Science.gov

Sample records for anisotropic hexahedra finite

  1. EEG source analysis of epileptiform activity using a 1mm anisotropic hexahedra finite element head model

    PubMed Central

    Rullmann, M.; Anwander, A.; Dannhauer, M.; Warfield, S.K.; Duffy, F.H.; Wolters, C.H.

    2009-01-01

    The major goal of the evaluation in presurgical epilepsy diagnosis for medically intractable patients is the precise reconstruction of the epileptogenic foci, preferably with non-invasive methods. This paper evaluates whether surface electroencephalography (EEG) source analysis based on a 1mm anisotropic finite element (FE) head model can provide additional guidance for presurgical epilepsy diagnosis and whether it is practically feasible in daily routine. A 1mm hexahedra FE volume conductor model of the patient’s head with special focus on accurately modeling the compartments skull, cerebrospinal fluid (CSF) and the anisotropic conducting brain tissues was constructed using non-linearly co-registered T1-, T2- and diffusion-tensor- magnetic resonance imaging data. The electrodes of intra-cranial EEG (iEEG) measurements were extracted from a co-registered computed tomography image. Goal function scan (GFS), minimum norm least squares (MNLS), standardized low resolution electromagnetic tomography (sLORETA) and spatio-temporal current dipole modeling inverse methods were then applied to the peak of the averaged ictal discharges EEG data. MNLS and sLORETA pointed to a single center of activity. Moving and rotating single dipole fits resulted in an explained variance of more than 97%. The non-invasive EEG source analysis methods localized at the border of the lesion and at the border of the iEEG electrodes which mainly received ictal discharges. Source orientation was towards the epileptogenic tissue. For the reconstructed superficial source, brain conductivity anisotropy and the lesion conductivity had only a minor influence, whereas a correct modeling of the highly conducting CSF compartment and the anisotropic skull was found to be important. The proposed FE forward modeling approach strongly simplifies meshing and reduces run-time (37 Milliseconds for one forward computation in the model with 3.1 Million unknowns), corroborating the practical feasibility of the

  2. Formation of pyramid elements for hexahedra to tetrahedra transitions

    SciTech Connect

    OWEN,STEVEN J.; SAIGAL,SUNIL

    2000-02-24

    New algorithms are proposed for the modification of a mixed hexahedra-tetrahedra element mesh to maintain compatibility by the insertion of pyramid elements. Several methods for generation of the pyramids are presented involving local tetrahedral transformations and/or node insertion near the hex/tet interface. Local smoothing and topological operations improve the quality of the transition region. Results show superior performance of the resulting elements in a commercial finite element code over non-conforming interface conditions.

  3. Anisotropic Hydraulic Permeability Under Finite Deformation

    PubMed Central

    Ateshian, Gerard A.; Weiss, Jeffrey A.

    2011-01-01

    The structural organization of biological tissues and cells often produces anisotropic transport properties. These tissues may also undergo large deformations under normal function, potentially inducing further anisotropy. A general framework for formulating constitutive relations for anisotropic transport properties under finite deformation is lacking in the literature. This study presents an approach based on representation theorems for symmetric tensor-valued functions and provides conditions to enforce positive semi-definiteness of the permeability or diffusivity tensor. Formulations are presented which describe materials that are orthotropic, transversely isotropic, or isotropic in the reference state, and where large strains induce greater anisotropy. Strain-induced anisotropy of the permeability of a solid-fluid mixture is illustrated for finite torsion of a cylinder subjected to axial permeation. It is shown that, in general, torsion can produce a helical flow pattern, rather than the rectilinear pattern observed when adopting a more specialized, unconditionally isotropic spatial permeability tensor commonly used in biomechanics. The general formulation presented in this study can produce both affine and non-affine reorientation of the preferred directions of material symmetry with strain, depending on the choice of material functions. This study addresses a need in the biomechanics literature by providing guidelines and formulations for anisotropic strain-dependent transport properties in porous-deformable media undergoing large deformations. PMID:21034145

  4. Finite-difference schemes for anisotropic diffusion

    SciTech Connect

    Es, Bram van; Koren, Barry; Blank, Hugo J. de

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  5. A hybrid-stress finite element for linear anisotropic elasticity

    NASA Technical Reports Server (NTRS)

    Fly, Gerald W.; Oden, J. Tinsley; Pearson, Mark L.

    1988-01-01

    Standard assumed displacement finite elements with anisotropic material properties perform poorly in complex stress fields such as combined bending and shear and combined bending and torsion. A set of three dimensional hybrid-stress brick elements were developed with fully anisotropic material properties. Both eight-node and twenty-node bricks were developed based on the symmetry group theory of Punch and Atluri. An eight-node brick was also developed using complete polynomials and stress basis functions and reducing the order of the resulting stress parameter matrix by applying equilibrium constraints and stress compatibility constraints. Here the stress compatibility constraints must be formulated assuming anisotropic material properties. The performance of these elements was examined in numerical examples covering a broad range of stress distributions. The stress predictions show significant improvement over the assumed displacement elements but the calculation time is increased.

  6. Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements

    PubMed Central

    Cuccuru, Gianmauro; Fotia, Giorgio; Maggio, Fabio; Southern, James

    2015-01-01

    We discuss the application of the spectral element method to the monodomain and bidomain equations describing propagation of cardiac action potential. Models of cardiac electrophysiology consist of a system of partial differential equations coupled with a system of ordinary differential equations representing cell membrane dynamics. The solution of these equations requires solving multiple length scales due to the ratio of advection to diffusion that varies among the different equations. High order approximation of spectral elements provides greater flexibility in resolving multiple length scales. Furthermore, spectral elements are extremely efficient to model propagation phenomena on complex shapes using fewer degrees of freedom than its finite element equivalent (for the same level of accuracy). We illustrate a fully unstructured all-hexahedra approach implementation of the method and we apply it to the solution of full 3D monodomain and bidomain test cases. We discuss some key elements of the proposed approach on some selected benchmarks and on an anatomically based whole heart human computational model. PMID:26583112

  7. Validation of a finite-element solution for electrical impedance tomography in an anisotropic medium.

    PubMed

    Abascal, Juan-Felipe P J; Arridge, Simon R; Lionheart, William R B; Bayford, Richard H; Holder, David S

    2007-07-01

    Electrical impedance tomography is an imaging method, with which volumetric images of conductivity are produced by injecting electrical current and measuring boundary voltages. It has the potential to become a portable non-invasive medical imaging technique. Until now, implementations have neglected anisotropy even though human tissues such as bone, muscle and brain white matter are markedly anisotropic. We present a numerical solution using the finite-element method that has been modified for modelling anisotropic conductive media. It was validated in an anisotropic domain against an analytical solution in an isotropic medium after the isotropic domain was diffeomorphically transformed into an anisotropic one. Convergence of the finite element to the analytical solution was verified by showing that the finite-element error norm decreased linearly related to the finite-element size, as the mesh density increased, for the simplified case of Laplace's equation in a cubic domain with a Dirichlet boundary condition.

  8. Finite-element modeling of layered, anisotropic composite plates and shells: A review of recent research

    NASA Technical Reports Server (NTRS)

    Reddy, J. N.

    1981-01-01

    Finite element papers published in the open literature on the static bending and free vibration of layered, anisotropic, and composite plates and shells are reviewed. A literature review of large-deflection bending and large-amplitude free oscillations of layered composite plates and shells is also presented. Non-finite element literature is cited for continuity of the discussion.

  9. A hybrid-stress finite element approach for stress and vibration analysis in linear anisotropic elasticity

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley; Fly, Gerald W.; Mahadevan, L.

    1987-01-01

    A hybrid stress finite element method is developed for accurate stress and vibration analysis of problems in linear anisotropic elasticity. A modified form of the Hellinger-Reissner principle is formulated for dynamic analysis and an algorithm for the determination of the anisotropic elastic and compliance constants from experimental data is developed. These schemes were implemented in a finite element program for static and dynamic analysis of linear anisotropic two dimensional elasticity problems. Specific numerical examples are considered to verify the accuracy of the hybrid stress approach and compare it with that of the standard displacement method, especially for highly anisotropic materials. It is that the hybrid stress approach gives much better results than the displacement method. Preliminary work on extensions of this method to three dimensional elasticity is discussed, and the stress shape functions necessary for this extension are included.

  10. Modeling anisotropic flow and heat transport by using mimetic finite differences

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Büsing, Henrik

    2016-08-01

    Modeling anisotropic flow in porous or fractured rock often assumes that the permeability tensor is diagonal, which means that its principle directions are always aligned with the coordinate axes. However, the permeability of a heterogeneous anisotropic medium usually is a full tensor. For overcoming this shortcoming, we use the mimetic finite difference method (mFD) for discretizing the flow equation in a hydrothermal reservoir simulation code, SHEMAT-Suite, which couples this equation with the heat transport equation. We verify SHEMAT-Suite-mFD against analytical solutions of pumping tests, using both diagonal and full permeability tensors. We compare results from three benchmarks for testing the capability of SHEMAT-Suite-mFD to handle anisotropic flow in porous and fractured media. The benchmarks include coupled flow and heat transport problems, three-dimensional problems and flow through a fractured porous medium with full equivalent permeability tensor. It shows firstly that the mimetic finite difference method can model anisotropic flow both in porous and in fractured media accurately and its results are better than those obtained by the multi-point flux approximation method in highly anisotropic models, secondly that the asymmetric permeability tensor can be included and leads to improved results compared the symmetric permeability tensor in the equivalent fracture models, and thirdly that the method can be easily implemented in existing finite volume or finite difference codes, which has been demonstrated successfully for SHEMAT-Suite.

  11. Consistent finite-element approach to Brownian polymer dynamics with anisotropic friction.

    PubMed

    Cyron, Christian J; Wall, Wolfgang A

    2010-12-01

    In the last decades simulation tools for Brownian dynamics of polymers have attracted more and more interest. Here we present a mathematically consistent finite element approach to the simulation of Brownian polymer dynamics. The viscous damping forces are accounted for by an anisotropic friction model. By comparison with theoretical predictions and experimental data we demonstrate the reliability and efficiency of this method. PMID:21230752

  12. Finite-Temperature Entanglement Dynamics in an Anisotropic Two-Qubit Heisenberg Spin Chain

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Shan, Chuanjia; Li, Jinxing; Liu, Tangkun; Huang, Yanxia; Li, Hong

    2010-07-01

    This paper investigates the entanglement dynamics of an anisotropic two-qubit Heisenberg spin chain in the presence of decoherence at finite temperature. The time evolution of the concurrence is studied for different initial Werner states. The influences of initial purity, finite temperature, spontaneous decay and Hamiltonian on the entanglement evolution are analyzed in detail. Our calculations show that the finite temperature restricts the evolution of the entanglement all the time when the Hamiltonian improves it and the spontaneous decay to the reservoirs can produce quantum entanglement with the anisotropy of spin-spin interaction. Finally, the steady-state concurrence which may remain non-zero for low temperature is also given.

  13. Finite strip analysis of anisotropic laminated composite plates using higher-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Akhras, G.; Cheung, M. S.; Li, W.

    1994-08-01

    In the present study, a finite strip method for the elastic analysis of anisotropic laminated composite plates is developed according to higher-order shear deformation theory. This theory accounts for the parabolic distribution of the transverse shear strains through the thickness of the plate and for zero transverse shear stresses on the plate surfaces. In comparison with the finite strip method based on first-order shear deformation theory, the present method gives improved results while using approximately the same number of degrees of freedom. It also eliminates the need for shear correction factors in calculating the transverse shear stiffness.

  14. Modeling Optical Properties of Mineral Aerosol Particles by Using Nonsymmetric Hexahedra

    NASA Technical Reports Server (NTRS)

    Bi, Lei; Yang, Ping; Kattawar, George W.; Kahn, Ralph

    2010-01-01

    We explore the use of nonsymmetric geometries to simulate the single-scattering properties of airborne dust particles with complicated morphologies. Specifically, the shapes of irregular dust particles are assumed to be nonsymmetric hexahedra defined by using the Monte Carlo method. A combination of the discrete dipole approximation method and an improved geometric optics method is employed to compute the single-scattering properties of dust particles for size parameters ranging from 0.5 to 3000. The primary optical effect of eliminating the geometric symmetry of regular hexahedra is to smooth the scattering features in the phase function and to decrease the backscatter. The optical properties of the nonsymmetric hexahedra are used to mimic the laboratory measurements. It is demonstrated that a relatively close agreement can be achieved by using only one shape of nonsymmetric hexahedra. The agreement between the theoretical results and their measurement counterparts can be further improved by using a mixture of nonsymmetric hexahedra. It is also shown that the hexahedron model is much more appropriate than the "equivalent sphere" model for simulating the optical properties of dust particles, particularly, in the case of the elements of the phase matrix that associated with the polarization state of scattered light.

  15. Finite Element Analysis of Ultrasonic Phased Array Inspections on Anisotropic Welds

    NASA Astrophysics Data System (ADS)

    Harvey, G.; Tweedie, A.; Carpentier, C.; Reynolds, P.

    2011-06-01

    This paper describes a theoretical investigation into the behaviour of anisotropic welds under phased array inspection procedures using a 128 element linear array. Two advanced inspection techniques are simulated, and their suitability compared. A finite element (FE) model, configured in PZFlex, is used to represent both the variations in crystal orientation found in a typical anisotropic weld, and also the linear array configuration. Firstly, through transmission spectra of the weld are used to determine the optimum operating frequency and configuration of the array in order to detect a 3 mm SDH in the weld. Next, the Full Matrix Capture (FMC) technique is simulated, and an image of the weld constructed using the Total Focussing Method (TFM). This is accomplished by transmitting on each element sequentially, while receiving on the remaining 127 elements. This approach provides spatial averaging over the weld area, reducing the distortion caused by the anisotropic media. Finally, Time Reversal Acoustic (TRA) methods were employed to coherently focus the array at the defect and compensate for the elemental timing variations caused by the complex medium. Results illustrate the potential for inspecting anisotropic welds when using correctly designed arrays and implementing novel inspection procedures.

  16. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties

  17. Development of the Finite Difference Time Domain Method on a Lebedev Grid for Anisotropic Materials

    NASA Astrophysics Data System (ADS)

    Nauta, Marcel D.

    The finite-difference time-domain (FDTD) method is derived on a Lebedev grid, instead of the standard Yee grid, to better represent the constitutive relations in anisotropic materials. The Lebedev grid extends the Yee grid by approximating Maxwell's equations with tensor constitutive relations using only central differences. A dispersion relation with stability criteria is derived and it is proven that the Lebedev grid has a consistent calculus. An integral derivation of the update equations illustrates how to appropriately excite the grid. This approach is also used to derive the update equations at planar material interfaces and domain edge PEC. Lebedev grid results are compared with analytical and Yee grid solutions using an equal memory comparison. Numerical results show that the Lebedev grid suffers greater dispersion error but better represents material interfaces. Focus is given to generalizing the concepts that make the Yee grid robust for isotropic materials. Keywords: FDTD, anisotropic materials, Lebedev grid, collocated grids.

  18. Adaptive finite element modeling of direct current resistivity in 2-D generally anisotropic structures

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Li, Yuguo; Liu, Ying

    2016-07-01

    In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.

  19. Repulsion of dispersion curves of quasidipole modes of anisotropic waveguides studied by finite element method.

    PubMed

    Zharnikov, T V; Syresin, D E

    2015-06-01

    In this letter repulsion of phase-velocity dispersion curves of quasidipole eigenmodes of waveguides with non-circular cross section in non-axisymmetric anisotropic medium is studied by the semi-analytical finite element technique. Borehole waveguide is used as an example. The modeling helps in clarifying the nature of this phenomenon, which is accompanied by the rotation of the orientation of two quasidipole modes with frequency and by the exchange of their behavior at near-crossover point. The dispersion curves cross only in the presence of exact symmetry. Such a scenario is the alternative to the stress-induced anisotropy crossing of dispersion curves. PMID:26093446

  20. Magnetic Kronig-Penney-type graphene superlattices: finite energy Dirac points with anisotropic velocity renormalization.

    PubMed

    Qui Le, V; Huy Pham, C; Lien Nguyen, V

    2012-08-29

    We study the energy band structure of magnetic graphene superlattices with delta-function magnetic barriers and zero average magnetic field. The dispersion relation obtained using the T-matrix approach shows the emergence of an infinite number of Dirac-like points at finite energies, while the original Dirac point is still located at the same place as that for pristine graphene. The carrier group velocity at the original Dirac point is isotropically renormalized, but at finite energy Dirac points it is generally anisotropic. An asymmetry in the width between the wells and the barriers of the periodic potential induces a shift of the original Dirac point in the zero-energy plane, keeping the velocity renormalization isotropic.

  1. Anisotropic constitutive model for nickel base single crystal alloys: Development and finite element implementation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.

    1986-01-01

    A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.

  2. Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis.

    PubMed

    Abbasi, Mostafa; Barakat, Mohammed S; Vahidkhah, Koohyar; Azadani, Ali N

    2016-09-01

    Computational modeling has an important role in design and assessment of medical devices. In computational simulations, considering accurate constitutive models is of the utmost importance to capture mechanical response of soft tissue and biomedical materials under physiological loading conditions. Lack of comprehensive three-dimensional constitutive models for soft tissue limits the effectiveness of computational modeling in research and development of medical devices. The aim of this study was to use inverse finite element (FE) analysis to determine three-dimensional mechanical properties of bovine pericardial leaflets of a surgical bioprosthesis under dynamic loading condition. Using inverse parameter estimation, 3D anisotropic Fung model parameters were estimated for the leaflets. The FE simulations were validated using experimental in-vitro measurements, and the impact of different constitutive material models was investigated on leaflet stress distribution. The results of this study showed that the anisotropic Fung model accurately simulated the leaflet deformation and coaptation during valve opening and closing. During systole, the peak stress reached to 3.17MPa at the leaflet boundary while during diastole high stress regions were primarily observed in the commissures with the peak stress of 1.17MPa. In addition, the Rayleigh damping coefficient that was introduced to FE simulations to simulate viscous damping effects of surrounding fluid was determined. PMID:27173827

  3. Three-dimensional DC anisotropic resistivity modelling using finite elements on unstructured grids

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Wu, Xiaoping; Spitzer, Klaus

    2013-05-01

    We present a newly developed finite element program for direct current resistivity modelling, which can handle arbitrary 3-D electric anisotropy. For this purpose, it is of particular importance to construct appropriate grids because artificial anisotropy can be introduced through preferential directions associated with regular grid structures. Therefore, results from different kinds of grids (structured hexahedral, structured tetrahedral and unstructured tetrahedral) are checked for symmetry. After a series of comparisons, we conclude that unstructured tetrahedral grids generally perform best. In addition, this grid type allows for local refinement, which greatly reduces the number of nodes and, consequently, lowers the computational costs significantly. A singularity removal technique is applied, which improves the accuracy considerably. The resulting system of linear equations is solved by a conjugate gradient method with a symmetric successive overrelaxation pre-conditioner. Comparisons with analytical solutions prove the code to be highly accurate for both isotropic and anisotropic models. More complex models are investigated to analyse the response of anisotropic structures, for example, in form of the P2 tensor invariant. Finally, we apply the code to a hot dry rock scenario and show that anisotropy reveals significant information on the hydraulically induced fracture system.

  4. Domain decomposition method for nonconforming finite element approximations of anisotropic elliptic problems on nonmatching grids

    SciTech Connect

    Maliassov, S.Y.

    1996-12-31

    An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.

  5. Finite-element analysis of vibration and flutter of cantilever anisotropic plates

    NASA Technical Reports Server (NTRS)

    Rossettos, J. N.; Tong, P.

    1974-01-01

    The hybrid stress finite element method is used to study the effects of filament angle and orthotropicity parameter on the vibration and flutter characteristics of cantilevered anisotropic plates. The results indicate a generally strong lack of monotonic dependence on filament angle. Also, the natural frequency in certain cases involving the first few modes, can become relatively insensitive to both filament angle and orthotropicity parameter for a range of filament angle beyond 70 deg. Values of critical dynamic pressure are obtained by a modal approach, in which the mode shapes are obtained by the hybrid stress method. Convergence of the modal method is rather rapid for the configurations analyzed, and a comparison of the method with an exact solution for the case of an isotropic simply supported plate shows that use of six modes gives excellent agreement.

  6. Bending and stretching finite element analysis of anisotropic viscoelastic composite plates

    NASA Technical Reports Server (NTRS)

    Hilton, Harry H.; Yi, Sung

    1990-01-01

    Finite element algorithms have been developed to analyze linear anisotropic viscoelastic plates, with or without holes, subjected to mechanical (bending, tension), temperature, and hygrothermal loadings. The analysis is based on Laplace transforms rather than direct time integrations in order to improve the accuracy of the results and save on extensive computational time and storage. The time dependent displacement fields in the transverse direction for the cross ply and angle ply laminates are calculated and the stacking sequence effects of the laminates are discussed in detail. Creep responses for the plates with or without a circular hole are also studied. The numerical results compare favorably with analytical solutions, i.e. within 1.8 percent for bending and 10(exp -3) 3 percent for tension. The tension results of the present method are compared with those using the direct time integration scheme.

