7.1, close to the pI, all of the salts increased the solubility of the antibody, following the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for anions and Mg(2+) > Na(+) for cations. At pH 5.3 where the antibody had a net positive charge, the anions initially followed the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-) for effectiveness in reducing the solubility and then switched to increasing the solubility retaining the same order. Furthermore, the antibody was more soluble in the Mg(2+) salt solutions than in the corresponding Na(+) salt solutions with the same anion. At pH 9.0 where the antibody had a net negative charge, an initial decrease in the protein solubility was observed in the solutions of the Mg(2+) salts and NaF, but not in the rest of the Na(+) salt solutions. Then, the solubility of the antibody was increased by the anions in the order of SO(4)(2-) > NO(3)(-) > Cl(-) > F(-). The above complex behavior is explained based on the ability of both cation and anion from a salt to modulate protein-protein interactions through their specific binding to the protein surface.
Wang, Jianguo; Gu, Xinggui; Zhang, Pengfei; Huang, Xiaobo; Zheng, Xiaoyan; Chen, Ming; Feng, Haitao; Kwok, Ryan T K; Lam, Jacky W Y; Tang, Ben Zhong
2017-11-22
Recent years have witnessed the significant role of anion-π + interactions in many areas, which potentially brings the opportunity for the development of aggregation-induced emission (AIE) systems. Here, a new strategy that utilized anion-π + interactions to block detrimental π-π stacking was first proposed to develop inherent-charged AIE systems. Two AIE-active luminogens, namely, 1,2,3,4-tetraphenyloxazolium (TPO-P) and 2,3,5-triphenyloxazolium (TriPO-PN), were successfully synthesized. Comprehensive techniques such as single-crystal analysis, theoretical calculation, and conductivity measurement were used to illustrate the effects of anion-π + interactions on the AIE feature. Their analogues tetraphenylfuran (TPF) and 2,4,5-triphenyloxazole (TriPO-C) without anion-π + interactions suffered from the aggregation-caused emission quenching in the aggregate state, demonstrating the important role of anion-π + interactions in suppressing π-π stacking. TriPO-PN was biocompatible and could specifically target lysosome in fluorescence turn-on and wash-free manners. This suggested that it was a promising contrast agent for bioimaging.
Silica nanoparticles with a substrate switchable luminescence
NASA Astrophysics Data System (ADS)
Bochkova, O. D.; Mustafina, A. R.; Fedorenko, S. V.; Konovalov, A. I.
2011-04-01
Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.
Vertical detachment energies of anionic thymidine: Microhydration effects.
Kim, Sunghwan; Schaefer, Henry F
2010-10-14
Density functional theory has been employed to investigate microhydration effects on the vertical detachment energy (VDE) of the thymidine anion by considering the various structures of its monohydrates. Structures were located using a random searching procedure. Among 14 distinct structures of the anionic thymidine monohydrate, the low-energy structures, in general, have the water molecule bound to the thymine base unit. The negative charge developed on the thymine moiety increases the strength of the intermolecular hydrogen bonding between the water and base units. The computed VDE values of the thymidine monohydrate anions are predicted to range from 0.67 to 1.60 eV and the lowest-energy structure has a VDE of 1.32 eV. The VDEs of the monohydrates of the thymidine anion, where the N(1)[Single Bond]H hydrogen of thymine has been replaced by a 2(')-deoxyribose ring, are greater by ∼0.30 eV, compared to those of the monohydrates of the thymine anion. The results of the present study are in excellent agreement with the accompanying experimental results of Bowen and co-workers [J. Chem. Phys. 133, 144304 (2010)].
NASA Astrophysics Data System (ADS)
Athar, Mohd; Lone, Mohsin Y.; Jha, Prakash C.
2018-02-01
Designing of new calixarene receptors for the selective binding of anions is an age-old concept; even though expected outcomes from this field are at premature stage. Herein, we have performed quantum chemical calculations to provide structural basis of anion binding with urea and thiourea substituted calixarenes (1, 2, and 3). In particular, spherical halides (F-, Cl-, Br-) and linear anions (CN-, N3-, SCN-) were modelled for calculating binding energies with receptor 1, 2 and 3 followed by their marked IR vibrations; taking the available experimental information into account. We found that the thiourea substitutions have better capability to stabilize the anions. Results have suggested that the structural behaviour of macrocyclic motifs were responsible for displaying the anion binding potentials. Moreover, second order "charge transfer" interactions of n-σ∗NH and n-σ∗OH type along the H-bond axis played critical role in developing hydrogen bonds. The present work also examines the role of non-covalent interactions (NCI) and their effects on thermodynamic and chemical-reactivity descriptors.
NASA Astrophysics Data System (ADS)
Buhl, Margaret Linn
The electronic properties of trinuclear iron, tetranuclear iron butterfly, iron-cobalt, and iron-copper clusters have been studied experimentally at 78K by the Mossbauer effect and theoretically by Fenske-Hall molecular orbital calculations. The Mossbauer effect isomer shift is very sensitive to the differences in the iron s-electron densities in these clusters and, as expected, decreases as the sum of the iron 4s Mulliken population and the Clementi and Raimondi effective nuclear charge increases. The molecular orbital wave functions and the Mulliken atomic charges are used to calculate the electric field gradient at the metal nuclei and the iron Mossbauer effect quadrupole splittings. The valence contribution was found to be the major component of the electric field gradient in all the clusters studied. In general the calculated value of Delta E_ {Q} is larger than the observed value, as a result of neglect of the valence Sternheimer factor, R. The metal charge depends upon its electronegativity and upon the nature of its Lewis base ligands. The carbonyl ligand carbon charge becomes more positive as the metal electronegativity increases. The oxygen charge becomes more negative as the anionic cluster charge increases, and in so doing, yields the maximum anionic charge separation. The electronic properties of the terminal carbonyl ligands are similar to those of carbon monoxide, whereas the electronic properties of the bridging carbonyl ligands are similar to those of the carbonyl group found in aldehydes and ketones.
Wu, Kai; Shi, Linqi; Zhang, Wangqing; An, Yingli; Zhang, Xu; Li, Zhanyong; Zhu, X X
2006-02-14
The SO4(2-)-induced micellization of poly(ethylene glycol)-block-poly(4-vinylpyridium) (PEG110-b-P(4-VPH+)35) and the thermoresponsiveness of these hybrid micelles are studied by dynamic and static light scattering. When the concentration of H2SO4 is high enough, PEG110-b-P(4-VPH+)35 forms stable hybrid micelles with an ionic core of P(4-VPH+)35/SO4(2-) and a PEG corona at 25 degrees C. The formation of the hybrid micelles is reversible. A thermodynamic equilibrium exists between the hybrid micelles and PEG110-b-P(4-VPH+)35 unimers. The shifts of the equilibrium are mainly attributed to the variation of the electrostatic energy and entropic energy of the system. Therefore, the temperature can determine the states of the equilibrium, which means that the dissociation or the formation of the hybrid micelles can be triggered by just varying the temperature.
Drug delivery using novel nanoplexes against a Salmonella mouse infection model
NASA Astrophysics Data System (ADS)
Ranjan, A.; Pothayee, N.; Seleem, M.; Jain, N.; Sriranganathan, N.; Riffle, J. S.; Kasimanickam, R.
2010-03-01
A novel methodology for incorporating gentamicin into macromolecular complexes with anionic homo- and block copolymers via cooperative electrostatic interactions is described. Block copolymers of poly(ethylene oxide- b-sodium acrylate) (PEO- b-PAA- +Na) or poly(ethylene oxide- b-sodium methacrylate) (PEO- b-PMA- +Na) were blended with PAA- Na+ and complexed with the polycationic antibiotic gentamicin. Gentamicin nanoplexes made with PEO- b-PMA- +Na/PAA- +Na (PMPG) and analogous nanoplexes with PEO- b-PAA- +Na/PAA- +Na (PAPG) had mean intensity average diameters of 120 and 90 nm, zeta potentials of -17 and -11 mv, and incorporated 26% and 23% by weight of gentamicin, respectively. Gentamicin release rates at physiological pH from nanoplexes were relatively slow. PAPG and PMPG as drug delivery systems for treating murine salmonellosis at doses similar to the free gentamicin experiments resulted in reduced numbers of viable bacteria in the liver and spleen. Polymeric nanoplexes developed by this methodology can potentially improve targeting of intracellular pathogens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandiver, Melissa A.; Caire, Benjamin R.; Pandey, Tara P.
Anion exchange m em branes (AEM )are prom ising solid polym er electrolytes utilized in alkalifuelcells and electrochem icalenergy conversion devices.AEM s m ust ef ciently conductions w hile m aintaining chem icaland m echanicalstability undera range ofoperating conditions.The ionicnature ofAEM sleads to stiffand brittle m em branesunderdry conditions w hile athigher hydrations,w ater sorption causes signi cant softening and w eakening of the m em brane.In this w ork,a new polyethylene-b-poly(vinylbenzyltrim ethylam m onium ) polym er (70 kg/m ol) w as cast into large (300 cm 2),thin (127 3 m ) m em branes.These m em branes exhibitedmore » im proved elasticity over previously tested AEM s,m inim aldim ensional sw elling,and m oderate ionic conductivity (57 2 m S/cm at 50 °C,95% RH in the brom ide form ).Extensional testing indicated a 95% reduction in Young's m odulus betw een dry and hydrated states.Furtherinvestigation ofthe com plex m odulusasa function ofhydration,by dynam ic m echanical analysis,revealed a sharp decrease in m odulusbetw een dry and hydrated states.M echanicalsoftening w as reversible,but the location ofthe transition displayed hysteresis betw een hum idi cation and dehum idi cation.Conductivity increased after m em brane softening;suggesting bulk m echanicalpropertiescan identify thehydration levelrequired forim proved ion transport.Understanding the relationship betw een ion conduction and m echanical properties w illhelp guide AEM developm ent and identify operating conditions for sustained perform ance.« less
Kowsari, Mohammad H; Ebrahimi, Soraya
2018-05-16
Comprehensive molecular dynamics simulations are performed to study the average single-particle dynamics and the transport properties of 1-butyl-3-methylimidazolium hexafluorophosphate, [bmim][PF6], and 1-butyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, [bmim][FAP], ionic liquids (ILs) at 400 K. We applied one of the most widely used nonpolarizable all-atom force fields for ILs, both with the original unit (±1) charges on each ion and with the partial charges uniformly scaled to 80-85%, taking into account the average polarizability and tracing the experimentally compatible transport properties. In all simulations, [bmim]+ was considered to be flexible, while the effect of a flexible vs. rigid structure of the anions and the effect of two applied charge sets on the calculated properties were separately investigated in detail. The simulation results showed that replacing [PF6]- with [FAP]-, considering anion flexibility, and applying the charge-scaled model significantly enhanced the ionic self-diffusion, ionic conductivity, inverse viscosity, and hyper anion preference (HAP). Both of the calculated self-diffusion coefficients from the long-time linear slope of the mean-square displacement (MSD) and from the integration of the velocity autocorrelation function (VACF) for the centers of mass of the ions were used for evaluation of the ionic transference number, HAP, ideal Nernst-Einstein ionic conductivity (σNE), and the Stokes-Einstein viscosity. In addition, for quantification of the degree of complicated ionic association (known as the Nernst-Einstein deviation parameter, Δ) and ionicity phenomena in the two studied ILs, the ionic conductivity was determined more rigorously by the Green-Kubo integral of the electric-current autocorrelation function (ECACF), and then the σGK/σNE ratio was evaluated. It was found that the correlated motion of the (cationanion) neighbors in [bmim][FAP] is smaller than in [bmim][PF6]. The relaxation times of the normalized reorientational autocorrelation functions were computed to gain a deep, molecular-level insight into the rotational motion of the ions. The geometric shape of the ion is a key factor in determining its reorientational dynamics. [bmim]+ shows faster translational and slower rotational dynamics in contrast to [PF6]-.
Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer.
Ghang, Yoo-Jin; Perez, Lizeth; Morgan, Melissa A; Si, Fang; Hamdy, Omar M; Beecher, Consuelo N; Larive, Cynthia K; Julian, Ryan R; Zhong, Wenwan; Cheng, Quan; Hooley, Richard J
2014-12-28
An anionic self-folding deep cavitand is capable of immobilizing unmodified proteins and enzymes at a supported lipid bilayer interface, providing a simple, soft bioreactive surface that allows enzymatic function under mild conditions. The adhesion is based on complementary charge interactions, and the hosts are capable of binding enzymes such as trypsin at the bilayer interface: the catalytic activity is retained upon adhesion, allowing selective reactions to be performed at the membrane surface.
Chen, Di-Ming; Tian, Jia-Yue; Wang, Zhuo-Wei; Liu, Chun-Sen; Chen, Min; Du, Miao
2017-09-26
A cage-based anionic Na(i)-organic framework with a unique Na 9 cluster-based secondary building unit and a cage-in-cage structure was constructed. The selective separation of dyes with different charges and sizes was investigated. Furthermore, the Rh6G@MOF composite could be applied as a recyclable fluorescent sensor for detecting picric acid (PA) with high sensitivity and selectivity.
Jochim, Aleksej; Jess, Inke; Näther, Christian
2018-03-01
The crystal structure of the title salt, (C 6 H 8 NO) 8 [Fe(NCS) 4 (C 6 H 7 NO) 2 ][Fe(NCS) 5 (C 6 H 7 NO)] 2 [Fe(NCS) 6 ], comprises three negatively charged octa-hedral Fe III complexes with different coordination environments in which the Fe III atoms are coordinated by a different number of thio-cyanate anions and 4-meth-oxy-pyridine ligands. Charge balance is achieved by 4-meth-oxy-pyridinium cations. The asymmetric unit consists of three Fe III cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thio-cyanate anions, two 4-meth-oxy-pyridine ligands and 4-meth-oxy-pyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic inter-actions between organic cations and the ferrate(III) anions, weak N-H⋯S hydrogen-bonding inter-actions involving the pyridinium N-H groups of the cations and the thio-cyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure.
Nesterenko, Ekaterina P; Nesterenko, Pavel N; Paull, Brett
2008-12-05
The retention and separation selectivity of inorganic anions and on-column derivatised negatively charged citrate or oxalate metal complexes on reversed-phase stationary phases dynamically coated with N-(dodecyl-N,N-dimethylammonio)undecanoate (DDMAU) has been investigated. The retention mechanism for the metal-citrate complexes was predominantly anion exchange, although the amphoteric/zwitterionic nature of the stationary phase coating undoubtedly also contributed to the unusual separation selectivity shown. A mixture of 10 inorganic anions and metal cations was achieved using a 20 cm monolithic DDMAU modified column and a 1 mM citrate eluent, pH 4.0, flow rate equal to 0.8 mL/min. Selectivity was found to be strongly pH dependent, allowing additional scope for manipulation of solute retention, and thus application to complex samples. This is illustrated with the analysis of an acidic mine drainage sample with a range of inorganic anions and transition metal cations, varying significantly in their concentrations levels.
The tautomerization between keto- to phenol-hydrazone induced by anions in the solution
NASA Astrophysics Data System (ADS)
Shang, Xuefang; Yuan, Jianmei; Wang, Yingling; Zhang, Jinlian; Xu, Xiufang
2012-02-01
Two simple anion receptors, 2-[(2-hydroxy-5-nitrophenyl)methylene]hydrazone (1) and 2-[(3,5-dibromo-2-hydroxyphenyl)methylene]hydrazone (2) with -OH binding sites, were synthesized and characterized. The anion binding ability of receptors 1 and 2 with halide anions (F-, Cl-, Br- and I-), AcO- and HPO4- was investigated using visual (naked-eye), UV-vis titration experiments in dry DMSO together with DFT theoretical calculation. The addition of F-, AcO- and HPO4- to the host solution resulted in a red shift of the charge-transfer absorbance band accompanied by a color change from yellow to orange in the naked-eye experiments. Receptor 1 containing a nitro group at the para position and receptor 2 containing two bromine groups at the ortho and para positions both showed strong binding ability for HPO4- ion in the form of phenol-hydrazone. Moreover, receptor 1, induced by anion species in the solution, converted to the form of phenol-hydrazone from keto-hydrazone.
Removal of anionic pollutants by pine bark is influenced by the mechanism of retention.
Paradelo, R; Conde-Cid, M; Arias-Estévez, M; Nóvoa-Muñoz, J C; Álvarez-Rodríguez, E; Fernández-Sanjurjo, M J; Núñez-Delgado, A
2017-01-01
The use of organic biosorbents for anion removal from water has been less studied than for cationic compounds. In this work, the removal capacity of pine bark for potential anionic pollutants (fluoride, phosphate, arsenate and dichromate) was assessed in column experiments, designed to study the process of transport. The results showed that pine bark has a very low retention capacity for phosphate, arsenate or fluoride, and in turn, very high for dichromate, with retention values close to 100% and less than 2% desorption of the adsorbed dichromate. The large differences observed between anions suggest that differences in the retention mechanism of each anion exist. In the case of phosphate and arsenate, electrostatic interactions with the mostly negatively charged functional groups of the pine bark determine the low retention capacity. Dichromate retention might proceed through reduction of chromium (VI) to chromium (III), what improves the efficiency of the removal. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of latex-layered double hydroxide composites by tuning the aggregation in suspensions.
Pavlovic, Marko; Rouster, Paul; Bourgeat-Lami, Elodie; Prevot, Vanessa; Szilagyi, Istvan
2017-01-25
Colloidal stability of polymeric latex particles was studied in the presence of oppositely charged layered double hydroxide (LDH) platelets of different interlayer anions. Adsorption of the LDH particles led to charge neutralization and to overcharging of the latex at appropriate concentrations. Mixing stable colloidal suspensions of individual particles results in rapid aggregation once the LDH adsorption neutralizes the negative charges of the polymer spheres, while stable suspensions were observed at high and low LDH doses. The governing interparticle interactions included repulsive electrical double layer forces as well as van der Waals and patch-charge attractions, whose strength depended on the amount of LDH particles adsorbed on the latex surface. The type of the LDH interlayer anions did not affect the colloidal stability of the samples. Structural investigation of the obtained latex-LDH composites revealed that the polymer spheres were completely coated with the inorganic platelets once their concentration was sufficiently high. These results are especially important for designing synthetic routes for hybrid systems in suspensions, where stable colloids are required for uniform film-formation and for the homogeneous distribution of the inorganic filler within the composite materials.
Chemically Doped Double-Walled Carbon Nanotubes: Cylindrical Molecular Capacitors
NASA Astrophysics Data System (ADS)
Chen, Gugang; Bandow, S.; Margine, E. R.; Nisoli, C.; Kolmogorov, A. N.; Crespi, Vincent H.; Gupta, R.; Sumanasekera, G. U.; Iijima, S.; Eklund, P. C.
2003-06-01
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors.
Chen, Gugang; Bandow, S; Margine, E R; Nisoli, C; Kolmogorov, A N; Crespi, Vincent H; Gupta, R; Sumanasekera, G U; Iijima, S; Eklund, P C
2003-06-27
A double-walled carbon nanotube is used to study the radial charge distribution on the positive inner electrode of a cylindrical molecular capacitor. The outer electrode is a shell of bromine anions. Resonant Raman scattering from phonons on each carbon shell reveals the radial charge distribution. A self-consistent tight-binding model confirms the observed molecular Faraday cage effect, i.e., most of the charge resides on the outer wall, even when this wall was originally semiconducting and the inner wall was metallic.
The fragmentation of 510 MeV/nucleon iron-56 in polyethylene. I. Fragment fluence spectra
NASA Technical Reports Server (NTRS)
Zeitlin, C.; Miller, J.; Heilbronn, L.; Frankel, K.; Gong, W.; Schimmerling, W.
1996-01-01
The fragmentation of 510 MeV/nucleon iron ions in several thicknesses of polyethylene has been measured. Non-interacting primary beam particles and fragments have been identified and their LETs calculated by measuring ionization energy loss in a stack of silicon detectors. Fluences, normalized to the incident beam intensity and corrected for detector effects, are presented for each fragment charge and target. Histograms of fluence as a function of LET are also presented. Some implications of these data for measurements of the biological effects of heavy ions are discussed.
Chang, C T; Zeng, F; Li, X J; Dong, W S; Lu, S H; Gao, S; Pan, F
2016-01-07
The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP.
Chang, C. T.; Zeng, F.; Li, X. J.; Dong, W. S.; Lu, S. H.; Gao, S.; Pan, F.
2016-01-01
The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP. PMID:26739613
NASA Astrophysics Data System (ADS)
Chang, C. T.; Zeng, F.; Li, X. J.; Dong, W. S.; Lu, S. H.; Gao, S.; Pan, F.
2016-01-01
The simulation of synaptic plasticity using new materials is critical in the study of brain-inspired computing. Devices composed of Ba(CF3SO3)2-doped polyethylene oxide (PEO) electrolyte film were fabricated and with pulse responses found to resemble the synaptic short-term plasticity (STP) of both short-term depression (STD) and short-term facilitation (STF) synapses. The values of the charge and discharge peaks of the pulse responses did not vary with input number when the pulse frequency was sufficiently low(~1 Hz). However, when the frequency was increased, the charge and discharge peaks decreased and increased, respectively, in gradual trends and approached stable values with respect to the input number. These stable values varied with the input frequency, which resulted in the depressed and potentiated weight modifications of the charge and discharge peaks, respectively. These electrical properties simulated the high and low band-pass filtering effects of STD and STF, respectively. The simulations were consistent with biological results and the corresponding biological parameters were successfully extracted. The study verified the feasibility of using organic electrolytes to mimic STP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartashevich, E. V.; Batalov, V. I.; Yushina, I. D.
2016-03-23
Two kinds of iodine–iodine halogen bonds are the focus of our attention in the crystal structure of the title salt, C 12H 8ClINO +·I 3 -, described by X-ray diffraction. The first kind is a halogen bond, reinforced by charges, between the I atom of the heterocyclic cation and the triiodide anion. The second kind is the rare case of a halogen bond between the terminal atoms of neighbouring triiodide anions. The influence of relatively weakly bound iodine inside an asymmetric triiodide anion on the thermal and Raman spectroscopic properties has been demonstrated.
The chemistry of gold as an anion.
Jansen, Martin
2008-09-01
Due to relativistic and classical shell structure effects, the 6s orbital of gold is significantly contracted and energetically stabilized. This is reflected by a strikingly high electron affinity, and a distinct tendency to adopt negatively polarized valence states. This tutorial review focuses on the chemistry of gold as an anion, displaying the integral ionic charge number of 1-. Two synthetic approaches to compounds containing monoatomic gold anions have become available: (1) reacting elemental gold with molten caesium and an oxide, e.g. Cs2O; (2) metathesis reactions involving Au- dissolved in liquid ammonia. Both procedures have proven to be rather versatile. Aurides synthesized along these routes are surveyed, in particular with respect to their structures and bonding properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zapata-Escobar, Andy; Manrique-Moreno, Marcela; Guerra, Doris
2014-05-14
In this work, we report a detailed study of the microsolvation of anionic ibuprofen, Ibu{sup −}. Stochastic explorations of the configurational spaces for the interactions of Ibu{sup −} with up to three water molecules at the DFT level lead to very rich and complex potential energy surfaces. Our results suggest that instead of only one preponderant structure, a collection of isomers with very similar energies would have significant contributions to the properties of the solvated drug. One of these properties is the shift on the vibrational frequencies of the asymmetric stretching band of the carboxylate group in hydrated Ibu{sup −}more » with respect to the anhydrous drug, whose experimental values are nicely reproduced using the weighted contribution of the structures. We found at least three types of stabilizing interactions, including conventional CO {sub 2}{sup −}⋯H{sub 2}O, H{sub 2}O⋯H{sub 2}O charge assisted hydrogen bonds (HBs), and less common H{sub 2}O⋯H–C and H{sub 2}O⋯π interactions. Biological water molecules, those in direct contact with Ibu{sup −}, prefer to cluster around the carboxylate oxygen atoms via cyclic or bridged charge assisted hydrogen bonds. Many of those interactions are strongly affected by the formal carboxylate charge, resulting in “enhanced” HBs with increased strengths and degree of covalency. We found striking similarities between this case and the microsolvation of dymethylphosphate, which lead us to hypothesize that since microsolvation of phosphatidylcholine depends mainly on the formal charge of its ionic PO {sub 2}{sup −} group in the polar head, then microsolvation of anionic ibuprofen and interactions of water molecules with eukaryotic cell membranes are governed by the same types of physical interactions.« less
Zapata-Escobar, Andy; Manrique-Moreno, Marcela; Guerra, Doris; Hadad, C Z; Restrepo, Albeiro
2014-05-14
In this work, we report a detailed study of the microsolvation of anionic ibuprofen, Ibu(-). Stochastic explorations of the configurational spaces for the interactions of Ibu(-) with up to three water molecules at the DFT level lead to very rich and complex potential energy surfaces. Our results suggest that instead of only one preponderant structure, a collection of isomers with very similar energies would have significant contributions to the properties of the solvated drug. One of these properties is the shift on the vibrational frequencies of the asymmetric stretching band of the carboxylate group in hydrated Ibu(-) with respect to the anhydrous drug, whose experimental values are nicely reproduced using the weighted contribution of the structures. We found at least three types of stabilizing interactions, including conventional CO2(-)⋯H2O, H2O⋯H2O charge assisted hydrogen bonds (HBs), and less common H2O⋯H-C and H2O⋯π interactions. Biological water molecules, those in direct contact with Ibu(-), prefer to cluster around the carboxylate oxygen atoms via cyclic or bridged charge assisted hydrogen bonds. Many of those interactions are strongly affected by the formal carboxylate charge, resulting in "enhanced" HBs with increased strengths and degree of covalency. We found striking similarities between this case and the microsolvation of dymethylphosphate, which lead us to hypothesize that since microsolvation of phosphatidylcholine depends mainly on the formal charge of its ionic PO2(-) group in the polar head, then microsolvation of anionic ibuprofen and interactions of water molecules with eukaryotic cell membranes are governed by the same types of physical interactions.
