Lirag, Rio Carlo; Le, Ha T M; Miljanić, Ognjen Š
2013-05-14
Nine L-shaped benzimidazole fluorophores have been synthesized, computationally evaluated and spectroscopically characterized. These "half-cruciform" fluorophores respond to bases, acids and anions through changes in fluorescence that vary from moderate to dramatic.
Kwon, Hyukin; Jiang, Wei
2015-01-01
Many existing irrigation, industrial and chemical storage sites are currently introducing hazardous anions into groundwater, making the monitoring of such sites a high priority. Detecting and quantifying anions in water samples typically requires complex instrumentation, adding cost and delaying analysis. Here we address these challenges by development of an optical molecular method to detect and discriminate a broad range of anionic contaminants with DNA-based fluorescent sensors. A library of 1296 tetrameric-length oligodeoxyfluorosides (ODFs) composed of metal ligand and fluorescence modulating monomers was constructed with a DNA synthesizer on PEG-polystyrene microbeads. These oligomers on beads were incubated with YIII or ZnII ions to provide affinity and responsiveness to anions. Seventeen anions were screened with the library under an epifluorescence microscope, ultimately yielding eight chemosensors that could discriminate 250 μM solutions of all 17 anions in buffered water using their patterns of response. This sensor set was able to identify two unknown anion samples from ten closely-responding anions and could also function quantitatively, determining unknown concentrations of anions such as cyanide (as low as 1 mM) and selenate (as low as 50 μM). Further studies with calibration curves established detection limits of selected anions including thiocyanate (detection limit ∼300 μM) and arsenate (∼800 μM). The results demonstrate DNA-like fluorescent chemosensors as versatile tools for optically analyzing environmentally hazardous anions in aqueous environments. PMID:26146537
NASA Astrophysics Data System (ADS)
Shibaev, A. V.; Makarov, A. V.; Aleshina, A. L.; Rogachev, A. V.; Kuklin, A. I.; Philippova, O. E.
2017-05-01
In this work, a combination of small-angle neutron scattering, dynamic light scattering and rheometry was applied in order to investigate the structure and oil responsiveness of anionic/cationic wormlike surfactant micelles formed in a mixture of potassium oleate and n-octyltrimethylammonium bromide (C8TAB). A new facile method of calculating the structure factor of charged interacting wormlike micelles was proposed. It was shown that the mean distance between the micelles decreases upon the increase of the amount of cationic co-surfactant and lowering of the net micellar charge. It was demonstrated that highly viscous fluids containing mixed anionic/cationic wormlike micelles are highly responsive to oil due to its solubilization inside the micellar cores, which leads to the disruption of micelles and formation of microemulsion droplets. Experimental data suggest that solubilization of oil proceeds differently in the case of mixed anionic/cationic micelles in the absence of salt, and anionic micelles of the same surfactant in the presence of KCl.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Yang, Xiaofeng; Sun, Guoxin; Zhang, Hao; Liu, Xiaolei; Zhu, Fengqiao; Qin, Shuchun; Zhao, Ziqi; Cui, Yu
2018-06-01
A series of colorimetric and reversible receptors for fluoride anions based on diketopyrrolopyrrole (DPP) were designed and synthesized successfully. The position of nitro substituent on the phenylhydrazide affected the alteration of photophysical properties to varying degrees. While the photoluminescence intensity of receptor 1 was weaker than that of receptor 2 and receptor 3 on account of the formation of intramolecular hydrogen bond deriving from oxygen atom of nitro substituent and hydrogen atom of hydrazide. The receptor 2 was a preferable chemosensor for responding fluoride anions. The fluorescence was quenched in the presence of fluoride anion resulted from the photo-induced electron transfer (PET) effect from the amide. The formation of deprotonation species, which produced by hydrazide Nsbnd H moiety and F- was answerable for the spectral changes. Especially, the spectral and color responses of receptors could be switched back and forth successively by adding F- and HSO4- anions in DMSO solution. These receptors could response fluoride anion sensitively, visually and selectively in a manner of reversible with a low determination.
Rérat, M; Schlegel, P
2014-06-01
Dry cow diets based on grassland forage from intensive production contain high amounts of K and could be responsible for a reduced ability to maintain Ca homoeostasis. The aim of this study was to determine whether a moderate anionic salt supplementation to a forage-based pre-calving diet with varying native K content affects the mineral and acid-base status in transition cows. Twenty-four dry and pregnant Holstein cows, without antecedent episodes of clinical hypocalcemia, were assigned to two diets during the last 4 weeks before estimated calving date. Twelve cows were fed a hay-based diet low in K (18 g K/kg DM), and 12, a hay-based diet high in K (35 g K/kg DM). Within each diet, six cows received anionic salts during the last 2 weeks before the estimated calving day. After calving, all cows received the high K diet ad libitum. Blood samples were taken daily from day 11 pre-partum to day 5 post-partum. Urine samples were taken on days 7 and 2 pre-partum and on day 2 post-partum. The anionic salt did not alter feed intake during the pre-partum period. Serum Ca was not influenced by the dietary treatments. Feeding pre-partum diets with low K concentrations induced a reduced metabolic alkalotic charge, as indicated by reduced pre-partum urinary base-acid quotient. Transition cows fed the low K diet including anionic salts induced a mild metabolic acidosis before calving, as indicated by higher urinary Ca, lower urinary pH and net acid-base excretion. Although serum Ca during the post-partum period was not affected by dietary treatment, feeding a low K diet moderately supplemented with anionic salts to reach a dietary cation-anion difference close to zero permitted to obtain a metabolic response in periparturient cows without altering the dry matter intake. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.
Liu, Wei; Huang, Xin; Xu, Cong; Chen, Chunyang; Yang, Lizi; Dou, Wei; Chen, Wanmin; Yang, Huan; Liu, Weisheng
2016-12-23
A novel luminescent microporous lanthanide metal-organic framework (Ln-MOF) based on a urea-containing ligand has been successfully assembled. Structural analysis revealed that the framework features two types of 1D channels, with urea N-H bonds projecting into the pores. Luminescence studies have revealed that the Ln-MOF exhibits high sensitivity, good selectivity, and a fast luminescence quenching response towards Fe 3+ , Cr VI anions, and picric acid. In particular, in the detection of Cr 2 O 7 2- and picric acid, the Ln-MOF can be simply and quickly regenerated, thus exhibiting excellent recyclability. To the best of our knowledge, this is the first example of a multi-responsive luminescent Ln-MOF sensor for Fe 3+ , Cr VI anions, and picric acid based on a urea derivative. This Ln-MOF may potentially be used as a multi-responsive regenerable luminescent sensor for the quantitative detection of toxic and harmful substances. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki
2013-01-01
Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl− and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl− efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl− efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network. PMID:23950973
Kurusu, Takamitsu; Saito, Katsunori; Horikoshi, Sonoko; Hanamata, Shigeru; Negi, Juntaro; Yagi, Chikako; Kitahata, Nobutaka; Iba, Koh; Kuchitsu, Kazuyuki
2013-01-01
Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure, in cultured tobacco BY-2 cells and analyzed the effect on cryptogein-induced defense responses including fluxes of Cl(-) and other ions, production of reactive oxygen species (ROS), gene expression and hypersensitive responses. The SLAC1-GFP fusion protein was localized at the plasma membrane in BY-2 cells. Overexpression of SLAC1 enhanced cryptogein-induced Cl(-) efflux and extracellular alkalinization as well as rapid/transient and slow/prolonged phases of NADPH oxidase-mediated ROS production, which was suppressed by an anion channel inhibitor, DIDS. The overexpressor also showed enhanced sensitivity to cryptogein to induce downstream immune responses, including the induction of defense marker genes and the hypersensitive cell death. These results suggest that SLAC1 expressed in BY-2 cells mediates cryptogein-induced plasma membrane Cl(-) efflux to positively modulate the elicitor-triggered activation of other ion fluxes, ROS as well as a wide range of defense signaling pathways. These findings shed light on the possible involvement of the SLAC/SLAH family anion channels in cryptogein signaling to trigger the plasma membrane ion channel cascade in the plant defense signal transduction network.
Billing, Beant Kaur; Mayank; Agnihotri, Prabhat K; Singh, Narinder
2018-06-08
Non-covalent bonding via π-π stacking is in demand these days because it does not affect the structure of the carbon nanotube (CNT). Herein, a hybrid material was fabricated via π-π stacking between the aromatic rings of carbon nanotubes and a dihydropyrimidone-based pyrene derivative. The developed CNT@pyrene hybrid material was fully characterized using SEM, EDX, TEM, XRD, and FTIR techniques. The hybrid was developed to improve the heat transport in the hybrid solution by anion addition. The emission profile of the developed hybrid was screened against TBA salts of different anions in EtOH-H2O (10-90% v/v) solvent system to identify the anion that can interact with the hybrid. The hybrid exhibited high sensitivity and selectivity towards NO3- ions with 1.5-fold enhancement in fluorescence intensity, while other anions neither showed significant responses nor interfered in the sensor's response. The limit of NO3- ions detection was found to be 8.1 nM, calculated using the 3-sigma method. It was observed that the proposed hybrid sensor showed stable response at different pH and diverse salt concentrations. The binding mechanism was elucidated by DFT-based theoretical calculations. Real sample analysis was performed for the detection of NO3- concentrations in local water bodies with accuracy as high as 95%. Viscosity and thermal conductivity experiments were performed to measure the effect of concentration, temperature, and pH on the NO3- response.
Hirshberg, Daniel; Sharon, Daniel; Afri, Michal; Lavi, Ronit; Frimer, Aryeh A; Metoki, Noa; Eliaz, Noam; Kwak, Won-Jin; Sun, Yang-Kook; Aurbach, Doron
2018-04-04
Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.
Fluoride-driven 'turn on' ESPT in the binding with a novel benzimidazole-based sensor.
Liu, Kai; Zhao, Xiaojun; Liu, Qingxiang; Huo, Jianzhong; Zhu, Bolin; Diao, Shihua
2015-01-01
A novel fluorescence sensor (BIP) bearing NH and OH subunits displayed a highly selective and sensitive recognition property for fluoride over other anions. Fluoride-driven ESPT, poorly used in anion recognition and sensing, was suggested to be responsible for the fluorescence enhancement with a blue shift of 35 nm in the emission spectrum.
Svane, Simon; Kjeldsen, Frank; McKee, Vickie; McKenzie, Christine J
2015-07-14
The three dimetallic compounds [Ga2(bpbp)(OH)2(H2O)2](ClO4)3, [In2(bpbp)(CH3CO2)2](ClO4)3 and [Zn2(bpbp)(HCO2)2](ClO4) (bpbp(-) = 2,6-bis((N,N'-bis(2-picolyl)amino)methyl)-4-tertbutylphenolate) were evaluated as stable solid state precursors for reactive solution state receptors to use for the recognition of the biologically important anion pyrophosphate in water at neutral pH. Indicator displacement assays using in situ generated complex-pyrocatechol violet adducts, {M2(bpbp)(HxPV)}(n+) M = Ga(3+), In(3+), Zn(2+), were tested for selectivity in their reactions with a series of common anions: pyrophosphate, phosphate, ATP, arsenate, nitrate, perchlorate, chloride, sulfate, formate, carbonate and acetate. The receptor employing Ga(3+) showed a slow but visually detectable response (blue to yellow) in the presence of one equivalent of pyrophosphate but no response to any other anion, even when they were present in much higher concentrations. The systems based on In(3+) or Zn(2+) show less selectivity in accord with visibly discernible responses to several of the anions. These results demonstrate a facile method for increasing anion selectivity without modification of an organic dinucleating ligand scaffold. The comfortable supramolecular recognition of pyrophosphate by the dimetallic complexes is demonstrated by the single crystal X-ray structure of [Ga2(bpbp)(HP2O7)](ClO4)2 in which the pyrophosphate is coordinated to the two gallium ions via four of its oxygen atoms.
Luminescence of ferrocene-modified pyrene derivatives for turn-on sensing of Cu2 + and anions
NASA Astrophysics Data System (ADS)
Sun, Shuhua; Hu, Wenting; Gao, Hongfang; Qi, Honglan; Ding, Liping
2017-09-01
Detection and identification of metal ions by fluorescent turn-on sensors are challenging due to the quenching effect of most of the tested metal ions. In the present work, three ferrocene-modified pyrene-based probes 2-4 were synthesized to act as turn-on fluorescent sensors for Cu2 +. The measurements of fluorescence quantum yield and fluorescence lifetime reveal that ferrocenyl unit can efficiently reduce the fluorescence emission of pyrene moiety. Steady-state fluorescence measurements find that the three ferrocene-modified fluorophores exhibit selective turn-on responses to Cu2 +. Moreover, this turn-on effect to Cu2 + is highly influenced by the type of the counter ion. It is found that the presence of Cl- or NO3- could realize the turn-on response to Cu2 +, whereas, the presence of SO42 - or Ac- could not induce any fluorescence enhancement to Cu2 +. Control experiments with ferrocene-free pyrene-based probe 1 reveal that the ferrocenyl unit plays the key role in the turn-on response to Cu2 +. The possible mechanism for the turn-on responses is attributed to the oxidation behavior of Cu2 + to the ferrocene unit, which is confirmed by the control experiments with sodium ascorbate. Cyclic voltammetry measurements show that Cu2 + can influence the redox behaviors of ferrocenyl derivatives, which is also highly dependent on the anion of the copper salts. The influence of anion on the turn-on responses to Cu2 + was further used for anion detection and fluorescent logic gate.
Luminescence of ferrocene-modified pyrene derivatives for turn-on sensing of Cu2+ and anions.
Sun, Shuhua; Hu, Wenting; Gao, Hongfang; Qi, Honglan; Ding, Liping
2017-09-05
Detection and identification of metal ions by fluorescent turn-on sensors are challenging due to the quenching effect of most of the tested metal ions. In the present work, three ferrocene-modified pyrene-based probes 2-4 were synthesized to act as turn-on fluorescent sensors for Cu 2+ . The measurements of fluorescence quantum yield and fluorescence lifetime reveal that ferrocenyl unit can efficiently reduce the fluorescence emission of pyrene moiety. Steady-state fluorescence measurements find that the three ferrocene-modified fluorophores exhibit selective turn-on responses to Cu 2+ . Moreover, this turn-on effect to Cu 2+ is highly influenced by the type of the counter ion. It is found that the presence of Cl - or NO 3 - could realize the turn-on response to Cu 2+ , whereas, the presence of SO 4 2- or Ac - could not induce any fluorescence enhancement to Cu 2+ . Control experiments with ferrocene-free pyrene-based probe 1 reveal that the ferrocenyl unit plays the key role in the turn-on response to Cu 2+ . The possible mechanism for the turn-on responses is attributed to the oxidation behavior of Cu 2+ to the ferrocene unit, which is confirmed by the control experiments with sodium ascorbate. Cyclic voltammetry measurements show that Cu 2+ can influence the redox behaviors of ferrocenyl derivatives, which is also highly dependent on the anion of the copper salts. The influence of anion on the turn-on responses to Cu 2+ was further used for anion detection and fluorescent logic gate. Copyright © 2017 Elsevier B.V. All rights reserved.
Evaluating of arsenic(V) removal from water by weak-base anion exchange adsorbents.
Awual, M Rabiul; Hossain, M Amran; Shenashen, M A; Yaita, Tsuyoshi; Suzuki, Shinichi; Jyo, Akinori
2013-01-01
Arsenic contamination of groundwater has been called the largest mass poisoning calamity in human history and creates severe health problems. The effective adsorbents are imperative in response to the widespread removal of toxic arsenic exposure through drinking water. Evaluation of arsenic(V) removal from water by weak-base anion exchange adsorbents was studied in this paper, aiming at the determination of the effects of pH, competing anions, and feed flow rates to improvement on remediation. Two types of weak-base adsorbents were used to evaluate arsenic(V) removal efficiency both in batch and column approaches. Anion selectivity was determined by both adsorbents in batch method as equilibrium As(V) adsorption capacities. Column studies were performed in fixed-bed experiments using both adsorbent packed columns, and kinetic performance was dependent on the feed flow rate and competing anions. The weak-base adsorbents clarified that these are selective to arsenic(V) over competition of chloride, nitrate, and sulfate anions. The solution pH played an important role in arsenic(V) removal, and a higher pH can cause lower adsorption capacities. A low concentration level of arsenic(V) was also removed by these adsorbents even at a high flow rate of 250-350 h(-1). Adsorbed arsenic(V) was quantitatively eluted with 1 M HCl acid and regenerated into hydrochloride form simultaneously for the next adsorption operation after rinsing with water. The weak-base anion exchange adsorbents are to be an effective means to remove arsenic(V) from drinking water. The fast adsorption rate and the excellent adsorption capacity in the neutral pH range will render this removal technique attractive in practical use in chemical industry.
Electrochemically Switchable Polymeric Membrane Ion-Selective Electrodes.
Zdrachek, Elena; Bakker, Eric
2018-06-07
We present here for the first time a solid contact ion-selective electrode suitable for the simultaneous sensing of cations (tetrabutylammonium) and anions (hexafluorophosphate), achieved by electrochemical switching. The membrane is based on a thin plasticized polyurethane membrane deposited on poly(3-octylthiophene) (POT) and contains a cation exchanger and lipophilic electrolyte (ETH 500). The cation exchanger is initially in excess; the ion-selective electrode exhibits an initial potentiometric response to cations. During an oxidative current pulse, POT is converted into POT + , which results in the expulsion of cations from the membrane followed by the extraction of anions from the sample solution to fulfill the electroneutrality condition. This creates a defined excess of lipophilic cation in the membrane, resulting in a potentiometric anion response. A reductive current pulse restores the original cation response by triggering the conversion of POT + back into POT, which is accompanied by the expulsion of anions from the membrane and the extraction of cations from the sample solution. Various current pulse magnitudes and durations are explored, and the best results in terms of response slope values and signal stability were observed with an oxidation current pulse of 140 μA cm -2 applied for 8 s and a reduction current pulse of -71 μA cm -2 applied for 8 s.
Sukumaran, Sunil K.; Margolskee, Robert F.; Bachmanov, Alexander A.
2016-01-01
Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This “anion effect” has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding. PMID:26865617
NASA Astrophysics Data System (ADS)
Marini, Vanderléia Gava; Zimmermann, Lizandra Maria; Machado, Vanderlei Gageiro
2010-02-01
Solutions of 2,4-dinitrodiphenylamine ( 1) in dimethylsulfoxide (DMSO) are colorless but upon deprotonation they become red. Addition of various anionic species (HSO 4-, H 2PO 4-, NO 3-, CN -, CH 3COO -, F -, Cl -, Br -, and I -) to solutions of 1 revealed that only CN -, F -, CH 3COO -, and H 2PO 4- led to the appearance of the red color in solution. The presence of increasing amounts of water in solutions containing 1 made it progressively selective toward CN - and the system with the addition of 4.3% (v/v) of water was highly selective for CN - among all anions studied. The experimental data collected indicated that proton transfer from 1 to the anion occurs, and a model was used to explain the experimental results, which considers two 1:anion stoichiometries, 1:1 and 1:2. For the latter, the data suggest that the anion forms firstly a hydrogen-bonded complex with a second anion equivalent necessary for the abstraction of the proton, with the formation of a [HA 2] - complex. The study performed here demonstrates the important role of the environment of the anion and 1 for the efficiency of the chromogenic chemosensor. Besides the different affinities of each anion for water, the solvation of both the anion and 1 is responsible for reducing the interaction between these species. In small amounts, water or hydrogen-bonded DMSO-water complexes are able to stabilize the conjugated base of 1 through hydrogen bonding, making 1 more acidic, which explains the change from 1:1 and 1:2 toward 1:1 1:anion stoichiometry upon addition of water. In addition, water is able to solvate the anion and also 1, which hinders the formation of 1:1 hydrogen-bonded 1:anion complexes prior to the abstraction of the proton.
Marini, Vanderléia Gava; Zimmermann, Lizandra Maria; Machado, Vanderlei Gageiro
2010-02-01
Solutions of 2,4-dinitrodiphenylamine (1) in dimethylsulfoxide (DMSO) are colorless but upon deprotonation they become red. Addition of various anionic species (HSO(4)(-), H(2)PO(4)(-), NO(3)(-), CN(-), CH(3)COO(-), F(-), Cl(-), Br(-), and I(-)) to solutions of 1 revealed that only CN(-), F(-), CH(3)COO(-), and H(2)PO(4)(-) led to the appearance of the red color in solution. The presence of increasing amounts of water in solutions containing 1 made it progressively selective toward CN(-) and the system with the addition of 4.3% (v/v) of water was highly selective for CN(-) among all anions studied. The experimental data collected indicated that proton transfer from 1 to the anion occurs, and a model was used to explain the experimental results, which considers two 1:anion stoichiometries, 1:1 and 1:2. For the latter, the data suggest that the anion forms firstly a hydrogen-bonded complex with a second anion equivalent necessary for the abstraction of the proton, with the formation of a [HA(2)](-) complex. The study performed here demonstrates the important role of the environment of the anion and 1 for the efficiency of the chromogenic chemosensor. Besides the different affinities of each anion for water, the solvation of both the anion and 1 is responsible for reducing the interaction between these species. In small amounts, water or hydrogen-bonded DMSO-water complexes are able to stabilize the conjugated base of 1 through hydrogen bonding, making 1 more acidic, which explains the change from 1:1 and 1:2 toward 1:1 1:anion stoichiometry upon addition of water. In addition, water is able to solvate the anion and also 1, which hinders the formation of 1:1 hydrogen-bonded 1:anion complexes prior to the abstraction of the proton. Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ma, Yang-Min; Liu, Tong; Huang, Wen-Huan
2018-02-01
Based on La(NO3)3·6H2O and 4,4‧-((5-carboxy-1,3-phenylene)bis(oxy))dibenzoic acid (H3cpbda), a 3D porous MOFs, [La(cpbda)(H2O)1.5]n (1), was synthesized by hydrothermal method and further characterized by single-crystal X-ray diffraction, power X-ray diffraction, IR spectroscopy, thermal-gravimetric analysis and fluorescence spectroscopy. Owing to its good stabilities and fluorescence property, the sensing experiments on sixteen cations and eleven anions were implemented. Moreover, the further titration processes show 1 can sensitively detect the Fe(III) cation and Cr(VI)-containing anions by quenching responses.
Hou, Xianfeng; Zeng, Fang; Du, Fangkai; Wu, Shuizhu
2013-08-23
Sulfide anions are generated not only as a byproduct from industrial processes but also in biosystems. Hence, robust fluorescent sensors for detecting sulfide anions which are fast-responding, water soluble and biocompatible are highly desirable. Herein, we report a carbon-dot-based fluorescent sensor, which features excellent water solubility, low cytotoxicity and a short response time. This sensor is based on the ligand/Cu(II) approach so as to achieve fast sensing of sulfide anions. The carbon dot (CD) serves as the fluorophore as well as the anchoring site for the ligands which bind with copper ions. For this CD-based system, as copper ions bind with the ligands which reside on the surface of the CD, the paramagnetic copper ions efficiently quench the fluorescence of the CD, affording the system a turn-off sensor for copper ions. More importantly, the subsequently added sulfide anions can extract Cu(2+) from the system and form very stable CuS with Cu(2+), resulting in fluorescence enhancement and affording the system a turn-on sensor for sulfide anions. This fast-responding and selective sensor can operate in totally aqueous solution or in physiological milieu with a low detection limit of 0.78 μM. It displays good biocompatibility, and excellent cell membrane permeability, and can be used to monitor S(2-) levels in running water and living cells.
Li, Guang-Yue; Liu, Dong; Zhang, Hang; Li, Wei-Wei; Wang, Feng; Liang, Ying-Hua
2015-01-01
The fluoride-sensing mechanism of a reported salicylaldehyde-based sensor (J. Photochem. Photobiol. B 2014, 138, 75) has been investigated by the TDDFT method. The present theoretical study indicates that there is an excited-state proton transfer (ESPT) process from the phenolic O-H moiety to the neighbor N atom in the sensor. The added fluoride anion could capture the proton in the O-H moiety and the corresponding phenolic anion is formed, which could inhibit the ESPT process. The experimental UV/Vis and fluorescence spectra are well reproduced by the calculated vertical excitation energies. Frontier molecular orbital analysis indicates that the local excited state of phenolic anion is responsible for its enhanced fluorescence. Due to this reason, the sensor can be used to sense fluoride anion by monitoring the fluorescent change. Copyright © 2015 Elsevier B.V. All rights reserved.
Velmathi, Sivan; Reena, Vijayaraghavan; Suganya, Sivalingam; Anandan, Sambandam
2012-01-01
An efficient colorimetric sensor with pyrrole-NH moiety as binding site and nitro group as a signaling unit has been synthesized by a one step procedure and characterized by spectroscopic techniques, which displays excellent selectivity and sensitivity for fluoride and hydroxide ions. The hydrogen bonding with these anions provides remarkable colorimetric responses. (1)H NMR and FT IR studies has been carried out to confirm the hydrogen bonding. UV-vis and fluorescence spectral changes can be exploited for real time and on site application.
Hard and soft acids and bases: structure and process.
Reed, James L
2012-07-05
Under investigation is the structure and process that gives rise to hard-soft behavior in simple anionic atomic bases. That for simple atomic bases the chemical hardness is expected to be the only extrinsic component of acid-base strength, has been substantiated in the current study. A thermochemically based operational scale of chemical hardness was used to identify the structure within anionic atomic bases that is responsible for chemical hardness. The base's responding electrons have been identified as the structure, and the relaxation that occurs during charge transfer has been identified as the process giving rise to hard-soft behavior. This is in contrast the commonly accepted explanations that attribute hard-soft behavior to varying degrees of electrostatic and covalent contributions to the acid-base interaction. The ability of the atomic ion's responding electrons to cause hard-soft behavior has been assessed by examining the correlation of the estimated relaxation energies of the responding electrons with the operational chemical hardness. It has been demonstrated that the responding electrons are able to give rise to hard-soft behavior in simple anionic bases.
Gupta, Vinod K; Goyal, Rajendra N; Sharma, Ram A
2008-08-15
A potentiometric acetate-selective sensor, based on the use of butane-2,3-dione,bis[(2,4-dinitrophenyl)hydrazone] (BDH) as a neutral carrier in poly(vinyl chloride) (PVC) matrix, is reported. Effect of various plasticizers and cation excluder, cetryaltrimethylammonium bromide (CTAB) was studied. The best performance was obtained with a membrane composition of PVC:BDH:CTAB ratio (w/w; mg) of 160:8:8. The sensor exhibits significantly enhanced selectivity toward acetate ions over a wide concentration range 5.0 x 10(-6) to 1.0 x 10(-1)M with a lower detection limit of 1.2 x 10(-6)M within pH range 6.5-7.5 with a response time of <15s and a Nernstian slope of 60.3+/-0.3 mV decade(-1) of activity. Influences of the membrane composition, and possible interfering anions were investigated on the response properties of the electrode. Fast and stable response, good reproducibility and long-term stability are demonstrated. The sensor has a response time of 15s and can be used for at least 65 days without any considerable divergence in their potential response. Selectivity coefficients determined with the separate solution method (SSM) and fixed interference method (FIM) indicate that high selectivity for acetate ion. The proposed electrode shows fairly good discrimination of acetate from several inorganic and organic anions. It was successfully applied to direct determination of acetate within food preservatives. Total concentration of acetic acid in vinegar samples were determined by direct potentiometry and the values agreed with those mentioned by the manufacturers.
Silica nanoparticles with a substrate switchable luminescence
NASA Astrophysics Data System (ADS)
Bochkova, O. D.; Mustafina, A. R.; Fedorenko, S. V.; Konovalov, A. I.
2011-04-01
Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.
Revisiting structure-property relationship of pH-responsive polymers for drug delivery applications.
Bazban-Shotorbani, Salime; Hasani-Sadrabadi, Mohammad Mahdi; Karkhaneh, Akbar; Serpooshan, Vahid; Jacob, Karl I; Moshaverinia, Alireza; Mahmoudi, Morteza
2017-05-10
pH-responsive polymers contain ionic functional groups as pendants in their structure. The total number of charged groups on polymer chains determines the overall response of the system to changes in the external pH. This article reviews various pH-responsive polymers classified as polyacids (e.g., carboxylic acid based polymers, sulfonamides, anionic polysaccharides, and anionic polypeptides) and polybases (e.g., polyamines, pyridine and imidazole containing polymers, cationic polysaccharides, and cationic polypeptides). We correlate the pH variations in the body at the organ level (e.g., gastrointestinal tract and vaginal environment), tissue level (e.g., cancerous and inflamed tissues), and cellular level (e.g., sub-cellular organelles), with the intrinsic properties of pH-responsive polymers. This knowledge could help to select more effective ('smart') polymeric systems based on the biological target. Considering the pH differences in the body, various drug delivery systems can be designed by utilizing smart biopolymeric compounds with the required pH-sensitivity. We also review the pharmaceutical application of pH-responsive polymeric carriers including hydrogels, polymer-drug conjugates, micelles, dendrimers, and polymersomes. © 2016.
Yang, Si; Wo, Yaqi; Meyerhoff, Mark E.
2014-01-01
Cobalt(III) 5, 10, 15-tris(4-tert-butylphenyl) corrole with a triphenylphosphine axial ligand and rhodium(III) 5,10,15,20-tetra(p-tert-butylphenyl)porphyrin are incorporated into plasticized poly(vinyl chloride) films to fabricate nitrite-selective bulk optodes via absorbance measurements. The resulting films yield sensitive, fast and fully reversible response toward nitrite with significantly enhanced nitrite selectivity over other anions including lipophilic anions such as thiocyanate and perchlorate. The selectivity patterns differ greatly from the Hofmeister series based on anion lipophilicity and are consistent with selectivity obtained with potentiometric sensors based on the same ionophores. The optical nitrite sensors are shown to be useful for detecting rates of emission of nitric oxide (NO) from NO releasing polymers containing S-nitroso-N-acetyl-penicillamine. PMID:25150700
Anion channels: master switches of stress responses.
Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar
2012-04-01
During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pongjit, Kanittha; Chanvorachote, Pithi
2011-12-01
Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.
8-Hydroxyquinoline based push-pull azo dye: Novel colorimetric chemosensor for anion detection
NASA Astrophysics Data System (ADS)
Arslan, Ömer; Aydıner, Burcu; Yalçın, Ergin; Babür, Banu; Seferoğlu, Nurgül; Seferoğlu, Zeynel
2017-12-01
A novel colorimetric chemosensor based on push-pull dye (8HQA) was synthesized and characterized by using IR, 1H/13C NMR and HRMS for the purpose of recognition of anions and cations in DMSO. The absorption maxima of the chemosensor were determined in different solvents. The selectivity and sensitivity of 8HQA to anions were determined with spectrophotometric and 1H NMR titration techniques. The selectivity of 8HQA for studied anions (CN-, F-, Cl-, I-, AcO-, HSO4- and H2PO4-) was determined in DMSO. There is no selectivity between competing anions such as CN-, F- AcO- and H2PO4- at the stoichiometric ratio of 1:1 in UV-vis titrations experiments however, it was observed different color changes upon addition of CN-, F-, AcO- and H2PO4- to the DMSO solution. In addition, the chemosensor showed no colorimetric response for the following anions; Cl-, I- and HSO4- in DMSO. The colorimetric sensing ability of 8HQA was studied in the presence of chloride salts of different cations such as Ca2+, Mg2+, Cu2+, Co2+, Sn2+, Ni2+, Cd2+ and Hg2+. Upon the addition of 4 equiv of each of the cations showed bathochromic shifts except for Ca2+and Cu2+. Interestingly, no selectivity was observed in interaction with metal cations. In addition, the molecular and electronic structures of 8HQA, as well as the molecular complexes of 8HQA, formed with the anions, were obtained theoretically and confirmed by DFT and TD-DFT calculations.
Lakshmi, Vellanki; Haketa, Yohei; Yamakado, Ryohei; Yasuda, Nobuhiro; Maeda, Hiromitsu
2017-03-30
Pyrrole-4-aryl-substituted dipyrrolyldiketone BF 2 complexes as anion-responsive π-electronic molecules were synthesized via a 3,5-dimethylpyrrole precursor. Mesophases were observed in derivatives that possessed long alkyl chains on the pyrrole-4-aryl groups along with their anion complexes as ion-pairing assemblies in combination with appropriate cations.
NASA Astrophysics Data System (ADS)
Chen, Guanfan; Tang, Mengzhuo; Fu, Xiufang; Cheng, Fenmin; Zou, Xianghua; Wang, Jingpei; Zeng, Rongjin
2018-01-01
Sulfide anions are not only generated as a byproduct from industrial processes but also as a crucial kind of element in biological systems. Therefore, fluorescent probes for detecting sulfide anion with sensitive and selective characters are highly popular. In this study, we report a highly sensitive and selective fluorescent sensor M1 for detection of sulfide anion based on the steric hindrance effect, where the recognition unit, dinitrobenzenesulfonate ester group is linked to aromatic ortho-position in the porphyrin, and correspondingly the fluorescence of fluorescein is efficiently quenched. Compared with the sensors with recognition unit linked to the other aromatic positions, the fluorescent sensor M1 has a lower fluorescence background. Furthermore, the corresponding fluorescence responses (F/F0) of M1 for mercapto amino-acid GSH, Hcy and Cys, were all far lower than the relative fluorescence ratio F/F0 values for S2-. It means that M1 is sensitive and selective to detection of S2-, and has an anti-disturbance ability to the biologically-relevant thiols, GSH, Hcy and Cys, and has the prospect of application in the exact detection of sulfide anions in living organisms. This approach offers some useful insights for realizing sensitive and selective fluorescent turn-on sensing in the detection assays for other analytes.
Salt taste responses of the IXth nerve in Sprague-Dawley rats: lack of sensitivity to amiloride.
Kitada, Y; Mitoh, Y; Hill, D L
1998-03-01
To explore characteristics of the salt taste function of taste receptor cells located on the posterior tongue, we recorded electrophysiological responses from the whole glossopharyngeal nerve in Sprague-Dawley (SD) rats. For all salts, relative response magnitudes increased with increased stimulus concentrations (0.2-2.0 M) of NH4+, K+, and Na+ salts. The order of effectiveness of stimulation for Cl- salts was NH4Cl > KCl > NaCl. For sodium salts, relative response magnitudes were anion dependent. Sodium salts with small anions (NaCl, NaSCN, and NaNO3) had a much stronger stimulating effect than sodium salts with large anion groups (Na2SO4, C2H3O2Na, and C6H11O7Na). The responses of the glossopharyngeal nerve to the Na+ salts of NaCl, C2H3O2Na, and C6H11O7Na were not inhibited by the lingual application of the epithelial sodium transport blocker amiloride. This is in contrast to large amiloride sensitivity of the chorda tympani nerve. Amiloride also failed to inhibit the responses to K+ salts (KCl and KC2H3O2) and to NH4Cl. These results demonstrate that taste receptors innervated by the glossopharyngeal nerve in SD rats lack amiloride sensitivity as observed in the glossopharyngeal nerve of spontaneously hypertensive and Wistar-Kyoto rats. Furthermore, the difference between the small-anion group and the large-anion group of Na+ salts in their effectiveness to produce responses in the glossopharyngeal nerve parallels the effects noted for the anion dependence in the portion of the taste response resistant to amiloride in the chorda tympani nerve. Sodium salts with the smaller anion produced the larger responses in both glossopharyngeal and chorda tympani nerves after amiloride.
Batlle, Daniel; Chin-Theodorou, Jamie; Tucker, Bryan M
2017-09-01
Hypobicarbonatemia, or a reduced bicarbonate concentration in plasma, is a finding seen in 3 acid-base disorders: metabolic acidosis, chronic respiratory alkalosis and mixed metabolic acidosis and chronic respiratory alkalosis. Hypobicarbonatemia due to chronic respiratory alkalosis is often misdiagnosed as a metabolic acidosis and mistreated with the administration of alkali therapy. Proper diagnosis of the cause of hypobicarbonatemia requires integration of the laboratory values, arterial blood gas, and clinical history. The information derived from the urinary response to the prevailing acid-base disorder is useful to arrive at the correct diagnosis. We discuss the use of urine anion gap, as a surrogate marker of urine ammonium excretion, in the evaluation of a patient with low plasma bicarbonate concentration to differentiate between metabolic acidosis and chronic respiratory alkalosis. The interpretation and limitations of urine acid-base indexes at bedside (urine pH, urine bicarbonate, and urine anion gap) to evaluate urine acidification are discussed. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin
2017-08-01
A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu2 + ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu2 + ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu2 + to probe QP was found to be 2.12 × 104 M- 1. Further, the Cu2 + ensemble of probe QP was found to respond H2PO4- and HPO42 - among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu2 + cation and H2PO4- and HPO42 - anions in living cells.
Dai, Yanpeng; Wang, Peng; Fu, Jiaxin; Yao, Kun; Xu, Kuoxi; Pang, Xiaobin
2017-08-05
A quinaldine functionalized probe QP has been designed and synthesized. It exhibited selective turn-off fluorescence response toward Cu 2+ ion over most of the biologically important ions at physiological pH. The binding ratio of the probe QP and Cu 2+ ion was determined to be 1:1 through fluorescence titration, Job's plot and ESI-MS. The binding constant (K) of Cu 2+ to probe QP was found to be 2.12×10 4 M -1 . Further, the Cu 2+ ensemble of probe QP was found to respond H 2 PO 4 - and HPO 4 2- among other important biological anions via fluorescence turn-on response at physiological pH. Fluorescence microscopy imaging using living Hela cells showed that probe QP could be used as an effective fluorescent probe for detecting Cu 2+ cation and H 2 PO 4 - and HPO 4 2- anions in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.
A novel multi-stimuli responsive gelator based on D-gluconic acetal and its potential applications.
Guan, Xidong; Fan, Kaiqi; Gao, Tongyang; Ma, Anping; Zhang, Bao; Song, Jian
2016-01-18
We construct a simple-structured super gelator with multi-stimuli responsive properties, among which anion responsiveness follows the Hofmeister series in a non-aqueous system. Versatile applications such as being rheological and self-healing agents, waste water treatment, spilled oil recovery and flexible optical device manufacture are integrated into a single organogelator, which was rarely reported.
Mahapatra, Ajit Kumar; Maji, Rajkishor; Maiti, Kalipada; Adhikari, Susanta Sekhar; Das Mukhopadhyay, Chitrangada; Mandal, Debasish
2014-01-07
A new BODIPY-azaindole based fluorescent sensor 1 was designed and synthesized as a new colorimetric and ratiometric fluorescent chemosensor for fluoride. The binding and sensing abilities of sensor 1 towards various anions were studied by absorption, emission and (1)H NMR titration spectroscopies. The spectral responses of 1 to fluoride in acetonitrile-water were studied: an approximately 69 nm red shift in absorption and ratiometric fluorescent response was observed. The striking light yellow to deep brown color change in ambient light and green to blue emission color change are thought to be due to the deprotonation of the indole moiety of the azaindole fluorophore. From the changes in the absorption, fluorescence, and (1)H NMR titration spectra, proton-transfer mechanisms were deduced. Density function theory and time-dependent density function theory calculations were conducted to rationalize the optical response of the sensor. Results were supported by confocal fluorescence imaging and MTT assay of live cells.
The Anion Paradox in Sodium Taste Reception: Resolution by Voltage-Clamp Studies
NASA Astrophysics Data System (ADS)
Ye, Qing; Heck, Gerard L.; Desimone, John A.
1991-11-01
Sodium salts are potent taste stimuli, but their effectiveness is markedly dependent on the anion, with chloride yielding the greatest response. The cellular mechanisms that mediate this phenomenon are not known. This "anion paradox" has been resolved by considering the field potential that is generated by restricted electrodiffusion of the anion through paracellular shunts between taste-bud cells. Neural responses to sodium chloride, sodium acetate, and sodium gluconate were studied while the field potential was voltage-clamped. Clamping at electronegative values eliminated the anion effect, whereas clamping at electropositive potentials exaggerated it. Thus, field potentials across the lingual epithelium modulate taste reception, indicating that the functional unit of taste reception includes the taste cell and its paracellular microenvironment.
The Roles of Acids and Bases in Enzyme Catalysis
ERIC Educational Resources Information Center
Weiss, Hilton M.
2007-01-01
Many organic reactions are catalyzed by strong acids or bases that protonate or deprotonate neutral reactants leading to reactive cations or anions that proceed to products. In enzyme reactions, only weak acids and bases are available to hydrogen bond to reactants and to transfer protons in response to developing charges. Understanding this…
Cassini observations of carbon-based anions in Titan's ionosphere
NASA Astrophysics Data System (ADS)
Desai, Ravindra; Lewis, Gethyn; Waite, J. Hunter; Kataria, Dhiren; Wellbrock, Anne; Jones, Geraint; Coates, Andrew
2016-07-01
Cassini observations of Titan's ionosphere revealed an atmosphere rich in positively and negatively charged ions and organic molecules. The detection of large quantities of negatively charged ions was particularly surprising and adds Titan to the growing list of locations where anion chemistry has been observed to play an important role. In this study we present updated analysis on these negatively charged ions through an enhanced understanding of the Cassini CAPS Electron Spectrometer (CAPS-ELS) instrument response. The ionisation of Titan's dominant atmospheric constituent, N2, by the HeII Solar line, results in an observable photoelectron population at 24.1eV which we use to correct for differential spacecraft charging. Correcting for further energy-angle signatures within this dataset, we use an updated fitting procedure to show how the ELS mass spectrum, previously grouped into broad mass ranges, can be resolved into specific peaks at multiples of carbon-based anion species up to over 100amu/q. These peaks are shown to be ubiquitous within Titan's upper atmosphere and reminiscent of carbon-based anions identified in dense molecular clouds beyond our Solar System. It is thus shown how the moon Titan in the Outer Solar System can be used as an analogue to study these even more remote and exotic astrophysical environments.
Aoyagi, Wataru; Omiya, Masaki
2016-01-01
An ionic polymer-metal composite (IPMC) actuator composed of a thin perfluorinated ionomer membrane with electrodes plated on both surfaces undergoes a large bending motion when a low electric field is applied across its thickness. Such actuators are soft, lightweight, and able to operate in solutions and thus show promise with regard to a wide range of applications, including MEMS sensors, artificial muscles, biomimetic systems, and medical devices. However, the variations induced by changing the type of anion on the device deformation properties are not well understood; therefore, the present study investigated the effects of different anions on the ion exchange process and the deformation behavior of IPMC actuators with palladium electrodes. Ion exchange was carried out in solutions incorporating various anions and the actuator tip displacement in deionized water was subsequently measured while applying a step voltage. In the step voltage response measurements, larger anions such as nitrate or sulfate led to a more pronounced tip displacement compared to that obtained with smaller anions such as hydroxide or chloride. In AC impedance measurements, larger anions generated greater ion conductivity and a larger double-layer capacitance at the cathode. Based on these mechanical and electrochemical measurements, it is concluded that the presence of larger anions in the ion exchange solution induces a greater degree of double-layer capacitance at the cathode and results in enhanced tip deformation of the IPMC actuators. PMID:28773599
Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas
2016-02-01
Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis. © The Author(s) 2015.
Badr, Ibrahim H A; Meyerhoff, Mark E
2005-10-15
More detailed analytical studies of a new fluoride-selective optical sensor based on the use of aluminum(III)-octaethylporphyrin and a lipophilic pH indicator (4',5'-dibromofluorescein octadecyl ester; ETH-7075) within a thin plasticized poly(vinyl chloride) film are reported. The sensor exhibits extraordinary optical selectivity for fluoride over a wide range of other anions, including anions with far more positive free energies of hydration (e.g., perchlorate, thiocyanate, nitrate, etc.). UV-visible spectrophotometric studies of the sensing films indicate that fluoride interacts with the Al(III) center of the porphyrin structure, yielding both a change in the Soret band lambda(max) of the porphyrin and a change in the protonation state of the pH indicator within the film. The same change in spectral properties of the metalloporphyrin occurs in the absence of added pH indicator or with added tetraphenylborate derivative anionic sites, but optical responses to fluoride in these cases are shown to be irreversible. The presence of the pH indicator and the simultaneous fluoride/proton coextraction equilibrium chemistry is shown to greatly enhance the reversibility of fluoride binding to the Al(III) porphyrin. Optical response toward fluoride can be observed in the range of 0.1 microM-1.6 mM. Optical selectivity coefficients of <10(-6) for common anions (e.g., sulfate, chloride, nitrate, etc.) and <10(-4) for perchlorate and thiocyanate are obtained. Measurements of fluoride in drinking water via the new optical sensor are shown to correlate well with values obtained for the same samples using a classical LaF3-based fluoride ion-selective electrode method.
Badr, Ibrahim H. A.; Meyerhoff, Mark E.
2008-01-01
More detailed analytical studies of a new fluoride selective optical sensor based on the use of aluminum(III)-octaethylporphyrin and a lipophilic pH indicator (4′,5′-dibromofluorescein octadecyl ester; ETH-7075) within a thin plasticized poly(vinyl chloride) film are reported. The sensor exhibits extraordinary optical selectivity for fluoride over a wide range of other anions, including anions with far more positive free energies of hydration (e.g., perchlorate, thiocyanate, nitrate, etc.). UV-VIS spectrophotometric studies of the sensing films indicate that fluoride interacts with the Al(III) center of the porphyrin structure, yielding both a change in the Soret band λmax of the porphyrin as well as a change in the protonation state of the pH indicator within the film. The same change in spectral properties of the metalloporphyrin occurs in the absence of added pH indicator or with added tetraphenylborate derivative anionic sites, but optical responses to fluoride in these cases are shown to be irreversible. The presence of the pH indicator and the simultaneous fluoride/proton coextraction equilibrium chemistry is shown to greatly enhance the reversibility of fluoride binding to the Al(III) porphyrin. Optical response toward fluoride can be observed in the range of 0.1 μM to 1.6 mM. Optical selectivity coefficients of < 10−6 for common anions (e.g., sulfate, chloride, nitrate etc.) and < 10−4 for perchlorate and thiocyanate are obtained. Measurements of fluoride in drinking water via the new optical sensor are shown to correlate well with values obtained for the same samples using a classical LaF3 based fluoride ion-selective electrode method. PMID:16223262
A head to head evaluation of 8 biochemical scanning tools for unmeasured ions.
Morgan, Thomas J; Anstey, Chris M; Wolf, Matthew B
2017-04-01
We aimed to evaluate the sensitivity and specificity of 8 biochemical scanning tools in signalling the presence of unmeasured anions. We used blood gas and biochemical data from 15 patients during and after cardio-pulmonary bypass. Sampling time-points were pre-bypass (T1), 2 min post equilibration with priming fluid containing acetate and gluconate anions (T2), late bypass (T3) and 4 h after surgery (T4). We calculated the anion gap (AG), albumin-corrected anion gap (AGc), whole blood base excess (BE) gap, plasma BE gap, standard BE gap and the strong ion gap (SIG), plus 2 new indices-the unmeasured ion index (UIX) and unmeasured plasma anions according to the interstitial, plasma and erythrocyte acid-base model (IPEua). Total measured plasma concentrations of acetate and gluconate [XA] were proxies for unmeasured plasma anions. [XA] values (mmol/L) were 1.41 (0.87) at T1, 11.73 (3.28) at T2, 4.80 (1.49) at T3 and 1.36 (0.73) at T4. Corresponding [albumin] values (g/L) were 32.3 (2.0), 19.8 (2.6), 21.3 (2.5) and 29.1 (2.3) respectively. Only the AG failed to increase significantly at T2 in response to a mean [XA] surge of >10 mEq/L. At an [XA] threshold of 6 mEq/L, areas under receiver -operator characteristic curves in rank order were IPEua and UIX (0.88 and 0.87 respectively), SIG (0.81), AGc (0.79), standard BE gap (0.77), plasma BE gap (0.71), BE gap (0.70) and AG (0.59). Similar ranking hierarchies applied to positive and negative predictive values. We conclude that during acute hemodilution UIX and IPEua are superior to the anion gap (with and without albumin correction) and 4 other indices as scanning tools for unmeasured anions.
Wang, Junfeng; Chu, Qinghui; Liu, Xiumin; Wesdemiotis, Chrys
2013-01-01
The formation of a bis(HBO) anion is known to turn-on the fluorescence to give red emission, via controlling the excited-state intramolecular proton transfer (ESIPT). The poor stability of the formed anion, however, hampered its application. The anion stability is found to be greatly improved by attaching the anion to Zn2+ cation (i.e. forming zinc complex), whose emission is at λem ≈ 550 and 760 nm. Interestingly, addition of methanol to the zinc complex induces a remarkable red fluorescence (λem ≈ 630 nm, ϕfl ≈ 0.8). With the aid of spectroscopic studies (1H NMR, UV-vis, fluorescence, and mass spectra), the structures of the zinc complexes are characterized. The emission species is identified as a dimer-like structure. The study thus reveals an effective fluorescence switching mechanism that could further advance the application of ESIPT-based sensors. PMID:23514312
Iseda, Kazuya; Kokado, Kenta; Sada, Kazuki
2018-03-01
In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride ( TBACl ) ion-pair salt to the free ions through complexation with meso -octamethylcalix[4]pyrrole ( CP ), which is a well-known receptor for chloride anions. In the presence of CP , the conductivity of TBACl increases in various non-polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non-polar solvents. In other words, CP recognizes chloride as an ion-paired salt as well as a free anion in non-polar solvents. Additionally, the TBA(CP - Cl ) complex exhibited a considerably lower ion-pairing constant ( K ip ) than TBACl in non-polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli-responsive soft materials in organic solvents using coulombic forces.
Iseda, Kazuya
2018-01-01
Abstract In this study, we performed conductometry in various organic solvents to directly detect the transformation from tetrabutylammonium chloride (TBACl) ion‐pair salt to the free ions through complexation with meso‐octamethylcalix[4]pyrrole (CP), which is a well‐known receptor for chloride anions. In the presence of CP, the conductivity of TBACl increases in various non‐polar solvents, indicating that complexation with CP enhances the ionic dissociation of TBACl in such non‐polar solvents. In other words, CP recognizes chloride as an ion‐paired salt as well as a free anion in non‐polar solvents. Additionally, the TBA(CP–Cl) complex exhibited a considerably lower ion‐pairing constant (K ip) than TBACl in non‐polar solvents, resulting in enhanced conductivity. Based on these findings, we can conclude that complexation of an anion with a hydrophobic anion receptor will be useful for creating functional and stimuli‐responsive soft materials in organic solvents using coulombic forces. PMID:29610717
Base Stability of Aminocyclopropeniums
2017-11-01
stability, a series of aminocyclopropeniums were synthesized and their base stability probed in situ using time -resolved proton nuclear magnetic resonance...reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions...tested for their utility in anion exchange membranes for alkaline fuel cells. A series of aminocyclopropeniums were synthesized and their base
Cortina, Montserrat; Ecker, Christina; Calvo, Daniel; del Valle, Manuel
2008-01-22
An automated electronic tongue consisting of an array of potentiometric sensors and an artificial neural network (ANN) has been developed to resolve mixtures of anionic surfactants. The sensor array was formed by five different flow-through sensors for anionic surfactants, based on poly(vinyl chloride) membranes having cross-sensitivity features. Feedforward multilayer neural networks were used to predict surfactant concentrations. As a great amount of information is required for the correct modelling of the sensors response, a sequential injection analysis (SIA) system was used to automatically provide it. Dodecylsulfate (DS(-)), dodecylbenzenesulfonate (DBS(-)) and alpha-alkene sulfonate (ALF(-)) formed the three-analyte study case resolved in this work. Their concentrations varied from 0.2 to 4mM for ALF(-) and DBS(-) and from 0.2 to 5mM for DS(-). Good prediction ability was obtained with correlation coefficients better than 0.933 when the obtained values were compared with those expected for a set of 16 external test samples not used for training.
NASA Technical Reports Server (NTRS)
Badr, I. H.; Johnson, R. D.; Diaz, M.; Hawthorne, M. F.; Bachas, L. G.; Daunert, S. (Principal Investigator)
2000-01-01
A highly selective optical sensor for chloride, based on the multidentate Lewis acid ionophore [9]mercuracarborand-3, is described herein. This sensor is constructed by embedding the mercuracarborand ionophore, a suitable pH-sensitive lipophilic dye, and lipophilic cationic sites in a plasticized polymeric membrane. The multiple complementary interactions offered by the preorganized complexing cavity of [9]mercuracarborand-3 is shown to control the anion selectivity pattern of the optical film. The film exhibits a significantly enhanced selectivity for chloride over a variety of lipophilic anions such as perchlorate, nitrate, salicylate, and thiocyanate. Furthermore, the optical selectivity coefficients obtained for chloride over other biologically relevant anions are shown to meet the selectivity requirements for the determination of chloride in physiological fluids, unlike previously reported chloride optical sensors. In addition, the optical film responds to chloride reversibly over a wide dynamic range (16 microM-136 mM) with fast response and recovery times.
Ionic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies.
Kuzmina, O; Symianakis, E; Godfrey, D; Albrecht, T; Welton, T
2017-08-16
We studied leaching of Cu and Fe from naturally occurring chalcopyrite ore using aqueous solutions of ionic liquids (ILs) based on imidazolium and ethylammonium cations and hydrogensulfate, nitrate, acetate or dicyanamide anions. Liquid, solid and gas phases of the leaching systems were characterised. We have shown that nonoxidative leaching is greatly dependant not only on temperature and pH, but on the anion species of the IL. Solutions of 1-butylimidazolium hydrogen sulfate exhibited the best leaching performance among hydrogen sulphate ILs. We have suggested that the formation of an oxide layer in some ILs may be responsible for a reduced leaching ability. The analysis of the gas phase showed the production of CO 2 and CS 2 in all leached samples. Our results suggested that the CS 2 produced upon leaching could be responsible for decreasing the sulfur, but not oxide, layer on the surface of chalcopyrite samples and therefore more efficient leaching. This is the first study, to our knowledge, to provide a systematic comparison of the leaching performance of ILs composed of different anions and cations and without added oxidants.
Wang, Shaodan; Fei, Xiaoliang; Guo, Jing; Yang, Qingbiao; Li, Yaoxian; Song, Yan
2016-01-01
A hybrid carbazole-hemicyanine dye (Cac) has been developed as a novel colorimetric and ratiometric fluorescent sensor for cyanide detection. Upon treatment with cyanide, Cac displayed a remarkable fluorescence ratiometric response, with the emission wavelength displaying a very large emission shift (214 nm). The detection of cyanide was performed via the nucleophilic addition of cyanide anion to the indolium group of the sensor, which resulted in the blocking of the intramolecular charge transfer (ICT) process in the sensor, inducing a ratiometric fluorescence change and simultaneously an obvious color change. Furthermore, competitive anions did not showed any significant changes both in color and emission intensity ratio (I381/I595), indicating the high selectivity of the sensor to CN(-). Copyright © 2015 Elsevier B.V. All rights reserved.
Silva, Micael; Figueiredo, Angelo Miguel; Cabrita, Eurico J
2014-11-14
We investigated imidazolium-based ionic liquid (IL) interactions with human serum albumin (HSA) to discern the level of cation interactions towards protein stability. STD-NMR spectroscopy was used to observe the imidazolium IL protons involved in direct binding and to identify the interactions responsible for changes in Tm as accessed by differential scanning calorimetry (DSC). Cations influence protein stability less than anions but still significantly. It was found that longer alkyl side chains of imidazolium-based ILs (more hydrophobic) are associated with a higher destabilisation effect on HSA than short-alkyl groups (less hydrophobic). The reason for such destabilisation lies on the increased surface contact area of the cation with the protein, particularly on the hydrophobic contacts promoted by the terminus of the alkyl chain. The relevance of the hydrophobic contacts is clearly demonstrated by the introduction of a polar moiety in the alkyl chain: a methoxy or alcohol group. Such structural modification reduces the degree of hydrophobic contacts with HSA explaining the lesser extent of protein destabilisation when compared to longer alkyl side chain groups: above [C2mim](+). Competition STD-NMR experiments using [C2mim](+), [C4mim](+) and [C2OHmim](+) also validate the importance of the hydrophobic interactions. The combined effect of cation and anion interactions was explored using (35)Cl NMR. Such experiments show that the nature of the cation has no influence on the anion-protein contacts, still the nature of the anion modulates the cation-protein interaction. Herein we propose that more destabilising anions are likely to be a result of a partial contribution from the cation as a direct consequence of the different levels of interaction (cation-anion pair and cation-protein).
Kraut, Jeffrey A; Nagami, Glenn T
2013-11-01
The serum anion gap has been utilized to identify errors in the measurement of electrolytes, to detect paraproteins, and, most relevant to the nephrologist, to evaluate patients with suspected acid-base disorders. In regard to the latter purpose, traditionally an increased anion gap is identified when it exceeds the upper limit of normal for a particular clinical laboratory measurement. However, because there is a wide range of normal values (often 8-10 mEq/L), an increase in anion concentration can be present in the absence of an increased anion gap. In addition, the type of retained anion can affect the magnitude of the increase in anion gap relative to change in serum [HCO3(-)] being greater with lactic acidosis compared with ketoacidosis. This review examines the methods of calculation of the serum anion gap in textbooks and published literature, the effect of perturbations other than changes in acid-base balance, and its effectiveness in identifying mild and more severe disturbances in acid-base balance. Limitations of the present methods of determining the normal anion gap and change in the anion gap are highlighted. The possibility of identifying the baseline value for individuals to optimize the use of the calculation in the detection of metabolic acidosis is suggested.
Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles
NASA Astrophysics Data System (ADS)
Charles, Nenian
Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure-property relationships and anion-order descriptors. The insights gained in this work advance the understanding of oxide-fluoride anion engineered materials and we anticipate that it will motivate novel experimental efforts and materials by design in the future.
Serafim, Karla G G; Navarro, Suelen A; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Cunha, Thiago M; Alves-Filho, Jose C; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A
2015-11-01
Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Zhang, Dun, E-mail: zhangdun@qdio.ac.cn
Graphical abstract: The antibiotic anion released from Mg–Al LDHs provides a controlled release antibacterial activity against the growth of Micrococcus lysodeikticus in 3.5% NaCl solution. Highlights: ► Antibiotic anion intercalated LDHs were synthesized and characterized. ► The ion-exchange one is responsible for the release process. ► The diffusion through particle is the release rate limiting step. ► LDHs loaded with antibiotic anion have high antibacterial capabilities. -- Abstract: Antibiotic–inorganic clay composites including four antibiotic anions, namely, benzoate (BZ), succinate (SU), benzylpenicillin (BP), and ticarcillin (TC) anions, intercalated Mg–Al layered double hydroxides (LDHs) were synthesized via ion-exchange. Powder X-ray diffraction andmore » Fourier transform infrared spectrum analyses showed the successful intercalation of antibiotic anion into the LDH interlayer. BZ and BP anions were accommodated in the interlayer region as a bilayer, whereas SU and TC anions were intercalated in a monolayer arrangement. Kinetic simulation of the release data indicated that ion-exchange was responsible for the release process, and the diffusion through the particles was the rate-limiting step. The antibacterial capabilities of LDHs loaded with antibiotic anion toward Micrococcus lysodeikticus growth were analyzed using a turbidimetric method. Significant high inhibition rate was observed when LDH nanohybrid was introduced in 3.5% NaCl solution. Therefore, this hybrid material may be applied as nanocontainer in active antifouling coating for marine equipment.« less
Coumarin benzothiazole derivatives as chemosensors for cyanide anions
NASA Astrophysics Data System (ADS)
Wang, Kangnan; Liu, Zhiqiang; Guan, Ruifang; Cao, Duxia; Chen, Hongyu; Shan, Yanyan; Wu, Qianqian; Xu, Yongxiao
2015-06-01
Four coumarin benzothiazole derivatives, N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (1), (Z)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide (2), 7-(diethylamino)-N-(benzo[d]thiazol-2-yl)-2-oxo-2H-chromene-3-carboxamide (3) and (Z)-7-(diethylamino)-N-(3-methylbenzo[d]thiazol-2(3H)-ylidene)-2-oxo-2H-chromene-3-carboxamide) (4), have been synthesized. Their crystal structures, photophysical properties in acetonitrile and recognition properties for cyanide anions have been investigated. All the compounds are generally planar, especially compound 1 exhibits perfect planarity with dihedral angle between benzothiazolyl group and coumarin group being only 3.63°. Coumarin benzothiazole compounds 1 and 3 can recognize cyanide anions by Michael addition reaction and compound 3 exhibits color change from yellow to colorless and green fluorescence was quenched completely, which can be observed by naked eye. Coumarin benzothiazolyliden compound 4 can recognize cyanide anions with fluorescence turn-on response based on the copper complex ensemble displacement mechanism.
Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles
NASA Astrophysics Data System (ADS)
Zhang, Ting; Zhou, Li-Peng; Guo, Xiao-Qing; Cai, Li-Xuan; Sun, Qing-Fu
2017-06-01
Container-molecules are attractive to chemists due to their unique structural characteristics comparable to enzymes and receptors in nature. We report here a family of artificial self-assembled macrocyclic containers that feature induced-fit transformations in response to different anionic guests. Five metal-organic macrocycles with empirical formula of MnL2n (M=Metal L=Ligand n=3, 4, 5, 6, 7) are selectively obtained starting from one simple benzimidazole-based ligand and square-planar palladium(II) ions, either by direct anion-adaptive self-assembly or induced-fit transformations. Hydrogen-bonding interactions between the inner surface of the macrocycles and the anionic guests dictate the shape and size of the product. A comprehensive induced-fit transformation map across all the MnL2n species is drawn, with a representative reconstitution process from Pd7L14 to Pd3L6 traced in detail, revealing a gradual ring-shrinking mechanism. We envisage that these macrocyclic molecules with adjustable well-defined hydrogen-bonding pockets will find wide applications in molecular sensing or catalysis.
Cormode, David P; Evans, Andrew J; Davis, Jason J; Beer, Paul D
2010-07-28
A disulfide functionalized bis-ferrocene urea acyclic receptor and disulfide functionalized mono- and bis-ferrocene amide and urea appended upper rim calix[4]arene receptors were prepared for the fabrication of SAM redox-active anion sensors. 1H NMR and diffusive voltammetric anion recognition investigations revealed each receptor to be capable of complexing and electrochemically sensing anions via cathodic perturbations of the respective receptor's ferrocene/ferrocenium redox couple. SAMs of a ferrocene urea receptor 3 and ferrocene urea calixarene receptor 17 exhibited significant enhanced magnitudes of cathodic response upon anion addition as compared to observed diffusive perturbations. SAMs of 17 were demonstrated to sense the perrhenate anion in aqueous solutions.
Nagami, Glenn T.