  7. AC losses in a finite Z stack using an anisotropic homogeneous-medium approximation

    NASA Astrophysics Data System (ADS)

    Clem, John R.; Claassen, J. H.; Mawatari, Yasunori

    2007-12-01

    A finite stack of thin superconducting tapes, all carrying a fixed current I, can be approximated by an anisotropic superconducting bar with critical current density Jc = Ic/2aD, where Ic is the critical current of each tape, 2a is the tape width, and D is the tape-to-tape periodicity. The current density J must obey the constraint \\int J\\, \\mathrm {d}x=I/D , where the tapes lie parallel to the x axis and are stacked along the z axis. We suppose that Jc is independent of field (Bean approximation) and look for a solution to the critical state for arbitrary height 2b of the stack. For c<|x|anisotropic homogeneous-medium approximation gives a reasonably accurate estimate of the ac losses in a finite Z stack. The results for a Z stack can be used to calculate the transport losses in a pancake coil wound with superconducting tape.

  8. A computer program for anisotropic shallow-shell finite elements using symbolic integration

    NASA Technical Reports Server (NTRS)

    Andersen, C. M.; Bowen, J. T.

    1976-01-01

    A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language.

  9. Finite-size effects for anisotropic 2D Ising model with various boundary conditions

    NASA Astrophysics Data System (ADS)

    Izmailian, N. Sh

    2012-12-01

    We analyze the exact partition function of the anisotropic Ising model on finite M × N rectangular lattices under four different boundary conditions (periodic-periodic (pp), periodic-antiperiodic (pa), antiperiodic-periodic (ap) and antiperiodic-antiperiodic (aa)) obtained by Kaufman (1949 Phys. Rev. 76 1232), Wu and Hu (2002 J. Phys. A: Math. Gen. 35 5189) and Kastening (2002 Phys. Rev. E 66 057103)). We express the partition functions in terms of the partition functions Zα, β(J, k) with (α, β) = (0, 0), (1/2, 0), (0, 1/2) and (1/2, 1/2), J is an interaction coupling and k is an anisotropy parameter. Based on such expressions, we then extend the algorithm of Ivashkevich et al (2002 J. Phys. A: Math. Gen. 35 5543) to derive the exact asymptotic expansion of the logarithm of the partition function for all boundary conditions mentioned above. Our result is f = fbulk + ∑∞p = 0fp(ρ, k)S-p - 1, where f is the free energy of the system, fbulk is the free energy of the bulk, S = MN is the area of the lattice and ρ = M/N is the aspect ratio. All coefficients in this expansion are expressed through analytical functions. We have introduced the effective aspect ratio ρeff = ρ/sinh 2Jc and show that for pp and aa boundary conditions all finite size correction terms are invariant under the transformation ρeff → 1/ρeff. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.

  10. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    NASA Astrophysics Data System (ADS)

    Petersson, N. Anders; Sjögreen, Björn

    2015-10-01

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The proposed method discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. We also generalize and evaluate the super-grid far-field technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. As a result, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.

  11. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    DOE PAGESBeta

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less

  12. Wave propagation in anisotropic elastic materials and curvilinear coordinates using a summation-by-parts finite difference method

    SciTech Connect

    Petersson, N. Anders; Sjogreen, Bjorn

    2015-07-20

    We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-field technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.

  13. 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method

    NASA Astrophysics Data System (ADS)

    Cai, Hongzhu; Xiong, Bin; Han, Muran; Zhdanov, Michael

    2014-12-01

    This paper presents a linear edge-based finite element method for numerical modeling of 3D controlled-source electromagnetic data in an anisotropic conductive medium. We use a nonuniform rectangular mesh in order to capture the rapid change of diffusive electromagnetic field within the regions of anomalous conductivity and close to the location of the source. In order to avoid the source singularity, we solve Maxwell's equation with respect to anomalous electric field. The nonuniform rectangular mesh can be transformed to hexahedral mesh in order to simulate the bathymetry effect. The sparse system of finite element equations is solved using a quasi-minimum residual method with a Jacobian preconditioner. We have applied the developed algorithm to compute a typical MCSEM response over a 3D model of a hydrocarbon reservoir located in both isotropic and anisotropic mediums. The modeling results are in a good agreement with the solutions obtained by the integral equation method.

  14. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    PubMed

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented.

  15. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    SciTech Connect

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  16. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    SciTech Connect

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-08-15

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  17. Generalized multiscale finite-element method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    DOE PAGESBeta

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less

  18. On the modelling of complex kinematic hardening and nonquadratic anisotropic yield criteria at finite strains: application to sheet metal forming

    NASA Astrophysics Data System (ADS)

    Grilo, Tiago J.; Vladimirov, Ivaylo N.; Valente, Robertt A. F.; Reese, Stefanie

    2016-06-01

    In the present paper, a finite strain model for complex combined isotropic-kinematic hardening is presented. It accounts for finite elastic and finite plastic strains and is suitable for any anisotropic yield criterion. In order to model complex cyclic hardening phenomena, the kinematic hardening is described by several back stress components. To that end, a new procedure is proposed in which several multiplicative decompositions of the plastic part of the deformation gradient are considered. The formulation incorporates a completely general format of the yield function, which means that any yield function can by employed by following a procedure that ensures the principle of material frame indifference. The constitutive equations are derived in a thermodynamically consistent way and numerically integrated by means of a backward-Euler algorithm based on the exponential map. The performance of the constitutive model is assessed via numerical simulations of industry-relevant sheet metal forming processes (U-channel forming and draw/re-draw of a panel benchmarks), the results of which are compared to experimental data. The comparison between numerical and experimental results shows that the use of multiple back stress components is very advantageous in the description of springback. This holds in particular if one carries out a comparison with the results of using only one component. Moreover, the numerically obtained results are in excellent agreement with the experimental data.

  19. Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response.

    PubMed

    Carnelli, Davide; Lucchini, Riccardo; Ponzoni, Matteo; Contro, Roberto; Vena, Pasquale

    2011-07-01

    Anisotropy is one of the most peculiar aspects of cortical bone mechanical behaviour, and the numerical approach can be successfully used to investigate aspects of bone tissue mechanics that analytical methods solve in approximate way or do not cover. In this work, nanoindentation experimental tests and finite element simulations were employed to investigate the elastic-inelastic anisotropic mechanical properties of cortical bone. The model allows for anisotropic elastic and post-yield behaviour of the tissue. A tension-compression mismatch and direction-dependent yield stresses are allowed for. Indentation experiments along the axial and transverse directions were simulated with the purpose to predict the indentation moduli and hardnesses along multiple orientations. Results showed that the experimental transverse-to-axial ratio of indentation moduli, equal to 0.74, is predicted with a ∼3% discrepancy regardless the post-yield material behaviour; whereas, the transverse-to-axial hardness ratio, equal to 0.86, can be correctly simulated (discrepancy ∼6% w.r.t. the experimental results) only employing an anisotropic post-elastic constitutive model. Further, direct comparison between the experimental and simulated indentation tests evidenced a good agreement in the loading branch of the indentation curves and in the peak loads for a transverse-to-axial yield stress ratio comparable to the experimentally obtained transverse-to-axial hardness ratio. In perspective, the present work results strongly support the coupling between indentation experiments and FEM simulations to get a deeper knowledge of bone tissue mechanical behaviour at the microstructural level. The present model could be used to assess the effect of variations of constitutive parameters due to age, injury, and/or disease on bone mechanical performance in the context of indentation testing. PMID:21570077

  20. Numerical modeling of elastic waves in inhomogeneous anisotropic media using 3D-elastodynamic finite integration technique

    NASA Astrophysics Data System (ADS)

    Chinta, Prashanth K.; Mayer, K.; Langenberg, K. J.

    2012-05-01

    Nondestructive Evaluation (NDE) of elastic anisotropic media is very complex because of directional dependency of elastic stiffness tensor. Modeling of elastic waves in such materials gives us intuitive knowledge about the propagation and scattering phenomena. The wave propagation in three dimensional space in anisotropic media gives us the deep insight of the transition of the different elastic wave modes i.e. mode conversion, and scattering of these waves because of inhomogeneities present in the material. The numerical tool Three Dimensional-Elastodynamic Finite Integration Technique (3D-EFIT) has been proved to be a very efficient tool for the modeling of elastic waves in very complex geometries. The 3D-EFIT is validated using the analytical approach based on the Radon transform. The simulation results of 3D-EFIT applied to inhomogeneous austenitic steel welds and wood structures are presented. In the first application the geometry consists of an austenitic steel weld that joins two isotropic steel blocks. The vertical transversal isotropic (VTI) austenitic steel is used. The convolutional perfectly matched layers are applied at the boundaries that are supported by isotropic steel. In the second application the wave propagation in the orthotropic wooden structure with an air cavity inside is investigated. The wave propagation results are illustrated using time domain elastic wave snapshots.

  1. Finite Element Simulation of Sheet Metal Forming Using Anisotropic Strain-Rate Potentials

    NASA Astrophysics Data System (ADS)

    Rabahallah, Meziane; Balan, Tudor; Bouvier, Salima; Bacroix, Brigitte; Teodosiu, Cristian

    2007-05-01

    In continuum mechanics, plastic anisotropy is described using anisotropic stress potentials or, alternatively, strain-rate potentials. In this work, a stress update algorithm is developed for this later case. The implicit, backward Euler method is adopted. A specific numerical treatment is required to deal with the plasticity criterion, which is not defined explicitly. Also, a sub-stepping procedure is adopted in order to deal with the strong nonlinearity of the yield surfaces when applied to FCC materials. The resulting algorithm is implemented in the static implicit version of the Abaqus FE code. Several recent plastic potentials have been implemented in this framework and their parameters identified for a number of BCC and FCC materials. Numerical simulations of a cup drawing process are performed in order to address the robustness of the implementation and the ability of these potentials to predict e.g. earing for materials with different anisotropy.

  2. A finite-difference program for stresses in anisotropic, layered plates in bending

    NASA Technical Reports Server (NTRS)

    Salamon, N. J.

    1975-01-01

    The interlaminar stresses induced in a layered laminate that is bent into a cylindrical surface are studied. The laminate is modeled as a continuum, and the resulting elasticity equations are solved using the finite difference method. The report sets forth the mathematical framework, presents some preliminary results, and provides a listing and explanation of the computer program. Significant among the results are apparent symmetry relationships that will reduce the numerical size of certain problems and an interlaminar stress behavior having a sharp rise at the free edges.

  3. Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity.

    PubMed

    Lee, Won Hee; Deng, Zhi-De; Kim, Tae-Seong; Laine, Andrew F; Lisanby, Sarah H; Peterchev, Angel V

    2012-02-01

    We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5-2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation paradigms

  4. Flow to a well of finite diameter in a homogeneous, anisotropic water table aquifer

    USGS Publications Warehouse

    Moench, A.F.

    1997-01-01

    A Laplace transform solution is presented for the problem of flow to a partially penetrating well of finite diameter in a slightly compressible water table aquifer. The solution, which allows for evaluation of both pumped well and observation piezometer data, accounts for effects of well bore storage and skin and allows for the noninstantaneous release of water from the unsaturated zone. For instantaneous release of water from the unsaturated zone the solution approaches the line source solution derived by Neuman as the diameter of the pumped well approaches zero. Delayed piezometer response, which is significant during times of rapidly changing hydraulic head, is included in the theoretical treatment and shown to be an important factor in accurate evaluation of specific storage. By means of a hypothetical field example it is demonstrated that evaluations of specific storage (S(s)) using classical line source solutions may yield values of S(s) that are overestimated by a factor of 100 or more, depending upon the location of the observation piezometers and whether effects of delayed piezometer response are included in the analysis. Theoretical responses obtained with the proposed model are used to suggest methods for evaluating specific storage.

  5. Influence of anisotropic conductivity in the skull and white matter on transcranial direct current stimulation via an anatomically realistic finite element head model

    NASA Astrophysics Data System (ADS)

    Suh, Hyun Sang; Lee, Won Hee; Kim, Tae-Seong

    2012-11-01

    To establish safe and efficient transcranial direct current stimulation (tDCS), it is of particular importance to understand the electrical effects of tDCS in the brain. Since the current density (CD) and electric field (EF) in the brain generated by tDCS depend on various factors including complex head geometries and electrical tissue properties, in this work, we investigated the influence of anisotropic conductivity in the skull and white matter (WM) on tDCS via a 3D anatomically realistic finite element head model. We systematically incorporated various anisotropic conductivity ratios into the skull and WM. The effects of anisotropic tissue conductivity on the CD and EF were subsequently assessed through comparisons to the conventional isotropic solutions. Our results show that the anisotropic skull conductivity significantly affects the CD and EF distribution: there is a significant reduction in the ratio of the target versus non-target total CD and EF on the order of 12-14%. In contrast, the WM anisotropy does not significantly influence the CD and EF on the targeted cortical surface, only on the order of 1-3%. However, the WM anisotropy highly alters the spatial distribution of both the CD and EF inside the brain. This study shows that it is critical to incorporate anisotropic conductivities in planning of tDCS for improved efficacy and safety.

  6. Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: Influence of white matter anisotropic conductivity

    PubMed Central

    Lee, Won Hee; Deng, Zhi-De; Kim, Tae-Seong; Laine, Andrew F.; Lisanby, Sarah H.; Peterchev, Angel V.

    2012-01-01

    We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5–2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation

  7. A 3D finite element-based model order reduction method for parametric resonance and whirling analysis of anisotropic rotor-bearing systems

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Wang, Yu; Zi, Yanyang; He, Zhengjia

    2015-12-01

    A generalized and efficient model for rotating anisotropic rotor-bearing systems is presented in this paper with full considerations of the system's anisotropy in stiffness, inertia and damping. Based on the 3D finite element model and the model order reduction method, the effects of anisotropy in shaft and bearings on the forced response and whirling of anisotropic rotor-bearing systems are systematically investigated. First, the coefficients of journal bearings are transformed from the fixed frame to the rotating one. Due to the anisotropy in shaft and bearings, the motion is governed by differential equations with periodically time-variant coefficients. Then, a free-interface complex component mode synthesis (CMS) method is employed to generate efficient reduced-order models (ROM) for the periodically time-variant systems. In order to solve the obtained equations, a variant of Hill's method for systems with multiple harmonic excitations is developed. Four dimensionless parameters are defined to quantify the types and levels of anisotropy of bearings. Finally, the effects of the four types of anisotropy on the forced response and whirl orbits are studied. Numerical results show that the anisotropy of bearings in stiffness splits the sole resonant peak into two isolated ones, but the anisotropy of bearings in damping coefficients mainly affect the response amplitudes. Moreover, the whirl orbits become much more complex when the shaft and bearings are both anisotropic. In addition, the cross-coupling stiffness coefficients of bearings significantly affect the dynamic behaviors of the systems and cannot be neglected, though they are often much smaller than the principle stiffness terms.

  8. A 3D Finite-Difference BiCG Iterative Solver with the Fourier-Jacobi Preconditioner for the Anisotropic EIT/EEG Forward Problem

    PubMed Central

    Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D.

    2014-01-01

    The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique. PMID:24527060

  9. A 3D finite-difference BiCG iterative solver with the Fourier-Jacobi preconditioner for the anisotropic EIT/EEG forward problem.

    PubMed

    Turovets, Sergei; Volkov, Vasily; Zherdetsky, Aleksej; Prakonina, Alena; Malony, Allen D

    2014-01-01

    The Electrical Impedance Tomography (EIT) and electroencephalography (EEG) forward problems in anisotropic inhomogeneous media like the human head belongs to the class of the three-dimensional boundary value problems for elliptic equations with mixed derivatives. We introduce and explore the performance of several new promising numerical techniques, which seem to be more suitable for solving these problems. The proposed numerical schemes combine the fictitious domain approach together with the finite-difference method and the optimally preconditioned Conjugate Gradient- (CG-) type iterative method for treatment of the discrete model. The numerical scheme includes the standard operations of summation and multiplication of sparse matrices and vector, as well as FFT, making it easy to implement and eligible for the effective parallel implementation. Some typical use cases for the EIT/EEG problems are considered demonstrating high efficiency of the proposed numerical technique. PMID:24527060

  10. Dynamics of non-planar vortices in the classical 2D anisotropic heisenberg model at finite temperatures

    NASA Astrophysics Data System (ADS)

    Kamppeter, T.; Mertens, F. G.; Sánchez, Angel; Gronbech-Jensen, N.; Bishop, A. R.; Dominguez-Adame, F.

    The 2-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry bears non-planar vortices which exhibit a localized structure of the z-components of the spins around the vortex center. In order to study the dynamics of these vortices under thermal fluctuations we use the Landau-Lifshitz equation and add white noise and Gilbert damping. Using a collective variable theory we derive an equation of motion with stochastic forces which are shown to represent white noise with an effective diffusion constant. We compare the results with Langevin dynamics simulations for the Landau-Lifshitz equation and find three temperature regimes: For low temperatures the dynamics is described by a 3rd-order equation of motion, for intermediate temperatures by a 1st-order equation. For higher temperatures, but still below the Kosterlitz-Thouless transition temperature, the spontaneous appearance of vortex-antivortex pairs does not allow a single-particle description.

  11. An efficient model to predict guided wave radiation by finite-sized sources in multilayered anisotropic plates with account of caustics

    NASA Astrophysics Data System (ADS)

    Stévenin, M.; Lhémery, A.; Grondel, S.

    2016-01-01

    Elastic guided waves (GW) are used in various non-destructive testing (NDT) methods to inspect plate-like structures, generated by finite-sized transducers. Thanks to GW long range propagation, using a few transducers at permanent positions can provide a full coverage of the plate. Transducer diffraction effects take place, leading to complex radiated fields. Optimizing transducers positioning makes it necessary to accurately predict the GW field radiated by a transducer. Fraunhofer-like approximations applied to GW in isotropic homogeneous plates lead to fast and accurate field computation but can fail when applied to multi-layered anisotropic composite plates, as shown by some examples given. Here, a model is proposed for composite plates, based on the computation of the approximate Green's tensor describing modal propagation from a source point, with account of caustics typically seen when strong anisotropy is concerned. Modal solutions are otherwise obtained by the Semi-Analytic Finite Element method. Transducer diffraction effects are accounted for by means of an angular integration over the transducer surface as seen from the calculation point, that is, over energy paths involved, which are mode-dependent. The model is validated by comparing its predictions with those computed by means of a full convolution integration of the Green's tensor with the source over transducer surface. Examples given concern disk and rectangular shaped transducers commonly used in NDT.

  12. A weighted reverse Cuthill-McKee procedure for finite element method algorithms to solve strongly anisotropic electrodynamic problems

    SciTech Connect

    Cristofolini, Andrea; Latini, Chiara; Borghi, Carlo A.

    2011-02-01

    This paper presents a technique for improving the convergence rate of a generalized minimum residual (GMRES) algorithm applied for the solution of a algebraic system produced by the discretization of an electrodynamic problem with a tensorial electrical conductivity. The electrodynamic solver considered in this work is a part of a magnetohydrodynamic (MHD) code in the low magnetic Reynolds number approximation. The code has been developed for the analysis of MHD interaction during the re-entry phase of a space vehicle. This application is a promising technique intensively investigated for the shock mitigation and the vehicle control in the higher layers of a planetary atmosphere. The medium in the considered application is a low density plasma, characterized by a tensorial conductivity. This is a result of the behavior of the free electric charges, which tend to drift in a direction perpendicular both to the electric field and to the magnetic field. In the given approximation, the electrodynamics is described by an elliptical partial differential equation, which is solved by means of a finite element approach. The linear system obtained by discretizing the problem is solved by means of a GMRES iterative method with an incomplete LU factorization threshold preconditioning. The convergence of the solver appears to be strongly affected by the tensorial characteristic of the conductivity. In order to deal with this feature, the bandwidth reduction in the coefficient matrix is considered and a novel technique is proposed and discussed. First, the standard reverse Cuthill-McKee (RCM) procedure has been applied to the problem. Then a modification of the RCM procedure (the weighted RCM procedure, WRCM) has been developed. In the last approach, the reordering is performed taking into account the relation between the mesh geometry and the magnetic field direction. In order to investigate the effectiveness of the methods, two cases are considered. The RCM and WRCM procedures

  13. Anisotropic resistivity tomography

    NASA Astrophysics Data System (ADS)

    Herwanger, J. V.; Pain, C. C.; Binley, A.; de Oliveira, C. R. E.; Worthington, M. H.

    2004-08-01

    Geophysical tomographic techniques have the potential to remotely detect and characterize geological features, such as fractures and spatially varying lithologies, by their response to signals passed through these features. Anisotropic behaviour in many geological materials necessitates the generalization of tomographic methods to include anisotropic material properties in order to attain high-quality images of the subsurface. In this paper, we present a finite element (FE) based direct-current electrical inversion method to reconstruct the conductivity tensor at each node point of a FE mesh from electrical resistance measurements. The inverse problem is formulated as a functional optimization and the non-uniqueness of the electrical inverse problem is overcome by adding penalty terms for structure and anisotropy. We use a modified Levenberg-Marquardt method for the functional optimization and the resulting set of linear equation is solved using pre-conditioned conjugate gradients. The method is tested using both synthetic and field experiments in cross-well geometry. The acquisition geometry for both experiments uses a cross-well experiment at a hard-rock test site in Cornwall, southwest England. Two wells, spaced at 25.7 m, were equipped with electrodes at a 1 m spacing at depths from 21-108 m and data were gathered in pole-pole geometry. The test synthetic model consists of a strongly anisotropic and conductive body underlain by an isotropic resistive formation. Beneath the resistive formation, the model comprises a moderately anisotropic and moderately conductive half-space, intersected by an isotropic conductive layer. This model geometry was derived from the interpretation of a seismic tomogram and available geological logs and the conductivity values are based on observed conductivities. We use the test model to confirm the ability of the inversion scheme to recover the (known) true model. We find that all key features of the model are recovered. However

  14. Anisotropic universe with anisotropic sources

    SciTech Connect

    Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha E-mail: sukanta@iiserb.ac.in E-mail: snigdha@iiserb.ac.in

    2013-12-01

    We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.