Cymes, Gisela D; Grosman, Claudio
2016-10-10
Among neurotransmitter-gated ion channels, the superfamily of pentameric ligand-gated ion channels (pLGICs) is unique in that its members display opposite permeant-ion charge selectivities despite sharing the same structural fold. Although much effort has been devoted to the identification of the mechanism underlying the cation-versus-anion selectivity of these channels, a careful analysis of past work reveals that discrepancies exist, that different explanations for the same phenomenon have often been put forth, and that no consensus view has yet been reached. To elucidate the molecular basis of charge selectivity for the superfamily as a whole, we performed extensive mutagenesis and electrophysiological recordings on six different cation-selective and anion-selective homologs from vertebrate, invertebrate, and bacterial origin. We present compelling evidence for the critical involvement of ionized side chains-whether pore-facing or buried-rather than backbone atoms and propose a mechanism whereby not only their charge sign but also their conformation determines charge selectivity. Insertions, deletions, and residue-to-residue mutations involving nonionizable residues in the intracellular end of the pore seem to affect charge selectivity by changing the rotamer preferences of the ionized side chains in the first turn of the M2 α-helices. We also found that, upon neutralization of the charged residues in the first turn of M2, the control of charge selectivity is handed over to the many other ionized side chains that decorate the pore. This explains the long-standing puzzle as to why the neutralization of the intracellular-mouth glutamates affects charge selectivity to markedly different extents in different cation-selective pLGICs.
Mandal, I; Paul, S; Venkatramani, R
2018-04-17
The absorption of light by proteins can induce charge transfer (CT) transitions in the UV-visible range of the electromagnetic spectrum. Metal-ligand complexes or active site prosthetic groups which absorb in the visible region exhibit prominent CT transitions. Furthermore, the protein backbone also exhibits CT transitions in the far UV range. In this manuscript, we present a detailed computational study of new near UV-visible CT transitions that involve amino acids with charged side chains. Specifically, using time dependent density functional theory calculations, we examine the absorption spectra of naturally charged amino acids (Lys, Glu, Arg, Asp and His), extracted from solution phase protein structures generated by classical molecular dynamics simulations, and phosphorylated amino acids (Tyr, Thr and Ser) from experimentally determined protein structures. We show that amino acids with charged sidechains present a directed electronic donor-bridge-acceptor paradigm, with the lowest energy optical excitations demonstrating peptide backbone-sidechain charge separations. The UV-visible spectral range of the backbone-sidechain CT transitions is determined by the chemical nature of the donor, bridge and acceptor groups within each amino acid, amino acid conformation and the protein secondary structure where the amino acids are located. Photoinduced CT occurs in opposite directions for the anionic and cationic amino acids along the ground state dipole moment vector for the chromophores. We find that photoinduced charge separation is more facile for the anionic amino acids (Asp, Glu, pSer, pThr and pTyr) relative to that for the cationic amino acids (Lys, Arg and Hsp). Our results provide a foundation for the development of spectroscopic markers based on the recently proposed Protein Charge Transfer Spectra (ProCharTS) which are relevant for the study of DNA-binding or intrinsically disordered proteins that are rich in charged amino acids.
NASA Astrophysics Data System (ADS)
Cabrera-Tinoco, Hugo Andres; Moreira, Augusto C. L.; de Melo, Celso P.
2018-05-01
We examine the relative contribution of ballistic and elastic cotunneling mechanisms to the charge transport through a single decanedithiol molecule linked to two terminal clusters of gold atoms. For this, we first introduced a conceptual model that permits a generalization of the Breit-Wigner scattering formalism where the cation, anion, and neutral forms of the molecule can participate with different probabilities of the charge transfer process, but in a simultaneous manner. We used a density functional theory treatment and considered the fixed geometry of each charge state to calculate the corresponding eigenvalues and eigenvectors of the extended system for different values of the external electric field. We have found that for the ballistic transport the HOMO and LUMO of the neutral species play a key role, while the charged states give a negligible contribution. On the other hand, an elastic cotunneling charge transfer can occur whenever a molecular orbital (MO) of the cation or anion species, even if localized in just one side of the molecule-gold clusters complex, has energy close to that of a delocalized MO of the neutral species. Under these conditions, a conduction channel is formed throughout the entire system, in a process that is controlled by the degree of resonance between the MOs involved. Our results indicate that while different charge transfer mechanisms contribute to the overall charge transport, quantum effects such as avoided-crossing situations between relevant frontier MOs can be of special importance. In these specific situations, the interchange of spatial localization of two MOs involved in the crossing can open a new channel of charge transfer that otherwise would not be available.
A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability.
Li, Peng; Poon, Yin Fun; Li, Weifeng; Zhu, Hong-Yuan; Yeap, Siew Hooi; Cao, Ye; Qi, Xiaobao; Zhou, Chuncai; Lamrani, Mouad; Beuerman, Roger W; Kang, En-Tang; Mu, Yuguang; Li, Chang Ming; Chang, Matthew W; Leong, Susanna Su Jan; Chan-Park, Mary B
2011-02-01
Despite advanced sterilization and aseptic techniques, infections associated with medical implants have not been eradicated. Most present coatings cannot simultaneously fulfil the requirements of antibacterial and antifungal activity as well as biocompatibility and reusability. Here, we report an antimicrobial hydrogel based on dimethyldecylammonium chitosan (with high quaternization)-graft-poly(ethylene glycol) methacrylate (DMDC-Q-g-EM) and poly(ethylene glycol) diacrylate, which has excellent antimicrobial efficacy against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Fusarium solani. The proposed mechanism of the antimicrobial activity of the polycationic hydrogel is by attraction of sections of anionic microbial membrane into the internal nanopores of the hydrogel, like an 'anion sponge', leading to microbial membrane disruption and then microbe death. We have also demonstrated a thin uniform adherent coating of the hydrogel by simple ultraviolet immobilization. An animal study shows that DMDC-Q-g-EM hydrogel coating is biocompatible with rabbit conjunctiva and has no toxicity to the epithelial cells or the underlying stroma.
A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability
NASA Astrophysics Data System (ADS)
Li, Peng; Poon, Yin Fun; Li, Weifeng; Zhu, Hong-Yuan; Yeap, Siew Hooi; Cao, Ye; Qi, Xiaobao; Zhou, Chuncai; Lamrani, Mouad; Beuerman, Roger W.; Kang, En-Tang; Mu, Yuguang; Li, Chang Ming; Chang, Matthew W.; Jan Leong, Susanna Su; Chan-Park, Mary B.
2011-02-01
Despite advanced sterilization and aseptic techniques, infections associated with medical implants have not been eradicated. Most present coatings cannot simultaneously fulfil the requirements of antibacterial and antifungal activity as well as biocompatibility and reusability. Here, we report an antimicrobial hydrogel based on dimethyldecylammonium chitosan (with high quaternization)-graft-poly(ethylene glycol) methacrylate (DMDC-Q-g-EM) and poly(ethylene glycol) diacrylate, which has excellent antimicrobial efficacy against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Fusarium solani. The proposed mechanism of the antimicrobial activity of the polycationic hydrogel is by attraction of sections of anionic microbial membrane into the internal nanopores of the hydrogel, like an ‘anion sponge’, leading to microbial membrane disruption and then microbe death. We have also demonstrated a thin uniform adherent coating of the hydrogel by simple ultraviolet immobilization. An animal study shows that DMDC-Q-g-EM hydrogel coating is biocompatible with rabbit conjunctiva and has no toxicity to the epithelial cells or the underlying stroma.
High-explosive driven crowbar switch
Dike, Robert S.; Kewish, Jr., Ralph W.
1976-01-13
The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor.
Development of a robust pH-sensitive polyelectrolyte ionomer complex for anticancer nanocarriers
Lim, Chaemin; Youn, Yu Seok; Lee, Kyung Soo; Hoang, Ngoc Ha; Sim, Taehoon; Lee, Eun Seong; Oh, Kyung Taek
2016-01-01
A polyelectrolyte ionomer complex (PIC) composed of cationic and anionic polymers was developed for nanomedical applications. Here, a poly(ethylene glycol)–poly(lactic acid)–poly(ethylene imine) triblock copolymer (PEG–PLA–PEI) and a poly(aspartic acid) (P[Asp]) homopolymer were synthesized. These polyelectrolytes formed stable aggregates through electrostatic interactions between the cationic PEI and the anionic P(Asp) blocks. In particular, the addition of a hydrophobic PLA and a hydrophilic PEG to triblock copolyelectrolytes provided colloidal aggregation stability by forming a tight hydrophobic core and steric hindrance on the surface of PIC, respectively. The PIC showed different particle sizes and zeta potentials depending on the ratio of cationic PEI and anionic P(Asp) blocks (C/A ratio). The doxorubicin (dox)-loaded PIC, prepared with a C/A ratio of 8, demonstrated pH-dependent behavior by the deprotonation/protonation of polyelectrolyte blocks. The drug release and the cytotoxicity of the dox-loaded PIC (C/A ratio: 8) increased under acidic conditions compared with physiological pH, due to the destabilization of the formation of the electrostatic core. In vivo animal imaging revealed that the prepared PIC accumulated at the targeted tumor site for 24 hours. Therefore, the prepared pH-sensitive PIC could have considerable potential as a nanomedicinal platform for anticancer therapy. PMID:26955270
Abrahams, Brendan F; Haywood, Marissa G; Robson, Richard
2004-04-21
Addition of Co(NH3)6(3+) to aqueous solutions of Cu(II) in excess carbonate promotes the assembly of a new highly charged carbonato-copper(II) anion, [Cu4(OH)(CO3)8](9-), which contains an unusual mu4 hydroxo-bridged square Cu4 arrangement, stabilised in the crystal by no less than forty hydrogen bonds (< 3 Angstrom) to hexammine cations.
Mechanisms of anionic detergent-induced hemolysis.
Chernitsky, E; Senkovich, O
1998-09-01
The effect of osmotic protectors (sucrose and polyethylene glycols) and of a decrease in the detergent concentration at different points of hemolysis of human erythrocytes by sodium dodecyl sulphate on the shape of kinetic curves of hemolysis were studied. It is shown that slow detergent-induced hemolysis follows the colloid-osmotic mechanisms. Evidence is provided that rapid hemolysis by sodium dodecyl sulphate is caused by opening of large pores sufficient for the release of hemoglobin molecules rather than by the colloid-osmotic mechanism, and that the kinetics of hemolysis is mainly determined by time dependence of the opening probability of these pores.
Kim, Kwon-Ho; Kumar, Brijesh; Lee, Keun Young; Park, Hyun-Kyu; Lee, Ju-Hyuck; Lee, Hyun Hwi; Jun, Hoin; Lee, Dongyun; Kim, Sang-Woo
2013-01-01
Direct current (DC) piezoelectric power generator is promising for the miniaturization of a power package and self-powering of nanorobots and body-implanted devices. Hence, we report the first use of two-dimensional (2D) zinc oxide (ZnO) nanostructure and an anionic nanoclay layer to generate piezoelectric DC output power. The device, made from 2D nanosheets and an anionic nanoclay layer heterojunction, has potential to be the smallest size power package, and could be used to charge wireless nano/micro scale systems without the use of rectifier circuits to convert alternating current into DC to store the generated power. The combined effect of buckling behaviour of the ZnO nanosheets, a self-formed anionic nanoclay layer, and coupled semiconducting and piezoelectric properties of ZnO nanosheets contributes to efficient DC power generation. The networked ZnO nanosheets proved to be structurally stable under huge external mechanical loads.
Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding.
Scheiner, Steve
2018-05-11
Tetrel atoms T (T = Si, Ge, Sn, and Pb) can engage in very strong noncovalent interactions with nucleophiles, which are commonly referred to as tetrel bonds. The ability of such bonds to bind various anions is assessed with a goal of designing an optimal receptor. The Sn atom seems to form the strongest bonds within the tetrel family. It is most effective in the context of a -SnF₃ group and a further enhancement is observed when a positive charge is placed on the receptor. Connection of the -SnF₃ group to either an imidazolium or triazolium provides a strong halide receptor, which can be improved if its point of attachment is changed from the C to an N atom of either ring. Aromaticity of the ring offers no advantage nor is a cyclic system superior to a simple alkyl amine of any chain length. Placing a pair of -SnF₃ groups on a single molecule to form a bipodal dicationic receptor with two tetrel bonds enhances the binding, but falls short of a simple doubling. These two tetrel groups can be placed on opposite ends of an alkyl diamine chain of any length although SnF₃⁺NH₂(CH₂) n NH₂SnF₃⁺ with n between 2 and 4 seems to offer the strongest halide binding. Of the various anions tested, OH − binds most strongly: OH − > F − > Cl − > Br − > I − . The binding energy of the larger NO₃ − and HCO₃ − anions is more dependent upon the charge of the receptor. This pattern translates into very strong selectivity of binding one anion over another. The tetrel-bonding receptors bind far more strongly to each anion than an equivalent number of K⁺ counterions, which leads to equilibrium ratios in favor of the former of many orders of magnitude.
Luo, Kun; Roberts, Matthew R; Guerrini, Niccoló; Tapia-Ruiz, Nuria; Hao, Rong; Massel, Felix; Pickup, David M; Ramos, Silvia; Liu, Yi-Sheng; Guo, Jinghua; Chadwick, Alan V; Duda, Laurent C; Bruce, Peter G
2016-09-07
Conventional intercalation cathodes for lithium batteries store charge in redox reactions associated with the transition metal cations, e.g., Mn(3+/4+) in LiMn2O4, and this limits the energy storage of Li-ion batteries. Compounds such as Li[Li0.2Ni0.2Mn0.6]O2 exhibit a capacity to store charge in excess of the transition metal redox reactions. The additional capacity occurs at and above 4.5 V versus Li(+)/Li. The capacity at 4.5 V is dominated by oxidation of the O(2-) anions accounting for ∼0.43 e(-)/formula unit, with an additional 0.06 e(-)/formula unit being associated with O loss from the lattice. In contrast, the capacity above 4.5 V is mainly O loss, ∼0.08 e(-)/formula. The O redox reaction involves the formation of localized hole states on O during charge, which are located on O coordinated by (Mn(4+)/Li(+)). The results have been obtained by combining operando electrochemical mass spec on (18)O labeled Li[Li0.2Ni0.2Mn0.6]O2 with XANES, soft X-ray spectroscopy, resonant inelastic X-ray spectroscopy, and Raman spectroscopy. Finally the general features of O redox are described with discussion about the role of comparatively ionic (less covalent) 3d metal-oxygen interaction on anion redox in lithium rich cathode materials.
Role of ion hydration for the differential capacitance of an electric double layer.
Caetano, Daniel L Z; Bossa, Guilherme V; de Oliveira, Vinicius M; Brown, Matthew A; de Carvalho, Sidney J; May, Sylvio
2016-10-12
The influence of soft, hydration-mediated ion-ion and ion-surface interactions on the differential capacitance of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field models. We focus on a planar electrode surface at physiological concentration of monovalent ions in a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-field model that includes hydration-mediated anion-anion, anion-cation, and cation-cation interactions of arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions, described either on the basis of the Carnahan-Starling equation of state or using a lattice gas model. Both our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the electrode surface. The presence of hydration-mediated ion-surface repulsion causes a thin charge-depleted region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small surface charge density our mean-field model based on the Carnahan-Starling equation is able to capture the Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based on the lattice gas model is preferable.
High Coulombic efficiency aluminum-ion battery using an AlCl3-urea ionic liquid analog electrolyte.
Angell, Michael; Pan, Chun-Jern; Rong, Youmin; Yuan, Chunze; Lin, Meng-Chang; Hwang, Bing-Joe; Dai, Hongjie
2017-01-31
In recent years, impressive advances in harvesting renewable energy have led to a pressing demand for the complimentary energy storage technology. Here, a high Coulombic efficiency (∼99.7%) Al battery is developed using earth-abundant aluminum as the anode, graphite as the cathode, and a cheap ionic liquid analog electrolyte made from a mixture of AlCl 3 and urea in a 1.3:1 molar ratio. The battery displays discharge voltage plateaus around 1.9 and 1.5 V (average discharge = 1.73 V) and yielded a specific cathode capacity of ∼73 mAh g -1 at a current density of 100 mA g -1 (∼1.4 C). High Coulombic efficiency over a range of charge-discharge rates and stability over ∼150-200 cycles was easily demonstrated. In situ Raman spectroscopy clearly showed chloroaluminate anion intercalation/deintercalation of graphite (positive electrode) during charge-discharge and suggested the formation of a stage 2 graphite intercalation compound when fully charged. Raman spectroscopy and NMR suggested the existence of AlCl 4 - , Al 2 Cl 7 - anions and [AlCl 2 ·(urea) n ] + cations in the AlCl 3 /urea electrolyte when an excess of AlCl 3 was present. Aluminum deposition therefore proceeded through two pathways, one involving Al 2 Cl 7 - anions and the other involving [AlCl 2 ·(urea) n ] + cations. This battery is a promising prospect for a future high-performance, low-cost energy storage device.
Scott, D; Coleman, P J; Mason, R M; Levick, J R
2000-01-01
Hyaluronan (HA), an anionic polysaccharide of synovial fluid, attenuates fluid loss from joints as joint pressure is raised (‘outflow buffering’). The buffering is thought to depend on the expanded molecular domain of the polymer, which causes reflection by synovial extracellular matrix, leading to flow-dependent concentration polarization. We therefore assessed the effects of polysaccharides of differing average molecular volume and charge. Trans-synovial fluid drainage(Q̇s) was measured at controlled joint fluid pressure (Pj) in knees of anaesthetized rabbits. The joints were infused with polydisperse HA of weight-average mass 2100 kDa (4 mg ml−1, n = 17), with polydisperse neutral dextran of similar average mass (2000 kDa; n = 7) or with Ringer solution vehicle (n = 2). The role of polymer charge was assessed by infusions of neutral or sulphated dextran of average molecular mass 500 kDa (n = 6). When HA was present, Q̇s increased little with pressure, forming a virtual plateau of ∼4 μl min−1 from 10 to 25 cmH2O. Neutral dextran 2000 failed to replicate this effect. Instead, Q̇s increased steeply with Pj, reaching eight times the HA value by 20 cmH2O (P = 0.0001, ANOVA). Dextran 2000 reduced flows in comparison with Ringer solution. Analysis of the aspirated joint fluid showed that 31 ± 0.07 % (s.e.m.) of dextran 2000 in the filtrand was reflected by synovium, compared with ≥ 79 % for HA. The viscometric molecular radius of the dextran, ∼31 nm, was smaller than that of HA (101–181 nm), as was its osmotic pressure. Anionic dextran 500 failed to buffer fluid drainage, but it reduced fluid escape and synovial conductance dQ̇s/dPj more than neutral dextran 500 (P < 0.0001, ANOVA). The anionic charge increased the molecular volume and viscosity of dextran 500. The results support the hypothesis that polymer molecular volume influences its reflection by interstitial matrix and outflow buffering. Polymer charge influences flow through an effect on viscosity and possibly electrostatic interactions with negatively charged interstitial matrix. PMID:11060134
The effects of ion identity and ionic strength on the dissolution rate of a gibbsitic bauxite
NASA Astrophysics Data System (ADS)
Mogollón, José Luis; Pérez-Diaz, Alberto; Lo Monaco, Salvador
2000-03-01
The influence of cation and anion identity and concentration, on the far from equilibrium dissolution rate of gibbsite, was studied at 298°K. Input solutions, with initial pH = 3.5 and variable salt type and concentration, were flowed at different rates, through columns packed with a unconsolidated gibbsitic bauxite from Los Pijigüaos-Venezuela ore deposit. It was observed cations Na +, K +, Mg 2+ and Ca2+ have no influence on the far from equilibrium dissolution rate. Anions have two different effects: concentration increases of monovalent anions (Cl -, NO 3- and ClO 4-) causes a decrease in the rate, as a function of [anion] (-0.11 ± 0.01); and increases of sulfate concentration causes an increase in the rate as a function of [SO 4=] (0.4 ± 0.1). According to our calculations, these two effects have a remarkable influence upon the lifetime of gibbsite under weathering conditions. Based on Transition State Theory, it is proposed the experimental observations are due to an electrostatic effect on the activated complex (AC ♯) of the gibbsite dissolution reaction. For this AC ♯ the product of the charge of the involved chemical entities is negative. When SO 4= participates in the AC ♯ the product of the charges switches to positive and therefore, the electrostatic interaction increase the dissolution rate. The dissolution rates are independent of the solution saturation degree below ΔGr = - 0.74 kcal/mol. It is inferred that the critical ΔGr is a constant of the solid, not affected by the solution characteristics, e.g., pH, ionic strength, cation and anion identities.
Escape of anions from geminate recombination in THF due to charge delocalization
Chen, Hung -Cheng; Cook, Andrew R.; Asaoka, Sadayuki; ...
2017-11-24
Geminate recombination of 24 radical anions (M˙ –) with solvated protons (RH 2 +) was studied in tetrahydrofuran (THF) with pulse radiolysis. The recombination has two steps: (1) diffusion of M˙ – and RH 2 + together to form intimate (contact and solvent separated) ion pairs, driven by Coulomb attraction; (2) annihilation of anions due to proton transfer (PT) from RH 2 + to M˙ –. The non-exponential time-dependence of the geminate diffusion was determined. For all molecules protonated on O or N atoms the subsequent PT step is too fast (<0.2 ns) to measure, except for the anion ofmore » TCNE which did not undergo proton transfer. PT to C atoms was as slow as 70 ns and was always slow enough to be observable. A possible effect of charge delocalization on the PT rates could not be clearly separated from other factors. For 21 of the 24 molecules studied here, a free ion yield (71.6 ± 6.2 nmol J –1) comprising ~29% of the total, was formed. This yield of “Type I” free ions is independent of the PT rate because it arises entirely by escape from the initial distribution of ion pair distances without forming intimate ion pairs. Furthermore, three anions of oligo(9,9-dihexyl)fluorenes, F n˙ – (n = 2–4) were able to escape from intimate ion-pairs to form additional yields of “Type II” free ions with escape rate constants near 3 × 10 6 s –1. These experiments find no evidence for an inverted region for proton transfer.« less
Non-Surface Activity of Cationic Amphiphilic Diblock Copolymers
NASA Astrophysics Data System (ADS)
Ranjan Nayak, Rati; Yamada, Tasuku; Matsuoka, Hideki
2011-09-01
Cationic amphiphilic diblock copolymers containing quaternized poly (2-vinylpyridine) chain as a hydrophilic segment (PIp-b-PNMe2VP) were synthesized by living anionic polymerization. By IR measurement, we confirmed the quaternization of the polymer (PIp-b-PNMe2VP), and determined the degree of quaternization by conductometric titration. The surface tension experiment showed that the polymers are non-surface active in nature. The foam formation of the polymer solutions was also investigated with or without added salt. Almost no foam formation behavior was observed without added salt, while a little foam was observed in the presence of 1M NaCl. The critical micelle concentration (cmc) of the diblock copolymers with 3 different chain lengths was measured by the static light scattering method. The cmc values obtained in this study were much lower than the values obtained for anionic non-surface active diblock polymers studied previously. The hydrodynamic radii of the polymer micelle increased slightly in the presence of 1 M NaCl. The transmission electron microscopic images revealed spherical micelles in pure water. In the presence of salt, the cmc values increased as was the case for anionic polymers, which is unlike conventional surfactant systems but consistent with non-surface active anionic block copolymers. The microviscosity of the micelle core was evaluated using Coumarin-153 as a fluorescent anisotropy probe using steady-sate fluorescence depolarization. Non-surface activity has been proved to be universal for ionic amphiphilic block copolymers both for anionic and cationic. Hence, the origin of non-surface activity is not the charged state of water surface itself, but should be an image charge repulsion at the air/water interface.
Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz
2015-02-01
In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes. Copyright © 2014 Elsevier B.V. All rights reserved.
Absorption and luminescence spectroscopy of mass-selected flavin adenine dinucleotide mono-anions
NASA Astrophysics Data System (ADS)
Giacomozzi, L.; Kjær, C.; Langeland Knudsen, J.; Andersen, L. H.; Brøndsted Nielsen, S.; Stockett, M. H.
2018-06-01
We report the absorption profile of isolated Flavin Adenine Dinucleotide (FAD) mono-anions recorded using photo-induced dissociation action spectroscopy. In this charge state, one of the phosphoric acid groups is deprotonated and the chromophore itself is in its neutral oxidized state. These measurements cover the first four optical transitions of FAD with excitation energies from 2.3 to 6.0 eV (210-550 nm). The S0 → S2 transition is strongly blue shifted relative to aqueous solution, supporting the view that this transition has a significant charge-transfer character. The remaining bands are close to their solution-phase positions. This confirms that the large discrepancy between quantum chemical calculations of vertical transition energies and solution-phase band maxima cannot be explained by solvent effects. We also report the luminescence spectrum of FAD mono-anions in vacuo. The gas-phase Stokes shift for S1 is 3000 cm-1, which is considerably larger than any previously reported for other molecular ions and consistent with a significant displacement of the ground and excited state potential energy surfaces. Consideration of the vibronic structure is thus essential for simulating the absorption and luminescence spectra of flavins.