2013-01-01
Summary The serum anion gap has been utilized to identify errors in the measurement of electrolytes, to detect paraproteins, and, most relevant to the nephrologist, to evaluate patients with suspected acid-base disorders. In regard to the latter purpose, traditionally an increased anion gap is identified when it exceeds the upper limit of normal for a particular clinical laboratory measurement. However, because there is a wide range of normal values (often 8–10 mEq/L), an increase in anion concentration can be present in the absence of an increased anion gap. In addition, the type of retained anion can affect the magnitude of the increase in anion gap relative to change in serum [HCO3−] being greater with lactic acidosis compared with ketoacidosis. This review examines the methods of calculation of the serum anion gap in textbooks and published literature, the effect of perturbations other than changes in acid-base balance, and its effectiveness in identifying mild and more severe disturbances in acid-base balance. Limitations of the present methods of determining the normal anion gap and change in the anion gap are highlighted. The possibility of identifying the baseline value for individuals to optimize the use of the calculation in the detection of metabolic acidosis is suggested. PMID:23833313
Ion pathways in the taste bud and their significance for transduction.
DeSimone, J A; Ye, Q; Heck, G L
1993-01-01
Taste buds share a topology with ion-transporting epithelial and evidence now indicates that neural responses in rats to Na+ salts of differing anion are mediated by both transcellular and paracellular ion transport. Na+ exerts its effects mainly on the transcellular pathway. Neural responses to Na+ salts are enhanced by negative voltage clamp and suppressed by positive clamp in a manner indicating modulation of the apical membrane potential of receptor cells. Anion effects are mainly paracellular. Under zero current clamp increasing anion size reduces the neural response at constant Na+ concentration. Below about 50 mM this difference is entirely eliminated under voltage clamp. This suggests that paracellular transepithelial potentials normally create an anion difference. At higher concentrations the relatively high permeability of the paracellular shunt to Cl- permits sufficient electroneutral diffusion of NaCl below the tight junctions to stimulate cells that do not make direct contact with the oral cavity. In general, the sensitivity of a response to perturbations in the apical membrane potential indicates that some phase of Na+ salt taste transduction is accompanied by changes in an apical membrane channel conductance.
Episodic acidification of a coastal plain stream in Virginia
O'Brien, A. K.; Eshleman, K.N.
1996-01-01
This study investigates the episodic acidification of Reedy Creek, a wetland-influenced coastal plain stream near Richmond, Virginia. Primary objectives of the study were to quantify the episodic variability of acid- base chemistry in Reedy Creek, to examine the seasonal variability in episodic response and to explain the hydrological and geochemical factors that contribute to episodic acidification. Chemical response was similar in each of the seven storms examined, however, the ranges in concentrations observed were commonly greater in summer/fall storms than in winter/spring storms. An increase in SO4/2- concentration with discharge was observed during all storms and peak concentration occurred at or near peak flow. Small increases in Mg2+, Ca2+, K+ concentrations and dissolved organic carbon (DOC) were observed during most storms. At the same time, ANC, Na+ and Cl- concentrations usually decreased with increasing discharge. In summer/fall storms, the absolute increase in SO4/2- concentration was one-third to 15 times the increase observed in winter/spring storms; the decrease in ANC during summer/fall storms was usually within the range of the decrease observed in winter/spring storms. In contrast, the decrease in Na+ and Cl- concentrations during winter/spring storms was much greater than that observed during summer/fall storms. Data show that while base flow anion deficit was higher in summer/fall than in winter/spring, anion deficit decreased during most summer/fall storms. In contrast, base flow anion deficit was lower in spring and winter, but increased during winter/spring storms. Increased SO4/2- concentration was the main cause of episodic acidification during storms at Reedy Creek, but increased anion deficit indicates organic acids may contribute to episodic acidification during winter/spring storms. Changes in SO4/2- concentration coincident with the hydrograph rise indicate quick routing of water through the watershed. Saturation overland flow appears to be the likely mechanism by which solutes are transported to the stream during storm flow.
Ashok Kumar, S L; Saravana Kumar, M; Sreeja, P B; Sreekanth, A
2013-09-01
Two novel heterocyclic thiosemicarbazone derivatives have been synthesized, and characterized, by means of spectroscopic and single crystal X-ray diffraction methods. Their chromophoric-fluorogenic response towards anions in competing solvent dimethyl sulfoxide (DMSO) was studied. The receptor shows selective recognition towards fluoride anion. The binding affinity of the receptors with fluoride anion was calculated using UV-visible and fluorescence spectroscopic techniques. Copyright © 2013 Elsevier B.V. All rights reserved.
Ye, Q; Heck, G L; DeSimone, J A
1993-07-01
1. Voltage-clamp and current-clamp data were obtained from a circumscribed region of the anterior rat lingual epithelium while simultaneously monitoring the afferent, stimulus-evoked, neural response from the same receptive field. 2. Chorda tympani (CT) responses at constant Na(+)-salt concentration were enhanced by submucosa negative voltage clamp and suppressed by positive voltage clamp. The complete CT response profile, including the time course of adaptation, was not uniquely determined by NaCl concentration alone. The response could be reproduced at different NaCl concentrations by applying a compensating voltage. 3. The form of the concentration and voltage dependence of the CT response indicates that the complete stimulus energy is the Na+ electrochemical potential difference across receptor cell apical membranes, and not Na+ concentration alone. This is the underlying principal behind the equivalence of chemical and electric taste for Na+ salts. 4. CT responses to sodium gluconate (25 and 200 mM) and 25 mM NaCl produced amiloride-insensitive components (AIC) of low magnitude. NaCl at 200 mM produced a significantly larger AIC. The AIC was voltage-clamp independent. The relative magnitude of the AIC was positively correlated with the transepithelial conductance of each salt. This suggests that the large AIC for 200 mM NaCl results from its relatively high permeability through the paracellular pathway. 5. Analysis of the CT response under voltage clamp revealed two anion effects on Na(+)-salt taste, both of which act through the paracellular shunt. 1) Anions modify the transepithelial potential (TP) across tight junctions and thereby modulate the cell receptor potential. This anion effect can be eliminated by voltage clamping the TP. 2) Sufficiently mobile anions facilitate electroneutral diffusion of Na+ salts through tight junctions. This effect is observed especially when Cl- is the anion and when the stimulus concentration favors NaCl influx, allowing Na+ to stimulate receptor cells from the submucosal side. Because the submucosal intercellular spaces are nearly isopotential regions, this effect is insensitive to voltage clamp of the TP. The large AIC associated with this anion effect is due to the low permeability of amiloride.
Gating the glutamate gate of CLC-2 chloride channel by pore occupancy
De Jesús-Pérez, José J.; Castro-Chong, Alejandra; Shieh, Ru-Chi; Hernández-Carballo, Carmen Y.; De Santiago-Castillo, José A.
2016-01-01
CLC-2 channels are dimeric double-barreled chloride channels that open in response to hyperpolarization. Hyperpolarization activates protopore gates that independently regulate the permeability of the pore in each subunit and the common gate that affects the permeability through both pores. CLC-2 channels lack classic transmembrane voltage–sensing domains; instead, their protopore gates (residing within the pore and each formed by the side chain of a glutamate residue) open under repulsion by permeant intracellular anions or protonation by extracellular H+. Here, we show that voltage-dependent gating of CLC-2: (a) is facilitated when permeant anions (Cl−, Br−, SCN−, and I−) are present in the cytosolic side; (b) happens with poorly permeant anions fluoride, glutamate, gluconate, and methanesulfonate present in the cytosolic side; (c) depends on pore occupancy by permeant and poorly permeant anions; (d) is strongly facilitated by multi-ion occupancy; (e) is absent under likely protonation conditions (pHe = 5.5 or 6.5) in cells dialyzed with acetate (an impermeant anion); and (f) was the same at intracellular pH 7.3 and 4.2; and (g) is observed in both whole-cell and inside-out patches exposed to increasing [Cl−]i under unlikely protonation conditions (pHe = 10). Thus, based on our results we propose that hyperpolarization activates CLC-2 mainly by driving intracellular anions into the channel pores, and that protonation by extracellular H+ plays a minor role in dislodging the glutamate gate. PMID:26666914
Tayade, Rajratna P; Sekar, Nagaiyan
2017-05-01
A novel thiazole based carbaldehyde bearing benzimidazole fluorophore as the receptor unit for F - anion was prepared by multi steps synthesis. Density functional theory was used to understand the structural and electronic properties the receptor. The anion sensing activities of receptor 4 were studied for various anions in acetonitrile solvent. The receptor showed fluorescence enhancement in the presence of fluoride anion due to intramolecular charge transfer (ICT) mechanism. No significant changes were observed upon addition of less basic anions such as OAc - , Cl - , Br - , I - , HSO 4 - . After the interaction of fluoride anion with the receptor 4 leads to an 88 nm red shift in emission maxima. [TBA]OH and 1 H NMR titration experiments indicated that deprotonation of N-H in the benzimidazole due to interaction with fluoride anions.
An electroactive conducting polymer actuator based on NBR/RTIL solid polymer electrolyte
NASA Astrophysics Data System (ADS)
Cho, M. S.; Seo, H. J.; Nam, J. D.; Choi, H. R.; Koo, J. C.; Lee, Y.
2007-04-01
This paper reports the fabrication of a dry-type conducting polymer actuator using nitrile rubber (NBR) as the base material in a solid polymer electrolyte. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was synthesized on the surface of the NBR layer by using a chemical oxidation polymerization technique. Room-temperature ionic liquids (RTIL) based on imidazolium salts, e.g. 1-butyl-3-methyl imidazolium X (where X = BF4-, PF6-, (CF3SO2)2N-), were absorbed into the composite film. The compatibility between the ionic liquids and the NBR polymer was confirmed by DMA. The effect of the anion size of the ionic liquids on the displacement of the actuator was examined. The displacement increased with increasing anion size of the ionic liquids. The cyclic voltammetry responses and the redox switching dynamics of the actuators were examined in different ionic liquids.
NASA Astrophysics Data System (ADS)
Leng, Yan-Li; Zhang, Jian-Hui; Li, Qiao; Zhang, You-Ming; Lin, Qi; Yao, Hong; Wei, Tai-Bao
2016-10-01
A colorimetric and fluorescent dual-channel fluoride chemosensor N,N‧-bis (4-diethylaminosalicylidene) hydrazine (sensor S) bearing two imine groups has been designed and synthesized. This structurally simple probe displays rapid response and high selectivity for fluoride over other common anions (Cl-, Br-, I-, AcO-, H2PO4-, HSO4-, ClO4-, CN- and SCN-) in a highly polar aqueous DMSO solution. Mechanism studies suggested that the sensor firstly combined with F- through hydrogen bonds and then experienced the deprotonation process at higher concentrations of F- anion to the two Ar-OH groups. The detection limit was 5.78 × 10- 7 M of F-, which points to the high detection sensitivity. Test strips based on sensor S were fabricated, which could act as a convenient and efficient F- test kit to detect F- for ;in-the-field; measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luu, M.D.; Morrow, A.L.; Paul, S.M.
1987-09-07
..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regionalmore » variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.« less
Phenyl boron-based compounds as anion receptors for non-aqueous battery electrolytes
Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James; Sun, Xuehui
2002-01-01
Novel fluorinated boronate-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boronate-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boronate-based anion receptors include different fluorinated alkyl and aryl groups.
Favorable Effects of Weak Acids on Negative-Ion Electrospray Ionization Mass Spectrometry
Wu, Zengru; Gao, Wenqing; Phelps, Mitch A.; Wu, Di; Miller, Duane D.; Dalton, James T.
2007-01-01
Despite widespread use in pharmacokinetic, drug metabolism, and pesticide residue studies, little is known about the factors governing response during reversed-phase liquid chromatography coupled with negative-ion electrospray ionization (ESI−) mass spectrometry. We examined the effects of various mobile-phase modifiers on the ESI− response of four selective androgen receptor modulators using a postcolumn infusion system. Acetic, propionic, and butyric acid improved the ESI− responses of analytes to varying extents at low concentrations. Formic acid suppressed ionization, as did neutral salts (ammonium formate, ammonium acetate) and bases (ammonium hydroxide, triethylamine) under most conditions. Two modifiers (2,2,2-trifluoroethanol, formaldehyde) that produce anions with high gas-phase proton affinity increased ESI− responses. However, the concentrations of these modifiers required to enhance ESI− response were higher than that of acidic modifiers, which is a phenomenon likely related to their low pKa values. 2,2,2-Trifluoroethanol increased response of more hydrophobic compounds but decreased response of a more hydrophilic compound. Formaldehyde improved response of all the compounds, especially the hydrophilic compound with lower surface activity. In summary, these results suggest that an ideal ESI− modifier should provide cations that can be easily electrochemically reduced and produce anions with small molecular volume and high gas-phase proton affinity. PMID:14750883
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, E.H.; Roswell, D.F.; Dupont, A.C.
The reaction of phenyl 9-acridinecarboxylate with an excess of peroxide ion in THF/water (67/33 mol %) leads to the emission of either bright yellow-green light or bright blue light, depending on the reaction conditions. The blue emission is favored by high concentrations of hydrogen peroxide and water, for example. 9-Acridinepercarboxylic acid is a common intermediate in the reactions. The light emitter responsible for the blue chemiluminescence is acridone, whereas that responsible for the yellow-green chemiluminescence is the anion of acridone. The effects of base concentration and solvent composition on the relative proportions of these two emitters have produced evidence that,more » contrary to the expectation of simple theory, a dioxetanone is not an intermediate in the reaction. Other cases where chemiluminescence may involve percarboxylate and peroxide ions are discussed.« less
Nanomolar colorimetric quantitative detection of Fe3 + and PPi with high selectivity
NASA Astrophysics Data System (ADS)
Li, Zhanxian; Li, Haixia; Shi, Caixia; Yu, Mingming; Wei, Liuhe; Ni, Zhonghai
2016-04-01
A novel rhodamine and 8-hydroxyquinoline-based derivative was synthesized, which is shown to act as a colorimetric chemosensor for Fe3 + in aqueous solution with high selectivity over various environmentally and biologically relevant metal ions and anions with a distinct color change from colorless to pink in very fast response time (< 1 min). Fe3 + can be detected quantitatively in the concentration range from 6.7 to 16 μM and the detection limit (LOD) on UV-vis response of the sensor can be as low as 15 nM. The 'in situ' prepared Fe3 + complex (1 ṡ Fe) showed high selectivity toward PPi against many common anions, and sensitivity (the LOD can be as low as 71 nM). In addition, both the chemosensor and the 'in situ' prepared Fe3 + complex are reusable for the detection of Fe3 + and PPi respectively.
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon
2013-01-01
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H−, CH3−/NH−, O−/NH2−, OH−, CN−, and Br− was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN− desorption. An increase in the yields of OH− is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2′-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides. PMID:22360262
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D; Cloutier, Pierre; Sanche, Léon
2012-02-21
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H(-), CH(3)(-)/NH(-), O(-)/NH(2)(-), OH(-), CN(-), and Br(-) was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN(-) desorption. An increase in the yields of OH(-) is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2(')-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides. © 2012 American Institute of Physics
NASA Astrophysics Data System (ADS)
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon
2012-02-01
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H-, CH3-/NH-, O-/NH2-, OH-, CN-, and Br- was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for the native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN- desorption. An increase in the yields of OH- is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2'-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.
Rotaxane and catenane host structures for sensing charged guest species.
Langton, Matthew J; Beer, Paul D
2014-07-15
CONSPECTUS: The promise of mechanically interlocked architectures, such as rotaxanes and catenanes, as prototypical molecular switches and shuttles for nanotechnological applications, has stimulated an ever increasing interest in their synthesis and function. The elaborate host cavities of interlocked structures, however, can also offer a novel approach toward molecular recognition: this Account describes the use of rotaxane and catenane host systems for binding charged guest species, and for providing sensing capability through an integrated optical or electrochemical reporter group. Particular attention is drawn to the exploitation of the unusual dynamic properties of interlocked molecules, such as guest-induced shuttling or conformational switching, as a sophisticated means of achieving a selective and functional sensor response. We initially survey interlocked host systems capable of sensing cationic guests, before focusing on our accomplishments in synthesizing rotaxanes and catenanes designed for the more challenging task of selective anion sensing. In our group, we have developed the use of discrete anionic templation to prepare mechanically interlocked structures for anion recognition applications. Removal of the anion template reveals an interlocked host system, possessing a unique three-dimensional geometrically restrained binding cavity formed between the interlocked components, which exhibits impressive selectivity toward complementary anionic guest species. By incorporating reporter groups within such systems, we have developed both electrochemical and optical anion sensors which can achieve highly selective sensing of anionic guests. Transition metals, lanthanides, and organic fluorophores integrated within the mechanically bonded structural framework of the receptor are perturbed by the binding of the guest, with a concomitant change in the emission profile. We have also exploited the unique dynamics of interlocked hosts by demonstrating that an anion-induced conformational change can be used as a means of signal transduction. Electrochemical sensing has been realized by integration of the redox-active ferrocene functionality within a range of rotaxane and catenanes; binding of an anion perturbs the metallocene, leading to a cathodic shift in the ferrocene/ferrocenium redox couple. In order to obtain practical sensors for target charged guest species, confinement of receptors at a surface is necessary in order to develop robust, reuseable devices. Surface confinement also offers advantages over solution based receptors, including amplification of signal, enhanced guest binding thermodynamics and the negation of solubility problems. We have fabricated anion-templated rotaxanes and catenanes on gold electrode surfaces and demonstrated that the resulting mechanically bonded self-assembled monolayers are electrochemically responsive to the binding of anions, a crucial first step toward the advancement of sophisticated, highly selective, anion sensory devices. Rotaxane and catenane host molecules may be engineered to offer a superior level of molecular recognition, and the incorporation of optical or electrochemical reporter groups within these interlocked frameworks can allow for guest sensing. Advances in synthetic templation strategies has facilitated the synthesis of interlocked architectures and widened their interest as prototype molecular machines. However, their unique host-guest properties are only now beginning to be exploited as a sophisticated approach to chemical sensing. The development of functional host-guest sensory systems such as these is of great interest to the interdisciplinary field of supramolecular chemistry.
Neumann, Jennifer; Pawlik, Magdalena; Bryniok, Dieter; Thöming, Jorg; Stolte, Stefan
2014-01-01
Biodegradation tests with bacteria from activated sludge revealed the probable persistence of cyano-based ionic liquid anions when these leave waste water treatment plants. A possible biological treatment using bacteria capable of biodegrading similar compounds, namely cyanide and cyano-complexes, was therefore examined. With these bacteria from the genera Cupriavidus, the ionic liquid anions B(CN)₄(-), C(CN)₃(-), N(CN)₂(-) combined with alkaline cations were tested in different growth media using ion chromatography for the examination of their primary biodegradability. However, no enhanced biodegradability of the tested cyano-based ionic liquids was observed. Therefore, an in vitro enzymatic hydrolysis test was additionally run showing that all tested ionic liquid (IL) anions can be hydrolysed to their corresponding amides by nitrile hydratase, but not by nitrilase under the experimental conditions. The biological stability of the cyano-based anions is an advantage in technological application, but the occurrence of enzymes that are able to hydrolyse the parent compound gives a new perspective on future cyano-based IL anion treatment.
New Gel-Like Polymers as Selective Weak-Base Anion Exchangers
Gierczyk, Błażej; Cegłowski, Michał; Zalas, Maciej
2015-01-01
A group of new anion exchangers, based on polyamine podands and of excellent ion-binding capacity, were synthesized. The materials were obtained in reactions between various poly(ethyleneamines) with glycidyl derivatives of cyclotetrasiloxane. The final polymeric, strongly cross-linked materials form gel-like solids. Their structures and interactions with anions adsorbed were studied by spectroscopic methods (CP-MAS NMR, FR-IR, UV-Vis). The sorption isotherms and kinetic parameters were determined for 29 anions. Materials studied show high ion capacity and selectivity towards some important anions, e.g., selenate(VI) or perrhenate. PMID:25946220
NASA Astrophysics Data System (ADS)
Wu, Fang-Ying; Jiang, Yun-Bao
2002-04-01
The intramolecular charge transfer (ICT) dual fluorescence of p-dimethylaminobenzamide (DMABA) in acetonitrile was found to show highly sensitive response to HSO 4- over several other anions such as H 2PO 4-,AcO - and ClO 4-. In the presence of bisulfate anion the dual fluorescence intensity ratio and the total intensity of DMABA decreased while the dual emission band positions remained unchanged. Absorption titration indicated that a 1:1 hydrogen bonding complex was formed between bisulfate anion and DMABA, which gave a binding constant of 2.02×10 4 mol-1 l that is two orders of magnitude higher than those for other anions. The obvious isotopic effect observed in the fluorescence quenching [ K SV( HSO4-)/K SV( DSO4-)=1.63 ] suggests that the hydrogen atom moving is an important reaction coordinate. It was assumed that the dual fluorescence response was due to proton coupled electron transfer mediated by hydrogen bonds within the 1:1 HSO 4--DMABA hydrogen-bonding complex.
Relationship of Cell Sap pH to Organic Acid Change During Ion Uptake 1
Hiatt, A. J.
1967-01-01
Excised roots of barley (Hordeum vulgare, var. Campana) were incubated in KCl, K2SO4, CaCl2, and NaCl solutions at concentrations of 10−5 to 10−2 n. Changes in substrate solution pH, cell sap pH, and organic acid content of the roots were related to differences in cation and anion absorption. The pH of expressed sap of roots increased when cations were absorbed in excess of anions and decreased when anions were absorbed in excess of cations. The pH of the cell sap shifted in response to imbalances in cation and anion uptake in salt solutions as dilute as 10−5 n. Changes in cell sap pH were detectable within 15 minutes after the roots were placed in 10−3 n K2SO4. Organic acid changes in the roots were proportional to expressed sap pH changes induced by unbalanced ion uptake. Changes in organic acid content in response to differential cation and anion uptake appear to be associated with the low-salt component of ion uptake. PMID:16656506
Gregory P. Lewis
1999-01-01
The leaching of calcium and magnesium from forests by atmospherically-deposited strong acid anions (sulfate and nitrate) is evidenced in some watersheds by the positive correlation in stream water between concentrations of these base cations and acid anions.
Boron compounds as anion binding agents for nonaqueous battery electrolytes
Lee, Hung Sui; Yang, Xia-Oing; McBreen, James; Xiang, Caili
2000-02-08
Novel fluorinated boron-based compounds which act as anion receptors in non-aqueous battery electrolytes are provided. When added to non-aqueous battery electrolytes, the fluorinated boron-based compounds of the invention enhance ionic conductivity and cation transference number of non-aqueous electrolytes. The fluorinated boron-based anion receptors include borane and borate compounds bearing different fluorinated alkyl and aryl groups.
Moslehi, Maryam; Yazdanparast, Razieh
2013-07-01
Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.
Lu, Hua; Wang, Qiuhong; Li, Zhifang; Lai, Guoqiao; Jiang, Jianxiong; Shen, Zhen
2011-06-21
Pyrene derivative 1 containing four trimethylsilylethynyl substituents was synthesized and investigated as a chromogenic and fluorescent chemodosimeter sensor for fluoride ions. 1 showed a high sensitivity and specific selectivity over a rapid response time toward fluoride anions compared to other anions, such as Cl(-), Br(-), ClO(4)(-), H(2)PO(4)(-) and HPO(4)(2-). TD-DFT calculations showed that the delocalization of the σ-electrons of the silicon destabilized the HOMO energy level of 1, thus red shifting both its absorption and emission spectrum. The addition of F(-) removed the trimethylsilyl substituents and resulted in a blue shift of both the absorption and fluorescent spectra of 1, which could be monitored by the color change with the naked-eye. Moreover, an easy to prepare test paper, which was obtained by immersing a filter paper into a THF solution of 1, could be utilized to detect and estimate the concentration of fluoride anions in water.
NASA Astrophysics Data System (ADS)
Srikala, P.; Tarafder, Kartick; Trivedi, Darshak R.
2017-01-01
A new organic receptor has been designed and synthesized by the combination of aromatic dialdehyde with nitro-substituted aminophenol resulting in a Schiff base compound. The receptor exhibited a colorimetric response for F- and AcO- ion with a distinct color change from pale yellow to red and pink respectively in dry DMSO solvent and yellow to pale greenish yellow in DMSO:H2O (9:1, v/v). UV-Vis titration studies displayed a significant shift in absorption maxima in comparison with the free receptor. The shift could be attributed to the hydrogen bonding interactions between the active anions and the hydroxyl functionality aided by the electron withdrawing nitro substituent on the receptor. 1H NMR titration and density functionality studies have been performed to understand the nature of interaction of receptor and anions. The lower detection limit of 1.12 ppm was obtained in organic media for F- ion confirming the real time application of the receptor.
Density functional theory and conductivity studies of boron-based anion receptors
Leung, Kevin; Chaudhari, Mangesh I.; Rempe, Susan B.; ...
2015-07-10
Anion receptors that bind strongly to fluoride anions in organic solvents can help dissolve the lithium fluoride discharge products of primary carbon monofluoride (CFx) batteries, thereby preventing the clogging of cathode surfaces and improving ion conductivity. The receptors are also potentially beneficial to rechargeable lithium ion and lithium air batteries. We apply Density Functional Theory (DFT) to show that an oxalate-based pentafluorophenyl-boron anion receptor binds as strongly, or more strongly, to fluoride anions than many phenyl-boron anion receptors proposed in the literature. Experimental data shows marked improvement in electrolyte conductivity when this oxalate anion receptor is present. The receptor ismore » sufficiently electrophilic that organic solvent molecules compete with F – for boron-site binding, and specific solvent effects must be considered when predicting its F – affinity. To further illustrate the last point, we also perform computational studies on a geometrically constrained boron ester that exhibits much stronger gas-phase affinity for both F – and organic solvent molecules. After accounting for specific solvent effects, however, its net F – affinity is about the same as the simple oxalate-based anion receptor. Lastly, we propose that LiF dissolution in cyclic carbonate organic solvents, in the absence of anion receptors, is due mostly to the formation of ionic aggregates, not isolated F – ions.« less
Pinho-Ribeiro, Felipe A; Fattori, Victor; Zarpelon, Ana C; Borghi, Sergio M; Staurengo-Ferrari, Larissa; Carvalho, Thacyana T; Alves-Filho, Jose C; Cunha, Fernando Q; Cunha, Thiago M; Casagrande, Rubia; Verri, Waldiceu A
2016-06-01
We evaluated the effect of pyrrolidine dithiocarbamate (PDTC) in superoxide anion-induced inflammatory pain. Male Swiss mice were treated with PDTC and stimulated with an intraplantar or intraperitoneal injection of potassium superoxide, a superoxide anion donor. Subcutaneous PDTC treatment attenuated mechanical hyperalgesia, thermal hyperalgesia, paw oedema and leukocyte recruitment (neutrophils and macrophages). Intraplantar injection of superoxide anion activated NF-κB and increased cytokine production (IL-1β, TNF-α and IL-10) and oxidative stress (nitrite and lipid peroxidation levels) at the primary inflammatory foci and in the spinal cord (L4-L6). PDTC treatment inhibited superoxide anion-induced NF-κB activation, cytokine production and oxidative stress in the paw and spinal cord. Furthermore, intrathecal administration of PDTC successfully inhibited superoxide anion-induced mechanical hyperalgesia, thermal hyperalgesia and inflammatory response in peripheral foci (paw). These results suggest that peripheral stimulus with superoxide anion activates the local and spinal cord oxidative- and NF-κB-dependent inflammatory nociceptive mechanisms. PDTC targets these events, therefore, inhibiting superoxide anion-induced inflammatory pain in mice.
Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application.
Aoki, Asami; Akaboshi, Hikaru; Ogura, Taku; Aikawa, Tatsuo; Kondo, Takeshi; Tobori, Norio; Yuasa, Makoto
2015-01-01
We prepared pH-sensitive anionic liposomes composed solely of anionic bilayer membrane components that were designed to promote efficient release of entrapped agents in response to acidic pH. The pH-sensitive anionic liposomes showed high dispersion stability at neutral pH, but the fluidity of the bilayer membrane was enhanced in an acidic environment. These liposomes were rather simple and were composed of dimyristoylphosphatidylcholine (DMPC), an anionic bilayer membrane component, and polyoxyethylene sorbitan monostearate (Tween 80). In particular, the present pH-sensitive anionic liposomes showed higher temporal stability than those of conventional DMPC/DPPC liposomes. We found that pHsensitive properties strongly depended on the molecular structure, pKa value, and amount of an incorporated anionic bilayer membrane component, such as sodium oleate (SO), dimyristoylphosphatidylserine (DMPS), or sodium β-sitosterol sulfate (SS). These results provide an opportunity to manipulate liposomal stability in a pH-dependent manner, which could lead to the formulation of a high performance drug delivery system (DDS).
Structure and dynamics of acetate anion-based ionic liquids from molecular dynamics study
NASA Astrophysics Data System (ADS)
Chandran, Aneesh; Prakash, Karthigeyan; Senapati, Sanjib
2010-08-01
Acetate anion-based ionic liquids (ILs) have found wide range of applications. The microstructure and dynamics of this IL family have not been clearly understood yet. We report molecular dynamics simulation results of three acetate anion-based ionic liquids that encompass the most common IL cations. Simulations are performed based on a set of proposed force field parameters for IL acetate anion which can be combined with existing parameters for IL cations to simulate large variety of ILs. The computed liquid density and IR spectral data for [BMIM][Ac] are found to match very well with available experimental results. The strong amino-group-associated interactions in [TMG][Ac] are seen to bring about higher cohesive energy density, stronger ion packing, and more restricted translational and rotational mobilities of the constituent ions. The IL anions are found to track the cation movements in all systems, implying that ions in ILs travel in pairs or clusters.
Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz; Riahi, Siavash
2008-01-01
Ionophore incorporated PVC membrane sensors are well-established analytical tools routinely used for the selective and direct measurement of a wide variety of different ions in complex biological and environmental samples. Potentiometric sensors have some outstanding advantages including simple design and operation, wide linear dynamic range, relatively fast response and rational selectivity. The vital component of such plasticized PVC members is the ionophore involved, defining the selectivity of the electrodes' complex formation. Molecular recognition causes the formation of many different supramolecules. Different types of supramolecules, like calixarenes, cyclodextrins and podands, have been used as a sensing material in the construction of ion selective sensors. Schiff's bases and crown ethers, which feature prominently in supramolecular chemistry, can be used as sensing materials in the construction of potentiometric ion selective electrodes. Up to now, more than 200 potentiometric membrane sensors for cations and anions based on Schiff's bases and crown ethers have been reported. In this review cation binding and anion complexes will be described. Liquid membrane sensors based on Schiff's bases and crown ethers will then be discussed. PMID:27879786
Modelling of Batch Lactic Acid Fermentation in the Presence of Anionic Clay
Jinescu, Cosmin; Aruş, Vasilica Alisa; Nistor, Ileana Denisa
2014-01-01
Summary Batch fermentation of milk inoculated with lactic acid bacteria was conducted in the presence of hydrotalcite-type anionic clay under static and ultrasonic conditions. An experimental study of the effect of fermentation temperature (t=38–43 °C), clay/milk ratio (R=1–7.5 g/L) and ultrasonic field (ν=0 and 35 kHz) on process dynamics was performed. A mathematical model was selected to describe the fermentation process kinetics and its parameters were estimated based on experimental data. A good agreement between the experimental and simulated results was achieved. Consequently, the model can be employed to predict the dynamics of batch lactic acid fermentation with values of process variables in the studied ranges. A statistical analysis of the data based on a 23 factorial experiment was performed in order to express experimental and model-regressed process responses depending on t, R and ν factors. PMID:27904318
Shi, Ruili; Wang, Pengju; Tang, Lingli; Huang, Xiaoming; Chen, Yonggang; Su, Yan; Zhao, Jijun
2018-04-05
Using a genetic algorithm incorporated in density functional theory, we explore the ground state structures of fluoride anion-water clusters F - (H 2 O) n with n = 1-10. The F - (H 2 O) n clusters prefer structures in which the F - anion remains at the surface of the structure and coordinates with four water molecules, as the F - (H 2 O) n clusters have strong F - -H 2 O interactions as well as strong hydrogen bonds between H 2 O molecules. The strong interaction between the F - anion and adjacent H 2 O molecule leads to a longer O-H distance in the adjacent molecule than in an individual water molecule. The simulated infrared (IR) spectra of the F - (H 2 O) 1-5 clusters obtained via second-order vibrational perturbation theory (VPT2) and including anharmonic effects reproduce the experimental results quite well. The strong interaction between the F - anion and water molecules results in a large redshift (600-2300 cm -1 ) of the adjacent O-H stretching mode. Natural bond orbital (NBO) analysis of the lowest-energy structures of the F - (H 2 O) 1-10 clusters illustrates that charge transfer from the lone pair electron orbital of F - to the antibonding orbital of the adjacent O-H is mainly responsible for the strong interaction between the F - anion and water molecules, which leads to distinctly different geometric and vibrational properties compared with neutral water clusters.
Stojanovic, Anja; Lämmerhofer, Michael; Kogelnig, Daniel; Schiesel, Simone; Sturm, Martin; Galanski, Markus; Krachler, Regina; Keppler, Bernhard K; Lindner, Wolfgang
2008-10-31
Several hydrophobic ionic liquids (ILs) based on long-chain aliphatic ammonium- and phosphonium cations and selected aromatic anions were analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC) employing trifluoroacetic acid as ion-pairing additive to the acetonitrile-containing mobile phase and adopting a step-gradient elution mode. The coupling of charged aerosol detection (CAD) for the non-chromophoric aliphatic cations with diode array detection (DAD) for the aromatic anions allowed their simultaneous analysis in a set of new ILs derived from either tricaprylmethylammonium chloride (Aliquat 336) and trihexyltetradecylphosphonium chloride as precursors. Aliquat 336 is a mix of ammonium cations with distinct aliphatic chain lengths. In the course of the studies it turned out that CAD generates an identical detection response for all the distinct aliphatic cations. Due to lack of single component standards of the individual Aliquat 336 cation species, a unified calibration function was established for the quantitative analysis of the quaternary ammonium cations of the ILs. The developed method was validated according to ICH guidelines, which confirmed the validity of the unified calibration. The application of the method revealed molar ratios of cation to anion close to 1 indicating a quantitative exchange of the chloride ions of the precursors by the various aromatic anions in the course of the synthesis of new ILs. Anomalies of CAD observed for the detection of some aromatic anions (thiosalicylate and benzoate) are discussed.
Jilge, G; Unger, K K; Esser, U; Schäfer, H J; Rathgeber, G; Müller, W
1989-08-04
The linear solvent strength model of Snyder was applied to describe fast protein separations on 2.1-micron non-porous, silica-based strong anion exchangers. It was demonstrated on short columns packed with these anion exchangers that (i) a substantially higher resolution of proteins and nucleotides was obtained at gradient times of less than 5 min than on porous anion exchangers; (ii) the low external surface area of the non-porous anion exchanger is not a critical parameter in analytical separations and (iii) microgram-amounts of enzymes of high purity and full biological activity were isolated.
Regeneration of strong-base anion-exchange resins by sequential chemical displacement
Brown, Gilbert M.; Gu, Baohua; Moyer, Bruce A.; Bonnesen, Peter V.
2002-01-01
A method for regenerating strong-base anion exchange resins utilizing a sequential chemical displacement technique with new regenerant formulation. The new first regenerant solution is composed of a mixture of ferric chloride, a water-miscible organic solvent, hydrochloric acid, and water in which tetrachloroferrate anion is formed and used to displace the target anions on the resin. The second regenerant is composed of a dilute hydrochloric acid and is used to decompose tetrachloroferrate and elute ferric ions, thereby regenerating the resin. Alternative chemical displacement methods include: (1) displacement of target anions with fluoroborate followed by nitrate or salicylate and (2) displacement of target anions with salicylate followed by dilute hydrochloric acid. The methodology offers an improved regeneration efficiency, recovery, and waste minimization over the conventional displacement technique using sodium chloride (or a brine) or alkali metal hydroxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polska, Katarzyna; Rak, Janusz; Bass, Andrew D.
2012-02-21
We measured the low energy electron stimulated desorption (ESD) of anions from thin films of native (TXT) and bromine monosubstituted (TBrXT) oligonucleotide trimers deposited on a gold surface (T = thymidine, X = T, deoxycytidine (C), deoxyadenosine (A) or deoxyguanosine (G), Br = bromine). The desorption of H{sup -}, CH{sub 3}{sup -}/NH{sup -}, O{sup -}/NH{sub 2}{sup -}, OH{sup -}, CN{sup -}, and Br{sup -} was induced by 0 to 20 eV electrons. Dissociative electron attachment, below 12 eV, and dipolar dissociation, above 12 eV, are responsible for the formation of these anions. The comparison of the results obtained for themore » native and brominated trimers suggests that the main pathways of TBrXT degradation correspond to the release of the hydride and bromide anions. Significantly, the presence of bromine in oligonucleotide trimers blocks the electron-induced degradation of nuclobases as evidenced by a dramatic decrease in CN{sup -} desorption. An increase in the yields of OH{sup -} is also observed. The debromination yield of particular oligonucleotides diminishes in the following order: BrdU > BrdA > BrdG > BrdC. Based on these results, 5-bromo-2{sup '}-deoxyuridine appears to be the best radiosensitizer among the studied bromonucleosides.« less
Górski, Łukasz; Matusevich, Alexey; Pietrzak, Mariusz; Wang, Lin; Meyerhoff, Mark E.; Malinowska, Elżbieta
2010-01-01
The performance of solid-contact/coated wire type electrodes with plasticized PVC membranes containing metalloporphyrins as anion selective ionophores is reported. The membranes are deposited on transducers based on graphite pastes and graphite rods. The hydrophobicity of the underlying conductive transducer surface is found to be a key factor that influences the formation of an aqueous layer beneath the polymer film. Elimination of this ill-defined water layer greatly improves the electrochemical properties of the ion-sensors, such as EMF stability and life-time. Only highly lipophilic electrode substrates, namely graphite paste with mineral oil, were shown to prevent the formation of aqueous layer underneath the ion-sensing membrane. The possibility of employing Co(III)-tetraphenylporphyrin both as NO2− selective ionophore and as electron/ion conducting species to ensure ion-to-electron translation was also discussed based on the results of preliminary experiments. PMID:20357903
Kim, Minhee; Han, Junho; Hyun, Seunghun
2013-09-01
The cosolvency model was not applicable for predicting the sorption of organic carboxylic acids. The reason of inapplicability was investigated by analyzing the solubility (Sm) and sorption (Km) of benzoic acid, 2,4-dichlorophenoxyacetic acid (2,4-D), and 2,4,6-trichlorophenol (2,4,6-TCP). The Sm and Km by two iron-rich soils was measured as a function of methanol volume fraction (fc), electrolyte compositions, and pH(app). For 2,4,6-TCP, the Km of both neutral and anion species was well-explainable by the cosolvency model, exemplifying the knowledge of cosolvency power (σ) being sufficient to describe its sorption. However, for benzoic acid and 2,4-D, the Km of organic anions increased with fc, illustrating the organic carboxylate to be responsible for the deviation. The Sm of organic anions was not affected by the ionic valence (Ca(2+) vs. K(+)) of liquid phase. Among hydrophilic quantities of the 2,4-D sorption, the fraction of anion exchange increased with fc while the fraction of Ca-bridge decreased in the same range. Adding solvent in soil-water system is likely to render soil surface charge more positive, fortifying the anion exchange, but opposing the formation of Ca-bridging. Therefore, it can be concluded that the positive Km-fc relationship is due to the anion exchange of organic carboxylate with positively charged soil surface, whose contribution is >50% of overall sorption at solvent-free system and becomes greater with fc up to 82%. Copyright © 2013. Published by Elsevier Ltd.
Colorimetric sensing of anions in water using ratiometric indicator-displacement assay.
Feng, Liang; Li, Hui; Li, Xiao; Chen, Liang; Shen, Zheng; Guan, Yafeng
2012-09-19
The analysis of anions in water presents a difficult challenge due to their low charge-to-radius ratio, and the ability to discriminate among similar anions often remains problematic. The use of a 3×6 ratiometric indicator-displacement assay (RIDA) array for the colorimetric detection and identification of ten anions in water is reported. The sensor array consists of different combinations of colorimetric indicators and metal cations. The colorimetric indicators chelate with metal cations, forming the color changes. Upon the addition of anions, anions compete with the indicator ligands according to solubility product constants (K(sp)). The indicator-metal chelate compound changes color back dramatically when the competition of anions wins. The color changes of the RIDA array were used as a digital representation of the array response and analyzed with standard statistical methods, including principal component analysis and hierarchical clustering analysis. No confusion or errors in classification by hierarchical clustering analysis were observed in 44 trials. The limit of detection was calculated approximately, and most limits of detections of anions are well below μM level using our RIDA array. The pH effect, temperature influence, interfering anions were also investigated, and the RIDA array shows the feasibility of real sample testing. Copyright © 2012 Elsevier B.V. All rights reserved.
Sanchez, W K; Beede, D K; Cornell, J A
1997-06-01
The objective of this study was to determine lactational, blood mineral, and blood acid-base responses to dietary mixtures of NaHCO3, NaCl, and KCl and dietary cation-anion difference by lactating diary cows. Three 100:0:0 (primary) blends, three 50:50:0 (binary) blends, and one 33:33:33 (tertiary) blend of NaHCO3, NaCl, and KCl, respectively, were formulated to replace 1% of the dry matter in a diet based on corn silage. Seven treatments were defined according to a simplex-centroid mixtures design using a partially balanced incomplete block arrangement. An eighth treatment served as a control and contained 1% SiO2 instead of the mineral blends. Dietary cation-anion difference ranged from +25 to +40 meq of (Na + K - Cl)/100 g of dietary dry matter. Diets were fed for three consecutive 28-d periods during summer to 36 midlactation cows. Cows that were fed the tertiary mixture had lower milk protein percentage, whole blood bicarbonate, and plasma K than did cows fed the other blends. With the exception of milk protein percentage and body weight gain, none of the mixtures had a significant impact on lactational performance. The lack of differences could have been due to the narrow range in the dietary cation-anion difference studied.
NASA Technical Reports Server (NTRS)
Du, Ping
1993-01-01
As a theoretical component of the joint effort with the laboratory of Dr. Lou Allamandola to search for potential candidates for interstellar organic carbon compound that are responsible for the visible diffuse interstellar absorption bands (DIB's), quantum mechanical calculations were performed on the electron absorption spectra of selected polycyclic aromatic hydrocarbons (PAH) and derivatives. In the completed project, 15 different species of naphthalene, its hydrogen abstraction and addition derivatives, and corresponding cations and anions were studied. Using semiempirical quantum mechanical method INDO/S, the ground electronic state of each species was evaluated with restricted Hartree-Fock scheme and limited configuration interaction. The lowest energy spin state for each species was used for electron absorption calculations. Results indicate that these calculations are accurate enough to reproduce the spectra of naphthalene cation and anion observed in neon matrix. The spectral pattern of the hydrogen abstraction and addition derivatives predicted based on these results indicate that the electron configuration of the pi orbitals of these species is the dominant determinant. A combined list of 19 absorptions calculated from 4500 A to 10,400 A were compiled and suggested as potential candidates that are relevant for the DIB's absorptions. Continued studies on pyrene and derivatives revealed the ground state symmetries and multiplicities of its neutral, anionic, and cationic species. Spectral calculations show that the cation (B(sub 3g)-2) and the anion (A(sub u)-2) are more likely to have low energy absorptions in the regions between 10 kK and 20 kK, similar to naphthalene. These absorptions, together with those to be determined from the hydrogen abstraction and addition derivatives of pyrene, can be used to provide additional candidates and suggest experimental work in the search for interstellar compounds that are responsible for DIB's.
Al-Rawi, Mahmood B; Aleisa, Abdulaziz M; Khattab, Mahmoud M
2008-01-01
Induction of endogenous superoxide anion stress by the use of the superoxide dismutase inhibitor diethylthiocarbamate (DETCA; 10 mmol/l) produced a potent inhibition of the ATP (0.3-10 mmol/l) and diadenosine tetraphosphate (AP(4)A) contractile activity in the isolated vas deferens by 29-92 and 24-90%, respectively. Pyrogallol (0.1 mmol/l), the exogenous superoxide anion generator, produced a significant inhibition on the contractile activity of the vas deferens induced by ATP and AP(4)A by 33-89 and 25-82%, respectively. DETCA (10 mmol/l) and pyrogallol (0.1 mmol/l) attenuated the contractile response of isolated guinea pig vas deferens strips to the selective P2X agonist alpha,beta-methyleneATP (alpha,beta-meATP; 50 micromol/l) by 25 and 47%, respectively. In Ca(2+)-free high-K(+) (80 mmol/l) Krebs solution, pyrogallol and DETCA produced inhibition of the contractile response to alpha,beta-meATP (50 micromol/l) in similar way to that in normal Krebs solution. The further addition of CaCl(2) (1 mmol/l) abolished the inhibitory effects exerted by pyrogallol and DETCA. The control contractile response to alpha,beta-meATP (50 micromol/l) was not affected in Ca(2+)-free high-K(+) (80 mmol/l) Krebs solution. It may be concluded that superoxide anion stress produces a significant inhibitory effect on both mono- and di-nucleotide purinergic contraction of the vas deferens. Superoxide anion appears to interrupt the P2X(1)-mediated transduction cascade at some step(s) of intracellular calcium handling. Copyright 2008 S. Karger AG, Basel.
Anion sensing with a Lewis acidic BODIPY-antimony(v) derivative.
Christianson, Anna M; Gabbaï, François P
2017-02-21
We describe the synthesis of a BODIPY dye substituted with a Lewis acidic antimony(v) moiety. This compound, which has been fully characterized, shows a high affinity for small anions including fluoride and cyanide, the complexation of which elicits a fluorescence turn-on response.
Lydersen, Espen; Larssen, Thorjørn; Fjeld, Eirik
2004-06-29
Acid neutralizing capacity (ANC) is the parameter most commonly used as chemical indicator for fish response to acidification. Empirical relationships between fish status of surface waters and ANC have been documented earlier. ANC is commonly calculated as the difference between base cations ([BC]=[Ca2+]+[Mg2+]+[N+]+[K+]) and strong acid anions ([SAA]=[SO4(2)-]+[NO3-]+[Cl-]). This is a very robust calculation of ANC, because none of the parameters incorporated are affected by the partial pressure of CO2, in contrast to the remaining major ions in waters, pH ([H+]), aluminum ([Aln+]), alkalinity ([HCO3-/CO3(2)-]) and organic anions ([An-]). Here we propose a modified ANC calculation where the permanent anionic charge of the organic acids is assumed as a part of the strong acid anions. In many humic lakes, the weak organic acids are the predominant pH-buffering system. Because a significant amount of the weak organic acids have pK-values<3.0-3.5, these relatively strong acids will permanently be deprotonated in almost all natural waters (i.e. pH>4.5). This means that they will be permanently present as anions, equal to the strong acid inorganic anions, SO4(2)-, NO3- and Cl-. In the literature, natural organic acids are often described as triprotic acids with a low pK1 value. Assuming a triprotic model, we suggest to add 1/3 of the organic acid charge density to the strong acid anions in the ANC calculation. The suggested organic acid adjusted ANC (ANC(OAA)), is then calculated as follows: ANC(OAA)=[BC]-([SAA]+1/3CD*TOC) where TOC is total organic carbon (mg C L(-1)), and CD=10.2 is charge density of the organic matter (microeq/mg C), based on literature data from Swedish lakes. ANC(OAA) gives significant lower values of ANC in order to achieve equal fish status compared with the traditional ANC calculation. Using ANC(OAA) the humic conditions in lakes are better taken into account. This may also help explain observations of higher ANC needed to have reproducing fish populations in lakes with higher TOC concentrations. Copryright 2003 Elsevier B.V.
Qiu, Hongdeng; Jiang, Qiong; Wei, Zheng; Wang, Xusheng; Liu, Xia; Jiang, Shengxiang
2007-09-07
A new zwitterionic stationary phase based on silica bonded with 1-alkyl-3-(propyl-3-sulfonate) imidazolium was synthesized and characterized in this paper. The materials have been confirmed and evaluated by elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. Potassium and calcium were separated simultaneously with several common inorganic anions including an iodate, chloride, bromide, nitrate and iodide on the phase. The effects of the concentration, organic solvent and pH of the eluent on the separation of anions were studied. Operated in the anion-exchange mode, this new stationary phase shows considerable promise for the separation of anions. Bases, vitamins and three imidazolium ionic liquids with different alkyl chains are also separated successfully on this column. The stationary phase has multiple retention mechanisms, such as anion-exchange, electrostatic attraction and repulsion interactions, and hydrophobic interaction between the zwitterionic stationary phase and specimens.
NASA Astrophysics Data System (ADS)
Khanmohammadi, Hamid; Rezaeian, Khatereh; Abdollahi, Alieh
2015-03-01
New N-monosubstituted diaminomaleonitrile-based azo-azomethine dyes have been synthesized in order to develop colorimetric sensors for detection of biologically important anions in aqueous media. Importantly, the reported sensor decorated with strong electron-withdrawing group can detect inorganic fluoride in water even at 0.037 ppm level, which is lower than WHO permissible level (below 1 ppm). Successfully, the prepared dyes were used for qualitative and quantitative detection of inorganic fluoride in toothpaste and mouthwash. The anion recognition mechanism was also investigated by detailed UV-Vis and 1H NMR experiments. The detailed 1H NMR experiments corroborated that anion recognition is based on the deprotonation phenomenon.
Khattab, M M; Al-Hrasen, M N
2006-04-01
Both ATP and diadenosine tetraphosphate (AP(4)A) produced a dose-dependent contraction of rat isolated urinary bladder rings. The AP(4)A dose-response curve was to the left of that of ATP, and the maximum response was greater than that produced by ATP. Mechanical removal of the urothelium increased the contractile response to ATP by between 53% and 71%, and that to AP(4)A by 42% (at highest AP(4)A concentration) to 68% at lower concentration. Inhibition of Cu/Zn superoxide dismutase with diethylthiocarbamate (DETCA, 5 mm) significantly reduced the ATP-evoked contraction by 31% (at high ATP concentration) to 40% at low ATP concentration. Similarly, the AP(4)A-induced contractions were significantly decreased by 27% at low AP(4)A level to 38% at higher concentrations. Induction of exogenous superoxide anion stress by the use of the superoxide anion generator, pyrogallol (0.5 mm), significantly decreased both ATP- and AP(4)A-induced contractions of the rat urinary bladder over the whole dose range. Contractile responses to ATP decreased by 36-40%, and those to AP(4)A by 44-49%. In conclusion, the urinary bladder urothelium exerts an inhibitory control over the purinergic contractility produced by adenine mononucleotides and dinucleotides. Superoxide anion stress, whether endogenous or exogenous, attenuates the ATP-induced as well as AP(4)A-induced contractility.
Synthesis, structures and properties of a new series of platinum-diimine-dithiolate complexes.
Adams, Christopher J; Fey, Natalie; Parfitt, Matthew; Pope, Simon J A; Weinstein, Julia A
2007-10-21
The new square-planar platinum-diimine-dithiolate compounds [Pt(mesBIAN)SS] have been synthesised {mesBIAN = bis(mesityl)biazanaphthenequinone; SS = 1,2-dithiooxalate (dto) , maleonitriledithiolate (mnt) , 1,2-benzenedithiolate (bdt) , 3,4-toluenedithiolate (tdt) and 1,3-dithia-2-thione-4,5-dithiolate (dmit) }, and the X-ray crystal structures of and determined. Cyclic voltammetry reveals that all the compounds form stable anions, and ESR spectroscopy of these anions shows that the SOMO is based upon the mesBIAN ligand; compounds also show a reversible oxidation wave in their CV. Computational studies reveal that charge-transfer processes from orbitals that are combinations of metal and dithiolate ligand to a mesBIAN pi-based LUMO are responsible for the low energy absorptions seen in the UV/visible spectra of these compounds, and that the reverse process is responsible for the observed room-temperature solution luminescence of [Pt(mesBIAN)Cl(2)] and , and . Compounds and , containing aromatic thiolates, were not found to luminesce under the same conditions. Resonance Raman experiments have shown the origin of band-broadening of the lowest-energy absorption band in the absorption spectra of to be due to vibronic structure within one electronic transition.
Prabhu, Sugosh R; Dutt, G B
2014-11-20
The rotational dynamics of 1-alkyl-3-methylimidazolium-based ionic liquids has been investigated by monitoring their inherent fluorescence with the intent to unravel the characteristics of the emitting species. For this purpose, temperature-dependent fluorescence anisotropies of 1-alkyl-3-methylimidazolium (alkyl = ethyl and hexyl) ionic liquids with anions such as tris(pentafluoroethyl)trifluorophosphate ([FAP]), bis(trifluoromethylsulfonyl)imide ([Tf2N]), tetrafluoroborate ([BF4]), and hexafluorophosphate ([PF6]) have been measured. It has been observed that the reorientation times (τr) of the ionic liquids with an ethyl chain scale linearly with viscosity and were found to be independent of the nature of the anion. The experimentally measured τr values are a factor of 3 longer than the ones calculated for 1-ethyl-3-methylimidazolium cation using the Stokes-Einstein-Debye (SED) hydrodynamic theory with stick boundary condition, which suggests that the emitting species is not the imidazolium moiety but some kind of associated species. The reorientation times of ionic liquids with a hexyl chain, in contrast, follow the trend τr([FAP]) > τr([Tf2N]) = τr([BF4]) > τr([PF6]) at a given viscosity (η) and temperature (T). The ability of the ionic liquids with longer alkyl chains to form the organized structure appears to be responsible for the observed behavior considering the fact that significant deviations from linearity have been noticed in the τr versus η/T plots for strongly associating anions [BF4] and [PF6], especially at ambient temperatures.
Deng, Huimin; Shen, Wei; Gao, Zhiqiang
2013-07-22
Herein a novel strategy for the construction of an amperometric biosensor for highly sensitive and selective determination of glucose is described. The biosensor is made of a biocomposite membrane of glucose oxidase (GOx) and an Os(bpy)2 (bpy=2,2'-bipyridine)-based anionic redox polymer (Os-RP) mediator. The biosensor is fabricated through the co-immobilization of GOx and the Os-RP on the surface of a glassy carbon electrode by a simple one-step chemical crosslinking process. The crosslinked Os-RP/GOx composite membrane shows excellent catalytic activity toward the oxidation of glucose. Under optimal experimental conditions, a linear correlation between the oxidation current of glucose in amperometry at 0.25 V (vs. Ag/AgCl) and glucose concentration up to 10 mM with a sensitivity of 16.5 μA mM(-1) cm(-2) and a response time <5 s. Due to the presence of anionic sulfonic acid groups in the backbone of the redox polymer, the biosensor exhibits excellent selectivity to glucose in the presence of ascorbic acid and uric acid. The low hydrophobicity of the composite membrane also effectively retards the transport of molecular oxygen within the membrane. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mawai, Kiran; Nathani, Sandip; Roy, Partha; Singh, U P; Ghosh, Kaushik
2018-05-08
A compartmental chemosensor probe HL has been designed and synthesized for the selective recognition of zinc ions over other transition metal ions via fluorescence "ON" strategy. The chemosensing behaviour of HL was demonstrated through fluorescence, absorption and NMR spectroscopic techniques. The molecular structure of the zinc complex derived from HL was determined by X-ray crystallography. A probable mechanism of this selective sensing behavior was described on the basis of spectroscopic results and theoretical studies by density functional theory (DFT). The biological applicability of the chemosensor HL was examined via cell imaging on HeLa cells. The HL-zinc complex served as a secondary fluorescent probe responding to the pyrophosphate anion specifically over other anions. The fluorescence enhancement of HL in association with Zn2+ ions was quenched in the presence of pyrophosphate (PPi). Thus, a dual response was established based on "OFF-ON-OFF" strategy for detection of both cation and anion. This phenomenon was utilized in the construction of a "INHIBIT" logic gate.
Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman-James, Kristen
2004-12-01
This project have focuses on the basic chemical aspects of anion receptor design of functional pH independent systems, with the ultimate goal of targeting the selective binding of sulfate, as well as design of separations strategies for selective and efficient removal of targeted anions. Key findings include: (1) the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate anion from acidic, nitrate-containing aqueous media. Areas probed during the last funding period include: the design, synthesis, and physical andmore » structural characterization of receptors and investigation of anion and dual ion pair extraction using lipophilic amide receptors for anion binding. A new collaboration has been added to the project in addition to the one with Dr. Bruce Moyer at Oak Ridge National Laboratory, with Professor Jonathan Sessler at the University of Texas at Austin.« less
Pyromellitamide aggregates and their response to anion stimuli.
Webb, James E A; Crossley, Maxwell J; Turner, Peter; Thordarson, Pall
2007-06-06
The N,N',N'',N'''-1,2,4,5-tetra(ethylhexanoate) pyromellitamide is found to be capable of both intermolecular aggregation and binding to small anions. It is synthesized by aminolysis of pyromellitic anhydride with ethanolamine, followed by a reaction with hexanoyl chloride. The single-crystal X-ray structure of the pyromellitamide shows that it forms one-dimensional columnar stacks through an intermolecular hydrogen-bonding network. It also forms self-assembled gels in nonpolar solvents, presumably by a hydrogen-bonding network similar to the solid-state structure as shown by IR and XRD studies. Aggregation by intermolecular hydrogen bonding of the pyromellitamide is also observed by NMR and IR in solution. Fitting of NMR dilution data for pyromellitamide in d6-acetone to a cooperative aggregation model gave KE=232 M-1 and positive cooperativity of aggregation (rho=0.22). The pyromellitamide binds to a range of small anions with the binding strength decreasing in the order chloride>acetate>bromide>nitrate approximately iodide. The data indicate that the pyromellitamide binds two anions and that it displays negative cooperativity. The intermolecular aggregation of the pyromellitamide can also be altered using small anion stimuli; anion addition to preformed self-assembled pyromellitamide gels causes their collapse. The kinetics of anion-induced gel collapse are qualitatively correlated to the binding affinities of the same anions in solution. The cooperative anion binding properties and the sensitivity of the self-assembled gels formed by pyromellitamide toward anions could be useful in the development of sensors and switching/releasing devices.
Dong, Zhen-Zhen; Yang, Chao; Vellaisamy, Kasipandi; Li, Guodong; Leung, Chung-Hang; Ma, Dik-Lung
2017-10-27
We have developed a Ag@Au core-shell nanoparticle (NP)/iridium(III) complex-based sensing platform for the sensitive luminescence "turn-on" sensing of cyanide ions, an acutely toxic pollutant. The assay is based on the quenching effect of Ag@Au NPs on the emission of complex 1, but luminescence is restored after the addition of cyanide anions due to their ability to dissolve the Au shell. Our sensing platform exhibited a high sensitivity toward cyanide anions with a detection limit of 0.036 μM, and also showed high selectivity for cyanide over 10-fold excess amounts of other anions. The sensing platform was also successfully applied to monitor cyanide anions in drinking water and in living cells.
Indirect photometric detection of boron cluster anions electrophoretically separated in methanol.
Vítová, Lada; Fojt, Lukáš; Vespalec, Radim
2014-04-18
3,5-Dinitrobenzoate and picrate are light absorbing anions pertinent to indirect photometric detection of boron cluster anions in buffered methanolic background electrolytes (BGEs). Tris(hydroxymethyl)aminomethane and morpholine have been used as buffering bases, which eliminated baseline steps, and minimized the baseline noise. In methanolic BGEs, mobilities of boron cluster anions depend on both ionic constituents of the BGE buffer. This dependence can be explained by ion pair interaction of detected anions with BGE cations, which are not bonded into ion pairs with the BGE anions. The former ion pair interaction decreases sensitivity of the indirect photometric detection. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Montazami, Reza; Liu, Sheng; Liu, Yang; Wang, Dong; Zhang, Qiming; Heflin, James R.
2011-05-01
Ionic electroactive polymer (IEAP) actuators containing porous conductive network composites (CNCs) and ionic liquids can result in high strain and fast response times. Incorporation of spherical gold nanoparticles in the CNC enhances conductivity and porosity, while maintaining relatively small thickness. This leads to improved mechanical strain and bending curvature of the actuators. We have employed the layer-by-layer self-assembly technique to fabricate a CNC with enhanced curvature (0.43 mm-1) and large net intrinsic strain (6.1%). The results demonstrate that curvature and net strain of IEAP actuators due to motion of the anions increase linearly with the thickness of the CNC as a result of the increased volume in which the anions can be stored. In addition, after subtracting the curvature of a bare Nafion actuator without a CNC, it is found that the net intrinsic strain of the CNC layer is independent of thickness for the range of 20-80 nm, indicating that the entire CNC volume contributes equivalently to the actuator motion. Furthermore, the response time of the actuator due to anion motion is independent of CNC thickness, suggesting that traversal through the Nafion membrane is the limiting factor in the anion motion.
An anion channel in Arabidopsis hypocotyls activated by blue light
NASA Technical Reports Server (NTRS)
Cho, M. H.; Spalding, E. P.; Evans, M. L. (Principal Investigator)
1996-01-01
A rapid, transient depolarization of the plasma membrane in seedling stems is one of the earliest effects of blue light detected in plants. It appears to play a role in transducing blue light into inhibition of hypocotyl (stem) elongation, and perhaps other responses. The possibility that activation of a Cl- conductance is part of the depolarization mechanism was raised previously and addressed here. By patch clamping hypocotyl cells isolated from dark-grown (etiolated) Arabidopsis seedlings, blue light was found to activate an anion channel residing at the plasma membrane. An anion-channel blocker commonly known as NPPB 15-nitro-2-(3-phenylpropylamino)-benzoic acid] potently and reversibly blocked this anion channel. NPPB also blocked the blue-light-induced depolarization in vivo and decreased the inhibitory effect of blue light on hypocotyl elongation. These results indicate that activation of this anion channel plays a role in transducing blue light into growth inhibition.
Mosier-Boss, P A; Lieberman, S H
2003-09-01
The use of normal Raman spectroscopy and surface-enhanced Raman spectroscopy (SERS) of cationic-coated silver and gold substrates to detect polyatomic anions in aqueous environments is examined. For normal Raman spectroscopy, using near-infrared excitation, linear concentration responses were observed. Detection limits varied from 84 ppm for perchlorate to 2600 ppm for phosphate. In general, detection limits in the ppb to ppm concentration range for the polyatomic anions were achieved using cationic-coated SERS substrates. Adsorption of the polyatomic anions on the cationic-coated SERS substrates was described by a Frumkin isotherm. The SERS technique could not be used to detect dichromate, as this anion reacted with the coatings to form thiol esters. A competitive complexation method was used to evaluate the interaction of chloride ion with the cationic coatings. Hydrogen bonding and pi-pi interactions play significant roles in the selectivity of the cationic coatings.