  15. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent.

    PubMed

    Jacobs, Nathan T; Cortes, Daniel H; Peloquin, John M; Vresilovic, Edward J; Elliott, Dawn M

    2014-08-22

    Finite element (FE) models are advantageous in the study of intervertebral disc mechanics as the stress-strain distributions can be determined throughout the tissue and the applied loading and material properties can be controlled and modified. However, the complicated nature of the disc presents a challenge in developing an accurate and predictive disc model, which has led to limitations in FE geometry, material constitutive models and properties, and model validation. The objective of this study was to develop a new FE model of the intervertebral disc, to validate the model's nonlinear and time-dependent responses without tuning or calibration, and to evaluate the effect of changes in nucleus pulposus (NP), cartilaginous endplate (CEP), and annulus fibrosus (AF) material properties on the disc mechanical response. The new FE disc model utilized an analytically-based geometry. The model was created from the mean shape of human L4/L5 discs, measured from high-resolution 3D MR images and averaged using signed distance functions. Structural hyperelastic constitutive models were used in conjunction with biphasic-swelling theory to obtain material properties from recent tissue tests in confined compression and uniaxial tension. The FE disc model predictions fit within the experimental range (mean ± 95% confidence interval) of the disc's nonlinear response for compressive slow loading ramp, creep, and stress-relaxation simulations. Changes in NP and CEP properties affected the neutral-zone displacement but had little effect on the final stiffness during slow-ramp compression loading. These results highlight the need to validate FE models using the disc's full nonlinear response in multiple loading scenarios.

  16. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent.

    PubMed

    Jacobs, Nathan T; Cortes, Daniel H; Peloquin, John M; Vresilovic, Edward J; Elliott, Dawn M

    2014-08-22

    Finite element (FE) models are advantageous in the study of intervertebral disc mechanics as the stress-strain distributions can be determined throughout the tissue and the applied loading and material properties can be controlled and modified. However, the complicated nature of the disc presents a challenge in developing an accurate and predictive disc model, which has led to limitations in FE geometry, material constitutive models and properties, and model validation. The objective of this study was to develop a new FE model of the intervertebral disc, to validate the model's nonlinear and time-dependent responses without tuning or calibration, and to evaluate the effect of changes in nucleus pulposus (NP), cartilaginous endplate (CEP), and annulus fibrosus (AF) material properties on the disc mechanical response. The new FE disc model utilized an analytically-based geometry. The model was created from the mean shape of human L4/L5 discs, measured from high-resolution 3D MR images and averaged using signed distance functions. Structural hyperelastic constitutive models were used in conjunction with biphasic-swelling theory to obtain material properties from recent tissue tests in confined compression and uniaxial tension. The FE disc model predictions fit within the experimental range (mean ± 95% confidence interval) of the disc's nonlinear response for compressive slow loading ramp, creep, and stress-relaxation simulations. Changes in NP and CEP properties affected the neutral-zone displacement but had little effect on the final stiffness during slow-ramp compression loading. These results highlight the need to validate FE models using the disc's full nonlinear response in multiple loading scenarios. PMID:24998992

  17. 3D unstructured mesh discontinuous finite element hydro

    SciTech Connect

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    1995-07-01

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scale projects such as ICF3D.

  18. A generalized anisotropic deformation formulation for geomaterials

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, Esteban; Knight, E. E.; Munjiza, A.; Viswanathan, H.

    2016-04-01

    In this paper, the combined finite-discrete element method (FDEM) has been applied to analyze the deformation of anisotropic geomaterials. In the most general case geomaterials are both non-homogeneous and non-isotropic. With the aim of addressing anisotropic material problems, improved 2D FDEM formulations have been developed. These formulations feature the unified hypo-hyper elastic approach combined with a multiplicative decomposition-based selective integration for volumetric and shear deformation modes. This approach is significantly different from the co-rotational formulations typically encountered in finite element codes. Unlike the co-rotational formulation, the multiplicative decomposition-based formulation naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. This approach can be implemented for a whole family of finite elements from solids to shells and membranes. This novel 2D FDEM based material formulation was designed in such a way that the anisotropic properties of the solid can be specified in a cell by cell basis, therefore enabling the user to seed these anisotropic properties following any type of spatial variation, for example, following a curvilinear path. In addition, due to the selective integration, there are no problems with volumetric or shear locking with any type of finite element employed.

  19. Anisotropic Non-Fermi Liquids

    NASA Astrophysics Data System (ADS)

    Sur, Shouvik; Lee, Sung-Sik

    We study non-Fermi liquids that arise at quantum critical points associated with spin (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the `codimensional' regularization scheme, where a one-dimensional Fermi surface is embedded in 3 - ɛ dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise at the SDW and CDW critical points. Below three dimensions, a perturbative anisotropic non-Fermi liquid state is realized at the SDW critical point, where not only time but also different spatial coordinates develop distinct anomalous dimensions. The stable non-Fermi liquid exhibits an emergent algebraic nesting as the patches of the Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of spin fluctuations disperse with different power laws in different momentum directions. In contrast, at the CDW critical point, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale.

  20. Postbuckling of laminated anisotropic panels

    NASA Technical Reports Server (NTRS)

    Jeffrey, Glenda L.

    1987-01-01

    A two-part study of the buckling and postbuckling of laminated anisotropic plates with bending-extensional coupling is presented. The first part involves the development and application of a modified Rayleigh-Ritz analysis technique. Modifications made to the classical technique can be grouped into three areas. First, known symmetries of anisotropic panels are exploited in the selection of approximation functions. Second, a reduced basis technique based on these same symmetries is applied in the linear range. Finally, geometric boundary conditions are enforced via an exterior penalty function approach, rather than relying on choice of approximation functions to satisfy these boundary conditions. Numerical results are presented for both the linear and nonlinear range, with additional studies made to determine the effect of variation in penalty parameter and number of basis vectors. In the second part, six panels possessing anisotropy and bending-extensional coupling are tested. Detailed comparisons are made between experiment and finite element results in order to gain insight into the postbuckling and failure characteristics of such panels. The panels are constructed using two different lamination sequences, and panels with three different aspect ratios were constructed for each lamination sequence.

  1. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  2. Anisotropic Damage Analysis of HY100 Steel Under Quasistatic Loading Conditions

    SciTech Connect

    Los Alamos National Laboratory

    2001-01-01

    The effect of MnS inclusion orientation on damage evolution and fracture toughness in HYlOO steel is investigated in the context of anisotropic damage modeling at the continuum level. Experimental notched-bar data sets are analyzed and modeled using finite element calculations with constitutive behavior that assumes isotropic elastoplastic behavior in conjunction with anisotropic damage.

  3. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.

  4. Second order tensor finite element

    NASA Technical Reports Server (NTRS)

    Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.

    1990-01-01

    The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.

  5. Speckle reducing anisotropic diffusion.

    PubMed

    Yu, Yongjian; Acton, Scott T

    2002-01-01

    This paper provides the derivation of speckle reducing anisotropic diffusion (SRAD), a diffusion method tailored to ultrasonic and radar imaging applications. SRAD is the edge-sensitive diffusion for speckled images, in the same way that conventional anisotropic diffusion is the edge-sensitive diffusion for images corrupted with additive noise. We first show that the Lee and Frost filters can be cast as partial differential equations, and then we derive SRAD by allowing edge-sensitive anisotropic diffusion within this context. Just as the Lee and Frost filters utilize the coefficient of variation in adaptive filtering, SRAD exploits the instantaneous coefficient of variation, which is shown to be a function of the local gradient magnitude and Laplacian operators. We validate the new algorithm using both synthetic and real linear scan ultrasonic imagery of the carotid artery. We also demonstrate the algorithm performance with real SAR data. The performance measures obtained by means of computer simulation of carotid artery images are compared with three existing speckle reduction schemes. In the presence of speckle noise, speckle reducing anisotropic diffusion excels over the traditional speckle removal filters and over the conventional anisotropic diffusion method in terms of mean preservation, variance reduction, and edge localization.

  6. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    NASA Astrophysics Data System (ADS)

    Takezawa, Akihiro; Kitamura, Mitsuru

    2014-01-01

    Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.

  7. Mixture of Anisotropic Fluids

    NASA Astrophysics Data System (ADS)

    Florkowski, W.; Maj, R.

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  8. Molecular anisotropic magnetoresistance

    NASA Astrophysics Data System (ADS)

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-12-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.

  9. Scattering and Radiation from Anisotropic, Lossy Bodies of Revolution

    NASA Technical Reports Server (NTRS)

    Epp, L.; Hoppe, D.; Chinn, G.; Lee, J.

    1994-01-01

    The scattered fields from axisymmetric problems containing lossy dielectrics and an anisotropic media characterized by a lossless permeability tensor are found by the Hybrid Symmetric Finite Element (HSFEM) method. This method, recently applied to lossless ferrite objects, is applied to a lossy dielectric sphere. Extension of this method to scattering from cylindrical horns is discussed.

  10. Anisotropic eddy viscosity models

    NASA Technical Reports Server (NTRS)

    Carati, D.; Cabot, W.

    1996-01-01

    A general discussion on the structure of the eddy viscosity tensor in anisotropic flows is presented. The systematic use of tensor symmetries and flow symmetries is shown to reduce drastically the number of independent parameters needed to describe the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for simplifying further the eddy viscosity is discussed explicitly for the axisymmetric geometry.

  11. Dynamics of Anisotropic Universes

    NASA Astrophysics Data System (ADS)

    Perez, Jérôme

    2006-11-01

    We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.

  12. Stresses in edge stiffened anisotropic sandwich plate

    NASA Astrophysics Data System (ADS)

    Rao, Koganti M.; Rao, Y. U. M.

    Hybrid-stress finite elements are used to study the static behavior of an edge stiffened anisotropic sandwich plate subjected to cylindrical bending. The stress concentration factors at the interface of core and stiffener are evaluated. The analysis of the simply-supported sandwich indicates that the state of stress at the interface of core and stiffener is increased and that the edge stiffener induces clamping conditions. The faces and stiffener at the edge are, respectively, subjected to negative and positive transverse shear, causing considerable bending action in faces about their own centroidal axis.

  13. Hydrodynamics of anisotropic quark and gluon fluids

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maj, Radoslaw; Ryblewski, Radoslaw; Strickland, Michael

    2013-03-01

    The recently developed framework of anisotropic hydrodynamics is generalized to describe the dynamics of coupled quark and gluon fluids. The quark and gluon components of the fluids are characterized by different dynamical anisotropy parameters. The dynamical equations describing such mixtures are derived from kinetic theory, with the collisional kernel treated in the relaxation-time approximation, allowing for different relaxation times for quarks and gluons. Baryon number conservation is enforced in the quark and antiquark components of the fluid, but overall parton number nonconservation is allowed in the system. The resulting equations are solved numerically in the (0+1)-dimensional boost-invariant case at zero and finite baryon density.

  14. Generalized anisotropic turbulence spectra and applications in the optical waves' propagation through anisotropic turbulence.

    PubMed

    Cui, Linyan; Xue, Bindang; Zhou, Fugen

    2015-11-16

    Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. In this work, two theoretical atmosphere refractive-index fluctuations spectral models are derived for optical waves propagating through anisotropic non-Kolmogorov atmospheric turbulence. They consider simultaneously the finite turbulence inner and outer scales and the asymmetric property of turbulence eddies in the orthogonal xy-plane throughout the path. Two anisotropy factors which parameterize the asymmetry of turbulence eddies in both horizontal and vertical directions are introduced in the orthogonal xy-plane, so that the circular symmetry assumption of turbulence eddies in the xy-plane is no longer required. Deviations from the classic 11/3 power law behavior in the spectrum model are also allowed by assuming power law value variations between 3 and 4. Based on the derived anisotropic spectral model and the Rytov approximation theory, expressions for the variance of angle of arrival (AOA) fluctuations are derived for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov turbulence. Calculations are performed to analyze the derived spectral models and the variance of AOA fluctuations.

  15. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  16. Fractures in anisotropic media

    NASA Astrophysics Data System (ADS)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  17. Tunable waveguide bends with graphene-based anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-02-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  18. Anisotropic subvoxel-smooth conduction model for bioelectromagnetism analysis

    NASA Astrophysics Data System (ADS)

    He, Zhi Zhu; Liu, Jing

    2016-01-01

    The bioelectric conduction model plays a key role in bioelectromagnetism analysis, such as solving electromagnetic forward and inverse problems. This paper is aimed to develop an anisotropic subvoxel-smooth conduction model (ASCM) to characterize the electrical conductivity tensor jump across the tissue interface, which is derived based on the interfacial continuity condition with asymptotic analysis method. This conduction model is furthermore combined with finite volume method to improve the numerical accuracy for solving electromagnetic forward problem. The performance of ASCM for electrical potential analysis is verified by comparison with analytic solution. The method is also applied to investigate the effect of anisotropic conduction on EEG analysis in a realistic human head model.

  19. Anisotropic Total Variation Filtering

    SciTech Connect

    Grasmair, Markus; Lenzen, Frank

    2010-12-15

    Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed.

  20. Anisotropic spinfoam cosmology

    NASA Astrophysics Data System (ADS)

    Rennert, Julian; Sloan, David

    2014-01-01

    The dynamics of a homogeneous, anisotropic universe are investigated within the context of spinfoam cosmology. Transition amplitudes are calculated for a graph consisting of a single node and three links—the ‘Daisy graph’—probing the behaviour a classical Bianchi I spacetime. It is shown further how the use of such single node graphs gives rise to a simplification of states such that all orders in the spin expansion can be calculated, indicating that it is the vertex expansion that contains information about quantum dynamics.

  1. Anisotropic Thermal Diffusion

    NASA Astrophysics Data System (ADS)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  2. Constraining anisotropic baryon oscillations

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; White, Martin

    2008-06-01

    We present an analysis of anisotropic baryon acoustic oscillations and elucidate how a mis-estimation of the cosmology, which leads to incorrect values of the angular diameter distance, dA, and Hubble parameter, H, manifest themselves in changes to the monopole and quadrupole power spectrum of biased tracers of the density field. Previous work has focused on the monopole power spectrum, and shown that the isotropic dilation combination dA2H-1 is robustly constrained by an overall shift in the scale of the baryon feature. We extend this by demonstrating that the quadrupole power spectrum is sensitive to an anisotropic warping mode dAH, allowing one to break the degeneracy between dA and H. We describe a method for measuring this warping, explicitly marginalizing over the form of redshift-space distortions. We verify this method on N-body simulations and estimate that dAH can be measured with a fractional accuracy of ˜(3/V)% where the survey volume is estimated in h-3Gpc3.

  3. Inhomogeneous anisotropic cosmology

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  4. Anisotropic power-law inflation

    SciTech Connect

    Kanno, Sugumi; Soda, Jiro; Watanabe, Masa-aki E-mail: jiro@tap.scphys.kyoto-u.ac.jp

    2010-12-01

    We study an inflationary scenario in supergravity model with a gauge kinetic function. We find exact anisotropic power-law inflationary solutions when both the potential function for an inflaton and the gauge kinetic function are exponential type. The dynamical system analysis tells us that the anisotropic power-law inflation is an attractor for a large parameter region.

  5. Time-independent Anisotropic Plastic Behavior by Mechanical Subelement Models

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1983-01-01

    The paper describes a procedure for modelling the anisotropic elastic-plastic behavior of metals in plane stress state by the mechanical sub-layer model. In this model the stress-strain curves along the longitudinal and transverse directions are represented by short smooth segments which are considered as piecewise linear for simplicity. The model is incorporated in a finite element analysis program which is based on the assumed stress hybrid element and the iscoplasticity-theory.

  6. Leading-order anisotropic hydrodynamics for systems with massive particles

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Ryblewski, Radoslaw; Strickland, Michael; Tinti, Leonardo

    2014-05-01

    The framework of anisotropic hydrodynamics is generalized to include finite particle masses. Two schemes are introduced and their predictions compared with exact solutions of the kinetic equation in the relaxation time approximation. The first formulation uses the zeroth and first moments of the kinetic equation, whereas the second formulation uses the first and second moments. For the case of one-dimensional boost-invariant expansion, our numerical results indicate that the second formulation yields much better agreement with the exact solutions.

  7. Anisotropic Model Colloids

    NASA Astrophysics Data System (ADS)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  8. Anisotropic Kepler and anisotropic two fixed centres problems

    NASA Astrophysics Data System (ADS)

    Maciejewski, Andrzej J.; Przybylska, Maria; Szumiński, Wojciech

    2016-09-01

    In this paper we show that the anisotropic Kepler problem is dynamically equivalent to a system of two point masses which move in perpendicular lines (or planes) and interact according to Newton's law of universal gravitation. Moreover, we prove that generalised version of anisotropic Kepler problem as well as anisotropic two centres problem are non-integrable. This was achieved thanks to investigation of differential Galois groups of variational equations along certain particular solutions. Properties of these groups yield very strong necessary integrability conditions.

  9. Optical trapping of anisotropic nanocylinder

    NASA Astrophysics Data System (ADS)

    Bareil, Paul B.; Sheng, Yunlong

    2013-09-01

    The T-matrix method with the Vector Spherical Wave Function (VSWF) expansions represents some difficulties for computing optical scattering of anisotropic particles. As the divergence of the electric field is nonzero in the anisotropic medium and the VSWFs do not satisfy the anisotropic wave equations one questioned whether the VSWFs are still a suitable basis in the anisotropic medium. We made a systematic and careful review on the vector basis functions and the VSWFs. We found that a field vector in Euclidean space can be decomposed to triplet vectors {L, M, N}, which as non-coplanar. Especially, the vector L is designed to represent non-zero divergence component of the vector solution, so that the VSWF basis is sufficiently general to represent the solutions of the anisotropic wave equation. The mathematical proof can be that when the anisotropic wave equations is solved in the Fourier space, the solution is expanded in the basis of the plan waves with angular spectrum amplitude distributions. The plane waves constitute an orthogonal and complete set for the anisotropic solutions. Furthermore, the plane waves are expanded into the VSWF basis. These two-step expansions are equivalent to the one-step direct expansion of the anisotropic solution to the VSWF basis. We used direct VSWF expansion, along with the point-matching method in the T-matrix, and applied the boundary condition to the normal components displacement field in order to compute the stress and the related forces and torques and to show the mechanism of the optical trap of the anisotropic nano-cylinders.

  10. 3D macrosegregation simulation with anisotropic remeshing

    NASA Astrophysics Data System (ADS)

    Gouttebroze, Sylvain; Bellet, Michel; Combeau, Hervé

    2007-05-01

    The article presents a three-dimensional coupled numerical solution of momentum, mass, energy and solute conservation equations, for binary alloy solidification. The interdendritic flow in the mushy zone is assumed to obey the Darcy's law. Microsegregation is governed by the lever rule, assuming local equilibrium at phase interfaces. The resulting energy and solute advection-diffusion equations are solved using the Streamline-Upwind/Petrov-Galerkin (SUPG) finite element method. A SUPG-PSPG velocity-pressure formulation is applied for the momentum equation. The full algorithm was implemented in the 3D code THERCAST, together with an anisotropic remeshing method. Two applications have been considered: a small ingot of Pb-48wt%Sn alloy and a large steel ingot. The numerical results of these two cases are presented with the evolution of temperature, liquid velocity, and solute concentration fields during solidification. To cite this article: S. Gouttebroze et al., C. R. Mecanique 335 (2007).

  11. Anisotropic inflation with general potentials

    NASA Astrophysics Data System (ADS)

    Shi, JiaMing; Huang, XiaoTian; Qiu, TaoTao

    2016-04-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  12. Standing shear waves in anisotropic viscoelastic media

    NASA Astrophysics Data System (ADS)

    Krit, T.; Golubkova, I.; Andreev, V.

    2015-10-01

    We studied standing shear waves in anisotropic resonator represented by a rectangular parallelepiped (layer) fixed without slipping between two wooden plates of finite mass. The viscoelastic layer with edges of 70 mm × 40 mm × 15 mm was made of a rubber-like polymer plastisol with rubber bands inside. The bands were placed vertical between the top and the bottom plate. Mechanical properties of the plastisol itself were carefully measured previously. It was found that plastisol shows a cubic nonlinear behavior, i.e. the stress-strain curve could be represented as: σ = μɛ + βμɛ3, where ɛ stands for shear strain and σ is an applied shear stress. The value of shear modulus μ depends on frequency and was found to be several kilopascals which is common for such soft solids. Nonlinear parameter β is frequency dependent too and varies in range from tenths to unity at 1-100 Hz frequency range, decreasing with frequency growth. Stretching the rubber bands inside the layer leads to change of elastic properties in resonator. Such effect could be noticed due to frequency response of the resonator. The numerical model of the resonator was based on finite elements method (FEM) and performed in MatLab. The resonator was cut in hundreds of right triangular prisms. Each prism was provided with viscoelastic properties of the layer except for the top prisms provided with the wooden plate properties and the prisms at the site of the rubber bands provided with the rubber properties. The boundary conditions on each prism satisfied the requirements that resonator is inseparable and all its boundaries but bottom are free. The bottom boundary was set to move horizontally with constant acceleration amplitude. It was shown numerically that the resonator shows anisotropic behavior expressed in different frequency response to oscillations applied to a bottom boundary in different directions.