NASA Astrophysics Data System (ADS)
Patra, Digambara; Barakat, Christelle
2011-09-01
Hydrophilic ionic liquid, 1-butyl-3-methylimidazolium tetrafluoroburate, modified the properties of aqueous surfactant solutions associated with curcumin. Because of potential pharmaceutical applications as an antioxidant, anti-inflammatory and anti-carcinogenic agent, curcumin has received ample attention as potential drug. The interaction of curcumin with various charged aqueous surfactant solutions showed it exists in deprotonated enol form in surfactant solutions. The nitro and hydroxyl groups of o-nitrophenol interact with the carbonyl and hydroxyl groups of the enol form of curcumin by forming ground state complex through hydrogen bonds and offered interesting information about the nature of the interactions between the aqueous surfactant solutions and curcumin depending on charge of head group of the surfactant. IL[bmin][BF 4] encouraged early formation of micelle in case of cationic and anionic aqueous surfactant solutions, but slightly prolonged micelle formation in the case of neutral aqueous surfactant solution. However, for curcumin IL [bmin][BF 4] favored strong association (7-fold increase) with neutral surfactant solution, marginally supported association with anionic surfactant solution and discouraged (˜2-fold decrease) association with cationic surfactant solution.
Uysal, Ahmet; Rock, William; Qiao, Baofu; ...
2017-11-03
Anion exchange at positively charged interfaces plays an important role in a variety of physical and chemical processes. However, the molecular-scale details of these processes, especially with heavy and large anionic complexes, are not well-understood. Here, we studied the adsorption of PtCl 6 2– anionic complexes to floating DPTAP monolayers in the presence of excess Cl– as a function of the bulk chlorometalate concentration. This system aims to simulate the industrial conditions for heavy metal separations with solvent extraction. In situ X-ray scattering and fluorescence measurements, which are element and depth sensitive, show that the chlorometalate ions only adsorb inmore » the diffuse layer at lower concentrations, while they adsorb predominantly in the Stern layer at higher concentrations. The response of DPTAP molecules to the adsorbed ions is determined independently by grazing incidence X-ray diffraction and supports this picture. Molecular dynamics simulations further elucidate the nanoscale structure of the interfacial complexes. The results suggest that ion hydration and ion–ion correlations play a key role in the competitive adsorption process.« less
Collective charge excitations of the two-dimensional electride Ca2N
NASA Astrophysics Data System (ADS)
Cudazzo, Pierluigi; Gatti, Matteo
2017-09-01
Ca2N is a layered material that has been recently identified as a two-dimensional (2D) electride, an unusual ionic compound in which electrons serve as anions. The electronic properties of 2D electrides attract considerable interest as the anionic electrons, which form a 2D layer sandwiched between atomic planes, are highly mobile as they are not attached to any ion. Here, on the basis of first-principles time-dependent density-functional theory calculations, we investigate the collective excitations of the electrons—i.e., the plasmons—in Ca2N as a function of wave vector q . Our calculations reveal an intrinsic negative in-plane dispersion of the anionic plasmon, in striking contrast with the homogeneous electron gas. Moreover, for wave vectors q normal to the planes, we find a long-lived plasmon that continues to exist well beyond the first Brillouin zone. This is a mark of the electronic inhomogeneities in the charge response that Ca2N shares with other layered materials like transition-metal dichalcogenides and MgB2. Finally, we compare the plasmon properties of Ca2N in its bulk and monolayer forms, which shows the effect of the different electronic structures and dimensionalities.
Mechanistic study of wettability alteration of oil-wet sandstone surface using different surfactants
NASA Astrophysics Data System (ADS)
Hou, Bao-feng; Wang, Ye-fei; Huang, Yong
2015-03-01
Different analytical methods including Fourier transform infrared (FTIR), atomic force microscopy (AFM), zeta potential measurements, contact angle measurements and spontaneous imbibition tests were utilized to make clear the mechanism for wettability alteration of oil-wet sandstone surface using different surfactants. Results show that among three types of surfactants including cationic surfactants, anionic surfactants and nonionic surfactants, the cationic surfactant CTAB demonstrates the best effect on the wettability alteration of oil-wet sandstone surface. The positively charged head groups of CTAB molecules and carboxylic acid groups from crude oil could interact to form ion pairs, which could be desorbed from the solid surface and solubilized into the micelle formed by CTAB. Thus, the water-wetness of the solid surface is improved. Nonionic surfactant TX-100 could be adsorbed on oil-wet sandstone surface through hydrogen bonds and hydrophobic interaction to alter the wettability of oil-wet solid surface. The wettability alteration of oil-wet sandstone surface using the anionic surfactant POE(1) is caused by hydrophobic interaction. Due to the electrostatic repulsion between the anionic surfactant and the negatively charged surface, POE(1) shows less effect on the wettability alteration of oil-wet sandstone surface.
Cassini CAPS-ELS observations of carbon-based anions and aerosol growth in Titan's ionosphere
NASA Astrophysics Data System (ADS)
Desai, Ravindra; Coates, Andrew; Wellbrock, Anne; Kataria, Dhiren; Jones, Geraint; Lewis, Gethyn; Waite, J.
2016-06-01
Cassini observations of Titans ionosphere revealed an atmosphere rich in positively charged ions with masses up to > 350 amu and negatively charged ions and aerosols with mass over charge ratios as high as 13,800 amu/q. The detection of negatively charged molecules by the Cassini CAPS Electron Spectrometer (CAPS-ELS) was particularly surprising and showed how the synthesis of large aerosol-size particles takes place at altitudes much greater than previously thought. Here, we present further analysis into this CAPS-ELS dataset, through an enhanced understanding of the instrument's response function. In previous studies the intrinsic E/E energy resolution of the instrument did not allow specific species to be identified and the detections were classified into broad mass ranges. In this study we use an updated fitting procedure to show how the ELS mass spectrum can be resolved into specific peaks at multiples of carbon-based anions up to > 100 amu/q. The negatively charged ions and aerosols in Titans ionosphere increase in mass with decreasing altitude, the lightest species being observed close to Titan's exobase of ˜1,450km and heaviest species observed at altitudes < 950km. We identify key stages in this apparent growth process and report on key intermediaries which appear to trigger the rapid growth of the larger aerosol-size particles.
Tran, Victoria B.; Sung, Ye Suel; Fleiszig, Suzanne M.J.; Evans, David J.; Radke, C.J.
2013-01-01
Binding of bacteria to solid surfaces is complex with many aspects incompletely understood. We investigate Pseudomonas aeruginosa uptake kinetics onto hydrogel surfaces representative of soft-contact lenses made of nonionic poly(2-hydroxyethylmethacrylate) (p-HEMA), anionic poly(methacrylic acid) (p-MAA), and anionic poly(acrylic acid) (p-AA). Using a parallel-plate flow cell under phase-contrast microscopy, we document a kinetic “burst” at the anionic hydrogel surface: dilute aqueous P. aeruginosa first rapidly accumulates and then rapidly depletes. Upon continuing flow, divalent cations in the suspending solution sorb into the hydrogel network causing the previously surface-accumulated bacteria to desorb. The number of bacteria eventually bound to the surface is low compared to the nonionic p-HEMA hydrogel. We propose that the kinetic burst is due to reversible divalent-cation bridging between the anionic bacteria and the negatively charged hydrogel surface. The number of surface bridging sites diminishes as divalent cations impregnate into and collapse the gel. P. aeruginosa association with the surface then falls. Low eventual binding of P. aeruginosa to the anionic hydrogel is ascribed to increased surface hydrophilicity compared to the counterpart nonionic p-HEMA hydrogel. PMID:21723562
NASA Astrophysics Data System (ADS)
Dekel, Dario R.; Willdorf, Sapir; Ash, Uri; Amar, Michal; Pusara, Srdjan; Dhara, Shubhendu; Srebnik, Simcha; Diesendruck, Charles E.
2018-01-01
Anion exchange membrane fuel cells can potentially revolutionize energy storage and delivery; however, their commercial development is hampered by a significant technological impedance: the chemical decomposition of the anion exchange membranes during operation. The hydroxide anions, while transported from the cathode to the anode, attack the positively charged functional groups in the polymer membrane, neutralizing it and suppressing its anion-conducting capability. In recent years, several new quaternary ammonium salts have been proposed to address this challenge, but while they perform well in ex-situ chemical studies, their performance is very limited in real fuel cell studies. Here, we use experimental work, corroborated by molecular dynamics modeling to show that water concentration in the environment of the hydroxide anion, as well as temperature, significantly impact its reactivity. We compare different quaternary ammonium salts that have been previously studied and test their stabilities in the presence of relatively low hydroxide concentration in the presence of different amounts of solvating water molecules, as well as different temperatures. Remarkably, with the right amount of water and at low enough temperatures, even quaternary ammonium salts which are considered "unstable", present significantly improved lifetime.
Rectification of nanopores at surfaces
Sa, Niya
2011-01-01
At the nanoscale, methods to measure surface charge can prove challenging. Herein we describe a general method to report surface charge through the measurement of ion current rectification of a nanopipette brought in close proximity to a charged substrate. This method is able to discriminate between charged cationic and anionic substrates when the nanopipette is brought within distances from ten to hundreds of nanometers from the surface. Further studies of the pH dependence on the observed rectification support a surface-induced mechanism and demonstrate the ability to further discriminate between cationic and nominally uncharged surfaces. This method could find application in measurement and mapping of heterogeneous surface charges and is particularly attractive for future biological measurements, where noninvasive, noncontact probing of surface charge will prove valuable. PMID:21675734
NASA Technical Reports Server (NTRS)
Evans, M. L.; Hangarter, R. P.
1993-01-01
Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.
Comparative insight into surfactants mediated amyloidogenesis of lysozyme.
Chaturvedi, Sumit K; Khan, Javed M; Siddiqi, Mohammad K; Alam, Parvez; Khan, Rizwan H
2016-02-01
Electrostatic and hydrophobic interactions have an important role in the protein aggregation. In this study, we have investigated the effect of charge and hydrophobicity of oppositely charged surfactants i.e., anionic (AOT and SDS) and cationic (CTAB and DTAB) on hen egg white lysozyme at pH 9.0 and 13.0, respectively. We have employed various methods such as turbidity measurements, Rayleigh light scattering, ThT, Congo red and ANS dye binding assays, far-UV CD, atomic force microscopy, transmission electron and fluorescence microscopy. At lower molar ratio, both anionic and cationic surfactants promote amyloid fibril formation in lysozyme at pH 9.0 and 13.0, respectively. The aggregation was proportionally increased with respect to protein concentration and hydrophobicity of surfactant. The morphology of aggregates at both the pH was fibrillar in structure, as visualized by dye binding and microscopic imaging techniques. Initially, the interaction between surfactants and lysozyme was electrostatic and then hydrophobic as investigated by ITC. This study demonstrates the crucial role of charge and hydrophobicity during amyloid fibril formation. Copyright © 2015 Elsevier B.V. All rights reserved.
Vesicle Adhesion and Fusion Studied by Small-Angle X-Ray Scattering.
Komorowski, Karlo; Salditt, Annalena; Xu, Yihui; Yavuz, Halenur; Brennich, Martha; Jahn, Reinhard; Salditt, Tim
2018-04-24
We have studied the adhesion state (also denoted by docking state) of lipid vesicles as induced by the divalent ions Ca 2+ or Mg 2+ at well-controlled ion concentration, lipid composition, and charge density. The bilayer structure and the interbilayer distance in the docking state were analyzed by small-angle x-ray scattering. A strong adhesion state was observed for DOPC:DOPS vesicles, indicating like-charge attraction resulting from ion correlations. The observed interbilayer separations of ∼1.6 nm agree quantitatively with the predictions of electrostatics in the strong coupling regime. Although this phenomenon was observed when mixing anionic and zwitterionic (or neutral) lipids, pure anionic membranes (DOPS) with highest charge density σ resulted in a direct phase transition to a multilamellar state, which must be accompanied by rupture and fusion of vesicles. To extend the structural assay toward protein-controlled docking and fusion, we have characterized reconstituted N-ethylmaleimide-sensitive factor attachment protein receptors in controlled proteoliposome suspensions by small-angle x-ray scattering. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Cha M-R; Evans, M L; Hangarter, R P
1993-01-01
Positively charged nylon blotting membranes were used as an anion binding medium to trap [14C]indoleactic acid (IAA) as it exited cells at the basal ends of Coleus blumei L. stem and Zea mays L. coleoptile segments. Autoradiography was used to visualize where the [14C] that moved out of the cut ends was localized on the nylon membrane. Diffusion of [14C]IAA from the initial point of contact with the nylon membrane was minimal. Comparison of the autoradiograms with anatomical tissue prints of the cut ends of the segments was used to determine what tissues participate in IAA movement. The results of these initial studies were consistent with other reports suggesting that [14C]IAA movement was primarily associated with vascular tissues in both C. blumei stems and corn coleoptiles, but the resolution was not sufficient to identify which vascular tissues were involved in IAA transport. With further refinements, this technique could also be used for studying the movement of other small charged molecules through plant tissues.
Kitagawa, Shinya; Tsuda, Takao
2003-05-02
The behavior of neutral sample solutes in pressurized flow driven electrochromatography using a mixed stationary phase, which consisted of ODS and anion-exchange (ODS-SAX), was studied. Applications of both positive and negative voltage on a column induced increases in retention factors of sample solutes. The direction of an electroosmotic flow under applications of positive and negative voltage were the same, therefore, the sign of the surface charge density under positive and negative voltage was opposite. We proposed a new equation for the relationship between applied voltage and surface charge density, and the practical electroosmotic flow conformed to this equation. Studying the electroosmotic flow using our proposed equation revealed that the applied negative voltage accelerates the protonation of the quaternary ammonium group and dissociation of the silanol group on packing materials. The retention behavior of a neutral solute was affected by the existence of the charged functional groups. We propose that this phenomenon is applicable to the control of the retention behavior of a sample solute using an electric field.
Basic surface properties of mononuclear cells from Didelphis marsupialis.
Nacife, V P; de Meirelles, M de N; Silva Filho, F C
1998-01-01
The electrostatic surface charge and surface tension of mononuclear cells/monocytes obtained from young and adult marsupials (Didelphis marsupialis) were investigated by using cationized ferritin and colloidal iron hydroxyde, whole cell electrophoresis, and measurements of contact angles. Anionic sites were found distributed throughout the entire investigated cell surfaces. The results revealed that the anionic character of the cells is given by electrostatic charges corresponding to -18.8 mV (cells from young animals) and -29.3 mV (cells from adult animals). The surface electrostatic charge decreased from 10 to 65.2% after treatment of the cells with each one of trypsin, neuraminidase and phospholipase C. The hydrophobic nature of the mononuclear cell surfaces studied by using the contact angle method revealed that both young and adult cells possess cell surfaces of high hidrofilicity since the angles formed with drops of saline water were 42.5 degrees and 40.8 degrees, respectively. Treatment of the cells with trypsin or neuraminidase rendered their surfaces more hydrophobic, suggesting that sialic acid-containing glycoproteins are responsible for most of the hydrophilicity observed in the mononuclear cell surfaces from D. marsupialis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartashevich, E. V.; Batalov, V. I.; Yushina, I. D.
2016-04-29
Two kinds of iodine–iodine halogen bonds are the focus of our attention in the crystal structure of the title salt, C 12H 8ClINO +·I 3 -, described by X-ray diffraction. The first kind is a halogen bond, reinforced by charges, between the I atom of the heterocyclic cation and the triiodide anion. The second kind is the rare case of a halogen bond between the terminal atoms of neighbouring triiodide anions. Lastly, the influence of relatively weakly bound iodine inside an asymmetric triiodide anion on the thermal and Raman spectroscopic properties has been demonstrated.
Quantum chemical calculations of anion complex [B12Hx(CF3)12-x]2-, x = 9 - 12
NASA Astrophysics Data System (ADS)
Koblova, Elena A.; Saldin, Vitaly I.; Ustinov, Alexander Yu.
2016-12-01
The geometric, energetic, spectral and electronic properties of the most stable isomers of B12Hx(CF3)12-X2- anion complex with x = 9 - 12 have been studied using Density Functional Theory (B3LYP/6-311++G**). It was shown that these isomers are characterized by the preference to form the most symmetric structures with uniformly distributed charge densities. However, when replacing a hydrogen atom with fluoromethyl group, an inductive effect occurs. Blue shifts in the IR spectrum compared to the vibrations of the free CF3 molecule are in the range of 2 - 69 cm-1 and points to the stability of B12Hx(CF3)12-x2- anions.
Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)]- anionic complex
NASA Astrophysics Data System (ADS)
Graham, Jacob D.; Buytendyk, Allyson M.; Zhang, Xinxing; Kim, Seong K.; Bowen, Kit H.
2015-11-01
The [Co(Pyridine)(CO2)]- anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)]- in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.
Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)](-) anionic complex.
Graham, Jacob D; Buytendyk, Allyson M; Zhang, Xinxing; Kim, Seong K; Bowen, Kit H
2015-11-14
The [Co(Pyridine)(CO2)](-) anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)](-) in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.
ERIC Educational Resources Information Center
Frazier, Laura Corbin
2000-01-01
Introduces a science activity on the bonding of chemical compounds. Assigns students the role of either a cation or anion and asks them to write the ions they may bond with. Assesses students' understanding of charge, bonding, and other concepts. (YDS)
NASA Astrophysics Data System (ADS)
Freitag, K. M.; Walke, P.; Nilges, T.; Kirchhain, H.; Spranger, R. J.; van Wüllen, L.
2018-02-01
Electrospinning is used to fabricate sodium ion conducting fiber membranes composed of polyethylene oxide (PEO), sodium tetrafluoroborate (NaBF4), and succinonitrile (SN) as plasticizer. As compared to conventionally prepared lithium electrolyte membranes with identical composition (PEO:SN:LiBF4), those membranes exhibit conductivities up to 10-4 S cm-1 at 328 K (activation energy ∼36 kJ mol-1, 36:8:1 membrane), which favors such systems as a solid-state electrolyte alternative for batteries. The conduction mechanism is evaluated and the ion mobility are examined. We identified the segment mobility of the polyethylene oxide as the main driving force for the enhanced ion mobility in the membranes. The introduction of SN has only a minor influence on the conductivity and segment mobility at room temperature, but extents the anion and cation mobility to temperatures below ambient. For the 36:8:1 (PEO:SN:NaBF4) membrane we found the highest ion mobility of all membranes under investigation. A comparison of the present sodium membranes with lithium systems of the same composition shows that the overall performance of the sodium systems is comparable. Taking plasticizer-free sodium membranes into account they perform even better than the lithium containing counterparts, and plasticizer-modified membranes show only half an order of magnitude lower conductivities than comparable lithium ones.
Polymeric micellar pH-sensitive drug delivery system for doxorubicin.
Hrubý, Martin; Konák, Cestmír; Ulbrich, Karel
2005-03-02
A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.
Determination of the Bridging Ligand in the Active Site of Tyrosinase.
Zou, Congming; Huang, Wei; Zhao, Gaokun; Wan, Xiao; Hu, Xiaodong; Jin, Yan; Li, Junying; Liu, Junjun
2017-10-28
Tyrosinase is a type-3 copper enzyme that is widely distributed in plants, fungi, insects, and mammals. Developing high potent inhibitors against tyrosinase is of great interest in diverse fields including tobacco curing, food processing, bio-insecticides development, cosmetic development, and human healthcare-related research. In the crystal structure of Agaricus bisporus mushroom tyrosinase, there is an oxygen atom bridging the two copper ions in the active site. It is unclear whether the identity of this bridging oxygen is a water molecule or a hydroxide anion. In the present study, we theoretically determine the identity of this critical bridging oxygen by performing first-principles hybrid quantum mechanics/molecular mechanics/Poisson-Boltzmann-surface area (QM/MM-PBSA) calculations along with a thermodynamic cycle that aim to improve the accuracy. Our results show that the binding with water molecule is energy favored and the QM/MM-optimized structure is very close to the crystal structure, whereas the binding with hydroxide anions causes the increase of energy and significant structural changes of the active site, indicating that the identity of the bridging oxygen must be a water molecule rather than a hydroxide anion. The different binding behavior between water and hydroxide anions may explain why molecules with a carboxyl group or too many negative charges have lower inhibitory activity. In light of this, the design of high potent active inhibitors against tyrosinase should satisfy both the affinity to the copper ions and the charge neutrality of the entire molecule.
Lu, Qiuyi; Yan, Bin; Xie, Lei; Huang, Jun; Liu, Yang; Zeng, Hongbo
2016-09-15
Water management and treatment of mineral tailings and oil sands tailings are becoming critical challenges for the sustainable development of natural resources. Polymeric flocculants have been widely employed to facilitate the flocculation and settling of suspended fine solid particles in tailings, resulting in the separation of released water and solid sediments. In this study, a new flocculation process was developed for the treatment of oil sands tailings by using two oppositely charged polymers, i.e. an anionic polyacrylamide and a natural cationic biopolymer, chitosan. The new process was able to not only improve the clarity of supernatant after settling but also achieve a high settling efficiency. Treatment of the oil sands tailings using pure anionic polyacrylamide showed relatively high initial settling rate (ISR) of ~10.3m/h but with poor supernatant clarity (>1000NTU); while the treatment using pure cationic polymer resulted in clear supernatant (turbidity as low as 22NTU) but relatively low ISR of >2m/h. In the new flocculation process, the addition of anionic polyacrylamide to the tailings was followed by a cationic polymer, which showed both a high ISR (~7.7m/h) and a low turbidity (71NTU) of the supernatant. The flocculation mechanism was further investigated via the measurements of floc size, zeta potential and surface forces. The new flocculation process was revealed to include two steps: (1) bridging of fine solids by anionic polyacrylamide, and (2) further aggregation and flocculation mediated by charge neutralisation of the cationic polymer, which significantly eliminated the fine solids in the supernatants as well as increases floc size. Our results provide insights into the basic understanding of the interactions between polymer flocculants and solid particles in tailings treatment, as well as the development of novel tailings treatment technologies. Copyright © 2016 Elsevier B.V. All rights reserved.
Safko, Trevor M; Faleiros, Marcelo M; Atvars, Teresa D Z; Weiss, Richard G
2016-06-16
An intramolecular exciplex-mediated, proton-coupled, charge-transfer (PCCT) process has been investigated for a series of N,N-dimethyl-3-(1-pyrenyl)propan-1-ammonium cations with different anions (PyS) in solvents of low to intermediate polarity over a wide temperature range. Solvent mediates both the equilibrium between conformations of the cation that place the pyrenyl and ammonium groups in proximity (conformation C) or far from each other (conformation O) and the ability of the ammonium group to transfer a proton adiabatically in the PyS excited singlet state. Thus, exciplex emission, concurrent with the PCCT process, was observed only in hydrogen-bond accepting solvents of relatively low polarity (tetrahydrofuran, ethyl acetate, and 1,4-dioxane) and not in dichloromethane. From the exciplex emission and other spectroscopic and thermodynamic data, the acidity of the ammonium group in conformation C of the excited singlet state of PyS (pKa*) has been estimated to be ca. -3.4 in tetrahydrofuran. The ratios between the intensities of emission from the exciplex and the locally excited state (IEx/ILE) appear to be much more dependent on the nature of the anion than are the rates of exciplex formation and decay, although the excited state data do not provide a quantitative measure of the anion effect on the C-O equilibrium. The activation energies associated with exciplex formation in THF are calculated to be 0.08 to 0.15 eV lower than for the neutral amine, N,N-dimethyl-3-(1-pyrenyl)propan-1-amine. Decay of the exciplexes formed from the deprotonation of PyS is hypothesized to occur through charge-recombination processes. To our knowledge, this is the first example in which photoacidity and intramolecular exciplex formation (i.e., a PCCT reaction) are coupled.
Investigation of the Lipid Binding Properties of the Marburg Virus Matrix Protein VP40.
Wijesinghe, Kaveesha J; Stahelin, Robert V
2015-12-30
Marburg virus (MARV), which belongs to the virus family Filoviridae, causes hemorrhagic fever in humans and nonhuman primates that is often fatal. MARV is a lipid-enveloped virus that during the replication process extracts its lipid coat from the plasma membrane of the host cell it infects. MARV carries seven genes, one of which encodes its matrix protein VP40 (mVP40), which regulates the assembly and budding of the virions. Currently, little information is available on mVP40 lipid binding properties. Here, we have investigated the in vitro and cellular mechanisms by which mVP40 associates with lipid membranes. mVP40 associates with anionic membranes in a nonspecific manner that is dependent upon the anionic charge density of the membrane. These results are consistent with recent structural determination of mVP40, which elucidated an mVP40 dimer with a flat and extensive cationic lipid binding interface. Marburg virus (MARV) is a lipid-enveloped filamentous virus from the family Filoviridae. MARV was discovered in 1967, and yet little is known about how its seven genes are used to assemble and form a new viral particle in the host cell it infects. The MARV matrix protein VP40 (mVP40) underlies the inner leaflet of the virus and regulates budding from the host cell plasma membrane. In vitro and cellular assays in this study investigated the mechanism by which mVP40 associates with lipids. The results demonstrate that mVP40 interactions with lipid vesicles or the inner leaflet of the plasma membrane are electrostatic but nonspecific in nature and are dependent on the anionic charge density of the membrane surface. Small molecules that can disrupt lipid trafficking or reduce the anionic charge of the plasma membrane interface may be useful in inhibiting assembly and budding of MARV. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Mukul M.; Freeman, Benny D.; Van Wagner, Elizabeth M.