Vera-Jimenez, N I; Pietretti, D; Wiegertjes, G F; Nielsen, M E
2013-05-01
The respiratory burst is an important feature of the immune system. The increase in cellular oxygen uptake that marks the initiation of the respiratory burst is followed by the production of reactive oxygen species (ROS) such as superoxide anion and hydrogen peroxide which plays a role in the clearance of pathogens and tissue regeneration processes. Therefore, the respiratory burst and associated ROS constitute important indicators of fish health status. This paper compares two methods for quantitation of ROS produced during the respiratory burst in common carp: the widely used, single-point measurement based on the intracellular reduction of nitroblue tetrazolium (NBT) and a real-time luminol-enhanced assay based on the detection of native chemiluminescence. Both assays allowed for detection of dose-dependent changes in magnitude of the respiratory burst response induced by β-glucans in head kidney cells of carp. However, whereas the NBT assay was shown to detect the production of only superoxide anions, the real-time luminol-enhanced assay could detect the production of both superoxide anions and hydrogen peroxide. Only the chemiluminescence assay could reliably record the production of ROS on a real-time scale at frequent and continual time intervals for time course experiments, providing more detailed information on the respiratory burst response. The real-time chemiluminescence assay was used to measure respiratory burst activity in macrophage and neutrophilic granulocyte-enriched head kidney cell fractions and total head kidney cell suspensions and proved to be a fast, reliable, automated multiwell microplate assay to quantitate fish health status modulated by β-glucans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Organoboron compounds as Lewis acid receptors of fluoride ions in polymeric membranes.
Jańczyk, Martyna; Adamczyk-Woźniak, Agnieszka; Sporzyński, Andrzej; Wróblewski, Wojciech
2012-07-06
Newly synthesized organoboron compounds - 4-octyloxyphenylboronic acid (OPBA) and pinacol ester of 2,4,6-trifluorophenylboronic acid (PE-PBA) - were applied as Lewis acid receptors of fluoride anions. Despite enhanced selectivity, the polymer membrane electrodes containing the lipophilic receptor OPBA exhibited non-Nernstian slopes of the responses toward fluoride ions in acidic conditions. Such behavior was explained by the lability of the B-O bond in the boronic acids, and the OH(-)/F(-) exchange at higher fluoride content in the sample solution. In consequence, the stoichiometry of the OPBA-fluoride complexes in the membrane could vary during the calibration, changing the equilibrium concentration of the primary anion in membrane and providing super-Nernstian responses. The proposed mechanism was supported by (19)F NMR studies, which indicated that the fluoride complexation proceeds more effectively in acidic solution leading mainly to PhBF(3)(-) species. Finally, the performances of the membranes based on the phenylboronic acid pinacol ester, with a more stable B-O bond, were tested. As it was expected, Nernstian fluoride responses were recorded for such membranes with worsened fluoride selectivity. Copyright © 2012 Elsevier B.V. All rights reserved.
Donnan membrane technique (DMT) for anion measurement.
Vega, Flora Alonso; Weng, Liping; Temminghoff, Erwin J M; Van Riemsdijk, Willem H
2010-04-01
Donnan membrane technique (DMT) is developed and tested for determination of free anion concentrations. Time needed to reach the Donnan membrane equilibrium depends on type of ions and the background. The Donnan membrane equilibrium is reached in 1 day for Cl(-), 1-2 days for NO(3)(-), 1-4 days for SO(4)(2-) and SeO(4)(2-), and 1-14 days for H(2)PO(4)(-) in a background of 2-200 mM KCl or K(2)SO(4). The strongest effect of ionic strength on equilibrium time is found for H(2)PO(4)(-), followed by SO(4)(2-) and SeO(4)(2-), and then by Cl(-) and NO(3)(-). The negatively charged organic particles of fulvic and humic acids do not pass the membrane. Two approaches for the measurement of different anion species of the same element, such as SeO(4)(2-) and HSeO(3)(-), using DMT are proposed and tested. These two approaches are based on transport kinetics or response to ionic strength difference. A transport model that was developed previously for cation DMT is applied in this work to analyze the rate-limiting step in the anion DMT. In the absence of mobile/labile complexes, transport tends to be controlled by diffusion in solution at a low ionic strength, whereas at a higher ionic strength, diffusion in the membrane starts to control the transport.
NASA Astrophysics Data System (ADS)
Ünver, Hüseyin; Boyacıoğlu, Bahadır; Zeyrek, Celal Tuğrul; Yıldız, Mustafa; Demir, Neslihan; Yıldırım, Nuray; Karaosmanoğlu, Oğuzhan; Sivas, Hülya; Elmalı, Ayhan
2016-12-01
We report the synthesis of a novel Schiff base (E)-3-[(3,5-bis(trifluoromethyl) phenylimino)methyl] benzene-1,2-diol from the reaction of 2,3-dihydroxybenzaldehyde with 3,5-bis(trifluoromethyl)aniline, and its Ni(II) and Cu(II) complexes. The molecular structure of the Schiff base was experimentally determined using X-ray single-crystal data and was compared to the structure predicted by theoretical calculations using density functional theory (DFT), Hartree-Fock (HF) and Möller-Plesset second-order perturbation (MP2). In addition, nonlinear optical (NLO) effects of the compound was predicted using DFT. The antimicrobial activities of the compounds were investigated for their minimum inhibitory concentration. UV-Vis spectroscopy studies of the interactions between the compounds and calf thymus DNA (CT-DNA) showed that the compounds interacts with CT-DNA via intercalative binding. A DNA cleavage study showed that the Cu(II) complex cleaved DNA without any external agents. The compounds inhibited the base pair mutation in the absence of S9 with high inhibition rate. In addition, in vitro cytotoxicity of the Ni(II) complex towards HepG2 cell line was assayed by the MTT method. Also, the colorimetric response of the Schiff base in DMSO to the addition of equivalent amount of anions (F-, Br-, I-, CN-, SCN-, ClO4-, HSO4-, AcO-, H2PO4-, N3- and OH-) was investigated. In this regard, while the addition of F-, CN-, AcO- and OH- anions into the solution containing Schiff base resulted in a significant color change, the addition of Br-, I-, SCN-, ClO4-, HSO4-, H2PO4- and N3- anions resulted in no color change. The most discernable color change in the Schiff base was caused by CN-, which demonstrated that the ligand can be used to selectively detect CN-.
Microtitration of various anions with quaternary ammonium halides using solid-state electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selig, W.
1980-01-01
Many solid-state electrodes were found to respond as endpoint detectors in the potentiometric titration of large inorganic and organic anions with quaternary ammonium halides. The best response was obtained with the iodide and cyanide electrodes although practically any electrode can function as endpoint sensor. The titrants were hexadecylpyridinium chloride and hexadecyltrimethylammonium chloride; hexadecyltrimethylammonium bromide and Hyamine 1622 may also be used. Some inorganic anions thus titratable are perrhenate, persulfate, ferricyanide, hexafluorophosphate, and hexachloroplatinate. Examples of organic anions titratable are nitroform, tetraphenylborate, cyanotriphenylborate, picrate, long-chain sulfates and sulfonates, and some soaps. The reverse titration of quaternary ammonium halides vs dodecylsulfate ismore » also feasible. Some titrations are feasible in a partially nonaqueous medium.« less
NASA Technical Reports Server (NTRS)
Charnley, Steven B.
2011-01-01
The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.
Eu(III) complexes as Anion-responsive Luminescent Sensors and PARACEST Agents
Hammell, Jacob; Buttarazzi, Leandro; Huang, Ching-Hui; Morrow, Janet R.
2011-01-01
The Eu(III) complex of (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (S-THP) is studied as a sensor for biologically relevant anions. Anion interactions produce changes in the luminescence emission spectrum of the Eu(III) complex, in the 1H NMR spectrum, and correspondingly, in the PARACEST spectrum of the complex (PARACEST = paramagnetic chemical exchange saturation transfer). Direct excitation spectroscopy and luminescence lifetime studies of Eu(S-THP) give information about the speciation and nature of anion interactions including carbonate, acetate, lactate, citrate, phosphate and methylphosphate at pH 7.2. Data is consistent with the formation of both innersphere and outersphere complexes of Eu(S-THP) with acetate, lactate and carbonate. These anions have weak dissociation constants that range from 19–38 mM. Citrate binding to Eu(S-THP) is predominantly innersphere with a dissociation constant of 17 μM. Luminescence emission peak changes upon addition of anion to Eu(S-THP) show that there are two distinct binding events for phosphate and methylphosphate with dissociation constants of 0.3 mM and 3.0 mM for phosphate and 0.6 mM and 9.8 mM for methyl phosphate. Eu(THPC) contains an appended carbostyril derivative as an antenna to sensitize Eu(III) luminescence. Eu(THPC) binds phosphate and citrate with dissociation constants that are 10-fold less than that of the Eu(S-THP) parent, suggesting that functionalization through a pendent group disrupts the anion binding site. Eu(S-THP) functions as an anion responsive PARACEST agent through exchange of the alcohol protons with bulk water. The alcohol proton resonances of Eu(S-THP) shift downfield in the presence of acetate, lactate, citrate and methylphosphate, giving rise to distinct PARACEST peaks. In contrast, phosphate binds to Eu(S-THP) to suppress the PARACEST alcohol OH peak and carbonate does not markedly change the alcohol peak at 5 mM Eu(S-THP), 15 mM carbonate at pH 6.5 or 7.2. This work shows that the Eu(S-THP) complex has unique selectivity toward binding of biologically relevant anions and that anion binding results in changes in both the luminescence and PARACEST spectra of the complex. PMID:21548563
Hammell, Jacob; Buttarazzi, Leandro; Huang, Ching-Hui; Morrow, Janet R
2011-06-06
The Eu(III) complex of (1S,4S,7S,10S)-1,4,7,10-tetrakis(2-hydroxypropyl)-1,4,7,10-tetraazacyclododecane (S-THP) is studied as a sensor for biologically relevant anions. Anion interactions produce changes in the luminescence emission spectrum of the Eu(III) complex, in the (1)H NMR spectrum, and correspondingly, in the PARACEST spectrum of the complex (PARACEST = paramagnetic chemical exchange saturation transfer). Direct excitation spectroscopy and luminescence lifetime studies of Eu(S-THP) give information about the speciation and nature of anion interactions including carbonate, acetate, lactate, citrate, phosphate, and methylphosphate at pH 7.2. Data is consistent with the formation of both innersphere and outersphere complexes of Eu(S-THP) with acetate, lactate, and carbonate. These anions have weak dissociation constants that range from 19 to 38 mM. Citrate binding to Eu(S-THP) is predominantly innersphere with a dissociation constant of 17 μM. Luminescence emission peak changes upon addition of anion to Eu(S-THP) show that there are two distinct binding events for phosphate and methylphosphate with dissociation constants of 0.3 mM and 3.0 mM for phosphate and 0.6 mM and 9.8 mM for methyl phosphate. Eu(THPC) contains an appended carbostyril derivative as an antenna to sensitize Eu(III) luminescence. Eu(THPC) binds phosphate and citrate with dissociation constants that are 10-fold less than that of the Eu(S-THP) parent, suggesting that functionalization through a pendent group disrupts the anion binding site. Eu(S-THP) functions as an anion responsive PARACEST agent through exchange of the alcohol protons with bulk water. The alcohol proton resonances of Eu(S-THP) shift downfield in the presence of acetate, lactate, citrate, and methylphosphate, giving rise to distinct PARACEST peaks. In contrast, phosphate binds to Eu(S-THP) to suppress the PARACEST alcohol OH peak and carbonate does not markedly change the alcohol peak at 5 mM Eu(S-THP), 15 mM carbonate at pH 6.5 or 7.2. This work shows that the Eu(S-THP) complex has unique selectivity toward binding of biologically relevant anions and that anion binding results in changes in both the luminescence and the PARACEST spectra of the complex. © 2011 American Chemical Society
Simons, Jack
2008-07-24
The experimental and theoretical study of molecular anions has undergone explosive growth over the past 40 years. Advances in techniques used to generate anions in appreciable numbers as well as new ion-storage, ion-optics, and laser spectroscopic tools have been key on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now allow one to achieve higher accuracy and to study electronically metastable states, thus bringing theory in close collaboration with experiment in this field. In this article, many of the experimental and theoretical challenges specific to studying molecular anions are discussed. Results from many research groups on several classes of molecular anions are overviewed, and both literature citations and active (in online html and pdf versions) links to numerous contributing scientists' Web sites are provided. Specific focus is made on the following families of anions: dipole-bound, zwitterion-bound, double-Rydberg, multiply charged, metastable, cluster-based, and biological anions. In discussing each kind of anion, emphasis is placed on the structural, energetic, spectroscopic, and chemical-reactivity characteristics that make these anions novel, interesting, and important.
Yamamoto, Yoshiko; Negi, Juntaro; Wang, Cun; Isogai, Yasuhiro; Schroeder, Julian I; Iba, Koh
2016-02-01
The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. © 2016 American Society of Plant Biologists. All rights reserved.
Yamamoto, Yoshiko; Negi, Juntaro; Isogai, Yasuhiro; Schroeder, Julian I.; Iba, Koh
2016-01-01
The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. PMID:26764376
Kemper, Jerome M; Westerhoff, Paul; Dotson, Aaron; Mitch, William A
2009-01-15
Strong base anion-exchange resins represent an important option for water utilities and homeowners to address growing concerns with nitrate, arsenate, and perchlorate contamination of source waters. Most commercially available anion-exchange resins employ quaternary amine functional groups. Previous research has provided contradictory evidence regarding whether these resins serve as sources of nitrosamines, considered as highly carcinogenic nitrogenous disinfection byproducts (N-DBPs), even without disinfectants. For three common varieties of commercial anion-exchange resins, we evaluated the importance of releases of nitrosamines, and two other N-DBPs (dimethylnitramine and chloropicrin), when the resins were subjected to typical column flow conditions with and without free chlorine or chloramine application upstream or downstream of the columns. In the absence of disinfectants, fresh trimethylamine- and tributylamine-based type 1 and dimethylethanolamine-based type 2 anion-exchange resins usually released 2-10 ng/L nitrosamines, likely due to shedding of manufacturing impurities, with excursions of up to 20 ng/L following regeneration. However, the lack of significant nitrosamine release in a full-scale anion-exchange treatment system after multiple regeneration cycles indicates that releases may eventually subside. Resins also shed organic precursors that might contribute to nitrosamine formation within distribution systems when chloramines are applied downstream. With free chlorine or chloramine application upstream, nitrosamine concentrations were more significant, at 20-100 ng/L for the type 1 resins and approximately 400 ng/L for the type 2 resin. However, chloropicrin formation was lowest for the type 2 resin. Dimethylnitramine formation was significant with free chlorine application upstream but negligible with chloramines. Although no N-DBPs were detected in cation-exchange-based consumer point-of-use devices exposed to chlorinated or chloraminated waters, our results indicate that inclusion of anion-exchange resins in these devices, as in laboratory deionized water systems, would likely be problematic.
Li, Xiaoning; Guo, Wenli; Wu, Yibo; Li, Wei; Gong, Liangfa; Zhang, Xiaoqian; Li, Shuxin; Shang, Yuwei; Yang, Dan; Wang, Hao
2018-03-06
To identify ionic liquids (ILs) that could be used as solvents in isobutylene (IB) polymerization, the interactions between IB and eight different ILs based on the 1-butyl-3-methylimidazolium cation ([Bmim] + ) were investigated using density functional theory (DFT). The anions in the ILs were chloride, hexafluorophosphate, tetrafluoroborate, bis[(trifluoromethyl)sulfonyl]imide, tetrachloroaluminate ([AlCl 4 ] - ), tetrachloroferrate, acetate, and trifluoroacetate. The interaction geometries were explained by changes in the total energy, intermolecular distances, Hirshfeld charges, and the electrostatic potential surface. The IL solvents were screened by comparing their interaction intensities with IB to the interaction intensities of reference ILs ([AlCl 4 ] - -based ILs) with IB. The microscopic mechanism for IB dissolution was rationalized by invoking a previously reported microscopic mechanism for the dissolution of gases in ILs. Computation results revealed that hydrogen (H) bonding between C2-H on the imidazolium ring and the anions plays a key role in ion pair (IP) formation. The addition of IB leads to slight changes in the dominant interactions of the IP. IB molecules occupied cavities created by small angular rearrangements of the anions, just as CO 2 does when it is dissolved in an IL. The limited total free space in the ILs and the much larger size of IB than CO 2 were found to be responsible for the poor solubility of IB compared with that of CO 2 in the ILs.
NASA Astrophysics Data System (ADS)
Athar, Mohd; Lone, Mohsin Y.; Jha, Prakash C.
2018-02-01
Designing of new calixarene receptors for the selective binding of anions is an age-old concept; even though expected outcomes from this field are at premature stage. Herein, we have performed quantum chemical calculations to provide structural basis of anion binding with urea and thiourea substituted calixarenes (1, 2, and 3). In particular, spherical halides (F-, Cl-, Br-) and linear anions (CN-, N3-, SCN-) were modelled for calculating binding energies with receptor 1, 2 and 3 followed by their marked IR vibrations; taking the available experimental information into account. We found that the thiourea substitutions have better capability to stabilize the anions. Results have suggested that the structural behaviour of macrocyclic motifs were responsible for displaying the anion binding potentials. Moreover, second order "charge transfer" interactions of n-σ∗NH and n-σ∗OH type along the H-bond axis played critical role in developing hydrogen bonds. The present work also examines the role of non-covalent interactions (NCI) and their effects on thermodynamic and chemical-reactivity descriptors.
Amphiphilic interactions of ionic liquids with lipid biomembranes: a molecular simulation study.
Yoo, Brian; Shah, Jindal K; Zhu, Yingxi; Maginn, Edward J
2014-11-21
Current bottlenecks in the large-scale commercial use of many ionic liquids (ILs) include their high costs, low biodegradability, and often unknown toxicities. As a proactive effort to better understand the molecular mechanisms of ionic liquid toxicities, the work herein presents a comprehensive molecular simulation study on the interactions of 1-n-alkyl-3-methylimidazolium-based ILs with a phosphatidylcholine (PC) lipid bilayer. We explore the effects of increasing alkyl chain length (n = 4, 8, and 12) in the cation and anion hydrophobicity on the interactions with the lipid bilayer. Bulk atomistic molecular dynamics (MD) simulations performed at millimolar (mM) IL concentrations show spontaneous insertion of cations into the lipid bilayer regardless of the alkyl chain length and a favorable orientational preference once a cation is inserted. Cations also exhibit the ability to "flip" inside the lipid bilayer (as is common for amphiphiles) if partially inserted with an unfavorable orientation. Moreover, structural analysis of the lipid bilayer show that cationic insertion induces roughening of the bilayer surface, which may be a precursor to bilayer disruption. To overcome the limitation in the timescale of our simulations, free energies for a single IL cation and anion insertion have been determined based on potential of mean force calculations. These results show a decrease in free energy in response to both short and long alkyl chain IL cation insertion, and likewise for a single hydrophobic anion insertion, but an increase in free energy for the insertion of a hydrophilic chloride anion. Both bulk MD simulations and free energy calculations suggest that toxicity mechanisms toward biological systems are likely caused by ILs behaving as ionic surfactants. [Yoo et al., Soft Matter, 2014].
Highly Dynamic Anion-Quadrupole Networks in Proteins.
Kapoor, Karan; Duff, Michael R; Upadhyay, Amit; Bucci, Joel C; Saxton, Arnold M; Hinde, Robert J; Howell, Elizabeth E; Baudry, Jerome
2016-11-01
The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.
The impact of ionic liquids on the coordination of anions with solvatochromic copper complexes.
Kuzmina, O; Hassan, N H; Patel, L; Ashworth, C; Bakis, E; White, A J P; Hunt, P A; Welton, T
2017-09-28
Solvatochromic transition metal (TM)-complexes with weakly associating counter-anions are often used to evaluate traditional neutral solvent and anion coordination ability. However, when employed in ionic liquids (IL) many of the common assumptions made are no longer reliable. This study investigates the coordinating ability of weakly coordinating IL anions in traditional solvents and within IL solvents employing a range of solvatochromic copper complexes. Complexes of the form [Cu(acac)(tmen)][X] (acac = acetylacetonate, tmen = tetramethylethylenediamine) where [X] - = [ClO 4 ] - , Cl - , [NO 3 ] - , [SCN] - , [OTf] - , [NTf 2 ] - and [PF 6 ] - have been synthesised and characterised both experimentally and computationally. ILs based on these anions and imidazolium and pyrrolidinium cations, some of which are functionalised with hydroxyl and nitrile groups, have been examined. IL-anion coordination has been investigated and compared to typical weakly coordinating anions. We have found there is potential for competition at the Cu-centre and cases of anions traditionally assigned as weakly associating that demonstrate a stronger than expected level of coordinating ability within ILs. [Cu(acac)(tmen)][PF 6 ] is shown to contain the least coordinating anion and is established as the most sensitive probe studied here. Using this probe, the donor numbers (DNs) of ILs have been determined. Relative donor ability is further confirmed based on the UV-Vis of a neutral complex, [Cu(sacsac) 2 ] (sacsac = dithioacetylacetone), and DNs evaluated via 23 Na NMR spectroscopy. We demonstrate that ILs can span a wide donor range, similar in breadth to conventional solvents.
Tamilvanan, Shunmugaperumal; Kumar, Balakrishnan Ajith
2011-09-01
Acetazolamide (ACZM)-loaded anionic, cationic, and neutral-charged oil-in-water nanosized emulsions were prepared and compared with their mean droplet diameter, surface charge, entrapment efficiency, freeze-thaw cycling stability, in vitro drug release, and transcorneal permeation. The present study aims to determine the influence of ACZM loading on the performances of non-phospholipid-based cationic nanosized emulsion in comparison with phospholipid-based anionic and neutral-charged nanosized emulsions. Regardless of charges, all of these emulsions exhibited a nanometer range mean particle diameter (240-443 nm) following autoclave sterilization. While the anionic and cationic emulsions did show high negative (-36.9 mV) and positive zeta potential (+41.4 mV) values, the neutral-charged emulsion did not. Presence of cryoprotectants (5% w/w sucrose + 5% w/w sorbitol) improved the stability of cationic emulsion to droplet aggregation during freeze-thaw cycling. The in vitro release kinetic behavior of drug exchange with physiological anions present in the simulated tear solution appears to be complex and difficult to characterize using mathematical fitting model equations. Augmentation in drug permeation through goat cornea, in vitro, was noticed for cationic emulsion. ACZM-loaded cationic nanosized emulsion could be suitable for topical application into eye to elicit better therapeutic effect in comparison with its anionic and neutral-charged emulsions.
NASA Astrophysics Data System (ADS)
Lo Celso, Fabrizio; Triolo, Alessandro; Gontrani, Lorenzo; Russina, Olga
2018-06-01
One of the outstanding features of ionic liquids is their inherently hierarchical structural organization at mesoscopic spatial scales. Recently experimental and computational studies showed the fading of this feature when pressurising. Here we use simulations to show that this effect is not general: appropriate anion choice leads to an obstinate resistance against pressurization.
RedOx-controlled sorption of iodine anions by hydrotalcite composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levitskaia, Tatiana G.; Chatterjee, Sayandev; Arey, Bruce W.
2016-01-01
The radioactive contaminant iodine-129 (I-129) is one of the top risk drivers at radiological waste disposal and contaminated groundwater sites where nuclear material fabrication or reprocessing has occurred. Currently there are very few options available to treat I-129 in the groundwater, which is partially related to its complex biogeochemical behavior in the subsurface and occurrence in the multiple chemical forms. We hypothesize that layered hydrotalcite materials containing redox active transition metal ions offer a potential solution, benefiting from the simultaneous adsorption of iodate (IO3-) and iodide (I-) anions, which exhibit different electronic and structural properties and therefore may require dissimilarmore » hosts. To test this hypothesis, Cr3+- based materials were selected based on the rationale that Cr3+ readily reduces IO3- in solution. It was combined with either redox-active Co2+ or redox-inactive Ni2+ so that two model materials were prepared by hydrothermal synthesis including Co2+-Cr3+ and Ni2+-Cr3+(M-Cr). Obtained M-Cr materials comprised of Co2+-Cr3+ or Ni2+-Cr3+ layered hydrotalcite and small fractions of Co3O4 spinel or Ni(OH)2 theophrastite phases were structurally characterized before and after uptake of periodate (IO4-), IO3-, and I- anions. It was found that the IO3- uptake is driven by its chemical reduction to I2 and I-. Interestingly, in the Co2+-Cr3+ hydrotalcite, Co2+ and not Cr3+ serves as a reductant while in the Ni2+-Cr3+ hydrotalcite Cr3+ is responsible for the reduction of IO3-. A different uptake mechanism was identified for the IO4- anion. The Co2+-Cr3+ hydrotalcite phase efficiently uptakes IO4- by a diffusion-limited ion exchange mechanism and is not accompanied by the redox process, while Cr3+ in the Ni2+-Cr3+ hydrotalcite reduces IO4- to IO3-, I2 and I-. Iodide exhibited high affinity only to the Co-Cr material. The Co-Cr material performed remarkably well for the removal of IO3-, I- and total iodine from the groundwater collected from the US DOE Hanford site, WA, USA outperforming non-redox active hydrotalcites (e.g., Mg2+-Al3+) reported previously. This work demonstrates that redox-controlled sorption can be a highly effective method for the treatment of anions based on elements with mobile oxidation states. Further, multiple anions of interest could be simultaneously removed through combination of approaches.« less
Estimates of electronic coupling for excess electron transfer in DNA
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.
2005-07-01
Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31G* and extended 6-31++G** basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack.
Mendez, Natalie; Herrera, Vanessa; Zhang, Lingzhi; Hedjran, Farah; Feuer, Ralph; Blair, Sarah L; Trogler, William C; Reid, Tony R; Kummel, Andrew C
2014-11-01
Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140 to 180 nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4 × higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mendez, N.; Herrera, V.; Zhang, L.; Hedjran, F.; Feuer, R.; Blair, S.; Trogler, W.; Reid, T.
2014-01-01
Oncolytic viruses (OVs) constitute a promising class of cancer therapeutics which exploit validated genetic pathways known to be deregulated in many cancers. To overcome an immune response and to enhance its potential use to treat primary and metastatic tumors, a method for liposomal encapsulation of adenovirus has been developed. The encapsulation of adenovirus in non-toxic anionic lecithin-cholesterol-PEG liposomes ranging from 140–180nm in diameter have been prepared by self-assembly around the viral capsid. The encapsulated viruses retain their ability to infect cancer cells. Furthermore, an immunoprecipitation (IP) technique has shown to be a fast and effective method to extract non-encapsulated viruses and homogenize the liposomes remaining in solution. 78% of adenovirus plaque forming units were encapsulated and retained infectivity after IP processing. Additionally, encapsulated viruses have shown enhanced transfection efficiency up to 4× higher compared to non-encapsulated Ads. Extracting non-encapsulated viruses from solution may prevent an adverse in vivo immune response and may enhance treatment for multiple administrations. PMID:25154663
Szałaj, Natalia; Bajda, Marek; Dudek, Katarzyna; Brus, Boris; Gobec, Stanislav; Malawska, Barbara
2015-08-01
Alzheimer's disease (AD) is a fatal and complex neurodegenerative disorder for which effective treatment remains the unmet challenge. Using donepezil as a starting point, we aimed to develop novel potential anti-AD agents with a multidirectional biological profile. We designed the target compounds as dual binding site acetylcholinesterase inhibitors, where the N-benzylamine pharmacophore is responsible for interactions with the catalytic anionic site of the enzyme. The heteroaromatic fragment responsible for interactions with the peripheral anionic site was modified and three different heterocycles were introduced: isoindoline, isoindolin-1-one, and saccharine. Based on the results of the pharmacological evaluation, we identified compound 8b with a saccharine moiety as the most potent and selective human acetylcholinesterase inhibitor (IC50 = 33 nM) and beta amyloid aggregation inhibitor. It acts as a non-competitive acetylcholinesterase inhibitor and is able to cross the blood-brain barrier in vitro. We believe that compound 8b represents an important lead compound for further development as potential anti-AD agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Vertical detachment energies of anionic thymidine: Microhydration effects.
Kim, Sunghwan; Schaefer, Henry F
2010-10-14
Density functional theory has been employed to investigate microhydration effects on the vertical detachment energy (VDE) of the thymidine anion by considering the various structures of its monohydrates. Structures were located using a random searching procedure. Among 14 distinct structures of the anionic thymidine monohydrate, the low-energy structures, in general, have the water molecule bound to the thymine base unit. The negative charge developed on the thymine moiety increases the strength of the intermolecular hydrogen bonding between the water and base units. The computed VDE values of the thymidine monohydrate anions are predicted to range from 0.67 to 1.60 eV and the lowest-energy structure has a VDE of 1.32 eV. The VDEs of the monohydrates of the thymidine anion, where the N(1)[Single Bond]H hydrogen of thymine has been replaced by a 2(')-deoxyribose ring, are greater by ∼0.30 eV, compared to those of the monohydrates of the thymine anion. The results of the present study are in excellent agreement with the accompanying experimental results of Bowen and co-workers [J. Chem. Phys. 133, 144304 (2010)].
Jakusová, Klaudia; Donovalová, Jana; Cigáň, Marek; Gáplovský, Martin; Garaj, Vladimír; Gáplovský, Anton
2014-04-05
The anion induced tautomerism of isatin-3-4-phenyl(semicarbazone) derivatives is studied herein. The interaction of F(-), AcO(-), H2PO4(-), Br(-) or HSO4(-) anions with E and Z isomers of isatin-3-4-phenyl(semicarbazone) and N-methylisatin-3-4-phenyl(semicarbazone) as sensors influences the tautomeric equilibrium of these sensors in the liquid phase. This tautomeric equilibrium is affected by (1) the inter- and intra-molecular interactions' modulation of isatinphenylsemicarbazone molecules due to the anion induced change in the solvation shell of receptor molecules and (2) the sensor-anion interaction with the urea hydrogens. The acid-base properties of anions and the difference in sensor structure influence the equilibrium ratio of the individual tautomeric forms. Here, the tautomeric equilibrium changes were indicated by "naked-eye" experiment, UV-VIS spectral and (1)H NMR titration, resulting in confirmation that appropriate selection of experimental conditions leads to a high degree of sensor selectivity for some investigated anions. Sensors' E and Z isomers differ in sensitivity, selectivity and sensing mechanism. Detection of F(-) or CH3COO(-) anions at high weakly basic anions' excess is possible. Copyright © 2014 Elsevier B.V. All rights reserved.
Lang, Chao; Zhang, Xin; Dong, Zeyuan; Luo, Quan; Qiao, Shanpeng; Huang, Zupeng; Fan, Xiaotong; Xu, Jiayun; Liu, Junqiu
2016-02-07
An anion transporter with a selenoxide group was able to form nanoparticles in water, whose activity was fully turned off due to the aggregation effect. The formed nanoparticles have a uniform size and can be readily dispersed in water at high concentrations. Turn-on of the nanoparticles by reducing molecules is proposed to be a combined process, including the reduction of selenoxide to selenide, disassembly of the nanoparticles and location of the transporter to the lipid membrane. Accordingly, a special acceleration phase can be observed in the turn-on kinetic curves. Since turn-on of the nanoparticles is quantitatively related to the amount of reductant, the nanoparticles can be activated in a step-by-step manner. Due to the sensibility of this system to thiols, cysteine can be detected at low nanomolar concentrations. This ultra-sensitive thiol-responsive transmembrane anion transport system is quite promising in biological applications.
Anion induced conformational preference of Cα NN motif residues in functional proteins.
Patra, Piya; Ghosh, Mahua; Banerjee, Raja; Chakrabarti, Jaydeb
2017-12-01
Among different ligand binding motifs, anion binding C α NN motif consisting of peptide backbone atoms of three consecutive residues are observed to be important for recognition of free anions, like sulphate or biphosphate and participate in different key functions. Here we study the interaction of sulphate and biphosphate with C α NN motif present in different proteins. Instead of total protein, a peptide fragment has been studied keeping C α NN motif flanked in between other residues. We use classical force field based molecular dynamics simulations to understand the stability of this motif. Our data indicate fluctuations in conformational preferences of the motif residues in absence of the anion. The anion gives stability to one of these conformations. However, the anion induced conformational preferences are highly sequence dependent and specific to the type of anion. In particular, the polar residues are more favourable compared to the other residues for recognising the anion. © 2017 Wiley Periodicals, Inc.
Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere
NASA Astrophysics Data System (ADS)
Desai, R. T.; Coates, A. J.; Wellbrock, A.; Vuitton, V.; Crary, F. J.; González-Caniulef, D.; Shebanits, O.; Jones, G. H.; Lewis, G. R.; Waite, J. H.; Cordiner, M.; Taylor, S. A.; Kataria, D. O.; Wahlund, J.-E.; Edberg, N. J. T.; Sittler, E. C.
2017-08-01
Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q-1. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950-1300 km. We report on detections consistently centered between 25.8 and 26.0 u q-1 and between 49.0-50.1 u q-1 which are identified as belonging to the carbon chain anions, CN-/C3N- and/or C2H-/C4H-, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73-74 u q-1 could be attributed to the further carbon chain anions C5N-/C6H- but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q-1) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.
Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J
2013-12-12
The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.
Anti-inflammatory triterpenoids from the stems of Microtropis fokienensis.
Chen, I-Hsiao; Du, Ying-Chi; Hwang, Tsong-Long; Chen, I-Fen; Lan, Yu-Hsuan; Yen, Hsin-Fu; Chang, Fang-Rong; Wu, Yang-Chang
2014-04-14
Three new ursane- and four new oleanane- type triterpenoids 1-7 were isolated, along with six known compounds 8-13, from the methanolic extract of Microtropis fokienensis. All structures were elucidated by mass and NMR spectroscopic methods. The isolates 4-10 and known compounds 14-17 that were previously isolated from this material were evaluated for anti-inflammatory activity based on effects against superoxide anion generation and elastase release by neutrophils in response to fMLP/CB. 11α,30-Dihydroxy-2,3-seco-olean-12-en-2,3-dioic anhydride (7) was the first triterpene anhydride from the genus of Microtropis to have the ring A expanded to a seven-membered ring; it showed significant anti-inflammatory activity against superoxide anion generation and elastase release. Unexpectedly, 30-hydroxy-2,3-seco-lup-20(29)-ene-2,3-dioic acid (17) showed the best effect against superoxide anion generation and elastase release with IC50 values of 0.06±0.01 and 1.03±0.35 µg/mL, respectively. Compound 17 had a dioic acid function, and compound 7 had an anhydride function modification in ring A; both showed promising activity in the target assays.
Hsu, Pei-Chun Lisa; Condron, Leo; O'Callaghan, Maureen; Hurst, Mark R H
2015-12-01
The bacterium Burkholderia sp. Ha185 readily solubilizes inorganic phosphate by releasing the low molecular weight organic anion, 2-ketogluconate. Using random transposon mutagenesis and in silico analysis, a mutation that caused almost complete abolition of phosphate solubilization was located within hemX, which is part of the hem operon. Burkholderia sp. Ha185 HemX is a multidomain protein, predicted to encode a bifunctional uroporphyrinogen-III synthetase/uroporphyrin-III C-methyltransferase, which has not previously been implicated in phosphate solubilization. Complementation of hemX restored the ability of the mutant to solubilize phosphate in both plate and liquid cultures. Based on a combination of organic-anion profiling, quantitative polymerase chain reaction and in silico analyses, hemX was confirmed to be solely responsible for hydroxyapatite solubilization in Burkholderia sp. Ha185. It is proposed that the biosynthesis of a yet to be determined redox cofactor by HemX is the main pathway for generating 2-ketogluconate via a haem-dependent gluconate 2-dehydrogenase in Burkholderia sp. Ha185. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Interfacial activity in alkaline flooding enhanced oil recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M.K.
1981-01-01
The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical speciesmore » in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.« less
Colcombet, Jean; Lelièvre, Françoise; Thomine, Sébastien; Barbier-Brygoo, Hélène; Frachisse, Jean-Marie
2005-07-01
Variations in both intracellular and extracellular pH are known to be involved in a wealth of physiological responses. Using the patch-clamp technique on Arabidopsis hypocotyl cells, it is shown that rapid-type and slow-type anion channels at the plasma membrane are both regulated by pH via distinct mechanisms. Modifications of pH modulate the voltage-dependent gating of the rapid channel. While intracellular alkalinization facilitates channel activation by shifting the voltage gate towards negative potentials, extracellular alkalinization shifts the activation threshold to more positive potentials, away from physiological resting membrane potentials. By contrast, pH modulates slow anion channel activity in a voltage-independent manner. Intracellular acidification and extracellular alkalinization increase slow anion channel currents. The possible role of these distinct modulations in physiological processes involving anion efflux and modulation of extracellular and/or intracellular pH, such as elicitor and ABA signalling, are discussed.
Effect of ceftriaxone and cefepime on high-dose methotrexate clearance.
Tran, Hieu X; Herrington, Jon D
2016-12-01
Numerous drug interactions with methotrexate have been identified, which can lead to serious life-threatening effects. Up to 90% of methotrexate is excreted unchanged in the urine with primary excretion dependent on organic anion transport in the renal proximal tubule. The two pathways responsible for methotrexate secretion are organic anion transport 1 and primarily organic anion transport 3. Penicillins undergo tubular secretion via organic anion transport, and cephalosporins are believed to also possess a similar risk when administered with methotrexate; however, there are no human studies observing this interaction with cephalosporins and methotrexate. Ceftriaxone undergoes biliary clearance and has low affinity for the same organic anion transports as methotrexate; therefore, ceftriaxone has a low potential to interact with methotrexate. Cefepime is primarily secreted by organic cation transport N2, and also has a low potential to interact with methotrexate. This case report describes the pharmacokinetic effect of concomitant beta-lactam therapy in a patient receiving high-dose methotrexate. © The Author(s) 2015.
Khansari, Maryam Emami; Johnson, Corey R; Basaran, Ismet; Nafis, Aemal; Wang, Jing; Leszczynski, Jerzy; Hossain, Md Alamgir
2015-01-01
Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea ( L1 ) and tris([(4-cyanophenyl)amino]propyl)thiourea ( L2 ), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1 H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F - > H 2 PO 4 - > HCO 3 - > HSO 4 - > CH 3 COO - > SO 4 2- > Cl - > Br - > I in DMSO- d 6 . The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F - , H 2 PO 4 - , HCO 3 - , HSO 4 - or CH 3 COO - due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO 4 - than SO 4 2- is attributed to the proton transfer from HSO 4 - to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO- d 6 . In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2 ).
Khansari, Maryam Emami; Johnson, Corey R.; Basaran, Ismet; Nafis, Aemal; Wang, Jing
2015-01-01
Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea (L1) and tris([(4-cyanophenyl)amino]propyl)thiourea (L2), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F− > H2PO4− > HCO3− > HSO4− > CH3COO− > SO42− > Cl− > Br− > I in DMSO-d6. The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F−, H2PO4−, HCO3−, HSO4− or CH3COO− due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO4− than SO42− is attributed to the proton transfer from HSO4− to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO-d6. In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2). PMID:28184300
Zero-point energy effects in anion solvation shells.
Habershon, Scott
2014-05-21
By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.
Low oxidation state aluminum-containing cluster anions: Cp{sup ∗}Al{sub n}H{sup −}, n = 1–3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xinxing; Ganteför, Gerd; Bowen, Kit, E-mail: AKandalam@wcupa.edu, E-mail: kbowen@jhu.edu
Three new, low oxidation state, aluminum-containing cluster anions, Cp*Al{sub n}H{sup −}, n = 1–3, were prepared via reactions between aluminum hydride cluster anions, Al{sub n}H{sub m}{sup −}, and Cp*H ligands. These were characterized by mass spectrometry, anion photoelectron spectroscopy, and density functional theory based calculations. Agreement between the experimentally and theoretically determined vertical detachment energies and adiabatic detachment energies validated the computed geometrical structures. Reactions between aluminum hydride cluster anions and ligands provide a new avenue for discovering low oxidation state, ligated aluminum clusters.
Effect of the Anion Activity on the Stability of Li Metal Anodes in Lithium-Sulfur Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ruiguo; Chen, Junzheng; Han, Kee Sung
2016-03-29
With the significant progress made in the development of cathodes in lithium-sulfur (Li-S) batteries, the stability of Li metal anodes becomes a more urgent challenge in these batteries. Here we report the systematic investigation of the stability of the anode/electrolyte interface in Li-S batteries with concentrated electrolytes containing various lithium salts. It is found that Li-S batteries using LiTFSI-based electrolytes are more stable than those using LiFSI-based electrolytes. The decreased stability is because the N-S bond in the FSI- anion is fairly weak and the scission of this bond leads to the formation of lithium sulfate (LiSOx) in the presencemore » of polysulfide species. In contrast, even the weakest bond (C-S) in the TFSI- anion is stronger than the N-S bond in the FSI- anion. In the LiTFSI-based electrolyte, the lithium metal anode tends to react with polysulfide to form lithium sulfide (LiSx) which is more reversible than LiSOx formed in the LiTFSI-based electrolyte. This fundamental difference in the bond strength of the salt anions in the presence of polysulfide species leads to a large difference in the stability of the anode-electrolyte interface and performance of the Li-S batteries with electrolytes composed of these salts. Therefore, anion selection is one of the key parameters in the search for new electrolytes for stable operation of Li-S batteries.« less
Wilkens, M R; Praechter, C; Breves, G; Schröder, B
2016-02-01
The concept of feeding anionic salts in late gestation is widely used to prevent milk fever in dairy cows. While the effects of these diets on renal Ca excretion and tissue responsiveness towards parathyroid hormone have clearly been demonstrated, data on a potential impact on gastrointestinal Ca absorption are conflicting. Therefore, the aim of this study was to investigate the influence of feeding a diet negative in dietary cation-anion difference (DCAD) on ruminal mineral concentrations, fermentation products, electrophysiological properties of rumen epithelia and Ca flux rates. For this purpose, sheep were kept for 3 weeks on diets that were either positive or negative in DCAD. The induction of a compensated hyperchloremic metabolic acidosis could be demonstrated by increased plasma Cl and enhanced concentrations of ionised Ca, while plasma concentrations of HCO3- and base excess were decreased with the low DCAD diet. Neither transmural potential differences nor fermentation products were affected, but ruminal concentrations of Cl and Mg as well as the relation of ionised to total Ca were increased. Ussing chamber experiments revealed alterations of electrophysiological parameters and an increase in the electroneutral component of Ca flux rates from the mucosal to the serosal side of rumen epithelium. As plasma calcitriol concentrations were not affected, it can be concluded that the administration of anionic salts results in a vitamin D-independent stimulation of ruminal Ca transport. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
Photodissociation of nitromethane cluster anions.
Goebbert, Daniel J; Khuseynov, Dmitry; Sanov, Andrei
2010-08-28
Three types of anionic fragments are observed in the photodissociation of nitromethane cluster anions, (CH(3)NO(2))(n)(-), n=1-6, at 355 nm: NO(2)(-)(CH(3)NO(2))(k), (CH(3)NO(2))(k)(-), and OH(-) (k
Hole localization, migration, and the formation of peroxide anion in perovskite SrTiO3
NASA Astrophysics Data System (ADS)
Chen, Hungru; Umezawa, Naoto
2014-07-01
Hybrid density functional calculations are carried out to investigate the behavior of holes in SrTiO3. As in many other oxides, it is shown that a hole tend to localize on one oxygen forming an O- anion with a concomitant lattice distortion; therefore a hole polaron. The calculated emission energy from the recombination of the localized hole and a conduction-band electron is about 2.5 eV, in good agreement with experiments. Therefore the localization of the hole or self-trapping is likely to be responsible for the green photoluminescence at low temperature, which was previously attributed to an unknown defect state. Compared to an electron, the calculated hole polaron mobility is three orders of magnitude lower at room temperature. In addition, two O- anions can bind strongly to form an O22- peroxide anion. No electronic states associated with the O22- peroxide anion are located inside the band gap or close to the band edges, indicating that it is electronically inactive. We suggest that in addition to the oxygen vacancy, the formation of the O22- peroxide anion can be an alternative to compensate acceptor doping in SrTiO3.
NASA Technical Reports Server (NTRS)
Lewis, B. D.; Karlin-Neumann, G.; Davis, R. W.; Spalding, E. P.; Evans, M. L. (Principal Investigator)
1997-01-01
The activation of an anion channel in the plasma membrane of Arabidopsis thaliana hypocotyls by blue light (BL) is believed to be a signal-transducing event leading to growth inhibition. Here we report that the open probability of this particular anion channel depends on cytoplasmic Ca2+ ([Ca2+]cyt) within the concentration range of 1 to 10 microM, raising the possibility that BL activates the anion channel by increasing [Ca2+]cyt. Arabidopsis seedlings cytoplasmically expressing aequorin were generated to test this possibility. Aequorin luminescence did not increase during or after BL, providing evidence that Ca2+ does not play a second-messenger role in the activation of anion channels. However, cold shock simultaneously triggered a large increase in [Ca2+]cyt and a 110-mV transient depolarization of the plasma membrane. A blocker of the anion channel, 5-nitro-2-(3-phenylpropylamino)-benzoic acid, blocked 61% of the cold-induced depolarization without affecting the increase in [Ca2+]cyt. These data led us to propose that cold shock opens Ca2+ channels at the plasma membrane, allowing an inward, depolarizing Ca2+ current. The resulting large increase in [Ca2+]cyt activates the anion channel, which further depolarizes the membrane. Although an increase in [Ca2+]cyt may activate anion channels in response to cold, it appears that BL does so via a Ca(2+)-independent pathway.
Riddell, Imogen A; Smulders, Maarten M J; Clegg, Jack K; Hristova, Yana R; Breiner, Boris; Thoburn, John D; Nitschke, Jonathan R
2012-09-01
Biochemical systems are adaptable, capable of reconstitution at all levels to achieve the functions associated with life. Synthetic chemical systems are more limited in their ability to reorganize to achieve new functions; they can reconfigure to bind an added substrate (template effect) or one binding event may modulate a receptor's affinity for a second substrate (allosteric effect). Here we describe a synthetic chemical system that is capable of structural reconstitution on receipt of one anionic signal (perchlorate) to create a tight binding pocket for another anion (chloride). The complex, barrel-like structure of the chloride receptor is templated by five perchlorate anions. This second-order templation phenomenon allows chemical networks to be envisaged that express more complex responses to chemical signals than is currently feasible.
Ion-water wires in imidazolium-based ionic liquid/water solutions induce unique trends in density.
Ghoshdastidar, Debostuti; Senapati, Sanjib
2016-03-28
Ionic liquid/water binary mixtures are rapidly gaining popularity as solvents for dissolution of cellulose, nucleobases, and other poorly water-soluble biomolecules. Hence, several studies have focused on measuring the thermophysical properties of these versatile mixtures. Among these, 1-ethyl-3-methylimidazolium ([emim]) cation-based ILs containing different anions exhibit unique density behaviours upon addition of water. While [emim][acetate]/water binary mixtures display an unusual rise in density with the addition of low-to-moderate amounts of water, those containing the [trifluoroacetate] ([Tfa]) anion display a sluggish decrease in density. The density of [emim][tetrafluoroborate] ([emim][BF4])/water mixtures, on the other hand, declines rapidly in close accordance with the experimental reports. Here, we unravel the structural basis underlying this unique density behavior of [emim]-based IL/water mixtures using all-atom molecular dynamics (MD) simulations. The results revealed that the distinct nature of anion-water hydrogen bonded networks in the three systems was a key in modulating the observed unique density behaviour. Vast expanses of uninterrupted anion-water-anion H-bonded stretches, denoted here as anion-water wires, induced significant structuring in [emim][Ac]/water mixtures that resulted in the density rise. Conversely, the presence of intermittent large water clusters disintegrated the anion-water wires in [emim][Tfa]/water and [emim][BF4]/water mixtures to cause a monotonic density decrease. The differential nanostructuring affected the dynamics of the solutions proportionately, with the H-bond making and breaking dynamics found to be greatly retarded in [emim][Ac]/water mixtures, while it exhibited a faster relaxation in the other two binary solutions.
Hydration states of AFm cement phases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com; Matschei, Thomas; Scrivener, Karen L.
2015-07-15
The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFmmore » phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.« less
NASA Astrophysics Data System (ADS)
Verma, Prakash L.; Singh, Priti; Gejji, Shridhar P.
2017-07-01
Molecular insights for the formation of ion pairs accompanying the cyclic ammonium cation based room temperature ionic liquids (RTILs) composed of alkyl substituted N-methylmorpholinium (RMMor) and alkylphosphite [(Rsbnd O)2PHdbnd O] (Rdbnd ethyl, butyl, hexyl, octyl) anion have been derived from the M06-2x level of theory. Electronic structures, binding energies, and spectral characteristics of the ion pairs underlying these RTILs have been characterized. The ion pair formation is largely governed by Csbnd H⋯O and other intermolecular interactions. Calculated binding energies increase with the increasing alkyl chain on either cation or alkylphosphite anion. The cation-anion binding reveals signature in the frequency down-(red) shift of the characteristic anionic Pdbnd O stretching whereas the Psbnd H stretching exhibits a shift in the opposite direction in vibrational spectra which has further been rationalized through molecular electron density topography. Correlations of measured electrochemical stability with the separation of frontier orbital energies and binding energies in the ion pairs have further been established.
Concentration sensor based on a tilted fiber Bragg grating for anions monitoring
NASA Astrophysics Data System (ADS)
Melo, L. B.; Rodrigues, J. M. M.; Farinha, A. S. F.; Marques, C. A.; Bilro, L.; Alberto, N.; Tomé, J. P. C.; Nogueira, R. N.
2014-08-01
The ubiquity and importance of anions in many crucial roles accounts for the current high interest in the design and preparation of effective sensors for these species. Therefore, a tilted fiber Bragg grating sensor was fabricated to investigate individual detection of different anion concentrations in ethyl acetate, namely acetate, fluoride and chloride. The influence of the refractive index on the transmission spectrum of a tilted fiber Bragg grating was determined by developing a new demodulation method. This is based on the calculation of the standard deviation between the cladding modes of the transmission spectrum and its smoothing function. The standard deviation method was used to monitor concentrations of different anions. The sensor resolution obtained for the anion acetate, fluoride and chloride is 79 × 10-5 mol/dm3, 119 × 10-5 mol/dm3 and 78 × 10-5 mol/dm3, respectively, within the concentration range of (39-396) × 10-5 mol/dm3.
Anion-π Catalysts with Axial Chirality.
Wang, Chao; Matile, Stefan
2017-09-04
The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie
1999-04-01
A novel anion-exchange resin containing three amine groups was prepared by reaction of a chloromethylated polystyrene-divinylbenzene (PS-DVB) resin with diethylenetriamine. After being protonated by contact with an aqueous acid, this resin can be used for ion chromatographic separation of anions. The charge on the resins can be varied from +1 to +3 by changing the mobile phase pH. The selectivity of the new ion exchangers for various inorganic anions was quite different from that of conventional anion exchangers. The performance of this new anion exchanger was studied by changing the pH and the concentration of the eluent, and several differentmore » eluents were used with some common anions as testing analytes. Conductivity detection and UV-visible detection were applied to detect the anions after separation. The new resin can also be used for HPLC separation of neutral organic compounds. Alkylphenols and alkylbenzenes were separated with this new polymeric resin, and excellent separations were obtained under simple conditions. This report contains Chapter 1: General introduction and Chapter 6: General conclusions.« less
Electroactive Self-Assembled Monolayers Detect Micelle Formation.
Dionne, Eric R; Badia, Antonella
2017-02-15
The interfacial electrochemistry of self-assembled monolayers (SAMs) of ferrocenyldodecanethiolate on gold (FcC 12 SAu) electrodes is applied to detect the micellization of some common anionic surfactants, sodium n-alkyl sulfates, sodium n-alkyl sulfonates, sodium diamyl sulfosuccinate, and sodium dodecanoate, in aqueous solution by cyclic voltammetry. The apparent formal redox potential (E°' SAM ) of the FcC 12 SAu SAM is used to track changes in the concentration of the unaggregated surfactant anions and determine the critical micelle concentration (cmc). The effect of added salt (NaF) on the sodium alkyl sulfate concentration dependence of E°' SAM is also investigated. Weakly hydrated anions, such as ClO 4 - , pair with the electrogenerated SAM-bound ferroceniums to neutralize the excess positive charge created at the SAM/electrolyte solution interface and stabilize the oxidized cations. E°' SAM exhibits a Nernstian-type dependence on the anion activity in solution. Aggregation of the surfactant anions into micelles above the cmc causes the free surfactant anion activity to deviate from the molar concentration of added surfactant, resulting in a break in the plot of E°' SAM versus the logarithm of the concentration of anionic surfactant. The concentration at which this deviation occurs is in good agreement with literature or experimentally determined values of the cmc. The effects of Ohmic potential drop, liquid junction potential, and surfactant adsorption behavior on E°' SAM are addressed. Ultimately, the E°' SAM response as a function of the anionic surfactant concentration exhibits the same features reported using potentiometry and surfactant ion-selective electrodes, which provide a direct measure of the free surfactant anion activity, thus making FcC 12 SAu SAM electrodes useful for the detection of surfactant aggregation and micelle formation.
NASA Astrophysics Data System (ADS)
Wigger, Cornelia; Van Loon, Luc R.
2018-06-01
The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described.
Wigger, Cornelia; Van Loon, Luc R
2018-06-01
The effect of the pore water composition on the diffusive anion transport was studied for two different argillaceous, low permeability sedimentary rocks, Opalinus Clay (OPA) and Helvetic Marl (HM). The samples were saturated with different solutions with varying molar concentration and different main cations in the solution: NaCl based pore solutions and CaCl 2 based pore solutions. The total porosity was measured by through-diffusion experiments with the neutral tracer HTO. Experiments performed in NaCl solutions resulted in a porosity of 0.12 for OPA and 0.03 for HM, and are consistent with results of the experiments in CaCl 2 solutions. The total porosity was independent of the molar concentration, in contrast to the measured anion porosity, which increased with increasing molar concentration. It could further be observed that the pore solution based on the bivalent cation calcium shielded the negative surface charge stronger than the monovalent cation sodium, resulting in a larger measureable anion-accessible porosity in the case of CaCl 2 solutions. The data was modelled based on an adapted Donnan approach of Birgersson and Karnland (2009). The model had to be adjusted with a permanent free, uncharged porosity, as well as with structural information on the permanent anion exclusion because of so-called bottleneck pores. Both parameters can only be evaluated from experiments. Nevertheless, taking these two adaptions into account, the effect of varying pore water compositions on the anion-accessible porosity of the investigated argillaceous rocks could be satisfactorily described. Copyright © 2018 Elsevier B.V. All rights reserved.
Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter
2009-05-15
A simple and versatile solid phase extraction (SPE) method has been developed to determine the anionic species of As, Cr, Mo, Sb, Se and V in leachates of cement mortar and concrete materials in the pH range 3-13. The anionic fractions of these elements were extracted using a strong anion exchanger (SAX) and their concentrations were determined as the difference in element concentration between the sample and the SAX effluent. Inductively coupled plasma mass spectrometry (ICP-MS) was used off-line to analyse solutions before and after passing through the SAX. The extraction method has been developed by optimizing sorbent type, sorbent conditioning and sample percolation rate. Breakthrough volumes and effect of matrix constituents were also studied. It was found that a polymer-based SAX conditioned with a buffer close to the sample pH or in some cases deionised water gave the best retention of the analytes. Optimal conditions were also determined for the quantitative elution of analytes retained on the SAX. Extraction of the cement mortar and concrete leachates showed that most of the elements had similar distribution of anions in both leachate types, and that the distribution was strongly pH dependent. Cr, Mo and V exist in anionic forms in strongly basic leachates (pH>12), and significant fractions of anionic Se were also detected in these solutions. Cr, Mo, Se and V were not determined as anions by the present method in the leachates of pH<12. Anionic As and Sb were found in small fractions in most of the leachates.
Infrared spectroscopy of hydrated naphthalene cluster anions.
Knurr, Benjamin J; Adams, Christopher L; Weber, J Mathias
2012-09-14
We present infrared spectra of mass-selected C(10)H(8)(-)·(H(2)O)(n)·Ar(m) cluster anions (n = 1-6) obtained by Ar predissociation spectroscopy. The experimental spectra are compared with predicted spectra from density functional theory calculations. The OH groups of the water ligands are involved in H-bonds to other water molecules or to the π system of the naphthalene anion, which accommodates the excess electron. The interactions in the water network are generally found to be more important than those between water molecules and the ion. For 2 ≤ n ≤ 4 the water molecules form single layer water networks on one side of the naphthalene anion, while for n = 5 and 6, cage and multilayer structures become more energetically favorable. For cluster sizes with more than 3 water molecules, multiple conformers are likely to be responsible for the experimental spectra.
Samardžić, Mirela; Galović, Olivera; Hajduković, Mateja; Sak-Bosnar, Milan
2017-01-01
A new high-sensitivity potentiometric sensor for anionic surfactants was fabricated using the dimethyldioctadecylammonium-tetraphenylborate (DDA-TPB) ion associate as an ionophore that was incorporated into a liquid PVC membrane. Carbon powder was used for immobilization of the ionophore in the membrane, thus significantly reducing its ohmic resistance and reducing its signal drift. The sensor exhibits a sub-Nernstian response for both dodecylbenzenesulfonate (DBS) and dodecyl sulfate (DS) in H 2 O (55.3 and 58.5mV/decade of activity, respectively) in a range between 3.2×10 -7 and 4.6×10 -3 M for DS and 2.5×10 -7 and 1.2×10 -3 M for DBS. The sensor also exhibited a sub-Nernstian response for DS and DBS in 10mM Na 2 SO 4 (55.4 and 57.7mV/decade of activity, respectively) between 2.5×10 -7 and 4.6×10 -3 M for DS and 1.5×10 -7 and 8.8×10 -4 M for DBS. The detection limits for DS and DBS in H 2 O were 2.5×10 -7 and 2.0×10 -7 M and in 10mM Na 2 SO 4 the detection limits were 2.5×10 -7 and 1.2×10 -7 M, respectively. The response time of the sensor was less than 5s for changes at higher concentration levels (above 1×10 -4 M) in both water and 10mM Na 2 SO 4. At lower concentrations (below 1×10 -5 M) the response times were 8 and 6s in water and 10mM Na 2 SO 4 , respectively. The signal drift of the sensor was 1.2mV/hour. The new carbon-based sensor exhibited excellent selectivity performance for DS over almost all of the anions commonly present in commercial formulations and it was successfully employed as an end-point detector in potentiometric titrations of anionic surfactants in a pH range from 3 to 12. Three-component mixtures containing sodium alkanesulfonate (C 10 , C 12 and C 14 ) were successfully differentially titrated. Copyright © 2016 Elsevier B.V. All rights reserved.
Zou, Wen-Sheng; Wang, Ya-Qin; Wang, Feng; Shao, Qun; Zhang, Jun; Liu, Jin
2013-05-01
Despite the rapid development of nanomaterials and nanotechnology, it is still desirable to develop novel nanoparticle-based techniques which are cost-effective, timesaving, and environment-friendly, and with ease of operation and procedural simplicity, for assay of target analytes. In the work discussed in this paper, the dye fluorescein isothiocyanate (FITC) was conjugated to 1,6-hexanediamine (HDA)-capped iron oxide magnetic nanoparticles (FITC-HDA Fe3O4 MNPs), and the product was characterized. HDA ligands on the surface of Fe3O4 MNPs can bind 2,4,6-trinitrotoluene (TNT) to form TNT anions by acid-base pairing interaction. Formation of TNT anions, and captured TNT substantially affect the emission of FITC on the surface of the Fe3O4 MNPs, resulting in quenching of the fluorescence at 519 nm. A novel FITC-HDA Fe3O4 MNPs-based probe featuring chemosensing and magnetic separation has therefore been constructed. i.e. FITC-HDA Fe3O4 MNPs had a highly selective fluorescence response and enabled magnetic separation of TNT from other nitroaromatic compounds by quenching of the emission of FITC and capture of TNT in aqueous solution. Very good linearity was observed for TNT concentrations in the range 0.05-1.5 μmol L(-1), with a detection limit of 37.2 nmol L(-1) and RSD of 4.7 % (n = 7). Approximately 12 % of the total amount of TNT was captured. The proposed methods are well-suited to trace detection and capture of TNT in aqueous solution.
Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles
NASA Astrophysics Data System (ADS)
Abrar, Md Abu; Dong, Yue; Lee, Paul Kyuheon; Kim, Woo Soo
2016-07-01
Here we report a flexible amperometric lactate biosensor using silver nanoparticle based conductive electrode. Mechanically bendable cross-serpentine-shaped silver electrode is generated on flexible substrate for the mechanical durability such as bending. The biosensor is designed and fabricated by modifying silver electrode with lactate oxidase immobilized by bovine serum albumin. The in-sensor pseudo Ag/AgCl reference electrode is fabricated by chloridization of silver electrode, which evinced its long-term potential stability against a standard commercial Ag/AgCl reference electrode. The amperometric response of the sensor shows linear dependence with lactate concentration of 1~25 mM/L. Anionic selectivity is achieved by using drop-casted Nafion coated on silver electrode against anionic interferences such as ascorbate. This non-invasive electrochemical lactate sensor also demonstrates excellent resiliency against mechanical deformation and temperature fluctuation which leads the possibility of using it on human epidermis for continuous measurement of lactate from sweat. Near field communication based wireless data transmission is demonstrated to reflect a practical approach of the sensor to measure lactate concentration portably using human perspiration.
Bendable Electro-chemical Lactate Sensor Printed with Silver Nano-particles
Abrar, Md Abu; Dong, Yue; Lee, Paul Kyuheon; Kim, Woo Soo
2016-01-01
Here we report a flexible amperometric lactate biosensor using silver nanoparticle based conductive electrode. Mechanically bendable cross-serpentine-shaped silver electrode is generated on flexible substrate for the mechanical durability such as bending. The biosensor is designed and fabricated by modifying silver electrode with lactate oxidase immobilized by bovine serum albumin. The in-sensor pseudo Ag/AgCl reference electrode is fabricated by chloridization of silver electrode, which evinced its long-term potential stability against a standard commercial Ag/AgCl reference electrode. The amperometric response of the sensor shows linear dependence with lactate concentration of 1~25 mM/L. Anionic selectivity is achieved by using drop-casted Nafion coated on silver electrode against anionic interferences such as ascorbate. This non-invasive electrochemical lactate sensor also demonstrates excellent resiliency against mechanical deformation and temperature fluctuation which leads the possibility of using it on human epidermis for continuous measurement of lactate from sweat. Near field communication based wireless data transmission is demonstrated to reflect a practical approach of the sensor to measure lactate concentration portably using human perspiration. PMID:27465437
Are silver nanoparticles always toxic in the presence of environmental anions?