  13. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    NASA Astrophysics Data System (ADS)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  14. Heat conduction in anisotropic composites of arbitrary shape /A numerical analysis/

    NASA Astrophysics Data System (ADS)

    Projahn, U.; Rieger, H.; Beer, H.

    1981-12-01

    A numerical study was carried out to study the thermal response of composed anisotropic structures. Complex multi-body geometries were handled efficiently by using a numerical transformation method. Owing to this transformation method, the well-known finite-difference method is no longer restricted to relatively simple solution regions. A Strongly Implicit Procedure (SIP) is used to solve the corresponding finite difference equations. Using this solution method, anisotropic thermal conductivity is calculated for structures with complex or composed geometries, and the influence of anisotropy on the composed area is determined.

  15. Vortex dynamics in anisotropic traps

    SciTech Connect

    McEndoo, S.; Busch, Th.

    2010-07-15

    We investigate the dynamics of linear vortex lattices in anisotropic traps in two dimensions and show that the interplay between the rotation and the anisotropy leads to a rich but highly regular dynamics.

  16. Anisotropic Alfven-ballooning modes in the Earth's magnetosphere

    SciTech Connect

    Chan, A.A. . Dept. of Physics and Astronomy); Xia, Mengfen . Dept. of Physics); Chen, Liu . Plasma Physics Lab.)

    1993-05-01

    We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P[perpendicular] > P[parallel]. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value [beta][sub o][sup B] [approx] 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P[parallel] > P[perpendicular], or due to increased ballooning-mirror destabilization when P[perpendicular] > P[parallel]. We use a [beta]-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters [bar [beta

  17. Electric and magnetic fields from two-dimensional anisotropic bisyncytia.

    PubMed Central

    Sepulveda, N G; Wikswo, J P

    1987-01-01

    Cardiac tissue can be considered macroscopically as a bidomain, anisotropic conductor in which simple depolarization wavefronts produce complex current distributions. Since such distributions may be difficult to measure using electrical techniques, we have developed a mathematical model to determine the feasibility of magnetic localization of these currents. By applying the finite element method to an idealized two-dimensional bisyncytium with anisotropic conductivities, we have calculated the intracellular and extracellular potentials, the current distributions, and the magnetic fields for a circular depolarization wavefront. The calculated magnetic field 1 mm from the tissue is well within the sensitivity of a SQUID magnetometer. Our results show that complex bisyncytial current patterns can be studied magnetically, and these studies should provide valuable insight regarding the electrical anisotropy of cardiac tissue. PMID:3580484

  18. 3D time-domain airborne EM modeling for an arbitrarily anisotropic earth

    NASA Astrophysics Data System (ADS)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe

    2016-08-01

    Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.

  19. 3D anisotropic semiconductor grooves measurement simulations (scatterometry) using FDTD methods

    NASA Astrophysics Data System (ADS)

    Shirasaki, Hirokimi

    2007-03-01

    In this paper, we analyze the finite-difference time-domain (FDTD) method for the anisotropic medium mounts that are put on the silicon substrate periodically. FDTD is useful for analyzing the light scattering from arbitrary shape anisotropic grooves and mounts. We consider anisotropic conductive films which have a uniaxial anisotropy, a biaxial anisotropy and off-diagonal dielectric constants tensor components. First, the FDTD formulation is obtained from Maxwell equation for the anisotropic medium. Next, we show light propagation aspects and reflection coefficients in the structure of anisotropic flat layer put on the silicon substrate. The electric field polarized in the y direction is perpendicularly emitted to the x-y plane. In this case, only the Ey scattered components appear in the isotropic medium, the uniaxial anisotropy and the biaxial anisotropy. However, we show that the Ex components also slightly appear in the off-diagonal anisotropic case, since there are off-diagonal dielectric components. The reflection coefficients are compared with the RCWA results calculated by approximating that the refractive indices are isotropy. Then, we confirmed that the anisotropy calculation is right. Finally, we calculated the reflection coefficients from the anisotropic periodic mounts put on the silicon substrate.

  20. Anisotropically structured magnetic aerogel monoliths

    NASA Astrophysics Data System (ADS)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  1. Dynamical analysis of anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Karčiauskas, Mindaugas

    2016-06-01

    The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.

  2. Time-independent one-speed neutron transport equation with anisotropic scattering in absorbing media

    SciTech Connect

    Hangelbroek, R. J.

    1980-06-01

    This report treats the time-independent, one-speed neutron transport equation with anisotropic scattering in absorbing media. For nuclear gain operators existence and uniqueness of solutions to the half-space and finite-slab problems are proved in L/sub 2/-space. The formulas needed for explicit calculations are derived by the use of perturbation theory techniques.

  3. Anisotropic superfluidity in a dipolar Bose gas

    SciTech Connect

    Ticknor, Christopher; Wilson, Ryan M; Bohn, John L

    2010-11-04

    A quintessential feature of superfluidity is the ability to support dissipationless flow, for example, when an object moves through a superfluid and experiences no drag. This, however, only occurs when the object is moving below a certain critical velocity; when it exceeds this critical velocity it dissipates energy into excitations of the superfluid, resulting in a net drag force on the object and the breakdown of superfluid flow. In many superfluids, such as dilute Bose-Einstein condensates (BECs) of atoms with contact interactions, this critical velocity is simply the speed of sound in the system, where the speed of sound is set by the density and the s-wave scattering length of the atoms. However, for other superfluids, such as liquid {sup 4}He, this is not the case. In {sup 4}He, the critical velocity is set by a roton mode, corresponding to a peak in the static structure factor of the system at some finite, non-zero momentum, with a characteristic velocity that is considerably less than the speed of sound in the liquid. This feature has been verified experimentally via measurements of ion-drift velocity in the fluid, thereby providing insight into the detailed structure of the system. Interestingly, a roton-like feature was predicted to exist in the dispersion relation of a quasi-two-dimensional (q2D) dipolar BEC (DBEC) [16], or a BEC with dipole-dipole interactions. However, unlike the dispersion of {sup 4}He, the disperSion of a DBEC is highly tunable as a function of the condensate density or dipole-dipole interaction (ddi) strength. Additionally, the DBEC is set apart from liquid {sup 4}He in that its interactions depend on how the dipoles are oriented in space. Thus, the DBEC provides an ideal system to study the effects that anisotropies have on the bulk properties of a superfluid, such as the critical velocity. Here we consider a DBEC in a quasi-two-dimensional (q2D) geometry and allow for the dipoles to be polarized at a nonzero angle into the plane

  4. Fracture toughness of anisotropic graphites

    SciTech Connect

    Kennedy, C.R.; Kehne, M.T.

    1985-01-01

    Fracture toughness measurements have been made at 0, 30, 45, 60, and 90/sup 0/ from the extrusion axis on a reasonably anisotropic graphite, grade AGOT. It was found that the fracture toughness did not vary appreciably with orientation. An observed variation in strength was found to be the result of defect orientation.

  5. Anisotropic linear elastic properties of fractal-like composites.

    PubMed

    Carpinteri, Alberto; Cornetti, Pietro; Pugno, Nicola; Sapora, Alberto

    2010-11-01

    In this work, the anisotropic linear elastic properties of two-phase composite materials, made up of square inclusions embedded in a matrix, are investigated. The inclusions present a fractal hierarchical distribution and are supposed to have the same Poisson's ratio as the matrix but a different Young's modulus. The effective elastic moduli of the medium are computed at each fractal iteration by coupling a position-space renormalization-group technique with a finite element analysis. The study allows to obtain and generalize some fundamental properties of fractal composite materials. PMID:21230552

  6. Transient Ultrasonic Guided Waves in Bi-Layered Anisotropic Plates with Rectangular Cross Section

    NASA Astrophysics Data System (ADS)

    Mukdadi, O. M.; Datta, S. K.

    2004-02-01

    Transient ultrasonic guided waves in anisotropic bi-layered plates with finite-width are investigated in this paper. Composite bi-layered plates consisting of GaAs substrate coated with Nb sheath is considered as an example because of its application to electronics and calorimetry. The purpose is to investigate the acoustic mode coupling ("pinching") phenomena for phonon transport. A semi-analytical finite element (SAFE) method is adopted to study the guided wave dispersion behavior in finite-width elastic plates. Nine-noded quadrilateral elements are used to model the cross section of the finite-width plate. Propagation in the axial direction is modeled by analytical wave functions. Elastodynamic Green's functions are derived using modal summation in the frequency-wavenumber and time-space domains. Results for dispersion and transient analysis of guided waves in finite-width plates are presented and compared for different aspect ratios. Group velocities are calculated and wave arrival times are computed for different plate cross sections as well as different excitation frequency. Numerical results show significant influence of the plate aspect ratio on the dispersion and transient wave response. Complex nature of quasi-mode dispersion and propagation due to pinching phenomena in anisotropic plates require such quantitative analysis to afford easy interpretation. These results would be important for nondestructive material evaluation and for characterization of phonon transport in anisotropic bi-layered plates.

  7. Irradiance scintillation index for Gaussian beam based on the generalized anisotropic von Karman spectrum

    NASA Astrophysics Data System (ADS)

    Cui, Linyan

    2016-07-01

    Experiments and theoretical investigations have shown that the atmosphere turbulence exhibits both anisotropic and non-Kolmogorov properties. In this paper, based on the anisotropic generalized von Karman spectrum and the Rytov approximation theory, new expression for the irradiance scintillation index of optical waves is derived for Gaussian beam propagating through weak anisotropic non-Kolmogorov turbulence. Compared with previously published results, it considers simultaneously the asymmetry property of turbulence cells or eddies in the orthogonal xy-plane, the general spectral power law in the range 3-4 instead of constant value of 11/3 for the Kolmogorov turbulence, and the finite turbulence inner and outer scales. Two anisotropic factors are introduced to parameterize the anisotropy of turbulence cells or eddies in horizontal and vertical directions. In the special cases of these two anisotropic factors equaling one and the finite turbulence inner and outer scales equaling separately zero and infinite, the derived expression can reduce correctly to the previously published results. Calculations are performed to analyze the derived results.

  8. Evolution of initially contracting Bianchi class A models in the presence of an ultra-stiff anisotropic pressure fluid

    NASA Astrophysics Data System (ADS)

    Barrow, John D.; Ganguly, Chandrima

    2016-06-01

    We study the behaviour of Bianchi class A universes containing an ultra-stiff isotropic ghost field and a fluid with anisotropic pressures which is also ultra-stiff on the average. This allows us to investigate whether cyclic universe scenarios, like the ekpyrotic model, do indeed lead to isotropization on approach to a singularity (or bounce) in the presence of dominant ultra-stiff pressure anisotropies. We specialize to consider the closed Bianchi type IX universe, and show that when the anisotropic pressures are stiffer on average than any isotropic ultra-stiff fluid then, if they dominate on approach to the singularity, it will be anisotropic. We include an isotropic ultra-stiff ghost fluid with negative energy density in order to create a cosmological bounce at finite volume in the absence of the anisotropic fluid. When the dominant anisotropic fluid is present it leads to an anisotropic cosmological singularity rather than an isotropic bounce. The inclusion of anisotropic stresses generated by collisionless particles in an anisotropically expanding universe is therefore essential for a full analysis of the consequences of a cosmological bounce or singularity in cyclic universes.

  9. Non-linear dynamic analysis of anisotropic cylindrical shells

    SciTech Connect

    Lakis, A.A.; Selmane, A.; Toledano, A.

    1996-12-01

    A theory to predict the influence of geometric non-linearities on the natural frequencies of an empty anisotropic cylindrical shell is presented in this paper. It is a hybrid of finite element and classical thin shell theories. Sanders-Koiter non-linear and strain-displacement relations are used. Displacement functions are evaluated using linearized equations of motion. Modal coefficients are then obtained for these displacement functions. Expressions for the mass, linear and non-linear stiffness matrices are derived through the finite element method. The uncoupled equations are solved with the help of elliptic functions. The period and frequency variations are first determined as a function of shell amplitudes and then compared with the results in the literature.

  10. Anisotropic Ripple Deformation in Phosphorene.

    PubMed

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-01

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  11. Anisotropic constitutive model and FE simulation of the sintering process of slip cast traditional porcelain

    NASA Astrophysics Data System (ADS)

    Sarbandi, B.; Besson, J.; Boussuge, M.; Ryckelynck, D.

    2010-06-01

    Slip cast ceramic components undergo both sintering shrinkage and creep deformation caused by gravity during the firing cycle. In addition sintering may be anisotropic due to the development of preferential directions during slip casting. Both phenomena induce complex deformations of parts which make the design of casting molds difficult. To help solving this problem, anisotropic constitutive equations are proposed to represent the behavior of the ceramic compacts during sintering. The model parameters are identified using tests allowing to characterize both sintering and creep. The model was implemented in a finite element software and used to simulate the deformation of a traditional ceramic object during sintering.

  12. Anisotropic constitutive model and FE simulation of the sintering process of slip cast traditional porcelain

    SciTech Connect

    Sarbandi, B.; Besson, J.; Boussuge, M.; Ryckelynck, D.

    2010-06-15

    Slip cast ceramic components undergo both sintering shrinkage and creep deformation caused by gravity during the firing cycle. In addition sintering may be anisotropic due to the development of preferential directions during slip casting. Both phenomena induce complex deformations of parts which make the design of casting molds difficult. To help solving this problem, anisotropic constitutive equations are proposed to represent the behavior of the ceramic compacts during sintering. The model parameters are identified using tests allowing to characterize both sintering and creep. The model was implemented in a finite element software and used to simulate the deformation of a traditional ceramic object during sintering.

  13. Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus.

    PubMed

    Fei, Ruixiang; Yang, Li

    2014-05-14

    Newly fabricated few-layer black phosphorus and its monolayer structure, phosphorene, are expected to be promising for electronic and optical applications because of their finite direct band gaps and sizable but anisotropic electronic mobility. By first-principles simulations, we show that this unique anisotropic free-carrier mobility can be controlled by using simple strain conditions. With the appropriate biaxial or uniaxial strain (4-6%), we can rotate the preferred conducting direction by 90°. This will be useful for exploring unusual quantum Hall effects and exotic electronic and mechanical applications based on phosphorene.

  14. Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Fei, Ruixiang; Yang, Li

    2014-05-01

    Newly fabricated monolayer phosphorene and its few-layer structures are expected to be promising for electronic and optical applications because of their finite direct band gaps and sizable but anisotropic electronic mobility. By first-principles simulations, we show that this unique anisotropic conductance can be controlled by using simple strain conditions. With the appropriate biaxial or uniaxial strain, we can rotate the preferred conducting direction by 90 degrees. This will be of useful for exploring quantum Hall effects, and exotic electronic and mechanical applications based on phosphorene.

  15. Anisotropic microturbulence near the Sun

    NASA Technical Reports Server (NTRS)

    Coles, William A.; Grall, R. R.; Spangler, S. R.; Sakurai, T.; Harmon, J. K.

    1995-01-01

    Interplanetary scintillation observations which sample the spatial spectrum of electron density at scales between 10 and 100 km show power-law spectra which are flatter than the Kolmogorov spectra observed at larger scales by spacecraft and also, indirectly, by phase scintillation of coherent radio signals. Furthermore, angular broadening observations of compact radio sources have shown that the microscale density fluctuations are field-aligned and become more anisotropic as R decreases inside 10 solar radius. We present angular broadening observations taken in October of 1992 which were recorded nearly simultaneously on the VLA and VLBA arrays. The VLA samples structure at scales between 3 and 30 km, whereas the VLBA samples scales between 200 and 4000 km. The small scale VLA measurements of the south polar source 1246-075 showed lower turbulence than those of the equatorial source 1256-057, consistent with previous work showing that the density delta N(exp 2)(sub e) is a factor of 10-15 lower in coronal holes. The VLA observations inside of 10 solar radius were anisotropic, as expected. We were not able to measure the equatorial source with the VLBA inside of 10 solar radius because the scattering was too strong, however we did observe the polar source just inside this distance with both the VLA and the VLBA. Significant anisotropy was seen on the smaller scales, but the larger scales were essentially isotropic. This suggests that the process responsible for the anisotropic microturbulence is distinct from the larger scale isotropic turbulence.

  16. Finite-Size and Confinement Effects in Spin-Polarized Trapped Fermi Gases

    SciTech Connect

    Ku, Mark; Braun, Jens; Schwenk, Achim

    2009-06-26

    We calculate the energy of a single fermion interacting resonantly with a Fermi sea of different-species fermions in anisotropic traps, and show that finite particle numbers and the trap geometry impact the phase structure and the critical polarization. Our findings contribute to understanding some experimental discrepancies in spin-polarized Fermi gases as finite-size and confinement effects.

  17. Shear-flexible finite-element models of laminated composite plates and shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Mathers, M. D.

    1975-01-01

    Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.

  18. Anisotropic effects on ultrasonic guided waves propagation in composite bends.

    PubMed

    Yu, Xudong; Ratassepp, Madis; Rajagopal, Prabhu; Fan, Zheng

    2016-12-01

    Ultrasonic guided waves have proven to be attractive to the long-range testing of composite laminates. As complex-shaped composite components are increasingly incorporated in high-performance structures, understanding of both anisotropic and geometric effects on guided waves propagation is needed to evaluate their suitability for the non-destructive testing (NDT) of such complex structures. This paper reports the Semi-Analytical Finite Element (SAFE) simulations revealing the capability of energy confinement carried by two types of guided modes in 90° carbon fiber/epoxy (CF/EP) bends. Existence of the phenomenon is cross-validated by both 3D Finite Element (FE) modeling and experimental measurements. The physics of such energy trapping effect is explained in view of geometric variation and anisotropic properties, and the frequency effect on the extent of energy concentration is discussed. Finally, the feasibility of using such confined guided waves for rapid inspection of bent composite plate structures is also discussed. PMID:27518426

  19. Stress and vibraton analyses of anisotropic shells of revolution

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1988-01-01

    An efficient computational strategy is presented for reducing the cost of the stress and free vibration analyses of laminated anisotropic shells of revolution. The analytical formulation is based on a form of the Sanders-Budiansky shell theory including the effects of both the transverse shear deformation and the laminated anisotropic material response. The fundamental unknowns consist of the eight strain components, the eight stress resultants and the five generalized displacements of the shell. Each of the shell variables is expressed in terms of trigonometric functions (Fourier series) in the circumferential co-ordinate, and a three-field mixed finite element model is used for the discretization in the meridional direction. The shell response associated with a range of Fourier harmonics is approximated by a linear combination of a few global approximation vectors, which are generated at a particular value of the Fourier harmonic, within that range. The full equations of the finite element model are solved for only a single Fourier harmonic, and the response corresponding to the other Fourier harmonics is generated using a reduced system of equations with considerably fewer degrees of freedom.

  20. Spin noise in the anisotropic central spin model

    NASA Astrophysics Data System (ADS)

    Hackmann, Johannes; Anders, Frithjof B.

    2014-01-01

    Spin-noise measurements can serve as a direct probe for the microscopic decoherence mechanism of an electronic spin in semiconductor quantum dots (QDs). We have calculated the spin-noise spectrum in the anisotropic central spin model using a Chebyshev expansion technique which exactly accounts for the dynamics up to an arbitrary long but fixed time in a finite-size system. In the isotropic case, describing QD charge with a single electron, the short-time dynamics is in good agreement with quasistatic approximations for the thermodynamic limit. The spin-noise spectrum, however, shows strong deviations at low frequencies with a power-law behavior of ω-3/4 corresponding to a t-1/4 decay at intermediate and long times. In the Ising limit, applicable to QDs with heavy-hole spins, the spin-noise spectrum exhibits a threshold behavior of (ω-ωL)-1/2 above the Larmor frequency ωL=gμBB. In the generic anisotropic central spin model we have found a crossover from a Gaussian type of spin-noise spectrum to a more Ising-type spectrum with increasing anisotropy in a finite magnetic field. In order to make contact with experiments, we present ensemble averaged spin-noise spectra for QD ensembles charged with single electrons or holes. The Gaussian-type noise spectrum evolves to a more Lorentzian shape spectrum with increasing spread of characteristic time scales and g factors of the individual QDs.

  1. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  2. Numerical investigation of nanoparticles transport in anisotropic porous media.

    PubMed

    Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu

    2015-10-01

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties is an essential feature that exists almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  3. Numerical investigation of nanoparticles transport in anisotropic porous media.

    PubMed

    Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu

    2015-10-01

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties is an essential feature that exists almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain. PMID:26212784

  4. Molecular dynamic simulation methods for anisotropic liquids.

    PubMed

    Aoki, Keiko M; Yoneya, Makoto; Yokoyama, Hiroshi

    2004-03-22

    Methods of molecular dynamics simulations for anisotropic molecules are presented. The new methods, with an anisotropic factor in the cell dynamics, dramatically reduce the artifacts related to cell shapes and overcome the difficulties of simulating anisotropic molecules under constant hydrostatic pressure or constant volume. The methods are especially effective for anisotropic liquids, such as smectic liquid crystals and membranes, of which the stacks of layers are compressible (elastic in direction perpendicular to the layers) while the layer itself is liquid and only elastic under uniform compressive force. The methods can also be used for crystals and isotropic liquids as well.

  5. Application of Mass Lumped Higher Order Finite Elements

    SciTech Connect

    Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.