2010-08-01
The market for polyamide desalination membranes is expected to continue to grow during the coming decades. Purification of alternative water sources will also be necessary to meet growing water demands. Purification of produced water, a byproduct of oil and gas production, is of interest due to its dual potential to provide water for beneficial use as well as to reduce wastewater disposal costs. However, current polyamide membranes are prone to fouling, which decreases water flux and shortens membrane lifetime. This research explored surface modification using poly(ethylene glycol) diglycidyl ether (PEGDE) to improve the fouling resistance of commercial polyamide membranes. Characterizationmore » of commercial polyamide membrane performance was a necessary first step before undertaking surface modification studies. Membrane performance was found to be sensitive to crossflow testing conditions. Concentration polarization and feed pH strongly influenced NaCl rejection, and the use of continuous feed filtration led to higher water flux and lower NaCl rejection than was observed for similar tests performed using unfiltered feed. Two commercial polyamide membranes, including one reverse osmosis and one nanofiltration membrane, were modified by grafting PEGDE to their surfaces. Two different PEG molecular weights (200 and 1000) and treatment concentrations (1% (w/w) and 15% (w/w)) were studied. Water flux decreased and NaCl rejection increased with PEGDE graft density ({micro}g/cm{sup 2}), although the largest changes were observed for low PEGDE graft densities. Surface properties including hydrophilicity, roughness and charge were minimally affected by surface modification. The fouling resistance of modified and unmodified membranes was compared in crossflow filtration studies using model foulant solutions consisting of either a charged surfactant or an oil in water emulsion containing n-decane and a charged surfactant. Several PEGDE-modified membranes demonstrated improved fouling resistance compared to unmodified membranes of similar initial water flux, possibly due to steric hindrance imparted by the PEG chains. Fouling resistance was higher for membranes modified with higher molecular weight PEG. Fouling was more extensive for feeds containing the cationic surfactant, potentially due to electrostatic attraction with the negatively charged membranes. However, fouling was also observed in the presence of the anionic surfactant, indicating hydrodynamic forces are also responsible for fouling.« less
Surface-mediated molecular events in material-induced blood-plasma coagulation
NASA Astrophysics Data System (ADS)
Chatterjee, Kaushik
Coagulation and thrombosis persist as major impediments associated with the use of blood-contacting medical devices. We are investigating the molecular mechanism underlying material-induced blood-plasma coagulation focusing on the role of the surface as a step towards prospective development of improved hemocompatible biomaterials. A classic observation in hematology is that blood/blood-plasma in contact with clean glass surface clots faster than when in contact with many plastic surfaces. The traditional biochemical theory explaining the underlying molecular mechanism suggests that hydrophilic surfaces, like that of glass, are specific activators of the coagulation cascade because of the negatively-charged groups on the surface. Hydrophobic surfaces are poor procoagulants or essentially "benign" because they lack anionic groups. Further, these negatively-charged surfaces are believed to not only activate blood factor XII (FXII), the key protein in contact activation, but also play a cofactor role in the amplification and propagation reactions that ultimately lead to clot formation. In sharp contrast to the traditional theory, our investigations indicate a need for a paradigm shift in the proposed sequence of contact activation events to incorporate the role of protein adsorption at the material surfaces. These studies have lead to the central hypothesis for this work proposing that protein adsorption to hydrophobic surfaces attenuates the contact activation reactions so that poorly-adsorbent hydrophilic surfaces appear to be stronger procoagulants relative to hydrophobic surfaces. Our preliminary studies measuring the plasma coagulation response of activated FXII (FXIIa) on different model surfaces suggested that the material did not play a cofactor role in the processing of this enzyme dose through the coagulation pathway. Therefore, we focused our efforts on studying the mechanism of initial production of enzyme at the procoagulant surface. Calculations for the amounts of FXIIa generated at material surfaces in plasma using a mathematical model for measured coagulation responses indicate that the relative contributions of the individual pathways of enzyme generation are similar at both hydrophilic and hydrophobic surfaces, only the amounts of enzyme generated scale with surface energy and area of the activating surface. Further, from direct measurement of enzyme activation at test surfaces we observed that contact activation reactions are not specific to negatively-charged hydrophilic surfaces. Rather, the molecular interactions are attenuated at hydrophobic surfaces due to protein adsorption so that poorly-adsorbent hydrophilic surfaces exhibit an apparent specificity for contact activation reactions. Preliminary studies were preformed to assay the plasma coagulation response to low-fouling surfaces prepared by either grafting poly(ethylene glycol) chains or using zwitterions. Results indicate that poly(ethylene glycol)-modified surfaces are significantly weaker procoagulants than surfaces containing zwitterions underscoring a need to specifically evaluate the coagulation response despite similarities in observed protein adsorption to both surfaces. In summary, our studies demonstrate a need to incorporate protein-adsorption competition at procoagulant surfaces into the mechanism of contact activation to account for the observed moderation of FXII activation by blood proteins unrelated to the plasma coagulation cascade.
Polymer nanocomposites for lithium battery applications
Sandi-Tapia, Giselle; Gregar, Kathleen Carrado
2006-07-18
A single ion-conducting nanocomposite of a substantially amorphous polyethylene ether and a negatively charged synthetic smectite clay useful as an electrolyte. Excess SiO2 improves conductivity and when combined with synthetic hectorite forms superior membranes for batteries. A method of making membranes is also disclosed.
Xu, Xiao; Spasojević-de Biré, Anne; Ghermani, Nour Eddine; Wei, Yongge; Novaković, Sladjana; Bošnjaković-Pavlović, Nada; Wu, Pingfan
2017-07-19
A high resolution X-ray diffraction study has been carried out on [(C 4 H 9 ) 4 N] 2 [V 6 O 13 {(OCH 2 ) 3 CCH 2 OCCH 2 CH 3 } 2 ] (V6-C3) at 100 K. The V6 core possesses a negative charge, leading to a strong polarization of the anion. A nucleophilic region localized near the organic moiety and an electrophilic region in the vicinity of the V6 core provide an overall description of charge-transfer behavior.
NASA Astrophysics Data System (ADS)
Wu, Fang-Ying; Jiang, Yun-Bao
2002-04-01
The intramolecular charge transfer (ICT) dual fluorescence of p-dimethylaminobenzamide (DMABA) in acetonitrile was found to show highly sensitive response to HSO 4- over several other anions such as H 2PO 4-,AcO - and ClO 4-. In the presence of bisulfate anion the dual fluorescence intensity ratio and the total intensity of DMABA decreased while the dual emission band positions remained unchanged. Absorption titration indicated that a 1:1 hydrogen bonding complex was formed between bisulfate anion and DMABA, which gave a binding constant of 2.02×10 4 mol-1 l that is two orders of magnitude higher than those for other anions. The obvious isotopic effect observed in the fluorescence quenching [ K SV( HSO4-)/K SV( DSO4-)=1.63 ] suggests that the hydrogen atom moving is an important reaction coordinate. It was assumed that the dual fluorescence response was due to proton coupled electron transfer mediated by hydrogen bonds within the 1:1 HSO 4--DMABA hydrogen-bonding complex.
Vaid, Thomas P; Kelley, Steven P; Rogers, Robin D
2017-07-01
Traditional synthesis of metal-organic frameworks (MOFs) involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a 'solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs), rather than an organic solvent, in 'ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.
Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J
2013-12-12
The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.
Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers.
Heebøll-Nielsen, Anders; Justesen, Sune F L; Thomas, Owen R T
2004-09-30
In this study we describe the design, preparation and testing of superparamagnetic anion-exchangers, and their use together with cation-exchangers in the fractionation of bovine whey proteins as a model study for high-gradient magnetic fishing. Adsorbents prepared by attachment of trimethyl amine to particles activated in sequential reactions with allyl bromide and N-bromosuccinimide yielded a maximum bovine serum albumin binding capacity of 156 mg g(-1) combined with a dissociation constant of 0.60 microM, whereas ion-exchangers created by linking polyethylene imine through superficial aldehydes bound up to 337 mg g(-1) with a dissociation constant of 0.042 microM. The latter anion-exchanger was selected for studies of whey protein fractionation. In these, crude bovine whey was treated with a superparamagnetic cation-exchanger to adsorb basic protein species, and the supernatant arising from this treatment was then contacted with the anion-exchanger. For both adsorbent classes of ion-exchanger, desorption selectivity was subsequently studied by sequentially increasing the concentration of NaCl in the elution buffer. In the initial cation-exchange step quantitative removal of lactoferrin (LF) and lactoperoxidase (LPO) was achieved with some simultaneous binding of immunoglobulins (Ig). The immunoglobulins were separated from the other two proteins by desorbing with a low concentration of NaCl (< or = 0.4 M), whereas lactoferrin and lactoperoxidase were co-eluted in significantly purer form, e.g. lactoperoxidase was purified 28-fold over the starting material, when the NaCl concentration was increased to 0.4-1 M. The anion-exchanger adsorbed beta-lactoglobulin (beta-LG) selectively allowing separation from the remaining protein.
NASA Astrophysics Data System (ADS)
Sun, Jiawei; Li, Xianfeng; Xi, Xiaoli; Lai, Qinzhi; Liu, Tao; Zhang, Huamin
2014-12-01
The transfer behavior of different ions (V2+, V3+, VO2+, VO2+, H+, SO42-) across ion exchange membranes is investigated under vanadium flow battery (VFB) operating condition. VX-20 anion exchange membrane (AEM) and Nafion 115 cation exchange membrane (CEM) are selected to investigate the influence of fixed charged groups on the transfer behavior of different ions. The interaction between different ions and water is discussed in detail aiming to ascertain the variation of different ions in the charge-discharge process. Under the VFB medium, the transfer behavior and function of different ions are very different for the AEM and CEM. V2+ ions at the negative side accumulate when VFB is assembled with Nafion 115, while the VO2+ ions at the positive side accumulate for VX-20. The SO42- ions will transfer across Nafion 115 to balance the charges and the protons can balance the charges of VX-20. Finally the capacity fade mechanism of different membranes is investigated, showing that the capacity decay of VFB assembled with Nafion 115 mainly results from the cross mix of vanadium ions across the membrane, however, for VX-20, the side reactions can be the major reason. This paper provides important information about electrolyte for the application of VFB.
Infrared Spectra of Polycyclic Aromatic Hydrocarbons (PAHs)
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Bakes, E. L. O.
2000-01-01
We have computed the synthetic infrared spectra of some polycyclic aromatic hydrocarbons containing up to 54 carbon atoms. The species studied include ovalene, circumcoronene, dicoronylene, and hexabenzocoronene. We report spectra for anions, neutrals, cations, and multiply charged cations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, N.; Rozhkova, E.; Rajh, T.
Modification of TiO{sub 2} nanoparticles with dopamine enables harvesting of visible light and promotes spatial separation of charges. The formation of reactive oxygen species (OH, {sup 1}O{sub 2}, O{sub 2}{sup -}, HO{sub 2}, H{sub 2}O{sub 2}) upon illumination of TiO{sub 2}/dopamine was studied using complementary spin-trap EPR and radical-induced fluorescence techniques. The localization of holes on dopamine suppresses oxidation of adsorbed water molecules at the surface of nanoparticles, and thus formation of OH radicals. At the same time, dopamine does not affect electronic properties of photogenerated electrons and their reaction with dissolved oxygen to produce superoxide anions. Superoxide anions aremore » proposed to generate singlet oxygen through dismutation reaction, resulting in a low yield of {sup 1}O{sub 2} detected.« less
Hydration states of AFm cement phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com; Matschei, Thomas; Scrivener, Karen L.
2015-07-15
The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFmmore » phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.« less
Polyarene mediators for mediated redox flow battery
Delnick, Frank M.; Ingersoll, David; Liang, Chengdu
2018-01-02
The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.
Ren, Yong; Wang, Guowei; Huang, Junlian
2007-06-01
A convenient approach is provided to prepare liquid-core nanocapsules by cross-linking an amphiphilic copolymer at an oil-water interface. The hydrophilic copolymer poly[(ethylene oxide)-co-glycidol] was prepared by anionic polymerization of ethylene oxide and ethoxyethyl glycidyl ether first, then the hydroxyl groups on the backbone were recovered after hydrolysis and partly modified by hydrophobic conjugated linoleic acid. The copolymer with multiple linoleate pendants was absorbed at an oil-water interface and then cross-linked to form stable nanocapsules. The mean diameter of the nanocapsule was below 350 nm, and the size distribution was relatively narrow (<0.2) at low concentrations of oil in acetone (<10 mg/mL). The particle size could be tuned easily by variation of the emulsification conditions. The nanocapsule was stable in water for at least 5 months, and the shell maintained its integrity after removal of the oily core by solvent. Pyrene was encapsulated in these nanocapsules, and a loading efficiency as high as 94% was measured by UV spectroscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C.
2010-01-18
DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugalmore » separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.« less
Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery
NASA Astrophysics Data System (ADS)
2007-07-01
Astronomers using data from the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) have found the largest negatively-charged molecule yet seen in space. The discovery of the third negatively-charged molecule, called an anion, in less than a year and the size of the latest anion will force a drastic revision of theoretical models of interstellar chemistry, the astronomers say. Molecule formation Formation Process of Large, Negatively-Charged Molecule in Interstellar Space CREDIT: Bill Saxton, NRAO/AUI/NSF Click on image for page of graphics and detailed information "This discovery continues to add to the diversity and complexity that is already seen in the chemistry of interstellar space," said Anthony J. Remijan of the National Radio Astronomy Observatory (NRAO). "It also adds to the number of paths available for making the complex organic molecules and other large molecular species that may be precursors to life in the giant clouds from which stars and planets are formed," he added. Two teams of scientists found negatively-charged octatetraynyl, a chain of eight carbon atoms and one hydrogen atom, in the envelope of gas around an old, evolved star and in a cold, dark cloud of molecular gas. In both cases, the molecule had an extra electron, giving it a negative charge. About 130 neutral and about a dozen positively-charged molecules have been discovered in space, but the first negatively-charged molecule was not discovered until late last year. The largest previously-discovered negative ion found in space has six carbon atoms and one hydrogen atom. "Until recently, many theoretical models of how chemical reactions evolve in interstellar space have largely neglected the presence of anions. This can no longer be the case, and this means that there are many more ways to build large organic molecules in cosmic environments than have been explored," said Jan M. Hollis of NASA's Goddard Space Flight Center (GSFC). Ultraviolet light from stars can knock an electron off a molecule, creating a positively-charged ion. Astronomers had thought that molecules would not be able to retain an extra electron, and thus a negative charge, in interstellar space for a significant time. "That obviously is not the case," said Mike McCarthy of the Harvard-Smithsonian Center for Astrophysics. "Anions are surprisingly abundant in these regions." Remijan and his colleagues found the octatetraynyl anions in the envelope of the evolved giant star IRC +10 216, about 550 light-years from Earth in the constellation Leo. They found radio waves emitted at specific frequencies characteristic of the charged molecule by searching archival data from the GBT, the largest fully-steerable radio telescope in the world. Another team from the Harvard-Smithsonian Center for Astrophysics (CfA) found the same characteristic emission when they observed a cold cloud of molecular gas called TMC-1 in the constellation Taurus. These observations also were done with the GBT. In both cases, preceding laboratory experiments by the CfA team showed which radio frequencies actually are emitted by the molecule, and thus told the astronomers what to look for. "It is essential that likely interstellar molecule candidates are first studied in laboratory experiments so that the radio frequencies they can emit are known in advance of an astronomical observation," said Frank Lovas of the National Institute of Standards and Technology (NIST). Both teams announced their results in the July 20 edition of the Astrophysical Journal Letters. "With three negatively-charged molecules now found in a short period of time, and in very different environments, it appears that many more probably exist. We believe that we can discover more new species using very sensitive and advanced radio telescopes such as the GBT, once they have been characterized in the laboratory," said Sandra Bruenken of the CfA. "Further detailed studies of anions, including astronomical observations, laboratory studies, and theoretical calculations, will allow us to use them to reveal new information about the physical and chemical processes going on in interstellar space," said Martin Cordiner, of Queen's University in Belfast, Northern Ireland. "The GBT continues to take a leading role in discovering, identifying and mapping the distribution of the largest molecules ever found in astronomical environments and will continue to do so for the next several decades," said Phil Jewell of NRAO. In addition to Hollis, Lovas, Cordiner and Jewell, Remijan worked with Tom Millar of Queen's University in Belfast, Northern Ireland, and Andrew Markwick-Kemper of the University of Manchester in the UK. Bruenken worked with McCarthy, Harshal Gupta, Carl Gottlieb, and Patrick Thaddeus, all of the Harvard-Smithsonian Center for Astrophysics. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.
Risse, Fabian; Gedig, Erk T; Gutmann, Jochen S
2018-04-30
The carbodiimide-mediated amine coupling of protein ligands to sensor chips coated with anionic polycarboxylate hydrogels, such as carboxymethyl dextran, is the predominant covalent immobilization procedure utilized in optical biosensors, namely surface plasmon resonance (SPR) biosensors. Usually, electrostatic interactions at a slightly acidic pH and low ionic strength are employed to efficiently accumulate neutral and basic ligands on the chip surface, which are then covalently coupled by surface-bound active N-hydroxysuccinimide (NHS) esters. Unfortunately, this approach is not suitable for acidic proteins or other ligands with low isoelectric points (IEPs), such as nucleic acids, because the charge density of the polycarboxylates is greatly reduced at acidic pH or because electrostatic attraction cannot be achieved. To overcome these drawbacks, we have established a charge-reversal approach that allows the preconcentration of acidic proteins above their IEPs. A precisely controlled amount of tertiary amines is applied to reverse the previous anionic surface charge while maintaining carbodiimide compatibility with future protein immobilization. The mechanism of this reversed-charge immobilization approach was demonstrated employing protein A as a model protein and using attenuated total reflectance Fourier transform infrared spectroscopy, dynamic contact angle measurements, colorimetric quantification, and SPR analysis to characterize surface derivatization. Furthermore, even though it had previously proven impossible to preconcentrate DNA electrostatically and to covalently couple it to polyanionic chip surfaces, we demonstrated that our approach allowed DNA to be preconcentrated and immobilized in good yields. Graphical abstract Principle of the covalent immobilization of acidic ligands on reversed-charge zwitterionic sensor chip surfaces.
Tang, Jay X; Wen, Qi; Bennett, Andrew; Kim, Brian; Sheils, Catherine A; Bucki, Robert; Janmey, Paul A
2005-10-01
Bundles of F-actin and DNA present in the sputum of cystic fibrosis (CF) patients but absent from normal airway fluid contribute to the altered viscoelastic properties of sputum that inhibit clearance of infected airway fluid and exacerbate the pathology of CF. Previous strategies to remove these filamentous aggregates have focused on DNase to enzymatically depolymerize DNA to constituent monomers and gelsolin to sever F-actin to small fragments. The high densities of negative surface charge on DNA and F-actin suggest that the bundles of these filaments, which alone exhibit a strong electrostatic repulsion, may be stabilized by multivalent cations such as histones, antimicrobial peptides, and other positively charged molecules prevalent in airway fluid. This study reports that bundles of DNA or F-actin formed after addition of histone H1 or lysozyme are efficiently dissolved by soluble multivalent anions such as polymeric aspartate or glutamate. Addition of poly-aspartate or poly-glutamate also disperses DNA and actin-containing bundles in CF sputum and lowers the elastic moduli of these samples to levels comparable to those obtained after treatment with DNase I or gelsolin. Addition of poly-aspartic acid also increased DNase activity when added to samples containing DNA bundles formed with histone H1. When added to CF sputum, poly-aspartic acid significantly reduced the growth of bacteria, suggesting activation of endogenous antibacterial factors. These findings suggest that soluble multivalent anions have potential alone or in combination with other mucolytic agents to selectively dissociate the large bundles of charged biopolymers that form in CF sputum.
Ding, Yuchen; Nagpal, Prashant
2016-10-14
Several strategies are currently being investigated for conversion of incident sunlight into renewable sources of energy, and photocatalytic or photoelectrochemical production of solar fuels can provide an important alternative. Titanium dioxide (TiO 2 ) has been heavily investigated as a material of choice due to its excellent optoelectronic properties and stability, and anion-doping proposed as a pathway to improve light absorption as well as improving the efficiency of oxygen production. While several studies have used morphological tuning, elemental doping, and surface engineering in TiO 2 to extend its absorption, there is a need to optimize simultaneously charge transport and improve interfacial chemical reaction kinetics. Here we show anion-doped (nitrogen, carbon) standalone TiO 2 nanotube membranes that absorb visible light for the water-splitting reaction, using both wireless (photocatalysis) and wired (photoelectrochemical) solar-to-fuel conversion (STFC) cells. Using simulated solar radiation, we show generation of hydrogen as a solar fuel using visible light photocatalysis. Furthermore, using a model we elucidate detailed photophysics and photoelectrochemical properties of these nanotubes, and explain the kinetics of photogenerated charge carriers following light absorption. We show that while visible light induces a superlinear photoresponse for catalytic reduction and may benefit from higher incident light intensity, ultraviolet light shows a linear photoresponse and saturation with higher light flux due to trapping of photogenerated charges (mainly electrons). These results can have important implications for design of other metal-oxide membranes for solar fuel generation, and appropriate design of dopants and induced energy levels in these photocatalysts.
Zwitterion mediator/quenchers. Coulombic minimization of the back-reaction in photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brugger, P.A.; Graetzel, M.; Guarr, T.
1982-03-18
Zwitterionic analogues of methyl viologen, N,N'-bis(carboxyethyl)-4,4'-bipyridyl (CEB), and N,N'-bis(sulfonatopropyl)-4,4'-bipyridyl (SPB) have been studied as electron-transfer quenchers of excited-state photocatalysts. The molecules are formally neutral when oxidized but become negatively charged when reduced. This charge buildup minimizes undesirable back-recombination of the photogenerated redox products. This Coulombic effect is demonstrated both by direct flash photolysis measurements of back-recombination and by catalytic studies of water reduction. Results are compared for the zwitterion quenchers and methyl viologen, reacting with soluble anionic porphyrins and with micelle-associated reactants. For the anionic porphyrin system zinc tetrakis (sulfonatophenyl)porphyrin(4-) the rates of back-recombination are as follows: ZnTSPP/sup 3 -/more » + MV/sup +/...-->.. ZnTSPP/sup 4 -/ + MV/sup 2 +/ (k), k = 2 x 10/sup 9/M/sup -1/s/sup -1/; ZnTSPP/sup 3 -/ + CEB/sup -/. ..-->.. ZnTSPP/sup 4 -/ + CEB +- (k), k = 6 x 10/sup 8/ M/sup -1/ s/sup -1/. In a corresponding catalytic system incorporating ZnTPPS as the photoacceptor, CEB or methyl viologen as the quencher, and N-phenylglycine as the electron donor, a >2-fold enhancement of catalysis is observed by replacing MV/sup 2 +/ with CEB. These events can be greatly accentuated by increasing the charge on the components, via micellar localization. Thus, by using an amphiphilic derivative of Ru(bpy)/sub 3//sup 2 +/ as photoactive donor solubilized in anionic micelles and SPB as electron acceptor, one can achieve 200-fold reduction in the rate of the back-reaction.« less
Water network-mediated, electron-induced proton transfer in [C5H5N ṡ (H2O)n]- clusters
NASA Astrophysics Data System (ADS)
DeBlase, Andrew F.; Wolke, Conrad T.; Weddle, Gary H.; Archer, Kaye A.; Jordan, Kenneth D.; Kelly, John T.; Tschumper, Gregory S.; Hammer, Nathan I.; Johnson, Mark A.
2015-10-01
The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ṡ (H2O)n=3-5]- clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxide ions with the neutral pyridinium radical, PyH(0), occupying one of the primary solvation sites of the OH-. The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the "solvent coordinate" at the heart of a prototypical proton-coupled electron transfer reaction.
Saha, Arpita; Oleshkevich, Elena; Vinas, Clara; Teixidor, Francesc
2017-12-01
Closely packed hollow spheres connected through pillars to a CdSe quantum dot (QD) core produce channels through which ions navigate. This particular structure is well represented by [CdSe@CarbOPH(O)]@Cl/[N(Caprylyl) 3 Me 1 ] indicating that in the channels between the canopy made by the carboranyl spheres (carboranylphosphinate, CarbOPH(O)) and the CdSe core exist chloride anions. Due to the close packing, the spheres produce openings. These are converted into gates because [N(Caprylyl) 3 Me 1 ] acts as a plug. The [CdSe@CarbOPH(O)]@Cl/assembly is negatively charged because the Cd positive charges are outnumbered by the negative charges due to the Se, the phosphinic acid and, very importantly, the trapped chloride anions, and this negative load is compensated by the cationic surfactant. Here, it is shown that this synergism produces an unprecedented phenomenon, namely, kinetic fluorescence switching. It is observed that the material shines brightly then loses its brightness and, upon the application of kinetic energy, shines back to the maximum power. This process continues for an extended period of time, up to half a year, at least. This new type of architecture in QDs is named as core-canopy QDs. In this case, this study demonstrates one property, the kinetic fluorescence switching, as a consequence of the trapping of Cl - in the QDs channels, but other properties can be envisaged with the judicious choice of the anions or even the pillar connecting the hollow sphere with the ground. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Eklund, Lars; Hofer, Tomas S; Persson, Ingmar
2015-01-28
Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) and EXAFS measurements to study structure and dynamics of the hydrated oxo chloro anions chlorite, ClO2(-), chlorate, ClO3(-), and perchlorate, ClO4(-). In addition, the structures of the hydrated hypochlorite, ClO(-), bromate, BrO3(-), iodate, IO3(-) and metaperiodate, IO4(-), ions have been determined in aqueous solution by means of LAXS. The structures of the bromate, metaperiodate, and orthoperiodate, H2IO6(3-), ions have been determined by EXAFS as solid sodium salts and in aqueous solution as well. The results show clearly that the only form of periodate present in aqueous solution is metaperiodate. The Cl-O bond distances in the hydrated oxo chloro anions as determined by LAXS and obtained in the QMCF MD simulations are in excellent agreement, being 0.01-0.02 Å longer than in solid anhydrous salts due to hydration through hydrogen bonding to water molecules. The oxo halo anions, all with unit negative charge, have low charge density making them typical structure breakers, thus the hydrogen bonds formed to the hydrating water molecules are weaker and more short-lived than those between water molecules in pure water. The water exchange mechanism of the oxo chloro anions resembles those of the oxo sulfur anions with a direct exchange at the oxygen atoms for perchlorate and sulfate. The water exchange rate for the perchlorate ion is significantly faster, τ0.5 = 1.4 ps, compared to the hydrated sulfate ion and pure water, τ0.5 = 2.6 and 1.7 ps, respectively. The angular radial distribution functions show that the chlorate and sulfite ions have a more complex water exchange mechanism. As the chlorite and chlorate ions are more weakly hydrated than the sulfite ion the spatial occupancy is less well-defined and it is not possible to follow any well-defined migration pattern as it is difficult to distinguish between hydrating water molecules and bulk water in the region close to the ions.