Guo, Zhi; Chen, Guiqiu; Zeng, Guangming; Yan, Ming; Huang, Zhenzhen; Jiang, Luhua; Peng, Chuan; Wang, Jiajia; Xiao, Zhihua
2017-03-01
Increasing amounts of silver nanoparticles (AgNPs) are expected to enter the ecosystems where their toxicity in the environment is proposed. In this study, we exploited the effect of environmental anions on AgNP toxicity. AgNP were mixed with various environmental anions, and then exposed to Escherichia coli to determine the effect on bacteria growth inhibition. The results demonstrated that AgNP are not always toxic in the presence of sulfide, but can stimulate microbial growth at certain concentrations. Environmental chloride and phosphate anions cannot induce the stimulation because of their weak capacity to control the release of Ag + from AgNP. Ag + that released from AgNP is proven to be responsible for AgNP toxicity. Moreover, we found that AgNP toxicity is dependent on sulfuration rate. At the same sulfuration rate, AgNP shows an identical pattern of toxicity. This study indicates that only sulfide of the tested environmental anions can induce AgNP stimulation to microbial growth in a sulfuration rate dependent pattern and the toxicity originate from Ag + that released from AgNP. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cui, Ying; Mo, Hao-Jun; Chen, Jin-Can; Niu, Yan-Li; Zhong, Yong-Rui; Zheng, Kang-Cheng; Ye, Bao-Hui
2007-08-06
A new anion sensor [Ru(bpy)2(H2biim)](PF6)2 (1) (bpy = 2,2'-bipyridine and H2biim = 2,2'-biimidazole) has been developed, in which the Ru(II)-bpy moiety acts as a chromophore and the H2biim ligand as an anion receptor via hydrogen bonding. A systematic investigation shows that 1 is an eligible sensor for various anions. It donates protons for hydrogen bonding to Cl-, Br-, I-, NO3-, HSO4-, H2PO4-, and OAc- anions and further actualizes monoproton transfer to the OAc- anion, changing color from yellow to orange brown. The fluoride ion has a high affinity toward the N-H group of the H2biim ligand for proton transfer, rather than hydrogen bonding, because of the formation of the highly stable HF2- anion, resulting in stepwise deprotonation of the two N-H fragments. These processes are signaled by vivid color changes from yellow to orange brown and then to violet because of second-sphere donor-acceptor interactions between Ru(II)-H2biim and the anions. The significant color changes can be distinguished visually. The processes are not only determined by the basicity of anion but also by the strength of hydrogen bonding and the stability of the anion-receptor complexes. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of anion sensors.
Ellis, Anthie; Guang Li, Chun; Rand, Michael J
2000-01-01
The effects of L-cysteine were tested in rat aortic rings on responses to nitric oxide free radical (NO•), nitroxyl (NO−) derived from Angeli's salt and endothelium-derived relaxing factor (EDRF) activated by acetylcholine, ATP and the calcium ionophore A23187. Concentrations of 300 μM or less of L-cysteine had no effect on responses. Relaxations produced by exogenous NO• (0.25–2.5 μM) were markedly prolonged and relaxations produced by sodium nitroprusside (0.001–0.3 μM) were enhanced by 1 and 3 mM L-cysteine. The enhancements by L-cysteine of responses to NO• and sodium nitroprusside may be attributed to the formation of S-nitrosocysteine. Relaxations mediated by the nitroxyl anion (0.3 μM) donated from Angeli's salt were more prolonged than those produced by NO•, and nitroxyl-induced relaxations were reduced by L-cysteine (1 and 3 mM). EDRF-mediated relaxations produced by acetylcholine (0.01–10 μM), ATP (3–100 μM) and the calcium ionophore A23187 (0.1 μM) were significantly reduced by 3 mM L-cysteine. The similarity between the inhibitory effects of L-cysteine on responses to EDRF and on those to nitroxyl suggests that a component of the response to EDRF may be mediated by nitroxyl anion. PMID:10694238
Quirino, J P; Terabe, S
1999-07-30
On-line sample concentration of fast moving inorganic anions by large volume sample stacking (LVSS) and field enhanced sample injection (FESI) with a water plug under acidic conditions is presented. Detection sensitivity enhancements were around 100 and 1000-fold for LVSS and FESI, respectively. However, reproducibility and linearity of response in the LVSS approach is superior compared to the FESI approach.
Separation of thorium and uranium in nitric acid solution using silica based anion exchange resin.
Chen, Yanliang; Wei, Yuezhou; He, Linfeng; Tang, Fangdong
2016-09-30
To separate thorium and uranium in nitric acid solution using anion exchange process, a strong base silica-based anion exchange resin (SiPyR-N4) was synthesized. Batch experiments were conducted and the separation factor of thorium and uranium in 9M nitric acid was about 10. Ion exchange chromatography was applied to separate thorium and uranium in different ratios. Uranium could be eluted by 9M nitric acid and thorium was eluted by 0.1M nitric acid. It was proved that thorium and uranium can be separated and recovered successfully by this method. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan
2015-05-01
The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suzuki, Yuji
2006-06-01
In a dye-binding method using a pH indicator, color development has reportedly been affected by the kind of buffer solution used in the color reagent. This phenomenon was analyzed by using a calculation based on the assumption that the anion of the buffer solution also reacts with protein. Color development decreases with increases in the anion concentration of the buffer solution and in the equilibrium constant of the reaction between the anion and protein. The differences in color development due to the kind of buffer solution can be attributed to differences in the equilibrium constant of the reaction forming the anion-protein complex and to the concentration of the anion between the buffer solutions.
Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desai, R. T.; Coates, A. J.; Wellbrock, A.
Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q{sup −1}. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950–1300 km. We report on detections consistently centered between 25.8 and 26.0 u q{sup −1} and between 49.0–50.1 u q{sup −1} which are identified as belonging to the carbon chain anions, CN{sup −}/C{sub 3}N{sup −} and/or C{sub 2}H{sup −}/C{sub 4}H{sup −},more » in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73–74 u q{sup −1} could be attributed to the further carbon chain anions C{sub 5}N{sup −}/C{sub 6}H{sup −} but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q{sup −1}) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.« less
A novel acidic pH fluorescent probe based on a benzothiazole derivative
NASA Astrophysics Data System (ADS)
Ma, Qiujuan; Li, Xian; Feng, Suxiang; Liang, Beibei; Zhou, Tiqiang; Xu, Min; Ma, Zhuoyi
2017-04-01
A novel acidic pH fluorescent probe 1 based on a benzothiazole derivative has been designed, synthesized and developed. The linear response range covers the acidic pH range from 3.44 to 6.46, which is valuable for pH researches in acidic environment. The evaluated pKa value of the probe 1 is 4.23. The fluorescence enhancement of the studied probe 1 with an increase in hydrogen ions concentration is based on the hindering of enhanced photo-induced electron transfer (PET) process. Moreover, the pH sensor possesses a highly selective response to H+ in the presence of metal ions, anions and other bioactive small molecules which would be interfere with its fluorescent pH response. Furthermore, the probe 1 responds to acidic pH with short response time that was less than 1 min. The probe 1 has been successfully applied to confocal fluorescence imaging in live HeLa cells and can selectively stain lysosomes. All of such good properties prove it can be used to monitoring pH fluctuations in acidic environment with high sensitivity, pH dependence and short response time.
NASA Astrophysics Data System (ADS)
Babür, Banu; Seferoğlu, Nurgül; Seferoğlu, Zeynel
2018-06-01
A novel coumarin based fluorescence anion chemosensor (P-1) bearing pyrazolone as a receptoric part was synthesized and characterized by using FT-IR, 1H/13C NMR and HRMS for the purpose of recognition of anions in DMSO. P-1 has four tautomeric structures and the most stable tautomeric form of P-1 was determined experimentally and theoretically. The chemosensor P-1 consists two receptoric parts as free amide Nsbnd H and enamine Nsbnd H which is stabilized intramolecular H-bonding with coumarin carbonyl oxygen. P-1 interacts selectively with fluoride anion via amide Nsbnd H. The selectivity and sensitivity of probe to various anions were determined with spectrophotometric and 1H NMR titration techniques as experimentally and all results were also explained by theoretical calculations.
NASA Astrophysics Data System (ADS)
Navaee, Aso; Salimi, Abdollah
2018-05-01
Copper derivatives are the most prominent CO2 reduction electrocatalyst. Herein, the metallic copper has been electrochemically treated with some of common ionic salts such as N3bar, HPO2bar, S2bar, Fbar, Clbar, Brbar and Ibar based on the dissolution of a metallic working electrode in an aqueous solution to derive the surface roughness incorporated with nanostructures. Diverse surface morphology can be obtained when the ionic radii of anions are changed. Surface study reveals various roughness shapes based on the size and polarity of the anions, where the ions with higher ionic radii have higher impact on the Cu surface. In comparison, polyatomic oxyanion such as HPO2bar even with large ionic radii do not have enough strength to create the surface roughness than that of oxygen-free anions with large ionic radii. The photoelectrochemical behavior of the modified surfaces toward CO2 reduction is studied at a wide potential window in bicarbonate aqueous solution. Based on our investigations, treated surfaces by Ibar, Clbar and S2bargive a more surface roughness, while Ibar and N3bar offer higher catalytic activity toward CO2 reduction due to possible complexing ability of these anions with Cu cations, followed by formation of the co-catalyst semiconductor and facilitate electron transfer. This methodology can be applied to investigate the effect of ions on transition metals along with obtaining different surface morphologies tailored to different applications.
Xu, Hao; Han, Zhe; Zhang, Dongju; Zhan, Jinhua
2012-12-01
Although imidazolium-based ionic liquids (ILs) combined with oxygen-containing anions were proposed as the potential solvents for the selective separation of acetylene (C(2)H(2)) and ethylene (C(2)H(4)), the detailed mechanism at the molecular level is still not well understood. The present work focuses on a most effective IL for removing C(2)H(2) from a C(2)H(4) stream, 1-butyl-3-methylimidazolium acetate ([BMIM][OAc]), aiming at understanding the first steps of the adsorption process of the molecules at the IL surface. We present a combined quantum mechanical (QM) calculation and molecular dynamics (MD) simulation study on the structure and property of the IL as well as its interaction with C(2)H(2) and C(2)H(4) molecules. The calculated results indicate that C(2)H(2) presents a stronger interaction with the IL than C(2)H(4) and the anion of the IL is mainly responsible for the stronger interaction. QM calculations show a stronger hydrogen-binding linkage between an acidic proton of C(2)H(2)/C(2)H(4) and the basic oxygen atom in [OAc](-) anion, in contrast to the relative weaker association via the C-H···π interaction between C(2)H(2)/C(2)H(4) and the cation. From MD simulations, it is observed that in the interfacial region, the butyl chain of cations and methyl of anions point into the vapor phase. The coming molecules on the IL surface may be initially wrapped by the extensive butyl chain and then devolved to the interface or caught into the bulk by the anion of IL. The introduction of guest molecules significantly influences the anion distribution and orientation on the interface, but the cations are not disturbed because of their larger volume and relatively weaker interaction with the changes in the guest molecules. The theoretical results provide insight into the molecular mechanism of the observed selective separation of C(2)H(2) form a C(2)H(4) stream by ILs.
Dual-fluorophore Raspberry-like Nanohybrids for Ratiometric pH Sensing.
Acquah, Isaac; Roh, Jinkyu; Ahn, Dong June
2017-07-18
We report on the development of raspberry-like silica structures formed by the adsorption of 8-hydroxypyrene-1,3,6-trisulfonate (HPTS)@silica nanoparticles (NPs) on rhodamine B isothiocyanate (RBTIC)@silica NPs for ratiometric fluorescence-based pH sensing. To overcome the well-known problem of dye leaching which occurs during encapsulation of anionic HPTS dye in silica NPs, we utilized a polyelectrolyte-assisted incorporation of the anionic HPTS. The morphological and optical characterization of the as-synthesized dye-doped NPs and the resulting nanohybrids were carried out. The pH-sensitive dye, HPTS, incorporated in the HPTS-doped silica NPs provided a pH-dependent fluorescence response while the RBITC-doped silica provided the reference signal for ratiometric sensing. We evaluated the effectiveness of the nanohybrids for pH sensing; the ratio of the fluorescence emission intensity at 510 nm and 583 nm at excitation wavelengths of 454 nm and 555 nm, respectively. The results showed a dynamic response in the acidic pH range. With this approach, nanohybrids containing different dyes or receptors could be developed for multifunctioning and multiplexing applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Real-time analysis of multiple anion mixtures in aqueous media using a single receptor.
Havel, Vaclav; Yawer, Mirza Arfan; Sindelar, Vladimir
2015-03-18
Bambusuril-based receptors have been used in conjunction with (1)H NMR spectroscopy to recognize mixtures of inorganic anions in aqueous solutions. This was achieved by examining complexation-induced changes in the receptors' (1)H NMR fingerprints. This approach enables the simultaneous identification of up to 9 anions and the quantification of up to 5 anions using a single receptor in DMSO-d6 containing 5% D2O. Toxic perchlorate was recognized and quantified at 0.1 μM (1.8 ppb, mol mol(-1)) concentration in pure water.
Severe non-anion gap metabolic acidosis induced by topiramate: a case report.
Shiber, Joseph R
2010-05-01
A non-anion gap acidosis can be induced by topiramate, causing symptomatic dyspnea and confusion. Discuss the pathophysiology of the hyperchloremic metabolic acidosis caused by topiramate, the typical clinical presentation, and the recommended treatment. This case presents a young woman with a clinically significant non-anion gap metabolic acidosis believed to be caused by topiramate. She had been taking the medication for several months without prior adverse effects. Once she began having dyspnea as a respiratory response to the renal tubule acidosis, she had decreased oral intake of food and fluids, which induced a pre-renal acute renal failure that worsened her acidemia. In the Emergency Department, she received intravenous fluids and sodium bicarbonate, and later was intubated for mechanical ventilation due to respiratory fatigue. With the topiramate withdrawn, the patient had a full recovery of her renal function and metabolic acid-base status over the next 72 h. This case serves to increase awareness of this possible adverse effect and the recommended treatment as topiramate becomes more widely used. Topiramate can induce a renal tubule acidosis resulting in a hyperchloremic metabolic acidosis. Recognition of the underlying cause is crucial so that the drug can be withdrawn while supportive care is provided. Copyright (c) 2010 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei
2017-05-01
Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.
Faridbod, Farnoush; Ganjali, Mohammad Reza; Dinarvand, Rassoul; Norouzi, Parviz
2008-01-01
Many research studies have been conducted on the use of conjugated polymers in the construction of chemical sensors including potentiometric, conductometric and amperometric sensors or biosensors over the last decade. The induction of conductivity on conjugated polymers by treating them with suitable oxidizing agents won Heeger, MacDiarmid and Shirakawa the 2000 Nobel Prize in Chemistry. Common conjugated polymers are poly(acetylene)s, poly(pyrrole)s, poly(thiophene)s, poly(terthiophene)s, poly(aniline)s, poly(fluorine)s, poly(3-alkylthiophene)s, polytetrathiafulvalenes, poly-napthalenes, poly(p-phenylene sulfide), poly(p-phenylenevinylene)s, poly(3,4-ethylene-dioxythiophene), polyparaphenylene, polyazulene, polyparaphenylene sulfide, poly-carbazole and polydiaminonaphthalene. More than 60 sensors for inorganic cations and anions with different characteristics based on conducting polymers have been reported. There have also been reports on the application of non-conducting polymers (nCPs), i.e. PVC, in the construction of potentiometric membrane sensors for determination of more than 60 inorganic cations and anions. However, the leakage of ionophores from the membranes based on these polymers leads to relatively lower life times. In this article, we try to give an overview of Solid-Contact ISE (SCISE), Single-Piece ISE (SPISE), Conducting Polymer (CP)-Based, and also non-conducting polymer PVC-based ISEs for various ions which their difference is in the way of the polymer used with selective\\ membrane. In SCISEs and SPISEs, the plasticized PVC containing the ionophore and ionic additives govern the selectivity behavior of the electrode and the conducting polymer is responsible of ion-to-electron transducer. However, in CPISEs, the conducting polymer layer is doped with a suitable ionophore which enhances the ion selectivity of the CP while its redox response has to be suppressed. PMID:27879825
Rhaman, Md Mhahabubur; Hasan, Mohammad H; Alamgir, Azmain; Xu, Lihua; Powell, Douglas R; Wong, Bryan M; Tandon, Ritesh; Hossain, Md Alamgir
2018-01-10
The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.
Lew, Susie Q; Kohn, Orly F; Cheng, Yuk-Lun; Kjellstrand, Carl M; Ing, Todd S
2017-06-01
Hemodialysis patients can acquire buffer base (i.e., bicarbonate and buffer base equivalents of certain organic anions) from the acid and base concentrates of a three-stream, dual-concentrate, bicarbonate-based, dialysis solution delivery machine. The differences between dialysis fluid concentrate systems containing acetic acid versus sodium diacetate in the amount of potential buffering power were reviewed. Any organic anion such as acetate, citrate, or lactate (unless when combined with hydrogen) delivered to the body has the potential of being converted to bicarbonate. The prescribing physician aware of the role that organic anions in the concentrates can play in providing buffering power to the final dialysis fluid, will have a better knowledge of the amount of bicarbonate and bicarbonate precursors delivered to the patient. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Fyta, Maria; Netz, Roland R.
2012-03-01
Using molecular dynamics (MD) simulations in conjunction with the SPC/E water model, we optimize ionic force-field parameters for seven different halide and alkali ions, considering a total of eight ion-pairs. Our strategy is based on simultaneous optimizing single-ion and ion-pair properties, i.e., we first fix ion-water parameters based on single-ion solvation free energies, and in a second step determine the cation-anion interaction parameters (traditionally given by mixing or combination rules) based on the Kirkwood-Buff theory without modification of the ion-water interaction parameters. In doing so, we have introduced scaling factors for the cation-anion Lennard-Jones (LJ) interaction that quantify deviations from the standard mixing rules. For the rather size-symmetric salt solutions involving bromide and chloride ions, the standard mixing rules work fine. On the other hand, for the iodide and fluoride solutions, corresponding to the largest and smallest anion considered in this work, a rescaling of the mixing rules was necessary. For iodide, the experimental activities suggest more tightly bound ion pairing than given by the standard mixing rules, which is achieved in simulations by reducing the scaling factor of the cation-anion LJ energy. For fluoride, the situation is different and the simulations show too large attraction between fluoride and cations when compared with experimental data. For NaF, the situation can be rectified by increasing the cation-anion LJ energy. For KF, it proves necessary to increase the effective cation-anion Lennard-Jones diameter. The optimization strategy outlined in this work can be easily adapted to different kinds of ions.
Nakashima, Keisuke; Nakamura, Takumi; Takeuchi, Satoshi; Shibata, Mikihiro; Demura, Makoto; Tahara, Tahei; Kandori, Hideki
2009-06-18
Halorhodopsin (HR) is a light-driven chloride pump. Cl(-) is bound in the Schiff base region of the retinal chromophore, and unidirectional Cl(-) transport is probably enforced by the specific hydrogen-bonding interaction with the protonated Schiff base and internal water molecules. It is known that HR from Natronobacterium pharaonis (pHR) also pumps NO(3)(-) with similar efficiency, suggesting that NO(3)(-) binds to the Cl(-)-binding site. In the present study, we investigated the properties of the anion-binding site by means of ultrafast pump-probe spectroscopy and low-temperature FTIR spectroscopy. The obtained data were surprisingly similar between pHR-NO(3)(-) and pHR-Cl(-), even though the shapes and sizes of the two anions are quite different. Femtosecond pump-probe spectroscopy showed very similar excited-state dynamics between pHR-NO(3)(-) and pHR-Cl(-). Low-temperature FTIR spectroscopy of unlabeled and [zeta-(15)N]Lys-labeled pHR revealed almost identical hydrogen-bonding strengths of the protonated retinal Schiff base between pHR-NO(3)(-) and pHR-Cl(-), which is similarly strengthened after retinal isomerization. There were spectral variations for water stretching vibrations between pHR-NO(3)(-) and pHR-Cl(-), suggesting that the water molecules hydrate each anion. Nevertheless, the overall spectral features were similar for the two species. These observations strongly suggest that the anion-binding site has a flexible structure and that the interaction between retinal and the anions is weak, despite the presence of an electrostatic interaction. Such a flexible hydrogen-bonding network in the Schiff base region in HR appears to be in remarkable contrast to that in light-driven proton-pumping proteins.
Bo, Arixin; Sarina, Sarina; Liu, Hongwei; Zheng, Zhanfeng; Xiao, Qi; Gu, Yuantong; Ayoko, Godwin A; Zhu, Huaiyong
2016-06-29
Hydrotalcite (HT)-based materials are usually applied to capture anionic pollutants in aqueous solutions. Generally considered anion exchangers, their ability to capture radioactive cations is rarely exploited. In the present work, we explored the ability of pristine and calcined HT getters to effectively capture radioactive cations (Sr(2+) and Ba(2+)) which can be securely stabilized at the getter surface. It is found that calcined HT outperforms its pristine counterpart in cation removal ability. Meanwhile, a novel anion removal mechanism targeting radioactive I(-) is demonstrated. This approach involves HT surface modification with silver species, namely, Ag2CO3 nanoparticles, which can attach firmly on HT surface by forming coherent interface. This HT-based anion getter can be further used to capture I(-) in aqueous solution. The observed I(-) uptake mechanism is distinctly different from the widely reported ion exchange mechanism of HT and much more efficient. As a result of the high local concentrations of precipitants on the getters, radioactive ions in water can be readily immobilized onto the getter surface by forming precipitates. The secured ionic pollutants can be subsequently removed from water by filtration or sedimentation for safe disposal. Overall, these stable, inexpensive getters are the materials of choice for removal of trace ionic pollutants from bulk radioactive liquids, especially during episodic environmental crisis.
Dissociative electron attachment to the gas-phase nucleobase hypoxanthine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan, E-mail: Stephan.Denifl@uibk.ac.at, E-mail: Sylwia.Ptasinska.1@nd.edu
We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomermore » in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.« less
Anion-free bambus[6]uril and its supramolecular properties.
Svec, Jan; Dusek, Michal; Fejfarova, Karla; Stacko, Peter; Klán, Petr; Kaifer, Angel E; Li, Wei; Hudeckova, Edita; Sindelar, Vladimir
2011-05-09
Methods for the preparation of anion-free bambus[6]uril (BU6) are presented. They are based on the oxidation of iodide anion, which is bound inside the macrocycle, utilizing dark oxidation by hydrogen peroxide or photooxidation in the presence of titanium dioxide. Anion-free BU6 was found to be insoluble in any of the investigated solvents; however, it dissolves in methanol/chloroform (1:1) or acetonitrile/water (1:1) mixtures in the presence of the tetrabutylammonium salt of a suitable anion. The association constants with halide ions, BF(4)(-), NO(3)(-), and CN(-), were measured by (1)H NMR spectroscopy. The highest association constant (8.9×10(5) M(-1)) was found for the 1:1 complex of BU6 with I(-) in acetonitrile/water mixture. A number of crystal structures of BU6 complexes with various anions were obtained. The influence of the anion size on the macrocycle diameter is discussed together with an unusual arrangement of the macrocycles into separate layers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Tsukanov, A. A.; Psakhie, S. G.
2016-01-01
The application of hybrid and hierarchical nanomaterials based on layered hydroxides and oxyhydroxides of metals is a swiftly progressing field in biomedicine. Layered double hydroxides (LDH) possess a large specific surface area, significant surface electric charge and biocompatibility. Their physical and structural properties enable them to adsorb various kinds of anionic species and to transport them into cells. However, possible side effects resulting from the interaction of LDH with anions of the intercellular and intracellular medium need to be considered, since such interaction can potentially disrupt ion transport, signaling processes, apoptosis, nutrition and proliferation of living cells. In the present paper molecular dynamics is used to determine the energies of interaction of organic anions (aspartic acid, glutamic acid and bicarbonate) with a fragment of layered double hydroxide Mg/Al-LDH. The average number of hydrogen bonds between the anions and the hydroxide surface and characteristic binding configurations are determined. Possible effects of LDH on the cell resulting from binding of protein fragments and replacement of native intracellular anions with delivered anions are considered.
Rauf, Abdur
1996-01-01
Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896
Céspedes, V; Pallarés, S; Arribas, P; Millán, A; Velasco, J
2013-10-01
Water salinity and ionic composition are among the main environmental variables that constrain the fundamental niches of aquatic species, and accordingly, physiological tolerance to these factors constitutes a crucial part of the evolution, ecology, and biogeography of these organisms. The present study experimentally estimated the fundamental saline and anionic niches of adults of two pairs of congeneric saline beetle species that differ in habitat preference (lotic and lentic) in order to test the habitat constraint hypothesis. Osmotic and anionic realised niches were also estimated based on the field occurrences of adult beetle species using Outlying Mean Index analysis and their relationship with experimental tolerances. In the laboratory, all of the studied species showed a threshold response to increased salinity, displaying high survival times when exposed to low and intermediate conductivity levels. These results suggest that these species are not strictly halophilic, but that they are able to regulate both hyperosmotically and hypoosmotically. Anionic water composition had a significant effect on salinity tolerance at conductivity levels near their upper tolerance limits, with decreased species survival at elevated sulphate concentrations. Species occupying lentic habitats demonstrated higher salinity tolerance than their lotic congeners in agreement with the habitat constraint hypothesis. As expected, realised salinity niches were narrower than fundamental niches and corresponded to conditions near the upper tolerance limits of the species. These species are uncommon on freshwater-low conductivity habitats despite the fact that these conditions might be physiologically suitable for the adult life stage. Other factors, such as biotic interactions, could prevent their establishment at low salinities. Differences in the realised anionic niches of congeneric species could be partially explained by the varying habitat availability in the study area. Combining the experimental estimation of fundamental niches with realised field data niche estimates is a powerful method for understanding the main factors constraining species' distribution at multiple scales, which is a key issue when predicting species' ability to cope with global change. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Yuping; Jiang, Shimei
2012-09-14
A new and easy-to-prepare gelator based on cyano-substituted amide (BPNIA) was designed and synthesized. BPNIA could form thermoreversible gel in DMSO-H(2)O (v/v, 9 : 1) and ultrasound-stimulated gel in DMSO. FT-IR, UV-vis and XRD spectra indicated that the gelator molecules self-assemble into a fibrous network resulting from the cooperation of intermolecular hydrogen bonding, π-π stacking and cyano interactions. BPNIA can act as a highly selective colorimetric sensor for fluoride in DMSO, overcoming the interference of H(2)PO(4)(-), AcO(-) and other halide anions. The deprotonation of the NH groups is responsible for the dramatic color change from colorless to yellow. Interestingly, the organogel of BPNIA could allow a two channel fluoride response by proton controlled reversible sol-gel transition and color changes.
Aza compounds as anion receptors
Lee, H.S.; Yang, X.Q.; McBreen, J.
1998-01-06
A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li{sup +} ion in alkali metal batteries. 3 figs.
Aza compounds as anion receptors
Lee, Hung Sui; Yang, Xiao-Qing; McBreen, James
1998-01-06
A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of Li.sup.+ ion in alkali metal batteries.
Untiet, Verena; Kovermann, Peter; Gerkau, Niklas J; Gensch, Thomas; Rose, Christine R; Fahlke, Christoph
2017-02-01
Astrocytic volume regulation and neurotransmitter uptake are critically dependent on the intracellular anion concentration, but little is known about the mechanisms controlling internal anion homeostasis in these cells. Here we used fluorescence lifetime imaging microscopy (FLIM) with the chloride-sensitive dye MQAE to measure intracellular chloride concentrations in murine Bergmann glial cells in acute cerebellar slices. We found Bergmann glial [Cl - ] int to be controlled by two opposing transport processes: chloride is actively accumulated by the Na + -K + -2Cl - cotransporter NKCC1, and chloride efflux through anion channels associated with excitatory amino acid transporters (EAATs) reduces [Cl - ] int to values that vary upon changes in expression levels or activity of these channels. EAATs transiently form anion-selective channels during glutamate transport, and thus represent a class of ligand-gated anion channels. Age-dependent upregulation of EAATs results in a developmental chloride switch from high internal chloride concentrations (51.6 ± 2.2 mM, mean ± 95% confidence interval) during early development to adult levels (35.3 ± 0.3 mM). Simultaneous blockade of EAAT1/GLAST and EAAT2/GLT-1 increased [Cl - ] int in adult glia to neonatal values. Moreover, EAAT activation by synaptic stimulations rapidly decreased [Cl - ] int . Other tested chloride channels or chloride transporters do not contribute to [Cl - ] int under our experimental conditions. Neither genetic removal of ClC-2 nor pharmacological block of K + -Cl - cotransporter change resting Bergmann glial [Cl - ] int in acute cerebellar slices. We conclude that EAAT anion channels play an important and unexpected role in adjusting glial intracellular anion concentration during maturation and in response to cerebellar activity. GLIA 2017;65:388-400. © 2016 Wiley Periodicals, Inc.
Lehninger, Albert L.
1974-01-01
Measurements of extra oxygen consumption, 45Ca2+ uptake, and the osmotic expansion of the matrix compartment show that not all permeant anions are capable of supporting and accompanying the energy-dependent transport of Ca2+ from the medium into the matrix in respiring rat-liver mitochondria. Phosphate, arsenate, acetate, butyrate, β-hydroxybutyrate, lactate, and bicarbonate + CO2 supported Ca2+ uptake, whereas the permeant anions, nitrate, thiocyanate, chlorate, and perchlorate, did not. The active anions share a common denominator, the potential ability to donate a proton to the mitochondrial matrix; the inactive anions lack this capacity. Phosphate and the other active permeant anions move into the matrix in response to the alkaline-inside electrochemical gradient of protons generated across the mitochondrial membrane by electron transport, thus forming a negative-inside anion gradient. It is postulated that the latter gradient is the immediate “pulling” force for the influx of Ca2+ on the electrogenic Ca2+ carrier in respiring mitochondria under intracellular conditions. Since mitochondria in the cell are normally exposed to an excess of phosphate (and the bicarbonate-CO2 system), particularly in state 4, inward transport of these proton-yielding anions probably precedes and is necessary for inward transport of Ca2+ and other cations under biological conditions. These observations indicate that a negative-inside gradient of phosphate generated by electron transport is a common step and provides the immediate motive power not only for (a) the inward transport of dicarboxylates and tricarboxylates and (b) the energy-dependent exchange of external ADP3- for internal ATP4- during oxidative phosphorylation, as has already been established, but also for (c) the inward transport of Ca2+, K+, and other cations. PMID:4364542
A high selective anion colorimetric sensor based on salicylaldehyde for fluoride in aqueous media.
Li, Jianwei; Lin, Hai; Cai, Zunsheng; Lin, Huakuan
2009-06-01
A new and simple salicylaldehyde-based sensor 1 designed for fluoride sensing has been investigated in DMSO and even in the 9/1 DMSO/H(2)O (v/v) mixtures. The affinity constants of receptor 1 for anionic species in the 9/1 DMSO/H(2)O (v/v) reveal that it is sensitive to F. Also, the color changes induced by anions can provide a way of detection by 'naked-eye'. These result can be substantiated by the spectrum changes upon the addition of 25equiv. anions to 1 in the 9/1 DMSO/H(2)O solution. The further insights to the nature of interactions between the sensor 1 and F(-) were investigated by (1)H NMR titration experiments in 9/1 DMSO-d(6)/H(2)O (v/v). In addition, the proposed binding mode between 1 and F(-) was suggested.
Wen, Guo-Xuan; Han, Min-Le; Wu, Xue-Qian; Wu, Ya-Pan; Dong, Wen-Wen; Zhao, Jun; Li, Dong-Sheng; Ma, Lu-Fang
2016-10-04
A super-stable multifunctional terbium(iii)-organic framework, namely {[Tb(TATAB) (H 2 O) 2 ]·NMP·H 2 O} n (Tb-MOF, H 3 TATAB = 4,4',4''-s-triazine-1,3,5-triyltri-m-aminobenzoic acid, NMP = N-methyl-2-pyrrolidone) was synthesized. Tb-MOF exhibits a 2D sql structure with binuclear [Tb 2 (COO) 4 (H 2 O) 4 ] 2+ units as 4-connected nodes, and free water and NMP molecules are inserted between 2D layers through hydrogen-bonding interactions, forming a sandwich-type architecture. Observably, such a framework remains intact in a remarkable variety of environments such as common solvents and aqueous solutions with metal cations and inorganic anions, as well as with a pH ranging from 1 to 13. In particular, Tb-MOF can not only detect small organic molecules, metal cations and inorganic anions with high sensitivity and high selectivity, but also can accurately detect explosive 2-nitrophenol, 3-nitrophenol, 4-nitrophenol and 2,4,6-trinitrophenol in water. Its luminescence quenching response to Fe 3+ and Cr 2 O 7 2- ions can be explained in terms of the competitive absorption mechanism. In addition, the luminescence intensity of Tb-MOF is strongly correlated with the pH value in a pH range from 1 to 13. Thus, this material can be potentially used as a multi-responsive luminescent sensor.
NASA Astrophysics Data System (ADS)
Jiang, F. D.; Feng, J. Y.
2008-02-01
Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
NASA Astrophysics Data System (ADS)
Thompson, Michael C.; Baraban, Joshua H.; Matthews, Devin A.; Stanton, John F.; Weber, J. Mathias
2015-06-01
We report infrared spectra of nitromethane anion, CH3NO2-, in the region 700-2150 cm-1, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions.
Thompson, Michael C; Baraban, Joshua H; Matthews, Devin A; Stanton, John F; Weber, J Mathias
2015-06-21
We report infrared spectra of nitromethane anion, CH3NO2 (-), in the region 700-2150 cm(-1), obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
NASA Astrophysics Data System (ADS)
Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan
2016-06-01
In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.
Ding, Liping; Bai, Yumei; Cao, Yuan; Ren, Guijia; Blanchard, Gary J; Fang, Yu
2014-07-08
The effect of surfactant micelles on the photophysical properties of a cationic bispyrene fluorophore, Py-diIM-Py, was systemically examined. The results from series of measurements including UV-vis absorption, steady-state fluorescence emission, quantum yield, fluorescence lifetime, and time-resolved emission spectra reveal that the cationic fluorophore is only encapsulated by the anionic sodium dodecyl sulfate (SDS) surfactant micelles and not incorporated in the cationic dodecyltrimethylammonium bromide (DTAB) and neutral Triton X-100 (TX100) surfactant micelles. This different fluorophore location in the micellar solutions significantly influences its sensing behavior to various explosives. Fluorescence quenching studies reveal that the simple variation of micellar systems leads to significant changes in the sensitivity and selectivity of the fluorescent sensor to explosives. The sensor exhibits an on-off response to multiple explosives with the highest sensitivity to picric acid (PA) in the anionic SDS micelles. In the cationic DTAB micelles, it displays the highest on-off responses to PYX. Both the sensitivity and selectivity to PYX in the cationic micelles are enhanced compared with that to PA in the anionic micelles. However, the poor encapsulation in the neutral surfactant TX100 micelles leads to fluorescence instability of the fluorophore and fails to function as a sensor system. Time-resolved fluorescence decays in the presence of explosives reveal that the quenching mechanism of two micellar sensor systems to explosives is static in nature. The present work demonstrates that the electrostatic interaction between the cationic fluorophore and differently charged micelles plays a determinative role in adjusting its distribution in micellar solutions, which further influences the sensing behavior of the obtained micellar sensor systems.
Self-organizing layers from complex molecular anions
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.; ...
2018-05-14
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
Increasing Photovoltaic Performance of an Organic Cationic Chromophore by Anion Exchange
Gesevičius, Donatas; Neels, Antonia; Jenatsch, Sandra; Hack, Erwin; Viani, Lucas; Athanasopoulos, Stavros; Heier, Jakob
2017-01-01
Abstract A symmetrical cyanine dye chromophore is modified with different counteranions to study the effect on crystal packing, polarizability, thermal stability, optical properties, light absorbing layer morphology, and organic photovoltaic (OPV) device parameters. Four sulfonate‐based anions and the bulky bistriflylimide anion are introduced to the 2‐[5‐(1,3‐dihydro‐1,3,3‐trimethyl‐2H‐indol‐2‐ylidene)‐1,3‐pentadien‐1‐yl]‐1,3,3‐trimethyl‐3H‐indolium chromophore using an Amberlyst A26 (OH− form) anion exchanger. Anionic charge distribution clearly correlates with device performance, whereby an average efficiency of 2% was reached in a standard bilayer organic solar. Evidence is given that the negative charge of the anion distributed over a large number of atoms is significantly more important than the size of the organic moieties of the sulfonate charge carrying group. This provides a clear strategy for future design of more efficient cyanine dyes for OPV applications. PMID:29610723
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
The effects of cations and anions on hydrogen chemisorption at Pt
NASA Technical Reports Server (NTRS)
Huang, J. C.; Ogrady, W. E.; Yeager, E.
1977-01-01
Experimental evidence based on linear sweep voltammetry is presented to substantiate the view that ionic adsorption substantially shifts electrode potentials in addition to the relative heights of the hydrogen adsorption peaks. HClO4 and HF are chosen as better reference electrolytes for anion studies. The voltammetry curves for 0.1M HF and 0.1M HClO4 as well as the effect of adding successively increasing amounts of H2SO4 to these electrolytes are discussed. The measurements are also extended to alkaline solutions. Mechanisms whereby the addition of various cations and anions to electrolytes such as HF and HClO4 can induce changes in the structure of the hydrogen adsorption region in the voltammetry curves are identified: (1) blocking of sites by anion adsorption and coupling of hydrogen adsorption and anion desorption, (2) modification in the hydrogen adsorption energies for sites adjacent to adsorbed anions, (3) changes in the potential distribution across the interface, and (4) surface restructuring.
NASA Astrophysics Data System (ADS)
Biswas, Sohag; Dasgupta, Teesta; Mallik, Bhabani S.
2016-09-01
We present the reactivity of an organic intermediate by studying the proton transfer process from water to ketyl radical anion using gas phase electronic structure calculations and the metadynamics method based first principles molecular dynamics (FPMD) simulations. Our results indicate that during the micro solvation of anion by water molecules systematically, the presence of minimum three water molecules in the gas phase cluster is sufficient to observe the proton transfer event. The analysis of trajectories obtained from initial FPMD simulation of an aqueous solution of the anion does not show any evident of complete transfer of the proton from water. The cooperativity of water molecules and the relatively weak anion-water interaction in liquid state prohibit the full release of the proton. Using biasing potential through first principles metadynamics simulations, we report the observation of proton transfer reaction from water to ketyl radical anion with a barrier height of 16.0 kJ/mol.
A pyrophosphate-responsive gadolinium(III) MRI contrast agent.
Surman, Andrew J; Bonnet, Célia S; Lowe, Mark P; Kenny, Gavin D; Bell, Jimmy D; Tóth, Eva; Vilar, Ramon
2011-01-03
This study shows that the relaxivity and optical properties of functionalised lanthanide-DTPA-bis-amide complexes (lanthanide=Gd(3+) and Eu(3+) , DTPA=diethylene triamine pentaacetic acid) can be successfully modulated by addition of specific anions, without direct Ln(3+) /anion coordination. Zinc(II)-dipicolylamine moieties, which are known to bind strongly to phosphates, were introduced in the amide "arms" of these ligands, and the interaction of the resulting Gd-Zn(2) complexes with a range of anions was screened by using indicator displacement assays (IDAs). Considerable selectivity for polyphosphorylated species (such as pyrophosphate and adenosine-5'-triphosphate (ATP)) over a range of other anions (including monophosphorylated anions) was apparent. In addition, we show that pyrophosphate modulates the relaxivity of the gadolinium(III) complex, this modulation being sufficiently large to be observed in imaging experiments. To establish the binding mode of the pyrophosphate and gain insight into the origin of the relaxometric modulation, a series of studies including UV/Vis and emission spectroscopy, luminescence lifetime measurements in H(2) O and D(2) O, (17) O and (31) P NMR spectroscopy and nuclear magnetic resonance dispersion (NMRD) studies were carried out. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cation and anion sequences in dark-adapted Balanus photoreceptor
1977-01-01
Anion and cation permeabilities in dark-adapted Balanus photoreceptors were determined by comparing changes in the membrane potential in response to replacement of the dominant anion (Cl-) or cation (Na+) by test anions or cations in the superfusing solution. The anion permeability sequence obtained was PI greater than PSO4 greater than PBr greater than PCl greater than Pisethionate greater than Pmethanesulfonate. Gluconate, glucuronate, and glutamate generally appeared more permeable and propionate less permeable than Cl-. The alkali-metal cation permeability sequence obtained was PK greater than PRb greater than PCx greater than PNa approximately PLi. This corresponds to Eisenman's IV which is the same sequencethat has been obtained for other classes of nerve cells in the resting state. The values obtained for the permeability ratios of the alkali-metal cations are considered to be minimal. The membrane conductance measured by passing inward current pulses in the different test cations followed the sequence, GK greater than GRb greater than GCs greater than GNa greater than GLi. The conductance ratios obtained for a full substitution of the test cation agreed quite well with permeability ratios for all the alkali-metal cations except K+ which was generally higher. PMID:199688
Hannon, Michael J; Painting, Claire L; Plummer, Edward A; Childs, Laura J; Alcock, Nathaniel W
2002-05-17
Multiple competing molecular interactions (metal-ligand, pi-stacking and hydrogen-bonding) in the silver(I) complexes of 4'-thiomethyl-2,2':6',2"-terpyridine give rise to a range of different molecular architectures, in which the metal-ligand coordination requirements are satisfied in quite different ways. Polynuclear supramolecular spirals, aggregated mononuclear and aggregated dinuclear units are all structurally characterised. The metallo-supramolecular architecture obtained displays a remarkable dependence both on the choice of non-coordinated anion and the type of solvent used (coordinating or non-coordinating). The anion dependence is particularly surprising, since the anions are not integrated into the centre of the supramolecular structure. The solution behaviour is also solvent and anion dependent, with aggregation of planar mononuclear cations observed in acetonitrile, but oligonuclear spiral species implicated in nitromethane. The extraordinarily variable geometries of these systems suggest that they provide a novel example of the "frustration" principle, in which opposing tendencies cannot simultaneously be satisfied and identify an alternative approach to the design of metallo-supramolecular systems whose structure is responsive to external agents.
Yu, Zhanjiang; Yang, Xiaoda; Wang, Kui
2006-06-01
The aim of this work is to define the relationship between heat shock protein (HSP) and reactive oxygen species (ROS) in the cells exposed to different concentrations of metal ions, and to evaluate a new method for tracing the dynamic levels of cellular reactive oxygen species using a HSE-SEAP reporter gene. The expression of heat shock protein was measured using a secreted alkaline phosphatase (SEAP) reporter gene transformed into HeLa cell strain, the levels of superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) were determined by NBT reduction assay and DCFH staining flow cytometry (FCM), respectively. The experimental results demonstrated that the expression of heat shock protein induced by metal ions was linearly related to the cellular superoxide anion level before cytotoxic effects were observed, but not related to the cellular hydrogen peroxide level. The experimental results suggested that metal ions might induce heat shock protein by elevating cellular superoxide anion level, and thus the expression of heat shock protein indicated by the HSE-SEAP reporter gene can be an effective model for monitoring the dynamic level of superoxide anion and early metal-induced oxidative stress/cytotoxicity.
The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel.
Müller, Heike M; Schäfer, Nadine; Bauer, Hubert; Geiger, Dietmar; Lautner, Silke; Fromm, Jörg; Riederer, Markus; Bueno, Amauri; Nussbaumer, Thomas; Mayer, Klaus; Alquraishi, Saleh A; Alfarhan, Ahmed H; Neher, Erwin; Al-Rasheid, Khaled A S; Ache, Peter; Hedrich, Rainer
2017-10-01
Date palm Phoenix dactylifera is a desert crop well adapted to survive and produce fruits under extreme drought and heat. How are palms under such harsh environmental conditions able to limit transpirational water loss? Here, we analysed the cuticular waxes, stomata structure and function, and molecular biology of guard cells from P. dactylifera. To understand the stomatal response to the water stress phytohormone of the desert plant, we cloned the major elements necessary for guard cell fast abscisic acid (ABA) signalling and reconstituted this ABA signalosome in Xenopus oocytes. The PhoenixSLAC1-type anion channel is regulated by ABA kinase PdOST1. Energy-dispersive X-ray analysis (EDXA) demonstrated that date palm guard cells release chloride during stomatal closure. However, in Cl - medium, PdOST1 did not activate the desert plant anion channel PdSLAC1 per se. Only when nitrate was present at the extracellular face of the anion channel did the OST1-gated PdSLAC1 open, thus enabling chloride release. In the presence of nitrate, ABA enhanced and accelerated stomatal closure. Our findings indicate that, in date palm, the guard cell osmotic motor driving stomatal closure uses nitrate as the signal to open the major anion channel SLAC1. This initiates guard cell depolarization and the release of anions together with potassium. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Liu, Zhaoping; Ma, Renzhi; Osada, Minoru; Iyi, Nobuo; Ebina, Yasuo; Takada, Kazunori; Sasaki, Takayoshi
2006-04-12
This paper describes a systematic study on the synthesis, anion exchange, and delamination of Co-Al layered double hydroxide (LDH), with the aim of achieving fabrication and clarifying the properties of LDH nanosheet/polyanion composite films. Co-Al-CO3 LDH hexagonal platelets of 4 mum in lateral size were synthesized by the urea method under optimized reaction conditions. The as-prepared CO3(2-)-LDH was converted to Cl- -LDH by treating with a NaCl-HCl mixed solution, retaining its high crystallinity and hexagonal platelike morphology. LDHs intercalated with a variety of anions (such as NO3-, ClO4-, acetate, lactate, dodecyl sulfate, and oleate) were further prepared from Cl- -LDH via an anion-exchange process employing corresponding salts. Exchanged products in various anion forms were found to show different delamination behaviors in formamide. Among them, best results were observed for NO3- -LDH in terms of the exfoliating degree and the quality of the exfoliated nanosheets. The delamination gave a pink transparent suspension containing well-defined nanosheets with lateral sizes of up to 2 microm. The resulting nanosheets were assembled layer-by-layer with an anionic polymer, poly(sodium styrene 4-sulfonate) (PSS), onto quartz glass substrates to produce composite films. Magnetic circular dichroism (MCD) measurements revealed that the assembled multilayer films exhibited an interesting magneto-optical response.
Jin, Hui; O'Hare, Bernie; Dong, Jing; Arzhantsev, Sergei; Baker, Gary A; Wishart, James F; Benesi, Alan J; Maroncelli, Mark
2008-01-10
Physical properties of 4 room-temperature ionic liquids consisting of the 1-butyl-3-methylimidazolium cation with various perfluorinated anions and the bis(trifluoromethylsulfonyl)imide (Tf2N-) anion with 12 pyrrolidinium-, ammonium-, and hydroxyl-containing cations are reported. Electronic structure methods are used to calculate properties related to the size, shape, and dipole moment of individual ions. Experimental measurements of phase-transition temperatures, densities, refractive indices, surface tensions, solvatochromic polarities based on absorption of Nile Red, 19F chemical shifts of the Tf2N- anion, temperature-dependent viscosities, conductivities, and cation diffusion coefficients are reported. Correlations among the measured quantities as well as the use of surface tension and molar volume for estimating Hildebrand solubility parameters of ionic liquids are also discussed.
Anion Recognition in Water: Recent Advances from a Supramolecular and Macromolecular Perspective
Langton, Matthew J.
2015-01-01
Abstract The recognition of anions in water remains a key challenge in modern supramolecular chemistry, and is essential if proposed applications in biological, medical, and environmental arenas that typically require aqueous conditions are to be achieved. However, synthetic anion receptors that operate in water have, in general, been the exception rather than the norm to date. Nevertheless, a significant step change towards routinely conducting anion recognition in water has been achieved in the past few years, and this Review highlights these approaches, with particular focus on controlling and using the hydrophobic effect, as well as more exotic interactions such as C−H hydrogen bonding and halogen bonding. We also look beyond the field of small‐molecule recognition into the macromolecular domain, covering recent advances in anion recognition based on biomolecules, polymers, and nanoparticles. PMID:26612067
Anion receptor compounds for non-aqueous electrolytes
Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James
2000-09-19
A new family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.
Aza crown ether compounds as anion receptors
Lee, Hung Sui; Yang, Xiao-Oing; McBreen, James
1998-08-04
A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI.sup.+ ion in alkali metal batteries.
Aza crown ether compounds as anion receptors
Lee, H.S.; Yang, X.O.; McBreen, J.
1998-08-04
A family of aza-ether based compounds including linear, multi-branched and aza-crown ethers is provided. When added to non-aqueous battery electrolytes, the new family of aza-ether based compounds acts as neutral receptors to complex the anion moiety of the electrolyte salt thereby increasing the conductivity and the transference number of LI{sup +} ion in alkali metal batteries. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej S.
The electron affinity and the propensity to electron-induced proton transfer (PT) of hydrogen-bonded complexes between the Watson–Crick adenine–thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41more » to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39 –2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson–Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines.« less
Local delivery of sirolimus nanoparticles for the treatment of in-stent restenosis.
Zago, Alexandre C; Raudales, José C; Attizzani, Guilherme; Matte, Bruno S; Yamamoto, German I; Balvedi, Julise A; Nascimento, Ludmila; Kosachenco, Beatriz G; Centeno, Paulo R; Zago, Alcides J
2013-02-01
To test the local delivery of sirolimus nanoparticles following percutaneous transluminal coronary angioplasty (PTCA) to treat in-stent restenosis (ISR) in a swine model. Coronary bare-metal stent (BMS) implantation reduces major adverse cardiac events when compared with PTCA; however, ISR rates remain high. Eighteen swine underwent BMS deployment guided by intravascular ultrasound (IVUS). Of these, 16 developed ISR (1 stent/swine) and underwent angioplasty with a noncompliant balloon (PTCA-NC). The animals were then randomized into four groups for local infusion of sirolimus nanoparticles through a porous balloon catheter, as follows: (1) PTCA-NC alone (control); (2) PTCA-NC + (polylactic acid)-based nanoparticle formulation (anionic 1); (3) PTCA-NC + (polylactic-co-glycolic acid)-based nanoparticle formulation (anionic 2); and (4) PTCA-NC + Eudragit RS nanoparticle formulation (cationic). Coronary angiography and IVUS follow-up were performed 28 days after ISR treatment. There was one episode of acute coronary occlusion with the cationic formulation. Late area loss was similar in all groups at 28 days according to IVUS. However, luminal volume loss (control = 20.7%, anionic 1 = 4.0%, anionic 2 = 6.7%, cationic = 9.6%; P = 0.01) and neointimal volume gain (control = 68.7%, anionic 1 = 17.4%, anionic 2 = 29.5%, cationic = 31.2%; P = 0.019) were significantly reduced in all treatment groups, especially in anionic 1. PTCA-NC followed by local infusion of sirolimus nanoparticles was safe and efficacious to reduce neointima in this model, and this strategy may be a promising treatment for BMS ISR. Further studies are required to validate this method in humans. Copyright © 2012 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Neumann, Jan; Golub, Benjamin; Odebrecht, Lisa-Marie; Ludwig, Ralf; Paschek, Dietmar
2018-05-01
We study ionic liquids composed of 1-alkyl-3-methylimidazolium cations and bis(trifluoromethyl-sulfonyl)imide anions ([CnMIm][NTf2]) with varying chain-length n = 2, 4, 6, 8 by using molecular dynamics simulations. We show that a reparametrization of the dihedral potentials as well as charges of the [NTf2] anion leads to an improvement of the force field model introduced by Köddermann, Paschek, and Ludwig [ChemPhysChem 8, 2464 (2007)] (KPL-force field). A crucial advantage of the new parameter set is that the minimum energy conformations of the anion (trans and gauche), as deduced from ab initio calculations and Raman experiments, are now both well represented by our model. In addition, the results for [CnMIm][NTf2] show that this modification leads to an even better agreement between experiment and molecular dynamics simulation as demonstrated for densities, diffusion coefficients, vaporization enthalpies, reorientational correlation times, and viscosities. Even though we focused on a better representation of the anion conformation, also the alkyl chain-length dependence of the cation behaves closer to the experiment. We strongly encourage to use the new NGOLP (Neumann, Golub, Odebrecht, Ludwig, Paschek) force field for the [NTf2] anion instead of the earlier KPL parameter set for computer simulations aiming to describe the thermodynamics, dynamics, and also structure of imidazolium-based ionic liquids.
Label-Free Pyrophosphate Recognition with Functionalized Asymmetric Nanopores.
Ali, Mubarak; Ahmed, Ishtiaq; Ramirez, Patricio; Nasir, Saima; Niemeyer, Christof M; Mafe, Salvador; Ensinger, Wolfgang
2016-04-01
The label-free detection of pyrophosphate (PPi) anions with a nanofluidic sensing device based on asymmetric nanopores is demonstrated. The pore surface is functionalized with zinc complexes based on two di(2-picolyl)amine [bis(DPA)] moieties using carbodiimide coupling chemistry. The complexation of zinc (Zn(2+) ) ion is achieved by exposing the modified pore to a solution of zinc chloride to form bis(Zn(2+) -DPA) complexes. The chemical functionalization is demonstrated by recording the changes in the observed current-voltage (I-V) curves before and after pore modification. The bis(Zn(2+) -DPA) complexes on the pore walls serve as recognition sites for pyrophosphate anion. The experimental results show that the proposed nanofluidic sensor has the ability to sense picomolar concentrations of PPi anion in the surrounding environment. On the contrary, it does not respond to other phosphate anions, including monohydrogen phosphate, dihydrogen phosphate, adenosine monophosphate, adenosine diphosphate, and adenosine triphosphate. The experimental results are described theoretically by using a model based on the Poisson-Nernst-Planck equations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels
Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L.
2014-01-01
SUMMARY AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine and phenylalanine which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate and serine. AvGluR1 LBD crystal structures reveal a novel scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, while in the alanine, methionine and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl− lowers affinity for these ligands, but not for glutamate, aspartate or for phenylalanine which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure based studies on iGluR-ligand interactions. PMID:23434404
Gu, Jiande; Wang, Jing; Leszczynski, Jerzy
2014-01-30
Computational chemistry approach was applied to explore the nature of electron attachment to cytosine-rich DNA single strands. An oligomer dinucleoside phosphate deoxycytidylyl-3',5'-deoxycytidine (dCpdC) was selected as a model system for investigations by density functional theory. Electron distribution patterns for the radical anions of dCpdC in aqueous solution were explored. The excess electron may reside on the nucleobase at the 5' position (dC(•-)pdC) or at the 3' position (dCpdC(•-)). From comparison with electron attachment to the cytosine related DNA fragments, the electron affinity for the formation of the cytosine-centered radical anion in DNA is estimated to be around 2.2 eV. Electron attachment to cytosine sites in DNA single strands might cause perturbations of local structural characteristics. Visible absorption spectroscopy may be applied to validate computational results and determine experimentally the existence of the base-centered radical anion. The time-dependent DFT study shows the absorption around 550-600 nm for the cytosine-centered radical anions of DNA oligomers. This indicates that if such species are detected experimentally they would be characterized by a distinctive color.
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-04-11
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.
Biochemical Characterization of the Suberization-Associated Anionic Peroxidase of Potato1
Bernards, Mark A.; Fleming, Warren D.; Llewellyn, David B.; Priefer, Ronny; Yang, Xiaolong; Sabatino, Anita; Plourde, Guy L.
1999-01-01
The anionic peroxidase associated with the suberization response in potato (Solanum tuberosum L.) tubers during wound healing has been purified and partially characterized at the biochemical level. It is a 45-kD, class III (plant secretory) peroxidase that is localized to suberizing tissues and shows a preference for feruloyl (o-methoxyphenol)-substituted substrates (order of substrate preference: feruloyl > caffeoyl > p-coumaryl ≈ syringyl) such as those that accumulate in tubers during wound healing. There was little influence on oxidation by side chain derivatization, although hydroxycinnamates were preferred over the corresponding hydroxycinnamyl alcohols. The substrate specificity pattern is consistent with the natural substrate incorporation into potato wound suberin. In contrast, the cationic peroxidase(s) induced in response to wound healing in potato tubers is present in both suberizing and nonsuberizing tissues and does not discriminate between hydroxycinnamates and hydroxycinnamyl alcohols. A synthetic polymer prepared using E-[8-13C]ferulic acid, H2O2, and the purified anionic enzyme contained a significant amount of cross-linking through C-8, albeit with retention of unsaturation. PMID:10482668
Structure of cyano-anion ionic liquids: X-ray scattering and simulations.
Dhungana, Kamal B; Faria, Luiz F O; Wu, Boning; Liang, Min; Ribeiro, Mauro C C; Margulis, Claudio J; Castner, Edward W
2016-07-14
Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790-14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN(-), SCN(-), N(CN)2 (-), C(CN)3 (-), and B(CN)4 (-). By combining molecular dynamics simulations, high-energy X-ray scattering measurements, and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)4 (-) anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im2,1 (+)/B(CN)4 (-) is cationic.
Kamel, Ayman H
2015-11-01
A new potentiometric transducer for selective recognition of azide is characterized and developed. The PVC plasticized based sensor incorporates Mn(II) [2-formylquinoline thiosemicarbazone] complex in the presence of tri dodecyl methyl ammonium chloride (TDMAC) as a lipophilic cationic additive. The sensor displayed a near-Nernstian response for azide over 1.0×10(-2)-1.0×10(-5) mol L(-1), with an anionic slope of -55.8±0.6 mV decade(-1) and lower limit of detection 0.34 µg mL(-1). The sensor was pH independent in the range 5.5-9 and presented good selectivity features towards several inorganic anions, and it is easily used in a flow injection system and compared with a tubular detector. The intrinsic characteristics of the detector in a low dispersion manifold were determined and compared with data obtained under a hydrodynamic mode of operation. This simple and inexpensive automation, with a good potentiometric detector, enabled the analysis of ~33 samples h(-1) without requiring pre-treatment procedures. The proposed method is also applied to the analysis of trace levels of azide in primer mixtures. Significantly improved accuracy, precision, response time, stability and selectivity were offered by these simple and cost-effective potentiometric sensor compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to determine azide ions. Copyright © 2015 Elsevier B.V. All rights reserved.
Hybrid capacitive deionization with anion-exchange membranes for lithium extraction
NASA Astrophysics Data System (ADS)
Siekierka, Anna; Bryjak, Marek
2017-11-01
Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.
Heavy atom vibrational modes and low-energy vibrational autodetachment in nitromethane anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Michael C.; Weber, J. Mathias, E-mail: weberjm@jila.colorado.edu; Department of Chemistry and Biochemistry, University of Colorado at Boulder, 215UCB, Boulder, Colorado 80309-0215
2015-06-21
We report infrared spectra of nitromethane anion, CH{sub 3}NO{sub 2}{sup −}, in the region 700–2150 cm{sup −1}, obtained by Ar predissociation spectroscopy and electron detachment spectroscopy. The data are interpreted in the framework of second-order vibrational perturbation theory based on coupled-cluster electronic structure calculations. The modes in the spectroscopic region studied here are mainly based on vibrations involving the heavier atoms; this work complements earlier studies on nitromethane anion that focused on the CH stretching region of the spectrum. Electron detachment begins at photon energies far below the adiabatic electron affinity due to thermal population of excited vibrational states.
SELENIUM REMOVAL FROM DRINKING WATER BY ION EXCHANGE
Strong-base anion exchangers were shown to remove selenate and selenite ions from drinking water. Because selenium species are usually present at low concentrations, the efficiency of removal is controlled by the concentration of the common drinking water anions, the most importa...
A core-substituted naphthalene diimide fluoride sensor.
Bhosale, Sheshanath V; Bhosale, Sidhanath V; Kalyankar, Mohan B; Langford, Steven J
2009-12-03
The synthesis and characterization of a highly fluorescent core-substituted naphthalene diimide sensor (varphi = 0.34) bearing a bis-sulfonamide group is described. The compound shows a unique selectivity and reactivity for the fluoride ion over other anions in CHCl(3) by a two-stage deprotonation process leading to a colorimetric response. In DMSO solution, the sensor is shown to be highly selective for fluoride (K(a) approximately 10(6) M(-1)) over other anions with more pronounced changes in absorption characteristics.
Interdependence of spin structure, anion height and electronic structure of BaFe{sub 2}As{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sen, Smritijit, E-mail: smritijit.sen@gmail.com; Ghosh, Haranath, E-mail: hng@rrcat.gov.in; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094
2016-05-06
Superconducting as well as other electronic properties of Fe-based superconductors are quite sensitive to the structural parameters specially, on anion height which is intimately related to z{sub As}, the fractional z co-ordinate of As atom. Due to presence of strong magnetic fluctuation in these Fe-based superconductors, optimized structural parameters (lattice parameters a, b, c) including z{sub As} using density functional theory (DFT) under generalized gradient approximation (GGA) does not match experimental values accurately. In this work, we show that the optimized value of z{sub As} is strongly influenced by the spin structures in the orthorhombic phase of BaFe{sub 2}As{sub 2}more » system. We take all possible spin structures for the orthorhombic BaFe{sub 2}As{sub 2} system and then optimize z{sub As}. Using these optimized structures we calculate electronic structures like density of states, band structures etc., for each spin configurations. From these studies we show that the electronic structure, orbital order which is responsible for structural as well as related to nematic transition, are significantly influenced by the spin structures.« less
Draper, Emily R.; Lee, Jonathan R.; Wallace, Matthew; Jäckel, Frank; Cowan, Alexander J.
2016-01-01
We show that a perylene bisimide (PBI)-based gelator forms self-sorted mixtures with a stilbene-based gelator. To form the self-sorted gels, we use a slow pH change induced by the hydrolysis of glucono-δ-lactone (GdL) to gluconic acid. We prove that self-sorting occurs using NMR spectroscopy, UV-Vis spectroscopy, rheology, and viscometry. The corresponding xerogels are photoconductive. Importantly, the wavelength dependence of the photoconductive films is different to that of the films formed from the perylene bisimide alone. Transient absorption spectroscopy of the xerogels reveals changes in the spectrum of the PBI on the picosecond timescale in the presence of stilbene with a PBI radical anion being formed within 10 ps when the stilbene is present. The ability to form the PBI radical anion under visible light leads to the enhanced spectral response of the multicomponent gels. These systems therefore have potential as useful visible-active optoelectronics. PMID:28451108
Role of Anions Associated with the Formation and Properties of Silver Clusters.
Wang, Quan-Ming; Lin, Yu-Mei; Liu, Kuan-Guan
2015-06-16
Metal clusters have been very attractive due to their aesthetic structures and fascinating properties. Different from nanoparticles, each cluster of a macroscopic sample has a well-defined structure with identical composition, size, and shape. As the disadvantages of polydispersity are ruled out, informative structure-property relationships of metal clusters can be established. The formation of a high-nuclearity metal cluster involves the organization of metal ions into a complex entity in an ordered way. To achieve controllable preparation of metal clusters, it is helpful to introduce a directing agent in the formation process of a cluster. To this end, anion templates have been used to direct the formation of high nuclearity clusters. In this Account, the role of anions played in the formation of a variety of silver clusters has been reviewed. Silver ions are positively charged, so anionic species could be utilized to control the formation of silver clusters on the basis of electrostatic interactions, and the size and shape of the resulted clusters can be dictated by the templating anions. In addition, since the anion is an integral component in the silver clusters described, the physical properties of the clusters can be modulated by functional anions. The templating effects of simple inorganic anions and polyoxometales are shown in silver alkynyl clusters and silver thiolate clusters. Intercluster compounds are also described regarding the importance of anions in determining the packing of the ion pairs and making contribution to electron communications between the positive and negative counterparts. The role of the anions is threefold: (a) an anion is advantageous in stabilizing a cluster via balancing local positive charges of the metal cations; (b) an anion template could help control the size and shape of a cluster product; (c) an anion can be a key factor in influencing the function of a cluster through bringing in its intrinsic properties. Properties including electron communication, luminescent thermochromism, single-molecule magnet, and intercluster charge transfer associated with anion-directed silver clusters have been discussed. We intend to attract chemists' attention to the role that anions could play in determining the structures and properties of metal complexes, especially clusters. We hope that this Account will stimulate more efforts in exploiting new role of anions in various metal cluster systems. Anions can do much more than counterions for charge balance, and they should be considered in the design and synthesis of cluster-based functional materials.