    2005-11-01

    There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.

  6. Remarks on inhomogeneous anisotropic cosmology

    NASA Astrophysics Data System (ADS)

    Kaya, Ali

    2016-08-01

    Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.

  7. Spin precession in anisotropic cosmologies

    NASA Astrophysics Data System (ADS)

    Kamenshchik, A. Yu.; Teryaev, O. V.

    2016-05-01

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter.

  8. New charged anisotropic compact models

    NASA Astrophysics Data System (ADS)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  9. Anisotropic inflation from vector impurity

    SciTech Connect

    Kanno, Sugumi; Kimura, Masashi; Soda, Jiro; Yokoyama, Shuichiro E-mail: mkimura@sci.osaka-cu.ac.jp E-mail: shu@a.phys.nagoya-u.ac.jp

    2008-08-15

    We study an inflationary scenario with a vector impurity. We show that the universe undergoes anisotropic inflationary expansion due to a preferred direction determined by the vector. Using the slow roll approximation, we find a formula for determining the anisotropy of the inflationary universe. We discuss possible observable predictions of this scenario. In particular, it is stressed that primordial gravitational waves can be induced from curvature perturbations. Hence, even in low scale inflation, a sizable amount of primordial gravitational waves may be produced during inflation.

  10. Granular Segregation with Anisotropic Particles

    NASA Astrophysics Data System (ADS)

    Sykes, Tim

    2005-11-01

    The results from experimental investigations of horizontally vibrated mixtures of anisotropic poppy seeds and long chains of linked spheres will be presented. A critical packing fraction was observed to be required to initiate a transition to segregation. The average size of the resulting patterns was measured and the concentration ratio of the mixtures was varied by changing the number of chains present in the mixtures. A change in the order of the transition, from second to first order with associated hysteresis, was observed as the chain number was reduced. This gave rise to three distinct regions of behaviour: segregated, mixed and a bi-stable state.

  11. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Aagaard, B.; Williams, C. A.; Knepley, M. G.

    2011-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.6) can be used for quasi-static viscoelastic modeling, dynamic spontaneous rupture and/or ground-motion modeling. Unstructured and structured finite-element discretizations allow for spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales in dynamic problems ranging from milliseconds to minutes and temporal scales in quasi-static problems ranging from minutes to thousands of years. PyLith development is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and the software runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). Binaries (Linux, Darwin, and Windows systems) and source code are available from geodynamics.org. PyLith uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current PyLith features include prescribed fault ruptures with multiple earthquakes and aseismic creep, spontaneous fault ruptures with a variety of fault constitutive models, time-dependent Dirichlet and Neumann boundary conditions, absorbing boundary conditions, time-dependent point forces, and gravitational body forces. PyLith supports infinitesimal and small strain formulations for linear elastic rheologies, linear and generalized Maxwell viscoelastic rheologies, power-law viscoelastic rheologies, and Drucker-Prager elastoplastic rheologies. Current software development focuses on coupling quasi-static and dynamic simulations to resolve multi-scale deformation across the entire seismic cycle and the coupling of elasticity to heat and/or fluid flow.

  12. Modeling Three-Phase Compositional Flow on Complex 3D Unstructured Grids with Higher-Order Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Moortgat, J.; Firoozabadi, A.

    2013-12-01

    Most problems of interest in hydrogeology and subsurface energy resources involve complex heterogeneous geological formations. Such domains are most naturally represented in numerical reservoir simulations by unstructured computational grids. Finite element methods are a natural choice to describe fluid flow on unstructured meshes, because the governing equations can be readily discretized for any grid-element geometry. In this work, we consider the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by tetrahedra, prisms, or hexahedra, and compare to simulations on 3D structured grids. We employ a combination of mixed hybrid finite element methods to solve for the pressure and flux fields in a fractional flow formulation, and higher-order discontinuous Galerkin methods for the mass transport equations. These methods are well suited to simulate flow in heterogeneous and fractured reservoirs, because they provide a globally continuous pressure and flux field, while allowing for sharp discontinuities in the phase properties, such as compositions and saturations. The increased accuracy from using higher-order methods improves the modeling of highly non-linear flow, such as gravitational and viscous fingering. We present several numerical examples to study convergence rates and the (lack of) sensitivity to gridding/mesh orientation, and mesh quality. These examples consider gravity depletion, water and gas injection in oil saturated subsurface reservoirs with species exchange between up to three fluid phases. The examples demonstrate the wide applicability of our chosen finite element methods in the study of challenging multiphase flow problems in porous, geometrically complex, subsurface media.

  13. Cryogenic microwave anisotropic artificial materials

    NASA Astrophysics Data System (ADS)

    Trang, Frank

    This thesis addresses analysis and design of a cryogenic microwave anisotropic wave guiding structure that isolates an antenna from external incident fields from specific directions. The focus of this research is to design and optimize the radome's constituent material parameters for maximizing the isolation between an interior receiver antenna and an exterior transmitter without significantly disturbing the transmitter antenna far field characteristics. The design, characterization, and optimization of high-temperature superconducting metamaterials constitutive parameters are developed in this work at X-band frequencies. A calibrated characterization method for testing arrays of split-ring resonators at cryogenic temperature inside a TE10 waveguide was developed and used to back-out anisotropic equivalent material parameters. The artificial material elements (YBCO split-ring resonators on MgO substrate) are optimized to improve the narrowband performance of the metamaterial radome with respect to maximizing isolation and minimizing shadowing, defined as a reduction of the transmitted power external to the radome. The optimized radome is fabricated and characterized in a parallel plate waveguide in a cryogenic environment to demonstrate the degree of isolation and shadowing resulting from its presence. At 11.12 GHz, measurements show that the HTS metamaterial radome achieved an isolation of 10.5 dB and the external power at 100 mm behind the radome is reduced by 1.9 dB. This work demonstrates the feasibility of fabricating a structure that provides good isolation between two antennas and low disturbance of the transmitter's fields.

  14. Model of the anisotropic behavior of doubly oriented and non-oriented materials using coenergy: Application to a large generator

    SciTech Connect

    Mekhiche, M.; Pera, T.; Marechal, Y.

    1995-05-01

    The anisotropic and nonlinear behavior of doubly oriented and non-oriented sheets are modeled using the coenergy density. These models have been implemented in a finite element computation. A large generator has been modeled and the advantages of doubly oriented sheets compared to the conventional non-oriented ones are shown.

  15. Fluid-structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws

    NASA Astrophysics Data System (ADS)

    Tricerri, Paolo; Dedè, Luca; Deparis, Simone; Quarteroni, Alfio; Robertson, Anne M.; Sequeira, Adélia

    2015-03-01

    This paper considers numerical simulations of fluid-structure interaction (FSI) problems in hemodynamics for idealized geometries of healthy cerebral arteries modeled by both nonlinear isotropic and anisotropic material constitutive laws. In particular, it focuses on an anisotropic model initially proposed for cerebral arteries to characterize the activation of collagen fibers at finite strains. In the current work, this constitutive model is implemented for the first time in the context of an FSI formulation. In this framework, we investigate the influence of the material model on the numerical results and, in the case of the anisotropic laws, the importance of the collagen fibers on the overall mechanical behavior of the tissue. With this aim, we compare our numerical results by analyzing fluid dynamic indicators, vessel wall displacement, Von Mises stress, and deformations of the collagen fibers. Specifically, for an anisotropic model with collagen fiber recruitment at finite strains, we highlight the progressive activation and deactivation processes of the fibrous component of the tissue throughout the wall thickness during the cardiac cycle. The inclusion of collagen recruitment is found to have a substantial impact on the intramural stress, which will in turn impact the biological response of the intramural cells. Hence, the methodology presented here will be particularly useful for studies of mechanobiological processes in the healthy and diseased vascular wall.

  16. Effects of anisotropic dynamics on cosmic strings

    SciTech Connect

    Kunze, Kerstin E.

    2011-08-01

    The dynamics of cosmic strings is considered in anisotropic backgrounds. In particular, the behaviour of infinitely long straight cosmic strings and of cosmic string loops is determined. Small perturbations of a straight cosmic string are calculated. The relevance of these results is discussed with respect to the possible observational imprints of an anisotropic phase on the behaviour of a cosmic string network.

  17. Anisotropic N=4 Super-Yang-Mills Plasma and Its Instabilities

    SciTech Connect

    Mateos, David; Trancanelli, Diego

    2011-09-02

    We present a type-IIB supergravity solution dual to a spatially anisotropic finite-temperature N=4 super-Yang-Mills plasma. The solution is static and completely regular. The full geometry can be viewed as a renormalization group flow from an ultraviolet anti-de Sitter geometry to an infrared Lifshitz-like geometry. The anisotropy can be equivalently understood as resulting from a position-dependent {theta} term or from a nonzero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e., mixed) phases. In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon of cavitation.

  18. Materials with constant anisotropic conductivity as a thermal cloak or concentrator

    NASA Astrophysics Data System (ADS)

    Chen, Tungyang; Weng, Chung-Ning; Tsai, Yu-Lin

    2015-02-01

    An invisibility cloak based on transformation optics often requires material with inhomogeneous, anisotropic, and possibly extreme material parameters. In the present study, on the basis of the concept of neutral inclusion, we find that a spherical cloak can be achieved using a layer with finite constant anisotropic conductivity. We show that thermal localization can be tuned and controlled by anisotropy of the coating layer. A suitable balance of the degree of anisotropy of the cloaking layer and the layer thickness provides a cloaking effect. Additionally, by reversing the conductivities in two different directions, we find that a thermal concentrating effect can be simulated. This finding is of particular value in practical implementation as a material with constant material parameters is more feasible to fabricate. In addition to the theoretical analysis, we also demonstrate our solutions in numerical simulations based on finite element calculations to validate our results.

  19. Anisotropic collagen fibrillogenesis within microfabricated scaffolds: implications for biomimetic tissue engineering.

    PubMed

    Jean, Aurélie; Engelmayr, George C

    2012-01-11

    Anisotropic collagen fibrillogenesis is demonstrated within the pores of an accordion-like honeycomb poly(glycerol sebacate) tissue engineering scaffold. Confocal reflectance microscopy and image analysis demonstrate increased fibril distribution order, fibril density, and alignment in accordion-like honeycomb pores compared with collagen gelled unconstrained. Finite element modeling predicts how collagen gel and scaffold mechanics couple in matching native heart muscle stiffness and anisotropy. PMID:23184695

  20. Electric field obtained from an elliptic critical-state model for anisotropic type-II superconductors

    NASA Astrophysics Data System (ADS)

    Romero-Salazar, C.; Hernández-Flores, O. A.

    2016-02-01

    The conventional elliptic critical-state models (ECSM) establish that the electric field vector is zero when it flows a critical current density in a type-II superconductor. This proposal incorporates a finite electric field on the ECSM to study samples with anisotropic-current-carrying capacity. Our theoretical scheme has the advantage of being able to dispense of a material law which drives the electric field magnitude, however, it does not consider the magnetic history of the superconductor.

  1. 2-D Finite Element Heat Conduction

    1989-10-30

    AYER is a finite element program which implicitly solves the general two-dimensional equation of thermal conduction for plane or axisymmetric bodies. AYER takes into account the effects of time (transient problems), in-plane anisotropic thermal conductivity, a three-dimensional velocity distribution, and interface thermal contact resistance. Geometry and material distributions are arbitrary, and input is via subroutines provided by the user. As a result, boundary conditions, material properties, velocity distributions, and internal power generation may be mademore » functions of, e.g., time, temperature, location, and heat flux.« less

  2. Gravitational baryogenesis after anisotropic inflation

    NASA Astrophysics Data System (ADS)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  3. Anisotropic scaling of magnetohydrodynamic turbulence.

    PubMed

    Horbury, Timothy S; Forman, Miriam; Oughton, Sean

    2008-10-24

    We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wave numbers with a k(-2)_(||) spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wave vectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3.

  4. Anisotropic invariance in minisuperspace models

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Sabido, Miguel

    2016-06-01

    In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.

  5. Anisotropic charged core envelope star

    NASA Astrophysics Data System (ADS)

    Mafa Takisa, P.; Maharaj, S. D.

    2016-08-01

    We study a charged compact object with anisotropic pressures in a core envelope setting. The equation of state is quadratic in the core and linear in the envelope. There is smooth matching between the three regions: the core, envelope and the Reissner-Nordström exterior. We show that the presence of the electric field affects the masses, radii and compactification factors of stellar objects with values which are in agreement with previous studies. We investigate in particular the effect of electric field on the physical features of the pulsar PSR J1614-2230 in the core envelope model. The gravitational potentials and the matter variables are well behaved within the stellar object. We demonstrate that the radius of the core and the envelope can vary by changing the parameters in the speed of sound.

  6. Anisotropic invariance in minisuperspace models

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Sabido, Miguel

    2016-06-01

    In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski-Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann-Robertson-Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.

  7. Modeling of Anisotropic Inelastic Behavior

    SciTech Connect

    Nikkel, D.J.; Nath, D.S.; Brown, A.A.; Casey, J.

    2000-02-25

    An experimental capability, developed at Lawrence Livermore National Laboratory (LLNL), is being used to study the yield behavior of elastic-plastic materials. The objective of our research is to develop better constitutive equations for polycrystalline metals. We are experimentally determining the multidimensional yield surface of the material, both in its initial state and as it evolves during large inelastic deformations. These experiments provide a more complete picture of material behavior than can be obtained from traditional uniaxial tests. Experimental results show that actual material response can differ significantly from that predicted by simple idealized models. These results are being used to develop improved constitutive models of anisotropic plasticity for use in continuum computer codes.

  8. Comparison of numerical methods for 2D crystals under anisotropic surface free energy and through evolution

    NASA Astrophysics Data System (ADS)

    Lolla, Madhuri Udayanjani

    In this dissertation first, we compute the equilibrium shapes of 2D crystals under anisotropic surface free energies. An equilibrium shape minimizes the total surface free energy. The governing equation in polar coordinates is a nonlinear ordinary differential equation. Two numerical methods, finite difference and the finite element are used and compared. We investigate the accuracy, order of convergence and efficiency of the two methods in computing the equilibrium shapes. Secondly, we consider the surface of the crystal evolving under surface diffusion and compute the final shape in the evolution which is the equilibrium shape. The surface diffusion equation in polar coordinates is a time-dependent nonlinear 4th order partial differential equation. Again we apply the two methods finite difference and finite element. The results are observed at different stages of evolution of the crystal for the isotropy case. Then we compare the accuracy, order of convergence and efficiency of the two methods.

  9. The effect of anisotropic heat transport on magnetic islands in 3-D configurations

    SciTech Connect

    Schlutt, M. G.; Hegna, C. C.

    2012-08-15

    An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlueter current effects. Implications for finite pressure-induced island healing are discussed.

  10. Identifying Heterogeneous Anisotropic Properties in Cerebral Aneurysms: A Pointwise Approach

    PubMed Central

    Zhao, Xuefeng; Raghavan, Madhavan L.; Lu, Jia

    2014-01-01

    The traditional approaches of estimating heterogeneous properties in a soft tissue structure using optimization based inverse methods often face difficulties because of the large number of unknowns to be simultaneously determined. This article proposes a new method for identifying the heterogeneous anisotropic nonlinear elastic properties in cerebral aneurysms. In this method, the local properties are determined directly from the pointwise stress-strain data, thus avoiding the need for simultaneously optimizing for the property values at all points/regions in the aneurysm. The stress distributions needed for a pointwise identification are computed using an inverse elastostatic method without invoking the material properties in question. This paradigm is tested numerically through simulated inflation tests on an image-based cerebral aneurysm sac. The wall tissue is modeled as an eight-ply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain-energy function containing four parameters. The parameters are assumed to vary continuously in the sac. Deformed configurations generated from forward finite element analysis are taken as input to inversely establish the parameter distributions. The delineated and the assigned distributions are in excellent agreement. A forward verification is conducted by comparing the displacement solutions obtained from the delineated and the assigned material parameters at a different pressure. The deviations in nodal displacements are found to be within 0.2% in most part of the sac. The study highlights some distinct features of the proposed method, and demonstrates the feasibility of organ level identification of the distributive anisotropic nonlinear properties in cerebral aneurysms. PMID:20490886

  11. Higher Order Lagrange Finite Elements In M3D

    SciTech Connect

    J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau

    2004-12-17

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.

  12. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    NASA Technical Reports Server (NTRS)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  13. Percolation analysis of force networks in anisotropic granular matter

    NASA Astrophysics Data System (ADS)

    Pastor-Satorras, Romualdo; Miguel, M.-Carmen

    2012-02-01

    We study the percolation properties of force networks in an anisotropic model for granular packings, the so-called q-model. Following the original recipe of Ostojic et al (2006 Nature 439 828), we consider a percolation process in which forces smaller than a given threshold f are deleted in the network. For a critical threshold fc, the system experiences a transition akin to percolation. We determine the point of this transition and its characteristic critical exponents applying a finite-size scaling analysis that takes explicitly into account the directed nature of the q-model. By means of extensive numerical simulations, we show that this percolation transition is strongly affected by the anisotropic nature of the model, yielding characteristic exponents which are neither those found in isotropic granular systems nor those in the directed version of standard percolation. The differences shown by the computed exponents can be related to the presence of strong directed correlations and mass conservation laws in the model under scrutiny.

  14. Ultrahigh-Q modes in anisotropic 2D photonic crystal

    NASA Astrophysics Data System (ADS)

    Bouleghlimat, Oussama; Hocini, Abdesselam

    2014-10-01

    In this work, we design a two-dimensional photonic crystal cavity made with a substrate of an anisotropic material. We consider triangular lattice photonic crystal made from air holes in tellurium. The cavity itself is then created by three missing holes in the centre. Using the three-dimensional finite-difference time-domain simulation and optimization of the geometrical parameters and the symmetric displacement of the edge air holes on the quality factor, the cavity’s structural parameters yield an ultrahigh-Q mode cavity with quality factor Q = 2.95 × 1011 for a filling factor r/a = 0.45 and lateral displacement of 10 nm. This shows great enhancement compared with previous studies in which silicon material has been used. The designed structure can be helpful in a number of applications associated with photonic crystal cavities, including quantum information processing, filters, and nanoscale sensors.

  15. Shear wave propagation in anisotropic soft tissues and gels.

    PubMed

    Namani, Ravi; Bayly, Philip V

    2009-01-01

    The propagation of shear waves in soft tissue can be visualized by magnetic resonance elastography (MRE) to characterize tissue mechanical properties. Dynamic deformation of brain tissue arising from shear wave propagation may underlie the pathology of blast-induced traumatic brain injury. White matter in the brain, like other biological materials, exhibits a transversely isotropic structure, due to the arrangement of parallel fibers. Appropriate mathematical models and well-characterized experimental systems are needed to understand wave propagation in these structures. In this paper we review the theory behind waves in anisotropic, soft materials, including small-amplitude waves superimposed on finite deformation of a nonlinear hyperelastic material. Some predictions of this theory are confirmed in experimental studies of a soft material with controlled anisotropy: magnetically-aligned fibrin gel. PMID:19963987

  16. Glueball Spectrum and Matrix Elements on Anisotropic Lattices

    SciTech Connect

    Y. Chen; A. Alexandru; S.J. Dong; T. Draper; I. Horvath; F.X. Lee; K.F. Liu; N. Mathur; C. Morningstar; M. Peardon; S. Tamhankar; B.L. Young; J.B. Zhang

    2006-01-01

    The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing ranging from 0.1fm - 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/{psi} radiative decays which will help identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check and the finite volume effects are studied. We find that lattice spacing dependence of our results is very weak and the continuum limits are reliably extrapolated, as a result of improvement of the lattice gauge action and local operators. We also give updated glueball masses with various quantum numbers.

  17. Anisotropic Superfluidity in a Dipolar Bose Gas

    SciTech Connect

    Ticknor, Christopher; Wilson, Ryan M.; Bohn, John L.

    2011-02-11

    We study the superfluid character of a dipolar Bose-Einstein condensate (DBEC) in a quasi-two dimensional geometry. We consider the dipole polarization to have some nonzero projection into the plane of the condensate so that the effective interaction is anisotropic in this plane, yielding an anisotropic dispersion relation. By performing direct numerical simulations of a probe moving through the DBEC, we observe the sudden onset of drag or creation of vortex-antivortex pairs at critical velocities that depend strongly on the direction of the probe's motion. This anisotropy emerges because of the anisotropic manifestation of a rotonlike mode in the system.

  18. Anisotropic optical film embedded with cellulose nanowhisker.

    PubMed

    Kim, Dah Hee; Song, Young Seok

    2015-10-01

    We investigated anisotropic optical behaviors of composite films embedded with CNWs. To control the orientation of CNWs, elongation was applied to the composite film. Morphological and mechanical analyses of the specimens were carried out to examine the influence of the applied extension. The CNWs were found to be aligned in the elongated direction, yielding remarkable anisotropic microstructure and optical properties. As the applied elongation and CNW loading increased, the resulting degree of polarization and birefringence increased due to increased interactions between the embedded particles. This study suggests a way to prepare an anisotropic optical component with nanoparticles of which the microstructures, such as orientation and filler content, can be controlled. PMID:26076646

  19. Anisotropic inflation in Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Lahiri, Sayantani

    2016-09-01

    We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.

  20. Ultrasonic field profile evaluation in acoustically inhomogeneous anisotropic materials using 2D ray tracing model: Numerical and experimental comparison.