Eklund, Lars; Hofer, Tomas S.
2014-01-01
Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) and EXAFS measurements to study structure and dynamics of the hydrated oxo chloro anions chlorite, ClO2−, chlorate, ClO3−, and perchlorate, ClO4−. In addition, the structures of the hydrated hypochlorite, ClO−, bromate, BrO3−, iodate, IO3− and metaperiodate, IO4−, ions have been determined in aqueous solution by means of LAXS. The structures of the bromate, metaperiodate, and orthoperiodate, H2IO63−, ions have been determined by EXAFS as solid sodium salts and in aqueous solution as well. The results show clearly that the only form of periodate present in aqueous solution is metaperiodate. The Cl-O bond distances in the hydrated oxo chloro anions as determined by LAXS and obtained in the QMCF MD simulations are in excellent agreement, being 0.01–0.02 Å longer than in solid anhydrous salts due to hydration through hydrogen bonding to water molecules. The oxo halo anions, all with unit negative charge, have low charge density making them typical structure breakers, thus the hydrogen bonds formed to the hydrating water molecules are weaker and more short-lived than those between water molecules in pure water. The water exchange mechanism of the oxo chloro anions resembles those of the oxo sulfur anions with a direct exchange at the oxygen atoms for perchlorate and sulfate. The water exchange rate for the perchlorate ion is significantly faster, τ0.5=1.4 ps, compared to the hydrated sulfate ion and pure water, τ0.5=2.6 and 1.7 ps, respectively. The angular radial distribution functions show that the chlorate and sulfite ions have a more complex water exchange mechanism. As the chlorite and chlorate ions are more weakly hydrated than the sulfite ion the spatial occupancy is less well-defined and it is not possible to follow any well-defined migration pattern as it is difficult to distinguish between hydrating water molecules and bulk water in the region close to the ions. PMID:25473816
Eklund, Lars; Hofer, Tomas S.; Persson, Ingmar
2014-11-26
Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) has been applied in conjunction with experimental large angle X-ray scattering (LAXS) and EXAFS measurements to study structure and dynamics of the hydrated oxo chloro anions chlorite, ClO 2 –, chlorate, ClO 3 –, and perchlorate, ClO 4 –. In addition, the structures of the hydrated hypochlorite, ClO –, bromate, BrO 3 –, iodate, IO 3 – and metaperiodate, IO 4 –, ions have been determined in aqueous solution by means of LAXS. The structures of the bromate, metaperiodate, and orthoperiodate, H 2IO 6 3–, ions have been determinedmore » by EXAFS as solid sodium salts and in aqueous solution as well. The results show clearly that the only form of periodate present in aqueous solution is metaperiodate. The Cl–O bond distances in the hydrated oxo chloro anions as determined by LAXS and obtained in the QMCF MD simulations are in excellent agreement, being 0.01–0.02 Å longer than in solid anhydrous salts due to hydration through hydrogen bonding to water molecules. The oxo halo anions, all with unit negative charge, have low charge density making them typical structure breakers, thus the hydrogen bonds formed to the hydrating water molecules are weaker and more short-lived than those between water molecules in pure water. The water exchange mechanism of the oxo chloro anions resembles those of the oxo sulfur anions with a direct exchange at the oxygen atoms for perchlorate and sulfate. Here, the water exchange rate for the perchlorate ion is significantly faster, τ 0.5 = 1.4 ps, compared to the hydrated sulfate ion and pure water, τ 0.5 = 2.6 and 1.7 ps, respectively. The angular radial distribution functions show that the chlorate and sulfite ions have a more complex water exchange mechanism. As the chlorite and chlorate ions are more weakly hydrated than the sulfite ion the spatial occupancy is less well-defined and it is not possible to follow any well-defined migration pattern as it is difficult to distinguish between hydrating water molecules and bulk water in the region close to the ions.« less
Wu, Jing; Lu, Hongwei; Zhang, Xuliang; Raziq, Fazal; Qu, Yang; Jing, Liqiang
2016-04-11
Modification with chloride and phosphate anions, and coupling with carbon nanotubes could effectively trap holes and transfer the electrons of rutile nanorods, respectively, so as to greatly promote photogenerated charge separation, leading to an obviously-improved cocatalyst-free photocatalytic conversion of CO2 to CH4 and CO, along with the positive effects of constructed phosphate bridges.
Nanopipette delivery: influence of surface charge.
Shi, Wenqing; Sa, Niya; Thakar, Rahul; Baker, Lane A
2015-07-21
In this report, transport through a nanopipette is studied and the interplay between current rectification and ion delivery for small pipettes is examined. First, surface charge dependence of concentration polarization effects in a quartz nanopipette was investigated. Electrical characterization was performed through current-potential (I-V) measurements. In addition, fluorescein (an anionic fluorescent probe) was utilized to optically map ion enrichment and ion depletion in the nanopipette tip. Bare nanopipettes and polyethylenimine (PEI)-modified nanopipettes were examined. Results confirm that concentration polarization is a surface charge dependent phenomenon and delivery can be controlled through modification of surface charge. The relationship between concentration polarization effects and voltage-driven delivery of charged electroactive species was investigated with a carbon ring/nanopore electrode fabricated from pyrolyzed parylene C (PPC). Factors such as surface charge polarity of the nanopipette, electrolyte pH, and electrolyte concentration were investigated. Results indicate that with modification of surface charge, additional control over delivery of charged species can be achieved.
Large-scale preparation of plasmid DNA.
Heilig, J S; Elbing, K L; Brent, R
2001-05-01
Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.
NASA Astrophysics Data System (ADS)
Laszlo, Kenneth J.; Bush, Matthew F.
2015-12-01
Mass spectra of native-like protein complexes often exhibit narrow charge-state distributions, broad peaks, and contributions from multiple, coexisting species. These factors can make it challenging to interpret those spectra, particularly for mixtures with significant heterogeneity. Here we demonstrate the use of ion/ion proton transfer reactions to reduce the charge states of m/ z-selected, native-like ions of proteins and protein complexes, a technique that we refer to as cation to anion proton transfer reactions (CAPTR). We then demonstrate that CAPTR can increase the accuracy of charge state assignments and the resolution of interfering species in native mass spectrometry. The CAPTR product ion spectra for pyruvate kinase exhibit ~30 peaks and enable unambiguous determination of the charge state of each peak, whereas the corresponding precursor spectra exhibit ~6 peaks and the assigned charge states have an uncertainty of ±3%. 15+ bovine serum albumin and 21+ yeast enolase dimer both appear near m/ z 4450 and are completely unresolved in a mixture. After a single CAPTR event, the resulting product ions are baseline resolved. The separation of the product ions increases dramatically after each subsequent CAPTR event; 12 events resulted in a 3000-fold improvement in separation relative to the precursor ions. Finally, we introduce a framework for interpreting and predicting the figures of merit for CAPTR experiments. More generally, these results suggest that CAPTR strongly complements other mass spectrometry tools for analyzing proteins and protein complexes, particularly those in mixtures.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2016-05-01
The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.
Ferreira da Silva, F; Ptasińska, S; Denifl, S; Gschliesser, D; Postler, J; Matias, C; Märk, T D; Limão-Vieira, P; Scheier, P
2011-11-07
Results of a detailed study on electron interactions with nitromethane (CH(3)NO(2)) embedded in helium nanodroplets are reported. Anionic and cationic products formed are analysed by mass spectrometry. When the doped helium droplets are irradiated with low-energy electrons of about 2 eV kinetic energy, exclusively parent cluster anions (CH(3)NO(2))(n)(-) are formed. At 8.5 eV, three anion cluster series are observed, i.e., (CH(3)NO(2))(n)(-), [(CH(3)NO(2))(n)-H](-), and (CH(3)NO(2))(n)NO(2)(-), the latter being the most abundant. The results obtained for anions are compared with previous electron attachment studies with bare nitromethane and nitromethane condensed on a surface. The cation chemistry (induced by electron ionization of the helium matrix at 70 eV and subsequent charge transfer from He(+) to the dopant cluster) is dominated by production of methylated and protonated nitromethane clusters, (CH(3)NO(2))(n)CH(3)(+) and (CH(3)NO(2))(n)H(+).
A slow calcium-dependent component of charge movement in Rana temporaria cut twitch fibres.
Hui, C S
1998-06-15
1. Charge movement was studied in highly stretched frog cut twitch fibres in a double Vaseline-gap voltage-clamp chamber, with the internal solution containing either 0.1 mM EGTA or 20 mM EGTA plus 1. 8 mM total Ca2+. 2. Fibres were stimulated with TEST pulses lasting 100-400 ms. Replacement of the external Cl- with an 'impermeant' anion, such as SO42-, CH3SO3-, gluconate or glutamate, greatly reduced the calcium-dependent Cl- current in the ON segment and generated a slowly decaying inward OFF current in charge movement traces. 3. Application of 20 mM EGTA to the internal solution abolished the slow inward OFF current, implying that the activation of the current depended on the presence of Ca2+ in the myoplasm. The possibility that the slow inward OFF current was carried by cations flowing inwards or anions flowing outwards was studied and determined to be unlikely. 4. During a long (2000 ms) TEST pulse, a slowly decaying ON current was also observed. When the slow ON and OFF currents were included as parts of the total charge movement, ON-OFF charge equality was preserved. This slow capacitive current is named Idelta. 5. When Cl- was the major anion in the external solution, the OFF Idelta was mostly cancelled by a slow outward current carried by the inflow of Cl-. 6. The OFF Idelta component showed a rising phase. The average values of the rising time constants in CH3SO3- and SO42- were similar and about half of that in gluconate. 7. The OFF Idelta component in CH3SO3- had a larger magnitude and longer time course than that in SO42-. The maximum amount of Qdelta in CH3SO3- was about three times as much as that in SO42-, whereas the voltage dependence of Qdelta was similar in the two solutions. 8. Since the existence of Qdelta depends on the presence of Ca2+ in the myoplasm, it is speculated that Qdelta could be a function of intracellular calcium release.
Tuning Curvature and Stability of Monoolein Bilayers by Designer Lipid-Like Peptide Surfactants
Yaghmur, Anan; Laggner, Peter; Zhang, Shuguang; Rappolt, Michael
2007-01-01
This study reports the effect of loading four different charged designer lipid-like short anionic and cationic peptide surfactants on the fully hydrated monoolein (MO)-based Pn3m phase (Q224). The studied peptide surfactants comprise seven amino acid residues, namely A6D, DA6, A6K, and KA6. D (aspartic acid) bears two negative charges, K (lysine) bears one positive charge, and A (alanine) constitutes the hydrophobic tail. To elucidate the impact of these peptide surfactants, the ternary MO/peptide/water system has been investigated using small-angle X-ray scattering (SAXS), within a certain range of peptide concentrations (R≤0.2) and temperatures (25 to 70°C). We demonstrate that the bilayer curvature and the stability are modulated by: i) the peptide/lipid molar ratio, ii) the peptide molecular structure (the degree of hydrophobicity, the type of the hydrophilic amino acid, and the headgroup location), and iii) the temperature. The anionic peptide surfactants, A6D and DA6, exhibit the strongest surface activity. At low peptide concentrations (R = 0.01), the Pn3m structure is still preserved, but its lattice increases due to the strong electrostatic repulsion between the negatively charged peptide molecules, which are incorporated into the interface. This means that the anionic peptides have the effect of enlarging the water channels and thus they serve to enhance the accommodation of positively charged water-soluble active molecules in the Pn3m phase. At higher peptide concentration (R = 0.10), the lipid bilayers are destabilized and the structural transition from the Pn3m to the inverted hexagonal phase (H2) is induced. For the cationic peptides, our study illustrates how even minor modifications, such as changing the location of the headgroup (A6K vs. KA6), affects significantly the peptide's effectiveness. Only KA6 displays a propensity to promote the formation of H2, which suggests that KA6 molecules have a higher degree of incorporation in the interface than those of A6K. PMID:17534429
Theoretical and Numerical Modeling of faceted Ionic crystalline vesicles
NASA Astrophysics Data System (ADS)
Olvera de La Cruz, Monica
2007-03-01
Icosahedral shape is found in several natural structures including large viruses, large fullerenes and cationic-anionic vesicles. Faceting into icosahedral shape can occur in large crystalline membranes via elasticity theory. Icosahedral symmetry is found in small systems of particles with short-range interactions on a sphere. Dr G. Vernizzi and I show a novel electrostatic-driven mechanism of ionic crystalline shells faceting into icosahedral shapes even for systems with a small number of particles. Icosahedral shape is possible in cationic and anionic molecules adsorbed onto spherical interfaces, such as emulsions or other immiscible liquid droplets because the large concentration of charges at the interface can lead to ionic crystals on the curved interface. Such self-organized ionic structures favors the formation of flat surfaces. We find that these ionic crystalline shells can have lower energy when faceted into icosahedra along particular directions. Indeed, the ``ionic'' buckling is driven by preferred bending directions of the planar ionic structure, along which is more likely for the icosahedral shape to develop an edge. Since only certain orientations are allowed, rotational symmetry is broken. One can hope to exploit this mechanism to generate functional materials where, for instance, proteins with specific charge groups can orient at specific directions along an icosahedral cationic-anionic vesicle.
Sorption and retention of diclofenac on zeolite in the presence of cationic surfactant.
Sun, Ken; Shi, Yan; Wang, Xiaoyu; Li, Zhaohui
2017-02-05
Diclofenac (DC) is one of the most widely prescribed non-steroidal anti-inflammatory drugs and one of the commonly found pharmaceuticals in aquatic environments and wastewater treatment plants. It possesses negative charges when solution pH is greater than its pKa value, while most of the soil components and sediment minerals bear negative charges, too, resulting in a net repulsion between the soil minerals and DC. Surfactant-modified zeolite (SMZ) has been studied extensively over the last 20 years for its effective removal of anionic contaminants tested under different experimental scales. However, its application for the removal of anionic drugs, such as DC, was less reported. This study focused on the sorption of DC by SMZ under different physic-chemical conditions, supplemented with instrumental analyses, in order to elucidate the mechanism of DC sorption by SMZ and to expand the SMZ application further. The results showed that the retention of DC was on the external surfaces of SMZ with extremely fast removal rate. Both anion exchange and partitioning of DC into the adsorbed surfactant micelles (admicelles) were responsible for the extended DC sorption. Interactions of DC with SMZ were facilitated with the benzene ring, the CO, and the CH 2 CH 3 functional groups. Copyright © 2016 Elsevier B.V. All rights reserved.
Mechanism of PAMAM Dendrimers Internalization in Hippocampal Neurons.
Vidal, Felipe; Vásquez, Pilar; Díaz, Carola; Nova, Daniela; Alderete, Joel; Guzmán, Leonardo
2016-10-03
Polyamidoamine (PAMAM) dendrimers are hyperbranched macromolecules which have been described as one of the most promising drug nanocarrier systems. A key process to understand is their cellular internalization mechanism because of its direct influence on their intracellular distribution, association with organelles, entry kinetics, and cargo release. Despite that internalization mechanisms of dendrimers have been studied in different cell types, in the case of neurons they are not completely described. Considering the relevance of central nervous system (CNS) diseases and neuropharmacology, the aim of this report is to describe the molecular internalization mechanism of different PAMAM-based dendrimer systems in hippocampal neurons. Four dendrimers based on fourth generation PAMAM with different surface properties were studied: unmodified G4, with a positively charged surface; PP50, with a substitution of the 50% of amino surface groups with polyethylene glycol neutral groups; PAc, with a substitution of the 30% of amino surface groups with acrylate anionic groups; and PFO, decorated with folic acid groups in a 25% of total terminal groups. Confocal images show that both G4 and PFO are able to enter the neurons, but not PP50 and PAc. Colocalization study with specific endocytosis markers and specific endocytosis inhibitor assay demonstrate that clathrin-mediated endocytosis would be the main internalization mechanism for G4, whereas clathrin- and caveolae-mediated endocytosis would be implicated in PFO internalization. These results show the existence of different internalization mechanisms for PAMAM dendrimers in neurons and the possibility to control their internalization properties with specific chemical modifications.
Molecular dynamics studies of interpenetrating polymer networks for actuator devices
NASA Astrophysics Data System (ADS)
Brandell, Daniel; Kasemägi, Heiki; Citérin, Johann; Vidal, Frédéric; Chevrot, Claude; Aabloo, Alvo
2008-03-01
Molecular Dynamics (MD) techniques have been used to study the structure and dynamics of a model system of an interpenetrating polymer (IPN) network for actuator devices. The systems simulated were generated using a Monte Carlo-approach, and consisted of poly(ethylene oxide) (PEO) and poly(butadiene) (PB) in a 80-20 percent weight ratio immersed into propylene carbonate (PC) solutions of LiClO 4. The total polymer content was 32%, in order to model experimental conditions. The dependence of LiClO 4 concentration in PC has been studied by studying five different concentrations: 0.25, 0.5, 0.75, 1.0 and 1.25 M. After equilibration, local structural properties and dynamical features such as phase separation, coordination, cluster stability and ion conductivity were studied. In an effort to study the conduction processes more carefully, external electric fields of 1×10 6 V/m and 5×10 6 V/m has been applied to the simulation boxes. A clear relationship between the degree of local phase separation and ion mobility is established. It is also shown that although the ion pairing increases with concentration, there are still significantly more potential charge carriers in the higher concentrated systems, while concentrations around 0.5-0.75 M of LiClO 4 in PC seem to be favorable in terms of ion mobility. Furthermore, the anions exhibit higher conductivity than the cations, and there are tendencies to solvent drag from the PC molecules.
Jochim, Aleksej; Jess, Inke; Näther, Christian
2018-01-01
The crystal structure of the title salt, (C6H8NO)8[Fe(NCS)4(C6H7NO)2][Fe(NCS)5(C6H7NO)]2[Fe(NCS)6], comprises three negatively charged octahedral FeIII complexes with different coordination environments in which the FeIII atoms are coordinated by a different number of thiocyanate anions and 4-methoxypyridine ligands. Charge balance is achieved by 4-methoxypyridinium cations. The asymmetric unit consists of three FeIII cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thiocyanate anions, two 4-methoxypyridine ligands and 4-methoxypyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic interactions between organic cations and the ferrate(III) anions, weak N—H⋯S hydrogen-bonding interactions involving the pyridinium N—H groups of the cations and the thiocyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure. PMID:29765708
Hamblin, M R; Governatore, M Del; Rizvi, I; Hasan, T
2000-01-01
Optimizing photodynamic therapy involves attempting to increase both the absolute tumour content of photosensitizer and the selectivity between tumour and surrounding normal tissue. One reason why photodynamic therapy has not been considered suitable for treatment of metastatic tumours in the liver, is the poor selectivity of conventional photosensitizers for tumour compared to normal liver. This report details an alternative approach to increasing this selectivity by the use of antibody-targeted photosensitizers (or photoimmunoconjugates) to target intrahepatic tumours caused by human colorectal cancer cells in the nude mouse, and explores the role of molecular charge on the tumour-targeting efficiency of macromolecules. The murine monoclonal antibody 17.1A (which recognizes an antigen expressed on HT 29 cells) was used to prepare site-specific photoimmunoconjugates with the photosensitizer chlorine6. The conjugates had either a predominant cationic or anionic charge and were injected i.v. into tumour-bearing mice. Biodistribution 3 or 24 h later was measured by extraction of tissue samples and quantitation of chlorine6 content by fluorescence spectroscopy. The photoimmunoconjugates were compared to the polylysine conjugates in an attempt to define the effect of molecular charge as well as antibody targeting. The anionic 17.1A conjugate delivered more than twice as much photosensitizer to the tumour at 3 h than other species (5 times more than the cationic 17.1A conjugate) and had a tumour:normal liver ratio of 2.5. Tumour-to-liver ratios were greater than one for most compounds at 3 h but declined at 24 h. Tumour-to-skin ratios were high (> 38) for all conjugates but not for free chlorine6. Cationic species had a high uptake in the lungs compared to anionic species. The photoimmunoconjugates show an advantage over literature reports of other photosensitizers, which can result in tumour:normal liver ratios of less than 1. © 2000 Cancer Research Campaign http://www.bjcancer.com PMID:11076666
Dynamics of ions in a water drop using the AMOEBA polarizable force field
NASA Astrophysics Data System (ADS)
Thaunay, Florian; Ohanessian, Gilles; Clavaguéra, Carine
2017-03-01
Various ions carrying a charge from -2 to +3 were confined in a drop of 100 water molecules as a way to model coordination properties inside the cluster and at the interface. The behavior of the ions has been followed by molecular dynamics with the AMOEBA polarizable force field. Multiply charged ions and small singly charged ions are found to lie inside the droplet, while bigger monovalent ions sit near the surface. The results provide a coherent picture of average structural properties as well as residence times for which a general trend is proposed, especially for the anions.
Investigation on electrical tree propagation in polyethylene based on etching method
NASA Astrophysics Data System (ADS)
Shi, Zexiang; Zhang, Xiaohong; Wang, Kun; Gao, Junguo; Guo, Ning
2017-11-01
To investigate the characteristic of electrical tree propagation in semi-crystalline polymers, the low-density polyethylene (LDPE) samples containing electrical trees are cut into slices by using ultramicrotome. Then the slice samples are etched by potassium permanganate etchant. Finally, the crystalline structure and the electrical tree propagation path in samples are observed by polarized light microscopy (PLM). According to the observation, the LDPE spherocrystal structure model is established on the basis of crystallization kinetics and morphology of polymers. And the electrical tree growth process in LDPE is discussed based on the free volume breakdown theory, the molecular chain relaxation theory, the electromechanical force theory, the thermal expansion effect and the space charge shielding effect.
Electrospun Polyaniline/Polyethylene Oxide Nanofiber Field Effect Transistor
NASA Technical Reports Server (NTRS)
Pinto, N. J.; Johnson, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A.
2003-01-01
We report on the observation of field effect transistor (FET) behavior in electrospun camphorsulfonic acid doped polyaniline(PANi)/polyethylene oxide(PE0) nanofibers. Saturation channel currents are observed at surprisingly low source/drain voltages. The hole mobility in the depletion regime is 1.4 x 10(exp -4) sq cm/V s while the 1-D charge density (at zero gate bias) is calculated to be approximately 1 hole per 50 two-ring repeat units of polyaniline, consistent with the rather high channel conductivity (approx. 10(exp -3) S/cm). Reducing or eliminating the PEO content in the fiber is expected to enhance device parameters. Electrospinning is thus proposed as a simple method of fabricating 1-D polymer FET's.
Characterization system for research on energy storage capacitors.
Noriega, J R; Iyore, O D; Budime, C; Gnade, B; Vasselli, J
2013-05-01
In this work a characterization system for high energy-density capacitors is described and demonstrated. Capacitors are being designed using thin-film technology in an attempt to achieve higher energy-density levels by operating the devices at a high voltage. These devices are fabricated from layers of 100 nm aluminum and a layer of polyvinylidene fluoride-hexafluoropropylene on a polyethylene naphthalate plastic substrate. The devices have been designed to store electrical charge at up to 200 V. Characterizations of these devices focus on the measurement of capacitance vs bias voltage and temperature, equivalent series resistance, and charge/discharge cycles. For the purpose of the characterization of these capacitors, an electronic charge/discharge interface was designed and tested.
An all-solid-state lithium/polyaniline rechargeable cell
NASA Astrophysics Data System (ADS)
Li, Changzhi; Peng, Xinsheng; Zhang, Borong; Wang, Baochen
1992-07-01
The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)-epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modified PEO-ER interface exhibits good reversibility. At 50-80 C, the Li/PEO-ER-LiClO4/PAn cell shows more than 40 charge/discharge cycles, 90 percent charge/discharge efficiency, and 54 W h kg discharge energy density (on PAn weight basis) at 50 micro-A between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.