Borodin, Oleg; Gorecki, W; Smith, Grant D; Armand, Michel
2010-05-27
The pulsed-field-gradient spin-echo NMR measurements have been performed on 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([emim][FSI]) and 1-ethyl-3-methylimidazolium [bis[(trifluoromethyl)sulfonyl]imide] ([emim][TFSI]) over a wide temperature range from 233 to 400 K. Molecular dynamics (MD) simulations have been performed on [emim][FSI], [emim][TFSI], [N-methyl-N-propylpyrrolidinium][FSI] ([pyr(13)][FSI]), and [pyr(13)][TFSI] utilizing a many-body polarizable force field. An excellent agreement between the ion self-diffusion coefficients from MD simulations and pfg-NMR experiments has been observed for [emim][FSI] and [emim][TFSI] ILs. The structure factor of [pyr(13)][FSI], [pyr(14)][TFSI], and [emim][TFSI] agreed well with the previously reported X-ray diffraction data performed by Umebayashi group. Ion packing in the liquid state is compared with packing in the corresponding ionic crystal. Faster transport found in the FSI-based ILs compared to that in TFSI-based ILs is associated with the smaller size of FSI(-) anion and lower cation-anion binding energies. A significant artificial increase of the barriers (by 3 kcal/mol) for the FSI(-) anion conformational transitions did not result in slowing down of ion transport, indicating that the ion dynamics is insensitive to the FSI(-) anion torsional energetic, while the same increase of the TFSI(-) anion barriers in [emim][TFSI] and [pyr(13)][TFSI] ILs resulted in slowing down of the cation and anion transport by 40-50%. Details of ion rotational and translational motion, coupling of the rotational and translational relaxation are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yaru; Xing, Zhiyan; Zhang, Xiao
To systematically explore the influence of inorganic anions on building coordination complexes, five novel complexes based on 1-(benzotriazole-1-methyl)−2-propylimidazole (bpmi), [Cu(bpmi){sub 2}(Ac){sub 2}]·H{sub 2}O (1), [Cu(bpmi){sub 2}(H{sub 2}O){sub 2}]·2NO{sub 3}·2H{sub 2}O (2), [Cu(bpmi)(N{sub 3}){sub 2}] (3), [Ag(bpmi)(NO{sub 3})] (4) and [Cu{sub 3}(bpmi){sub 2}(SCN){sub 4}(DMF)] (5) (Ac{sup −}=CH{sub 3}COO{sup −}, DMF=N,N-Dimethylformamide) are synthesized through rationally introducing Cu(II) salts and Ag(I) salt with different inorganic anions. X-ray single-crystal analyses reveal that these complexes show interesting structural features from mononuclear (1), one-dimensional (2 and 3), two-dimensional (4) to three-dimensional (5) under the influence of inorganic anions with different basicities. The structural variation can bemore » explained by the hard-soft-acid-base (HSAB) theory. Magnetic susceptibility measurement indicates that complex 3 exhibits an antiferromagnetic coupling between adjacent Cu(II) ions. - Graphical abstract: Five new Cu(II)/Ag(I) complexes show interesting structural features from mononuclear, one-dimension, two-dimension to three-dimension under the influence of inorganic anions. The structural variation can be explained by the HSAB theory. - Highlights: • Five inorganic anion-dependent complexes are synthesized. • Structural variation can be explained by the hard-soft-acid-base (HSAB) theory. • The magnetic property of complex has been studied.« less
Freydank; Krasia; Tiddy; Patrickios
2000-05-01
A family of six near-monodisperse homopolymers of sodium methacrylate (Mn = 1100, 3200, 5500, 7200, 14100, and 21000) is characterized by linear salt gradient anion-exchange chromatography. Although the retention times depend on the initial and final salt concentrations of the gradient, they are almost independent of the molecular weight of poly(sodium methacrylate). This suggests that anion-exchange chromatography is incapable of resolving mixtures of a given polyelectrolyte to their components of various molecular weights, and it is therefore impossible to identify the polydispersity of such a sample using this method. The independence of the retention times from molecular weight is also predicted by a theory based on stoichiometric mass-action ion-exchange. Using this theory and our experimental retention times, the equilibrium anion-exchange constant and the corresponding Gibbs free energy of anion-exchange of the monomer repeat unit are calculated to be around 2.1 and -1.8 kJ/mol, respectively.
Zhang, Hao; Yang, Minmin; Luan, Qian; Tang, Hu; Huang, Fenghong; Xiang, Xia; Yang, Chen; Bao, Yuping
2017-05-17
Cellulose anionic hydrogels were successfully prepared by dissolving TEMPO-oxidized cellulose nanofibers in NaOH/urea aqueous solution and being cross-linked with epichlorohydrin. The hydrogels exhibited microporous structure and high hydrophilicity, which contribute to the excellent water absorption property. The growth indexes, including the germination rate, root length, shoot length, fresh weight, and dry weight of the seedlings, were investigated. The results showed that cellulose anionic hydrogels with suitable carboxylate contents as plant growth regulators could be beneficial for seed germination and growth. Moreover, they presented preferable antifungal activity during the breeding and growth of the sesame seed breeding. Thus, the cellulose anionic hydrogels with suitable carboxylate contents could be applied as soilless culture mediums for plant growth. This research provided a simple and effective method for the fabrication of cellulose anionic hydrogel and evaluated its application in agriculture.
Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang
2009-05-01
A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.
Rojas, Ricardo; Bruna, Felipe; de Pauli, Carlos P; Ulibarri, M Ángeles; Giacomelli, Carla E
2011-07-01
Layered double hydroxides (LDHs) reactivity and interfacial behavior are closely interconnected and control particle properties relevant to the wide range of these solids' applications. Despite their importance, their relationship has been hardly described. In this work, chloride and dodecylsulfate (DDS(-)) intercalated LDHs are studied combining experimental data (electrophoretic mobility and contact angle measurements, hydroxyl and organic compounds uptake) and a simple mathematical model that includes anion-binding and acid-base reactions. This approach evidences the anion effect on LDHs interfacial behavior, reflected in the opposite particle charge and the different surface hydrophobic/hydrophilic character. LDHs reactivity are also determined by the interlayer composition, as demonstrated by the cation uptake capability of the DDS(-) intercalated sample. Consequently, the interlayer anion modifies the LDHs interfacial properties and reactivity, which in turn extends the customization capacity of these solids. Copyright © 2011 Elsevier Inc. All rights reserved.
A protein with anion exchange properties found in the kidney proximal tubule.
Soleimani, M; Bizal, G L; Anderson, C C
1993-09-01
One important mechanism for reabsorption of chloride in the kidney proximal tubule involves anion exchange of chloride for a base. Anion exchange transport systems in general demonstrate sensitivity to inhibition by disulfonic stilbenes, probenecid, furosemide, and the arginyl amino group modifier phenylglyoxal. Using disulfonic stilbene affinity chromatography, we have identified and partially purified a protein with anion exchanger properties in luminal membrane vesicles isolated from rabbit kidney cortex. This protein has a molecular weight of 162 kD. The binding of the 162 kD protein to the stilbene affinity matrix is inhibited by disulfonic stilbenes, probenecid, furosemide, and phenylglyoxal. Reconstitution of the proteins eluted from the affinity matrix into liposomes demonstrates anion exchange activity as assayed by radiolabeled chloride influx. Deletion of the 162 kD protein from the eluted mixture by probenecid diminishes the anion exchanger activity in the reconstituted liposomes. Further purification of the disulfonic stilbene column eluant by Econo-Pac Q ion exchange chromatography resulted in significant enrichment in 162 kD protein abundance and also anion exchange activity in reconstituted liposomes. The results of the above experiments strongly suggest that the 162 kD protein is an anion exchanger. Insight into the functional and molecular characteristics of this protein should provide important information about the mechanism(s) of chloride reabsorption in the kidney proximal tubule.
Alizadeh, Taher; Atayi, Khalil
2018-02-01
Herein, a new recipe is introduced for the preparation of hydrogen phosphate ion-imprinted polymer nanoparticles (nano-IIP) in acetonitrile/water (63.5:36.5) using phosphoric acid as the template. The nano-IIP obtained was used as the recognition element of a carbon paste potentiometric sensor. The IIP electrode showed a Nernstian response to hydrogen phosphate anion; whereas, the non-imprinted polymer (NIP)-based electrode had no considerable sensitivity to the anion. The presence of both methacrylic acid and vinyl pyridine in the IIP structure, as well as optimization of the functional monomers-template proportion, was found to be important to observe the sensing capability of the IIP electrode. The nano-IIP electrode showed a dynamic linear range of 1 × 10 -5 -1 × 10 -1 mol L-1, Nernstian slope of 30.6 ± (0.5) mV decade -1 , response time of 25 seconds, and detection limit of 4.0 × 10 -6 mol L -1 . The utility of the electrodes was checked by potentiometric titration of hydrogen phosphate with La 3+ solution. Copyright © 2017 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Surdo, A. I.; Milman, I. I.; Abashev, R. M.; Vlasov, M. I.
2014-12-01
Results of studies of the thermoluminescence (TL) of anion-deficient alumina (α-Al2O3 - δ) single crystals and based on them TLD-500 detectors exposed to pulsed X-ray and electron radiation in a wide range of doses D, pulsed dose rates P p , and temperatures are described. The TL responses of α-Al2O3 - δ for continuous and pulsed X-ray irradiation at D = 0.05-150 Gy are compared. Unlike continuous irradiation, in the case of pulsed irradiation at P p ≥ 6 × 106 Gy/s, a linear increase in the TL response as a function of D is registered in the main and "chromium" peaks at 450 and 580 K, respectively, with a decrease in the slope of the dose dependence at D > 2 Gy for the peak at 450 K. It is found that high-dose irradiation (>60 Gy) leads to the formation of a new TL peak at 830 K and the preferential redistribution of the stored light sums into this peak. The dose dependence for the TL peak at 830 K is studied. It is established that it is linear in a super-high dose range of 104 to 6 × 106 Gy at P p = 2.6 × 1011 Gy/s.
The Effect of Reduction Potential on the Generation of the Perylene Diimide Radical Anions
NASA Astrophysics Data System (ADS)
Zhao, Y. Z.; Li, K. X.; Ding, S. Y.; Zhu, M.; Ren, H. P.; Ma, Q.; Guo, Z.; Tian, S. P.; Zhang, H. Q.; Miao, Z. C.
2018-07-01
Perylene diimide derivatives (PDIs) with different substituents in the bay positions (Un-PDI, DFPDI and THBPDI) were chosen in this report to investigate the effect of potential on the reduction of PDIs through base (hydrazine, 1,2-ethanediamine and triethylamine)-driven keto-enol anion tautomerism. The reduction potentials (PDI/PDI•-) of these compounds determined via cyclic voltammetry are -0.51, ‒0.34, and -0.098 V for Un-PDI, DFPDI, and THBPDI, respectively. The reduction of Un-PDI, DFPDI and THBPDI by hydrazine can produce corresponding radical anions and dianions, but the volume of hydrazine added at which the radicals started to appear is different and depends on their reduction potential. The similar phenomenon was observed using 1,2-ethylenediamine and triethylamine. However, only the radical anion was obtained even in a large excess of 1,2-ethanediamine or triethylamine. Moreover, the reduction of these PDIs with different bases added in the same amount was investigated, and the correlation with their basicity was shown.
Sukato, Rangsarit; Sangpetch, Nuanphan; Palaga, Tanapat; Jantra, Suthikorn; Vchirawongkwin, Viwat; Jongwohan, Chanantida; Sukwattanasinitt, Mongkol; Wacharasindhu, Sumrit
2016-08-15
Development of cyanide sensor is important as the anion is harmful to human health and the environment. Herein, a new colorimetric and fluorescent probe GSB based on boron dipyrrole-methene (BODIPY) containing salicylaldehyde group for cyanide detection has been reported. GSB undergoes exclusive colorimetric change from orange to colorless and exhibits selective fluorescence turn-on at 504nm upon the addition of cyanide. Other 13 anions give almost no interference under physiological condition. Detection limit of the new cyanide-sensing GSB is 0.88μM, which is below World Health Organization (WHO) recommended level in drinking water. A calculation by density functional theory (DFT) shows suppression of photoinduced electron transfer (PET) mechanism along with the interruption of π-conjugation between salicylaldehyde and BODIPY core by cyanide anion. Cell imaging studies demonstrated that GSB is compatible and capable of sensing cyanide anion in living cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Stabilization of very rare tautomers of 1-methylcytosine by an excess electron.
Harańczyk, Maciej; Rak, Janusz; Gutowski, Maciej
2005-12-22
We characterized valence anionic states of 1-methylcytosine using various electronic structure methods. We found that the most stable valence anion is related to neither the canonical amino-oxo nor a rare imino-oxo tautomer, in which a proton is transferred from the N4 to N3 atom. Instead, it is related to an imino-oxo tautomer, in which the C5 atom is protonated. This anion is characterized by an electron vertical detachment energy (VDE) of 2.12 eV and it is more stable than the anion based on the canonical tautomer by 1.0 kcal/mol. The latter is characterized by a VDE of 0.31 eV. Another unusual low-lying imino-oxo tautomer with a VDE of 3.60 eV has the C6 atom protonated and is 3.6 kcal/mol less stable than the anion of the canonical tautomer. All these anionic states are adiabatically unbound with respect to the canonical amino-oxo neutral, with the instability of 5.8 kcal/mol for the most stable valence anion. The mechanism of formation of anionic tautomers with carbon atoms protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to the C5 or C6 atom. The six-member ring structure of anionic tautomers with carbon atoms protonated is unstable upon an excess electron detachment. Indeed the neutral systems collapse without a barrier to a linear or a bicyclo structure, which might be viewed as lesions to DNA or RNA. Within the PCM hydration model, the anions become adiabatically bound with respect to the corresponding neutrals, and the two most stable tautomers have a carbon atom protonated.
Preparation and characterization of novel anion phase change heat storage materials.
Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong
2013-10-01
In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.
Szabados, Márton; Varga, Gábor; Kónya, Zoltán; Kukovecz, Ákos; Carlson, Stefan; Sipos, Pál; Pálinkó, István
2018-01-01
An ultrasonically-enhanced mechanochemical method was developed to synthesize CaFe-layered double hydroxides (LDHs) with various interlayer anions (CO 3 2- , NO 3 - , ClO 4 - , N 3 - , F - , Cl - , Br - and I - ). The duration of pre-milling and ultrasonic irradiation and the variation of synthesis temperature in the wet chemical step were investigated to obtain the optimal parameters of preparation. The main method to characterize the products was X-ray diffractometry, but infrared and synchrotron-based X-ray absorption spectroscopies as well as thermogravimetric measurements were also used to learn about fine structural details. The synthesis method afforded successful intercalation of the anions, among others the azide anion, a rarely used counter ion providing a system, which enables safe handling the otherwise highly reactive anion. The X-ray absorption spectroscopic measurements revealed that the quality of the interlayered anions could modulate the spatial arrangement of the calcium ions around the iron(III) ions, but only in the second coordination sphere. Copyright © 2017 Elsevier B.V. All rights reserved.
Gas-Phase Anionic σ-Adduct (Trans)formations in Heteroaromatic Systems1
NASA Astrophysics Data System (ADS)
Zimnicka, Magdalena; Danikiewicz, Witold
2015-07-01
Anions of nitroderivatives of thiophene and furan were subjected to the reactions with selected C-H acids in the gas phase. Various structures and reaction pathways were proposed for the observed ionic products. In general, the reactions of heteroaromatic anions with C-H acids may be divided into three groups, depending on the proton affinity difference between C-H acid's conjugate base and heteroaromatic anion (ΔPA). The proton transfer from C-H acid to heteroaromatic anion is a dominant process in the reactions for which ΔPA < 0 kcal mol-1, whereas the reactions with high ΔPA (ΔPA > 16 kcal mol-1) do not lead to any ionic products. The formation of σ-adducts and products of their further transformations according to the VNS, SNAr, cine, and tele substitution mechanisms have been proposed for reactions with moderate ΔPA. The other possible mechanisms as SN2 reaction, nucleophilic addition to the cyano group, ring-opening pathway, and halogenophilic reaction have also been discussed to contribute in the reactions between heteroaromatic anions and C-H acids.
Reversible Intercalation of Fluoride-Anion Receptor Complexes in Graphite
NASA Technical Reports Server (NTRS)
West, William C.; Whitacre, Jay F.; Leifer, Nicole; Greenbaum, Steve; Smart, Marshall; Bugga, Ratnakumar; Blanco, Mario; Narayanan, S. R.
2007-01-01
We have demonstrated a route to reversibly intercalate fluoride-anion receptor complexes in graphite via a nonaqueous electrochemical process. This approach may find application for a rechargeable lithium-fluoride dual-ion intercalating battery with high specific energy. The cell chemistry presented here uses graphite cathodes with LiF dissolved in a nonaqueous solvent through the aid of anion receptors. Cells have been demonstrated with reversible cathode specific capacity of approximately 80 mAh/g at discharge plateaus of upward of 4.8 V, with graphite staging of the intercalant observed via in situ synchrotron X-ray diffraction during charging. Electrochemical impedance spectroscopy and B-11 nuclear magnetic resonance studies suggest that cointercalation of the anion receptor with the fluoride occurs during charging, which likely limits the cathode specific capacity. The anion receptor type dictates the extent of graphite fluorination, and must be further optimized to realize high theoretical fluorination levels. To find these optimal anion receptors, we have designed an ab initio calculations-based scheme aimed at identifying receptors with favorable fluoride binding and release properties.
How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation
Nakagawa, Masashi; Iwasa, Tatsuo; Kikkawa, Satoshi; Tsuda, Motoyuki; Ebrey, Thomas G.
1999-01-01
In vertebrate visual pigments, a glutamic acid serves as a negative counterion to the positively charged chromophore, a protonated Schiff base of retinal. When photoisomerization leads to the Schiff base deprotonating, the anionic glutamic acid becomes protonated, forming a neutral species that activates the visual cascade. We show that in octopus rhodopsin, the glutamic acid has no anionic counterpart. Thus, the “counterion” is already neutral, so no protonated form of an initially anionic group needs to be created to activate. This helps to explain another observation—that the active photoproduct of octopus rhodopsin can be formed without its Schiff base deprotonating. In this sense, the mechanism of light activation of octopus rhodopsin is simpler than for vertebrates, because it eliminates one of the steps required for vertebrate rhodopsins to achieve their activating state. PMID:10339563
NASA Astrophysics Data System (ADS)
Khadsai, Sudarat; Rutnakornpituk, Boonjira; Vilaivan, Tirayut; Nakkuntod, Maliwan; Rutnakornpituk, Metha
2016-09-01
Magnetite nanoparticles (MNPs) were surface modified with anionic poly( N-acryloyl glycine) (PNAG) and streptavidin for specific interaction with biotin-conjugated pyrrolidinyl peptide nucleic acid (PNA). Hydrodynamic size ( D h) of PNAG-grafted MNPs varied from 334 to 496 nm depending on the loading ratio of the MNP to NAG in the reaction. UV-visible and fluorescence spectrophotometries were used to confirm the successful immobilization of streptavidin and PNA on the MNPs. About 291 pmol of the PNA/mg MNP was immobilized on the particle surface. The PNA-functionalized MNPs were effectively used as solid supports to differentiate between fully complementary and non-complementary/single-base mismatch DNA using the PNA probe. These novel anionic MNPs can be efficiently applicable for use as a magnetically guidable support for DNA base discrimination.
Visualizing transient Watson-Crick-like mispairs in DNA and RNA duplexes.
Kimsey, Isaac J; Petzold, Katja; Sathyamoorthy, Bharathwaj; Stein, Zachary W; Al-Hashimi, Hashim M
2015-03-19
Rare tautomeric and anionic nucleobases are believed to have fundamental biological roles, but their prevalence and functional importance has remained elusive because they exist transiently, in low abundance, and involve subtle movements of protons that are difficult to visualize. Using NMR relaxation dispersion, we show here that wobble dG•dT and rG•rU mispairs in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-populated Watson-Crick-like mispairs that are stabilized by rare enolic or anionic bases. These mispairs can evade Watson-Crick fidelity checkpoints and form with probabilities (10(-3) to 10(-5)) that strongly imply a universal role in replication and translation errors. Our results indicate that rare tautomeric and anionic bases are widespread in nucleic acids, expanding their structural and functional complexity beyond that attainable with canonical bases.
Mulder, R Joshua; Guerra, Célia Fonseca; Bickelhaupt, F Matthias
2010-07-22
We have computed the methyl cation affinities in the gas phase of archetypal anionic and neutral bases across the periodic table using ZORA-relativistic density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. The main purpose of this work is to provide the methyl cation affinities (and corresponding entropies) at 298 K of all anionic (XH(n-1)(-)) and neutral bases (XH(n)) constituted by maingroup-element hydrides of groups 14-17 and the noble gases (i.e., group 18) along the periods 2-6. The cation affinity of the bases decreases from H(+) to CH(3)(+). To understand this trend, we have carried out quantitative bond energy decomposition analyses (EDA). Quantitative correlations are established between the MCA and PA values.
Anion Solvation in Carbonate-Based Electrolytes
von Wald Cresce, Arthur; Gobet, Mallory; Borodin, Oleg; ...
2015-11-16
The correlation between Li + solvation and interphasial chemistry on anodes firmly established in Li-ion batteries, the effect of cation–solvent interaction has gone beyond bulk thermodynamic and transport properties and become an essential element that determines the reversibility of electrochemistry and kinetics of Li-ion intercalation chemistries. Now, most studies are dedicated to the solvation of Li +, and the solvation of anions in carbonate-based electrolytes and its possible effect on the electrochemical stability of such electrolytes remains little understood. Moreover, as a mirror effort to prior Li + solvation studies, this work focuses on the interactions between carbonate-based solvents andmore » two anions (hexafluorophosphate, PF 6–, and tetrafluoroborate, BF 4–) that are most frequently used in Li-ion batteries. The possible correlation between such interaction and the interphasial chemistry on cathode surface is also explored.« less
Mehdi, Hassan; Pang, Hongchang; Gong, Weitao; Dhinakaran, Manivannan Kalavathi; Wajahat, Ali; Kuang, Xiaojun; Ning, Guiling
2016-07-07
A novel smart supramolecular organic gelator G-16 containing anion and metal-coordination ability has been designed and synthesized. It shows excellent and robust gelation capability as a strong blue fluorescent supramolecular organic gel OG in DMF. Addition of Zn(2+) produced Zn(2+)-coordinated supramolecular metallogel OG-Zn. Organic gel OG and organometallic gel OG-Zn exhibited efficient and different sensing behaviors towards fluoride ion due to the variation in self-assembling nature. Supramolecular metallogel OG-Zn displayed specific selectivity for fluoride ion and formed OG-Zn-F with dramatic color change from blue to blue green in solution and gel to gel states. Furthermore after directly addition of fluoride into OG produced fluoride containing organic gel OG-F with drastically modulation in color from blue to greenish yellow fluorescence via strong aggregation-induced emission (AIE) property. A number of experiments were conducted such as FTIR, (1)H NMR, and UV/Vis spectroscopies, XRD, SEM and rheology. These results revealed that the driving forces involved in self-assembly of OG, OG-Zn, OG-Zn-F and OG-F were hydrogen bonding, metal coordination, π-π interactions, and van der Waal forces. In contrast to the most anion responsive gels, particularly fluoride ion responsive gels showed gel-sol state transition on stimulation by anions, the gel state of OG and OG-Zn did not show any gel-to-sol transition during the whole F(-) response process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick, E-mail: cjarrold@indiana.edu
2015-07-21
The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to themore » free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2} {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.« less
Vivès, R R; Goodger, S; Pye, D A
2001-02-15
Heparan sulphates are highly sulphated linear polysaccharides involved in many cellular functions. Their biological properties stem from their ability to interact with a wide range of proteins. An increasing number of studies, using heparan sulphate-derived oligosaccharides, suggest that specific structural features within the polysaccharide are responsible for ligand recognition and regulation. In the present study, we show that strong anion-exchange HPLC alone, a commonly used technique for purification of heparan sulphate-derived oligosaccharides, may not permit the isolation of highly pure heparan sulphate oligosaccharide species. This was determined by PAGE analysis of hexa-, octa- and decasaccharide samples deemed to be pure by strong anion-exchange HPLC. In addition, subtle differences in the positioning of sulphate groups within heparan sulphate hexasaccharides were impossible to detect by strong anion-exchange HPLC. PAGE analysis on the other hand afforded excellent resolution of these structural isomers. The precise positioning of specific sulphate groups has been implicated in determining the specificity of heparan sulphate interactions and biological activities; hence, the purification of oligosaccharide species that differ in this way becomes an important issue. In this study, we have used strong anion-exchange HPLC and PAGE techniques to allow production of the homogeneous heparan sulphate oligosaccharide species that will be required for the detailed study of structure/activity relationships.
Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.
Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J
2004-01-01
Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.
Stimuli Responsive Ionogels for Sensing Applications—An Overview
Kavanagh, Andrew; Byrne, Robert; Diamond, Dermot; Fraser, Kevin J.
2012-01-01
This overview aims to summarize the existing potential of “Ionogels” as a platform to develop stimuli responsive materials. Ionogels are a class of materials that contain an Ionic Liquid (IL) confined within a polymer matrix. Recently defined as “a solid interconnected network spreading throughout a liquid phase”, the ionogel therefore combines the properties of both its solid and liquid components. ILs are low melting salts that exist as liquids composed entirely of cations and anions at or around 100 °C. Important physical properties of these liquids such as viscosity, density, melting point and conductivity can be altered to suit a purpose by choice of the cation/anion. Here we provide an overview to highlight the literature thus far, detailing the encapsulation of IL and responsive materials within these polymeric structures. Exciting applications in the areas of optical and electrochemical sensing, solid state electrolytes and actuating materials shall be discussed. PMID:24957961
Lesch, Volker; Li, Zhe; Bedrov, Dmitry; Borodin, Oleg; Heuer, Andreas
2016-01-07
The dynamical and structural properties in two ionic liquid electrolytes (ILEs) based on 1-ethyl-3-methylimidazolium bis-(trifluoromethanesulfonyl)-imide ([emim][TFSI]) and N-methyl-N-propylpyrrolidinium bis-(trifluoromethanesulfonyl)imide([pyr13][TFSI]) were compared as a function of lithium bis-(trifluoromethanesulfonyl)-imide (LiTFSI) salt concentrations using atomistic molecular dynamics (MD) simulations. The many-body polarizable APPLE&P force field has been utilized. The influence of anion polarization on the structure of the first coordination shell of Li(+) was examined. In particular, the reduction of the oxygen of the TFSI anion (OTFSI) polarizability from 1.36 Å(3) to 1.00 Å(3) resulted in an increased fraction of the TFSI anion bidentate coordination to the Li(+). While the overall dynamics in [pyr13][TFSI]-based ILEs was slower than in [emim][TFSI]-based ILEs, the exchange of TFSI anions in and out of the first coordination shell of Li(+) was found to be faster in pyr13-based systems. The Li(+) ion transference number is higher for these systems as well. These trends can be related to the difference in interaction of TFSI with the IL cation which is stronger for pyr13 than for emim.
Yang, Zhenghao; Liu, Zhipeng; Chen, Yuncong; Wang, Xiaoqing; He, Weijiang; Lu, Yi
2012-07-14
A hybrid coumarin-hemicyanine dye, Cou-BT, was developed as a new ratiometric and colorimetric sensor for cyanide with a sensing mechanism via nucleophilic addition of cyanide anion to the benzothiolium group. Cou-BT shows high sensitivity and selectivity for cyanide detection over other common anion species in aqueous acetonitrile solution. The calculated pseudo-first-order rate constant for cyanide anion addition was (2.13 ± 0.08) × 10(-2) s(-1) at 298 K, and the detection limit was estimated to be 0.64 μM. The DFT and TDDFT calculation results suggest that the ratiometric and colorimetric sensing behavior of Cou-BT upon its reaction with cyanide was due to the interrupted π-conjugation and blocked ICT progress.
Shang, Xuefang; Zhao, Yuan; Wei, Xiaofang; Feng, Yaqian; Li, Xin; Gao, Shuyan; Xu, Xiufang
2015-01-01
New phenanthroline derivatives (1, 2, 3, 4) containing phenol groups have been synthesized and optimized. The nano-material of compound 2 was also developed. Their binding properties were evaluated for various biological anions (F(-), Cl(-), Br(-), I(-), AcO(-) and H(2)PO(4)(-)) by theoretical investigation, UV-vis, fluorescence, (1)HNMR titration experiments and these compounds all showed strong binding ability for AcO(-) without the interference of other anions tested. The anion binding ability could be regularized by electron push-pull properties of the ortho- or para- substituent on benzene. Theoretical investigation analysis revealed the effect of intramolecular hydrogen bond existed between -OH and other atoms in the structure of these compounds.
Enhanced anion exchange for selective sulfate extraction: overcoming the Hofmeister bias.
Fowler, Christopher J; Haverlock, Tamara J; Moyer, Bruce A; Shriver, James A; Gross, Dustin E; Marquez, Manuel; Sessler, Jonathan L; Hossain, Md Alamgir; Bowman-James, Kristin
2008-11-05
In this communication, a new approach to enhancing the efficacy of liquid-liquid anion exchange is demonstrated. It involves the concurrent use of appropriately chosen hydrogen-bond-donating (HBD) anion receptors in combination with a traditional quaternary ammonium extractant. The fluorinated calixpyrroles 1 and 2 and the tetraamide macrocycle 4 were found to be particularly effective receptors. Specifically, their use allowed the extraction of sulfate by tricaprylmethylammonium nitrate to be effected in the presence of excess nitrate. As such, the present work provides a rare demonstration of overcoming the Hofmeister bias in a competitive environment and the first to the authors' knowledge wherein this difficult-to-achieve objective is attained using a neutral HBD-based anion binding agent under conditions of solvent extraction.
Cheng, Fei; Bonder, Edward M; Jäkle, Frieder
2013-11-20
Luminescent triarylborane homo and block copolymers with well-defined chain architectures were synthesized via reversible addition-fragmentation chain transfer polymerization of a vinyl-functionalized borane monomer. The Lewis acid properties of the polymers were exploited in the luminescent detection of fluoride ions. A dual-responsive fluoride sensor was developed by taking advantage of the reversible self-assembly of a PNIPAM-based amphiphilic block copolymer. Anion detection in aqueous solution was realized by introducing positively charged pyridinium moieties along the polymer chain.
AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.
Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej
2005-05-04
The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.
Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El
2014-01-01
The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches. PMID:28788602
Sulfate-based anionic diblock copolymer nanoparticles for efficient occlusion within zinc oxide
NASA Astrophysics Data System (ADS)
Ning, Y.; Fielding, L. A.; Andrews, T. S.; Growney, D. J.; Armes, S. P.
2015-04-01
Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source.Occlusion of copolymer particles within inorganic crystalline hosts not only provides a model for understanding the crystallisation process, but also may offer a direct route for the preparation of novel nanocomposite materials with emergent properties. In the present paper, a series of new well-defined anionic diblock copolymer nanoparticles are synthesised by polymerisation-induced self-assembly (PISA) via reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerisation and then evaluated as crystal habit modifiers for the in situ formation of ZnO in aqueous solution. Systematic studies indicate that both the chemical nature (i.e. whether sulfate-based or carboxylate-based) and the mean degree of polymerisation (DP) of the anionic stabiliser block play vital roles in determining the crystal morphology. In particular, sulfate-functionalised nanoparticles are efficiently incorporated within the ZnO crystals whereas carboxylate-functionalised nanoparticles are excluded, thus anionic character is a necessary but not sufficient condition for successful occlusion. Moreover, the extent of nanoparticle occlusion within the ZnO phase can be as high as 23% by mass depending on the sulfate-based nanoparticle concentration. The optical properties, chemical composition and crystal structure of the resulting nanocomposite crystals are evaluated and an occlusion mechanism is proposed based on the observed evolution of the ZnO morphology in the presence of sulfate-based anionic nanoparticles. Finally, controlled deposition of a 5 nm gold sol onto porous ZnO particles (produced after calcination of the organic nanoparticles) significantly enhances the rate of photocatalytic decomposition of a model rhodamine B dye on exposure to a relatively weak UV source. Electronic supplementary information (ESI) available: Kinetic data for RAFT polymerisation of SEM, GPC traces of PSEM homopolymers, additional digital photographs and TEM images of various diblock copolymer nanoparticles. Length/width histograms for ZnO particles prepared in the absence of any additive (control), PSES73 homopolymer, and S73-B300 nanoparticle. Additional DCP and LUMiSizer® particle size distributions, N2 adsorption data and elemental microanalyses. See DOI: 10.1039/c5nr00535c
NASA Astrophysics Data System (ADS)
Zeng, Xianghui; de Groot, Anne Marit; Sijts, Alice J. A. M.; Broere, Femke; Oude Blenke, Erik; Colombo, Stefano; van Eden, Willem; Franzyk, Henrik; Nielsen, Hanne Mørck; Foged, Camilla
2015-11-01
Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers.Cationic vectors have demonstrated the potential to facilitate intracellular delivery of therapeutic oligonucleotides. However, enhanced transfection efficiency is usually associated with adverse effects, which also proves to be a challenge for vectors based on cationic peptides. In this study a series of proteolytically stable palmitoylated α-peptide/β-peptoid peptidomimetics with a systematically varied number of repeating lysine and homoarginine residues was shown to self-assemble with small interfering RNA (siRNA). The resulting well-defined nanocomplexes were coated with anionic lipids giving rise to net anionic liposomes. These complexes and the corresponding liposomes were optimized towards efficient gene silencing and low adverse effects. The optimal anionic liposomes mediated a high silencing effect, which was comparable to that of the control (cationic Lipofectamine 2000), and did not display any noticeable cytotoxicity and immunogenicity in vitro. In contrast, the corresponding nanocomplexes mediated a reduced silencing effect with a more narrow safety window. The surface coating with anionic lipid bilayers led to partial decomplexation of the siRNA-peptidomimetic nanocomplex core of the liposomes, which facilitated siRNA release. Additionally, the optimal anionic liposomes showed efficient intracellular uptake and endosomal escape. Therefore, these findings suggest that a more efficacious and safe formulation can be achieved by surface coating of the siRNA-peptidomimetic nano-self-assemblies with anionic lipid bilayers. Electronic supplementary information (ESI) available: Non-fusogenic liposomes; cytotoxicity of naked siRNA and the empty vector; immunogenicity; low-magnification images; DOPE/DPPC liposomes. See DOI: 10.1039/c5nr04807a
Chen, Fengkun; Zhang, Jie; Jiang, Hong; Wan, Xinhua
2013-07-01
The large redshift of near-infrared (NIR) absorptions of nitro-substituted anthraquinone imide (Nitro-AQI) radical anions, relative to other AQI derivatives, is rationalized based on quantum chemical calculations. Calculations reveal that the delocalization effects of electronegative substitution in the radical anion states is dramatically enhanced, thus leading to a significant decrease in the HOMO-LUMO band gap in the radical anion states. Based on this understanding, an AQI derivative with an even stronger electron-withdrawing dicyanovinyl (di-CN) substituent was designed and prepared. The resulting molecule, di-CN-AQI, displays no absorption in the Vis/NIR region in the neutral state, but absorbs intensively in the range of λ=700-1000 (λmax ≈860 nm) and λ=1100-1800 nm (λmax ≈1400 nm) upon one-electron reduction; this is accompanied by a transition from a highly transmissive colorless solution to one that is purple-red. The relationship between calculated radical anionic HOMO-LUMO gaps and the electron-withdrawing capacity of the substituents is also determined by employing Hammett parameter, which could serve as a theoretical tool for further molecular design. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Method of separating thorium from plutonium
Clifton, David G.; Blum, Thomas W.
1984-01-01
A method of chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
A method of chemically separating plutonium from thorium is claimed. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
Method of separating thorium from plutonium
Clifton, D.G.; Blum, T.W.
1984-07-10
A method is described for chemically separating plutonium from thorium. Plutonium and thorium to be separated are dissolved in an aqueous feed solution, preferably as the nitrate salts. The feed solution is acidified and sodium nitrite is added to the solution to adjust the valence of the plutonium to the +4 state. A chloride salt, preferably sodium chloride, is then added to the solution to induce formation of an anionic plutonium chloride complex. The anionic plutonium chloride complex and the thorium in solution are then separated by ion exchange on a strong base anion exchange column.
The Thermochemical Stability of Ionic Noble Gas Compounds.
ERIC Educational Resources Information Center
Purser, Gordon H.
1988-01-01
Presents calculations that suggest stoichiometric, ionic, and noble gas-metal compounds may be stable. Bases calculations on estimated values of electron affinity, anionic radius for the noble gases and for the Born exponents of resulting crystals. Suggests the desirability of experiments designed to prepare compounds containing anionic,…
Wouters, Sam; Wouters, Bert; Jespers, Sander; Desmet, Gert; Eghbali, Hamed; Bruggink, Cees; Eeltink, Sebastiaan
2014-08-15
A microfluidic membrane suppressor has been constructed to suppress ions of alkaline mobile-phases via an acid-base reaction across a sulfonated poly(tetrafluoroethylene)-based membrane and was evaluated for anion-exchange separations using conductivity detection. The membrane was clamped between two chip substrates, accommodating rectangular microchannels for the eluent and regenerant flow, respectively. Additionally, a clamp-on chip holder has been constructed which allows the alignment and stacking of different chip modules. The response and efficacy of the microfluidic chip suppressor was assessed for a wide range of eluent (KOH) concentrations, using 127 and 183μm thick membranes, while optimizing the flow rate and concentration of the regenerant solution (H2SO4). The optimal operating eluent flow rate was determined at 5μL/min, corresponding to the optimal van-Deemter flow velocity of commercially-available column technology, i.e. a 0.4mm i.d.×250mm long column packed with 7.5μm anion-exchange particles. When equilibrated at 10mM KOH, a 99% decrease in conductivity signal could be obtained within 5min when applying 10mM H2SO4 regenerant at 75μL/min. A background signal as low as 1.2μS/cm was obtained, which equals the performance of a commercially-available electrolytic hollow-fiber suppressor. When increasing the temperature of the membrane suppressor from 15 to 20°C, ion suppression was significantly improved allowing the application of 75mM KOH. The applicability of the chip suppressor has been demonstrated with an isocratic baseline separation of a mixture of seven inorganic ions, yielding plate numbers between 5300 and 10,600 and with a gradient separation of a complex ion mixture. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Samanta, Tapastaru; Dey, Lingaraj; Dinda, Joydev; Chattopadhyay, Shyamal Kumar; Seth, Saikat Kumar
2014-06-01
The cooperative effect of weak non-covalent forces between anions and electron deficient aromatics by π⋯π stacking of a series of carbene proligands (1-3) have been thoroughly explored by crystallographic studies. Structural analysis revealed that the anion⋯π and π⋯π interactions along with intermolecular hydrogen bonding mutually cooperate to facilitate the assembling of the supramolecular framework. The π⋯π and corresponding anion⋯π interactions have been investigated in the title carbene proligands despite their association with counter ions. The presence of the anion in the vicinity of the π-system leads to the formation of anion⋯π/π⋯π/π⋯anion network for an inductive stabilization of the assemblies. To assess the dimensionality of the supramolecular framework consolidated by cooperative anion⋯π/π⋯π interactions and hydrogen bonding, different substituent effects in the carbene backbone have been considered to tune these interactions. These facts show that the supramolecular framework based on these cooperative weak forces may be robust enough for application in molecular recognition. The investigation of close intermolecular interactions between the molecules via Hirshfeld surface analyses is presented in order to reveal subtle differences and similarities in the crystal structures. The decomposition of the fingerprint plot area provides a percentage of each intermolecular interaction, allowing for a quantified analysis of close contacts within each crystal.
Cavallaro, Gennara; Giammona, Gaetano; Pasotti, Luca; Pallavicini, Piersandro
2011-09-12
A new approach is presented to obtain fluorescent sensors for pH windows that work in water and under biomimetic conditions. A single molecule that features all-covalently linked components is used, thus making it capable of working as a fluorescent sensor with an OFF/ON/OFF response to pH value. The components are a tertiary amine, a pyridine, and a fluorophore (pyrene). The forms with both protonated bases or both neutral bases quench the pyrene fluorescence, whereas the form with the neutral pyridine and protonated amine groups is fluorescent. The molecular sensor is also equipped with a long alkyl chain to make it highly hydrophobic in all its protonated and unprotonated forms, that is, either when neutral or charged. Accordingly, it can be confined at any pH value either in traditional (i.e., low-molecular-weight) nonionic surfactant micelles or inside polymeric, biocompatible micellar containers. Relevant for future applications in vivo, thanks to its strong hydrophobicity, no leakage of the molecular sensor is observed from the polymeric biocompatible micelles. Due to the proximity of the pyridine and amine functions in the molecular structure and the poor hydration inside the micelles, the observed pK(a) values are low so that the ON window is positioned at very low pH values. However, the window can be shifted to biologically relevant values by comicellization of anionic species. In particular, in the micelles of the nonionic surfactant TritonX-100, a shift of the ON window to pH 4-6 is obtained by addition of the anionic sodium dodecyl sulphate surfactant, whose negative charge promotes the stability of the protonated forms of the pyridine and amine fragments. In the case of the polymeric micelles, we introduce the use of the amphiphilic polystyrene sulfonate anionic polyelectrolyte, the comicellization of which induces a shift and sharpening of the ON window that is centered at pH 4. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interactions in ion pairs of protic ionic liquids: Comparison with aprotic ionic liquids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuzuki, Seiji, E-mail: s.tsuzuki@aist.go.jp; Shinoda, Wataru; Miran, Md. Shah
2013-11-07
The stabilization energies for the formation (E{sub form}) of 11 ion pairs of protic and aprotic ionic liquids were studied by MP2/6-311G{sup **} level ab initio calculations to elucidate the difference between the interactions of ions in protic ionic liquids and those in aprotic ionic liquids. The interactions in the ion pairs of protic ionic liquids (diethylmethylammonium [dema] and dimethylpropylammonium [dmpa] based ionic liquids) are stronger than those of aprotic ionic liquids (ethyltrimethylammonium [etma] based ionic liquids). The E{sub form} for the [dema][CF{sub 3}SO{sub 3}] and [dmpa][CF{sub 3}SO{sub 3}] complexes (−95.6 and −96.4 kcal/mol, respectively) are significantly larger (more negative)more » than that for the [etma][CF{sub 3}SO{sub 3}] complex (−81.0 kcal/mol). The same trend was observed for the calculations of ion pairs of the three cations with the Cl{sup −}, BF{sub 4}{sup −}, TFSA{sup −} anions. The anion has contact with the N–H bond of the dema{sup +} or dmpa{sup +} cations in the most stable geometries of the dema{sup +} and dmpa{sup +} complexes. The optimized geometries, in which the anions locate on the counter side of the cations, are 11.0–18.0 kcal/mol less stable, which shows that the interactions in the ions pairs of protic ionic liquids have strong directionality. The E{sub form} for the less stable geometries for the dema{sup +} and dmpa{sup +} complexes are close to those for the most stable etma{sup +} complexes. The electrostatic interaction, which is the major source of the attraction in the ion pairs, is responsible for the directionality of the interactions and determining the magnitude of the interaction energy. Molecular dynamic simulations of the [dema][TFSA] and [dmpa][TFSA] ionic liquids show that the N–H bonds of the cations have contact with the negatively charged (oxygen and nitrogen) atoms of TFSA{sup −} anion, while the strong directionality of the interactions was not suggested from the simulation of the [etma][CF{sub 3}SO{sub 3}] ionic liquid.« less
Visualizing Transient Watson-Crick Like Mispairs in DNA and RNA Duplexes
Kimsey, Isaac J.; Petzold, Katja; Sathyamoorthy, Bharathwaj; Stein, Zachary W.; Al-Hashimi, Hashim M.
2015-01-01
Rare tautomeric and anionic nucleobases are believed to play fundamental biological roles but their prevalence and functional importance has remained elusive because they exist transiently, in low-abundance, and involve subtle movements of protons that are difficult to visualize. Using NMR relaxation dispersion, we show that wobble dG•dT and rG•rU mispairs in DNA and RNA duplexes exist in dynamic equilibrium with short-lived, low-populated Watson-Crick like mispairs that are stabilized by rare enolic or anionic bases. These mispairs can evade Watson-Crick fidelity checkpoints and form with probabilities (10−3-10−5) that strongly imply a universal role in replication and translation errors. Our results indicate that rare tautomeric and anionic bases are widespread in nucleic acids, expanding their structural and functional complexity beyond that attainable with canonical bases. PMID:25762137
Laramée, J A; Arbogast, B; Deinzer, M L
1989-10-01
It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.
NASA Astrophysics Data System (ADS)
Wang, Fei; Gao, Lei; Zhao, Qing; Zhang, Yang; Dong, Wen-Kui; Ding, Yu-Jie
2018-02-01
The optical properties of a novel chemosensor for cyanide anions based on a symmetric bis(salamo)-type ligand (H3L) were investigated by UV-Vis and fluorescence spectroscopy in MeOH/H2O (1:1 v/v) solution. Sensor H3L can selectively sense CN- based on prominent color changes among other anions. The chemosensor exhibits an apparent fluorescence enhancement at 482 nm to CN- which because cyanide ions interact with Cdbnd N bonds. Combining the corrected Benesi-Hildebrand formula, the binding constant of the formed host-guest complex was calculated as 2.42 × 105 M- 1. Meanwhile, the detection limit of the sensor toward CN- was 8.91 × 10- 7 M. It is worth noting that the designed sensor can be used for rapid detection of cyanide anions in basic pH range, and has great practical value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher M. Leavitt; Garold L. Gresham; Michael T. Benson
Diphenyldithiophosphinate (DTP) ligands modified with electron-withdrawing trifluoromethyl (TFM) substitutents are of high interest because they have demonstrated potential for exceptional separation of Am3+ from lanthanide3+ cations. Specifically, the bis(ortho-TFM) (L1-) and (ortho-TFM)(meta-TFM) (L2-) derivatives have shown excellent separation selectivity, while the bis(meta-TFM) (L3)- and unmodified DTP (Lu-) did not. Factors responsible for selective coordination have been investigated using density functional theory (DFT) calculations in concert with competitive dissociation reactions in the gas phase. To evaluate the role of (DTP+H) acidity, density functional calculations were used to predict pKa values, which followed the trend of L3 < L2 < L1
Oh, Jungmin; Sreedhar, Balamurali; Donaldson, Megan E; Frank, Timothy C; Schultz, Alfred K; Bommarius, Andreas S; Kawajiri, Yoshiaki
2016-09-30
Reactive chromatography using an anion exchange resin is proposed for a transesterification reaction of propylene glycol methyl ether (DOWANOL™ PM) with ethyl acetate to produce propylene glycol methyl ether acetate (DOWANOL™ PMA). This reaction is studied in batch and chromatographic reactors catalyzed by an anion exchange resin. Several anion exchange resins are tested and compared based on the performance of resin as an adsorbent and a catalyst. A chromatographic column is packed with a selected catalyst, AMBERLITE™ IRA904, and both reaction and chromatographic elution are studied at different temperatures and feed concentrations. The resulting chromatograms are fitted to a mathematical model to obtain adsorption equilibrium and reaction kinetic parameters by the inverse method. Compared to esterification investigated in a previous study, transesterification has advantages such as a higher conversion at lower temperature and easy removal of the byproduct which may lead to higher productivity. Deactivation of anion exchange resins is observed and potential solutions are suggested. Copyright © 2016 Elsevier B.V. All rights reserved.
Storoniak, Piotr; Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej; Rak, Janusz; Eustis, Soren N; Ko, Yeon Jae; Wang, Haopeng; Bowen, Kit H
2010-09-02
The photoelectron spectrum for (1-methylthymine)-(9-methyladenine)...(formic acid) (1MT-9MA...FA) anions with the maximum at ca. 1.87 eV was recorded with 2.54 eV photons and interpreted through the quantum-chemical modeling carried out at the B3LYP/6-31+G(d,p) level. The relative free energies of the anions and their calculated vertical detachment energies suggest that only seven anionic structures contribute to the observed PES signal. We demonstrate that electron binding to the (1MT-9MA...FA) complex can trigger intermolecular proton transfer from formic acid, leading to the strong stabilization of the resulting radical anion. The SOMO distribution indicates that an excess electron may localize not only on the pyrimidine but also on the purine moiety. The biological context of DNA-environment interactions concerning the formation of single-strand breaks induced by excess electrons has been briefly discussed.
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
Ions are promising building blocks for tunable self-organizing materials with advanced technological applications. However, because of strong Coulomb attraction with counterions, the intrinsic properties of ions are difficult to exploit for preparation of bulk materials. Here, we report the precisely-controlled preparation of macroscopic surface layers by soft landing of mass selected complex anions which determine the self organization of the layers with their molecular properties. The family of halogenated dodecaborates [B12X12]2- (X = F, Cl, Br, I), in which the internal charge distribution between core and shell regions of the molecular ions systematically vary, was deposited on different self assembledmore » monolayer surfaces (SAMs) on gold at high coverage. Layers of anions were found to be stabilized by accumulation of neutral molecules. Different phases, self-organization mechanisms and optical properties were observed to depend upon the internal charge distribution of the deposited anions, the underlying surface and the coadsorbed molecules. This demonstrates rational control of the properties of anion based layers.« less
Enhancing Cation Diffusion and Suppressing Anion Diffusion via Lewis-Acidic Polymer Electrolytes.
Savoie, Brett M; Webb, Michael A; Miller, Thomas F
2017-02-02
Solid polymer electrolytes (SPEs) have the potential to increase both the energy density and stability of lithium-based batteries, but low Li + conductivity remains a barrier to technological viability. SPEs are designed to maximize Li + diffusivity relative to the anion while maintaining sufficient salt solubility. It is thus remarkable that poly(ethylene oxide) (PEO), the most widely used SPE, exhibits Li + diffusivity that is an order of magnitude smaller than that of typical counterions at moderate salt concentrations. We show that Lewis-basic polymers like PEO favor slow cation and rapid anion diffusion, while this relationship can be reversed in Lewis-acidic polymers. Using molecular dynamics, polyboranes are identified that achieve up to 10-fold increases in Li + diffusivities and significant decreases in anion diffusivities, relative to PEO in the dilute-ion regime. These results illustrate a general principle for increasing Li + diffusivity and transference number with chemistries that exhibit weaker cation and stronger anion coordination.
A new method based on the Butler-Volmer formalism to evaluate voltammetric cation and anion sensors.
Cano, Manuel; Rodríguez-Amaro, Rafael; Fernández Romero, Antonio J
2008-12-11
A new method based on the Butler-Volmer formalism is applied to assess the capability of two voltammetric ion sensors based on polypyrrole films: PPy/DBS and PPy/ClO4 modified electrodes were studied as voltammetric cation and anion sensors, respectively. The reversible potential versus electrolyte concentrations semilogarithm plots provided positive calibration slopes for PPy/DBS and negative ones for PPy/ClO4, as was expected from the proposed method and that based on the Nernst equation. The slope expressions deduced from Butler-Volmer include the electron-transfer coefficient, which allows slope values different from the ideal Nernstian value to be explained. Both polymeric films exhibited a degree of ion-selectivity when they were immersed in mixed-analyte solutions. Selectivity coefficients for the two proposed voltammetric cation and anion sensors were obtained by several experimental methods, including the separated solution method (SSM) and matched potential method (MPM). The K values acquired by the different methods were very close for both polymeric sensors.
Protic ionic liquids based on the dimeric and oligomeric anions: [(AcO)xH(x-1)]-.
Johansson, K M; Izgorodina, E I; Forsyth, M; MacFarlane, D R; Seddon, K R
2008-05-28
We describe a fluidity and conductivity study as a function of composition in N-methylpyrrolidine-acetic acid mixtures. The simple 1 : 1 acid-base mixture appears to form an ionic liquid, but its degree of ionicity is quite low and such liquids are better thought of as poorly dissociated mixtures of acid and base. The composition consisting of 3 moles acetic acid and 1 mole N-methylpyrrolidine is shown to form the highest ionicity mixture in this binary due to the presence of oligomeric anionic species [(AcO)(x)H(x-1)](-) stabilised by hydrogen bonds. These oligomeric species, being weaker bases than the acetate anion, shift the proton transfer equilibrium towards formation of ionic species, thus generating a higher degree of ionicity than is present at the 1 : 1 composition. A Walden plot analysis, thermogravimetric behaviour and proton NMR data, as well as ab initio calculations of the oligomeric species, all support this conclusion.
Swart, Marcel; Bickelhaupt, F Matthias
2006-03-01
We have carried out an extensive exploration of the gas-phase basicity of archetypal anionic bases across the periodic system using the generalized gradient approximation of density functional theory (DFT) at BP86/QZ4P//BP86/TZ2P. First, we validate DFT as a reliable tool for computing proton affinities and related thermochemical quantities: BP86/QZ4P//BP86/TZ2P is shown to yield a mean absolute deviation of 1.6 kcal/mol for the proton affinity at 0 K with respect to high-level ab initio benchmark data. The main purpose of this work is to provide the proton affinities (and corresponding entropies) at 298 K of the anionic conjugate bases of all main-group-element hydrides of groups 14-17 and periods 2-6. We have also studied the effect of stepwise methylation of the protophilic center of the second- and third-period bases.
Chaban, Vitaly
2015-07-01
Electrolyte solutions based on the propylene carbonate (PC)-dimethoxyethane (DME) mixtures are of significant importance and urgency due to emergence of lithium-ion batteries. Solvation and coordination of the lithium cation in these systems have been recently attended in detail. However, analogous information concerning anions (tetrafluoroborate, hexafluorophosphate) is still missed. This work reports PM7-MD simulations (electronic-structure level of description) to include finite-temperature effects on the anion solvation regularities in the PC-DME mixture. The reported result evidences that the anions appear weakly solvated. This observation is linked to the absence of suitable coordination sites in the solvent molecules. In the concentrated electrolyte solutions, both BF4(-) and PF6(-) prefer to exist as neutral ion pairs (LiBF4, LiPF6).
A Cr(VI) selective probe based on a quinoline-amide calix[4]arene
NASA Astrophysics Data System (ADS)
Ferreira, Juliane F.; Bagatin, Izilda A.
2018-01-01
A new quinoline-amide calix[4]arene 3-receptor for detection of hazardous anions and cations have been synthesized. The 3-receptor was examined for its sensing properties towards several different anions (Cr2O72 -, SCN-, F-, Cl-, NO3-) and metal ions (Hg2+, Cd2+, Ag+) by UV-vis and fluorescence spectroscopies. It was detected that the 3-receptor has only sensing ability for Cr2O72 - and Hg2+ ions, resulting in the association constants higher for Cr2O72 - than to the Hg2+ ions. High selectivity towards Cr2O72 - were also observed by fluorescence measurement among other ions (F-, Cl-, SCN-, Hg2+, Cd2+, Ag+) with a low limit of detection (7.36 × 10-6 mol dm-3). Proton NMR anion-binding investigations revealed a strong interaction of Cr2O72 - anion with NH and CH groups of the receptor, showing that the combination with hydrogen-bonds donor groups strengthened the anion receptor association. Furthermore, remarkable association constants for dichromate anion obtained by all techniques strongly suggest the 3-receptor as a selective Cr(VI) sensor.
Grotthuss Transport of Iodide in EMIM/I3 Ionic Crystal.
McDaniel, Jesse G; Yethiraj, Arun
2018-01-11
Highly ionic environments can mediate unusual chemical reactions that would otherwise be considered impossible based on chemical intuition. For example, the formation of a chemical bond between two iodide anions to form a divalent polyiodide anion is seemingly prohibited due to Coulombic repulsion. Using ab initio molecular dynamics simulations, we show that in the 1-ethyl-3-methylimidazolium (EMIM)/I 3 ionic crystal, the reactive formation of divalent and even trivalent polyiodide anions occurs with extremely small energetic barriers, due to the electrostatic field of the ionic lattice. A practical consequence of this anomalous reactivity is that iodide anions are efficiently transported within the crystal through a "Grotthuss-exchange" mechanism involving bond-breaking and forming events. We characterize two distinct transport pathways, involving both I 4 2- and I 7 3- intermediates, with fast transport of iodide resulting from the release of an I - anion on the opposite side of the intermediate species from the initial bond formation. The ordered cation arrangement in the crystal provides the necessary electrostatic screening for close approach of anions, suggesting a new counterintuitive approach to obtain high ionic conductivity. This new design principle could be used to develop better solid-state electrolytes for batteries, fuel cells, and supercapacitors.
A Cr(VI) selective probe based on a quinoline-amide calix[4]arene.
Ferreira, Juliane F; Bagatin, Izilda A
2018-01-15
A new quinoline-amide calix[4]arene 3-receptor for detection of hazardous anions and cations have been synthesized. The 3-receptor was examined for its sensing properties towards several different anions (Cr 2 O 7 2- , SCN - , F - , Cl - , NO 3 - ) and metal ions (Hg 2+ , Cd 2+ , Ag + ) by UV-vis and fluorescence spectroscopies. It was detected that the 3-receptor has only sensing ability for Cr 2 O 7 2- and Hg 2+ ions, resulting in the association constants higher for Cr 2 O 7 2- than to the Hg 2+ ions. High selectivity towards Cr 2 O 7 2- were also observed by fluorescence measurement among other ions (F - , Cl - , SCN - , Hg 2+ , Cd 2+ , Ag + ) with a low limit of detection (7.36×10 -6 moldm -3 ). Proton NMR anion-binding investigations revealed a strong interaction of Cr 2 O 7 2- anion with NH and CH groups of the receptor, showing that the combination with hydrogen-bonds donor groups strengthened the anion receptor association. Furthermore, remarkable association constants for dichromate anion obtained by all techniques strongly suggest the 3-receptor as a selective Cr(VI) sensor. Copyright © 2017 Elsevier B.V. All rights reserved.
External anion effect on the synthesis of new MOFs based on formate and a twisted divergent ligands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lago, Ana Belén, E-mail: ablago@uvigo.es; Carballo, Rosa; Lezama, Luis
2015-11-15
New copper(II) metal–organic compounds with the formulae [Cu{sub 3}Cl(HCO{sub 2}){sub 5}(SCS){sub 3}(H{sub 2}O){sub 2}]·8H{sub 2}O·EtOH (1) and [Cu{sub 3}(HCO{sub 2}){sub 4}(SCS){sub 4}(H{sub 2}O){sub 2}](NO{sub 3}){sub 2}·9H{sub 2}O (2) (SCS=bis(4-pyridylthio)methane) have been synthesized after a careful study of the reaction of the SCS ligand with copper(II) formate. The compounds were obtained in the presence of sodium chloride and nitrate salts under microwave irradiation. The influence of the anion at different metal/anion ratios on the final architecture has been studied. The new chloride-MOF 1 has been characterized by electron paramagnetic resonance (EPR), magnetic properties and single crystal X-ray diffraction studies. The thermalmore » stability and topological analysis have also been investigated. - Highlights: • Microwave synthesis of coordination polymers. • Anion-derived structural changes. • Influence of anions at different metal/anion ratios on the final architectures. • EPR and magnetic characterization of a MOF compound.« less
Anion effects on anti-microbial activity of poly[1-vinyl-3-(2-sulfoethyl imidazolium betaine)].
Garg, Godawari; Chauhan, Ghanshyam S; Gupta, Reena; Ahn, J-H
2010-04-01
Recent investigations in the anti-microbial properties of the functional polymers are predominantly focused on the structure of the cationic moieties. In the present study, we investigated that the nature of the anion present in polysulfobetaines affects activity against certain microorganisms and their anti-microbial properties have been rationalized in terms of the structure-activity relationship. Vinyl imidazolium-based polysulfobetaines were prepared by the quaternization of poly(N-vinyl imidazole) with sodium salt of 2-bromo ethanesulfonic acid. The bromide counter anion of the resulting polymer was exchanged with different anions to generate a series of polymers. These were characterized by FTIR, DSC, XRD, SEM, elemental analysis (C, H, N and S) and viscosity measurements. The anti-microbial activity studies were carried against three fungi (Aspergillus niger, Byssochlamys fulva and Mucor circenelliods) and two bacteria (Bacillus coagulans BTS-3 and Pseudomonas aeruginosa BTS-2). The nature of the anion affects the structure of polysulfobetaine by realignment of polymer chains. The anion-dependent anti-microbial properties of polysulfobetaines result from the interaction of the microbes at the polymer interface. Copyright 2009 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chao, Jianbin; Liu, Yuhong; Zhang, Yan; Zhang, Yongbin; Huo, Fangjun; Yin, Caixia; Wang, Yu; Qin, Liping
2015-07-01
A new fluorescent enhanced probe based on (E)-9-(2-nitrovinyl)-anthracene is developed, which shows high selectivity and sensitivity for the detection of bisulfite anions at Na2HPO4 citric acid buffer solutions (pH 5.0). When addition of HSO3-, the fluorescence intensity is significantly enhanced and the probe displays apparent fluorescence color changes from non-fluorescence to blue under a UV lamp illumination, the solution color also changes from yellow to colorless. The detection limit is determined to be as low as 6.30 μM. This offers another specific colorimetric and fluorescent probe for bisulfite anions detection, furthermore it is applied in detecting the level of bisulfite in sugar samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jun; Luo, Huimin
An ionic liquid composition having the following generic structural formula: ##STR00001## wherein R 1, R 2, R 3, and R 4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X - is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto amore » mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.« less
Differential behavior of amino-imino constitutional isomers in nonlinear optical processes.
Latorre, Sonia; Moreira, Ibério de P R; Villacampa, Belén; Julià, Lluís; Velasco, Dolores; Bofill, Josep Maria; López-Calahorra, Francisco
2010-03-15
A detailed study of the "blocked" amino-imino tautomers derived from N-acridine-substituted 2-aminobenzothiazole--and their effect on the nonlinear optical response--is presented. The synthesis, characterization, and nonlinear optical properties of these frozen tautomers, namely, N-methyl-N-(2-nitroacridin-6-yl)-2-aminobenzothia-zole and 3-methyl-N-(7-nitroacridin-3-yl)-2-iminobenzothiazole, are reported. A theoretical model based on valence-bond theory is also proposed and used to analyze the effects of the nuclear configuration corresponding to each frozen tautomer structure. In the present case, the aromatic form and the allylic-anion-like system of the -N-C-N- group inherent to each isomer are crucial for understanding and analyzing the different responses of each "blocked" tautomer.
Application of a taste evaluation system to the monitoring of Kimchi fermentation.