    PubMed

    Kolkoori, S R; Rahman, M-U; Chinta, P K; Ktreutzbruck, M; Rethmeier, M; Prager, J

    2013-02-01

    Ultrasound propagation in inhomogeneous anisotropic materials is difficult to examine because of the directional dependency of elastic properties. Simulation tools play an important role in developing advanced reliable ultrasonic non destructive testing techniques for the inspection of anisotropic materials particularly austenitic cladded materials, austenitic welds and dissimilar welds. In this contribution we present an adapted 2D ray tracing model for evaluating ultrasonic wave fields quantitatively in inhomogeneous anisotropic materials. Inhomogeneity in the anisotropic material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The ray tracing model results are validated quantitatively with the results obtained from 2D Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occurring in the ultrasonic non destructive testing of anisotropic materials. Finally, the quantitative comparison of ray tracing model results with experiments on 32mm thick austenitic weld material and 62mm thick austenitic cladded material is discussed.

  1. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Aagaard, B.; Williams, C.; Knepley, M.

    2008-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.3), combines the quasi-static viscoelastic modeling functionality of PyLith 0.8 and its predecessors (LithoMop and Tecton) and the wave propagation modeling functionality of EqSim. The target applications contain spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales for dynamic modeling ranging from milliseconds to minutes and temporal scales for quasi-static modeling ranging from minutes to hundreds of years. PyLith is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). It uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current features include kinematic fault ruptures, Dirichlet (displacement or velocity), Neumann (traction), and absorbing boundary conditions, linear elastic, generalized Maxwell, and Maxwell linear viscoelastic materials, gravitational body forces, and automatic time step selection for quasi-static problems. Future releases will add dynamic fault interface conditions (employing fault constitutive models), additional viscoelastic and viscoplastic materials, and automated calculation of suites of Green's functions. We also plan to extend PyLith to allow coupling multiple simultaneous simulations. For example, this could include (1) coupling an interseismic deformation simulation to a spontaneous earthquake rupture simulation (each using subsets of the software), (2) coupling a spontaneous earthquake rupture simulation to a global wave propagation simulation, or (3) coupling a short-term crustal deformation simulation to a mantle convection

  2. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Aagaard, B.; Williams, C.; Knepley, M.

    2007-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith version 1.1, combines the quasi-static viscoelastic modeling functionality of PyLith 0.8 and its predecessors (LithoMop and Tecton) and the wave propagation and spontaneous rupture modeling functionality of EqSim. The target applications contain spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales for dynamic modeling ranging from milliseconds to minutes and temporal scales for quasi-static modeling ranging from minutes to hundreds of years. PyLith is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and runs on a wide variety of platforms, from laptops to Beowulf clusters. It uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current features include kinematic fault interface conditions, Dirichlet (displacement or velocity), Neumann (traction), and absorbing boundary conditions, linear elastic, generalized Maxwell, and Maxwell linear viscoelastic materials, and quasi-static and dynamic time-stepping. Future releases will add dynamic fault interface conditions (employing fault constitutive models), additional viscoelastic and viscoplastic materials, and automated calculation of suites of Green's functions. We also plan to extend PyLith to allow coupling multiple simultaneous simulations. For example, this could include (1) coupling an interseismic deformation simulation to a spontaneous earthquake rupture simulation (each using subsets of the software), (2) coupling a spontaneous earthquake rupture simulation to a global wave propagation simulation, or (3) coupling a short-term crustal deformation simulation to a mantle convection simulation and an orogenesis and basin

  3. Optical trapping of the anisotropic crystal nanorod.

    PubMed

    Bareil, Paul B; Sheng, Yunlong

    2015-05-18

    We observed in the optical tweezers experiment that some anisotropic nanorod was stably trapped in an orientation tiled to the beam axis. We explain this trapping with the T-matrix calculation. As the vector spherical wave functions do not individually satisfy the anisotropic vector wave equation, we expand the incident and scattered fields in the isotropic buffer in terms of E→, and the internal field in the anisotropic nanoparticle in terms of D→, and use the boundary condition for the normal components of D→ to compute the T-matrix. We found that when the optical axes of an anisotropic nanorod are not aligned to the nanorod axis, the nanorod may be trapped stably at a tilted angle, under which the lateral torque equals to zero and the derivative of the torque is negative. PMID:26074566

  4. Strongly Anisotropic Bianchi i Quantum Cosmology

    NASA Astrophysics Data System (ADS)

    Schmidt, Hans-Jürgen

    2002-12-01

    We report on the period-doubling bifurcation recently detected for strongly anisotropic Bianchi I quantum cosmology by M. Bachmann and H.-J. Schmidt and present further arguments related to the quantum boundary.

  5. Inflation in anisotropic scalar-tensor theories

    NASA Technical Reports Server (NTRS)

    Pimentel, Luis O.; Stein-Schabes, Jaime

    1988-01-01

    The existence of an inflationary phase in anisotropic Scalar-Tensor Theories is investigated by means of a conformal transformation that allows us to rewrite these theories as gravity minimally coupled to a scalar field with a nontrivial potential. The explicit form of the potential is then used and the No Hair Theorem concludes that there is an inflationary phase in all open or flat anisotropic spacetimes in these theories. Several examples are constructed where the effect becomes manifest.

  6. Phase space analysis in anisotropic optical systems

    NASA Technical Reports Server (NTRS)

    Rivera, Ana Leonor; Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    From the minimal action principle follows the Hamilton equations of evolution for geometric optical rays in anisotropic media. As in classical mechanics of velocity-dependent potentials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy vector potential, similar to that of linear electromagnetism. Descartes' well known diagram for refraction is generalized and a factorization theorem holds for interfaces between two anisotropic media.

  7. Overview of anisotropic flow measurements from ALICE

    NASA Astrophysics Data System (ADS)

    Zhou, You

    2016-05-01

    Anisotropic flow is an important observable to study the properties of the hot and dense matter, the Quark Gluon Plasma (QGP), created in heavy-ion collisions. Measurements of anisotropic flow for inclusive and identified charged hadrons are reported in Pb-Pb, p-Pb and pp collisions with the ALICE detector. The comparison of experimental measurements to various theoretical calculations are also presented in these proceedings.

  8. Polarisation reflectometry of anisotropic optical fibres

    SciTech Connect

    Konstantinov, Yurii A; Kryukov, Igor' I; Pervadchuk, Vladimir P; Toroshin, Andrei Yu

    2009-11-30

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity of anisotropic fibres. (optical fibres and fibreoptic sensors)

  9. Modelling Coulomb Collisions in Anisotropic Plasmas

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Travnicek, P. M.

    2009-12-01

    Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.

  10. Soft particles with anisotropic interactions

    NASA Astrophysics Data System (ADS)

    Schurtenberger, Peter

    Responsive colloids such as thermo- or pH-sensitive microgels are ideal model systems to investigate the relationship between the nature of interparticle interactions and the plethora of self-assembled structures that can form in colloidal suspensions. They allow for a variation of the form, strength and range of the interaction potential almost at will. While microgels have extensively been used as model systems to investigate various condensed matter problems such as glass formation, jamming or crystallization, they can also be used to study systems with anisotropic interactions. Here we show results from a systematic investigation of the influence of softness and anisotropy on the structural and dynamic properties of strongly interacting suspensions. We focus first on ionic microgels. Due to their large number of internal counterions they possess very large polarisabilities, and we can thus use external electrical ac fields to generate large dipolar contributions to the interparticle interaction potential. This leads to a number of new crystal phases, and we can trigger crystal-crystal phase transitions through the appropriate choice of the field strength. We then show that this approach can be extended to more complex particle shapes in an attempt to copy nature's well documented success in fabricating complex nanostructures such as virus shells via self assembly. European Research Council (ERC-339678-COMPASS).

  11. Anisotropic diffusion-limited aggregation.

    PubMed

    Popescu, M N; Hentschel, H G E; Family, F

    2004-06-01

    Using stochastic conformal mappings, we study the effects of anisotropic perturbations on diffusion-limited aggregation (DLA) in two dimensions. The harmonic measure of the growth probability for DLA can be conformally mapped onto a constant measure on a unit circle. Here we map m preferred directions for growth to a distribution on the unit circle, which is a periodic function with m peaks in [-pi,pi) such that the angular width sigma of the peak defines the "strength" of anisotropy kappa= sigma(-1) along any of the m chosen directions. The two parameters (m,kappa) map out a parameter space of perturbations that allows a continuous transition from DLA (for small enough kappa ) to m needlelike fingers as kappa--> infinity. We show that at fixed m the effective fractal dimension of the clusters D(m,kappa) obtained from mass-radius scaling decreases with increasing kappa from D(DLA) approximately 1.71 to a value bounded from below by D(min) = 3 / 2. Scaling arguments suggest a specific form for the dependence of the fractal dimension D(m,kappa) on kappa for large kappa which compares favorably with numerical results. PMID:15244564

  12. Modeling of anisotropic wound healing

    NASA Astrophysics Data System (ADS)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  13. Electrostatic and Small-Signal Analysis of CMUTs With Circular and Square Anisotropic Plates.

    PubMed

    Funding la Cour, Mette; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-08-01

    Traditionally, capacitive micromachined ultrasonic transducers (CMUTs) are modeled using the isotropic plate equation, and this leads to deviations between analytical calculations and finite element modeling (FEM). In this paper, the deflection is calculated for both circular and square plates using the full anisotropic plate equation. It is shown that the anisotropic calculations match excellently with FEM, whereas an isotropic approach causes up to 10% deviations in deflection. For circular plates, an exact solution can be found. For square plates using the Galerkin method, and utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is <0.1%. The theory of multilayer plates is also applied to the CMUT. The deflection of a square plate was measured on fabricated CMUTs using a white light interferometer. Fitting the plate parameter for the anisotropic calculated deflection to the measurement, a deviation of 0.07% is seen. Electrostatic and small-signal dynamic analysis are performed using energy considerations including anisotropy. The stable position, effective spring constant, pullin distance, and pull-in voltage are found for both circular and square anisotropic plates, and the pressure dependence is included by comparison with the corresponding analysis for a parallel plate. Measurements on fabricated devices with both circular and square plates subjected to increasing bias voltage are performed, and it is observed that the models including anisotropic effects are within the uncertainty interval of the measurements. Finally, a lumped element small-signal model for both circular and square anisotropic plates is derived to describe the dynamics of the CMUT.

  14. Electrostatic and Small-Signal Analysis of CMUTs With Circular and Square Anisotropic Plates.

    PubMed

    Funding la Cour, Mette; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt; Thomsen, Erik Vilain

    2015-08-01

    Traditionally, capacitive micromachined ultrasonic transducers (CMUTs) are modeled using the isotropic plate equation, and this leads to deviations between analytical calculations and finite element modeling (FEM). In this paper, the deflection is calculated for both circular and square plates using the full anisotropic plate equation. It is shown that the anisotropic calculations match excellently with FEM, whereas an isotropic approach causes up to 10% deviations in deflection. For circular plates, an exact solution can be found. For square plates using the Galerkin method, and utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is <0.1%. The theory of multilayer plates is also applied to the CMUT. The deflection of a square plate was measured on fabricated CMUTs using a white light interferometer. Fitting the plate parameter for the anisotropic calculated deflection to the measurement, a deviation of 0.07% is seen. Electrostatic and small-signal dynamic analysis are performed using energy considerations including anisotropy. The stable position, effective spring constant, pullin distance, and pull-in voltage are found for both circular and square anisotropic plates, and the pressure dependence is included by comparison with the corresponding analysis for a parallel plate. Measurements on fabricated devices with both circular and square plates subjected to increasing bias voltage are performed, and it is observed that the models including anisotropic effects are within the uncertainty interval of the measurements. Finally, a lumped element small-signal model for both circular and square anisotropic plates is derived to describe the dynamics of the CMUT. PMID:26492637

  15. Generalized similarity in finite range solar wind magnetohydrodynamic turbulence.

    PubMed

    Chapman, S C; Nicol, R M

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum--with turbulent fluctuations down by a factor of approximately 2 in power--provides a test of this invariance. PMID:20366193

  16. Generalized similarity in finite range solar wind magnetohydrodynamic turbulence.

    PubMed

    Chapman, S C; Nicol, R M

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum--with turbulent fluctuations down by a factor of approximately 2 in power--provides a test of this invariance.

  17. Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence

    SciTech Connect

    Chapman, S. C.; Nicol, R. M.

    2009-12-11

    Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. The ULYSSES spacecraft solar polar passes at solar minimum provide in situ observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterizes this finite range turbulence and is insensitive to plasma conditions. The recent unusually inactive solar minimum - with turbulent fluctuations down by a factor of approx2 in power - provides a test of this invariance.

  18. Scalar field in the anisotropic universe

    SciTech Connect

    Kim, Hyeong-Chan; Minamitsuji, Masato

    2010-04-15

    We discuss the primordial spectrum of a massless and minimally coupled scalar field, produced during the initial anisotropic epoch before the onset of inflation. We consider two models of the anisotropic cosmology, the (planar) Kasner-de Sitter solution (Bianchi I) and the Taub-NUT-de Sitter solution (Bianchi IX), where the 3-space geometry is initially anisotropic, followed by the de Sitter phase due to the presence of a positive cosmological constant. We discuss the behavior of a quantized, massless and minimally coupled scalar field in the anisotropic stage. This scalar field is not the inflaton and hence does not contribute to the background dynamics. We focus on the quantization procedure and evolution in the preinflationary anisotropic background. Also, in this paper for simplicity the metric perturbations are not taken into account. The initial condition is set by the requirement that the scalar field is initially in an adiabatic state. Usually, in a quantum harmonic oscillator system, an adiabatic process implies the one where the potential changes slowly enough compared to its size, and the time evolution can be obtained from the zeroth order WKB approximation. In our case, such a vacuum state exists only for limited solutions of the anisotropic universe, whose spacetime structure is regular in the initial times. In this paper, we call our adiabatic vacuum state the anisotropic vacuum. In the Kasner-de Sitter model, for one branch of planar solutions there is an anisotropic vacuum unless k{sub 3{ne}}0, where k{sub 3} is the comoving momentum along the third direction, while in the other branch there is no anisotropic vacuum state. In the first branch, for the moderate modes, k{sub 3{approx}}k, where k is the total comoving momentum, the scalar power spectrum has an oscillatory behavior and its direction dependence is suppressed. For the planar modes, k{sub 3}<

  19. Stress distribution in a premolar 3D model with anisotropic and isotropic enamel.

    PubMed

    Munari, Laís S; Cornacchia, Tulimar P M; Moreira, Allyson N; Gonçalves, Jason B; De Las Casas, Estevam B; Magalhães, Cláudia S

    2015-08-01

    The aim of this study was to compare the areas of stress concentration in a three-dimensional (3D) premolar tooth model with anisotropic or isotropic enamel using the finite element method. A computed tomography was imported to an image processing program to create the tooth model which was exported to a 3D modeling program. The mechanical properties and loading conditions were prescribed in Abaqus. In order to evaluate stresses, axial and oblique loads were applied simulating realistic conditions. Compression stress was observed on the side of load application, and tensile stress was observed on the opposite side. Tensile stress was concentrated mainly in the cervical region and in the alveolar insertion bone. Although stress concentration analyses of the isotropic 3D models produced similar stress distribution results when compared to the anisotropic models, tensile stress values shown by anisotropic models were smaller than the isotropic models. Oblique loads resulted in higher values of tensile stresses, which concentrate mainly in the cervical area of the tooth and in the alveolar bone insertion. Anisotropic properties must be utilized in enamel stress evaluation in non-carious cervical lesions. PMID:25850984

  20. Influence of anisotropic permeability on convection in porous media: Implications for geological CO2 sequestration

    NASA Astrophysics Data System (ADS)

    De Paoli, Marco; Zonta, Francesco; Soldati, Alfredo

    2016-05-01

    Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability on the distribution of solutal concentration in fluid saturated porous medium. Our computational analyses span over few decades of Rayleigh-Darcy number and confirm the linear scaling of Nusselt number that was previously found in the literature. In addition, we find that anisotropic permeability γ < 1, i.e., with vertical permeability smaller than horizontal permeability, effectively increases the Nusselt number compared with isotropic conditions. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. Finally, we use our data computed for the two-sided configuration (i.e., Dirichlet conditions on upper and lower boundaries) to examine the time evolution of solutal dynamics in the one-sided configuration, and we demonstrate that the finite-time (short-term) amount of CO2 that can be dissolved in anisotropic sedimentary rocks is much larger than in isotropic rocks.

  1. Model-size reduction technique for the analysis of symmetric anisotropic structures

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A two-step computational procedure is presented for reducing the size of the analysis model for an anisotropic symmetric structure to that of the corresponding orthotropic structure. The key elements of the procedure are: (1) decomposition of the stiffness matrix into the sum of an orthotropic and nonorthotropic (anisotropic) parts; and (2) successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The global approximation vectors are selected to be the solution corresponding to zero nonorthotropic matrix and its various-order derivatives with respect to an anisotropic tracing parameter (identifying the nonorthotropic material coefficients). The size of the analysis model used in generating the global approximation vectors is identical to that of the corresponding orthotropic structure. The effectiveness of the proposed technique is demonstrated by means of numerical examples and its potential for solving other quasi-symmetric problems is discussed.

  2. A 3 omega method to measure an arbitrary anisotropic thermal conductivity tensor.

    PubMed

    Mishra, Vivek; Hardin, Corey L; Garay, Javier E; Dames, Chris

    2015-05-01

    Previous use of the 3 omega method has been limited to materials with thermal conductivity tensors that are either isotropic or have their principal axes aligned with the natural cartesian coordinate system defined by the heater line and sample surface. Here, we consider the more general case of an anisotropic thermal conductivity tensor with finite off-diagonal terms in this coordinate system. An exact closed form solution for surface temperature has been found for the case of an ideal 3 omega heater line of finite width and infinite length, and verified numerically. We find that the common slope method of data processing yields the determinant of the thermal conductivity tensor, which is invariant upon rotation about the heater line's axis. Following this analytic result, an experimental scheme is proposed to isolate the thermal conductivity tensor elements. Using two heater lines and a known volumetric heat capacity, the arbitrary 2-dimensional anisotropic thermal conductivity tensor can be measured with a low frequency sweep. Four heater lines would be required to extend this method to measure all 6 unknown tensor elements in 3 dimensions. Experiments with anisotropic layered mica are carried out to demonstrate the analytical results.

  3. Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL.

    PubMed

    Molero, Miguel; Iturrarán-Viveros, Ursula

    2013-03-01

    We present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver. This experiment is numerically modeled by running a finite difference code covering a set of angles θ∈[-50°, 50°], and recorded the signals for the transmission and reflection results. Transversely anisotropic and weakly orthorhombic materials are considered. We accelerated the computation using an open-source toolkit called PyOpenCL, which lets one to easily access the OpenCL parallel computation API's from the high-level programming environment of Python. A speedup factor over 19 using the GPU is obtained when compared with the execution of the same program in parallel using a CPU multi-core (in this case we use the 4-cores that has the CPU). The performance for different graphic cards and operating systems is included together with the full 2-D finite difference code with PyOpenCL. PMID:23290584

  4. A 3 omega method to measure an arbitrary anisotropic thermal conductivity tensor

    NASA Astrophysics Data System (ADS)

    Mishra, Vivek; Hardin, Corey L.; Garay, Javier E.; Dames, Chris

    2015-05-01

    Previous use of the 3 omega method has been limited to materials with thermal conductivity tensors that are either isotropic or have their principal axes aligned with the natural cartesian coordinate system defined by the heater line and sample surface. Here, we consider the more general case of an anisotropic thermal conductivity tensor with finite off-diagonal terms in this coordinate system. An exact closed form solution for surface temperature has been found for the case of an ideal 3 omega heater line of finite width and infinite length, and verified numerically. We find that the common slope method of data processing yields the determinant of the thermal conductivity tensor, which is invariant upon rotation about the heater line's axis. Following this analytic result, an experimental scheme is proposed to isolate the thermal conductivity tensor elements. Using two heater lines and a known volumetric heat capacity, the arbitrary 2-dimensional anisotropic thermal conductivity tensor can be measured with a low frequency sweep. Four heater lines would be required to extend this method to measure all 6 unknown tensor elements in 3 dimensions. Experiments with anisotropic layered mica are carried out to demonstrate the analytical results.

  5. Application of Perona Malik anisotropic diffusion on digital radiographic image

    SciTech Connect

    Halim, Suhaila Abd; Razak, Rohayu Abdul; Ibrahim, Arsmah; Manurung, Yupiter HP

    2014-07-10

    Perona Malik Anisotropic Diffusion (PMAD) is a very useful and efficient denoising technique if the parameters are properly selected. Overestimating the parameters may cause oversmoothed and underestimating it may leave unfiltered noise. This makes the selection of parameters a crucial process. In this paper the PMAD model is solved using a finite difference scheme The discretized model is evaluated using different diffusion coefficient of exponential and quadratic on defective radiographic images in terms of quality and efficiency. In the application of the PMAD model on image data, a set of defective radiographic images of welding is used as input data. Peak Signal to Noise Ratio (PSNR), Structural Similarity Measure (SSIM) and temporal time are used to evaluate the performance of the model. The implementation of the experiment has been carried out using MATLAB R2009a. In terms of quality, results show that the Quadratic Diffusion Coefficient Function (QDCF) provides better results compared with the Exponential Diffusion Coefficient Function (EDCF). In conclusion, the denoising effect using PMAD model based on finite difference scheme shows able to improve image quality by removing noise in the defective radiographic image.