NASA Astrophysics Data System (ADS)
Barthel, Joseph; Sarigul-Klijn, Nesrin
2018-03-01
Deep space missions such as the planned 2025 mission to asteroids require spacecraft shields to protect electronics and humans from adverse effects caused by the space radiation environment, primarily Galactic Cosmic Rays. This paper first reviews the theory on how these rays of charged particles interact with matter, and then presents a simulation for a 500 day Mars flyby mission using a deterministic based computer code. High density polyethylene and aluminum shielding materials at a solar minimum are considered. Plots of effective dose with varying shield depth, charged particle flux, and dose in silicon and human tissue behind shielding are presented.
Borodin, Oleg; Smith, Grant D
2006-03-30
A quantum chemistry study of Li(+) interactions with ethers, carbonates, alkanes, and a trifluoromethanesulfonylimide anion (TFSI(-)) was performed at the MP2, B3LYP, and HF levels using the aug-cc-pvDz basis set for solvents and TFSI(-) anion, and [8s4p3d/5s3p2d]-type basis set for Li. A classical many-polarizable force field was developed for the LiTFSI salt interacting with ethylene carbonate (EC), gamma-butyrolactone (GBL), dimethyl carbonate (DMC), acetone, oligoethers, n-alkanes, and perfluoroalkanes. Molecular dynamics (MD) simulations were performed for EC/LiTFSI, PC/LiTFSI, GBL/LiTFSI, DMC/LiTFSI, 1,2-dimethoxyethane/LiTFSI, pentaglyme/LiTFSI, and poly(ethylene oxide) (MW = 2380)/LiTFSI electrolytes at temperatures from 298 to 423 K and salt concentrations from 0.3 to 5 M. The ion and solvent self-diffusion coefficients, electrolyte conductivity, electrolyte density, LiTFSI apparent molar volumes, and structure of the Li(+) cation environment predicted by MD simulations were found in good agreement with experimental data.
Vihola, Henna; Marttila, Anna-Kaisa; Pakkanen, Jukka S; Andersson, Mirja; Laukkanen, Antti; Kaukonen, Ann Marie; Tenhu, Heikki; Hirvonen, Jouni
2007-10-01
Cell-polymer interactions of thermosensitive poly(N-isopropylacrylamide) (PNIPAM) or poly(N-vinylcaprolactam) (PVCL) coated particles with RAW264.7 macrophages and intestinal Caco-2 cells were evaluated. Nanosized particles were prepared by modifying the surface of fluorescent polystyrene (FPS) particles with the thermosensitive polymer gels or with poly(ethylene oxide) (PEO)-macromonomer grafts. The particles were characterized by IR-spectroscopy for functional groups, light scattering for size distribution and zeta-potential for surface charge. Effects of temperature and polymer coating/grafting on the cellular interactions were evaluated by cell association/uptake and visualized by confocal scanning microscope. PEO and PNIPAM inhibited the polymer-cell contact by steric repulsion, evidenced by weak attachment of the particles. PVCL-coated FPS was adsorbed on the cells more strongly, especially at 37 degrees C, because of more hydrophobic nature at higher temperatures. The results suggest feasibility of the PNIPAM and PVCL for biotechnological/pharmaceutical applications, as the cell-particle interactions may be modified by size, surface charge, hydrophobicity, steric repulsion and temperature.
Interactions between Hofmeister anions and the binding pocket of a protein.
Fox, Jerome M; Kang, Kyungtae; Sherman, Woody; Héroux, Annie; Sastry, G Madhavi; Baghbanzadeh, Mostafa; Lockett, Matthew R; Whitesides, George M
2015-03-25
This paper uses the binding pocket of human carbonic anhydrase II (HCAII, EC 4.2.1.1) as a tool to examine the properties of Hofmeister anions that determine (i) where, and how strongly, they associate with concavities on the surfaces of proteins and (ii) how, upon binding, they alter the structure of water within those concavities. Results from X-ray crystallography and isothermal titration calorimetry show that most anions associate with the binding pocket of HCAII by forming inner-sphere ion pairs with the Zn(2+) cofactor. In these ion pairs, the free energy of anion-Zn(2+) association is inversely proportional to the free energetic cost of anion dehydration; this relationship is consistent with the mechanism of ion pair formation suggested by the "law of matching water affinities". Iodide and bromide anions also associate with a hydrophobic declivity in the wall of the binding pocket. Molecular dynamics simulations suggest that anions, upon associating with Zn(2+), trigger rearrangements of water that extend up to 8 Å away from their surfaces. These findings expand the range of interactions previously thought to occur between ions and proteins by suggesting that (i) weakly hydrated anions can bind complementarily shaped hydrophobic declivities, and that (ii) ion-induced rearrangements of water within protein concavities can (in contrast with similar rearrangements in bulk water) extend well beyond the first hydration shells of the ions that trigger them. This study paints a picture of Hofmeister anions as a set of structurally varied ligands that differ in size, shape, and affinity for water and, thus, in their ability to bind to—and to alter the charge and hydration structure of—polar, nonpolar, and topographically complex concavities on the surfaces of proteins.
Mixed mode HILIC/anion exchange separations on latex coated silica monoliths.
Ibrahim, Mohammed E A; Lucy, Charles A
2012-10-15
Bare silica monoliths do not possess anion exchange sites hence they show low retention for anions. Moreover, bare silica monoliths show low retention in hydrophilic interaction liquid chromatography (HILIC). Coating the silica surface with cationic nanoparticles e.g. AS9-SC (latex A), AS12A (latex B) and DNApac (latex C) increases the thickness of the water layer on the Onyx silica monolith 8-10 times enabling HILIC retention when a high % acetonitrile (ACN) mobile phase is used. The formed water layer by itself is not sufficient to perform good separation of the studied anions (acetate, formate, nitrate, bromate, thiocyanate and iodide). On the other hand, the latex nanoparticles introduce positively charged sites, making anion exchange chromatography possible, with the anion exchange capacity varying with the latex adsorbed (44.1 ± 0.2, 4.4 ± 0.1 and 14.0 ± 0.7 μeq/column for latex A, B and C, respectively). Latex A nanoparticles which provided the highest ion exchange capacity separated all tested anions with reasonable resolution. Fast separation (2.5 min) of acetate, formate, nitrate, bromate, thiocyanate and iodide was performed using the latex A coated silica monolith. The obtained efficiencies are 13,000-50,000 plates/m at 3 mL/min with a minimum resolution of 0.85. Retention is mixed mode under HILIC conditions with HILIC dominating for the kosmotropic anions and ion exchange dominating for the chaotropic anions. The two different brands of silica monoliths (Merck Chromolith and Phenomenex Onyx) coated with the same latex A nanoparticles displayed similar water layer volumes, ion exchange capacity and selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.
Electroactive Self-Assembled Monolayers Detect Micelle Formation.
Dionne, Eric R; Badia, Antonella
2017-02-15
The interfacial electrochemistry of self-assembled monolayers (SAMs) of ferrocenyldodecanethiolate on gold (FcC 12 SAu) electrodes is applied to detect the micellization of some common anionic surfactants, sodium n-alkyl sulfates, sodium n-alkyl sulfonates, sodium diamyl sulfosuccinate, and sodium dodecanoate, in aqueous solution by cyclic voltammetry. The apparent formal redox potential (E°' SAM ) of the FcC 12 SAu SAM is used to track changes in the concentration of the unaggregated surfactant anions and determine the critical micelle concentration (cmc). The effect of added salt (NaF) on the sodium alkyl sulfate concentration dependence of E°' SAM is also investigated. Weakly hydrated anions, such as ClO 4 - , pair with the electrogenerated SAM-bound ferroceniums to neutralize the excess positive charge created at the SAM/electrolyte solution interface and stabilize the oxidized cations. E°' SAM exhibits a Nernstian-type dependence on the anion activity in solution. Aggregation of the surfactant anions into micelles above the cmc causes the free surfactant anion activity to deviate from the molar concentration of added surfactant, resulting in a break in the plot of E°' SAM versus the logarithm of the concentration of anionic surfactant. The concentration at which this deviation occurs is in good agreement with literature or experimentally determined values of the cmc. The effects of Ohmic potential drop, liquid junction potential, and surfactant adsorption behavior on E°' SAM are addressed. Ultimately, the E°' SAM response as a function of the anionic surfactant concentration exhibits the same features reported using potentiometry and surfactant ion-selective electrodes, which provide a direct measure of the free surfactant anion activity, thus making FcC 12 SAu SAM electrodes useful for the detection of surfactant aggregation and micelle formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Vivek M; Harris, Jason B; Adams, Rachel M
Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242 8249]. To study the role of anion interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused onmore » identification of Phe Asp or Glu pairs separated by less than 7 in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura Morokuma energy calculations were performed on roughly 19000 benzene formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (2 to 7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion pairs are found throughout protein structures, in helices as well as strands. Numerous pairs also had nearby cation interactions as well as potential stacking. While more than 1000 structures did not contain an anion pair, the 3134 remaining structures contained approximately 2.6 anion pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Vivek M; Harris, Jason B; Adams, Rachel M
Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion-{pi} pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242-8249]. To study the role of anion-{pi} interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification ofmore » Phe-Asp or -Glu pairs separated by less than 7 {angstrom} in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene-formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion-{pi} pairs are found throughout protein structures, in helices as well as {beta} strands. Numerous pairs also had nearby cation-{pi} interactions as well as potential {pi}-{pi} stacking. While more than 1000 structures did not contain an anion-{pi} pair, the 3134 remaining structures contained approximately 2.6 anion-{pi} pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.« less
Philip, Vivek; Harris, Jason; Adams, Rachel; Nguyen, Don; Spiers, Jeremy; Baudry, Jerome; Howell, Elizabeth E; Hinde, Robert J
2011-04-12
Protein structures are stabilized using noncovalent interactions. In addition to the traditional noncovalent interactions, newer types of interactions are thought to be present in proteins. One such interaction, an anion-π pair, in which the positively charged edge of an aromatic ring interacts with an anion, forming a favorable anion-quadrupole interaction, has been previously proposed [Jackson, M. R., et al. (2007) J. Phys. Chem. B111, 8242-8249]. To study the role of anion-π interactions in stabilizing protein structure, we analyzed pairwise interactions between phenylalanine (Phe) and the anionic amino acids, aspartate (Asp) and glutamate (Glu). Particular emphasis was focused on identification of Phe-Asp or -Glu pairs separated by less than 7 Å in the high-resolution, nonredundant Protein Data Bank. Simplifying Phe to benzene and Asp or Glu to formate molecules facilitated in silico analysis of the pairs. Kitaura-Morokuma energy calculations were performed on roughly 19000 benzene-formate pairs and the resulting energies analyzed as a function of distance and angle. Edgewise interactions typically produced strongly stabilizing interaction energies (-2 to -7.3 kcal/mol), while interactions involving the ring face resulted in weakly stabilizing to repulsive interaction energies. The strongest, most stabilizing interactions were identified as preferentially occurring in buried residues. Anion-π pairs are found throughout protein structures, in helices as well as β strands. Numerous pairs also had nearby cation-π interactions as well as potential π-π stacking. While more than 1000 structures did not contain an anion-π pair, the 3134 remaining structures contained approximately 2.6 anion-π pairs per protein, suggesting it is a reasonably common motif that could contribute to the overall structural stability of a protein.
Electric field effect on the electronic structure of 2D Y2C electride
NASA Astrophysics Data System (ADS)
Oh, Youngtek; Lee, Junsu; Park, Jongho; Kwon, Hyeokshin; Jeon, Insu; Wng Kim, Sung; Kim, Gunn; Park, Seongjun; Hwang, Sung Woo
2018-07-01
Electrides are ionic compounds in which electrons confined in the interstitial spaces serve as anions and are attractive owing to their exotic physical and chemical properties in terms of their low work function and efficient charge-transfer characteristics. Depending on the topology of the anionic electrons, the surface electronic structures of electrides can be significantly altered. In particular, the electronic structures of two-dimensional (2D) electride surfaces are of interest because the localized anionic electrons at the interlayer space can be naturally exposed to cleaved surfaces. In this paper, we report the electronic structure of 2D Y2C electride surface using scanning tunneling microscopy (STM) and first-principles calculations, which reveals that anionic electrons at a cleaved surface are absorbed by the surface and subsequently resurged onto the surface due to an applied electric field. We highlight that the estranged anionic electrons caused by the electric field occupy the slightly shifted crystallographic site compared with a bulk Y2C electride. We also measure the work function of the Y2C single crystal, and it shows a slightly lower value than the calculated one, which appears to be due to the electric field from the STM junction.
Boiocchi, Massimo; Fabbrizzi, Luigi; Garolfi, Mauro; Licchelli, Maurizio; Mosca, Lorenzo; Zanini, Cristina
2009-10-26
Copper(II) azacyclam complexes 3(2+) and 4(2+) were obtained through a metal-templated procedure involving the pertinent open-chain tetramine, formaldehyde and a phenylurea derivative as a locking fragment. Both metal complexes can establish interactions with anions through the metal centre and the amide NH group. Equilibrium studies in DMSO by a spectrophotometric titration technique were carried out to assess the affinity of 3(2+) and 4(2+) towards anions. While the NH group of an amide model compound and the metal centre of the plain Cu(II)(azacyclam)(2+) complex do not interact at all with anions, 3(2+) and 4(2+) establish strong interactions with oxo anions, profiting from a pronounced cooperative effect. In particular, 1) they form stable 1:1 and 1:2 complexes with H(2)PO(4) (-) ions in a stepwise mode with both hydrogen-bonding and metal-ligand interactions, and 2) in the presence of CH(3)COO(-), they undergo deprotonation of the amido NH group and thus profit from axial coordination of the partially negatively charged carbonyl oxygen atom in a scorpionate binding mode.
Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael
2005-01-01
Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.
Chen, Ming; Li, Song; Feng, Guang
2017-02-16
Room-temperature ionic liquids (RTILs) are an emerging class of electrolytes for supercapacitors. In this work, we investigate the effects of different supercapacitor models and anion shape on the electrical double layers (EDLs) of two different RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Emim][Tf₂N]) and 1-ethyl-3-methylimidazolium 2-(cyano)pyrrolide ([Emim][CNPyr]) by molecular dynamics (MD) simulation. The EDL microstructure is represented by number densities of cations and anions, and the potential drop near neutral and charged electrodes reveal that the supercapacitor model with a single electrode has the same EDL structure as the model with two opposite electrodes. Nevertheless, the employment of the one-electrode model without tuning the bulk density of RTILs is more time-saving in contrast to the two-electrode one. With the one-electrode model, our simulation demonstrated that the shapes of anions significantly imposed effects on the microstructure of EDLs. The EDL differential capacitance vs. potential (C-V) curves of [Emim][CNPyr] electrolyte exhibit higher differential capacitance at positive potentials. The modeling study provides microscopic insight into the EDLs structure of RTILs with different anion shapes.
NASA Astrophysics Data System (ADS)
Reznickova, A.; Kolska, Z.; Orendac, M.; Cizmar, E.; Sajdl, P.; Svorcik, V.
2016-08-01
This study focuses on high density polyethylene (HDPE) activated by Ar plasma treatment, subsequently grafted with copper sulfonated phthalocyanine (CuPc) especially pointing out to the surface and magnetic properties of those composites. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, zeta potential and by electron spin resonance (ESR). XPS analysis confirmed the successful grafting of phthalocyanine. The highest absorption was found for the sample grafted with bCuPc for 1 h. Electrokinetic analysis also confirmed the plasma treatment and also subsequent CuPc grafting influence significantly the surface chemistry and charge. These results correspond well with XPS determination. ESR studies confirmed the presence of CuPc grafted on HDPE. It was found, that grafting is mediated by magnetically inactive functional groups, rather than radicals. Magnetic properties of CuPc do not seem to change significantly after grafting CuPc on polyethylene surface.
Ruiz-Taylor, L. A.; Martin, T. L.; Zaugg, F. G.; Witte, K.; Indermuhle, P.; Nock, S.; Wagner, P.
2001-01-01
We report on the design and characterization of a class of biomolecular interfaces based on derivatized poly(l-lysine)-grafted poly(ethylene glycol) copolymers adsorbed on negatively charged surfaces. As a model system, we synthesized biotin-derivatized poly(l-lysine)-grafted poly(ethylene glycol) copolymers, PLL-g-[(PEGm)(1−x) (PEG-biotin)x], where x varies from 0 to 1. Monolayers were produced on titanium dioxide substrates and characterized by x-ray photoelectron spectroscopy. The specific biorecognition properties of these biotinylated surfaces were investigated with the use of radiolabeled streptavidin alone and within complex protein mixtures. The PLL-g-PEG-biotin monolayers specifically capture streptavidin, even from a complex protein mixture, while still preventing nonspecific adsorption of other proteins. This streptavidin layer can subsequently capture biotinylated proteins. Finally, with the use of microfluidic networks and protein arraying, we demonstrate the potential of this class of biomolecular interfaces for applications based on protein patterning. PMID:11158560
Benzonitrile: Electron affinity, excited states, and anion solvation
NASA Astrophysics Data System (ADS)
Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei
2015-10-01
We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.
Simulating Donnan equilibria based on the Nernst-Planck equation
NASA Astrophysics Data System (ADS)
Gimmi, Thomas; Alt-Epping, Peter
2018-07-01
Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.
NASA Astrophysics Data System (ADS)
Kato, Riku; Frusawa, Hiroshi
2015-07-01
We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.
Kato, Riku; Frusawa, Hiroshi
2015-07-08
We investigated the individual properties of various polyion-coated bubbles with a mean diameter ranging from 300 to 500 nm. Dark field microscopy allows one to track the individual particles of the submicron bubbles (SBs) encapsulated by the layer-by-layer (LbL) deposition of cationic and anionic polyelectrolytes (PEs). Our focus is on the two-step charge reversals of PE-SB complexes: the first is a reversal from negatively charged bare SBs with no PEs added to positive SBs encapsulated by polycations (monolayer deposition), and the second is overcharging into negatively charged PE-SB complexes due to the subsequent addition of polyanions (double-layer deposition). The details of these phenomena have been clarified through the analysis of a number of trajectories of various PE-SB complexes that experience either Brownian motion or electrophoresis. The contrasted results obtained from the analysis were as follows: an amount in excess of the stoichiometric ratio of the cationic polymers was required for the first charge-reversal, whereas the stoichiometric addition of the polyanions lead to the electrical neutralization of the PE-SB complex particles. The recovery of the stoichiometry in the double-layer deposition paves the way for fabricating multi-layered SBs encapsulated solely with anionic and cationic PEs, which provides a simple protocol to create smart agents for either drug delivery or ultrasound contrast imaging.
Amphipathic peptide affects the lateral domain organization of lipid bilayers.
Polozov, I V; Polozova, A I; Molotkovsky, J G; Epand, R M
1997-09-04
Using lipid-specific fluorescent probes, we studied the effects of amphipathic helical, membrane active peptides of the A- and L-type on membrane domain organization. In zwitterionic binary systems composed of mixtures of phosphatidylcholine and phosphatidylethanolamine, both types of peptides associated with the fluid phase. While binding with high affinity to fluid membranes, peptides were unable to penetrate into the lipid membrane in the gel state. If trapped kinetically by cooling from the fluid phase, peptides dissociated from the gel membrane on the time scale of several hours. While the geometrical shape of the alpha-helical peptides determines their interactions with membranes with non-bilayer phase propensity, the shape complementarity mechanism by itself is unable to induce lateral phase separation in a fluid membrane. Charge-charge interactions are capable of inducing lateral domain formation in fluid membranes. Both peptides had affinity for anionic lipids which resulted in about 30% enrichment of acidic lipids within several nanometers of the peptide's tryptophan, but there was no long-range order in peptide-induced lipid demixing. Peptide insertion in fluid acidic membranes was accompanied by only a small increase in bilayer surface and a decrease in polarity in the membrane core. Peptide-lipid charge-charge interactions were also capable of modulating existing domain composition in the course of the main phase transition in mixtures of anionic phosphatidylglycerol with zwitterionic phosphatidylcholine.
NASA Astrophysics Data System (ADS)
Gaballa, Akmal S.; Wagner, Christoph; Teleb, Said M.; Nour, El-Metwally; Elmosallamy, M. A. F.; Kaluđerović, Goran N.; Schmidt, Harry; Steinborn, Dirk
2008-03-01
Charge-transfer (CT) complexes formed in the reactions of 2,9-dimethyl-1,10-phenanthroline (Me 2phen) with some acceptors such as chloranil (Chl), picric acid (HPA) and chloranilic acid (H 2CA) have been studied in the defined solvent at room temperature. Based on elemental analysis and infrared spectra of the solid CT-complexes along with the photometric titration curves for the reactions, obtained data indicate the formation of 1:1 charge-transfer complexes [(Me 2phen)(Chl)] ( 1), [(Me 2phenH)(PA)] ( 2) and [(Me 2phenH)(HCA)] ( 3), respectively, was proposed. In the three complexes, infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction and as far as complexes 2 and 3 are concerned this interaction is associated with a hydrogen bonding. The formation constants for the complexes ( KC) were shown to be dependent upon the nature of the electron acceptors used. The X-ray structure of complex 3 indicate the formation of dimeric units [Me 2phenH] 2[(HCA) 2] in which the two anions (HCA) - are connected by two O-H⋯O hydrogen bonds whereas the cations and anions are joined together by strong three-center (bifurcated) N-H⋯O hydrogen bonds. Furthermore, the cations are arranged in a π-π stacking.
Zheng, Fangyuan; Zeng, Fang; Yu, Changmin; Hou, Xianfeng; Wu, Shuizhu
2013-01-14
Owing to the considerable significance of fluoride anions for health and environmental issues, it is of great importance to develop methods that can rapidly, sensitively and selectively detect the fluoride anion in aqueous media and biological samples. Herein, we demonstrate a robust fluorescent turn-on sensor for detecting the fluoride ion in a totally aqueous solution. In this study, a biocompatible hydrophilic polymer poly(ethylene glycol) (PEG) is incorporated into the sensing system to ensure water solubility and to enhance biocompatibility. tert-Butyldiphenylsilyl (TBDPS) groups were then covalently introduced onto the fluorescein moiety, which effectively quenched the fluorescence of the sensor. Upon addition of fluoride ion, the selective fluoride-mediated cleavage of the Si-O bond leads to the recovery of the fluorescein moiety, resulting in a dramatic increase in fluorescence intensity under visible light excitation. The sensor is responsive and highly selective for the fluoride anion over other common anions; it also exhibits a very low detection limit of 19 ppb. In addition, this sensor is operative in some real samples such as running water, urine, and serum and can accurately detect fluoride ions in these samples. The cytotoxicity of the sensor was determined to be Grade I toxicity according to United States Pharmacopoeia and ISO 10993-5, suggesting the very low cytotoxicity of the sensor. Moreover, it was found that the senor could be readily internalized by both HeLa and L929 cells and the sensor could be utilized to track fluoride level changes inside the cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luque-Caballero, Germán; Martín-Molina, Alberto; Sánchez-Treviño, Alda Yadira; Rodríguez-Valverde, Miguel A; Cabrerizo-Vílchez, Miguel A; Maldonado-Valderrama, Julia
2014-04-28
Complexation of DNA with lipids is currently being developed as an alternative to classical vectors based on viruses. Most of the research to date focuses on cationic lipids owing to their spontaneous complexation with DNA. Nonetheless, recent investigations have revealed that cationic lipids induce a large number of adverse effects on DNA delivery. Precisely, the lower cytotoxicity of anionic lipids accounts for their use as a promising alternative. However, the complexation of DNA with anionic lipids (mediated by cations) is still in early stages and is not yet well understood. In order to explore the molecular mechanisms underlying the complexation of anionic lipids and DNA we proposed a combined methodology based on the surface pressure-area isotherms, Gibbs elasticity and Atomic Force Microscopy (AFM). These techniques allow elucidation of the role of the surface pressure in the complexation and visualization of the interfacial aggregates for the first time. We demonstrate that the DNA complexes with negatively charged model monolayers (DPPC/DPPS 4 : 1) only in the presence of Ca(2+), but is expelled at very high surface pressures. Also, according to the Gibbs elasticity plot, the complexation of lipids and DNA implies a whole fluidisation of the monolayer and a completely different phase transition map in the presence of DNA and Ca(2+). AFM imaging allows identification for the first time of specific morphologies associated with different packing densities. At low surface coverage, a branched net like structure is observed whereas at high surface pressure fibers formed of interfacial aggregates appear. In summary, Ca(2+) mediates the interaction between DNA and negatively charged lipids and also the conformation of the ternary system depends on the surface pressure. Such observations are important new generic features of the interaction between DNA and anionic lipids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Mozuelos, P.