Kim, Namsoo; Park, Kyung-Rim; Park, In-Seon; Cho, Yong-Jin; Bae, Young Min
2005-05-15
As an objective method, taste evaluation with an instrument is able to supplement the subjective sensory evaluation and to be applied to the optimization of food processing. Kimchi, a Korean traditional pickle fermented with lactic acid bacteria, is expanding its consumption worldwide. The fermentation control of it has been routinely done by measuring titratable acidity and pH. In this study, an eight-channel taste evaluation system was prepared, followed by an application to the monitoring of Kimchi fermentation. Eight polymer membranes which individually responded to cationic or anionic substances were prepared by mixing electroactive materials such as tri-n-octylmethylammonium chloride, bis(2-ethylhexyl)sebacate as the plasticizer and polyvinyl chloride in the ratio of 1:66:33. Each membrane prepared was separately installed onto the sensitive area of an ion-selective electrode to produce the respective taste sensor. The eight-channel sensor array and a double junction reference electrode were connected to a 16-channel high input impedance amplifier. The amplified sensor signals were stored to a personal computer via a multi-channel A/D converter. Two sensor groups composed of the cation-selective and anion-selective polymer membrane electrodes showed characteristic concentration-dependency to various artificial taste substances. As a whole, the response potentials of the sensor array increased during the fermentation period at 4, 10 and 25 degrees C. Even the response potentials of the anion-selective taste sensors slightly increased possibly due to the protonation of anions by liberated H+ ions, thereby leading to a decrease in the anion concentration. When the signal data were interpreted by principal component analysis (PCA), the first PC at 4 degrees C explained most of the total data variance. A close correlation was found between the values of titratable acidity and the first PC, which indicated a possible applicability of the multi-channel taste sensor of this study to the process monitoring of various pickle.
Li, Yinhui; Duan, Yu; Zheng, Jing; Li, Jishan; Zhao, Wenjie; Yang, Sheng; Yang, Ronghua
2013-12-03
Fluoride ion (F(-)), the smallest anion, exhibits considerable significance in a wide range of environmental and biochemical processes. To address the two fundamental and unsolved issues of current F(-) sensors based on the specific chemical reaction (i.e., the long response time and low sensitivity) and as a part of our ongoing interest in the spiropyran sensor design, we reported here a new F(-) sensing approach that, via assembly of a F(-)-specific silyl-appended spiropyran dye with graphene oxide (GO), allows rapid and sensitive detection of F(-) in aqueous solution. 6-(tert-Butyldimethylsilyloxy)-1',3',3'-trimethylspiro [chromene- 2,2'-indoline] (SPS), a spiropyran-based silylated dye with a unique reaction activity for F(-), was designed and synthesized. The nucleophilic substitution reaction between SPS and F(-) triggers cleavage of the Si-O bond to promote the closed spiropyran to convert to its opened merocyanine form, leading to the color changing from colorless to orange-yellow with good selectivity over other anions. With the aid of GO, the response time of SPS for F(-) was shortened from 180 to 30 min, and the detection limit was lowered more than 1 order of magnitude compared to the free SPS. Furthermore, due to the protective effect of nanomaterials, the SPS/GO nanocomposite can function in a complex biological environment. The SPS/GO nanocomposite was characterized by XPS and AFM, etc., and the mechanism for sensing F(-) was studied by (1)H NMR and ESI-MS. Finally, this SPS/GO nanocomposite was successfully applied to monitoring F(-) in the serum.
Zhong, Hong; Su, Yanqing; Chen, Xingwei; Li, Xiaoju; Wang, Ruihu
2017-12-22
CO 2 adsorption and concomitant catalytic conversion into useful chemicals are promising approaches to alleviate the energy crisis and effects of global warming. This is highly desirable for developing new types of heterogeneous catalytic materials containing CO 2 -philic groups and catalytic active sites for CO 2 chemical transformation. Here, we present an imidazolium- and triazine-based porous organic polymer with counter chloride anion (IT-POP-1). The porosity and CO 2 affinity of IT-POP-1 may be modulated at the molecular level through a facile anion-exchange strategy. Compared with the post-modified polymers with iodide and hexafluorophosphate anions, IT-POP-1 possesses the highest surface area and the best CO 2 uptake capacity with excellent adsorption selectivity over N 2 . The roles of the task-specific components such as triazine, imidazolium, hydroxyl, and counter anions in CO 2 absorption and catalytic performance were illustrated. IT-POP-1 exhibits the highest catalytic activity and excellent recyclability in solvent- and additive-free cycloaddition reaction of CO 2 with epoxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zirconium-Based Metal–Organic Framework for Removal of Perrhenate from Water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Debasis; Xu, Wenqian; Nie, Zimin
2016-09-06
Efficient removal of pertechnetate (TcO4-) anions from liquid waste or melter off-gas solution for alternative treatment is one of the promising options to manage 99Tc in legacy nuclear waste. Safe immobilization of 99Tc is of major importance due to its long half-life (t1/2= 2.13 × 105 yrs) and environmental mobility. Different types of inorganic and solid state ion-exchange materials such as layered double hydroxides have been shown to absorb TcO4- anions from water. However, both high capacity and selectivity have yet to be achieved in a single material. Herein, we show that a protonated version of an ultra-stable zirconium basedmore » metal-organic framework can adsorb perrhenate (ReO4-) anions, a non-radioactive sur-rogate for TcO4-, from water even in the presence of other common anions. Synchrotron based powder X-ray diffraction and molecular simulations were used to identify the position of the adsorbed ReO4- (surrogate for TcO4-) molecule within the framework.« less
NASA Astrophysics Data System (ADS)
Lin, Kan-Ju; Maranas, Janna
2010-03-01
We use molecular dynamics simulation to study ion clustering and dynamics in ion containing polymers. This PEO based single-ion conducting ionomer serves as a model system for understanding cation transport in solid state polymer electrolytes (SPEs). Although small-angle x-ray scattering does not show an ionomer peak, we observer various cation-anion complexes in the simulation, suggesting ionomer backbones are crosslinked through ion complexes. These crosslinks reduce the adjacent PEO mobility resulting in a symmetric mobility gradient along the PEO chain. We vary the cation-anion interaction in the simulation to observe the interplay of cation-anion association, polymer mobility and cation motion. Cation-anion association controls the number of free ions, which is important in ionic conductivity when these materials are used as SPEs. Polymer mobility controls how fast the free ions are able to move through the SPE. High conductivity requires both a high free ion content and fast polymer motion. To understand the connection between the two, we ``tune'' the force field in order to manipulate the free ion content and observe the influence on PEO dynamics.
Electron accommodation dynamics in the DNA base thymine
NASA Astrophysics Data System (ADS)
King, Sarah B.; Stephansen, Anne B.; Yokoi, Yuki; Yandell, Margaret A.; Kunin, Alice; Takayanagi, Toshiyuki; Neumark, Daniel M.
2015-07-01
The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I-T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from -120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I-T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I-T VDE, which suggests that if the dipole-bound anion acts as a "doorway" to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.
Electron accommodation dynamics in the DNA base thymine.
King, Sarah B; Stephansen, Anne B; Yokoi, Yuki; Yandell, Margaret A; Kunin, Alice; Takayanagi, Toshiyuki; Neumark, Daniel M
2015-07-14
The dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I(-)T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging. At excitation energies ranging from -120 meV to +90 meV with respect to the vertical detachment energy (VDE) of 4.05 eV for I(-)T, both the dipole-bound and valence-bound negative ions of thymine are observed. A slightly longer rise time for the valence-bound state than the dipole-bound state suggests that some of the dipole-bound anions convert to valence-bound species. No evidence is seen for a dipole-bound anion of thymine at higher excitation energies, in the range of 0.6 eV above the I(-)T VDE, which suggests that if the dipole-bound anion acts as a "doorway" to the valence-bound anion, it only does so at excitation energies near the VDE of the complex.
Lee, Seul Ah; You, Ga Rim; Choi, Ye Won; Jo, Hyun Yong; Kim, Ah Ram; Noh, Insup; Kim, Sung-Jin; Kim, Youngmee; Kim, Cheal
2014-05-14
A multifunctional fluorescent and colorimetric receptor 1 ((E)-N'-((8-hydroxy-1,2,3,5,6,7-hexahydropyrido[3,2,1-ij]quinolin-9-yl)methylene)benzohydrazide) for the detection of both Al(3+) and CN(-) in aqueous solution has been developed. Receptor 1 exhibited an excellent selective fluorescence response toward Al(3+). The sensitivity of the fluorescent based assay (0.193 μM) for Al(3+) is far below the limit in the World Health Organization (WHO) guidelines for drinking water (7.41 μM). In addition, receptor 1 showed an excellent detection ability in a wide pH range of 4-10 and also in living cells. Moreover, receptor 1 showed a highly selective colorimetric response to CN(-) by changing its color from colorless to yellow immediately without any interference from other anions.
Hua, Ying-Xi; Shao, Yongliang; Wang, Ya-Wen; Peng, Yu
2017-06-16
A series of fluorescence "turn-on" probes (PY, AN, NA, B1, and B2) have been developed and successfully applied to detect cyanide anions based on the Michael addition reaction and FRET mechanism. These probes demonstrated good selectivity, high sensitivity, and very fast recognition for CN - . In particular, the fluorescence response of probe NA finished within 3 s. Low limits of detection (down to 63 nM) are also obtained in these probes with remarkable fluorescence enhancement factors. In addition, fluorescence colors of these probes turned to blue, yellow, or orange upon sensing CN - . In UV-vis mode, all of them showed ratiometric response for CN - . 1 H NMR titration experiments and TDDFT calculations were taken to verify the mechanism of the specific reaction and fluorescence properties of the corresponding compounds. Moreover, silica gel plates with these probes were also fabricated and utilized to detect cyanide.
Evidence of Multiple Sorption Modes in Layered Double Hydroxides Using Mo As Structural Probe.
Ma, Bin; Fernandez-Martinez, Alejandro; Grangeon, Sylvain; Tournassat, Christophe; Findling, Nathaniel; Claret, Francis; Koishi, Ayumi; Marty, Nicolas C M; Tisserand, Delphine; Bureau, Sarah; Salas-Colera, Eduardo; Elkaïm, Erik; Marini, Carlo; Charlet, Laurent
2017-05-16
Layered double hydroxides (LDHs) have been considered as effective phases for the remediation of aquatic environments, to remove anionic contaminants mainly through anion exchange mechanisms. Here, a combination of batch isotherm experiments and X-ray techniques was used to examine molybdate (MoO 4 2- ) sorption mechanisms on CaAl LDHs with increasing loadings of molybdate. Advanced modeling of aqueous data shows that the sorption isotherm can be interpreted by three retention mechanisms, including two types of edge sites complexes, interlayer anion exchange, and CaMoO 4 precipitation. Meanwhile, Mo geometry evolves from tetrahedral to octahedral on the edge, and back to tetrahedral coordination at higher Mo loadings, indicated by Mo K-edge X-ray absorption spectra. Moreover, an anion exchange process on both CaAl LDHs was followed by in situ time-resolved synchrotron-based X-ray diffraction, remarkably agreeing with the sorption isotherm. This detailed molecular view shows that different uptake mechanisms-edge sorption, interfacial dissolution-reprecipitation-are at play and control anion uptake under environmentally relevant conditions, which is contrast to the classical view of anion exchange as the primary retention mechanism. This work puts all these mechanisms in perspective, offering a new insight into the complex interplay of anion uptake mechanisms by LDH phases, by using changes in Mo geometry as powerful molecular-scale probe.
Structure of cyano-anion ionic liquids: X-ray scattering and simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhungana, Kamal B.; Faria, Luiz F. O.; Wu, Boning
2016-07-14
Ionic liquids with cyano anions have long been used because of their unique combination of low-melting temperatures, reduced viscosities, and increased conductivities. Recently we have shown that cyano anions in ionic liquids are particularly interesting for their potential use as electron donors to excited state photo-acceptors [B. Wu et al., J. Phys. Chem. B 119, 14790–14799 (2015)]. Here we report on bulk structural and quantum mechanical results for a series of ionic liquids based on the 1-ethyl-3-methylimidazolium cation, paired with the following five cyano anions: SeCN-, SCN-, N(CN)-2N(CN)2-, C(CN)-3C(CN)3-, and B(CN)-4B(CN)4-. By combining molecular dynamics simulations, high-energy X-ray scattering measurements,more » and periodic boundary condition DFT calculations, we are able to obtain a comprehensive description of the liquid landscape as well as the nature of the HOMO-LUMO states for these ionic liquids in the condensed phase. Features in the structure functions for these ionic liquids are somewhat different than the commonly observed adjacency, charge-charge, and polarity peaks, especially for the bulkiest B(CN)-4B(CN)4- anion. While the other four cyano-anion ionic liquids present an anionic HOMO, the one for Im+2,1Im2,1+/B(CN)-4B(CN)4- is cationic.« less
Chen, Di-Ming; Tian, Jia-Yue; Wang, Zhuo-Wei; Liu, Chun-Sen; Chen, Min; Du, Miao
2017-09-26
A cage-based anionic Na(i)-organic framework with a unique Na 9 cluster-based secondary building unit and a cage-in-cage structure was constructed. The selective separation of dyes with different charges and sizes was investigated. Furthermore, the Rh6G@MOF composite could be applied as a recyclable fluorescent sensor for detecting picric acid (PA) with high sensitivity and selectivity.
Salt taste inhibition by cathodal current.
Hettinger, Thomas P; Frank, Marion E
2009-09-28
Effects of cathodal current, which draws cations away from the tongue and drives anions toward the tongue, depend on the ionic content of electrolytes through which the current is passed. To address the role of cations and anions in human salt tastes, cathodal currents of -40 microA to -80 microA were applied to human subjects' tongues through supra-threshold salt solutions. The salts were sodium chloride, sodium bromide, potassium chloride, ammonium chloride, calcium chloride, sodium nitrate, sodium sulfate, sodium saccharin, sodium acetate and sodium benzoate, which taken together encompass salty, bitter, sour and sweet taste qualities. The taste of NaCl, the salty and bitter tastes of the other chloride salts and the taste of NaNO(3) was inhibited, suggesting the current displaced stimulatory cations from salty and bitter receptors. However, bitter tastes of non-halide sodium salts were not inhibited, likely because other bitter receptors respond to anions. A discharge current at cathode-off ubiquitously evoked a metallic taste reminiscent of anodal taste used in clinical electrogustometry. Analogous effects on ambient NaCl responses were recorded from the hamster chorda tympani nerve. Increases in tastes of the saccharin and benzoate anions were not evoked during current flow, suggesting that cathodal current does not carry stimulatory anions to sweet receptors. Cathodal current may selectively inhibit salty and bitter-salty tastes for which proximal stimuli are cations.
Han, Linjie; Hyung, Suk-Joon; Ruotolo, Brandon T
2013-01-01
The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures
Harvesting polysulfides by sealing the sulfur electrode in a composite ion-selective net
NASA Astrophysics Data System (ADS)
Chen, Yazhou; Li, Zhong; Li, Xuekui; Zeng, Danli; Xu, Guodong; Zhang, Yunfeng; Sun, Yubao; Ke, Hanzhong; Cheng, Hansong
2017-11-01
A cathode was prepared by sealing a carbon supported sulfur electrode inside a composite ion-selective net made of carbon, binder and lithiated ionomer to restrict shuttling of polysulfide anionic species. As a result, the soluble polysulfide anions become unable to escape from the composite ion-selective films due to the electrostatic repulsion between the immobilized single ion conducting ionomers and the polysulfides with no dead angles. Experimentally, lithiated 4,4‧-difluoro bis(benzene sulfonyl)imide and PEG200 were copolymerized to form a polyether based single ion conducting polymer. The ionic conductivity of the blend film made of ionomer and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) at a mass ratio of 1:1 is 0.57 mS cm-1 at room temperature. The battery capacity with the sealed sulfur electrode is 1412 mAh g-1 at 0.5 C, 1041 mAh g-1 at 1.0 C, 873 mAh g-1 at 2.0 C and 614 mAh g-1 at 5.0 C, significantly better than the results with lithiated Nafion especially at high C rates. In addition, a long cycling test at 2 C for 500 cycles gives rise to a stable capacity of 800 mAh g-1. The intrinsic electrostatic repulsion between polysulfide anions and the negatively charged electrolyte film, together with the overall sealed electrode configuration, is responsible for blocking the shuttling of polysulfides effectively.
Cass, Albert; Finkelstein, Alan; Krespi, Vivian
1970-01-01
Characteristics of nystatin and amphotericin B action on thin (<100 A) lipid membranes are: (a) micromolar amounts increase membrane conductance from 10-8 to over 10-2 Ω-1 cm-2; (b) such membranes are (non-ideally) anion selective and discriminate among anions on the basis of size; (c) membrane sterol is required for action; (d) antibiotic presence on both sides of membrane strongly favors action; (e) conductance is proportional to a large power of antibiotic concentration; (f) conductance decreases ∼104 times for a 10°C temperature rise; (g) kinetics of antibiotic action are also very temperature sensitive; (h) ion selectivity is pH independent between 3 and 10, but (i) activity is reversibly lost at high pH; (j) methyl ester derivatives are fully active; N-acetyl and N-succinyl derivatives are inactive; (k) current-voltage characteristic is nonlinear when membrane separates nonidentical salt solutions. These characteristics are contrasted with those of valinomycin. Observations (a)–(g) suggest that aggregates of polyene and sterol from opposite sides of the membrane interact to create aqueous pores; these pores are not static, but break up (melt) and reform continuously. Mechanism of anion selectivity is obscure. Observations (h)–(j) suggest—NH3 + is important for activity; it is probably not responsible for selectivity, particularly since four polyene antibiotics, each containing two—NH3 + groups, induce ideal cation selectivity. Possibly the many hydroxyl groups in nystatin and amphotericin B are responsible for anion selectivity. The effects of polyene antibiotics on thin lipid membranes are consistent with their action on biological membranes. PMID:5514157
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yi; Zhang, Dun, E-mail: zhangdun@qdio.ac.cn
2011-11-15
Graphical abstract: The benzoate anion released from Zn-Al LDHs provides a more effective long-term protection against corrosion of Q235 carbon steel in 3.5% NaCl solution. Highlights: {yields} A benzoate anion corrosion inhibitor intercalated Zn-Al layered double hydroxides (LDHs) has been assembled by coprecipitation method. {yields} The kinetic simulation indicates that the ion-exchange one is responsible for the release process and the diffusion through particle is the rate limiting step. {yields} A significant reduction of the corrosion rate is observed when the LDH nanohybrid is present in the corrosive media. -- Abstract: Corrosion inhibitor-inorganic clay composite including benzoate anion intercalated Zn-Almore » layered double hydroxides (LDHs) are assembled by coprecipitation. Powder X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectrum analyses indicate that the benzoate anion is successfully intercalated into the LDH interlayer and the benzene planes are vertically bilayer-positioned as a quasi-guest ion-pair form in the gallery space. Kinetic simulation for the release data, XRD and FT-IR analyses of samples recovered from the release medium indicate that ion-exchange is responsible for the release process and diffusion through the particle is also indicated to be the rate-limiting step. The anticorrosion capabilities of LDHs loaded with corrosion inhibitor toward Q235 carbon steel are analyzed by polarization curve and electrochemical impedance spectroscopy methods. Significant reduction of corrosion rate is observed when the LDH nanohybrid is present in the corrosive medium. This hybrid material may potentially be applied as a nanocontainer in self-healing coatings.« less
Cytosolic Nucleotides Block and Regulate the Arabidopsis Vacuolar Anion Channel AtALMT9*
Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis
2014-01-01
The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al3+ to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. PMID:25028514
Cytosolic nucleotides block and regulate the Arabidopsis vacuolar anion channel AtALMT9.
Zhang, Jingbo; Martinoia, Enrico; De Angeli, Alexis
2014-09-12
The aluminum-activated malate transporters (ALMTs) form a membrane protein family exhibiting different physiological roles in plants, varying from conferring tolerance to environmental Al(3+) to the regulation of stomatal movement. The regulation of the anion channels of the ALMT family is largely unknown. Identifying intracellular modulators of the activity of anion channels is fundamental to understanding their physiological functions. In this study we investigated the role of cytosolic nucleotides in regulating the activity of the vacuolar anion channel AtALMT9. We found that cytosolic nucleotides modulate the transport activity of AtALMT9. This modulation was based on a direct block of the pore of the channel at negative membrane potentials (open channel block) by the nucleotide and not by a phosphorylation mechanism. The block by nucleotides of AtALMT9-mediated currents was voltage dependent. The blocking efficiency of intracellular nucleotides increased with the number of phosphate groups and ATP was the most effective cellular blocker. Interestingly, the ATP block induced a marked modification of the current-voltage characteristic of AtALMT9. In addition, increased concentrations of vacuolar anions were able to shift the ATP block threshold to a more negative membrane potential. The block of AtALMT9-mediated anion currents by ATP at negative membrane potentials acts as a gate of the channel and vacuolar anion tune this gating mechanism. Our results suggest that anion transport across the vacuolar membrane in plant cells is controlled by cytosolic nucleotides and the energetic status of the cell. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Anions mediate ligand binding in Adineta vaga glutamate receptor ion channels.
Lomash, Suvendu; Chittori, Sagar; Brown, Patrick; Mayer, Mark L
2013-03-05
AvGluR1, a glutamate receptor ion channel from the primitive eukaryote Adineta vaga, is activated by alanine, cysteine, methionine, and phenylalanine, which produce lectin-sensitive desensitizing responses like those to glutamate, aspartate, and serine. AvGluR1 LBD crystal structures reveal an unusual scheme for binding dissimilar ligands that may be utilized by distantly related odorant/chemosensory receptors. Arginine residues in domain 2 coordinate the γ-carboxyl group of glutamate, whereas in the alanine, methionine, and serine complexes a chloride ion acts as a surrogate ligand, replacing the γ-carboxyl group. Removal of Cl(-) lowers affinity for these ligands but not for glutamate or aspartate nor for phenylalanine, which occludes the anion binding site and binds with low affinity. AvGluR1 LBD crystal structures and sedimentation analysis also provide insights into the evolutionary link between prokaryotic and eukaryotic iGluRs and reveal features unique to both classes, emphasizing the need for additional structure-based studies on iGluR-ligand interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Enhanced scintillation of Ba3In(B3O6)3 based on nitrogen doping
NASA Astrophysics Data System (ADS)
Wang, Z. X.; Pei, H.; Tao, X. M.; Cai, G. M.; Mao, R. H.; Jin, Z. P.
2018-02-01
Scintillating materials, as a class of luminescent materials, are highly demanded for practical use in the high-energy detection. However, the applications are often hampered by their low light yield (LY) or long decay time for many traditional scintillators. In this work, upon nitrogen anion doping, scintillation performance in layered borate Ba3In(B3O6)3 (BIB) has been excellently enhanced with high XEL intensity of ~3 times as large as that of commercial Bi4Ge3O12 (BGO) and ultra-fast fluorescent decay time of ~1.25 ns. To shed light on origins of the intrinsic violet-blue emission, we measured the in-situ vacuum ultraviolet excited (VUV) emission spectra of N-BIB ceramic. Combined with experiments and first principles calculations, the band-gap reduction and donor-acceptor density increasing by nitrogen (N) doping is responsible for the enhancement of scintillation performance for N-doped Ba3In(B3O6)3. Moreover, nitrogen anion doping rather than conventional cation doping is found to be also applicable to other intrinsic luminescent materials for enhancing performance.
Weyhing-Zerrer, Nadine; Kalb, Roland; Oßmer, Rolf; Rossmanith, Peter; Mester, Patrick
2018-02-01
Increased interest in ionic liquids (ILs) is due to their designable and tunable unique physicochemical properties, which are utilized for a wide variety of chemical and biotechnological applications. ILs containing the tris(pentafluoroethyl)trifluorophosphate ([FAP]) anion have been shown to have excellent hydrolytic, electrochemical and thermal stability and have been successfully used in various applications. In the present study the influence of the cation on the toxicity of the [FAP] anion was investigated. Due to the properties of [FAP] ILs, the IL-toxicity of seven cations with [FAP] compared to [Cl] was examined by determination of minimum inhibitory (MIC) and minimum bactericidal concentrations (MBC) on six Gram-positive and six Gram-negative clinically-relevant bacteria. For the first time, to our knowledge, the results provide evidence for a decrease in toxicity with increasing alkyl side-chain length, indicating that the combination of both ions is responsible for this 'reverse side-chain effect'. These findings could portend development of new non-toxic ILs as green alternatives to conventional organic solvents. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Nan; Hao, Juan; Cai, Keying; Zeng, Mulan; Huang, Zhenzhong; Chen, Lili; Peng, Bingxian; Li, Ping; Wang, Li; Song, Yonghai
2018-02-01
A novel ratiometric fluorescence nanosensor for superoxide anion (O 2 •- ) detection was designed with gold nanoparticles-bovine serum albumin (AuNPs-BSA)@terbium/guanosine monophosphate disodium (Tb/GMP) nanoscale coordination polymers (NCPs) (AuNPs-BSA@Tb/GMP NCPs). The abundant hydroxyl and amino groups of AuNPs-BSA acted as binding points for the self-assembly of Tb 3+ and GMP to form core-shell AuNPs-BSA@Tb/GMP NCP nanosensors. The obtained probe exhibited the characteristic fluorescence emission of both AuNPs-BSA and Tb/GMP NCPs. The AuNPs-BSA not only acted as a template to accelerate the growth of Tb/GMP NCPs, but also could be used as the reference fluorescence for the detection of O 2 •- . The resulting AuNPs-BSA@Tb/GMP NCP ratiometric fluorescence nanosensor for the detection of O 2 •- demonstrated high sensitivity and selectivity with a wide linear response range (14 nM-10 μM) and a low detection limit (4.7 nM). Copyright © 2017 John Wiley & Sons, Ltd.
Hobbs, A. J.; Tucker, J. F.; Gibson, A.
1991-01-01
1. The influence of hydroquinone on relaxations induced by nitric oxide (NO), nitrovasodilator drugs, and non-adrenergic, non-cholinergic (NANC) field stimulation has been investigated in three tissues in which endogenous nitrates have been implicated in the NANC response; the mechanism of action of hydroquinone was also studied. 2. In mouse anococcygeus, hydroquinone (10-100 microM) produced a concentration-dependent inhibition of relaxations induced by 15 microM NO. Hydroquinone, 100 microM, which reduced responses to NO by 85%, had no effect on relaxations induced by NANC field stimulation (10 Hz; 20s trains), hydroxylamine (10 microM), sodium nitroprusside (1 microM) or sodium azide (20 microM). 3. In guinea-pig trachea, 100 microM hydroquinone reduced relaxations to 150 microM NO by 75%, but had no effect on those to NANC stimulation (10 Hz; 30 s trains) or sodium azide (5 microM). 4. In rat gastric fundus, 100 microM hydroquinone reduced relaxations to 1 microM NO by 85%, but had no effect on those to NANC stimulation (0.5 Hz; 15 s trains) or sodium azide (2 microM). 5. Superoxide dismutase (SOD; 50 u ml-1) had no effect on relaxations of the mouse anococcygeus in response to 15 microM NO or 10 Hz NANC stimulation. Further, the inhibition of responses to NO by hydroquinone was unaffected in the presence of SOD. 6. Hydroquinone (10-100 microM) failed to generate superoxide anions, as detected by a chemiluminescent assay. However, 100 microM hydroquinone, like SOD (50 u ml-1), produced almost complete inhibition of superoxide anion chemiluminescence induced by xanthine (500 microM): xanthine oxidase (0.07 u ml-1). 7. It is concluded that, in our system, hydroquinone inhibits NO by acting as a free radical scavenger rather than by generating superoxide anions. The ability of hydroquinone to block relaxations to NO, but not NANC stimulation, may suggest that the endogenous nitrate substance released by these NANC nerves may not be free NO, but may be an NO-containing, or NO-generating, molecule. PMID:1665746
Alkyl(C16, C18, C22)trimethylammonium-Based Herbicidal Ionic Liquids.
Pernak, Juliusz; Giszter, Rafał; Biedziak, Agnieszka; Niemczak, Michał; Olszewski, Radosław; Marcinkowska, Katarzyna; Praczyk, Tadeusz
2017-01-18
In the framework of this study a synthesis methodology and characterization of long alkyl herbicidal ionic liquids (HILs) based on four commonly used herbicides (2,4-D, MCPA, MCPP, and dicamba) are presented. New HILs were obtained with high efficiency (>95%) using an acid-base reaction between herbicidal acids and hexadecyltrimethylammonium, octadecyltrimethylammonium, and behenyltrimethylammonium hydroxides in alcoholic medium. Among all synthesized salts, only three compounds comprising the MCPP anion were liquids at room temperature. Subsequently, the influence of both the alkyl chain length and the anion structure on their physicochemical properties (thermal decomposition profiles, solubility in 10 representative solvents, surface activity, density, viscosity, and refractive index) was determined. All HILs exhibited high thermal stability as well as surface activity; however, their solubility notably depended on both the length of the carbon chain and the structure of the anion. The herbicidal efficacy of the obtained salts was tested in greenhouse and field experiments. Greenhouse testing performed on common lambsquarters (Chenopodium album L.) and flixweed (Descurainia sophia L.) as test plants indicated that HILs were characterized by similar or higher efficacy compared to commercial herbicides. The results of field trials confirmed the high activity of HILs, particularly those containing phenoxyacids as anions (MCPA, 2,4-D, and MCPP).
Quasielastic neutron scattering studies on glass-forming ionic liquids with imidazolium cations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kofu, Maiko; Inamura, Yasuhiro; Miyazaki, Kyoko
2015-12-21
Relaxation processes for imidazolium-based ionic liquids (ILs) were investigated by means of an incoherent quasielastic neutron scattering technique. In order to clarify the cation and anion effects on the relaxation processes, ten samples were measured. For all of the samples, we found three relaxations at around 1 ps, 10 ps, and 100 ps-10 ns, each corresponding to the alkyl reorientation, the relaxation related to the imidazolium ring, and the ionic diffusion. The activation energy (E{sub a}) for the alkyl relaxation is insensitive to both anion and alkyl chain lengths. On the other hand, for the imidazolium relaxation and the ionicmore » diffusion processes, E{sub a} increases as the anion size decreases but is almost independent of the alkyl chain length. This indicates that the ionic diffusion and imidazolium relaxation are governed by the Coulombic interaction between the core parts of the cations (imidazolium ring) and the anions. This is consistent with the fact that the imidazolium-based ILs have nanometer scale structures consisting of ionic and neutral (alkyl chain) domains. It is also found that there is a clear correlation between the ionic diffusion and viscosity, indicating that the ionic diffusion is mainly associated with the glass transition which is one of the characteristics of imidazolium-based ILs.« less
Nojavan, Saeed; Pourahadi, Ahmad; Hosseiny Davarani, Saied Saeed; Morteza-Najarian, Amin; Beigzadeh Abbassi, Mojtaba
2012-10-01
This study has performed on electromembrane extraction (EME) of some zwitterionic compounds based on their acidic and basic properties. High performance liquid chromatography (HPLC) equipped with UV detection was used for determination of model compounds. Cetirizine (CTZ) and mesalazine (MS) were chosen as model compounds, and each of them was extracted from acidic (as a cation) and basic (as an anion) sample solutions, separately. 1-Octanol and 2-nitrophenyl octylether (NPOE) were used as the common supported liquid membrane (SLM) solvents. EME parameters, such as extraction time, extraction voltage and pH of donor and acceptor solutions were studied in details for cationic and anionic forms of each model compound and obtained results for two ionic forms (cationic and anionic) of each compound were compared together. Results showed that zwitterionic compounds could be extracted in both cationic and anionic forms. Moreover, it was found that the extraction of anionic form of each model compound could be done in low voltages when 1-octanol was used as the SLM solvent. Results showed that charge type was not highly effective on the extraction efficiency of model compounds whereas the position of charge within the molecule was the key parameter. In optimized conditions, enrichment factors (EF) of 27-60 that corresponded to recoveries ranging from 39 to 86% were achieved. Copyright © 2012 Elsevier B.V. All rights reserved.
Khan, Imran; Kurnia, Kiki A; Mutelet, Fabrice; Pinho, Simão P; Coutinho, João A P
2014-02-20
For an adequate choice or design of ionic liquids, the knowledge of their interaction with other solutes and solvents is an essential feature for predicting the reactivity and selectivity of systems involving these compounds. In this work, the activity coefficient of water in several imidazolium-based ionic liquids with the common cation 1-butyl-3-methylimidazolium was measured at 298.2 K. To contribute to a deeper insight into the interaction between ionic liquids and water, COSMO-RS was used to predict the activity coefficient of water in the studied ionic liquids along with the excess enthalpies. The results showed good agreement between experimental and predicted activity coefficient of water in ionic liquids and that the interaction of water and ionic liquids was strongly influenced by the hydrogen bonding of the anion with water. Accordingly, the intensity of interaction of the anions with water can be ranked as the following: [CF3SO3](-) < [SCN](-) < [TFA](-) < Br(-) < [TOS](-) < Cl(-) < [CH3SO3](-) [DMP](-) < [Ac](-). In addition, fluorination and aromatization of anions are shown to reduce their interaction with water. The effect of temperature on the activity coefficient of water at infinite dilution was measured by inverse gas chromatography and predicted by COSMO-RS. Further analysis based on COSMO-RS provided information on the nature of hydrogen bonding between water and anion as well as the possibility of anion-water complex formation.
La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo
2016-01-01
A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN(-)) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu(2+) and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu(2+) complex can act as an effective OFF-ON type fluorescent probe for sensing CN(-) anion. Due to the strong binding affinity of CN(-) to Cu(2+), CN(-) can extract Cu(2+) from C-GGH-Cu(2+) complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu(2+) allowed detection of CN(-) in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN(-) in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN(-) towards other anions, including F(-), Cl(-), Br(-), I(-), SCN(-), PO4 (3-), N3 (-), NO3 (-), AcO(-), SO4 (2-), and CO3 (2-).
La, Ming; Hao, Yuanqiang; Wang, Zhaoyang; Han, Guo-Cheng; Qu, Lingbo
2016-01-01
A water-soluble fluorescent probe (C-GGH) was used for the highly sensitive and selective detection of cyanide (CN−) in aqueous media based on the displacement strategy. Due to the presence of the recognition unit GGH (Gly-Gly-His), the probe C-GGH can coordinate with Cu2+ and consequently display ON-OFF type fluorescence response. Furthermore, the in situ formed nonfluorescent C-GGH-Cu2+ complex can act as an effective OFF-ON type fluorescent probe for sensing CN− anion. Due to the strong binding affinity of CN− to Cu2+, CN− can extract Cu2+ from C-GGH-Cu2+ complex, leading to the release of C-GGH and the recovery of fluorescent emission of the system. The probe C-GGH-Cu2+ allowed detection of CN− in aqueous solution with a LOD (limit of detection) of 0.017 μmol/L which is much lower than the maximum contaminant level (1.9 μmol/L) for CN− in drinking water set by the WHO (World Health Organization). The probe also displayed excellent specificity for CN− towards other anions, including F−, Cl−, Br−, I−, SCN−, PO4 3−, N3 −, NO3 −, AcO−, SO4 2−, and CO3 2−. PMID:26881185
Szymanski, Eric S; Kimsey, Isaac J; Al-Hashimi, Hashim M
2017-03-29
The replicative and translational machinery utilizes the unique geometry of canonical G·C and A·T/U Watson-Crick base pairs to discriminate against DNA and RNA mismatches in order to ensure high fidelity replication, transcription, and translation. There is growing evidence that spontaneous errors occur when mismatches adopt a Watson-Crick-like geometry through tautomerization and/or ionization of the bases. Studies employing NMR relaxation dispersion recently showed that wobble dG·dT and rG·rU mismatches in DNA and RNA duplexes transiently form tautomeric and anionic species with probabilities (≈0.01-0.40%) that are in concordance with replicative and translational errors. Although computational studies indicate that these exceptionally short-lived and low-abundance species form Watson-Crick-like base pairs, their conformation could not be directly deduced from the experimental data, and alternative pairing geometries could not be ruled out. Here, we report direct NMR evidence that the transient tautomeric and anionic species form hydrogen-bonded Watson-Crick-like base pairs. A guanine-to-inosine substitution, which selectively knocks out a Watson-Crick-type (G)N2H 2 ···O2(T) hydrogen bond, significantly destabilized the transient tautomeric and anionic species, as assessed by lack of any detectable chemical exchange by imino nitrogen rotating frame spin relaxation (R 1ρ ) experiments. An 15 N R 1ρ NMR experiment targeting the amino nitrogen of guanine (dG-N2) provides direct evidence for Watson-Crick (G)N2H 2 ···O2(T) hydrogen bonding in the transient tautomeric state. The strategy presented in this work can be generally applied to examine hydrogen-bonding patterns in nucleic acid transient states including in other tautomeric and anionic species that are postulated to play roles in replication and translational errors.
Maity, Arunava; Gangopadhyay, Monalisa; Basu, Arghya; Aute, Sunil; Babu, Sukumaran Santhosh; Das, Amitava
2016-09-07
The helical handedness in achiral self-assemblies is mostly complex due to spontaneous symmetry breaking or kinetically controlled random assembly formation. Here an attempt has been made to address this issue through chiral anion exchange. A new class of cationic achiral C3-symmetric gelator devoid of any conventional gelation assisting functional units is found to form both right- and left-handed helical structures. A chiral counteranion exchange-assisted approach is successfully introduced to control the chirality sign and thereby to obtain preferred homochiral assemblies. Formation of anion-assisted chiral assembly was confirmed by circular dichroism (CD) spectroscopy, microscopic images, and crystal structure. The X-ray crystal structure reveals the construction of helical assemblies with opposite handedness for (+)- and (-)-chiral anion reformed gelators. The appropriate counteranion driven ion-pair-assisted hydrogen-bonding interactions are found responsible for the helical bias control in this C3-symmetric gelator.
Capped Mesoporous Silica Nanoparticles for the Selective and Sensitive Detection of Cyanide.
Sayed, Sameh El; Licchelli, Maurizio; Martínez-Máñez, Ramón; Sancenón, Félix
2017-10-18
The development of easy and affordable methods for the detection of cyanide is of great significance due to the high toxicity of this anion and the potential risks associated with its pollution. Herein, optical detection of cyanide in water has been achieved by using a hybrid organic-inorganic nanomaterial. Mesoporous silica nanoparticles were loaded with [Ru(bipy) 3 ] 2+ , functionalized with macrocyclic nickel(II) complex subunits, and capped with a sterically hindering anion (hexametaphosphate). Cyanide selectively induces demetallation of nickel(II) complexes and the removal of capping anions from the silica surface, allowing the release of the dye and the consequent increase in fluorescence intensity. The response of the capped nanoparticles in aqueous solution is highly selective and sensitive towards cyanide with a limit of detection of 2 μm. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chen, Jun-Sheng; Zhou, Pan-Wang; Li, Guang-Yue; Chu, Tian-Shu; He, Guo-Zhong
2013-05-02
The fluoride anion sensing mechanism of 6-methyl-5-(9-methylene-anthracene)-(2-butylureido-4[1H]-pyrimidinone) (AnUP) has been investigated using the DFT/TDDFT method. The theoretical results indicate that the proton of the N3-H3 group in pyrimidine moiety is captured by the added fluoride anion and then deprotonated. The calculated vertical excitation energies of AnUP-dimer and its deprotonated form agree well with the experimental results. The molecular orbital analysis demonstrates that the first excited state (S1) of AnUP-dimer is a local excited state with a π-π* transition, whereas for the deprotonated form, S1 is a completely charge-separation state and is responsible for the photoinduced electron transfer (PET) process. The PET process from anthracene to the pyrimidine moiety leads to the fluorescence quenching.
Thermodynamic derivation of open circuit voltage in vanadium redox flow batteries
NASA Astrophysics Data System (ADS)
Pavelka, Michal; Wandschneider, Frank; Mazur, Petr
2015-10-01
Open circuit voltage of vanadium redox flow batteries is carefully calculated using equilibrium thermodynamics. This analysis reveals some terms in the Nernst relation which are usually omitted in literature. Due to the careful thermodynamic treatment, all uncertainties about the form of Nernst relation are removed except for uncertainties in activity coefficients of particular species. Moreover, it is shown (based again on equilibrium thermodynamics) that batteries with anion-exchange membranes follow different Nernst relation than batteries with cation-exchange membranes. The difference is calculated, and it is verified experimentally that the formula for anion-exchange membranes describes experiments with anion-exchange membranes better than the corresponding formula for cation-exchange membranes. In summary, careful thermodynamic calculation of open circuit voltage of vanadium redox flow batteries is presented, and the difference between voltage for anion-exchange and cation-exchange membranes is revealed.
NASA Astrophysics Data System (ADS)
Tukumova, N. V.; Dieu Thuan, Tran Thi; Usacheva, T. R.; Koryshev, N. E.; Sharnin, V. A.
2017-04-01
Stability constants of the coordination compounds of nickel(II) and cobalt(II) ions with succinic acid anion in water-ethanol solvents are determined via potentiometric titration at ionic strength of 0.1 and at T = 298.15 K. It is found that logβ values of monoligand complexes of these ions and succinic acid anions rise along with the content of ethanol in solution ( X EtOH = 0-0.7 mole fractions). Based on an analysis of the thermodynamic characteristics of the solvation of the reagents involved in complex formation, it is found that the increased stability of succinate complexes of nickel(II) and cobalt(II) ions in water-ethanol solvents is mainly determined by the weakening of the solvation of succinic acid anion (Y2-).
Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.
Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R
2016-10-12
A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.
Goswami, Shyamaprosad; Chakraborty, Shampa; Paul, Sima; Halder, Sandipan; Panja, Sukanya; Mukhopadhyay, Subhra Kanti
2014-05-21
A new pyrene based fluorescence probe has been synthesized for fluorogenic detection of Cu(2+) in acetonitrile-aqueous media (7 : 3 CH3CN-HEPES buffer, v/v, at pH 7.5) with bioimaging in both prokaryotic (Candida albicans cells) and eukaryotic (Tecoma stans pollen cells) living cells. The anion recognition properties of the sensor have also been studied in acetonitrile by fluorescence methods which show remarkable sensitivity toward fluoride over other anions examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajewska, A., E-mail: aldonar@jinr.ru; Medrzycka, K.; Hallmann, E.
2016-01-15
The micellization in mixed aqueous systems based on a nonionic surfactant, heptaethylene glycol monotetradecyl ether (C{sub 14}E{sub 7}), and an anionic surfactant, cesium dodecyl sulfate, has been investigated by small-angle neutron scattering. Preliminary data on the behavior of the C{sub 14}E{sub 7} aqueous solutions (with three concentrations, 0.17, 0.5, and 1%) mixed with a small amount of anionic surfactant, cesium dodecyl sulfate, are reported.
Rose, R H; Neuhoff, S; Abduljalil, K; Chetty, M; Rostami-Hodjegan, A; Jamei, M
2014-01-01
Typically, pharmacokinetic–pharmacodynamic (PK/PD) models use plasma concentration as the input that drives the PD model. However, interindividual variability in uptake transporter activity can lead to variable drug concentrations in plasma without discernible impact on the effect site organ concentration. A physiologically based PK/PD model for rosuvastatin was developed that linked the predicted liver concentration to the PD response model. The model was then applied to predict the effect of genotype-dependent uptake by the organic anion-transporting polypeptide 1B1 (OATP1B1) transporter on the pharmacological response. The area under the plasma concentration–time curve (AUC0–∞) was increased by 63 and 111% for the c.521TC and c.521CC genotypes vs. the c.521TT genotype, while the PD response remained relatively unchanged (3.1 and 5.8% reduction). Using local concentration at the effect site to drive the PD response enabled us to explain the observed disconnect between the effect of the OATP1B1 c521T>C polymorphism on rosuvastatin plasma concentration and the cholesterol synthesis response. PMID:25006781
USDA-ARS?s Scientific Manuscript database
Polyamines (PA) involve in the gene regulation by interacting with various anionic macromolecules such as DNA, RNA and proteins and modulating their structure and function. Previous studies have showed that changing in polyamine biosynthesis alters plant response to different abiotic stresses. Here,...
Tamilvanan, Shunmugaperumal; Khanum, Ramona; Senthilkumar, Sudalimuthu Ramachandran; Muthuraman, Marimuthu; Rajasekharan, Thenrajan
2013-10-01
Ocular and parenteral application potentials of azithromycin-containing, non-phospholipid-based cationic nanosized emulsion in comparison to the phospholipid-based anionic and neutral-charged nanosized emulsions were investigated. Various physical, chemical, nonclinical toxicity and antimicrobial activity studies (mean droplet diameter, surface charge, creaming index, entrapment efficiency, accelerated, long-term and freeze-thaw cycling stabilities, TLC study, modified hen's egg chorioallantoic membrane (HET-CAM) test, in vitro hemolysis test, in vitro and in vivo myotoxicity, and in vitro antimicrobial activity) were conducted for assessing the potentials of these three types of emulsions. Following autoclave sterilization, all of these emulsions exhibited a nanometer range mean particle diameter (200 ± 29 to 434 ± 13 nm). While the anionic and cationic emulsions did show high negative (-34.2 ± 1.23 mV) and positive zeta potential (42.6 ± 1.45 mV) values, the neutral-charged emulsion did not. Even with 5 freeze-thaw cycles, the cationic emulsion remained stable whereas other two emulsions underwent phase-separation. The hen's egg chorioallantoic membrane test revealed an irritation score value that was higher for the anionic emulsion than for cationic or neutral-charged emulsion. A significantly higher % hemolysis value was also noticed for the anionic emulsion when compared to the % hemolysis value of cationic emulsion (ANOVA, P ‹ 0.05). However, all of the emulsions showed a lesser intracellular creatine kinase (CK) release/plasma CK level in comparison to the positive control (phenytoin) indicating their lesser myotoxicity at the injection site . When compared to anionic and neutral-charged emulsions, the possible controlled drug release from cationic emulsion delayed the in vitro antimicrobial action against H.influenzae and S.pneumoniae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Wei; Huang, Caili; Hong, Kunlun
Living anionic polymerization of acrylates is challenging due to intrinsic side reactions including backbiting reactions of propagating enolate anions and aggregation of active chain ends. In this study, the controlled synthesis of poly(1-adamatyl acrylate) (PAdA) was performed successfully for the first time via living anionic polymerization through investigation of the initiation systems of sec-butyllithium/diphenylethylene/lithium chloride (sec-BuLi/DPE/LiCl), diphenylmethylpotassium/diethylzinc (DPMK/Et 2Zn), and sodium naphthalenide/dipenylethylene/diethylzinc (Na-Naph/DPE/Et2Zn) in tetrahydrofuran at -78 °C using custom glass-blowing and high-vacuum techniques. PAdA synthesized via anionic polymerization using DPMK with a large excess (more than 40-fold to DPMK) of Et 2Zn as the ligand exhibited predicted molecular weightsmore » from 4.3 to 71.8 kg/mol and polydispersity indices of around 1.10. In addition, the produced PAdAs exhibit a low level of isotactic content (mm triads of 2.1%). The block copolymers of AdA and methyl methacrylate (MMA) were obtained by sequential anionic polymerization, and the distinct living property of PAdA over other acrylates was demonstrated based on the observation that the resulting PAdA-b-PMMA block copolymers were formed with no residual PAdA homopolymer. The PAdA homopolymers exhibit a very high glass transition temperature (133 °C) and outstanding thermal stability (T d: 376 °C) as compared to other acrylic polymers such as poly(tert-butyl acrylate) and poly(methyl acrylate). These merits make PAdA a promising candidate for acrylic-based thermoplastic elastomers with high upper service temperature and enhanced mechanical strength.« less
Lu, Wei; Huang, Caili; Hong, Kunlun; ...
2016-12-06
Living anionic polymerization of acrylates is challenging due to intrinsic side reactions including backbiting reactions of propagating enolate anions and aggregation of active chain ends. In this study, the controlled synthesis of poly(1-adamatyl acrylate) (PAdA) was performed successfully for the first time via living anionic polymerization through investigation of the initiation systems of sec-butyllithium/diphenylethylene/lithium chloride (sec-BuLi/DPE/LiCl), diphenylmethylpotassium/diethylzinc (DPMK/Et 2Zn), and sodium naphthalenide/dipenylethylene/diethylzinc (Na-Naph/DPE/Et2Zn) in tetrahydrofuran at -78 °C using custom glass-blowing and high-vacuum techniques. PAdA synthesized via anionic polymerization using DPMK with a large excess (more than 40-fold to DPMK) of Et 2Zn as the ligand exhibited predicted molecular weightsmore » from 4.3 to 71.8 kg/mol and polydispersity indices of around 1.10. In addition, the produced PAdAs exhibit a low level of isotactic content (mm triads of 2.1%). The block copolymers of AdA and methyl methacrylate (MMA) were obtained by sequential anionic polymerization, and the distinct living property of PAdA over other acrylates was demonstrated based on the observation that the resulting PAdA-b-PMMA block copolymers were formed with no residual PAdA homopolymer. The PAdA homopolymers exhibit a very high glass transition temperature (133 °C) and outstanding thermal stability (T d: 376 °C) as compared to other acrylic polymers such as poly(tert-butyl acrylate) and poly(methyl acrylate). These merits make PAdA a promising candidate for acrylic-based thermoplastic elastomers with high upper service temperature and enhanced mechanical strength.« less
Mallick, Arabinda; Roy, Ujjal Kanti; Haldar, Basudeb; Pratihar, Sanjay
2012-03-07
A new easy-to-synthesize chemosensor, 3,3'-bis(indolyl)-4-chlorophenylmethane (hereafter S), was designed, synthesized and employed as a selective optical chemosensor for fluoride ions.(1)H NMR and density functional studies on the system have been carried out to determine the nature of the interaction between S and X(-) (X = inorganic anions) responsible for the significant fluoride-induced changes in the absorption properties of S. The experimental results reveal that abstraction of an acidic proton of S by the fluoride ion, leading to the formation of anionic species, is responsible for the spectral changes. These changes allow signaling for the fluoride ion to detect and estimate the concentration of fluoride ion present even at the submicromolar level, accurate up to 2 μM. Calculations of the transition energies of S, S(-), and S···F(-) (hydrogen bonded complex) show that only S(-) is responsible for the long-wavelength absorption band in the presence of F(-).
Electronic effects on melting: Comparison of aluminum cluster anions and cations
NASA Astrophysics Data System (ADS)
Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.
2009-07-01
Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.
A novel dichromate-sensitive fluorescent nano-chemosensor using new functionalized SBA-15.
Hosseini, Morteza; Gupta, Vinod Kumar; Ganjali, Mohammad Reza; Rafiei-Sarmazdeh, Zahra; Faridbod, Farnoush; Goldooz, Hassan; Badiei, Ali Reza; Norouzi, Parviz
2012-02-17
A novel fluorescence nano-chemosensor for Cr(2)O(7)(2-) anion has been developed by assembly of fluorescent aluminum complex of 8-hydroxyquinoline (AlQ(x)) within the channels of modified SBA-15. SBA-SPS-AlQ(x) shows a fluorescence emission at 486 nm. The observed remarkable fluorescence of SBA-SPS-AlQ(x) quenches in presence of Cr(2)O(7)(2-) anion. The results showed that this fluorescent nano-material can be a useful chemo-sensor for determination of dichromate anions in aqueous solutions. The linear detecting range of fluorescent nano-chemosensor for Cr(2)O(7)(2-) anion was 0.16-2.9 μmol L(-1). The lowest limit of detection (LDL) was also found to be 0.2 ng mL(-1) in aqueous solutions. SBA-SPS-AlQ(x) showed selectively and sensitively fluorescent quenching response toward Cr(2)O(7)(2-) ion in comparison with I(3)(-), NO(3)(-), CN(-), CO(3)(2-), Br(-), Cl(-), F(-), H(2)PO(4)(-) and SO(4)(2-) ions, which was because of the higher stability of its inorganic complex with dichromate ion. Copyright © 2011 Elsevier B.V. All rights reserved.
Transports of ionic liquids in ionic polymer conductor network composite actuators
NASA Astrophysics Data System (ADS)
Liu, Yang; Liu, Sheng; Lin, Junhong; Wang, Dong; Jain, Vaibhav; Montazami, Reza; Heflin, James R.; Li, Jing; Madsen, Louis; Zhang, Q. M.
2010-04-01
We investigate the influence of ionic liquids on the electromechanical performance of Ionic Polymer Conductor Network Composite (IPCNC) bending actuators. Two imidazolium ionic liquids (ILs) with one cation, which is 1-ethyl-3- methylimidazolium ([EMI+]), and two different anions, which are tetrafluoroborate ([BF4-]) and trifluoromethanesulfonate ([Tf-]), are chosen for the study. By combining the time domain electric and electromechanical responses, we developed a new model that describes the ion transports in IPCNC actuators. The time constant of excess cation and anion migration in various composite electrodes are deduced: 6s and 25s in RuO2/Nafion; 7.9s and 36.3s in RuO2/Aquivion; 4.8s and 53s in Au/PAH, respectively. NMR is also applied to provide quantitative measures of self-diffusion coefficients independently for IL anions and cations both in pure ILs and in ILs absorved into ionomers. All the results indicate that the motion of cation, in the studied pure ionic liquids, polymer matrix and conductor network composites, is faster than that of anion. Moreover, the CNC morphology is playing a crucial role in determining the ion transport in the porous electrodes.
Arylethynyl receptors for neutral molecules and anions: emerging applications in cellular imaging.
Carroll, Calden N; Naleway, John J; Haley, Michael M; Johnson, Darren W
2010-10-01
This critical review will focus on the application of shape-persistent receptors for anions that derive their rigidity and optoelectronic properties from the inclusion of arylethynyl linkages. It will highlight a few of the design strategies involved in engineering selective and sensitive fluorescent probes and how arylacetylenes can offer a design pathway to some of the more desirable properties of a selective sensor. Additionally, knowledge gained in the study of these receptors in organic media often leads to improved receptor design and the production of chromogenic and fluorogenic probes capable of detecting specific substrates among the multitude of ions present in biological systems. In this ocean of potential targets exists a large number of geometrically distinct anions, which present their own problems to the design of receptors with complementary binding for each preferred coordination geometry. Our interest in targeting charged substrates, specifically how previous work on receptors for cations or neutral guests can be adapted to anions, will be addressed. Additionally, we will focus on the design and development of supramolecular arylethynyl systems, their shape-persistence and fluorogenic or chromogenic optoelectronic responses to complexation. We will also examine briefly how the "chemistry in the cuvet" translates into biological media (125 references).
NASA Astrophysics Data System (ADS)
Duignan, Timothy T.; Baer, Marcel D.; Mundy, Christopher J.
2018-06-01
The tetra-phenyl arsonium and tetra-phenyl borate (TATB) assumption is a commonly used extra-thermodynamic assumption that allows single ion free energies to be split into cationic and anionic contributions. The assumption is that the values for the TATB salt can be divided equally. This is justified by arguing that these large hydrophobic ions will cause a symmetric response in water. Experimental and classical simulation work has raised potential flaws with this assumption, indicating that hydrogen bonding with the phenyl ring may favor the solvation of the TB- anion. Here, we perform ab initio molecular dynamics simulations of these ions in bulk water demonstrating that there are significant structural differences. We quantify our findings by reproducing the experimentally observed vibrational shift for the TB- anion and confirm that this is associated with hydrogen bonding with the phenyl rings. Finally, we demonstrate that this results in a substantial energetic preference of the water to solvate the anion. Our results suggest that the validity of the TATB assumption, which is still widely used today, should be reconsidered experimentally in order to properly reference single ion solvation free energy, enthalpy, and entropy.
Maza, Eliana; Tuninetti, Jimena S; Politakos, Nikolaos; Knoll, Wolfgang; Moya, Sergio; Azzaroni, Omar
2015-11-28
The layer-by-layer construction of interfacial architectures displaying stimuli-responsive control of mass transport is attracting increasing interest in materials science. In this work, we describe the creation of interfacial architectures displaying pH-dependent ionic transport properties which until now have not been observed in polyelectrolyte multilayers. We describe a novel approach to create pH-controlled ion-rectifying systems employing polyelectrolyte multilayers assembled from a copolymer containing both weakly and strongly charged pendant groups, poly(4-styrenesulfonic acid-co-maleic acid) (PSS-MA), alternately deposited with poly(diallyldimethylammonium chloride) (PDADMAC). The conceptual framework is based on the very contrasting and differential interactions of PSS and MA units with PDADMAC. In our setting, sulfonate groups play a structural role by conferring stability to the multilayer due to the strong electrostatic interactions with the polycations, while the weakly interacting MA groups remain "silent" within the film and then act as on-demand pH-responsive units. When these multilayers are combined with a strong cationic capping layer that repels the passage of cationic probes, a pH-gateable rectified transport of anions is observed. Concomitantly, we also observed that these functional properties are significantly affected when multilayers are subjected to extensive pH cycling as a consequence of irreversible morphological changes taking place in the film. We envision that the synergy derived from combining weak and strong interactions within the same multilayer will play a key role in the construction of new interfacial architectures displaying tailorable ion transport properties.
[High anion gap metabolic acidosis (pyroglutamic acidosis) induced by chronic acetaminophen use].
Tchougang Nono, J; Mistretta, V; Noirot, I; Canivet, J L; Damas, P
2018-01-01
Acetaminophen is the most consumable analgesic in the world in the form of medical prescription or self-medication. It is one of the active ingredients most often involved in voluntary poisoning. Lethal dose of acetaminophen classically induces acute hepatic failure on hepatic necrosis. Chronic intake of sub-lethal doses (i.e. near recommended therapeutic doses) of acetaminophen in the presence of certain risk factors may be responsible for another much less recognized pathological manifestation: severe metabolic acidosis with an increased anion gap due to the accumulation of 5-oxoproline or pyroglutamic acid.
Photodissociation of nitromethane cluster anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goebbert, Daniel J.; Khuseynov, Dmitry; Sanov, Andrei
2010-08-28
Three types of anionic fragments are observed in the photodissociation of nitromethane cluster anions, (CH{sub 3}NO{sub 2}){sub n}{sup -}, n=1-6, at 355 nm: NO{sub 2}{sup -}(CH{sub 3}NO{sub 2}){sub k}, (CH{sub 3}NO{sub 2}){sub k}{sup -}, and OH{sup -} (k
Fluoride-selective colorimetric sensor based on thiourea binding site and anthraquinone reporter.
Wu, Fang-ying; Hu, Mei-hua; Wu, Yu-mei; Tan, Xiao-fang; Zhao, Yong-qiang; Ji, Zhao-jun
2006-11-01
A structurally simple colorimetric sensor, N-4-nitrobenzene-N'-1'-anthraquinone-thiourea (1), for anions was synthesized and characterized by (1)H NMR, ESI mass and IR methods. In acetonitrile, the addition of F(-) changed 1 solution from colorless to yellow. In the presence of other anions such as CH(3)CO(2)(-), H(2)PO(4)(-), HSO(4)(-) and Cl(-), however, the absorption spectrum of 1 was slightly red shifted with no obvious color changes observed. The association constants of anionic complexes followed the order of F(-)>CH(3)CO(2)(-)>H(2)PO(4)(-)>HSO(4)(-)>Cl(-)>Br(-), which was different from the order of anion basicity. AM1 calculation results indicated that the most stable configuration of 1 existed in the Z-E-conformation with a six-membered ring via intramolecular hydrogen bond. This made thiourea moiety of 1 in an unfavorable conformation to bond with oxygen-anionic substrates such as CH(3)CO(2)(-) and H(2)PO(4)(-), thus leading to a high selectivity and sensitivity for the detection of F(-).
Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries.
Grayfer, Ekaterina D; Pazhetnov, Egor M; Kozlova, Mariia N; Artemkina, Sofya B; Fedorov, Vladimir E
2017-12-22
Classical Li-ion battery technology is based on the insertion of lithium ions into cathode materials involving metal (cationic) redox reactions. However, this vision is now being reconsidered, as many new-generation electrode materials with enhanced reversible capacities operate through combined cationic and anionic (non-metal) reversible redox processes or even exclusively through anionic redox transformations. Anionic participation in the redox reactions is observed in materials with more pronounced covalency, which is less typical for oxides, but quite common for phosphides or chalcogenides. In this Concept, we would like to draw the reader's attention to this new idea, especially, as it applies to transition-metal polychalcogenides, such as FeS 2 , VS 4 , TiS 3 , NbS 3 , TiS 4 , MoS 3 , etc., in which the key role is played by the (S-S) 2- /2 S 2- redox reaction. The exploration and better understanding of the anion-driven chemistry is important for designing advanced materials for battery and other energy-related applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
First-Principles Prediction of Thermodynamically Stable Two-Dimensional Electrides
Ming, Wenmei; Yoon, Mina; Univ. of Tennessee, Knoxville, TN; ...
2016-10-21
Two-dimensional (2D) electrides, emerging as a new type of layered material whose electrons are confined in interlayer spaces instead of at atomic proximities, are receiving interest for their high performance in various (opto)electronics and catalytic applications. Experimentally, however, 2D electrides have been only found in a couple of layered nitrides and carbides. We report new thermodynamically stable alkaline-earth based 2D electrides by using a first-principles global structure optimization method, phonon spectrum analysis, and molecular dynamics simulation. The method was applied to binary compounds consisting of alkaline-earth elements as cations and group VA, VIA, or VIIA nonmetal elements as anions. Wemore » also revealed that the stability of a layered 2D electride structure is closely related to the cation/anion size ratio; stable 2D electrides possess a sufficiently large cation/anion size ratio to minimize electrostatic energy among cations, anions, and anionic electrons. This work demonstrates a new avenue to the discovery of thermodynamically stable 2D electrides beyond experimental material databases and provides new insight into the principles of electride design.« less
Infrared Multiple Photon Dissociation Spectroscopy of Sodium and Potassium Chlorate Anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan P. Dain; Christopher M. Leavitt; Jos Oomens
2010-01-01
The structures of gas-phase, metal chlorate anions with the formula [M(ClO3)2]-, M=Na and K, were determined using tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Structural assignments for both anions are based on comparisons of the experimental vibrational spectra for the two species to those predicted by density functional theory and involve conformations that feature either bidentate or tridentate coordination of the cation by chlorate. Our results strongly suggest that a structure in which both chlorate anions are bidentate ligands is preferred for [Na(ClO3)2]-. However, for [K(ClO3)2]- the best agreement between experimental and theoretical spectra is obtained frommore » a composite of predicted spectra for which the chlorate anions are either both bidentate or both tridentate ligands. In general, we find that the overall accuracy of DFT calculations for prediction of IR spectra is dependent on both functional and basis set, with best agreement achieved using frequencies generated at the B3LYP/6-311+g(3df) level of theory.« less
Infrared multiple photon dissociation spectroscopy of sodium and potassium chlorate anions.