  6. Field dependent spin transport of anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters.

  7. A microsphere-based remodelling formulation for anisotropic biological tissues.

    PubMed

    Menzel, Andreas; Waffenschmidt, Tobias

    2009-09-13

    Biological tissues possess the ability to adapt according to the respective local loading conditions, which results in growth and remodelling phenomena. The main goal of this work is the development of a new remodelling approach that, on the one hand, reflects the alignment of fibrous soft biological tissue with respect to representative loading directions. On the other hand, the continuum approach proposed is based on a sound micro-mechanically motivated formulation. To be specific, use of a worm-like chain model is made to describe the behaviour of long-chain molecules as present in, for instance, collageneous tissues. The extension of such a one-dimensional constitutive equation to the three-dimensional macroscopic level is performed by means of a microsphere formulation. Inherent with the algorithmic treatment of this type of modelling approach, a finite number of unit vectors is considered for the numerical integration over the domain of the unit sphere. As a key aspect of this contribution, remodelling is incorporated by setting up evolution equations for the referential orientations of these integration directions. Accordingly, the unit vectors considered now allow interpretation as internal variables, which characterize the material's anisotropic properties. Several numerical studies underline the applicability of the model that, moreover, nicely fits into iterative finite element formulations so that general boundary value problems can be solved. PMID:19657009

  8. Nilpotent -local finite groups

    NASA Astrophysics Data System (ADS)

    Cantarero, José; Scherer, Jérôme; Viruel, Antonio

    2014-10-01

    We provide characterizations of -nilpotency for fusion systems and -local finite groups that are inspired by known result for finite groups. In particular, we generalize criteria by Atiyah, Brunetti, Frobenius, Quillen, Stammbach and Tate.

  9. Stability of grain boundary texture during isothermal grain growth in UO2 considering anisotropic grain boundary properties

    NASA Astrophysics Data System (ADS)

    Hallberg, Håkan; Zhu, Yaochan

    2015-10-01

    In the present study, mesoscale simulations of grain growth in UO2 are performed using a 2D level set representation of the polycrystal grain boundary network, employed in a finite element setting. Anisotropic grain boundary properties are considered by evaluating how grain boundary energy and mobility varies with local grain boundary character. This is achieved by considering different formulations of the anisotropy of grain boundary properties, for example in terms of coincidence site lattice (CSL) correspondence. Such modeling approaches allow tracing of the stability of a number of characteristic low-Σ boundaries in the material during grain growth. The present simulations indicate that anisotropic grain boundary properties have negligible influence on the grain growth rate. However, considering the evolution of grain boundary character distribution and the grain size distribution, it is found that neglecting anisotropic boundary properties will strongly bias predictions obtained from numerical simulations.

  10. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  11. Anisotropic matching principle for the hydrodynamic expansion

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo

    2016-10-01

    Following the recent success of anisotropic hydrodynamics, I propose here a new, general prescription for the hydrodynamic expansion around an anisotropic background. The anisotropic distribution fixes exactly the complete energy-momentum tensor, just like the effective temperature fixes the proper energy density in the ordinary expansion around local equilibrium. This means that momentum anisotropies are already included at the leading order, allowing for large pressure anisotropies without the need of a next-to-leading-order treatment. The first moment of the Boltzmann equation (local four-momentum conservation) provides the time evolution of the proper energy density and the four-velocity. Differently from previous prescriptions, the dynamic equations for the pressure corrections are not derived from the zeroth or second moment of the Boltzmann equation, but they are taken directly from the exact evolution given by the Boltzmann equation. As known in the literature, the exact evolution of the pressure corrections involves higher moments of the Boltzmann distribution, which cannot be fixed by the anisotropic distribution alone. Neglecting the next-to-leading-order contributions corresponds to an approximation, which depends on the chosen form of the anisotropic distribution. I check the the effectiveness of the leading-order expansion around the generalized Romatschke-Stricklad distribution, comparing with the exact solution of the Boltzmann equation in the Bjorken limit with the collisional kernel treated in the relaxation-time approximation, finding an unprecedented agreement.

  12. Mie scattering by a uniaxial anisotropic sphere

    SciTech Connect

    Geng Youlin; Wu Xinbao; Li Lewei; Guan Boran

    2004-11-01

    The field solution to the electromagnetic scattering of a plane wave by a uniaxial anisotropic sphere is obtained in terms of a spherical vector wave function expansion form. Using the source-free Maxwell's equations for uniaxial anisotropic media and making the Fourier transform of the field quantities, the electromagnetic fields in the spectral domain in uniaxial anisotropic media are assumed to have a form similar to the plane wave expanded also in terms of the spherical vector wave functions. Applying the continuous boundary conditions of electromagnetic fields on the surface between the air region and uniaxial anisotropic sphere, the coefficients of transmitted fields and the scattered fields in uniaxial anisotropic media can be obtained analytically in the expansion form of vector wave eigenfunctions. Numerical results for some special cases are obtained and compared with those of the classical Lorenz-Mie theory and the method of moments accelerated with the conjugate-gradient fast-Fourier-transform approach. We also present some new numerical results for the more general uniaxial dielectric material media.

  13. Mie scattering by a uniaxial anisotropic sphere.

    PubMed

    Geng, You-Lin; Wu, Xin-Bao; Li, Le-Wei; Guan, Bo-Ran

    2004-11-01

    The field solution to the electromagnetic scattering of a plane wave by a uniaxial anisotropic sphere is obtained in terms of a spherical vector wave function expansion form. Using the source-free Maxwell's equations for uniaxial anisotropic media and making the Fourier transform of the field quantities, the electromagnetic fields in the spectral domain in uniaxial anisotropic media are assumed to have a form similar to the plane wave expanded also in terms of the spherical vector wave functions. Applying the continuous boundary conditions of electromagnetic fields on the surface between the air region and uniaxial anisotropic sphere, the coefficients of transmitted fields and the scattered fields in uniaxial anisotropic media can be obtained analytically in the expansion form of vector wave eigenfunctions. Numerical results for some special cases are obtained and compared with those of the classical Lorenz-Mie theory and the method of moments accelerated with the conjugate-gradient fast-Fourier-transform approach. We also present some new numerical results for the more general uniaxial dielectric material media.

  14. Evaluation of Springback for DP980 S Rail Using Anisotropic Hardening Models

    NASA Astrophysics Data System (ADS)

    Choi, Jisik; Lee, Jinwoo; Bae, Gihyun; Barlat, Frederic; Lee, Myoung-Gyu

    2016-07-01

    The effect of anisotropic hardening models on springback of an S-rail part was investigated. Two advanced constitutive models based on distortional and kinematic hardening, which captured the Bauschinger effect, transient hardening, and permanent softening during strain path change, were implemented in a finite element (FE) code. In-plane compression-tension tests were performed to identify the model parameters. The springback of the S-rail after forming a 980 MPa dual-phase steel sheet sample was measured and analyzed using different hardening models. The comparison between experimental and FE results demonstrated that the advanced anisotropic hardening models, which are particularly suitable for non-proportional loading, significantly improved the springback prediction capability of an advanced high strength steel.

  15. Calculations of Diffuser Flows with an Anisotropic K-Epsilon Model

    NASA Technical Reports Server (NTRS)

    Zhu, J.; Shih, T.-H.

    1995-01-01

    A newly developed anisotropic K-epsilon model is applied to calculate three axisymmetric diffuser flows with or without separation. The new model uses a quadratic stress-strain relation and satisfies the realizability conditions, i.e., it ensures both the positivity of the turbulent normal stresses and the Schwarz' inequality between any fluctuating velocities. Calculations are carried out with a finite-element method. A second-order accurate, bounded convection scheme and sufficiently fine grids are used to ensure numerical credibility of the solutions. The standard K-epsilon model is also used in order to highlight the performance of the new model. Comparison with the experimental data shows that the anisotropic K-epsilon model performs consistently better than does the standard K-epsilon model in all of the three test cases.

  16. Effect of Initial Stress on a Fiber-Reinforced Anisotropic Thermoelastic Thick Plate

    NASA Astrophysics Data System (ADS)

    Abbas, Ibrahim A.; Abd-alla, Abo-el-nour N.

    2011-05-01

    The two-dimensional problem of generalized thermoelasticity for a fiber-reinforced anisotropic thick plate under initial stress is studied in the context of the Lord and Shulman theory. The upper surface of the plate is thermally insulated with prescribed surface loading while the lower surface of the plate rests on a rigid foundation and temperature. The problem is solved numerically using a finite element method. Numerical results for the temperature distribution, and the displacement and stress components are given and illustrated graphically. It is found from the graphs that the initial stress significantly influences the variations of field quantities. The results obtained in this paper may offer a theoretical basis and meaningful suggestions for the design of various fiber-reinforced anisotropic thermoelastic elements under loading to meet special engineering requirements.

  17. Distinguishing correct from incorrect PML proposals and a corrected unsplit PML for anisotropic, dispersive media

    SciTech Connect

    Oskooi, Ardavan; Johnson, Steven G.

    2011-04-01

    We show that some previous proposals for perfectly matched layer (PML) absorbers in anisotropic media or for waveguides at oblique incidence are not, in fact true PMLs; in previous work we similarly showed a failure of several PML proposals for periodic media (photonic crystals). We therefore argue that a more careful validation scheme is required for PML proposals, in contrast to past authors who have typically checked only that reflections are small for a fixed resolution, and suggest a simple validation scheme that can be readily applied to any PML proposal regardless of derivation or implementation. We demonstrate this test for a corrected, unsplit-field PML valid for anisotropic, dispersive media, implemented in both planewave-expansion and finite-difference time-domain (FDTD) methods.

  18. Anisotropic magnetoresistance in an antiferromagnetic semiconductor.

    PubMed

    Fina, I; Marti, X; Yi, D; Liu, J; Chu, J H; Rayan-Serrao, C; Suresha, S; Shick, A B; Zelezný, J; Jungwirth, T; Fontcuberta, J; Ramesh, R

    2014-01-01

    Recent studies in devices comprising metal antiferromagnets have demonstrated the feasibility of a novel spintronic concept in which spin-dependent phenomena are governed by an antiferromagnet instead of a ferromagnet. Here we report experimental observation of the anisotropic magnetoresistance in an antiferromagnetic semiconductor Sr2IrO4. Based on ab initio calculations, we associate the origin of the phenomenon with large anisotropies in the relativistic electronic structure. The antiferromagnet film is exchange coupled to a ferromagnet, which allows us to reorient the antiferromagnet spin-axis in applied magnetic fields via the exchange spring effect. We demonstrate that the semiconducting nature of our AFM electrode allows us to perform anisotropic magnetoresistance measurements in the current-perpendicular-to-plane geometry without introducing a tunnel barrier into the stack. Temperature-dependent measurements of the resistance and anisotropic magnetoresistance highlight the large, entangled tunabilities of the ordinary charge and spin-dependent transport in a spintronic device utilizing the antiferromagnet semiconductor.

  19. Magnetization of anisotropic Type II superconductors

    SciTech Connect

    Mints, R.G.

    1989-04-10

    Peculiarities of magnetization of anisotropic type II superconductors are of considerable interest in view of the discovery of high-T/sub c/ superconductors characterized by strongly asymmetric layered structure. Specifics of the penetration of magnetic flux into an anisotropic type II superconductor were discussed in the literature. This analysis gave the distribution of induction in an isolated vortex, its energy, and critical magnetic field H/sub c1/. However, the magnetization curve of anisotropic superconductors was not considered. This paper deals with the magnetic moment of uniaxial London superconductor in the interval H/sub c1/ /le/ H/sub 0/ << H/sub c2/, where H/sub 0/ is the external magnetic field strength.

  20. Elastic properties of spherically anisotropic piezoelectric composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming

    2010-09-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.

  1. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  2. Azimuthally Anisotropic 3D Velocity Continuation

    DOE PAGESBeta

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore » the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  3. Finite Volume Study of the Delta Magnetic Moments Using Dynamical Clover Fermions

    SciTech Connect

    Aubin, Christopher; Orginos, Konstantinos; Pascalutsa, Vladimir; Vanderhaeghen, Marc

    2009-01-01

    We calculate the magnetic dipole moment of the $\\Delta$ baryon using a background magnetic field on 2+1-flavors of clover fermions on anisotropic lattices. We focus on the finite volume effects that can be significant in background field studies, and thus we use two different spatial volumes in addition to several quark masses.

  4. Foam front propagation in anisotropic oil reservoirs.

    PubMed

    Grassia, P; Torres-Ulloa, C; Berres, S; Mas-Hernández, E; Shokri, N

    2016-04-01

    The pressure-driven growth model is considered, describing the motion of a foam front through an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially liquid-filled reservoir. In the model, the foam front is represented by a set of so-called "material points" that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam front is prone to develop concave sharply curved concavities, where the orientation of the front changes rapidly over a small spatial distance: these are referred to as "concave corners". These concave corners need to be propagated differently from the material points on the foam front itself. Typically the corner must move faster than those material points, otherwise spurious numerical artifacts develop in the computed shape of the front. A propagation rule or "speed up" rule is derived for the concave corners, which is shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous and anisotropic case, the orientation of the corner is such that the "correct" anisotropic speed is just very slightly less than the "incorrect" isotropic one. The anisotropic rule does however manage to keep the corner very slightly sharper than the isotropic rule does.

  5. Foam front propagation in anisotropic oil reservoirs.

    PubMed

    Grassia, P; Torres-Ulloa, C; Berres, S; Mas-Hernández, E; Shokri, N

    2016-04-01

    The pressure-driven growth model is considered, describing the motion of a foam front through an oil reservoir during foam improved oil recovery, foam being formed as gas advances into an initially liquid-filled reservoir. In the model, the foam front is represented by a set of so-called "material points" that track the advance of gas into the liquid-filled region. According to the model, the shape of the foam front is prone to develop concave sharply curved concavities, where the orientation of the front changes rapidly over a small spatial distance: these are referred to as "concave corners". These concave corners need to be propagated differently from the material points on the foam front itself. Typically the corner must move faster than those material points, otherwise spurious numerical artifacts develop in the computed shape of the front. A propagation rule or "speed up" rule is derived for the concave corners, which is shown to be sensitive to the level of anisotropy in the permeability of the reservoir and also sensitive to the orientation of the corners themselves. In particular if a corner in an anisotropic reservoir were to be propagated according to an isotropic speed up rule, this might not be sufficient to suppress spurious numerical artifacts, at least for certain orientations of the corner. On the other hand, systems that are both heterogeneous and anisotropic tend to be well behaved numerically, regardless of whether one uses the isotropic or anisotropic speed up rule for corners. This comes about because, in the heterogeneous and anisotropic case, the orientation of the corner is such that the "correct" anisotropic speed is just very slightly less than the "incorrect" isotropic one. The anisotropic rule does however manage to keep the corner very slightly sharper than the isotropic rule does. PMID:27090239

  6. Directional wetting in anisotropic inverse opals.

    PubMed

    Phillips, Katherine R; Vogel, Nicolas; Burgess, Ian B; Perry, Carole C; Aizenberg, Joanna

    2014-07-01

    Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy. PMID:24941308

  7. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  8. Optical Activity of Anisotropic Achiral Surfaces

    SciTech Connect

    Verbiest, T.; Kauranen, M.; Van Rompaey, Y.; Persoons, A. |

    1996-08-01

    Anisotropic achiral surfaces respond differently to left- and right-hand circularly polarized light. This occurs when the orientation of the surface with respect to an otherwise achiral experimental setup makes the total geometry chiral. Such optical activity is demonstrated in second-harmonic generation from an anisotropic thin molecular film. The circular-difference response reverses sign as the handedness of the geometry is reversed and vanishes when the setup possesses a mirror plane. The results are explained within the electric-dipole-allowed second-order surface nonlinearity. {copyright} {ital 1996 The American Physical Society.}

  9. Controllable underwater anisotropic oil-wetting

    SciTech Connect

    Yong, Jiale; Chen, Feng Yang, Qing; Farooq, Umar; Bian, Hao; Du, Guangqing; Hou, Xun

    2014-08-18

    This Letter demonstrates a simple method to achieve underwater anisotropic oil-wetting using silicon surfaces with a microgroove array produced by femtosecond laser ablation. The oil contact angles along the direction perpendicular to the grooves are consistently larger than those parallel to the microgroove arrays in water because the oil droplet is restricted by the energy barrier that exists between the non-irradiated domain and the trapped water in the laser-ablated microgrooves. This underwater anisotropic oil-wetting is able to be controlled, and the anisotropy can be tuned from 0° to ∼20° by adjusting the period of the microgroove arrays.

  10. Inverse moments equilibria for helical anisotropic systems

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Hirshman, S. P.; Depassier, M. C.

    1987-11-01

    An energy functional is devised for magnetic confinement schemes that have anisotropic plasma pressure. The minimization of this energy functional is demonstrated to reproduce components of the magnetohydrodynamic (MHD) force balance relation in systems with helical symmetry. An iterative steepest descent procedure is applied to the Fourier moments of the inverse magnetic flux coordinates to minimize the total energy and thus generate anisotropic pressure MHD equilibria. Applications to straight ELMO Snaky Torus (NTIS Document No. DE-84002406) configurations that have a magnetic well on the outermost flux surfaces have been obtained.

  11. Evolution of multidimensional flat anisotropic cosmological models

    SciTech Connect

    Beloborodov, A. ); Demianski, M. Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Warsaw International Center for Relativistic Astrophysics , Universita di Roma I, La Sapienza, Rome ); Ivanov, P.; Polnarev, A.G. )

    1993-07-15

    We study the dynamics of a flat multidimensional anisotropic cosmological model filled with an anisotropic fluidlike medium. By an appropriate choice of variables, the dynamical equations reduce to a two-dimensional dynamical system. We present a detailed analysis of the time evolution of this system and the conditions of the existence of spacetime singularities. We investigate the conditions under which violent, exponential, and power-law inflation is possible. We show that dimensional reduction cannot proceed by anti-inflation (rapid contraction of internal space). Our model indicates that it is very difficult to achieve dimensional reduction by classical means.

  12. Directional wetting in anisotropic inverse opals.

    PubMed

    Phillips, Katherine R; Vogel, Nicolas; Burgess, Ian B; Perry, Carole C; Aizenberg, Joanna

    2014-07-01

    Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy.

  13. Charged anisotropic matter with linear or nonlinear equation of state

    SciTech Connect

    Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi

    2010-08-15

    Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua's method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (10{sup 19}C) and maximum electric field intensities are very large (10{sup 23}-10{sup 24} statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.

  14. Anisotropic Peridotite Rheology and Regional Upper Mantle Flow Patterns

    NASA Astrophysics Data System (ADS)

    Blackman, D. K.; Boyce, D.; Dawson, P.; Castelnau, O.

    2014-12-01

    We investigate the rheologic impact of strong lattice preferred orientation (LPO), such as develops due to plate-driven shear, on the pattern of upper mantle flow near plate boundaries. We use finite element models to simulate a regional system of mantle flow, that includes LPO evolution in olivine polycrystal aggregates tracked along flow paths and anisotropic viscosity tensors based on the LPO. Our first, loosely coupled approach begins with a flow field based on a scalar viscosity. The results are postprocessed to compute LPO by integration along streamlines, and an anisotropic viscosity tensor field is derived from LPO. A new flow field is then computed based on the viscosity tensor field. For this case, the predicted flow field differed in a modest but geologically relevant way from the isotropic case. In preparation for incorporating the LPO and effective viscosity calculation directly into the flow code, we have been testing this step separately to assess the sensitivity of the computed tensor to specified deformation parameters. New work explores a power law stress:strain rate relation for the LPO development, upon which the aggregate's effective viscosity tensor depends. The pattern and amplitude of predicted deviation from isotropic viscosity are stronger than for the previously assumed linear stress:strain rate case, as expected. Initial runs that employ the power law viscosity tensor in updated flow calculations are underway at the time of this writing. In addition to the stress exponent for LPO and the resulting viscosity tensor, flow model parameters that notably impact the predictions include the specified stiffening as asthenosphere cools to lithospheric temperatures and mesh resolution within the axial and the base of lithosphere regions. We will present results for subaxial oceanic spreading center flow and report the outcomes of model parameter testing.

  15. Quantifying the Nonlinear, Anisotropic Material Response of Spinal Ligaments

    NASA Astrophysics Data System (ADS)

    Robertson, Daniel J.

    Spinal ligaments may be a significant source of chronic back pain, yet they are often disregarded by the clinical community due to a lack of information with regards to their material response, and innervation characteristics. The purpose of this dissertation was to characterize the material response of spinal ligaments and to review their innervation characteristics. Review of relevant literature revealed that all of the major spinal ligaments are innervated. They cause painful sensations when irritated and provide reflexive control of the deep spinal musculature. As such, including the neurologic implications of iatrogenic ligament damage in the evaluation of surgical procedures aimed at relieving back pain will likely result in more effective long-term solutions. The material response of spinal ligaments has not previously been fully quantified due to limitations associated with standard soft tissue testing techniques. The present work presents and validates a novel testing methodology capable of overcoming these limitations. In particular, the anisotropic, inhomogeneous material constitutive properties of the human supraspinous ligament are quantified and methods for determining the response of the other spinal ligaments are presented. In addition, a method for determining the anisotropic, inhomogeneous pre-strain distribution of the spinal ligaments is presented. The multi-axial pre-strain distributions of the human anterior longitudinal ligament, ligamentum flavum and supraspinous ligament were determined using this methodology. Results from this work clearly demonstrate that spinal ligaments are not uniaxial structures, and that finite element models which account for pre-strain and incorporate ligament's complex material properties may provide increased fidelity to the in vivo condition.