This work explores the nature and thermodynamic behavior of the effective electrostatic interactions among charged microgels immersed in a simple electrolyte, taking special interest in the effects due to the thermally induced variation of the microgel size while the remaining parameters (microgel charge and concentration, plus the amount of added salt) are kept constant. To this end, the rigorous approach obtained from applying the precise methodology of the dressed ion theory to the proper definition of the effective direct correlation functions, which emerge from tracing-out the degrees of freedom of the microscopic ions, is employed to provide an exact descriptionmore » of the parameters characterizing such interactions: screening length, effective permittivity, and renormalized charges. A model solution with three components is assumed: large permeable anionic spheres for the microgels, plus small charged hard spheres of equal size for the monovalent cations and anions. The two-body correlations among the components of this model suspension, used as the input for the determination of the effective interaction parameters, are here calculated by using the hyper-netted chain approximation. It is then found that at finite microgel concentrations the values of these parameters change as the microgel size increases, even though the ionic strength of the supporting electrolyte and the bare charge of the microgels remain fixed during this process. The variation of the screening length, as well as that of the effective permittivity, is rather small, but still interesting in view of the fact that the corresponding Debye length stays constant. The renormalized charges, in contrast, increase markedly as the microgels swell. The ratio of the renormalized charge to the corresponding analytic result obtained in the context of an extended linear response theory allows us to introduce an effective charge that accounts for the non-linear effects induced by the short-ranged association of microions to the microgels. The behavior of these effective charges as a function of the amount of added salt and the macroion charge, size, and concentration reveals the interplay among all these system parameters.« less
Space and surface charge behavior analysis of charge-eliminated polymer films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oda, Tetsuji; Takashima, Kazunori; Ichiyama, Shinichiro
1995-12-31
Charge behavior of corona-charged or charge eliminated polymer films being dipped in the city water were studied. They were polytetrafluoroethylene (PTFE teflon{trademark}), polypropylene (PP), low density or high density polyethylene (LDPE or HDPE) thin films which are as grown (native) or plasma-processed. The plasma processing at low pressure was tested as antistatic processing. Charge elimination was done by being dipped in alcohol or city water. TSDC analysis and surface charge profile measurement were done for both charged and charge eliminated polymer films. Surface charge density of plasma processed polymer films just after corona charging is roughly the same as thatmore » of an original film. There is little difference between surface charge density profile of a native film and that of a plasma processed film. A large hetero current peak of TSDC was observed at room temperature for a processed film. It was found that the hetero peak disappears after charge elimination process. A pressure pulse wave method by using a pulse-driven piezoelectric PVDF polymer film as a piezoelectric actuator was newly developed to observe real space charge distribution. A little difference of internal space charge distribution between the plasma processed film and the native one after corona charging is found.« less
Brown, Darin J; Stefan, Sarah E; Berden, Giel; Steill, Jeffrey D; Oomens, Jos; Eyler, John R; Bendiak, Brad
2011-11-08
All eight D-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain configuration of the anions in the gas phase, based on the observation of a significant carbonyl absorption band near 1710 cm(-1). The abundance of the open-chain configuration of the aldohexose anions was approximately 1000-fold or greater than that of the neutral sugars in aqueous solution. This provides an explanation as to why it has not been possible to discriminate the anomeric configuration of aldohexose anions in the gas phase when derived from the non-reducing sugar of a disaccharide. Evidence from photodissociation spectra also indicates that the different aldohexoses yield product ions with maximal abundances at different wavelengths, and that the carbonyl stretch region is useful for differentiation of sugar stereochemistries. Quantum-chemical calculations indicate relatively low energy barriers to intramolecular proton transfer between hydroxyl groups and adjacent alkoxy sites located on open-chain sugar anions, suggesting that an ensemble of alkoxy charge locations contributes to their observed photodissociation spectra. Ring opening of monosaccharide anions and interconversion among configurations is an inherent property of the ions themselves and occurs in vacuo independent of solvent participation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Anion-Cation Permeability Correlates with Hydrated Counterion Size in Glycine Receptor Channels
Sugiharto, Silas; Lewis, Trevor M.; Moorhouse, Andrew J.; Schofield, Peter R.; Barry, Peter H.
2008-01-01
The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl− or \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document} anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter. PMID:18708455
How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation
Nakagawa, Masashi; Iwasa, Tatsuo; Kikkawa, Satoshi; Tsuda, Motoyuki; Ebrey, Thomas G.
1999-01-01
In vertebrate visual pigments, a glutamic acid serves as a negative counterion to the positively charged chromophore, a protonated Schiff base of retinal. When photoisomerization leads to the Schiff base deprotonating, the anionic glutamic acid becomes protonated, forming a neutral species that activates the visual cascade. We show that in octopus rhodopsin, the glutamic acid has no anionic counterpart. Thus, the “counterion” is already neutral, so no protonated form of an initially anionic group needs to be created to activate. This helps to explain another observation—that the active photoproduct of octopus rhodopsin can be formed without its Schiff base deprotonating. In this sense, the mechanism of light activation of octopus rhodopsin is simpler than for vertebrates, because it eliminates one of the steps required for vertebrate rhodopsins to achieve their activating state. PMID:10339563
Dahlsten, Per; Próchniak, Piotr; Kosmulski, Marek; Rosenholm, Jarl B
2009-11-15
The electrokinetic behavior of micrometer-sized melamine-formaldehyde latex particles in 10(-3)-10(-1)M monovalent electrolyte dispersions was investigated by electrophoresis and electroacoustics. Specific adsorption of the electrolytes was identified as a shift of the isoelectric point (pH(iep)) with an increased ionic strength. All salts had an equal dependence on the ionic strength. The pH(iep) was correlated with the anion sequence predicted by the hard-soft acid-base (HSAB) principle, Hofmeister series, and Born charging. The Born and the Hofmeister anion scale were successful in producing a systematic dependency of the isoelectric point (pH(iep)), particularly in high (10(-1)M) and low (10(-3)M) MF electrolyte dispersions. No clear trend could be found for the pH(iep) dependence on the anion HSAB scale.
Wang, Shaodan; Fei, Xiaoliang; Guo, Jing; Yang, Qingbiao; Li, Yaoxian; Song, Yan
2016-01-01
A hybrid carbazole-hemicyanine dye (Cac) has been developed as a novel colorimetric and ratiometric fluorescent sensor for cyanide detection. Upon treatment with cyanide, Cac displayed a remarkable fluorescence ratiometric response, with the emission wavelength displaying a very large emission shift (214 nm). The detection of cyanide was performed via the nucleophilic addition of cyanide anion to the indolium group of the sensor, which resulted in the blocking of the intramolecular charge transfer (ICT) process in the sensor, inducing a ratiometric fluorescence change and simultaneously an obvious color change. Furthermore, competitive anions did not showed any significant changes both in color and emission intensity ratio (I381/I595), indicating the high selectivity of the sensor to CN(-). Copyright © 2015 Elsevier B.V. All rights reserved.
Using ion exchange chromatography to purify a recombinantly expressed protein.
Duong-Ly, Krisna C; Gabelli, Sandra B
2014-01-01
Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Leban, M. I.; Wydeven, T. J.
1984-01-01
The individual and combined effects of pasteurization temperature (347 K) and surfactants (anionic, cationic, and neutral) on a poly(ether/urea) thin-film hyperfiltration membrane were studied. Performance of this positively charged membrane was measured in terms of sodium chloride rejection and water flux. The observed effect was mostly on water flux and minimal on salt rejection. Pasteurization temperature caused an irreversible flux decline (flux decline slope of 0.09). The gradual flux reduction caused by neutral and cationic surfactants was reversible, whereas the flux reduction caused by anionic surfactant was irreversible and of similar magnitude to flux reduction caused by pasteurization temperature. The effects of anionic surfactant and pasteurization temperature were additive. Because of flux decline at elevated temperatures the poly(ether/urea) membrane is not very attractive for long-term spaceflight use.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jacob A.; Petersen, Brenna M.; Kormos, Attila
Here, we describe a new strategy to generate non-coordinating anions using zwitterionic metal–organic frameworks (MOFs). By assembly of anionic inorganic secondary building blocks (SBUs) ([In(CO 2) 4] $-$) with cationic metalloporphyrin-based organic linkers, we prepared zwitterionic MOFs in which the complete internal charge separation effectively prevents the potential binding of the counteranion to the cationic metal center. We demonstrate the enhanced Lewis acidity of Mn III- and Fe III-porphyrins in the zwitterionic MOFs in three representative electrocyclization reactions: [2 + 1] cycloisomerization of enynes, [3 + 2] cycloaddition of aziridines and alkenes, and [4 + 2] hetero-Diels–Alder cycloaddition of aldehydesmore » with dienes. Lastly, this work paves a new way to design functional MOFs for tunable chemical catalysis.« less
Influence of Structure, Charge, and Concentration on the Pectin-Calcium-Surfactant Complexes.
Joshi, Nidhi; Rawat, Kamla; Bohidar, H B
2016-05-12
Polymer-surfactant complex formation of pectin with different types of surfactants, cationic (cetyltrimethylammonium bromide, CTAB and dodecyl trimethylammonium bromide, DTAB), anionic (sodium dodecyl sulfate, SDS), and neutral (Triton X-100, TX-100), was investigated at room temperature in the presence and absence of cross-linker calcium chloride using light scattering, zeta potential, rheology, and UV-vis spectroscopic measurements where the surfactant concentration was maintained below their critical micellar concentration (CMC). Results indicated that the interaction of cationic surfactant with pectin in the presence and absence of calcium chloride was much stronger compared to anionic and neutral surfactants. The neutral surfactant showed identifiable interaction despite the absence of any charged headgroup, while anionic surfactant showed feeble or very weak interaction with the polymer. The pectin-CTAB or DTAB complex formation was attributed to associative electrostatic and hydrophobic interactions. On comparison between the cationic surfactants, it was found that CTAB interacts strongly with pectin because of its long hydrocarbon chain. The morphology of complexes formed exhibited random coil structures while at higher concentration of surfactant, rod-like or extended random coil structures were noticed. Thus, functional characteristics of the complex could be tuned by varying the type of surfactant (charge and structure) and its concentration. The differential network rigidity (pectin-CTAB versus pectin-DTAB gels) obtained from rheology measurements showed that addition of a very small amount of surfactant (concentration ≪ CMC) was required for enhancing network strength, while the presence of a large amount of surfactant resulted in the formation of fragile gels. No gel formation occurred when the surfactant concentration was close to their CMC values. Considering the importance of pectin in food and pharmaceutical industry, this study is relevant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBlase, Andrew F.; Wolke, Conrad T.; Johnson, Mark A., E-mail: jordan@pitt.edu, E-mail: nhammer@olemiss.edu, E-mail: mark.johnson@yale.edu
2015-10-14
The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ⋅ (H{sub 2}O){sub n=3−5}]{sup −} clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxidemore » ions with the neutral pyridinium radical, PyH{sup (0)}, occupying one of the primary solvation sites of the OH{sup −}. The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the “solvent coordinate” at the heart of a prototypical proton-coupled electron transfer reaction.« less
Ruben, Eliza A; Schwans, Jason P; Sonnett, Matthew; Natarajan, Aditya; Gonzalez, Ana; Tsai, Yingssu; Herschlag, Daniel
2013-02-12
We compared the binding affinities of ground state analogues for bacterial ketosteroid isomerase (KSI) with a wild-type anionic Asp general base and with uncharged Asn and Ala in the general base position to provide a measure of potential ground state destabilization that could arise from the close juxtaposition of the anionic Asp and hydrophobic steroid in the reaction's Michaelis complex. The analogue binding affinity increased ~1 order of magnitude for the Asp38Asn mutation and ~2 orders of magnitude for the Asp38Ala mutation, relative to the affinity with Asp38, for KSI from two sources. The increased level of binding suggests that the abutment of a charged general base and a hydrophobic steroid is modestly destabilizing, relative to a standard state in water, and that this destabilization is relieved in the transition state and intermediate in which the charge on the general base has been neutralized because of proton abstraction. Stronger binding also arose from mutation of Pro39, the residue adjacent to the Asp general base, consistent with an ability of the Asp general base to now reorient to avoid the destabilizing interaction. Consistent with this model, the Pro mutants reduced or eliminated the increased level of binding upon replacement of Asp38 with Asn or Ala. These results, supported by additional structural observations, suggest that ground state destabilization from the negatively charged Asp38 general base provides a modest contribution to KSI catalysis. They also provide a clear illustration of the well-recognized concept that enzymes evolve for catalytic function and not, in general, to maximize ground state binding. This ground state destabilization mechanism may be common to the many enzymes with anionic side chains that deprotonate carbon acids.
Kanabar, V; Page, C P; Simcock, D E; Karner, C; Mahn, K; O'Connor, B J; Hirst, S J
2008-06-01
The glycosaminoglycan heparin has anti-inflammatory activity and is exclusively found in mast cells, which are localized within airway smooth muscle (ASM) bundles of asthmatic airways. Interleukin (IL)-13 induces the production of multiple inflammatory mediators from ASM including the eosinophil chemoattractant chemokine, eotaxin-1. Heparin and related glycosaminoglycan polymers having structurally heterogeneous polysaccharide side chains that varied in molecular weight, sulphation and anionic charge were used to identify features of the heparin molecule linked to anti-inflammatory activity. Cultured human ASM cells were stimulated with interleukin (IL)-13 in the absence or presence of heparin and related polymers. Eotaxin-1 was quantified using chemokine antibody arrays and ELISA. Unfractionated heparin attenuated IL-13-dependent eotaxin-1 production and this effect was reproduced with low molecular weight heparins (3 and 6 kDa), demonstrating a minimum activity fragment of at least 3 kDa. N-desulphated, 20% re-N-acetylated heparin (anticoagulant) was ineffective against IL-13-dependent eotaxin-1 production compared with 90% re-N-acetylated (anticoagulant) or O-desulphated (non-anticoagulant) heparin, suggesting a requirement for N-sulphation independent of anticoagulant activity. Other sulphated molecules with variable anionic charge and molecular weight exceeding 3 kDa (dextran sulphate, fucoidan, chondroitin sulphate B) inhibited IL-13-stimulated eotaxin-1 release to varying degrees. However, non-sulphated dextran had no effect. Inhibition of IL-13-dependent eotaxin-1 release by heparin involved but did not depend upon sulphation, though loss of N-sulphation reduced the attenuating activity, which could be restored by N-acetylation. This anti-inflammatory effect was also partially dependent on anionic charge, but independent of molecular size above 3 kDa and the anticoagulant action of heparin.
Electric Properties of Obsidian: Evidence for Positive Hole Charge Carriers
NASA Astrophysics Data System (ADS)
Nordvik, R.; Freund, F. T.
2012-12-01
The blackness of obsidian is due to the presence of oxygen anions in the valence state 1-, creating broad energy levels at the upper edge of the valence band, which absorb visible light over a wide spectral range. These energy states are associated with defect electrons in the oxygen anion sublattice, well-known from "smoky quartz", where Al substituting for Si captures a defect electron in the oxygen anion sublattice for charge compensation [1]. Such defect electrons, also known as positive holes, are responsible for the increase in electrical conductivity in igneous rocks when uniaxial stresses are applied, causing the break-up of pre-existing peroxy defects, Si-OO-Si [2]. Peroxy defects in obsidian cannot be so easily activated by mechanical stress because the glassy matrix will break before sufficiently high stress levels can be reached. If peroxy defects do exist, however, they can be studied by activating them thermally [3]. We describe experiments with rectangular slabs of obsidian with Au electrodes at both ends. Upon heating one end, we observe (i) a thermopotential and (ii) a thermocurrent developing at distinct temperatures around 250°C and 450°C, marking the 2-step break-up of peroxy bonds. [1] Schnadt, R., and Schneider, J.: The electronic structure of the trapped-hole center in smoky quartz, Zeitschrift Physik B Condensed Matter 11, 19-42, 1970. [2] Freund, F. T., Takeuchi, A., and Lau, B. W.: Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Physics and Chemistry of the Earth, 31, 389-396, 2006. [3] Freund, F., and Masuda, M. M.: Highly mobile oxygen hole-type charge carriers in fused silica, Journal Material Research, 8, 1619-1622, 1991.
Prabhu, Sugosh R; Dutt, G B
2014-08-07
Rotational diffusion of a nondipolar solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and a charged solute rhodamine 110 (R110) has been investigated in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]) and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([BMMIM][Tf2N]) to understand the influence of the C2 methylation on solute rotation. The measured reorientation times of the nondipolar solute DMDPP are similar in both the ionic liquids and follow Stokes-Einstein-Debye hydrodynamic theory with slip hydrodynamics. In contrast, rotational diffusion of the charged solute R110 in [BMIM][Tf2N] obeys stick hydrodynamics due to specific interactions with the anion of the ionic liquid. Nevertheless, the intriguing result of this study is that the reorientation times of R110 in [BMMIM][Tf2N] deviate significantly from the predictions of stick hydrodynamics, especially at ambient temperatures. The solute-solvent boundary condition parameter Cobs, which is defined as the ratio of the measured reorientation time to the one calculated using the SED theory with stick boundary condition, for R110 is lower by a factor of 2 in [BMMIM][Tf2N] compared to [BMIM][Tf2N] at 298 K. Upon increasing the temperature, Cobs gradually increases and eventually matches with that obtained in [BMIM][Tf2N] at 348 K. It has been well established that methylation of the C2 position in [BMMIM][Tf2N] switches off the main hydrogen-bonding interaction between the anion and the cation, but increases the Coulombic interactions. As a consequence of the enhanced interionic interactions between the cation and anion of the ionic liquid, specific interactions between R110 and [Tf2N] diminish leading to the faster rotation of the solute. However, such an influence is not apparent in case of DMDPP as it does not experience specific interactions with either the cation or the anion of these ionic liquids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeff, I.; Treinin, A.; Linschitz, H.
1992-06-25
Charge-transfer (CT) and energy-transfer (NT) interactions of simple anions with organic triplets are reviewed and discussed in connection with new quenching rate constant (K{sub q}) and radical yield measurements for SO{sub 3}{sup 2{minus}} and No{sub 2}{sup {minus}}. In the latter case both processes may occur at high organic triplet energies. Reorganization energies for one-electron oxidations are obtained for several anions, using data on charge-transfer-to-solvent (CTTS) spectra and photoelectron emission thresholds, which like the kinetic parameters of Marcus-Hush theory, also reflect Franck-Condon strains. The results, combined with thermodynamic free energies, give vertical redox potentials which correlate better than do equilibrium potentialsmore » with quenching rates. The theoretical basis for correlation between k{sub q} and Hv{sub CTTS} is discussed in the framework of Marcus rate theory. Assigning the total reorganization energy in the CT quenching reaction to the small anion component of the D-A pair gives reasonable agreement with data on quenching of dye triplets but too slow rates for aryl carbonyl triplets where exciplex formation may possibly occur. The optical reorganization energy for NO{sub 2}{sup {minus}} leads to values of the thermal self-exchange rate agreeing with those computed from the Marcus-Hush cross-relations, which also neglect bonding effects. The mechanism of NO{sub 2}{sup {minus}} interaction with triplets is discussed in detail, including indirect kinetic evidence for quenching of a short-lived exciplex by NO{sub 2}{sup {minus}} without radical formation. The possibility of reduction by triplet NO{sub 2}{sup {minus}} formed by initial NT from the organic triplet is also considered. Finally, a scheme is presented involving an equilibrium between CT and NT states and relating the free energy difference between these states to radical yields. 54 refs., 8 figs., 3 tabs.« less
Xiang, Jun; Ge, Feijie; Yu, Bing; Yan, Qiang; Shi, Feng; Zhao, Yue
2018-06-07
A new approach to encapsulating charged cargo molecules into a nanovector and subsequently using near-infrared (NIR) light to trigger the release is demonstrated. NIR light-responsive nanovector was prepared through electrostatic interaction-driven complexation between negatively charged silica-coated upconversion nanoparticles (UCNP@silica, 87 nm hydrodynamic diameter, polydispersity index ∼0.05) and a positively charged UV-labile polyelectrolyte bearing pendants of poly(ethylene glycol) and o-nitrobenzyl side groups; whereas charged fluorescein (FLU) was loaded through a co-complexation process. By controlling the amount of polyelectrolyte, UCNP@silica can be covered by the polymer, whereas remaining dispersed in aqueous solution. Under 980 nm laser excitation, UV light emitted by UCNP is absorbed by photolytic side groups within polyelectrolyte, which results in cleavage of o-nitrobenzyl groups and formation of carboxylic acid groups. Such NIR light-induced partial reversal of positive charge to negative charge on the polyelectrolyte layer disrupts the equilibrium among UCNP@silica, polyelectrolyte, and FLU and, consequently, leads to release of FLU molecules.
NASA Astrophysics Data System (ADS)
Rogti, F.
2015-12-01
Space-charge behavior at dielectric interfaces in multilayer low-density polyethylene (LDPE) and fluorinated ethylene propylene (FEP) subjected to a direct-current (DC) field has been investigated as a function of temperature using the pulsed electroacoustic technique. A sandwich structure constituted by two nonidentical LDPE/FEP dielectric films was used to study the charging propensity of electrode/dielectric and dielectric/dielectric interfaces. The time dependence of the space-charge distribution was subsequently recorded at four temperatures, 20°C, 25°C, 40°C, and 60°C, under field (polarization) and short-circuit (depolarization) conditions. The experimental results demonstrate that temperature plays a significant role in the space-charge dynamics at the dielectric interface. It affects the charge injection, increases the charge mobility and electrical conductivity, and increases the density of shallow traps and trap filling. It is found that traps formed during polarization at high temperature do not remain stable after complete discharge of the multidielectric structure and when poled at low temperatures.
Locations of Halide Ions in Tetragonal Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Lim, Kap; Adimurthy, Ganapathi; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.
1998-01-01
Anions play an important role in the crystallization of lysozyme, and are known to bind to the crystalline protein. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. Studies using other approaches have reported more chloride ion binding sites, but their locations were not known. Knowing the precise location of these anions is also useful in determining the correct electrostatic fields surrounding the protein. In the first part of this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from the lysozyme crystals grown in bromide and chloride solutions under identical conditions. The anion locations were then obtained from standard crystallographic methods and five possible anion binding sites were found in this manner. The sole chloride ion binding site found in previous studies was confirmed. The remaining four sites were new ones for tetragonal lysozyme crystals. However, three of these new sites and the previously found one corresponded to the four unique binding sites found for nitrate ions in monoclinic crystals. This suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed. It is unlikely that there are many more anions in the tetragonal lysozyme crystal structure. Assuming osmotic equilibrium it can be shown that there are at most three more anions in the crystal channels. Some of the new anion binding sites found in this study were, as expected, in pockets containing basic residues. However, some of them were near neutral, but polar, residues. Thus, the study also showed the importance of uncharged, but polar groups, on the protein surface in determining its electrostatic field. This was important for the second part of this study where the electrostatic field surrounding the protein was accurately determined. This was achieved by solving the linearized version of the Poisson-Boltzmann equation for the protein in solution. The solution was computed employing the commercial code Delphi which uses a finite difference technique. This has recently become available as a module in the general protein visualization code Insight II. Partial charges were assigned to the polar groups of lysozyme for the calculations done here. The calculations showed the complexity of the electrostatic field surrounding the protein. Although most of the region near the protein surface had a positive field strength, the active site cleft was negatively charged and this was projected a considerable distance. This might explain the occurrence of "head-to-side" interactions in the formation of lysozyme aggregates in solution. Pockets of high positive field strength were also found in the vicinity of the anion locations obtained from the crystallographic part of this study, confirming the validity of these calculations. This study clearly shows not only the importance of determining the counterion locations in protein crystals and the electrostatic fields surrounding the protein, but also the advantage of performing them together.
NASA Astrophysics Data System (ADS)
Neumann, Jan; Golub, Benjamin; Odebrecht, Lisa-Marie; Ludwig, Ralf; Paschek, Dietmar
2018-05-01
We study ionic liquids composed of 1-alkyl-3-methylimidazolium cations and bis(trifluoromethyl-sulfonyl)imide anions ([CnMIm][NTf2]) with varying chain-length n = 2, 4, 6, 8 by using molecular dynamics simulations. We show that a reparametrization of the dihedral potentials as well as charges of the [NTf2] anion leads to an improvement of the force field model introduced by Köddermann, Paschek, and Ludwig [ChemPhysChem 8, 2464 (2007)] (KPL-force field). A crucial advantage of the new parameter set is that the minimum energy conformations of the anion (trans and gauche), as deduced from ab initio calculations and Raman experiments, are now both well represented by our model. In addition, the results for [CnMIm][NTf2] show that this modification leads to an even better agreement between experiment and molecular dynamics simulation as demonstrated for densities, diffusion coefficients, vaporization enthalpies, reorientational correlation times, and viscosities. Even though we focused on a better representation of the anion conformation, also the alkyl chain-length dependence of the cation behaves closer to the experiment. We strongly encourage to use the new NGOLP (Neumann, Golub, Odebrecht, Ludwig, Paschek) force field for the [NTf2] anion instead of the earlier KPL parameter set for computer simulations aiming to describe the thermodynamics, dynamics, and also structure of imidazolium-based ionic liquids.
Chemical and Hydrodynamical Models of Cometary Comae
NASA Technical Reports Server (NTRS)
Charnley, Steven
2012-01-01
Multi-fluid modelling of the outflowing gases which sublimate from cometary nuclei as they approach the Sun is necessary for understanding the important physical and chemical processes occurring in this complex plasma. Coma chemistry models can be employed to interpret observational data and to ultimately determine chemical composition and structure of the nuclear ices and dust. We describe a combined chemical and hydrodynamical model [1] in which differential equations for the chemical abundances and the energy balance are solved as a function of distance from the cometary nucleus. The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of 1P/Halley. The anions O(-), OH(-), C(-), CH(-) and CN(-) have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu [2]. Organic molecular anions such as C4H(-) and C6H(-) are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been fully explored. We present details of new models for the chemistry of cometary comae that include atomic and molecular anions and calculate the impact of these anions on the coma physics and chemistry af the coma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.
The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared tomore » the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σ AX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.« less
Robinson, Sean W.; Mustoe, Chantal L.; White, Nicholas G.; ...