Dain, Ryan P; Leavitt, Christopher M; Oomens, Jos; Steill, Jeffrey D; Groenewold, Gary S; Van Stipdonk, Michael J
2010-01-01
The structures of gas-phase, metal chlorate anions with the formula [M(ClO(3))(2)](-), M = Na and K, were determined using tandem mass spectrometry and infrared multiple photon dissociation (IRMPD) spectroscopy. Structural assignments for both anions are based on comparisons of the experimental vibrational spectra for the two species with those predicted by density functional theory (DFT) and involve conformations that feature either bidentate or tridentate coordination of the cation by chlorate. Our results strongly suggest that a structure in which both chlorate anions are bidentate ligands is preferred for [Na(ClO(3))(2)](-). However, for [K(ClO(3))(2)](-) the best agreement between experimental and theoretical spectra is obtained from a composite of predicted spectra for which the chlorate anions are either both bidentate or both tridentate ligands. In general, we find that the overall accuracy of DFT calculations for prediction of IR spectra is dependent on both functional and basis set, with best agreement achieved using frequencies generated at the B3LYP/6-311+g(3df) level of theory. Copyright 2009 John Wiley & Sons, Ltd.
Brown, Darin J; Stefan, Sarah E; Berden, Giel; Steill, Jeffrey D; Oomens, Jos; Eyler, John R; Bendiak, Brad
2011-11-08
All eight D-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain configuration of the anions in the gas phase, based on the observation of a significant carbonyl absorption band near 1710 cm(-1). The abundance of the open-chain configuration of the aldohexose anions was approximately 1000-fold or greater than that of the neutral sugars in aqueous solution. This provides an explanation as to why it has not been possible to discriminate the anomeric configuration of aldohexose anions in the gas phase when derived from the non-reducing sugar of a disaccharide. Evidence from photodissociation spectra also indicates that the different aldohexoses yield product ions with maximal abundances at different wavelengths, and that the carbonyl stretch region is useful for differentiation of sugar stereochemistries. Quantum-chemical calculations indicate relatively low energy barriers to intramolecular proton transfer between hydroxyl groups and adjacent alkoxy sites located on open-chain sugar anions, suggesting that an ensemble of alkoxy charge locations contributes to their observed photodissociation spectra. Ring opening of monosaccharide anions and interconversion among configurations is an inherent property of the ions themselves and occurs in vacuo independent of solvent participation. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik
2017-09-01
A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.
Stefanović, Stefica Cerjan; Bolanča, Tomislav; Luša, Melita; Ukić, Sime; Rogošić, Marko
2012-02-24
This paper describes the development of ad hoc methodology for determination of inorganic anions in oilfield water, since their composition often significantly differs from the average (concentration of components and/or matrix). Therefore, fast and reliable method development has to be performed in order to ensure the monitoring of desired properties under new conditions. The method development was based on computer assisted multi-criteria decision making strategy. The used criteria were: maximal value of objective functions used, maximal robustness of the separation method, minimal analysis time, and maximal retention distance between two nearest components. Artificial neural networks were used for modeling of anion retention. The reliability of developed method was extensively tested by the validation of performance characteristics. Based on validation results, the developed method shows satisfactory performance characteristics, proving the successful application of computer assisted methodology in the described case study. Copyright © 2011 Elsevier B.V. All rights reserved.
Anion photoelectron spectroscopy of acid-base systems, solvated molecules and MALDI matrix molecules
NASA Astrophysics Data System (ADS)
Eustis, Soren Newman
Gas phase, mass-selected, anion photoelectron spectroscopic studies were performed on a variety of molecular systems. These studies can be grouped into three main themes: acid-base interactions, solvation, and ions of analytical interest. Acid-base interactions represent some of the most fundamental processes in chemistry. The study of these processes elucidates elementary principles such as inner and outer sphere complexes, hard and soft ions, and salt formation---to name a few. Apart from their appeal from a pedagogical standpoint, the ubiquity of chemical reactions which involve acids, bases or the resulting salts makes the study of their fundamental interactions both necessary and fruitful. With this in mind, the neutral and anionic series (NH3···HX) (X= F, Cl, Br, I) were examined experimentally and theoretically. The relatively small size of these systems, combined with the advances in computational methods, allowed our experimental results to be compared with very high level ab initio theoretical results. The synergy between theory and experiment yielded an understanding of the nature of the complexes that could not be achieved with either method in isolation. The second theme present in this body or work is molecular solvation. Solvation is a phenomenon which is present in biology, chemistry and physics. Many biological molecules do not become 'active' until they are solvated by water. Thus, the study of biologically relevant species solvated by water is one step in a bottom up approach to studying the biochemical interactions in living organisms. Furthermore, the hydration of acidic molecules in the atmosphere is what drives the formation of 'free' protons or hydronium ions which are the key players in acid driven chemistry. Here are presented two unique solvation studies, Adenine(H2O)-n and C6F6(H2O)-n, these systems are very distinct, but show somewhat similar responses to hydration. The last theme presented in this work is the electronic properties of molecules relevant to analytical chemistry, or more specifically, Matrix Assisted Laser Desorption Interaction (MALDI) chemistry. For the first time electron affinities are presented for many of the common MALDI matrix compounds.
Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F
2012-05-17
The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.
Photodetachment and Doppler laser cooling of anionic molecules
NASA Astrophysics Data System (ADS)
Gerber, Sebastian; Fesel, Julian; Doser, Michael; Comparat, Daniel
2018-02-01
We propose to extend laser-cooling techniques, so far only achieved for neutral molecules, to molecular anions. A detailed computational study is performed for {{{C}}}2- molecules stored in Penning traps using GPU based Monte Carlo simulations. Two cooling schemes—Doppler laser cooling and photodetachment cooling—are investigated. The sympathetic cooling of antiprotons is studied for the Doppler cooling scheme, where it is shown that cooling of antiprotons to subKelvin temperatures could becomes feasible, with impacts on the field of antimatter physics. The presented cooling schemes also have applications for the generation of cold, negatively charged particle sources and for the sympathetic cooling of other molecular anions.
Fang, Zhiwei; Peng, Lele; Qian, Yumin; Zhang, Xiao; Xie, Yujun; Cha, Judy J; Yu, Guihua
2018-04-18
Seeking earth-abundant electrocatalysts with high efficiency and durability has become the frontier of energy conversion research. Mixed-transition-metal (MTM)-based electrocatalysts, owing to the desirable electrical conductivity, synergistic effect of bimetal atoms, and structural stability, have recently emerged as new-generation hydrogen evolution reaction (HER) electrocatalysts. However, the correlation between anion species and their intrinsic electrocatalytic properties in MTM-based electrocatalysts is still not well understood. Here we present a novel approach to tuning the anion-dependent electrocatalytic characteristics in MTM-based catalyst for HER, using holey Ni/Co-based phosphides/selenides/oxides (Ni-Co-A, A = P, Se, O) as the model materials. The electrochemical results, combined with the electrical conductivity measurement and DFT calculation, reveal that P substitution could modulate the electron configuration, lower the hydrogen adsorption energy, and facilitate the desorption of hydrogen on the active sites in Ni-Co-A holey nanostructures, resulting in superior HER catalytic activity. Accordingly we fabricate the NCP holey nanosheet electrocatalyst for HER with an ultralow onset overpotential of nearly zero, an overpotential of 58 mV, and long-term durability, along with an applied potential of 1.56 V to boost overall water splitting at 10 mA cm -2 , among the best electrocatalysts reported for non-noble-metal catalysts to date. This work not only presents a deeper understanding of the intrinsic HER electrocatalytic properties for MTM-based electrocatalyst with various anion species but also offers new insights to better design efficient and durable water-splitting electrocatalysts.
Understanding Anion Transport in an Aminated Trimethyl Polyphenylene with High Anionic Conductivity
2012-01-01
published online DOI: 10.1002/polb.23164 ABSTRACT: An alkaline exchange membrane (AEM) based on an aminated trimethyl poly(phenylene) is studied in...3874–3882. 23 Cotts, R. M.; Hoch, M. J. R.; Sun, T.; Markert , J. T. J. Magn. Reson. (1969) 1989, 83, 252–266. 24 Tanner, J. E. J. Chem. Phys. 1970
Slow Photoelectron Velocity-Map Imaging of Cryogenically Cooled Anions
NASA Astrophysics Data System (ADS)
Weichman, Marissa L.; Neumark, Daniel M.
2018-04-01
Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm‑1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.
Borodin, Oleg
2009-09-10
A number of correlations between heat of vaporization (H(vap)), cation-anion binding energy (E(+/-)), molar volume (V(m)), self-diffusion coefficient (D), and ionic conductivity for 29 ionic liquids have been investigated using molecular dynamics (MD) simulations that employed accurate and validated many-body polarizable force fields. A significant correlation between D and H(vap) has been found, while the best correlation was found for -log(DV(m)) vs H(vap) + 0.28E(+/-). A combination of enthalpy of vaporization and a fraction of the cation-anion binding energy was suggested as a measure of the effective cohesive energy for ionic liquids. A deviation of some ILs from the reported master curve is explained based upon ion packing and proposed diffusion pathways. No general correlations were found between the ion diffusion coefficient and molecular volume or the diffusion coefficient and cation/anion binding energy.
Importance of counteranions on the hydration structure of the curium ion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atta Fynn, Raymond; Bylaska, Eric J.; De Jong, Wibe A.
2013-07-04
Using density functional theory based ab initio molecular dynamics and metadynamics we show that counter ions can trigger noticeable changes in the hydration shell structure of the curium ion. The free energies of curium-water coordination and the solvent hydrogen bond (HB) lifetimes in the absence and presence the counter anions predict that chloride and bromide counter anions strengthen the first shell and consequently the 8-fold coordination state is dominant by at least 98%. In contrast, the perchlorate counter anions are found to weaken the coordination shell and the HB network, with the 9-fold and 8-fold states existing in an 8:1more » ratio, which is in good agreement with reported 9:1 ratio seen in time resolved fluorescence spectroscopy experiments. To our knowledge this is the first time molecular simulations have shown that counter anions can directly affect the first hydration shell structure of a cation.« less
Beletskiy, Evgeny V; Wang, Xue-Bin; Kass, Steven Robert
2016-10-05
A benzene ring substituted with 1-3 thiourea containing arms (1-3) were examined by photoelectron spectroscopy and density functional theory computations. Their conjugate bases and chloride, acetate and dihydrogen phosphate anion clusters are reported. The resulting vertical and adiabatic detachment energies span from 3.93 - 5.82 eV (VDE) and 3.65 - 5.10 (ADE) for the deprotonated species and 4.88 - 5.97 eV (VDE) and 4.45 - 5.60 eV (ADE) for the anion complexes. These results reveal the stabilizing effects of multiple hydrogen bonds and anionic host-guest interactions in the gas phase. Previously measured equilibrium binding constants in aqueous dimethyl sulfoxide for all three thioureas are compared to the present results and cooperative binding is uniformly observed in the gas phase but only for one case (i.e., 3 • H2PO4-) in solution.
Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.
Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan
2016-10-14
This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.
Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
NASA Astrophysics Data System (ADS)
Assat, Gaurav; Tarascon, Jean-Marie
2018-05-01
Our increasing dependence on lithium-ion batteries for energy storage calls for continual improvements in the performance of their positive electrodes, which have so far relied solely on cationic redox of transition-metal ions for driving the electrochemical reactions. Great hopes have recently been placed on the emergence of anionic redox—a transformational approach for designing positive electrodes as it leads to a near-doubling of capacity. But questions have been raised about the fundamental origins of anionic redox and whether its full potential can be realized in applications. In this Review, we discuss the underlying science that triggers a reversible and stable anionic redox activity. Furthermore, we highlight its practical limitations and outline possible approaches for improving such materials and designing new ones. We also summarize their chances for market implementation in the face of the competing nickel-based layered cathodes that are prevalent today.
Kerres, Jochen A.; Krieg, Henning M.
2017-01-01
In view of the many possible applications such as fuel cells and electrolysers, recent interest in novel anion exchange membranes (AEMs) has increased significantly. However, their low conductivity and chemical stability limits their current suitability. In this study, the synthesis and characterization of several three- and four-component anion exchange blend membranes (AEBMs) is described, where the compositions have been systematically varied to study the influence of the AEBM’s composition on the anion conductivities as well as chemical and thermal stabilities under strongly alkaline conditions. It was shown that the epoxide-functionalized poly(ethylene glycol)s that were introduced into the four-component AEBMs resulted in increased conductivity as well as a marked improvement in the stability of the AEBMs in an alkaline environment. In addition, the thermal stability of the novel AEBMs was excellent showing the suitability of these membranes for several electrochemical applications. PMID:28621717
Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic substrates in vivo
NASA Astrophysics Data System (ADS)
Brodbeck, William G.; Patel, Jasmine; Voskerician, Gabriela; Christenson, Elizabeth; Shive, Matthew S.; Nakayama, Yasuhide; Matsuda, Takehisa; Ziats, Nicholas P.; Anderson, James M.
2002-08-01
An in vivo rat cage implant system was used to identify potential surface chemistries that prevent failure of implanted biomedical devices and prostheses by limiting monocyte adhesion and macrophage fusion into foreign-body giant cells while inducing adherent-macrophage apoptosis. Hydrophobic, hydrophilic, anionic, and cationic surfaces were used for implantation. Analysis of the exudate surrounding the materials revealed no differences between surfaces in the types or levels of cells present. Conversely, the proportion of adherent cells undergoing apoptosis was increased significantly on anionic and hydrophilic surfaces (46 ± 3.7 and 57 ± 5.0%, respectively) when compared with the polyethylene terephthalate base surface. Additionally, hydrophilic and anionic substrates provided decreased rates of monocyte/macrophage adhesion and fusion. These studies demonstrate that biomaterial-adherent cells undergo material-dependent apoptosis in vivo, rendering potentially harmful macrophages nonfunctional while the surrounding environment of the implant remains unaffected.
Sun, Liyuan; Morales-Collazo, Oscar; Xia, Han; Brennecke, Joan F
2015-12-03
A series of room temperature ionic liquids (RTILs) based on 1-ethyl-3-methylimidazolium ([emim](+)) with different aprotic heterocyclic anions (AHAs) were synthesized and characterized as potential electrolyte candidates for lithium ion batteries. The density and transport properties of these ILs were measured over the temperature range between 283.15 and 343.15 K at ambient pressure. The temperature dependence of the transport properties (viscosity, ionic conductivity, self-diffusion coefficient, and molar conductivity) is fit well by the Vogel-Fulcher-Tamman (VFT) equation. The best-fit VFT parameters, as well as linear fits to the density, are reported. The ionicity of these ILs was quantified by the ratio of the molar conductivity obtained from the ionic conductivity and molar concentration to that calculated from the self-diffusion coefficients using the Nernst-Einstein equation. The results of this study, which is based on ILs composed of both a planar cation and planar anions, show that many of the [emim][AHA] ILs exhibit very good conductivity for their viscosities and provide insight into the design of ILs with enhanced dynamics that may be suitable for electrolyte applications.
NASA Astrophysics Data System (ADS)
Dreyse, Paulina; Alarcón, Antonia; Galdámez, Antonio; González, Iván; Cortés-Arriagada, Diego; Castillo, Francisco; Mella, Andy
2018-02-01
Quaternary alkyl 2-phenylpyridinium and 2-(2,4-difluorophenyl)pyridinium amines with iodide, hexafluorophosphate and bis(trifluoromethylsulfonyl)imide anions have been fully characterized by 1H NMR, FT-IR and MALDI mass spectroscopic methods and studied by quantum chemistry calculations. The compounds with bis(trifluoromethylsulfonyl)imide anion can be classified as ionic liquids, because they melt at room temperature. The quaternary amines with iodide and hexafluorophosphate anions are solid at 25 °C. The X-ray diffraction characterization of the 2-(2,4-difluorophenyl)-1-methylphenylpyridinium hexafluorophosphate and 1-ethyl-2-(2,4-difluorophenyl)phenylpyridinium hexafluorophosphate show an extensive series of Csbnd H⋯F, Csbnd F⋯π and Psbnd F⋯π intermolecular interactions, which give rise to a supramolecular network. The relationship between the solid-state structures and the melting points is discussed by the evaluation of the thermal behavior based on experimental data from Differential Scanning Calorimetry (DSC) studies, and also using the analysis of the ion pairs binding energies. These new compounds based on phenylpyridine allow us to grow the diversity of ionic liquids and their crystalline salts, increasing the knowledge about the chemical and physical properties of these ionic species.
Munemasa, Shintaro; Wang, Yong-Fei; Andreoli, Shannon; Tiriac, Hervé; Alonso, Jose M; Harper, Jeffery F; Ecker, Joseph R; Kwak, June M; Schroeder, Julian I
2006-01-01
Abscisic acid (ABA) signal transduction has been proposed to utilize cytosolic Ca2+ in guard cell ion channel regulation. However, genetic mutants in Ca2+ sensors that impair guard cell or plant ion channel signaling responses have not been identified, and whether Ca2+-independent ABA signaling mechanisms suffice for a full response remains unclear. Calcium-dependent protein kinases (CDPKs) have been proposed to contribute to central signal transduction responses in plants. However, no Arabidopsis CDPK gene disruption mutant phenotype has been reported to date, likely due to overlapping redundancies in CDPKs. Two Arabidopsis guard cell–expressed CDPK genes, CPK3 and CPK6, showed gene disruption phenotypes. ABA and Ca2+ activation of slow-type anion channels and, interestingly, ABA activation of plasma membrane Ca2+-permeable channels were impaired in independent alleles of single and double cpk3cpk6 mutant guard cells. Furthermore, ABA- and Ca2+-induced stomatal closing were partially impaired in these cpk3cpk6 mutant alleles. However, rapid-type anion channel current activity was not affected, consistent with the partial stomatal closing response in double mutants via a proposed branched signaling network. Imposed Ca2+ oscillation experiments revealed that Ca2+-reactive stomatal closure was reduced in CDPK double mutant plants. However, long-lasting Ca2+-programmed stomatal closure was not impaired, providing genetic evidence for a functional separation of these two modes of Ca2+-induced stomatal closing. Our findings show important functions of the CPK6 and CPK3 CDPKs in guard cell ion channel regulation and provide genetic evidence for calcium sensors that transduce stomatal ABA signaling. PMID:17032064
Zhu, Youtao; Yan, Jing; Liu, Chengbu; Zhang, Dongju
2017-08-01
Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium-based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol-β-guaiacyl ether (VG) with 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π-π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl - anion forms a hydrogen-bonded complex with VG, the imidazolium cation interacts with VG via both the π-π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium-based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution. © 2017 Wiley Periodicals, Inc.
Gaynor, P J; Mueller, F J; Miller, J K; Ramsey, N; Goff, J P; Horst, R L
1989-10-01
Jersey cows were fed three alfalfa haylage-based diets with different cation-anion balances beginning 6 wk preceding third or later calving and ending 24 to 36 h postpartum. Sodium and Cl as percentages of dietary DM were .08 and 1.66 in diet 1 (anionic, 5 cows), .44 and .91 in diet 2 (intermediate, 6 cows), and 1.60 and .34 in diet 3 (cationic, 6 cows). Cation-anion balances were 22, 60, and 126 meq/100 g DM; Ca:P ratios averaged 4:1. Cows fed diet 1 in comparison with cows fed diets 2 or 3 over 6 wk had similar concentrations of Ca, P, and Na but higher concentrations of Mg and K in plasma and higher urinary excretions of Ca and Mg. Concentrations of 1,25-dihydroxyvitamin D 3 d before parturition were higher in cows fed diet 1 than in cows fed diets 2 or 3. Within 36 h after calving, mean concentrations of Ca in plasma (mg/dl, range) of cows fed diets 1 to 3, respectively, were 7 (8.7 to 6.2), 6.5 (7.8 to 3.9), and 6.3 (7.8 to 3.8). Number of cases of clinical milk fever by diet were 0 of 5, 2 of 6, and 1 of 6 cows. Alteration of dietary cation-anion balance by addition of Cl may effectively reduce incidence and severity of parturient hypocalcemia.
Final Technical Report: Targeting DOE-Relevant Ions with Supramolecular Strategies, DE-SC0010555
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman-James, Kristin
The effectiveness of three popular supramolecular strategies to selectively target negatively charged ions (anions) was evaluated. Ions of interest included oxo anions, particularly sulfate, that hamper nuclear waste remediation. Three objectives were pursued using a simple building block strategies and by strategically placing anion-binding sites at appropriate positions on organic host molecules. The goal of the first objective was to assess the influence of secondary, tertiary and quaternized amines on binding tetrahedral anions using mixed amide/amine macrocyclic and urea/amine hosts containing aromatic or heteroaromatic spacers. Objective 2 focused on the design of ion pair hosts, using mixed macrocyclic anion hostsmore » joined through polyether linkages. Objective 3 was to explore the synthesis of new metal-linked extended macrocyclic frameworks to leverage anion binding. Key findings were that smaller 24-membered macrocycles provided the most complementary binding for sulfate ion and mixed urea/amine chelates showed enhanced binding over amide corollaries in addition to being highly selective for SO 4 2- in the presence of small quantities of water. In addition to obtaining prototype metal-linked macrocyclic anion hosts, a new dipincer ligand was designed that can be used to link macrocyclic or other supramolecular hosts in extended frameworks. When the tetraamide-based pincers are bound to two metal ions, an interesting phenomenon occurs. Upon deprotonation of the amides, two new protons appear between adjacent carbonyl pairs on the ligand, which may modify the chemistry, and metal-metal interactions in the complexes. Gel formation occurred for some of these extended hosts, and the physical properties are currently under investigation. The new tetracarboxamide-based pincers can also provide basic frameworks for double macrocycles capable of binding ion pairs as well as for binding metal ions and exploring intermetallic interactions through the pyrazine π system. Additionally appendages capable of influencing solvation effects can be introduced, and a number of other potential applications can be realized in areas such as soft materials chemistry, catalysis, sensing, and proton switches, the latter for binding and release of targeted guests. These findings provide a better foundation for understanding the selective binding of anions by targeted placement of hydrogen binding sites, and the strengths and weaknesses of various functional groups, that will allow for more the design of more effective anion sequestering agents. Our design strategy also used simple, cost-effective building blocks for host synthesis to allow for scale-up should real-world applications be forthcoming.« less
Al Hasan, Naila M; Johnson, Grant E; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy(n-) and VxOyCl(n-) ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N(+), tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCl(n-) and VxOyCl(L)((n-1)-) clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl((1-2)-) and VxOy ((1-2)-) anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
NASA Astrophysics Data System (ADS)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-09-01
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including VxOy n- and VxOyCln- ions (x = 1-14, y = 2-36, n = 1-3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V14O36Cl(L)5 (L = Et4N+, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged VxOyCln- and VxOyCl(L)(n-1)- clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller VxOyCl(1-2)- and VxOy (1-2)- anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged VxOyCl and VxOy species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of VxOyCl and VxOy anions through low-energy CID. Furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinfang, E-mail: zjf260@jiangnan.edu.cn; Wang, Chao; Wang, Yinlin
2015-11-15
The systematic study on the reaction variables affecting single cyanide-bridged Mo(W)/S/Cu cluster-based coordination polymers (CPs) is firstly demonstrated. Five anionic single cyanide-bridged Mo(W)/S/Cu cluster-based CPs {[Pr_4N][WS_4Cu_3(CN)_2]}{sub n} (1), {[Pr_4N][WS_4Cu_4(CN)_3]}{sub n} (2), {[Pr_4N][WOS_3Cu_3(CN)_2]}{sub n} (3), {[Bu_4N][WOS_3Cu_3(CN)_2]}{sub n} (4) and {[Bu_4N][MoOS_3Cu_3(CN)_2]}{sub n} (5) were prepared by varying the molar ratios of the starting materials, and the specific cations, cluster building blocks and central metal atoms in the cluster building blocks. 1 possesses an anionic 3D diamondoid framework constructed from 4-connected T-shaped clusters [WS{sub 4}Cu{sub 3}]{sup +} and single CN{sup −} bridges. 2 is fabricated from 6-connected planar ‘open’ clusters [WS{sub 4}Cu{sub 4}]{supmore » 2+} and single CN{sup −} bridges, forming an anionic 3D architecture with an “ACS” topology. 3 and 4 exhibit novel anionic 2-D double-layer networks, both constructed from nest-shaped clusters [WOS{sub 3}Cu{sub 3}]{sup +} linked by single CN{sup −} bridges, but containing the different cations [Pr{sub 4}N]{sup +} and [Bu{sub 4}N]{sup +}, respectively. 5 is constructed from nest-shaped clusters [MoOS{sub 3}Cu{sub 3}]{sup +} and single CN{sup −} bridges, with an anionic 3D diamondoid framework. The anionic frameworks of 1-5, all sustained by single CN{sup −} bridges, are non-interpenetrating and exhibit huge potential void volumes. Employing differing molar ratios of the reactants and varying the cluster building blocks resulted in differing single cyanide-bridged Mo(W)/S/Cu cluster-based CPs, while replacing the cation ([Pr{sub 4}N]{sup +} vs. [Bu{sub 4}N]{sup +}) was found to have negligible impact on the nature of the architecture. Unexpectedly, replacement of the central metal atom (W vs. Mo) in the cluster building blocks had a pronounced effect on the framework. Furthermore, the photocatalytic activities of heterothiometallic cluster-based CPs were firstly explored by monitoring the photodegradation of methylene blue (MB) under visible light irradiation, which reveals that 2 exhibits effective photocatalytic properties. - Highlights: • Reaction variables affecting Mo(W)/S/Cu cluster-based CPs is firstly explored. • Replacing central metal atom had a pronounced effect on W/S/Cu cluster-based CPs. • Photocatalytic activities of Mo(W)/S/Cu cluster-based CPs are firstly investigated.« less
Prediction of the Iron-Based Polynuclear Magnetic Superhalogens with Pseudohalogen CN as Ligands.
Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Liu, Yun; Mu, Qiang
2017-07-17
To explore stable polynuclear magnetic superhalogens, we perform an unbiased structure search for polynuclear iron-based systems based on pseudohalogen ligand CN using the CALYPSO method in conjunction with density functional theory. The superhalogen properties, magnetic properties, and thermodynamic stabilities of neutral and anionic Fe 2 (CN) 5 and Fe 3 (CN) 7 clusters are investigated. The results show that both of the clusters have superhalogen properties due to their electron affinities (EAs) and that vertical detachment energies (VDEs) are significantly larger than those of the chlorine element and their ligand CN. The distribution of the extra electron analysis indicates that the extra electron is aggregated mainly into pseudohalogen ligand CN units in Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ cluster. These features contribute significantly to their high EA and VDE. Besides superhalogen properties, these two anionic clusters carry a large magnetic moment just like the Fe 2 F 5 ¯ cluster. Additionally, the thermodynamic stabilities are also discussed by calculating the energy required to fragment the cluster into various smaller stable clusters. It is found that Fe(CN) 2 is the most favorable fragmentation product for anionic Fe 2 (CN) 5 ¯ and Fe 3 (CN) 7 ¯ clusters, and both of the anions are less stable against ejection of Fe atoms than Fe(CN) n-x .
NASA Astrophysics Data System (ADS)
Yalçın, Ergin; Alkış, Meltem; Seferoğlu, Nurgül; Seferoğlu, Zeynel
2018-03-01
A novel fluorescence coumarin-pyrazole-triazine based chemosensor (CPT) bearing 5-hydroxypyrazole as a receptoric part was synthesized and characterized by using IR, 1H/13C NMR and HRMS for the purpose of recognition of anions in DMSO. The most stable tautomeric form of CPT was determined by experimental techniques and theoretical calculations. The selectivity and sensitivity of CPT towards anions (CN-, F-, Cl-, Br-, I-, AcO-, HSO4-, H2PO4- and ClO4-) were determined using spectrophotometric and 1H NMR titration techniques as the experimental approach, and the results were explained by employing theoretical calculations. It was found to be suitable for the selective detection of F- in the presence of CN- and AcO- as competing anions. In addition, CPT exhibits significant "light-up" effect after interaction with TFA in CH2Cl2.
NASA Astrophysics Data System (ADS)
Wu, Wei-Na; Wu, Hao; Wang, Yuan; Mao, Xian-Jie; Zhao, Xiao-Lei; Xu, Zhou-Qing; Fan, Yun-Chang; Xu, Zhi-Hong
2018-01-01
A coumarin-based sensor C1, namely 3-acetoacetylcoumarin was designed, synthesized and applied for hydrazine detection. Hydrazinolysis of the chemosensor gives a fluorescent coumarin-pyrazole product C1 - N2H4 [3-(3-methyl-1H-pyrazol-5-yl)coumarin], and thus resulting in a prominent fluorescence off-on response toward hydrazine under physiological conditions. The probe is highly selective toward hydrazine over cations, anions and other biologically/environmentally abundant analytes. The detection limit of the probe is 3.2 ppb. The sensing mechanism was supported by 1H NMR, IR, MS and DFT calculation. The application of the fluorescent probe in monitoring intracellular hydrazine in glioma cell line U251 was also demonstrated.
A selective iodide ion sensor electrode based on functionalized ZnO nanotubes.
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-02-04
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10-6 to 1 × 10-1 M) and excellent sensitivity of -62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10-7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples.
A Selective Iodide Ion Sensor Electrode Based on Functionalized ZnO Nanotubes
Ibupoto, Zafar Hussain; Khun, Kimleang; Willander, Magnus
2013-01-01
In this research work, ZnO nanotubes were fabricated on a gold coated glass substrate through chemical etching by the aqueous chemical growth method. For the first time a nanostructure-based iodide ion selective electrode was developed. The ZnO nanotubes were functionalized with miconazole ion exchanger and the electromotive force (EMF) was measured by the potentiometric method. The iodide ion sensor exhibited a linear response over a wide range of concentrations (1 × 10−6 to 1 × 10−1 M) and excellent sensitivity of −62 ± 1 mV/decade. The detection limit of the proposed sensor was found to be 5 × 10−7 M. The effects of pH, temperature, additive, plasticizer and stabilizer on the potential response of iodide ion selective electrode were also studied. The proposed iodide ion sensor demonstrated a fast response time of less than 5 s and high selectivity against common organic and the inorganic anions. All the obtained results revealed that the iodide ion sensor based on functionalized ZnO nanotubes may be used for the detection of iodide ion in environmental water samples, pharmaceutical products and other real samples. PMID:23385412
Shelnutt, John A.
1986-01-01
A method for improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation which comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a gas hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound .pi.--.pi. complexes which can develop.
Shelnutt, J.A.
1984-11-29
A method is disclosed improving product yields in an anionic metalloporphyrin-based artificial photosynthesis system for hydrogen generation. The method comprises forming an aqueous solution comprising an electron donor, methylviologen, and certain metalloporphyrins and metallochlorins, and irradiating said aqueous solution with light in the presence of a catalyst. In the photosynthesis process, solar energy is collected and stored in the form of a hydrogen. Ligands attached above and below the metalloporphyrin and metallochlorin plane are capable of sterically blocking photochemically inactive electrostatically bound ..pi..-..pi.. complexes which can develop.
Molecular basis of cooperativity in pH-triggered supramolecular self-assembly
NASA Astrophysics Data System (ADS)
Li, Yang; Zhao, Tian; Wang, Chensu; Lin, Zhiqiang; Huang, Gang; Sumer, Baran D.; Gao, Jinming
2016-10-01
Supramolecular self-assembly offers a powerful strategy to produce high-performance, stimuli-responsive nanomaterials. However, lack of molecular understanding of stimulated responses frequently hampers our ability to rationally design nanomaterials with sharp responses. Here we elucidated the molecular pathway of pH-triggered supramolecular self-assembly of a series of ultra-pH sensitive (UPS) block copolymers. Hydrophobic micellization drove divergent proton distribution in either highly protonated unimer or neutral micelle states along the majority of the titration coordinate unlike conventional small molecular or polymeric bases. This all-or-nothing two-state solution is a hallmark of positive cooperativity. Integrated modelling and experimental validation yielded a Hill coefficient of 51 in pH cooperativity for a representative UPS block copolymer, by far the largest reported in the literature. These data suggest hydrophobic micellization and resulting positive cooperativity offer a versatile strategy to convert responsive nanomaterials into binary on/off switchable systems for chemical and biological sensing, as demonstrated in an additional anion sensing model.
Smart responsive phosphorescent materials for data recording and security protection.
Sun, Huibin; Liu, Shujuan; Lin, Wenpeng; Zhang, Kenneth Yin; Lv, Wen; Huang, Xiao; Huo, Fengwei; Yang, Huiran; Jenkins, Gareth; Zhao, Qiang; Huang, Wei
2014-04-07
Smart luminescent materials that are responsive to external stimuli have received considerable interest. Here we report ionic iridium (III) complexes simultaneously exhibiting mechanochromic, vapochromic and electrochromic phosphorescence. These complexes share the same phosphorescent iridium (III) cation with a N-H moiety in the N^N ligand and contain different anions, including hexafluorophosphate, tetrafluoroborate, iodide, bromide and chloride. The anionic counterions cause a variation in the emission colours of the complexes from yellow to green by forming hydrogen bonds with the N-H proton. The electronic effect of the N-H moiety is sensitive towards mechanical grinding, solvent vapour and electric field, resulting in mechanochromic, vapochromic and electrochromic phosphorescence. On the basis of these findings, we construct a data-recording device and demonstrate data encryption and decryption via fluorescence lifetime imaging and time-gated luminescence imaging techniques. Our results suggest that rationally designed phosphorescent complexes may be promising candidates for advanced data recording and security protection.
Polymerized Paired Ions as Polymeric Ionic Liquid-Proton Conductivity.
Gu, Hong; Yan, Feng; Texter, John
2016-07-01
A new polymerized ionic liquid has been derived by photopolymerization of a stimuli-responsive ionic liquid surfactant, ILAMPS, which is composed of polymerizable, paired ions. The cation is 1-methyl-3-[11-(acryloyloxy)undecyl] imidazolium (IL), and the anion is 2-acrylamido-2-methyl-1-propanesulfonate (AMPS). This ion combination is a new ionic liquid. The resulting hygroscopic resins are highly polarizable, suitable for sensor design and for ultracapacitor fabrication and proton conducting. Interactions of imidazolium with anions provide basis for stimuli-responsiveness, and are used to promote proton transport. Doping with one equivalent of HPF6 at 0% relative humidity produces a 100-fold increase in proton conductivity at 100-125 °C and activation energies for proton transport lower than those of Nafion at water loadings less than 5 per sulfonate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Singh, Archana; Sahoo, Suban K.; Trivedi, Darshak R.
2018-01-01
A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1H NMR, 13C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F- and AcO- ions in DMSO. Due to presences of the NO2 group at para and ortho position with extended π-conjugation of naphthyl group carrying sbnd OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F- and AcO- ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of sbnd NO2 group at para position induced in increasing the acidity of sbnd OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35 ppm for F- and AcO- ions which is beneath WHO permission level (1.0 ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO- ion. Receptor A1 depicts high selectivity towards AcO- ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO- and F- ions was monitored from 1HNMR titration and DFT study.
Exploring the anionic reactivity of ynimines, useful precursors of metalated ketenimines.
Laouiti, Anouar; Couty, François; Marrot, Jérome; Boubaker, Taoufik; Rammah, Mohamed M; Rammah, Mohamed B; Evano, Gwilherm
2014-04-18
Insights into the reactivity of ynimines under anionic conditions are reported. They were shown to be excellent precursors of metalated ketenimines, which can be generated in situ by the reaction of ynimines with organolithium reagents or strong bases. The metalated ketenimines can then be trapped with various electrophiles and, depending on their substitution pattern, afford original and divergent entries to various building blocks.
Novel Energetic Materials for Counter WMD Applications
2011-09-01
insensitive dianionic dinitrourea salts: The CN4ol · anion paired with nitrogen-rich cations C. Energetic ionic liquids based on anionic rare earth nitrate ...and their derivatives as energetic materials by click chemistry 1-Pentafluorosulfanyl acetylene and its derivatives react with azide or diazomethane...extended to the syntheses and characterization often DNU dianionic salts by the metathesis oftetrazolium and guanidinium sulfates with in situ
Woehler, Andrew; Lin, Kun-Han; Neher, Erwin
2014-11-15
Significantly more Ca(2+) influx is required for eliciting release of neurotransmitter during whole cell patch clamp recording in the Calyx of Held, when gluconate with 3 mm free ATP is used as pipette filling solution, as compared to a methanesulfonate-based solution with excess Mg(2+). This reduction in efficiency of Ca(2+) in eliciting release is due to low-affinity Ca(2+) binding of both gluconate and ATP(2-) anions. To study these effects we developed a simple fluorimeteric titration procedure, which reports the dissociation constant, KD, of a given Ca(2+) indicator dye, multiplied by 1 plus the sum of Ca(2+) binding ratios of any anions, which act as low-affinity Ca(2+) ligands. For solutions without Ca(2+) binding anions we find KD values for Fura2FF ranging from 11.5 ± 1.7 to 15.6 ± 7.47 μm depending on the dominant anion used. For Fura6F and KCl-based solutions we find KD = 17.8 ± 1.3 μm. For solutions with gluconate as the main anion and for solutions that contain nucleotides, such as ATP and GTP, we find much higher values for the product. Assuming that the KD of the indicator dye is equal to that of KCl-based solutions we calculate the summed Ca(2+) binding ratios and find a value of 3.55 for a solution containing 100 mm potassium gluconate and 4 mm ATP. Gluconate contributes a value of 1.75 to this number, while the contribution of ATP depends strongly on the presence of Mg(2+) and varies from 0.8 (with excess Mg(2+)) to 13.8 (in the presence of 3 mm free ATP). Methanesulfonate has negligible Ca(2+) binding capacity. These results explain the reduced efficiency of Ca(2+) influx in the presence of gluconate or nucleotides, as these anions are expected to intercept Ca(2+) ions at short distance. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Laboni; Kumar, Rahul; Maity, Dilip K.
A pulse radiolysis study on pyrrolidinium cation based ionic liquids is presented here in this paper. Time-resolved absorption spectra for 1-methyl-1-propylpyrrolidinium dicyanamide (DCA) at 500 ns after the electron pulse show broad absorption bands at wavelengths below 440 nm and at 640 nm. In pyrrolidinium bis(trifluoromethylsulfonyl)imide (NTf 2) and tris(perfluoroethyl)trifluorophosphate (FAP) ILs, the transient absorption below 440 nm is much weaker. The absorption at 500 ns, which increases with wavelength from 500 nm to beyond 800 nm, was assigned to the tail of the solvated electron NIR absorption spectrum, since it disappears in the presence of N 2O. In themore » DCA IL, the presence of a reducing species was confirmed by the formation of pyrene radical anion. The difference in the transient species in the case of the DCA IL compared to other two ILs should be due to the anion, with cations being similar. In pseudohalide ILs such as DCA, radicals are formed by direct hole trapping by the anion (X – + h + → X•), followed by addition to the parent anion. Prediction of the UV/vis absorption spectra of the dimer radical anion by computational calculation supports the experimental results. The oxidizing efficiency of (DCA) 2•– and its reduction potential (E(DCA)2•–/(2DCA–)) have been determined.« less
Das, Laboni; Kumar, Rahul; Maity, Dilip K.; ...
2018-03-06
A pulse radiolysis study on pyrrolidinium cation based ionic liquids is presented here in this paper. Time-resolved absorption spectra for 1-methyl-1-propylpyrrolidinium dicyanamide (DCA) at 500 ns after the electron pulse show broad absorption bands at wavelengths below 440 nm and at 640 nm. In pyrrolidinium bis(trifluoromethylsulfonyl)imide (NTf 2) and tris(perfluoroethyl)trifluorophosphate (FAP) ILs, the transient absorption below 440 nm is much weaker. The absorption at 500 ns, which increases with wavelength from 500 nm to beyond 800 nm, was assigned to the tail of the solvated electron NIR absorption spectrum, since it disappears in the presence of N 2O. In themore » DCA IL, the presence of a reducing species was confirmed by the formation of pyrene radical anion. The difference in the transient species in the case of the DCA IL compared to other two ILs should be due to the anion, with cations being similar. In pseudohalide ILs such as DCA, radicals are formed by direct hole trapping by the anion (X – + h + → X•), followed by addition to the parent anion. Prediction of the UV/vis absorption spectra of the dimer radical anion by computational calculation supports the experimental results. The oxidizing efficiency of (DCA) 2•– and its reduction potential (E(DCA)2•–/(2DCA–)) have been determined.« less
Li, Ailin; Tian, Ziqi; Yan, Tianying; Jiang, De-en; Dai, Sheng
2014-12-26
The structure and dynamics of a task-specific ionic liquid (TSIL), trihexyl(tetradecyl)phosphonium imidazolate, before and after absorbing CO(2) were studied with a molecular dynamics (MD) simulation. This particular ionic liquid is one of several newly discovered azole-based TSILs for equimolar CO(2) capture. Unlike other TSILs whose viscosity increases drastically upon reaction with CO(2), its viscosity decreases after CO(2) absorption. This unique behavior was confirmed in our MD simulation. We find that after CO(2) absorption the translational dynamics of the whole system is accelerated, accompanied by an accelerated rotational dynamics of the cations. Radial distribution function and spatial distribution function analyses show that the anions become asymmetric after reaction with CO(2), and this causes the imbalance of the interaction between the positive and negative regions of the ions. The interaction between the phosphorus atom of the cation and oxygen atoms of the carboxyl group on the anion is enhanced, while that between the phosphorus atom and the naked nitrogen atom of the anion is weakened. The ion-pair correlation functions further support that the weakened interaction leads to faster dissociation of cation-anion pairs, thereby causing an accelerated dynamics. Hence, the asymmetry of anions influences the dynamics of the system and affects the viscosity. This insight may help design better TSILs with decreased viscosity for CO(2) capture.
NASA Astrophysics Data System (ADS)
Jones, Emmalee M.
A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped clarify the role of the microtubule binding domain in anionic lipid affinity and demonstrated even "hyperphosphorylation" did not prevent interaction with anionic membranes. Additional studies investigated more complex membrane models to increase physiological relevance. These insights revealed structural changes in tau protein and lipid membranes after interaction. We observed tau's affinity for interfaces, and aggregation and compaction once tau partitions to interfaces. We observed the beginnings of beta-sheet formation in tau at anionic lipid membranes. We also examined disruption to the membrane on a molecular scale.
An, Jiwoo; Anderson, Jared L
2018-05-15
A double-confined polymeric ionic liquid (PIL) sorbent coating was fabricated for the determination of nine ultraviolet (UV) filters in sample solutions containing high salt content by direct immersion solid-phase microextraction (DI-SPME) coupled to high-performance liquid chromatography (HPLC). The IL monomer and crosslinker cations and anions, namely, 1-vinyl-3-decylimidazolium styrenesulfonate ([VImC 10 ][SS]) and 1,12-di(3-vinylbenzylimidazolium) dodecane distyrenesulfonate ([(VBIm) 2 C 12 ] 2[SS]), were co-polymerized to create a highly stable sorbent coating which allowed for up to 120 direct-immersion extractions in 25% NaCl (w/v) solution without a decrease in its extraction capability. Extraction and desorption parameters such as desorption solvent, agitation rate, extraction time, desorption solvent volume, and desorption time were evaluated and optimized. The analytical performance of the styrenesulfonate anion-based PIL fiber, PIL fiber containing chloride anions, and a commercially available polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber were compared. Coefficients of determination (R 2 ) for the styrenesulfonate anion-based PIL fiber ranged from 0.995 to 0.999 and the limits of detection (LODs) varied from 0.1 to 5 µg L -1 . The developed method was successfully applied in real water samples including tap, pool, and lake water, and acceptable relative recovery values were obtained. The lifetime of the PIL fiber containing chloride anions as well as the PDMS/DVB fiber were considerably shorter than the PIL fiber containing the styrenesulfonate anion, with both fibers showing a notable decrease in reproducibility and significant damage to the sorbent coating surface after 40 and 70 extractions, respectively. The R 2 values for the chloride anion containing PIL fiber were at or higher than 0.991 with LODs ranging from 0.5 to 5 µg L -1 . For the PDMS/DVB fiber, R 2 values ranged from 0.992 to 0.999 and LODs were found to be as low as 0.2 µg L -1 and as high as 5 µg L -1 . Copyright © 2018 Elsevier B.V. All rights reserved.
Structure and Liquid Fragility in Sodium Carbonate.
Wilson, Mark; Ribeiro, Mauro C C; Wilding, Martin C; Benmore, Chris; Weber, J K R; Alderman, Oliver; Tamalonis, Anthony; Parise, J B
2018-02-01
The relationship between local structure and dynamics is explored for molten sodium carbonate. A flexible fluctuating-charge model, which allows for changes in the shape and charge distribution of the carbonate molecular anion, is developed. The system shows the evolution of highly temperature-dependent complex low-dimensional structures which control the dynamics (and hence the liquid fragility). By varying the molecular anion charge distribution, the key interactions responsible for the formation of these structures can be identified and rationalized. An increase in the mean charge separation within the carbonate ions increases the connectivity of the emerging structures and leads to an increase in the system fragility.
Production and characterization of carbonized sorbent products optimized for anionic contaminants
NASA Astrophysics Data System (ADS)
Viglasova, Eva; Fristak, Vladimir; Galambos, Michal; Hood-Nowotny, Rebecca; Soja, Gerhard
2017-04-01
Processing conditions, production methods and feedstock characteristics have been shown to affect the final sorption properties of biochar-based sorbents that have been produced in pyrolysis reactors. The content of O-containing carboxyl, phenolic and hydroxyl functional groups on the biochar surfaces plays a crucial role in sorption chemistry of hazardous materials. The sorption process can be affected by the presence of non-carbonized fractions in biochar matter as well. All these characteristics indicate that biochar shows good potential as a new tool in removal and separation technologies of various pollutants from waste water or contaminated soils. The sorption potential of wood-based biochars for cationic forms of heavy metals has been studied intensively and has already led to successful pilot applications in the field. However, anionic compounds (e.g. phosphate, nitrate, sulphate, As-, Cr-compounds) do not sorb well to unmodified biochar and need specific surface modification of biochar. Based on this fact, we try to obtain data about the sorptive separation of anionic forms of various contaminants from model aqueous solutions by different types of biochar-derived sorbents, or mineral-enriched biochar-derived sorbents. An important part of this research is the assesment of the effects of varying process parameters during biomass carbonisation, the role of biomass feedstock and pre-and/or post-treatment of the biochars onto sorption processes. We specify the most appropriate application strategies with biochar for remediation purposes of waste water or contaminated waters with elevated toxic metal concentrations that might compromise the quality of surface waters. The main aim of research is the preparation of modified biochar sorbent, the characterization of its surface and the investigation about new possibilities of modified biochar sorbent applications for sorption of various contaminants, mainly their anionic forms (e.g. phosphates, nitrates, arsenates). Modification of bamboo-based biochar with clay minerals, the preparation of its composites, could increase the surface area of bamboo-based biochar from 3 to 5 times. Other ways of modification e.g. by using FeCl3 ṡ 6H2O caused a significant increase of sorption ability for anionic forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Sloop Jr, Frederick; Fowler, Christopher J
2010-01-01
When certain macrocyclic anion receptors are added to a chloroform solution of the nitrate form of a lipophilic quaternary ammonium salt (methyltri-C8,10-ammonium nitrate, Aliquat 336N), the extraction of sulphate from an aqueous sodium nitrate solution via exchange with the organic-phase nitrate is significantly enhanced. Eight macrocycles were surveyed, including two derivatives of a tetraamide macrocycle, five derivatives of calix[4]pyrrole and -decafluorocalix[5]pyrrole. Under the hypothesis that the enhancement originates from sulphate binding by the anion receptors in the chloroform phase, it was possible to obtain reasonable fits to the sulphate distribution survey data based on the formation of 1:1 and 2:1more » receptor:sulphate complexes in the chloroform phase. Apparent 1:1 sulphate-binding constants obtained from the model in this system fell in the range . Comparison of the results for the various anion receptors included in this study reveals that sulphate binding is sensitive to the nature of the substituents on the parent macrocycle scaffolds in a way that does not follow straightforwardly from simple chemical expectations, such as electron-withdrawing effects on hydrogen-bond donor strength.« less
Disordering and dynamic self-organization in stoichiometric UO2 at high temperatures
NASA Astrophysics Data System (ADS)
Annamareddy, Ajay; Eapen, Jacob
2017-01-01
Neutron scattering experiments show significant oxygen disorder in UO2 at temperatures above 2000 K. The nature of the disorder, however, has not been ascertained with certainty. Using atomistic simulations and metrics from statistical mechanics we show that the oxygen anions predominantly hop from one native (tetrahedral) lattice site to another, above a characteristic temperature Tα (∼2000 K). Interestingly, we discover two types of disorder - the first one, which is a measure of the fraction of anions that are displaced from their native sites, portrays a monotonic increase with temperature and shows excellent conformity to neutron scattering data. The second metric based on the mean square displacement of the anions in an isoconfigurational ensemble demonstrates a dynamic self-organization behavior in which the anions are spatially correlated to those with similar mobility. This dynamic self-organization, however, experiences a non-monotonic variation with temperature depicting a maximum near the Bredig or λ-transition. We further establish that the thermodynamic metric cp/T, which is equal to the rate of change of entropy with temperature, is a key entropic indicator of the dynamic self-organization among the oxygen anions in UO2 at high temperatures.
Anion-intercalated layered double hydroxides modified test strips for detection of heavy metal ions.
Wang, Nan; Sun, Jianchao; Fan, Hai; Ai, Shiyun
2016-01-01
In this work, a novel approach for facile and rapid detection of heavy metal ions using anion-intercalated layered double hydroxides (LDHs) modified test strips is demonstrated. By intercalating Fe(CN)6(4-) or S(2-) anions into the interlayers of LDHs on the filter paper, various heavy metal ions can be easily detected based on the color change before and after reaction between the anions and the heavy metal ions. Upon the dropping of heavy metal ions solutions to the test strips, the colors of the test strips changed instantly, which can be easily observed by naked eyes. With the decrease of the concentration, the color depth changed obviously. The lowest detection concentration can be up to 1×10(-6) mol L(-1). Due to the easily intercalation of anions into the interlayer of the LDHs on test trips, this procedure provides a general method for the construction of LDHs modified test strips for detection of heavy metal ions. The stability of the prepared test strips is investigated. Furthermore, all the results were highly reproducible. The test strips may have potential applications in environmental monitoring fields. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Ming; Li, Song; Feng, Guang
2017-02-16
Room-temperature ionic liquids (RTILs) are an emerging class of electrolytes for supercapacitors. In this work, we investigate the effects of different supercapacitor models and anion shape on the electrical double layers (EDLs) of two different RTILs: 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([Emim][Tf₂N]) and 1-ethyl-3-methylimidazolium 2-(cyano)pyrrolide ([Emim][CNPyr]) by molecular dynamics (MD) simulation. The EDL microstructure is represented by number densities of cations and anions, and the potential drop near neutral and charged electrodes reveal that the supercapacitor model with a single electrode has the same EDL structure as the model with two opposite electrodes. Nevertheless, the employment of the one-electrode model without tuning the bulk density of RTILs is more time-saving in contrast to the two-electrode one. With the one-electrode model, our simulation demonstrated that the shapes of anions significantly imposed effects on the microstructure of EDLs. The EDL differential capacitance vs. potential (C-V) curves of [Emim][CNPyr] electrolyte exhibit higher differential capacitance at positive potentials. The modeling study provides microscopic insight into the EDLs structure of RTILs with different anion shapes.
Exner, Otto; Böhm, Stanislav
2002-09-06
Fundamental model compounds for the Hammett equation, meta- and para-substituted benzoic acids, were investigated by the density functional theory at the B3LYP/6-311+G(d,p) level. Energies of 25 acids and of their anions were calculated in all possible conformations and from them the energies of the assumed mixture of conformers. Relative acidities correlated with the experimental gas-phase acidities almost within the experimental uncertainty, much more precisely than in the case of previous calculations at lower levels. Dissection of the substituent effects into those operating in the acid molecule and in the anion was carried out by means of isodesmic reactions starting from monosubstituted benzenes. Both effects are cooperating in the resulting effect on the acidity; those in the acid molecule are smaller but not negligible. They are also responsible for some deviations from the Hammett equation (through-resonance of para donor substituents) and for the weaker resonance in the acid molecule in meta derivatives; in the anions the inductive and resonance effects are almost equal. On the other hand, the cooperation of effects in the acid and in the anion makes the relative acidity more sensitive to electron withdrawing and is probably one of the reasons why the Hammett equation is so generally valid.
Fluoride resistance and transport by riboswitch-controlled CLC antiporters
Stockbridge, Randy B.; Lim, Hyun-Ho; Otten, Renee; Williams, Carole; Shane, Tania; Weinberg, Zasha; Miller, Christopher
2012-01-01
A subclass of bacterial CLC anion-transporting proteins, phylogenetically distant from long-studied CLCs, was recently shown to be specifically up-regulated by F-. We establish here that a set of randomly selected representatives from this “CLCF” clade protect Escherichia coli from F- toxicity, and that the purified proteins catalyze transport of F- in liposomes. Sequence alignments and membrane transport experiments using 19F NMR, osmotic response assays, and planar lipid bilayer recordings reveal four mechanistic traits that set CLCF proteins apart from all other known CLCs. First, CLCFs lack conserved residues that form the anion binding site in canonical CLCs. Second, CLCFs exhibit high anion selectivity for F- over Cl-. Third, at a residue thought to distinguish CLC channels and transporters, CLCFs bear a channel-like valine rather than a transporter-like glutamate, and yet are F-/H+ antiporters. Finally, F-/H+ exchange occurs with 1∶1 stoichiometry, in contrast to the usual value of 2∶1. PMID:22949689
Fluoride resistance and transport by riboswitch-controlled CLC antiporters.
Stockbridge, Randy B; Lim, Hyun-Ho; Otten, Renee; Williams, Carole; Shane, Tania; Weinberg, Zasha; Miller, Christopher
2012-09-18
A subclass of bacterial CLC anion-transporting proteins, phylogenetically distant from long-studied CLCs, was recently shown to be specifically up-regulated by F(-). We establish here that a set of randomly selected representatives from this "CLC(F)" clade protect Escherichia coli from F(-) toxicity, and that the purified proteins catalyze transport of F(-) in liposomes. Sequence alignments and membrane transport experiments using (19)F NMR, osmotic response assays, and planar lipid bilayer recordings reveal four mechanistic traits that set CLC(F) proteins apart from all other known CLCs. First, CLC(F)s lack conserved residues that form the anion binding site in canonical CLCs. Second, CLC(F)s exhibit high anion selectivity for F(-) over Cl(-). Third, at a residue thought to distinguish CLC channels and transporters, CLC(F)s bear a channel-like valine rather than a transporter-like glutamate, and yet are F(-)/H(+) antiporters. Finally, F(-)/H(+) exchange occurs with 1:1 stoichiometry, in contrast to the usual value of 2:1.
Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew
2015-07-29
The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.
Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew
2015-01-01
The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411
Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y Chen; L Hu; M Punta
2011-12-31
The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated bymore » an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.« less
He, Hongming; Chen, Si-Hang; Zhang, De-Yu; Hao, Rui; Zhang, Chao; Yang, En-Cui; Zhao, Xiao-Jun
2017-10-10
A micrometer-sized europium(iii)-organic framework with asymmetric binuclear metal subunits extended by 4,5-dichlorophthalaten (DCPA), [Eu 2 (H 2 O)(DCPA) 3 ] n , was easily obtained using a reverse microemulsion method. The framework exhibits good dispersibility, excellent thermal and environmental stability and easy regeneration ability. More importantly, the complex displays strong red emission and can selectively and sensitively detect both inorganic Cr 2 O 7 2- anions (K sv = 8.7 × 10 3 M -1 ) and organic picric acid contaminants (K sv = 1.07 × 10 4 M -1 ) in water systems through fluorescence quenching. A luminescent film of 1 was further prepared and successfully used to detect the Cr 2 O 7 2- anion in an aqueous system. These interesting results indicate that the well-dispersed europium(iii)-organic framework can serve as a promising dual-responsive luminescent sensor for environmental pollutant monitoring.
NASA Astrophysics Data System (ADS)
Thimaradka, Vikram; Pangannaya, Srikala; Mohan, Makesh; Trivedi, Darshak R.
2018-03-01
A series of new receptors PDZ1-3 based on 2-(arylidenehydrazinyl)pyridines have been designed and synthesized for the detection of biologically and environmentally important ions. The colorimetric detection of CO32 - using neutral organic receptor PDZ-1 has been achieved with characteristic visual colour change from yellow to green accompanied by a large redshift of 215 nm in absorption maxima. UV-Vis spectroscopic and cyclic voltammetric studies reveal the stoichiometry of binding and electrochemistry of host-guest complex formation. The binding constant was found to be 0.77 × 104 M- 2. In addition, electrochemical studies provide an insight into the stability of the complex. DFT studies performed on the PDZ-1 and PDZ-1 - CO32 - complex reveal the binding mechanism involved in the anion detection process. PDZ-1 is highly selective for carbonate and does not show any colorimetric response towards any other anions or cations, while PDZ-2 and PDZ-3 remain inactive in the ion detection process. The limit of detection (LOD) and limit of quantification (LOQ) of PDZ-1 for carbonate was found to be 0.11 mM and 0.36 mM respectively. Considerable binding constant and limit of detection make PDZ-1 to be used as a real time sensor for the detection of carbonate in environmental and biological samples.
Cassini CAPS-ELS observations of carbon-based anions and aerosol growth in Titan's ionosphere
NASA Astrophysics Data System (ADS)
Desai, Ravindra; Coates, Andrew; Wellbrock, Anne; Kataria, Dhiren; Jones, Geraint; Lewis, Gethyn; Waite, J.
2016-06-01
Cassini observations of Titans ionosphere revealed an atmosphere rich in positively charged ions with masses up to > 350 amu and negatively charged ions and aerosols with mass over charge ratios as high as 13,800 amu/q. The detection of negatively charged molecules by the Cassini CAPS Electron Spectrometer (CAPS-ELS) was particularly surprising and showed how the synthesis of large aerosol-size particles takes place at altitudes much greater than previously thought. Here, we present further analysis into this CAPS-ELS dataset, through an enhanced understanding of the instrument's response function. In previous studies the intrinsic E/E energy resolution of the instrument did not allow specific species to be identified and the detections were classified into broad mass ranges. In this study we use an updated fitting procedure to show how the ELS mass spectrum can be resolved into specific peaks at multiples of carbon-based anions up to > 100 amu/q. The negatively charged ions and aerosols in Titans ionosphere increase in mass with decreasing altitude, the lightest species being observed close to Titan's exobase of ˜1,450km and heaviest species observed at altitudes < 950km. We identify key stages in this apparent growth process and report on key intermediaries which appear to trigger the rapid growth of the larger aerosol-size particles.
Gifford, Mac; Chester, Mikhail; Hristovski, Kiril; Westerhoff, Paul
2018-01-01
Treatment of drinking water decreases human health risks by reducing pollutants, but the required materials, chemicals, and energy emit pollutants and increase health risks. We explored human carcinogenic and non-carcinogenic disease tradeoffs of water treatment by comparing pollutant dose-response curves against life cycle burden using USEtox methodology. An illustrative wellhead sorbent groundwater treatment system removing hexavalent chromium or pentavalent arsenic serving 3200 people was studied. Reducing pollutant concentrations in drinking water from 20 μg L -1 to 10 μg L -1 avoided 37 potential cancer cases and 64 potential non-cancer disease cases. Human carcinogenicity embedded in treatment was 0.2-5.3 cases, and non-carcinogenic toxicity was 0.2-14.3 cases, depending on technology and degree of treatment. Embedded toxicity impacts from treating Cr(VI) using strong-base anion exchange were <10% of those from using weak base anion exchange. Acidification and neutralization contributed >90% of the toxicity impacts for treatment options requiring pH control. In scenarios where benefits exceeded burdens, tradeoffs still existed. Benefits are experienced by a local population but burdens are born externally where the materials and energy are produced, thus exporting the health risks. Even when burdens clearly exceeded benefits, cost considerations may still drive selecting a detrimental treatment level or technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mokhtaruddin, Nur Shuhada Mohd; Yusof, Enis Nadia Md; Ravoof, Thahira B. S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhi; Tahir, Mohamed Ibrahim Mohamed
2017-07-01
Three tridentate Schiff bases containing N and S donor atoms were synthesized via the condensation reaction between S-2-methylbenzyldithiocarbazate with 2-acetyl-4-methylpyridine (S2APH); 4-methyl-3-thiosemicarbazide with 2-acetylpyridine (MT2APH) and 4-ethyl-3-thiosemicarbazide with 2-acetylpyridine (ET2APH). Three new, binuclear and mixed-ligand copper(II) complexes with the general formula, [Cu(sac)(L)]2 (sac = saccharinate anion; L = anion of the Schiff base) were then synthesized, and subsequently characterized by IR and UV/Vis spectroscopy as well as by molar conductivity and magnetic susceptibility measurements. The Schiff bases were also spectroscopically characterized using NMR and MS to further confirm their structures. The spectroscopic data indicated that the Schiff bases behaved as a tridentate NNS donor ligands coordinating via the pyridyl-nitrogen, azomethine-nitrogen and thiolate-sulphur atoms. Magnetic data indicated a square pyramidal environment for the complexes and the conductivity values showed that the complexes were essentially non-electrolytes in DMSO. The X-ray crystallographic analysis of one complex, [Cu(sac)(S2AP)]2 showed that the Cu(II) atom was coordinated to the thiolate-S, azomethine-N and pyridyl-N donors of the S2AP Schiff base and to the saccharinate-N from one anion, as well as to the carbonyl-O atom from a symmetry related saccharinate anion yielding a centrosymmetric binuclear complex with a penta-coordinate, square pyramidal geometry. All the copper(II) saccharinate complexes were found to display strong cytotoxic activity against the MCF-7 and MDA-MB-231 human breast cancer cell lines.
Baxter, M A; Leslie, R G; Reeves, W G
1983-01-01
The kinetics of superoxide anion production in guinea-pig peritoneal macrophages and neutrophils were determined following in vitro stimulation with phorbol myristate acetate (PMA), opsonized zymosan (OZ) and soluble immune complexes of guinea-pig IgG2 (SIC). Superoxide production was recorded as chemiluminescence (CL) arising from the reductive cleavage of lucigenin. With PMA, both macrophages and neutrophils displayed a two-phase response consisting of a rapid initial burst of CL, which preceded ligand ingestion, followed by a plateau in the CL response which persisted for more than 30 min. By contrast, OZ induced a slow progressive increase in CL in both phagocytes which was consistent with the development of an oxidative burst concomitant with ingestion. The phagocytes differed in their responses to SIC, the macrophages displaying CL kinetics similar to those observed with PMA, whereas the neutrophils responded in the manner observed with OZ. The relationship between disparity in the patterns of macrophage and neutrophil CL responses to SIC and differences in their expression of Fc receptors for IgG2 (Coupland & Leslie, 1983) is discussed. PMID:6299935
Interfacial ionic 'liquids': connecting static and dynamic structures
Uysal, Ahmet; Zhou, Hua; Feng, Guang; ...
2014-12-05
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. For this research, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can bemore » described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. Lastly, the potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).« less
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; ...
2017-07-26
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. In this paper, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing tomore » the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. Finally, this suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.« less
Interfacial ionic 'liquids': connecting static and dynamic structures.
Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T; Fulvio, Pasquale F; Dai, Sheng; McDonough, John K; Gogotsi, Yury; Fenter, Paul
2015-01-28
It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. We used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene-RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. The results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (∼0.15 eV).
NASA Astrophysics Data System (ADS)
Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.; Mundy, Chistopher J.
2017-10-01
Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for models of electrolyte solution. Here, we provide definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation and isolate the effects of charge and cavitation, comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to unphysical values for the single ion solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation.
Towards high conductivity in anion-exchange membranes for alkaline fuel cells.
Li, Nanwen; Guiver, Michael D; Binder, Wolfgang H
2013-08-01
Quaternized poly(2,6-dimethylphenylene oxide) materials (PPOs) containing clicked 1,2,3-triazoles were first prepared through Cu(I) -catalyzed "click chemistry" to improve the anion transport in anion-exchange membranes (AEMs). Clicked 1,2,3-triazoles incorporated into AEMs provided more sites to form efficient and continuous hydrogen-bond networks between the water/hydroxide and the triazole for anion transport. Higher water uptake was observed for these triazole membranes. Thus, the membranes showed an impressive enhancement of the hydroxide diffusion coefficient and, therefore, the anion conductivities. The recorded hydroxide conductivity was 27.8-62 mS cm(-1) at 20 °C in water, which was several times higher than that of a typical PPO-based AEM (TMA-20) derived from trimethylamine (5 mS cm(-1) ). Even at reduced relative humidity, the clicked membrane showed superior conductivity to a trimethylamine-based membrane. Moreover, similar alkaline stabilities at 80 °C in 1 M NaOH were observed for the clicked and non-clicked membranes. The performance of a H2 /O2 single cell assembled with a clicked AEM was much improved compared to that of a non-clicked TMA-20 membrane. The peak power density achieved for an alkaline fuel cell with the synthesized membrane 1a(20) was 188.7 mW cm(-2) at 50 °C. These results indicated that clicked AEM could be a viable strategy for improving the performance of alkaline fuel cells. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Kim, Sojeong; Choi, Soo-Hyung; Lee, Won Bo
Anion exchange membranes(AEMs) have been widely studied due to their various applications, especially for Fuel cells. Previous proton exchange membranes(PEMs), such as Nafions® have better conductivity than AEMs so far. However, technical limitations such as slow electrode kinetics, carbon monoxide (CO) poisoning of metal catalysts, high methanol crossover and high cost of Pt-based catalyst detered further usages. AEMs have advantages to supplement its drawbacks. AEMs are environmentally friendly and cost-efficient. Based on the well-defined block copolymer, self-assembled morphology is expected to have some relationship with its ionic conductivity. Recently AEMs based on various cations, including ammonium, phosphonium, guanidinium, imidazolium, metal cation, and benzimidazolium cations have been developed and extensively studied with the aim to prepare high- performance AEMs. But more fundamental approach, such as relationships between nanostructure and conductivity is needed. We use well-defined block copolymer Poly(styrene-block-isoprene) as a backbone which is synthesized by anionic polymerization. Then we graft various cationic functional groups and analysis the relation between morphology and conductivity. Theoretical and computational soft matter lab.
Review of cell performance in anion exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Dekel, Dario R.
2018-01-01
Anion exchange membrane fuel cells (AEMFCs) have recently received increasing attention since in principle they allow for the use of non-precious metal catalysts, which dramatically reduces the cost per kilowatt of power in fuel cell devices. Until not long ago, the main barrier in the development of AEMFCs was the availability of highly conductive anion exchange membranes (AEMs); however, improvements on this front in the past decade show that newly developed AEMs have already reached high levels of conductivity, leading to satisfactory cell performance. In recent years, a growing number of research studies have reported AEMFC performance results. In the last three years, new records in performance were achieved. Most of the literature reporting cell performance is based on hydrogen-AEMFCs, although an increasing number of studies have also reported the use of fuels others than hydrogen - such as alcohols, non-alcohol C-based fuels, as well as N-based fuels. This article reviews the cell performance and performance stability achieved in AEMFCs through the years since the first reports in the early 2000s.
NASA Astrophysics Data System (ADS)
Sharma, Darshna; Kuba, Aman; Thomas, Rini; Ashok Kumar, S. K.; Kuwar, Anil; Choi, Heung-Jin; Sahoo, Suban K.
2016-03-01
Two new Schiff base receptors have been synthesized by condensation of pyridoxal-5-phosphate with 2-aminophenol (L1) or aniline (L2). In DMSO, the receptors showed both chromogenic and 'turn-on' fluorescence responses selectively in the presence of AcO- and F-. However, in mixed DMSO-H2O medium, the receptors showed AcO- selective 'turn-on' fluorescence without any interference from other tested anions including F-. The detection limit for AcO- was found to be 7.37 μM and 22.9 μM using the receptors L1 and L2, respectively.
Molecular mechanism of tau aggregation induced by anionic and cationic dyes.
Lira-De León, Karla I; García-Gutiérrez, Ponciano; Serratos, Iris N; Palomera-Cárdenas, Marianela; Figueroa-Corona, María Del P; Campos-Peña, Victoria; Meraz-Ríos, Marco A
2013-01-01
Abnormal tau filaments are a hallmark of Alzheimer's disease. Anionic dyes such as Congo Red, Thiazine Red, and Thioflavin S are able to induce tau fibrillization in vitro. SH-SY5Y cells were incubated with each dye for seven days leading to intracellular aggregates of tau protein, with different morphological characteristics. Interestingly, these tau aggregates were not observed when the Methylene Blue dye was added to the cell culture. In order to investigate the molecular mechanisms underlying this phenomenon, we developed a computational model for the interaction of the tau paired helical filament (PHF) core with every dye by docking analysis. The polar/electrostatic and nonpolar contribution to the free binding energy in the tau PHF core-anionic dye interaction was determined. We found that the tau PHF core can generate a positive net charge within the binding site localized at residuesLys311 and Lys340 (numbering according to the longest isoform hTau40). These residues are important for the binding affinity of the negative charges present in the anionic dyes causing an electrostatic environment that stabilizes the complex. Tau PHF core protofibril-Congo Red interaction has a stronger binding affinity compared to Thiazine Red or Thioflavin S. By contrast, the cationic dye Methylene Blue does not bind to nor stabilize the tau PHF core protofibrils. These results characterize the driving forces responsible for the binding of tau to anionic dyes leading to their self-aggregation and suggest that Methylene Blue may act as a destabilizing agent of tau aggregates.
Impaired organic ion transport in proximal tubules of rats with Heymann nephritis.
Park, E K; Hong, S K; Goldinger, J; Andres, G; Noble, B
1985-10-01
Organic ion transport across the basolateral membrane of proximal tubules was measured by means of the tissue slice technique in each of the four different stages of Heymann nephritis. Impairment of both organic anion and cation transport was detected early in Stage 2, and became more severe in Stage 3 of Heymann nephritis. The decreased transport function was associated with extensive damage to proximal tubule cells, including loss of brush border microvilli and basal infoldings. Despite these abnormalities of structure and function, oxygen consumption of proximal tubule cells remained essentially normal. Partial recovery of organic cation transport was noted late in Heymann nephritis (Stage 4). Recovery of the cation transport function was associated with a partial restoration of brush border microvilli and basal infoldings to proximal tubule cells. However, organic anion transport remained depressed throughout the entire course of disease. Impairment of organic ion transport in rats with Heymann nephritis appeared to result from damage to basolateral membrane transport elements rather than general deterioration of the metabolic machinery of proximal tubule cells. Decreased organic cation transport appeared to be the consequence of a reduction in the number of carrier sites, a phenomenon that could have resulted from decreased membrane surface area. However, the depression of organic anion transport was associated with decreased substrate affinity of the anion carrier, indicating that qualitative, rather than quantitative changes, were primarily responsible for that defect. Specific antibody-mediated damage to the anion transport elements in basolateral membranes of proximal tubules is postulated to occur in Heymann nephritis.
Gilchrist, Elizabeth S; Nesterenko, Pavel N; Smith, Norman W; Barron, Leon P
2015-03-20
There has recently been increased interest in coupling ion chromatography (IC) to high resolution mass spectrometry (HRMS) to enable highly sensitive and selective analysis. Herein, the first comprehensive study focusing on the direct coupling of suppressed IC to HRMS without the need for post-suppressor organic solvent modification is presented. Chromatographic selectivity and added HRMS sensitivity offered by organic solvent-modified IC eluents on a modern hyper-crosslinked polymeric anion-exchange resin (IonPac AS18) are shown using isocratic eluents containing 5-50 mM hydroxide with 0-80% methanol or acetonitrile for a range of low molecular weight anions (<165 Da). Comprehensive experiments on IC thermodynamics over a temperature range between 20-45 °C with the eluent containing up to 60% of acetonitrile or methanol revealed markedly different retention behaviour and selectivity for the selected analytes on the same polymer based ion-exchange resin. Optimised sensitivity with HRMS was achieved with as low as 30-40% organic eluent content. Analytical performance characteristics are presented and compared with other IC-MS based works. This study also presents the first application of IC-HRMS to forensic detection of trace low-order anionic explosive residues in latent human fingermarks. Copyright © 2015 Elsevier B.V. All rights reserved.
Through-plane conductivities of membranes for nonaqueous redox flow batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.
In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less
Through-plane conductivities of membranes for nonaqueous redox flow batteries
Anderson, Travis Mark; Small, Leo J.; Pratt, III, Harry D.; ...
2015-08-13
In this study, nonaqueous redox flow batteries (RFB) leverage nonaqueous solvents to enable higher operating voltages compared to their aqueous counterparts. Most commercial components for flow batteries, however, are designed for aqueous use. One critical component, the ion-selective membrane, provides ionic conductance between electrodes while preventing crossover of electroactive species. Here we evaluate the area-specific conductances and through-plane conductivities of commercially available microporous separators (Celgard 2400, 2500) and anion exchange membranes (Neosepta AFX, Neosepta AHA, Fumasep FAP-450, Fumasep FAP-PK) soaked in acetonitrile, propylene carbonate, or two imidazolium-based ionic liquids. Fumasep membranes combined with acetonitrile-based electrolyte solutions provided the highest conductancemore » values and conductivities by far. When tested in ionic liquids, all anion exchange membranes displayed conductivities greater than those of the Celgard microporous separators, though the separators’ decreased thickness-enabled conductances on par with the most conductive anion exchange membranes. Ionic conductivity is not the only consideration when choosing an anion exchange membrane; testing of FAP-450 and FAP-PK membranes in a nonaqueous RFB demonstrated that the increased mechanical stability of PEEK-supported FAP-PK minimized swelling, in turn decreasing solvent mediated crossover and enabling greater electrochemical yields (40% vs. 4%) and Coulombic efficiencies (94% vs. 90%) compared to the unsupported, higher conductance FAP-450.« less
Wu, Yu-Sheng; Lee, Meng-Chou; Huang, Cheng-Ting; Kung, Tzu-Chi; Huang, Chih-Yang; Nan, Fan-Hua
2017-05-01
This study is investigating the effect of minor bupleurum decoction (Xiao-Chai-Hu decoction) on the non-specific immune response of white shrimp (Litopenaeus vannamei). To determine prophenoloxidase activity (proPO), reactive oxygen species production (ROS), superoxide anion production (O 2 - ), nitric oxide production (NO), phagocytic rate (PR), phagocytic index (PI), superoxide dismutase activity (SOD), total haemocyte count (THC) and differential haemocyte count (DHC). In this experiment, treating with different dosages (0, 0.25, 0.5 and, 1%) of minor bupleurum decoction to detect immune parameters on day 0, 1, 2, 4, 7, 14, 21 and 28. Result is shown that 0.25% treatment significantly enhanced the superoxide dismutase (SOD) activity and, 0.25 and 1% treatment significantly increased the ROS production, nitric oxide (NO) production and phagocytic rate (PR) moreover, 0.5 and 1% treatment induced the proPO activity and superoxide anion (O 2 - ) production. Evidence exactly indicated that minor bupleurum decoction is able to enhance the non-specific immunity responses of white shrimp via in vivo examination. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stone, Melani C.; Borman, Jon; Ferreira, Gisela
2017-01-01
Flowthrough anion exchange chromatography is commonly used as a polishing step in downstream processing of monoclonal antibodies and other therapeutic proteins to remove process‐related impurities and contaminants such as host cell DNA, host cell proteins, endotoxin, and viruses. DNA with a wide range of molecular weight distributions derived from Chinese Hamster Ovary cells was used to advance the understanding of DNA binding behavior in selected anion exchange media using the resin (Toyopearl SuperQ‐650M) and membranes (Mustang® Q and Sartobind® Q) through DNA spiking studies. The impacts of the process parameters pH (6–8), conductivity (2–15 mS/cm), and the potential binding competition between host cell proteins and host cell DNA were studied. Studies were conducted at the least and most favorable experimental conditions for DNA binding based on the anticipated electrostatic interactions between the host cell DNA and the resin ligand. The resin showed 50% higher DNA binding capacity compared to the membrane media. Spiking host cell proteins in the load material showed no impact on the DNA clearance capability of the anion exchange media. DNA size distributions were characterized based on a “size exclusion qPCR assay.” Results showed preferential binding of larger DNA fragments (>409 base pairs). © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:141–149, 2018 PMID:28884511
Kundu, Siddhartha
2016-10-21
Chemotaxis, integrates diverse intra- and inter-cellular molecular processes into a purposeful patho-physiological response; the operatic rules of which, remain speculative. Here, I surmise, that superoxide anion induced directional motility, in a responding cell, results from a quasi pathway between the stimulus, surrounding interstitium, and its biochemical repertoire. The epochal event in the mounting of an inflammatory response, is the extravascular transmigration of a phagocyte competent cell towards the site of injury, secondary to the development of a lamellipodium. This stochastic-to-markovian process conversion, is initiated by the cytosolic-ROS of the damaged cell, but is maintained by the inverse association of a de novo generated pool of self-sustaining superoxide anions and sub-critical hydrogen peroxide levels. Whilst, the exponential rise of O2(.-) is secondary to the focal accumulation of higher order lipid raft-Rac1/2-actin oligomers; O2(.-) mediated inactivation and redistribution of ECSOD, accounts for the minimal concentration of H2O2 that the phagocyte experiences. The net result of this reciprocal association between ROS/ RNS members, is the prolonged perturbation and remodeling of the cytoskeleton and plasma membrane, a prelude to chemotactic migration. The manuscript also describes the significance of stochastic modeling, in the testing of plausible molecular hypotheses of observable phenomena in complex biological systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mezei, Pál D; Csonka, Gábor I; Ruzsinszky, Adrienn; Sun, Jianwei
2015-01-13
A correct description of the anion-π interaction is essential for the design of selective anion receptors and channels and important for advances in the field of supramolecular chemistry. However, it is challenging to do accurate, precise, and efficient calculations of this interaction, which are lacking in the literature. In this article, by testing sets of 20 binary anion-π complexes of fluoride, chloride, bromide, nitrate, or carbonate ions with hexafluorobenzene, 1,3,5-trifluorobenzene, 2,4,6-trifluoro-1,3,5-triazine, or 1,3,5-triazine and 30 ternary π-anion-π' sandwich complexes composed from the same monomers, we suggest domain-based local-pair natural orbital coupled cluster energies extrapolated to the complete basis-set limit as reference values. We give a detailed explanation of the origin of anion-π interactions, using the permanent quadrupole moments, static dipole polarizabilities, and electrostatic potential maps. We use symmetry-adapted perturbation theory (SAPT) to calculate the components of the anion-π interaction energies. We examine the performance of the direct random phase approximation (dRPA), the second-order screened exchange (SOSEX), local-pair natural-orbital (LPNO) coupled electron pair approximation (CEPA), and several dispersion-corrected density functionals (including generalized gradient approximation (GGA), meta-GGA, and double hybrid density functional). The LPNO-CEPA/1 results show the best agreement with the reference results. The dRPA method is only slightly less accurate and precise than the LPNO-CEPA/1, but it is considerably more efficient (6-17 times faster) for the binary complexes studied in this paper. For 30 ternary π-anion-π' sandwich complexes, we give dRPA interaction energies as reference values. The double hybrid functionals are much more efficient but less accurate and precise than dRPA. The dispersion-corrected double hybrid PWPB95-D3(BJ) and B2PLYP-D3(BJ) functionals perform better than the GGA and meta-GGA functionals for the present test set.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurkiewicz, Kamil; Bachorz, Rafal; Gutowski, Maciej S.
2006-12-07
We characterized valence-type and dipole-bound anionic states of thymine using various electronic structure methods, with the most accurate results obtained at the CCSD(T)/aug-cc-pVDZ level of theory followed by extrapolations to complete basis set limits. We found that the most stable anion in the gas phase is related to neither the canonical 2,4-dioxo nor a rare imino-hydroxy tautomer. Instead, it is related to an imino-oxo tautomer, in which the N1H proton is transferred to the C5 atom. This valence anion is characterized by an electron vertical detachment energy (VDE) of 1251 meV and it is adiabatically stable with respect to themore » canonical neutral by 2.4 kcal/mol. It is also more stable than the dipole-bound and valence anion of the canonical tautomer. The latter is adiabatically unbound with respect to by 0.1 kcal/mol and this instability is smaller than the uncertainty of the computational model used. The VDE values for and are 55 and 457 meV, respectively. Another, anionic, low-lying imino-oxo tautomer with a VDE of 2458 meV has a proton transferred from N3H to C5. It is less stable than by 3.2 kcal/mol. The mechanism of formation of anionic tautomers with the carbons C5 or C6 protonated may involve intermolecular proton transfer or dissociative electron attachment to the canonical neutral tautomer followed by a barrier-free attachment of a hydrogen atom to C5. The six-member ring structure of anionic tautomers with carbon atoms protonated might be unstable upon an excess electron detachment. Indeed, the neutral systems resulting from electron detachment from and evolve, along barrier-free decomposition pathways, to a linear or a bicyclo structure, respectively, which might be viewed as lesions to DNA.« less
Gaillard, C; Chaumont, A; Billard, I; Hennig, C; Ouadi, A; Wipff, G
2007-06-11
The first coordination sphere of the uranyl cation in room-temperature ionic liquids (ILs) results from the competition between its initially bound counterions, the IL anions, and other anions (e.g., present as impurities or added to the solution). We present a joined spectroscopic (UV-visible and extended X-ray absorption fine structure)-simulation study of the coordination of uranyl initially introduced either as UO2X2 salts (X-=nitrate NO3-, triflate TfO-, perchlorate ClO4-) or as UO2(SO4) in a series of imidazolium-based ILs (C4mimA, A-=PF6-, Tf2N-, BF4- and C4mim=1-methyl-3-butyl-imidazolium) as well as in the Me3NBuTf2N IL. The solubility and dissociation of the uranyl salts are found to depend on the nature of X- and A-. The addition of Cl- anions promotes the solubilization of the nitrate and triflate salts in the C4mimPF6 and the C4mimBF4 ILs via the formation of chloro complexes, also formed with other salts. The first coordination sphere of uranyl is further investigated by molecular dynamics (MD) simulations on associated versus dissociated forms of UO2X2 salts in C4mimA ILs as a function of A- and X- anions. Furthermore, the comparison of UO2Cl(4)2-, 2 X- complexes with dissociated X- anions, to the UO2X2, 4 Cl- complexes with dissociated chlorides, shows that the former is more stable. The case of fluoro complexes is also considered, as a possible result of fluorinated IL anion's degradation, showing that UO2F42- should be most stable in solution. In all cases, uranyl is found to be solvated as formally anionic UO2XnAmClp2-n-m-p complexes, embedded in a cage of stabilizing IL imidazolium or ammonium cations.
NASA Astrophysics Data System (ADS)
Wiśniewska, Małgorzata; Chibowski, Stanisław; Urban, Teresa
2016-05-01
The adsorption mechanism of anionic polyacrylamide (PAM) on the nanozirconia surface was examined. The effects of solution pH, carboxyl groups content in macromolecules and anionic surfactant (sodium dodecyl sulfate-SDS) addition were determined. The more probable structure of polymer adsorption layer was characterized based on the data obtained from spectrophotometry, viscosimetry and potentiometric titration methods. The adsorbed amount of polymer, size of macromolecules in the solution and surface charge density of ZrO2 particles in the absence and presence of PAM were assessed, respectively. Analysis of these results indicated that the increase of solution pH and content of carboxyl groups in the polymeric chains lead to more expanded conformations of adsorbing macromolecules. As a result, the adsorption of anionic polyacrylamide decreased. The SDS presence caused the significant increase of PAM adsorbed amount at pH 3, whereas at pH 6 and 9 the surfactant addition resulted in reduction of polymer adsorption level.
When one becomes two: Ba12In4Se20, not quite isostructural to Ba12In4S19
NASA Astrophysics Data System (ADS)
Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Yao, Jiyong; Mar, Arthur
2017-09-01
The ternary selenide Ba12In4Se20 was synthesized by reaction of BaSe, In2Se3, and Se at 1023 K. Single-crystal X-ray diffraction revealed a trigonal structure (space group R 3 bar, Z = 6, a = 10.0360(6) Å, c = 78.286(4) Å at room temperature) consisting of one-dimensional stacks of InSe4 tetrahedra, In2Se7 double tetrahedra, selenide Se2- anions, and diselenide Se22- anions, with Ba2+ cations in the intervening spaces. The selenide Ba12In4Se20 can be derived from the corresponding sulfide Ba12In4S19 by replacing one monoatomic Ch2- anion with a diatomic Ch22- anion. An optical band gap of 1.70(2) eV, consistent with the dark red colour of the crystals, was deduced from the UV-vis-NIR diffuse reflectance spectrum.
Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR
Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.
1980-06-06
An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Yan; Dyck, Jeffrey; Graham, Todd
Oil-soluble phosphonium-based ionic liquids (ILs) have recently been reported as potential ashless lubricant additives. This study is to expand the IL chemistry envelope and to achieve fundamental correlations between the ion structures and ILs’ physiochemical and tribological properties. Here we present eight ILs containing two different phosphonium cations and seven different anions from three groups: organophosphate, carboxylate, and sulfonate. The oil solubility of ILs seems largely governed by the IL molecule size and structure complexity. When used as oil additives, the ranking of effectiveness in wear protection for the anions are: organophosphate > carboxylate > sulfonate. All selected ILs outperformedmore » a commercial ashless anti-wear additive. Surface characterization from the top and the cross-section revealed the nanostructures and compositions of the tribo-films formed by the ILs. Some fundamental insights were achieved: branched and long alkyls improve the IL’s oil solubility, anions of a phosphonium-phosphate IL contribute most phosphorus in the tribofilm, and carboxylate anions, though free of P, S, N, or halogen, can promote the formation of an anti-wear tribofilm.« less
Onari, Seiichiro; Yamakawa, Youichi; Kontani, Hiroshi
2014-05-09
The isostructural transition in the tetragonal phase with a sizable change in the anion height, is realized in heavily H-doped LaFeAsO and (La,P) codoped CaFe2As2. In these compounds, the superconductivity with higher Tc (40-50 K) is realized near the isostructural transition. To find the origin of the anion-height instability and the role in realizing the higher-Tc state, we develop the orbital-spin fluctuation theory by including the vertex correction. We analyze LaFeAsO(1-x)H(x) and find that the non-nematic orbital fluctuations, which induce the anion-height instability, are automatically obtained at x∼0.5, in addition to the conventional nematic orbital fluctuations at x∼0. The non-nematic orbital order triggers the isostructural transition, and its fluctuation would be a key ingredient to realize higher-Tc superconductivity of order 50 K.
Nuclear reactor cooling system decontamination reagent regeneration
Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.
1985-01-01
An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al Hasan, Naila M.; Johnson, Grant E.; Laskin, Julia
2013-07-02
Electrospray ionization mass spectrometry (ESI-MS) combined with in-source fragmentation and tandem mass spectrometry (MS/MS) experiments were used to generate a wide range of singly and multiply charged vanadium oxide cluster anions including V xO y n– and V xO yCl n– ions (x = 1–14, y = 2–36, n = 1–3), protonated clusters, and ligand-bound polyoxovanadate anions. The cluster anions were produced by electrospraying a solution of tetradecavanadate, V 14O 36Cl(L) 5 (L = Et 4N +, tetraethylammonium), in acetonitrile. Under mild source conditions, ESI-MS generates a distribution of doubly and triply charged V xO yCl n– and V xOmore » yCl(L) (n–1)– clusters predominantly containing 14 vanadium atoms as well as their protonated analogs. Accurate mass measurement using a high-resolution LTQ/Orbitrap mass spectrometer (m/Δm = 60,000 at m/z 410) enabled unambiguous assignment of the elemental composition of the majority of peaks in the ESI-MS spectrum. In addition, high-sensitivity mass spectrometry allowed the charge state of the cluster ions to be assigned based on the separation of the major from the much less abundant minor isotope of vanadium. In-source fragmentation resulted in facile formation of smaller V xO yCl (1–2)– and V xO y (1–2)– anions. Collision-induced dissociation (CID) experiments enabled systematic study of the gas-phase fragmentation pathways of the cluster anions originating from solution and from in-source CID. Surprisingly simple fragmentation patterns were obtained for all singly and doubly charged V xO yCl and V xO y species generated through multiple MS/MS experiments. In contrast, cluster anions originating directly from solution produced comparatively complex CID spectra. These results are consistent with the formation of more stable structures of V xO yCl and V xO y anions through low-energy CID. Finally and furthermore, our results demonstrate that solution-phase synthesis of one precursor cluster anion combined with gas-phase CID is an efficient approach for the top-down synthesis of a wide range of singly and multiply charged gas-phase metal oxide cluster anions for subsequent investigations of structure and reactivity using mass spectrometry and ion spectroscopy techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masui, Toshiyuki; Nagai, Ryosuke; Imanaka, Nobuhito, E-mail: imanaka@chem.eng.osaka-u.ac.jp
2014-12-15
Cubic fluorite-type solid solutions based on Pr{sub 6}O{sub 11} and CeO{sub 2} were synthesized and oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice through the charge compensating mechanism by Mg{sup 2+} and/or Ca{sup 2+} doping into their lattices. The oxide anion vacancies bring about positive effect on NO decomposition catalysis. The reason for the increase in the catalytic activity was attributed to defect fluorite-type structures close to the C-type cubic one, because C-type cubic rare earth oxides, in which one-quarter of the oxygen atoms in the fluorite-type structure are removed, show high NO decomposition activity. In particular,more » the positive effect of the formation of oxide anion vacancies was significant for Pr{sub 6}O{sub 11} and its solid solutions, because the molar volume of Pr{sub 6}O{sub 11} is larger than that of CeO{sub 2}, and Pr{sub 6}O{sub 11} contains Pr{sup 3+} as well as Pr{sup 4+} and thereby a small amount of oxide anion vacancies exist inherently in the lattice. - Graphical abstract: Oxide anion vacancies intentionally introduced into the cubic fluorite-type lattice bring about positive effect on NO decomposition catalysis. - Highlights: • Cubic fluorite-type solid solutions were synthesized. • Oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice. • The oxide anion vacancies bring about positive effect on NO decomposition catalysis. • The activity was enhanced by making the structure close to the C-type cubic one.« less
Radiolytic preparation of ETFE and PFA based anion exchange membranes for alkaline fuel cell
NASA Astrophysics Data System (ADS)
Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young-Chang; Shin, Junhwa
2011-11-01
In this study, a versatile monomer, vinylbenzyl chloride (VBC) was radiolytically grafted onto a partially fluorinated ETFE and perfluorinated polymer PFA films. The VBC grafted films were treated with trimethylamine to prepare the alkaline anion exchange membranes (AAEMs). No significant differences in the ion exchange capacities and water uptakes were observed between the ETFE and PFA based AAEMs with similar degree of grafting (DOG). However, the distribution patterns of the graft chains over the cross-section of the ETFE and PFA based AAEMs were found to be quite different; the even distribution was observed from the ETFE based AAEMs while the uneven distribution was observed from the PFA based AAEMs. It was also found that the PFA based AAEMs have the higher ionic conductivity and chemical stability, compared to the ETFE based AAEMs.
SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS
Katzin, L.I.; Sullivan, J.C.
1958-06-24
A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.
He, Ping; Lu, Yong; Dong, Cheng-Guo; Hu, Qiao-Sheng
2008-01-01
Anionic four electron donor-based palladacycle-catalyzed 1,4-additions of arylboronic acids with α,β-unsaturated ketones and 1,2-additions of arylboronic acids with aldehydes and α-ketoesters are described. Our study demonstrated that palladacycles were highly efficient, practical catalysts for these addition reactions. The work described here not only opened a new paradigm for the application of palladacycles, but may also pave the road for other metalacycles as practically useful catalysts for such addition reactions including asymmetric ones. PMID:17217300
Kasagi, Tomomichi; Imai, Hirokazu; Miura, Naoto; Suzuki, Keisuke; Yoshino, Masabumi; Nobata, Hironobu; Nagai, Takuhito; Banno, Shogo
2017-10-01
The Stewart model for analyzing acid-base disturbances emphasizes serum albumin levels, which are ignored in the traditional Boston model. We compared data derived using the Stewart model to those using the Boston model in patients with nephrotic syndrome. Twenty-nine patients with nephrotic syndrome and six patients without urinary protein or acid-base disturbances provided blood and urine samples for analysis that included routine biochemical and arterial blood gas tests, plasma renin activity, and aldosterone. The total concentration of non-volatile weak acids (A TOT ), apparent strong ion difference (SIDa), effective strong ion difference (SIDe), and strong ion gap (SIG) were calculated according to the formulas of Agrafiotis in the Stewart model. According to the Boston model, 25 of 29 patients (90%) had alkalemia. Eighteen patients had respiratory alkalosis, 11 had metabolic alkalosis, and 4 had both conditions. Only three patients had hyperreninemic hyperaldosteronism. The Stewart model demonstrated respiratory alkalosis based on decreased PaCO 2 , metabolic alkalosis based on decreased A TOT , and metabolic acidosis based on decreased SIDa. We could diagnose metabolic alkalosis or acidosis with a normal anion gap after comparing delta A TOT [(14.09 - measured A TOT ) or (11.77 - 2.64 × Alb (g/dL))] and delta SIDa [(42.7 - measured SIDa) or (42.7 - (Na + K - Cl)]). We could also identify metabolic acidosis with an increased anion gap using SIG > 7.0 (SIG = 0.9463 × corrected anion gap-8.1956). Patients with nephrotic syndrome had primary respiratory alkalosis, decreased A TOT due to hypoalbuminemia (power to metabolic alkalosis), and decreased levels of SIDa (power to metabolic acidosis). We could detect metabolic acidosis with an increased anion gap by calculating SIG. The Stewart model in combination with the Boston model facilitates the analysis of complex acid-base disturbances in nephrotic syndrome.
Krawic, Casey; Luczak, Michal W; Zhitkovich, Anatoly
2017-09-18
Inhalation of soluble chromium(VI) is firmly linked with higher risks of lung cancer in humans. However, comparative studies in rats have found a high lung tumorigenicity for moderately soluble chromates but no tumors for highly soluble chromates. These major species differences remain unexplained. We investigated the impact of extracellular reducers on responses of human and rat lung epithelial cells to different Cr(VI) forms. Extracellular reduction of Cr(VI) is a detoxification process, and rat and human lung lining fluids contain different concentrations of ascorbate and glutathione. We found that reduction of chromate anions in simulated lung fluids was principally driven by ascorbate with only minimal contribution from glutathione. The addition of 500 μM ascorbate (∼rat lung fluid concentration) to culture media strongly inhibited cellular uptake of chromate anions and completely prevented their cytotoxicity even at otherwise lethal doses. While proportionally less effective, 50 μM extracellular ascorbate (∼human lung fluid concentration) also decreased uptake of chromate anions and their cytotoxicity. In comparison to chromate anions, uptake and cytotoxicity of respirable particles of moderately soluble CaCrO 4 and SrCrO 4 were much less sensitive to suppression by extracellular ascorbate, especially during early exposure times and in primary bronchial cells. In the absence of extracellular ascorbate, chromate anions and CaCrO 4 /SrCrO 4 particles produced overall similar levels of DNA double-stranded breaks, with less soluble particles exhibiting a slower rate of breakage. Our results indicate that a gradual extracellular dissolution and a rapid internalization of calcium chromate and strontium chromate particles makes them resistant to detoxification outside the cells, which is extremely effective for chromate anions in the rat lung fluid. The detoxification potential of the human lung fluid is significant but much lower and insufficient to provide a threshold-type dose dependence for soluble chromates.
Obata, Yosuke; Tajima, Shoji; Takeoka, Shinji
2010-03-03
We developed pH-responsive liposomes containing synthetic glutamic acid-based zwitterionic lipids and evaluated their properties both in vitro and in vivo with the aim of constructing an efficient liposome-based systemic drug delivery system. The glutamic acid-based lipids; 1,5-dihexadecyl N-glutamyl-L-glutamate (L1) and 1,5-dihexadecyl N,N-diglutamyl-lysyl-L-glutamate (L2) were synthesized as a pH-responsive component of liposomes that respond to endosomal pH. The zeta potential of liposomes containing L1 or L2 was positive when the solution pH was below 4.6 or 5.6, respectively, but negative at higher pH values. The pH-responsive liposomes showed improved fusogenic potential to an endosome-mimicking anionic membrane at acidic pH, where the zeta potential of the liposomes was positive. We then prepared doxorubicin (DOX)-encapsulating liposomes containing L1 or L2, and clarified by confocal microscopic studies that the contents were rapidly transferred into both the cytoplasm and nucleus. Release of DOX from the endosomes mediated by the pH-responsive liposomes dramatically inhibited cancer cell growth. The L2-liposomes were slightly more effective than L1-liposomes as a drug delivery system. Intravenously injected L2-liposomes displayed blood persistence comparable to that of conventional phospholipid (PC)-based liposomes. Indeed, the antitumor efficacy of L2-liposomes was higher than that of PC-based liposomes against a xenograft breast cancer tumor in vivo. Thus, the high performance of L2-liposomes results from both efficient intracellular drug delivery and comparable blood persistence in comparison with the conventional PC-based liposomes in vitro and in vivo. Copyright 2009 Elsevier B.V. All rights reserved.
Formation of Carbamate Anions by the Gas-phase Reaction of Anilide Ions with CO2
NASA Astrophysics Data System (ADS)
Liu, Chongming; Nishshanka, Upul; Attygalle, Athula B.
2016-05-01
The anilide anion ( m/z 92) generated directly from aniline, or indirectly as a fragmentation product of deprotonated acetanilide, captures CO2 readily to form the carbamate anion ( m/z 136) in the collision cell, when CO2 is used as the collision gas in a tandem-quadrupole mass spectrometer. The gas-phase affinity of the anilide ion to CO2 is significantly higher than that of the phenoxide anion ( m/z 93), which adds to CO2 only very sluggishly. Our results suggest that the efficacy of CO2 capture depends on the natural charge density on the nitrogen atom, and relative nucleophilicity of the anilide anion. Generally, conjugate bases generated from aniline derivatives with proton affinities (PA) less than 350 kcal/mol do not tend to add CO2 to form gaseous carbamate ions. For example, the anion generated from p-methoxyaniline (PA = 367 kcal/mol) reacts significantly faster than that obtained from p-nitroaniline (PA = 343 kcal/mol). Although deprotonated p-aminobenzoic acid adds very poorly because the negative charge is now located primarily on the carboxylate group, it reacts more efficiently with CO2 if the carboxyl group is esterified. Moreover, mixture of CO2 and He as the collision gas was found to afford more efficient adduct formation than CO2 alone, or as mixtures made with nitrogen or argon, because helium acts as an effective "cooling" gas and reduces the internal energy of reactant ions.
Free volume dependence of an ionic molecular rotor in Fluoroalkylphosphate (FAP) based ionic liquids
NASA Astrophysics Data System (ADS)
Singh, Prabhat K.; Mora, Aruna K.; Nath, Sukhendu
2016-01-01
The emission properties of Thioflavin-T (ThT), a cationic molecular rotor, have been investigated in two fluoroalkylphosphate ([FAP]) anion based ionic liquids, namely, 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate and 1-(2-hydroxyethyl)-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate, over a wide temperature range. The micro-viscosities of ionic liquids around ThT, measured from the emission quantum yield, are found to be quite different from their bulk viscosities. The temperature dependence of the viscosity and the emission quantum yield reveals that, despite the very low shear viscosity of these ILs, the non-radiative torsional relaxation has a strong dependence on the free volume of these [FAP] anion based ILs.
Zhao, Yongyu; Bordwell, Frederick G.
1996-09-20
Cleavage of radical anions, HA(*)(-), have been considered to give either H(*) + A(-) (path a) or H(-) + A(*) (path b), and factors determining the preferred mode of cleavage have been discussed. It is conceivable that cleavage to give a proton and a radical dianion, HA(*)(-) right harpoon over left harpoon H(+) + A(*)(2)(-) (path c), might also be feasible. A method, based on a thermodynamic cycle, to estimate the bond dissociation free energy (BDFE) by path c has been devised. Comparison of the BDFEs for cleavage of the radical anions derived from 24 nitroaromatic OH, SH, NH, and CH acids by paths a, b, c has shown that path c is favored thermodynamically.
Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)]- anionic complex
NASA Astrophysics Data System (ADS)
Graham, Jacob D.; Buytendyk, Allyson M.; Zhang, Xinxing; Kim, Seong K.; Bowen, Kit H.
2015-11-01
The [Co(Pyridine)(CO2)]- anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)]- in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.
Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)](-) anionic complex.
Graham, Jacob D; Buytendyk, Allyson M; Zhang, Xinxing; Kim, Seong K; Bowen, Kit H
2015-11-14
The [Co(Pyridine)(CO2)](-) anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)](-) in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.
Multifunctional phosphate-based inorganic-organic hybrid nanoparticles.
Heck, Joachim G; Napp, Joanna; Simonato, Sara; Möllmer, Jens; Lange, Marcus; Reichardt, Holger M; Staudt, Reiner; Alves, Frauke; Feldmann, Claus
2015-06-17
Phosphate-based inorganic-organic hybrid nanoparticles (IOH-NPs) with the general composition [M](2+)[Rfunction(O)PO3](2-) (M = ZrO, Mg2O; R = functional organic group) show multipurpose and multifunctional properties. If [Rfunction(O)PO3](2-) is a fluorescent dye anion ([RdyeOPO3](2-)), the IOH-NPs show blue, green, red, and near-infrared fluorescence. This is shown for [ZrO](2+)[PUP](2-), [ZrO](2+)[MFP](2-), [ZrO](2+)[RRP](2-), and [ZrO](2+)[DUT](2-) (PUP = phenylumbelliferon phosphate, MFP = methylfluorescein phosphate, RRP = resorufin phosphate, DUT = Dyomics-647 uridine triphosphate). With pharmaceutical agents as functional anions ([RdrugOPO3](2-)), drug transport and release of anti-inflammatory ([ZrO](2+)[BMP](2-)) and antitumor agents ([ZrO](2+)[FdUMP](2-)) with an up to 80% load of active drug is possible (BMP = betamethason phosphate, FdUMP = 5'-fluoro-2'-deoxyuridine 5'-monophosphate). A combination of fluorescent dye and drug anions is possible as well and shown for [ZrO](2+)[BMP](2-)0.996[DUT](2-)0.004. Merging of functional anions, in general, results in [ZrO](2+)([RdrugOPO3]1-x[RdyeOPO3]x)(2-) nanoparticles and is highly relevant for theranostics. Amine-based functional anions in [MgO](2+)[RaminePO3](2-) IOH-NPs, finally, show CO2 sorption (up to 180 mg g(-1)) and can be used for CO2/N2 separation (selectivity up to α = 23). This includes aminomethyl phosphonate [AMP](2-), 1-aminoethyl phosphonate [1AEP](2-), 2-aminoethyl phosphonate [2AEP](2-), aminopropyl phosphonate [APP](2-), and aminobutyl phosphonate [ABP](2-). All [M](2+)[Rfunction(O)PO3](2-) IOH-NPs are prepared via noncomplex synthesis in water, which facilitates practical handling and which is optimal for biomedical application. In sum, all IOH-NPs have very similar chemical compositions but can address a variety of different functions, including fluorescence, drug delivery, and CO2 sorption.
Li, Fugang; Bi, Yangang; Zhao, Wenyuan; Zhang, Tonglai; Zhou, Zunning; Yang, Li
2015-02-16
Nitrogen-rich energetic salts involving various cations (lithium, 1; ammonium, 2; hydrazinium, 3; hydroxylammonium, 4; guanidinium, 5; aminoguanidinium, 6; diaminoguanidinium, 7; and triaminoguanidinium, 8) based on nitrogen-rich anion [Zn(BTA)2(H2O)](2-) (N% = 65.37, BTA = N,N-bis[1H-tetrazol-5-yl]amine anion) were synthesized with a simple method. The crystal structures of all compounds except 1, 2, and 6 were determined by single-crystal X-ray diffraction and fully characterized by elemental analysis and FT-IR spectroscopy. The thermal stabilities were investigated by differential scanning calorimetry (DSC). The DSC results show that all compounds exhibit high thermal stabilities (decomposition temperature >200 °C). Additionally, the heats of formation were calculated on the basis of the experimental constant-volume energies of combustion measured by using bomb calorimetry. Lastly, the sensitivities toward impact and friction were assessed according to Bundesamt für Materialforschung (BAM) standard methods.
Interaction and dynamics of ionic liquids based on choline and amino acid anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campetella, M.; Bodo, E., E-mail: enrico.bodo@uniroma1.it; Caminiti, R., E-mail: ruggero.caminiti@uniroma1.it
2015-06-21
The combination of amino acid anions with the choline cation gives origin to a new and potentially important class of organic ionic liquids that might represent a viable and bio-compatible alternative with respect to the traditional ones. We present here a detailed study of the bulk phase of the prototype system composed of the simplest amino acid (alanine) anion and the choline cation, based on ab initio and classical molecular dynamics. Theoretical findings have been validated by comparing with accurate experimental X-ray diffraction data and infrared spectra. We find that hydrogen bonding (HB) features in these systems are crucial inmore » establishing their local geometric structure. We have also found that these HBs once formed are persistent and that the proton resides exclusively on the choline cation. In addition, we show that a classical force field description for this particular ionic liquid can be accurately performed by using a slightly modified version of the generalized AMBER force field.« less
Interaction and dynamics of ionic liquids based on choline and amino acid anions
NASA Astrophysics Data System (ADS)
Campetella, M.; Bodo, E.; Caminiti, R.; Martino, A.; D'Apuzzo, F.; Lupi, S.; Gontrani, L.
2015-06-01
The combination of amino acid anions with the choline cation gives origin to a new and potentially important class of organic ionic liquids that might represent a viable and bio-compatible alternative with respect to the traditional ones. We present here a detailed study of the bulk phase of the prototype system composed of the simplest amino acid (alanine) anion and the choline cation, based on ab initio and classical molecular dynamics. Theoretical findings have been validated by comparing with accurate experimental X-ray diffraction data and infrared spectra. We find that hydrogen bonding (HB) features in these systems are crucial in establishing their local geometric structure. We have also found that these HBs once formed are persistent and that the proton resides exclusively on the choline cation. In addition, we show that a classical force field description for this particular ionic liquid can be accurately performed by using a slightly modified version of the generalized AMBER force field.
2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers.
Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Ali, Sajjad; Ambreen, Nida; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang
2012-05-01
Syntheses of thirty 2,4,6-trichlorophenylhydrazine Schiff bases 1-30 were carried out and evaluated for their in vitro DPPH radical and super oxide anion scavenging activities. Compounds 1-30 have shown a varying degree of DPPH radical scavenging activity and their IC50 values range between 4.05-369.30 µM. The compounds 17, 28, 18, 14, 8, 15, 12, 2, 29, and 7 exhibited IC50 values ranging between 4.05±0.06-24.42±0.86 µM which are superior to standard n-propylgallate (IC50=30.12±0.27 µM). Selected compounds have shown a varying degree of superoxide anion radical scavenger activity and their IC50 values range between 91.23-406.90 µM. The compounds 28, 8, 17, 15, and 14, showed IC50 values between 91.23±1.2-105.31±2.29 µM which are superior to standard n-propylgallate (IC50=106.34±1.6 µM).
A PEGylated Fibrin-Based Wound Dressing with Antimicrobial and Angiogenic Activity
2011-04-13
naturally available, cost-effective, biocompatible, and biodegradable. Among these natural polymers chitosan ( poly (b-(1,4)-2-amino-2-deoxy-D...drying, ionic gela- tion, and sieving. Among these, ionic gelation is preferred for drugs that require an initial short burst release while maintaining...form ionic interactions with anionic mole- cules, and have been previously used for the controlled release of drugs [18]. Since SSD is a weak anionic
Zhang, Zheng-Jie; Shi, Wei; Niu, Zheng; Li, Huan-Huan; Zhao, Bin; Cheng, Peng; Liao, Dai-Zheng; Yan, Shi-Ping
2011-06-14
An interesting new MOF, built with interpenetrating cationic (MOF-A(+)) and anionic (MOF-B(-)) nets that do not require counter ions to balance charge, together with an architectural strategy focused on the use of MOPs as nodes and MOCs as spacers for the generation of 3D frameworks, is reported. This journal is © The Royal Society of Chemistry 2011
Squarylium-based chromogenic anion sensors
NASA Astrophysics Data System (ADS)
Lee, Eun-Mi; Gwon, Seon-Yeong; Son, Young-A.; Kim, Sung-Hoon
2012-09-01
A squarylium (SQ) dye was synthesized by the reaction between squaric acid and 2,3,3-trimethylindolenine and its anion sensing properties were investigated using absorption and emission spectroscopy. This chemosensor exhibited high selectivity for CN- as compared with F-, CHCO2-, Br-, HPO4-, Cl-, and NO3- in acetonitrile, which was attributed to the formation of a 1:1 squarylium:CN- coordination complex, the formation of which was supported by the calculated geometry of the complex.
Kawano, Tomonori; Kagenishi, Tomoko; Kadono, Takashi; Bouteau, François; Hiramatsu, Takuya; Lin, Cun; Tanaka, Kenichiro; Tanaka, Licca; Mancuso, Stefano; Uezu, Kazuya; Okobira, Tadashi; Furukawa, Hiroka; Iwase, Junichiro; Inokuchi, Reina; Baluška, Frantisek; Yokawa, Ken
2015-01-01
Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article. PMID:27066179
Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu
2011-07-28
By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society
Cognigni, Alice; Gaertner, Peter; Zirbs, Ronald; Peterlik, Herwig; Prochazka, Katharina; Schröder, Christian
2016-01-01
A series of surface-active ionic liquids based on the 1-dodecyl-3-methylimidazolium cation and different anions such as halides and alkylsulfates was synthesized. The aggregation behavior of these ionic liquids in water was characterized by surface tension, conductivity measurements and UV-Vis spectroscopy in order to determine the critical micelle concentration (CMC) and to provide aggregation parameters. The determination of surface activity and aggregation properties of amphiphilic ionic liquids was accompanied by SAXS studies on selected surface-active ionic liquids. The application of these surface-active ionic liquids with different anions was tested in nucleophilic substitution reactions for the degradation of organophosphorus compounds. Kinetic studies via UV-Vis spectrophotometry showed a strong acceleration of the reaction in the micellar system compared to pure water. In addition, an influence of the anion was observed, resulting in a correlation between the anion binding to the micelle and the reaction rate constants, indicating that the careful choice of the surface-active ionic liquid can considerably affect the outcome of reactions. PMID:27121134
Yang, Senpei; Li, Lingyi; Chen, Tao; Han, Lujia; Lian, Guoping
2018-05-14
Sebum is an important shunt pathway for transdermal permeation and targeted delivery, but there have been limited studies on its permeation properties. Here we report a measurement and modelling study of solute partition to artificial sebum. Equilibrium experiments were carried out for the sebum-water partition coefficients of 23 neutral, cationic and anionic compounds at different pH. Sebum-water partition coefficients not only depend on the hydrophobicity of the chemical but also on pH. As pH increases from 4.2 to 7.4, the partition of cationic chemicals to sebum increased rapidly. This appears to be due to increased electrostatic attraction between the cationic chemical and the fatty acids in sebum. Whereas for anionic chemicals, their sebum partition coefficients are negligibly small, which might result from their electrostatic repulsion to fatty acids. Increase in pH also resulted in a slight decrease of sebum partition of neutral chemicals. Based on the observed pH impact on the sebum-water partition of neutral, cationic and anionic compounds, a new quantitative structure-property relationship (QSPR) model has been proposed. This mathematical model considers the hydrophobic interaction and electrostatic interaction as the main mechanisms for the partition of neutral, cationic and anionic chemicals to sebum.
van Ruymbeke, E; Lee, H; Chang, T; Nikopoulou, A; Hadjichristidis, N; Snijkers, F; Vlassopoulos, D
2014-07-21
An emerging challenge in polymer physics is the quantitative understanding of the influence of a macromolecular architecture (i.e., branching) on the rheological response of entangled complex polymers. Recent investigations of the rheology of well-defined architecturally complex polymers have determined the composition in the molecular structure and identified the role of side-products in the measured samples. The combination of different characterization techniques, experimental and/or theoretical, represents the current state-of-the-art. Here we review this interdisciplinary approach to molecular rheology of complex polymers, and show the importance of confronting these different tools for ensuring an accurate characterization of a given polymeric sample. We use statistical tools in order to relate the information available from the synthesis protocols of a sample and its experimental molar mass distribution (typically obtained from size exclusion chromatography), and hence obtain precise information about its structural composition, i.e. enhance the existing sensitivity limit. We critically discuss the use of linear rheology as a reliable quantitative characterization tool, along with the recently developed temperature gradient interaction chromatography. The latter, which has emerged as an indispensable characterization tool for branched architectures, offers unprecedented sensitivity in detecting the presence of different molecular structures in a sample. Combining these techniques is imperative in order to quantify the molecular composition of a polymer and its consequences on the macroscopic properties. We validate this approach by means of a new model asymmetric comb polymer which was synthesized anionically. It was thoroughly characterized and its rheology was carefully analyzed. The main result is that the rheological signal reveals fine molecular details, which must be taken into account to fully elucidate the viscoelastic response of entangled branched polymers. It is important to appreciate that, even optimal model systems, i.e., those synthesized with high-vacuum anionic methods, need thorough characterization via a combination of techniques. Besides helping to improve synthetic techniques, this methodology will be significant in fine-tuning mesoscopic tube-based models and addressing outstanding issues such as the quantitative description of the constraint release mechanism.
Singh, Archana; Sahoo, Suban K; Trivedi, Darshak R
2018-01-05
A new six colorimetric receptors A1-A6 were designed and synthesized, characterized by typical common spectroscopic techniques like FT-IR, UV-Visible, 1 H NMR, 13 C NMR and ESI-MS. The receptor A1 and A2 exhibit a significant naked-eye response towards F - and AcO - ions in DMSO. Due to presences of the NO 2 group at para and ortho position with extended π-conjugation of naphthyl group carrying OH as a binding site. Compared to receptor A2, A1 is extremely capable of detecting F - and AcO - ions present in the form of sodium salts in an aqueous medium. This is owed to the occurrence of NO 2 group at para position induced in increasing the acidity of OH proton. Consequently, it easily gets deprotonated in aqueous media. The detection limit of receptor A1 was turned out to be 0.40 and 0.35ppm for F - and AcO - ions which is beneath WHO permission level (1.0ppm). Receptor A1 shows a solitary property of solvatochromism in different aprotic solvents in presence of AcO - ion. Receptor A1 depicts high selectivity towards AcO - ion in DMSO: HEPES buffer (9:1, v/v). Receptor A1 proved itself for real life application by detecting anion in solution and solid state. The binding mechanism of receptor A1 with AcO - and F - ions was monitored from 1 HNMR titration and DFT study. Copyright © 2017 Elsevier B.V. All rights reserved.
Debnath, Diptanu; Roy, Subhadip; Li, Bing-Han; Lin, Chia-Her; Misra, Tarun Kumar
2015-04-05
Azo dyes, 1,3-dimethyl-5-(arylazo)-6-aminouracil (aryl=-C6H5 (1), -p-CH3C6H4 (2), -p-ClC6H4 (3), -p-NO2C6H4 (4)) were prepared and characterized by UV-vis, FT-IR, 1H NMR, 13C NMR spectroscopic techniques and single crystal X-ray crystallographic analysis. In the light of spectroscopic analysis it evidences that of the tautomeric forms, the azo-enamine-keto (A) form is the predominant form in the solid state whereas in different solvents it is the hydrazone-imine-keto (B) form. The study also reveals that the hydrazone-imine-keto (B) form exists in an equilibrium mixture with its anionic form in various organic solvents. The solvatochromic and photophysical properties of the dyes in various solvents with different hydrogen bonding parameter were investigated. The dyes exhibit positive solvatochromic property on moving from polar protic to polar aprotic solvents. They are fluorescent active molecules and exhibit high intense fluorescent peak in some solvents like DMSO and DMF. It has been demonstrated that the anionic form of the hydrazone-imine form is responsible for the high intense fluorescent peak. In addition, the acid-base equilibrium in between neutral and anionic form of hydrazone-imine form in buffer solution of varying pH was investigated and evaluated the pKa values of the dyes by making the use of UV-vis spectroscopic methods. The determined acid dissociation constant (pKa) values increase according to the sequence of 2>1>3>4. Copyright © 2014 Elsevier B.V. All rights reserved.
Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Fernández-Serrano, Mercedes
2017-04-01
This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.
Chubar, Natalia; Gerda, Vasyl; Banerjee, Dipanjan
2017-04-01
In this work, we report atomic-scale reconstruction processes in Fe-Ce oxide-based composites (hydrothermally precipitated at Fe-to-Ce dosage ratios of 1:0, 2:1, 1:1, 1:2, and 0:1), upon treatment at 300°C. The structural changes are correlated with the adsorptive removal of arsenate, phosphate, fluoride, bromide, and bromate. The presence of the carbonate-based Ce-component and surface sulfate in precursor samples creates favorable conditions for phase transformation, resulting in the formation of novel (unknown) layered compounds of Fe and Ce. These compounds are of the layered double hydroxide type, with sulfate in the interlayer space. In spite of general awareness of the importance of surface area in adsorptive removal, the increase in surface area upon thermal treatment did not increase adsorption of the studied anions. However, EXAFS simulations and the adsorption tests provided evidence of regularities between local structures of Fe in composites obtained at 80 and 300°C and adsorption performance of most studied anions. The best adsorption of tetrahedral anions was demonstrated by samples whose simulated outer Fe shells resulted from oscillations from both O and Fe atoms. In contrast, the loss of extended x-ray absorption fine structure was correlated with the decrease of adsorptive removal. Both Fe K-edge and Ce L 3 -edge EXAFS suggested the formation of solid solutions. For the first time, the utilization of extended x-ray absorption fine structure is suggested as a methodological approach (first expressed in the companion paper) to estimate the surface reactivity of inorganic materials intended for use as anion exchange adsorbents. Copyright © 2016 Elsevier Inc. All rights reserved.
Foulon, Catherine; Di Giulio, Pauline; Lecoeur, Marie
2018-01-26
Supercritical fluid chromatography (SFC) is commonly used for the analysis of non-polar compounds, but remains poorly explored for the separation of polar and ionized molecules. In this paper, SFC has been investigated for the separation of 14 inorganic ions sampled in aqueous solutions. Four polar stationary phases were first screened using CO 2 -methanol-based mobile phases containing water or different acidic or basic additives, in order to select the most efficient conditions for the simultaneous retention of inorganic cations and anions and to favor their detection using evaporative light scattering detector (ELSD). Orthogonal selectivity was obtained depending on the stationary phase used: whereas anions are less retained on HILIC stationary phase, 2-ethylpyridine (2-EP) stationary phase exhibits strong interaction for anions. Best results were obtained under gradient elution mode using a 2-EP stationary phase and by adding 0.2% triethylamine in the CO 2 -methanol-based mobile phase. The composition of the injection solvent was also investigated. The results showed that a methanolic sample containing a percentage of water not exceeding 20% does not affect the analytical performances obtained on 2-EP. Moreover, the presence of triethylamine in the injection solvent contributes to eliminate peaks shoulders. Among the 14 inorganic ions tested, three cations (Li + , Ca 2+ and Mg 2+ ) and five anions (Cl - , Br - , NO 3 - , I - , SCN - ) were totally resolved in 15 min. NO 3 - and NO 2 - still coeluted in the final optimized conditions. The other investigated ions were either strongly retained on the stationary phase or not detected by the ELSD. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Chen, Bo; Transue, Wesley J.
Three newly-synthesized [Na+(221-kryptofix)] salts containing AsCO–, PCO–, and PCS– anions were successfully electrosprayed into the vacuum, and the ECX– (E = As, P; X = O, S) anions were investigated by negative ion photoelectron spectroscopy (NIPES) and high resolution photoelectron imaging spectroscopy. For each ECX– anion, a well-resolved NIPE spectrum was obtained, in which every major peak is split into a doublet. The splittings are attributed to spin-orbit coupling (SOC) in the ECX• radicals. Vibrational progressions in the NIPE spectra of ECX– were assigned to the symmetric and antisymmetric stretching modes in ECX• radicals. The electron affinities (EAs) and SOCmore » splittings of ECX• are determined from the NIPE spectra to be: AsCO•: EA = 2.414 ± 0.002 eV, SOC splitting = 988 cm-1; PCO•: EA = 2.670 ± 0.005 eV, SOC splitting = 175 cm-1; PCS•: EA = 2.850 ± 0.005 eV, SOC splitting = 300 cm-1. Calculations using the B3LYP, CASPT2, and CCSD(T) methods all predict linear geometries for both the anions and neutral radicals. The calculated EAs and SOC splittings for ECX• are in excellent agreement with the experimentally-measured values. The simulated NIPE spectra, based on the calculated Franck-Condon factors, and SOC splittings nicely reproduce all of the observed spectral peaks, thus allowing unambiguous spectral assignments. The finding that PCS has the greatest EA of the three triatomic molecules considered here is counterintuitive based upon electronegativity considerations, but understandable in terms of the HOMO of PCS– having the greatest degree of delocalization onto both terminal atoms.« less
Ndibewu, P P; Mgangira, M B; Cingo, N; McCrindle, R I
2010-01-01
The objective of this study was to (1) measure the concentration of four anions (Cl(-), F(-), [image omitted], and [image omitted]) and nine other elements (Al, Ba, Ca, K, Mg, Mn, Fe, Ni, and Si) in two nontraditional biopolymeric chemical stabilizers (EBCS1 and EBCS2), (2) investigate consequent environmental toxicity risk implications, and (3) create awareness regarding environmental health issues associated with metal concentration levels in enzyme-based chemical stabilizers that are now gaining widespread application in road construction and other concrete materials. Potential ecotoxicity impacts were studied on aqueous extracts of EBCS1 and EBCS2 using two thermodynamic properties models: the Pitzer-Mayorga model (calculation of the electrolyte activity coefficients) and the Millero-Pitzer model (calculation of the ionic activity coefficients). Results showed not only high concentrations of a variety of metal ions and inorganic anions, but also a significant variation between two chemical stabilizing mixtures. The mixture (EBCS2) with the lower pH value was richer in all the cationic and anionic species than (EBCS1). Sulfate (SO(2-)(4)) concentrations were found to be higher in EBCS2 than in EBCS1. There was no correlation between electrolyte activity and presence of the ionic species, which may be linked to a possible high ionic environmental activity. The concentrations of trace metals found (Mn, Fe, and Ni) were low compared to those of earth metals (Ba, Ca, K, and Mg). The metal concentrations were higher in EBCS1 than in EBCS2. Data suggest that specific studies are needed to establish "zero" permissible metal ecotoxicity values for elements and anions in any such strong polyelectrolytic enzyme-based chemical stabilizers.
Measuring and predicting Delta(vap)H298 values of ionic liquids.
Deyko, Alexey; Lovelock, Kevin R J; Corfield, Jo-Anne; Taylor, Alasdair W; Gooden, Peter N; Villar-Garcia, Ignacio J; Licence, Peter; Jones, Robert G; Krasovskiy, Vladimir G; Chernikova, Elena A; Kustov, Leonid M
2009-10-14
We report the enthalpies of vaporisation (measured using temperature programmed desorption by mass spectrometry) of twelve ionic liquids (ILs), covering four imidazolium, [C(m)C(n)Im]+, five pyrrolidinium, [C(n)C(m)Pyrr]+, two pyridinium, [C(n)Py]+, and a dication, [C3(C1Im)2]2+ based IL. These cations were paired with a range of anions: [BF4]-, [FeCl4]-, [N(CN)2]-, [PF3(C2F5)3]- ([FAP]-), [(CF3SO2)2N]- ([Tf2N]-) and [SCN]-. Using these results, plus those for a further eight imidazolium based ILs published earlier (which include the anions [CF3SO3]- ([TfO]-), [PF6]- and [EtSO4]-), we show that the enthalpies of vaporisation can be decomposed into three components. The first component is the Coulombic interaction between the ions, DeltaU(Cou,R), which is a function of the IL molar volume, V(m), and a parameter R(r) which quantifies the relative change in anion-cation distance on evaporation from the liquid phase to the ion pair in the gas phase. The second and third components are the van der Waals contributions from the anion, DeltaH(vdw,A), and the cation, DeltaH(vdw,C). We derive a universal value for R(r), and individual values of DeltaH(vdw,A) and DeltaH(vdw,C) for each of the anions and cations considered in this study. Given the molar volume, it is possible to estimate the enthalpies of vaporisation of ILs composed of any combination of the ions considered here; values for fourteen ILs which have not yet been studied experimentally are given.
Shkrob, Ilya A; Marin, Timothy W
2015-11-19
Because of their extended conjugated bond network, aromatic compounds generally have higher redox stability than less saturated compounds. We conjectured that ionic liquids (ILs) consisting of aromatic heterocyclic anions (AHAs) may exhibit improved radiation and electrochemical stability. Such properties are important in applications of these ILs as diluents in radionuclide separations and electrolytes in the electric energy storage devices. In this study, we systematically examine the redox chemistry of the AHAs. Three classes of these anions have been studied: (i) simple 5-atom ring AHAs, such as the pyrazolide and triazolides, (ii) AHAs containing an adjacent benzene ring, and (iii) AHAs containing electron-withdrawing groups that were introduced to reduce their basicity and interaction with metal ions. It is shown that fragmentation in the reduced and oxidized states of these AHAs does not generally occur, and the two main products, respectively, are the H atom adduct and the imidyl radical. The latter species occurs either as an N σ-radical or as an N π-radical, depending on the length of the N-N bond, and the state that is stabilized in the solid matrix is frequently different from that having the lowest energy in the gas phase. In some instances, the formation of the sandwich π-stack dimer radical anions has been observed. For trifluoromethylated anions, H adduct formation did not occur; instead, there was facile loss of fluoride from their fluorinated groups. The latter can be problematic in nuclear separations, but beneficial in batteries. Overall, our study suggests that AHA-based ILs are viable candidates for use as radiation-exposed diluents and electrolytes.