2014-12-05
The synthesis and anion binding properties of novel halogen-bonding (XB) bis-iodotriazole-pyridinium-containing acyclic and [2]catenane anion host systems are described. The XB acyclic receptor displays selectivity for acetate over halides with enhanced anion recognition properties compared to the analogous hydrogen-bonding (HB) acyclic receptor. A reversal in halide selectivity is observed in the XB [2]catenane, in comparison to the acyclic XB receptor, due to the interlocked host’s unique three-dimensional binding cavity, and no binding is observed for oxoanions. Notable halide anion association constant values determined for the [2]catenane in competitive organic–aqueous solvent mixtures demonstrate considerable enhancement of anion recognition as compared tomore » the HB catenane analogue. X-ray crystallographic analysis of a series of halide catenane complexes reveal strong XB interactions in the solid state. These interactions were studied using Cl and Br K-edge X-ray Absorption Spectroscopy (XAS) indicating intense pre-edge features characteristic of charge transfer from the halide to its bonding partner (σ AX←X–* ← X1s), and providing a direct measure of the degree of covalency in the halogen bond(s). Lastly, the data reveal that the degree of covalency is similar to that which is observed in transition metal coordinate covalent bonds. These results are supported by DFT results, which correlate well with the experimental data.« less
A model and simulation of fast space charge pulses in polymers
NASA Astrophysics Data System (ADS)
Lv, Zepeng; Rowland, Simon M.; Wu, Kai
2017-11-01
The transport of space charge packets across polyethylene and epoxy resin in high electric fields has been characterized as fast or slow depending on packet mobility. Several explanations for the formation and transport of slow space charge packets have been proposed, but the origins of fast space charge pulses, with mobilities above 10-11 m2 V-1 s-1, are unclear. In one suggested model, it is assumed that the formation of fast charge pulses is due to discontinuous electromechanical compression and charge injection at the electrode-insulation interface, and their transport is related to corresponding relaxation processes. In that model, charges travel as a pulse because of group polarization. This paper provides an alternative model based on the reduction of charge carrier activation energy due to charge density triggered polymer chain movement and subsequent chain relaxation times. The generation and transport of fast charge pulses are readily simulated by a bipolar charge transport model with three additional parameters: reduced activation energy, charge density threshold, and chain relaxation time. Such a model is shown to reproduce key features of fast space charge pulses including speed, duration, repetition rate and pulse size. This model provides the basis for a deep understanding of the physical origins of fast space charge pulses in polymers.
HIGH TEMPERATURE ADSORPTION OF CO2 ON VARIOUS HYDROTALCITE-LIKE COMPOUNDS
This study describes and quantifies how substitution of the divalent cation and interlayer charge compensating anions affect the CO2 adsorptive capacity of various hydrotalcite-like compounds (Htlcs). Physical and chemical properties of the Htlcs were evaluated using a number of ...
Barlow, Stephan E.; Alexander, Michael L.; Follansbee, James C.
1997-01-01
An ion trap having two end cap electrodes disposed asymmetrically about a center of a ring electrode. The inner surface of the end cap electrodes are conformed to an asymmetric pair of equipotential lines of the harmonic formed by the application of voltages to the electrodes. The asymmetry of the end cap electrodes allows ejection of charged species through the closer of the two electrodes which in turn allows for simultaneously detecting anions and cations expelled from the ion trap through the use of two detectors charged with opposite polarity.
The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions
Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.
2018-05-09
In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less
The relative viscosity of NaNO 3 and NaNO 2 aqueous solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Jacob G.; Mauss, Billie M.; Daniel, Richard C.
In aqueous solution, both nitrate and nitrite are planar, monovalent, and have the same elements but different sizes and charge densities. Comparing the viscosity of NaNO 2 and NaNO 3 aqueous solutions provides an opportunity to determine the relative importance of anion size versus strength of anion interaction with water. The viscosity of aqueous NaNO 2 and NaNO 3 were measured over a temperature and concentration range relevant to nuclear waste processing. The viscosity of NaNO 2 solutions was consistently larger than NaNO 3 under all conditions, even though nitrate is larger than nitrite. This was interpreted in terms ofmore » quantum mechanical charge field molecular dynamics calculations that indicate that nitrite forms more and stronger hydrogen bonds with water per oxygen atom than nitrate. Furthermore, these hydrogen bonds inhibit rotational motion required for fluid flow, thus increasing the nitrite solution viscosity relative to that of an equivalent nitrate solution.« less
Lin, Zifeng; Rozier, Patrick; Duployer, Benjamin; ...
2016-08-26
2D titanium carbide (Ti 3C 2T x MXene) showed good capacitance in both organic and neat ionic liquid electrolytes, but its charge storage mechanism is still not fully understood. Here, electrochemical characteristics of Ti 3C 2T x electrode were studied in neat EMI-TFSI electrolyte. A capacitive behavior was observed within a large electrochemical potential range (from – 1.5 to 1.5 V vs. Ag). Intercalation and de-intercalation of EMI + cations and/or TFSI– anions were investigated by in-situ X-ray diffraction. Interlayer spacing of Ti 3C 2T x flakes decreases during positive polarization, which can be ascribed to either electrostatic attraction effectmore » between intercalated TFSI– anions and positively charged Ti 3C 2T x nanosheets or steric effect caused by de-intercalation of EMI + cations. In conclusion, the expansion of interlayer spacing when polarized to negative potentials is explained by steric effect of cation intercalation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakamoto, Y.; Ishii, Y.; Kawasaki, S., E-mail: kawasaki.shinji@nitech.ac.jp
2016-07-06
Electrode properties of single-walled carbon nanotubes (SWCNTs) in an all-solid-state lithium ion battery were investigated using poly-ethylene oxide (PEO) solid electrolyte. Charge-discharge curves of SWCNTs in the solid electrolyte cell were successfully observed. It was found that PEO electrolyte decomposes on the surface of SWCNTs.
Costa, Deyse G; Rocha, Alexandre B; Souza, Wladmir F; Chiaro, Sandra Shirley X; Leitão, Alexandre A
2011-04-07
This ab initio study was performed to better understand the correlation between intercalated water molecules and layered double hydroxides (LDH), as well as the changes that occur by the dehydration process of Zn-Al hydrotalcite-like compounds containing Cl⁻ and CO₃²⁻ counterions. We have verified that the strong interaction among intercalated water molecules, cointercalated anions, and OH groups from hydroxyl layers is reflected in the thermal stability of these compounds. The Zn(2/3)Al(1/3)(OH)₂Cl(1/3)·2/3H₂O hydrotalcite loses all the intercalated water molecules around 125 °C, while the Zn(2/3)Al(1/3)(OH)₂(CO₃)(1/6)·4/6H₂O compound dehydrates at about 175 °C. These values are in good agreement with experimental data. The interlayer interactions were discussed on the basis of electron density difference analyses. Our calculation shows that the electron density in the interlayer region decreases during the dehydration process, inducing the migration of the Cl⁻ anion and the displacement of the hydroxyl layer from adjacent layers. Changes in these compound structures occur to recover part of the hydrogen bonds broken due to the removal of water molecules. It was observed that the chloride ion had initially a lower Löwdin charge (Cl(-0.43)), which has increased its absolute value (Cl(-0.58)) after the water molecules removal, while the charges on carbonate ions remain invariant, leading to the conclusion that the Cl⁻ anion can be more influenced by the amount of water molecules in the interlayer space than the CO₃²⁻ anion in hydrotalcite-like compounds.
Biosensors from conjugated polyelectrolyte complexes
Wang, Deli; Gong, Xiong; Heeger, Peter S.; Rininsland, Frauke; Bazan, Guillermo C.; Heeger, Alan J.
2002-01-01
A charge neutral complex (CNC) was formed in aqueous solution by combining an orange light emitting anionic conjugated polyelectrolyte and a saturated cationic polyelectrolyte at a 1:1 ratio (per repeat unit). Photoluminescence (PL) from the CNC can be quenched by both the negatively charged dinitrophenol (DNP) derivative, (DNP-BS−), and positively charged methyl viologen (MV2+). Use of the CNC minimizes nonspecific interactions (which modify the PL) between conjugated polyelectrolytes and biopolymers. Quenching of the PL from the CNC by the DNP derivative and specific unquenching on addition of anti-DNP antibody (anti-DNP IgG) were observed. Thus, biosensing of the anti-DNP IgG was demonstrated. PMID:11756675
Rose-Petruck, Christoph; Wands, Jack R.; Rand, Danielle; Derdak, Zoltan; Ortiz, Vivian
2016-04-19
Methods, compositions, systems, devices and kits are provided herein for preparing and using a nanoparticle composition and spatial frequency heterodyne imaging for visualizing cells or tissues. In various embodiments, the nanoparticle composition includes at least one of: a nanoparticle, a polymer layer, and a binding agent, such that the polymer layer coats the nanoparticle and is for example a polyethylene glycol, a polyelectrolyte, an anionic polymer, or a cationic polymer, and such that the binding agent that specifically binds the cells or the tissue. Methods, compositions, systems, devices and kits are provided for identifying potential therapeutic agents in a model using the nanoparticle composition and spatial frequency heterodyne imaging.
An all-solid-state lithium/polyaniline rechargeable cell
NASA Astrophysics Data System (ADS)
Changzhi, Li; Xinsheng, Peng; Borong, Zhang; Baochen, Wang
The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)—epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modifed PEOER interface exhibits good reversibility. At 50-80 °C, the Li/PEOERLiClO 4/PAn cell shows more than 40 charge/discharge cycles, 90% charge/discharge efficiency, and 54 W h kg -1 discharge energy density (on PAn weight basis) at 50 μA between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.
Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas
2016-02-21
A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.
Local Charge Injection and Extraction on Surface-Modified Al2O3 Nanoparticles in LDPE.
Borgani, Riccardo; Pallon, Love K H; Hedenqvist, Mikael S; Gedde, Ulf W; Haviland, David B
2016-09-14
We use a recently developed scanning probe technique to image with high spatial resolution the injection and extraction of charge around individual surface-modified aluminum oxide nanoparticles embedded in a low-density polyethylene (LDPE) matrix. We find that the experimental results are consistent with a simple band structure model where localized electronic states are available in the band gap (trap states) in the vicinity of the nanoparticles. This work offers experimental support to a previously proposed mechanism for enhanced insulating properties of nanocomposite LDPE and provides a powerful experimental tool to further investigate such properties.
Sorption of imazaquin in soils with positive balance of charges.
Rocha, Wadson S D; Regitano, Jussara B; Alleoni, Luis R F; Tornisielo, Valdemar L
2002-10-01
The herbicide imazaquin has both an acid and a basic ionizable groups, and its sorption depends upon the pH, the electric potential (psi0), and the oxide and the organic carbon (OC) contents of the soil. Sorption and extraction experiments using 14C-imazaquin were performed in surface and subsurface samples of two acric oxisols (an anionic "rhodic" acrudox and an anionic "xanthic" acrudox) and one non-acric alfisol (a rhodic kandiudalf), treated at four different pH values. Imazaquin showed low to moderate sorption to the soils. Sorption decreased and aqueous extraction increased as pH increased. Up to pH 5.8, sorption was higher in subsurface than in surface layers of the acric soils, due to the positive balance of charges resulted from the high Fe and Al oxide and the low OC contents. It favored electrostatic interactions with anionic molecules of imazaquin. For the subsurface samples of these highly weathered soils, where psi0 was positive and OC was low, it was not possible to predict sorption just by considering imazaquin speciation and its hydrophobic partition to the organic domains of the soil. Moreover, if Koc measured for thesurface samples were assumed to represent the whole profile in predictive models for leaching potential, then it would result in underestimation of sorption potential in subsurface, and consequently result in overestimation of the leaching potential.
Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan
2014-11-28
The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kausteklis, Jonas; Aleksa, Valdemaras; Iramain, Maximiliano A.; Brandán, Silvia Antonia
2018-07-01
The cation-anion interactions present in the 1-butyl-3-methylimidazolium nitrate ionic liquid [BMIm][NO3] were studied by using density functional theory (DFT) calculations and the experimental FT-Raman spectrum in liquid phase and its available FT-IR spectrum. For the three most stable conformers found in the potential energy surface and their 1-butyl-3-methylimidazolium [BMIm] cation, the atomic charges, molecular electrostatic potentials, stabilization energies, bond orders and topological properties were computed by using NBO and AIM calculations and the hybrid B3LYP level of theory with the 6-31G* and 6-311++G** basis sets. The force fields, force constants and complete vibrational assignments were also reported for those species by using their internal coordinates and the scaled quantum mechanical force field (SQMFF) approach. The dimeric species of [BMIm][NO3] were also considered because their presence could probably explain the most intense bands observed at 1344 and 1042 cm-1 in both experimental FT-IR and FT-Raman spectra, respectively. The geometrical parameters suggest monodentate cation-anion coordination while the studies by charges, NBO and AIM calculations support bidentate coordinations between those two species. Additionally several quantum chemical descriptors were also calculated in order to interpret various molecular properties such as electronic structure, reactivity of those species and predict their gas phase behaviours.
Devatha, Gayathri; Roy, Soumendu; Rao, Anish; Mallick, Abhik; Basu, Sudipta; Pillai, Pramod P
2017-05-01
Indium Phosphide Quantum Dots (InP QDs) have emerged as an alternative to toxic metal ion based QDs in nanobiotechnology. The ability to generate cationic surface charge, without compromising stability and biocompatibility, is essential in realizing the full potential of InP QDs in biological applications. We have addressed this challenge by developing a place exchange protocol for the preparation of cationic InP/ZnS QDs. The quaternary ammonium group provides the much required permanent positive charge and stability to InP/ZnS QDs in biofluids. The two important properties of QDs, namely bioimaging and light induced resonance energy transfer, are successfully demonstrated in cationic InP/ZnS QDs. The low cytotoxicity and stable photoluminescence of cationic InP/ZnS QDs inside cells make them ideal candidates as optical probes for cellular imaging. An efficient resonance energy transfer ( E ∼ 60%) is observed, under physiological conditions, between the cationic InP/ZnS QD donor and anionic dye acceptor. A large bimolecular quenching constant along with a linear Stern-Volmer plot confirms the formation of a strong ground state complex between the cationic InP/ZnS QDs and the anionic dye. Control experiments prove the role of electrostatic attraction in driving the light induced interactions, which can rightfully form the basis for future nano-bio studies between cationic InP/ZnS QDs and anionic biomolecules.
Gent, William E.; Lim, Kipil; Liang, Yufeng; ...
2017-12-01
© 2017 The Author(s). Lithium-rich layered transition metal oxide positive electrodes offer access to anion redox at high potentials, thereby promising high energy densities for lithium-ion batteries. However, anion redox is also associated with several unfavorable electrochemical properties, such as open-circuit voltage hysteresis. Here we reveal that in Li 1.17-x Ni 0.21 Co 0.08 Mn 0.54 O 2 , these properties arise from a strong coupling between anion redox and cation migration. We combine various X-ray spectroscopic, microscopic, and structural probes to show that partially reversible transition metal migration decreases the potential of the bulk oxygen redox couple by >more » 1 V, leading to a reordering in the anionic and cationic redox potentials during cycling. First principles calculations show that this is due to the drastic change in the local oxygen coordination environments associated with the transition metal migration. We propose that this mechanism is involved in stabilizing the oxygen redox couple, which we observe spectroscopically to persist for 500 charge/discharge cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gent, William E.; Lim, Kipil; Liang, Yufeng
© 2017 The Author(s). Lithium-rich layered transition metal oxide positive electrodes offer access to anion redox at high potentials, thereby promising high energy densities for lithium-ion batteries. However, anion redox is also associated with several unfavorable electrochemical properties, such as open-circuit voltage hysteresis. Here we reveal that in Li 1.17-x Ni 0.21 Co 0.08 Mn 0.54 O 2 , these properties arise from a strong coupling between anion redox and cation migration. We combine various X-ray spectroscopic, microscopic, and structural probes to show that partially reversible transition metal migration decreases the potential of the bulk oxygen redox couple by >more » 1 V, leading to a reordering in the anionic and cationic redox potentials during cycling. First principles calculations show that this is due to the drastic change in the local oxygen coordination environments associated with the transition metal migration. We propose that this mechanism is involved in stabilizing the oxygen redox couple, which we observe spectroscopically to persist for 500 charge/discharge cycles.« less
Chen, Yufei; Ru, Jing; Geng, Biyao; Wang, Haiying; Tong, Congcong; Du, Chungui; Wu, Shengchun; Liu, Hongzhi
2017-10-15
A composite cryogel was prepared from quaternized nanofibrillated cellulose (Q-NFC) and chitosan (CS) through a combination of freeze-drying and cross-linking with epichlorohydrin. The specific surface area of the composite cryogel was approximately two times that of Q-NFC cryogel. And the composite cryogel exhibited superior adsorption properties of anionic dyes than either the Q-NFC or CS cryogel controls. The adsorption isotherm well fitted the Langmuir model with the maximum theoretical adsorption capacity up to 473.9mg/g. The adsorption behavior was found to follow pseudo second-order kinetic model, indicating the chemisorption nature. Notably, the composite cryogel could effectively separate the cationic dye from anionic one. Furthermore, the composite cryogel displayed excellent reusability, evidenced by the removal percentage of Acid red 88 still as high as 96% even after five adsorption-desorption cycles. These advantages would make it an environmentally friendly candidate for the use in the separation and efficient removal of anionic dyes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantum chemical calculations of anion complex [B12Hx(NF2)12-x]2-, x = 9 - 12
NASA Astrophysics Data System (ADS)
Koblova, E. A.; Saldin, V. I.; Ustinov, A. Yu
2017-01-01
The geometric, energetic, spectral and electronic properties of various isomers of B12Hх(NF2)12-х 2- anion complex with x = 9 - 12 have been studied using Density Functional Theory (B3LYP/6-311++G**). It was shown that the most stable isomers are characterized by the preference to form the most symmetric structures with uniformly distributed charge densities. However, when replacing a hydrogen atom with difluoramino group, an inductive effect occurs. NF2 group pulls a part of electron density that leads to the polarization of the boron core. Blue shifts in the IR spectrum compared to the vibrations of the free radical NF2 ranging from 5 to 69 cm-1 for the most stable isomers with the minimum total energy are characteristic and points to the stability of B12Hх(NF2)12-х 2- anions. The obtained results broaden the idea of aromaticity of B12H12 2- anion and will be useful in synthesis of new B12H12 2- derivatives.
Martínez-Lillo, José; Cano, Joan; Wernsdorfer, Wolfgang; Brechin, Euan K
2015-01-01
The energy barrier to magnetisation relaxation in single-molecule magnets (SMMs) proffers potential technological applications in high-density information storage and quantum computation. Leading candidates amongst complexes of 3d metals ions are the hexametallic family of complexes of formula [Mn6O2(R-sao)6(X)2(solvent)y] (saoH2=salicylaldoxime; X=mono-anion; y=4–6; R=H, Me, Et, and Ph). The recent synthesis of cationic [Mn6][ClO4]2 family members, in which the coordinating X ions were replaced with non-coordinating anions, opened the gateway to constructing families of novel [Mn6] salts in which the identity and nature of the charge balancing anions could be employed to alter the physical properties of the complex. Herein we demonstrate initial experiments to show that this is indeed possible. By replacing the diamagnetic ClO4− anions with the highly anisotropic ReIV ion in the form of [ReIVCl6]2−, the energy barrier to magnetisation relaxation is increased by up to 30 %. PMID:25951415
Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.
Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi
2009-08-04
We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).
Arsenate removal from water by a weak-base anion exchange fibrous adsorbent.
Awual, Md Rabiul; Urata, Shinya; Jyo, Akinori; Tamada, Masao; Katakai, Akio
2008-02-01
A weak-base anion exchange fiber named FVA with primary amino groups for selective and rapid removal of arsenate species was prepared by means of electron irradiation induced liquid phase graft polymerization of N-vinylformamide onto polyethylene coated polypropylene fibers and by the subsequent alkaline hydrolysis of amide group on the grafted polymer chains. Two types of FVA were prepared. One was a non-woven cloth type named FVA-c for the batch-mode study, which clarified that uptake of arsenate species decreases with an increase in pH, and chloride and sulfate do not strongly interfere with uptake of arsenate species different from conventional anion exchange resins based on crosslinked polystyrene matrices. The other was a filamentary type one named FVA-f used in the column-mode study, which clarified that arsenate species were successfully removed from neutral pH arsenate solutions containing 1.0-99 mg of As/L at feed flow rates of 100-1050 h(-1) in space velocity (SV). The most important findings are that the 1% breakthrough point in uptake from the arsenate solution containing 1.0mg of As/L at the high feed flow rate of 1050h(-1) in SV was as large as 4670 bed volumes, giving the 1% breakthrough capacity of 0.298 mmol/g of FVA-f. Adsorbed arsenate was able to be quantitatively eluted with 1M hydrochloric acid and FVA-f was simultaneously regenerated. Then, the repeated use of FVA-f was possible.
Role of anionic charges of periplasmic glucans of Shigella flexneri in overcoming detergent stress
USDA-ARS?s Scientific Manuscript database
Osmoregulated periplasmic glucans (OPGs) are synthesized by the members of the family Enterobacteriaceae when grown under low osmotic growth conditions. Enteropathogens such as Shigella flexneri spend considerable time outside the host environment such as irrigation waters where low nutrient low os...
ERIC Educational Resources Information Center
Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V.
2008-01-01
"Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery. Three dimensional blocks are used to represent cations and anions, with color indicating charge (positive or negative) and size…
Differential Effects of Monovalent Cations and Anions on Key Nanoparticle Attributes
Understanding the key particle attributes such as particle size, size distribution and surface charge of both the nano- and micron-sized particles is the first step in drug formulation as such attributes are known to directly influence several characteristics of drugs including d...
Insights on Li-TFSI diffusion in polyethylene oxide for battery applications
NASA Astrophysics Data System (ADS)
Molinari, Nicola; Mailoa, Jonathan; Kozinsky, Boris; Robert Bosch LLC Collaboration
Improving the energy density, safety and efficiency of lithium-ion (Li-ion) batteries is crucial for the future of energy storage and applications such as electric cars. A key step in the research of next-generation solid polymeric electrolyte materials is understanding the diffusion mechanism of Li-ion in polyethylene oxide (PEO) in order to guide the design of electrolytes materials with high Li-ion diffusion while, ideally, suppress counter-anion movement. In this work we use computer simulations to investigate this long-standing problem at a fundamental level. The system under study has Li-TFSI concentration and PEO chain length that are representative of practical application specifications; the interactions of the molecular model are described via the PCFF+ all-atom force-field. Validation of the model is performed by comparing trends against experiments for diffusivity and conductivity as a function of salt concentration. The analysis of Li-TFSI molecular dynamics trajectories reveals that 1. for high Li-TFSI concentration a significant fraction of Li-ion is coordinated by only TFSI and consistently move less than PEO-coordinated Li-ion, 2. PEO chain motion is key in enabling Li-ion movement. Robert Bosch LLC.
Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.
Platre, Matthieu Pierre; Jaillais, Yvon
2017-02-01
A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.
Elucidating anionic oxygen activity in lithium-rich layered oxides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Jing; Sun, Meiling; Qiao, Ruimin
Recent research has explored combining conventional transition metal redox with anionic lattice oxygen redox as a new and exciting direction to search for high-capacity lithium-ion cathodes. For this study, we probe the poorly understood electrochemical activity of anionic oxygen from a material perspective by elucidating the effect of the transition metal on oxygen redox activity. We study two lithium-rich layered oxides, specifically lithium nickel metal oxides where metal is either manganese or ruthenium, which possess similar structure and discharge characteristics, but exhibit distinctly different charge profiles. By combining X-ray spectroscopy with operando differential electrochemical mass spectrometry, we reveal completely differentmore » oxygen redox activity in each material, likely resulting from the different interaction between the lattice oxygen and transition metals. This work provides additional insights into the complex mechanism of oxygen redox and development of advanced high-capacity lithium-ion cathodes.« less
Two dimensional fluid simulation in capacitively coupled silane discharges
NASA Astrophysics Data System (ADS)
Song, Yuan-Hong; Liu, Xiang-Mei; Wang, Yan; Wang, You-Nian
2011-10-01
A two-dimensional (2D) self-consistent fluid model is developed to describe the formation, subsequent growth, transport and charging mechanisms of nanoparticles in a capacitively coupled silane plasma. In this discharge process, large anions are produced by a series of chemical reactions of anions with silane molecules, while the lower limit of the initial nanoparticles are taken as large anions to directly link the coagulation module with the nucleation module. The influences of source parameters on the electron density, electron temperature, nanoparticle uniformity, and deposition rate, are carefully studied. Moreover, the behavior of silicon plasma mixed with SiH4, N2 and O2 in a pulse modulated capacitively coupled plasma has been also investigated. Results showed a strong dependence of the electron density and electron temperature on the duty cycle and the modulated frequency. Supported by NSFC (No.10775025 and No. 10805008), INSTSP (Grant No: 2011ZX02403-001), and PNCETU (NCET-08-0073).
Buried chloride stereochemistry in the Protein Data Bank
2014-01-01
Background Despite the chloride anion is involved in fundamental biological processes, its interactions with proteins are little known. In particular, we lack a systematic survey of its coordination spheres. Results The analysis of a non-redundant set (pairwise sequence identity?30%) of 1739 high resolution (<2 Å) crystal structures that contain at least one chloride anion shows that the first coordination spheres of the chlorides are essentially constituted by hydrogen bond donors. Amongst the side-chains positively charged, arginine interacts with chlorides much more frequently than lysine. Although the most common coordination number is 4, the coordination stereochemistry is closer to the expected geometry when the coordination number is 5, suggesting that this is the coordination number towards which the chlorides tend when they interact with proteins. Conclusions The results of these analyses are useful in interpreting, describing, and validating new protein crystal structures that contain chloride anions. PMID:25928393