  16. δN formalism in anisotropic inflation and large anisotropic bispectrum and trispectrum

    SciTech Connect

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjaee, Javad T.; Firouzjahi, Hassan E-mail: emami@ipm.ir E-mail: firouz@mail.ipm.ir

    2013-08-01

    We present the consistent δN formalism for curvature perturbations in anisotropic cosmological backgrounds. We employ our δN formalism to calculate the power spectrum, the bispectrum and the trispectrum in models of anisotropic inflation with the background gauge fields in Bianchi I universe. Our results coincide exactly with the recent results obtained from in-in formalism. To satisfy the observational constraints the anisotropies generated on power spectrum are kept small but large orientation-dependent non-Gaussianities can be generated. We study the Suyama-Yamaguchi inequality for the amplitudes of the bispectrum and the trispectrum in the presence of anisotropic shapes.

  17. Electrical impedance tomography in anisotropic media with known eigenvectors

    NASA Astrophysics Data System (ADS)

    Abascal, Juan-Felipe P. J.; Lionheart, William R. B.; Arridge, Simon R.; Schweiger, Martin; Atkinson, David; Holder, David S.

    2011-06-01

    Electrical impedance tomography is an imaging method, with which volumetric images of conductivity are produced by injecting electrical current and measuring boundary voltages. It has the potential to become a portable non-invasive medical imaging technique. Until now, most implementations have neglected anisotropy even though human tissues like bone, muscle and brain white matter are markedly anisotropic. The recovery of an anisotropic conductivity tensor is uniquely determined by boundary measurements only up to a diffeomorphism that fixes the boundary. Nevertheless, uniqueness can be restored by providing information about the diffeomorphism. There are uniqueness results for two constraints: one eigenvalue and a multiple scalar of a general tensor. A useable constraint for medical applications is when the eigenvectors of the underlying tissue are known, which can be approximated from MRI or estimated from DT-MRI, although the eigenvalues are unknown. However there is no known theoretical result guaranteeing uniqueness for this constraint. In fact, only a few previous inversion studies have attempted to recover one or more eigenvalues assuming certain symmetries while ignoring nonuniqueness. In this work, the aim was to undertake a numerical study of the feasibility of the recovery of a piecewise linear finite element conductivity tensor in anisotropic media with known eigenvectors from the complete boundary data. The work suggests that uniqueness holds for this constraint, in addition to proposing a methodology for the incorporation of this prior for general conductivity tensors. This was carried out by performing an analysis of the Jacobian rank and by reconstructing four conductivity distributions: two diagonal tensors whose eigenvalues were linear and sinusoidal functions, and two general tensors whose eigenvectors resembled physiological tissue, one with eigenvectors spherically orientated like a spherical layered structure, and a sample of DT-MRI data of

  18. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    SciTech Connect

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  19. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    DOE PAGESBeta

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin

    2015-06-05

    The development of reliable methods for upscaling fine scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. We therefore propose a numerical homogenization algorithm based on multiscale finite element methods for simulating elasticmore » wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that is similar to the rotated staggered-grid finite difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity where the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.« less

  20. Development of the subroutine library ‘UMMDp’ for anisotropic yield functions commonly applicable to commercial FEM codes

    NASA Astrophysics Data System (ADS)

    Takizawa, Hideo; Kuwabara, Toshihiko; Oide, Kai; Yoshida, Junji

    2016-08-01

    Numerous types of yield functions have been proposed to describe the shape of a realistic yield surface. Major commercial finite element codes include few anisotropic functions. Alternatively, the codes allow users to implement material models through user- subroutines. We develop the Unified Material Model Driver for Plasticity (UMMDp) subroutine library, which enables users to implement an arbitrary yield function easily. In this paper, the framework of the UMMDp is presented and its availabilities is shown through examples of sheet metal forming analyses.

  1. Highly Anisotropic, Highly Transparent Wood Composites.

    PubMed

    Zhu, Mingwei; Song, Jianwei; Li, Tian; Gong, Amy; Wang, Yanbin; Dai, Jiaqi; Yao, Yonggang; Luo, Wei; Henderson, Doug; Hu, Liangbing

    2016-07-01

    For the first time, two types of highly anisotropic, highly transparent wood composites are demonstrated by taking advantage of the macro-structures in original wood. These wood composites are highly transparent with a total transmittance up to 90% but exhibit dramatically different optical and mechanical properties.

  2. Conformally flat polytropes for anisotropic matter

    NASA Astrophysics Data System (ADS)

    Herrera, L.; Di Prisco, A.; Barreto, W.; Ospino, J.

    2014-12-01

    We analyze in detail conformally flat spherically symmetric fluid distributions, satisfying a polytropic equation of state. Among the two possible families of relativistic polytropes, only one contains models which satisfy all the required physical conditions. The ensuing configurations are necessarily anisotropic and show interesting physical properties. Prospective applications of the presented models to the study of super-Chandrasekhar white dwarfs, are discussed.

  3. Polarization of Cerenkov radiation in anisotropic media

    SciTech Connect

    Orisa, B.D.

    1995-10-01

    Using the method of Stokes parameters, we examine the polarization of Cerenkov radiation in anisotropic media. The study reveals that the radiation is totally polarized and that circular polarization is purely a quantum effect. We examine two cases; when the particle initially moves along the optical axis and when the particle initially moves perpendicular to the optical axis.

  4. Casimir interactions for anisotropic magnetodielectric metamaterials

    SciTech Connect

    Da Rosa, Felipe S; Dalvit, Diego A; Milonni, Peter W

    2008-01-01

    We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.

  5. Anisotropic MHD model and some solutions

    SciTech Connect

    Kuznetsov, V. D.; Dzhalilov, N. S.

    2010-09-15

    MHD waves and instabilities in a collisionless anisotropic-pressure plasma are analyzed in an anisotropic MHD model based on the 16-moment approximation, and the results are found to agree well with those obtained in the low-frequency limit of the kinetic model. It is shown that accounting for heat fluxes leads to an asymmetry in the phase velocities of the wave modes with respect to the heat flux direction and also to a strong interaction between the modes, especially between the backward ones (those that propagate in a direction opposite to that of the heat flux). A correct description of the mirror instability is given. The resonant interaction of three backward modes-fast acoustic, fast magnetosonic, and slow acoustic-under the conditions for the onset of the classical firehose instability triggers a new type of instability the growth rate of which is faster than the maximum growth rate of the conventional firehose instability. The results prove that, in contrast to the familiar Chew-Goldberger-Low approximate model, the anisotropic MHD approach provides a correct description of the large-scale dynamics of collisionless anisotropic plasmas (such as solar corona, solar wind, and ionospheric and magnetospheric plasmas).

  6. Vibrations and stresses in layered anisotropic cylinders

    NASA Technical Reports Server (NTRS)

    Mulholland, G. P.; Gupta, B. P.

    1976-01-01

    An equation describing the radial displacement in a k layered anisotropic cylinder was obtained. The cylinders are initially unstressed but are subjected to either a time dependent normal stress or a displacement at the external boundaries of the laminate. The solution is obtained by utilizing the Vodicka orthogonalization technique. Numerical examples are given to illustrate the procedure.

  7. Anisotropic solutions in f(R) gravity

    NASA Astrophysics Data System (ADS)

    Tripathy, S. K.; Mishra, B.

    2016-08-01

    Anisotropic cosmological models are investigated in f( R) gravity in the metric formalism. Plane symmetric models with anisotropy in the expansion rates are considered. The anisotropy in expansion rates are assumed to be maintained throughout the cosmic evolution. Two accelerating models are constructed by assuming different functional forms for f( R). The viability of these models is tested through a stability analysis.

  8. Computing forces on interface elements exerted by dislocations in an elastically anisotropic crystalline material

    NASA Astrophysics Data System (ADS)

    Liu, B.; Arsenlis, A.; Aubry, S.

    2016-06-01

    Driven by the growing interest in numerical simulations of dislocation–interface interactions in general crystalline materials with elastic anisotropy, we develop algorithms for the integration of interface tractions needed to couple dislocation dynamics with a finite element or boundary element solver. The dislocation stress fields in elastically anisotropic media are made analytically accessible through the spherical harmonics expansion of the derivative of Green’s function, and analytical expressions for the forces on interface elements are derived by analytically integrating the spherical harmonics series recursively. Compared with numerical integration by Gaussian quadrature, the newly developed analytical algorithm for interface traction integration is highly beneficial in terms of both computation precision and speed.

  9. Generalized Magneto-thermoelasticity in a Fiber-Reinforced Anisotropic Half-Space

    NASA Astrophysics Data System (ADS)

    Abbas, Ibrahim A.; Abd-alla, Abo-el-nour N.; Othman, Mohamed I. A.

    2011-05-01

    The propagation of plane waves in a fiber-reinforced, anisotropic thermoelastic half-space proposed by Lord-Shulman under the effect of a magnetic field is discussed. The problem has been solved numerically using a finite element method. Numerical results for the temperature distribution, the displacement components, and the thermal stress are given and illustrated graphically. Comparisons are made with the results predicted by the theory of generalized thermoelasticity with one relaxation time for different values of time. It is found that the reinforcement has a great effect on the distribution of field quantities.

  10. Direct Identification of Elastic Constants of Anisotropic Plates by Modal Analysis: Experimental Results

    NASA Astrophysics Data System (ADS)

    Grédiac, M.; Fournier, N.; Paris, P.-A.; Surrel, Y.

    1998-03-01

    The determination of the six elastic stiffnesses of thin anisotropic plates from vibration tests is usually performed with numerical procedures based on the finite element or the Rayleigh-Ritz method, which both require assumptions concerning the studied mode shapes. The present paper describes a method based on the measurement and the processing of natural frequencies as well as mode shapes of the vibrating tested plate. As a result, the unknown stiffnesses are determined directly, without any iterative calculations. The experimental aspects of the method are presently described and several results illustrate the relevance of the approach.

  11. Buckling Analysis of Anisotropic Curved Panels and Shells with Variable Curvature

    NASA Technical Reports Server (NTRS)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1998-01-01

    A buckling formulation for anisotropic curved panels with variable curvature is presented in this paper. The variable curvature panel is assumed to consists of two or more panels of constant but different curvatures. Bezier functions are used as Ritz functions Displacement (C(sup 0)), and slope (C(sup 1)) continuities between segments are imposed by manipulation of the Bezier control points. A first-order shear-deformation theory is used in the buckling formulation. Results obtained from the present formulation are compared with those from finite element simulations and are found to be in good agreement.

  12. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  13. QUARKONIUM AT FINITE TEMPERATURE.

    SciTech Connect

    UMEDA, T.

    2006-06-09

    Lattice QCD studies on charmonium at finite temperature are presented After a discussion about problems for the Maximum Entropy Method applied to finite temperature lattice QCD, I show several results on charmonium spectral functions. The 'wave function' of charmonium is also discussed to study the spatial correlation between quark and anti-quark in deconfinement phase.

  14. Finite Control in Korean

    ERIC Educational Resources Information Center

    Lee, Kum Young

    2009-01-01

    This thesis explores finite control in Korean. An overview of the previous studies of control shows that the mainstream literature on control has consistently argued that referential dependence between an overt matrix argument and an embedded null subject is characteristic of non-finite clauses which contain a PRO subject. Moreover, although some…

  15. Unconstrained paving and plastering method for generating finite element meshes

    DOEpatents

    Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert

    2010-03-02

    Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.

  16. Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature.

    PubMed

    Ershov, Dmitry; Sprakel, Joris; Appel, Jeroen; Cohen Stuart, Martien A; van der Gucht, Jasper

    2013-06-01

    Objects floating at a liquid interface, such as breakfast cereals floating in a bowl of milk or bubbles at the surface of a soft drink, clump together as a result of capillary attraction. This attraction arises from deformation of the liquid interface due to gravitational forces; these deformations cause excess surface area that can be reduced if the particles move closer together. For micrometer-sized colloids, however, the gravitational force is too small to produce significant interfacial deformations, so capillary forces between spherical colloids at a flat interface are negligible. Here, we show that this is different when the confining liquid interface has a finite curvature that is also anisotropic. In that case, the condition of constant contact angle along the three-phase contact line can only be satisfied when the interface is deformed. We present experiments and numerical calculations that demonstrate how this leads to quadrupolar capillary interactions between the particles, giving rise to organization into regular square lattices. We demonstrate that the strength of the governing anisotropic interactions can be rescaled with the deviatoric curvature alone, irrespective of the exact shape of the liquid interface. Our results suggest that anisotropic interactions can easily be induced between isotropic colloids through tailoring of the interfacial curvature.

  17. Guided waves in anisotropic and quasi-isotropic aerospace composites: three-dimensional simulation and experiment.

    PubMed

    Leckey, Cara A C; Rogge, Matthew D; Raymond Parker, F

    2014-01-01

    Three-dimensional (3D) elastic wave simulations can be used to investigate and optimize nondestructive evaluation (NDE) and structural health monitoring (SHM) ultrasonic damage detection techniques for aerospace materials. 3D anisotropic elastodynamic finite integration technique (EFIT) has been implemented for ultrasonic waves in carbon fiber reinforced polymer (CFRP) composite laminates. This paper describes 3D EFIT simulations of guided wave propagation in undamaged and damaged anisotropic and quasi-isotropic composite plates. Comparisons are made between simulations of guided waves in undamaged anisotropic composite plates and both experimental laser Doppler vibrometer (LDV) wavefield data and dispersion curves. Time domain and wavenumber domain comparisons are described. Wave interaction with complex geometry delamination damage is then simulated to investigate how simulation tools incorporating realistic damage geometries can aid in the understanding of wave interaction with CFRP damage. In order to move beyond simplistic assumptions of damage geometry, volumetric delamination data acquired via X-ray microfocus computed tomography is directly incorporated into the simulation. Simulated guided wave interaction with the complex geometry delamination is compared to experimental LDV time domain data and 3D wave interaction with the volumetric damage is discussed.

  18. Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature.

    PubMed

    Ershov, Dmitry; Sprakel, Joris; Appel, Jeroen; Cohen Stuart, Martien A; van der Gucht, Jasper

    2013-06-01

    Objects floating at a liquid interface, such as breakfast cereals floating in a bowl of milk or bubbles at the surface of a soft drink, clump together as a result of capillary attraction. This attraction arises from deformation of the liquid interface due to gravitational forces; these deformations cause excess surface area that can be reduced if the particles move closer together. For micrometer-sized colloids, however, the gravitational force is too small to produce significant interfacial deformations, so capillary forces between spherical colloids at a flat interface are negligible. Here, we show that this is different when the confining liquid interface has a finite curvature that is also anisotropic. In that case, the condition of constant contact angle along the three-phase contact line can only be satisfied when the interface is deformed. We present experiments and numerical calculations that demonstrate how this leads to quadrupolar capillary interactions between the particles, giving rise to organization into regular square lattices. We demonstrate that the strength of the governing anisotropic interactions can be rescaled with the deviatoric curvature alone, irrespective of the exact shape of the liquid interface. Our results suggest that anisotropic interactions can easily be induced between isotropic colloids through tailoring of the interfacial curvature. PMID:23690591

  19. Temporal frequency spread of optical wave propagation through anisotropic non-Kolmogorov turbulence

    NASA Astrophysics Data System (ADS)

    Kotiang, Stephen; Choi, Jaeho

    2015-12-01

    In this paper, we derive new analytic expressions for the atmospheric-induced frequency spread of optical plane and spherical waves propagating in a horizontal path and experiencing anisotropic non-Kolmogorov turbulence. The anisotropic spectrum model is based on the assumption that circular symmetry is maintained in the orthogonal xy-plane throughout the path and that it includes the same degree of anisotropy along the direction of propagation for all the turbulence cell sizes. These expressions are developed in the weak fluctuation region using the Rytov approximation method and are independent of the knowledge of the temporal mutual coherence function for the optical waves. We perform our analysis based on a generalized von Karman power spectrum of the index of refraction. The spectrum considers the effect of finite inner and outer scales of turbulence, together with a non-Kolmogorov spectral power exponent α that varies between 3-4. The simulation results show that the anisotropic parameter impacts on the frequency spread by a factor {\\zeta }2-α . Moreover the frequency spread is most significant for α values around 3.1.

  20. Capillarity-induced ordering of spherical colloids on an interface with anisotropic curvature

    PubMed Central

    Ershov, Dmitry; Sprakel, Joris; Appel, Jeroen; Cohen Stuart, Martien A.; van der Gucht, Jasper

    2013-01-01

    Objects floating at a liquid interface, such as breakfast cereals floating in a bowl of milk or bubbles at the surface of a soft drink, clump together as a result of capillary attraction. This attraction arises from deformation of the liquid interface due to gravitational forces; these deformations cause excess surface area that can be reduced if the particles move closer together. For micrometer-sized colloids, however, the gravitational force is too small to produce significant interfacial deformations, so capillary forces between spherical colloids at a flat interface are negligible. Here, we show that this is different when the confining liquid interface has a finite curvature that is also anisotropic. In that case, the condition of constant contact angle along the three-phase contact line can only be satisfied when the interface is deformed. We present experiments and numerical calculations that demonstrate how this leads to quadrupolar capillary interactions between the particles, giving rise to organization into regular square lattices. We demonstrate that the strength of the governing anisotropic interactions can be rescaled with the deviatoric curvature alone, irrespective of the exact shape of the liquid interface. Our results suggest that anisotropic interactions can easily be induced between isotropic colloids through tailoring of the interfacial curvature. PMID:23690591

  1. Graphics processing unit (GPU)-based computation of heat conduction in thermally anisotropic solids

    NASA Astrophysics Data System (ADS)

    Nahas, C. A.; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-01-01

    Numerical modeling of anisotropic media is a computationally intensive task since it brings additional complexity to the field problem in such a way that the physical properties are different in different directions. Largely used in the aerospace industry because of their lightweight nature, composite materials are a very good example of thermally anisotropic media. With advancements in video gaming technology, parallel processors are much cheaper today and accessibility to higher-end graphical processing devices has increased dramatically over the past couple of years. Since these massively parallel GPUs are very good in handling floating point arithmetic, they provide a new platform for engineers and scientists to accelerate their numerical models using commodity hardware. In this paper we implement a parallel finite difference model of thermal diffusion through anisotropic media using the NVIDIA CUDA (Compute Unified device Architecture). We use the NVIDIA GeForce GTX 560 Ti as our primary computing device which consists of 384 CUDA cores clocked at 1645 MHz with a standard desktop pc as the host platform. We compare the results from standard CPU implementation for its accuracy and speed and draw implications for simulation using the GPU paradigm.

  2. Magnetotransport potentials for anisotropic thin films with stripline and ground plane contacts

    NASA Astrophysics Data System (ADS)

    Tang, Yang; Grayson, M.

    2015-01-01

    Superlattice layers in infrared emitters and detectors can be highly anisotropic in their electrical properties, and proper characterization of their in-plane and cross-plane transport can reveal information about the band structure, doping density, impurities, and carrier lifetimes. This work introduces numerical simulation methods for the potential distribution in an anisotropic resistive layer representing a suplerlattice, using both and non-conformal and conformal mapping to simplify the calculation of the potential int he presence of a magnetic field. A shingle strip-line contact is modeled atop the resistive superlattrive layer of interest, which, in turn, contact with a highly conducting back-plane and magnetic field-dependent Neumann boundary conditions at the floating front-plane. To increase cpomputational efficiency, non-conformal an conformal mapping are combined to transform the problem of an intractable infinitely wide anisotropic thin-film smaple to calculable, finite isotropic rectangular shape. The potential calculations introduced here should prove useful for deducing the full conductivity tensor of the superlattice region, including in-plane, cross-plane, and transverse conductivity tensor components.

  3. An Anisotropic Model for Magnetostriction and Magnetization Computing for Noise Generation in Electric Devices

    PubMed Central

    Mbengue, Serigne Saliou; Buiron, Nicolas; Lanfranchi, Vincent

    2016-01-01

    During the manufacturing process and use of ferromagnetic sheets, operations such as rolling, cutting, and tightening induce anisotropy that changes the material’s behavior. Consequently for more accuracy in magnetization and magnetostriction calculations in electric devices such as transformers, anisotropic effects should be considered. In the following sections, we give an overview of a macroscopic model which takes into account the magnetic and magnetoelastic anisotropy of the material for both magnetization and magnetostriction computing. Firstly, a comparison between the model results and measurements from a Single Sheet Tester (SST) and values will be shown. Secondly, the model is integrated in a finite elements code to predict magnetostrictive deformation of an in-house test bench which is a stack of 40 sheets glued together by the Vacuum-Pressure Impregnation (VPI) method. Measurements on the test bench and Finite Elements results are presented. PMID:27092513

  4. Isotropic to anisotropic transition in a fractional quantum Hall state

    NASA Astrophysics Data System (ADS)

    Mulligan, Michael; Nayak, Chetan; Kachru, Shamit

    2010-08-01

    We study an Abelian gauge theory in 2+1 dimensions which has surprising theoretical and phenomenological features. The theory has a vanishing coefficient for the square of the electric field ei2 , characteristic of a quantum critical point with dynamical critical exponent z=2 , and a level- k Chern-Simons coupling, which is marginal at this critical point. For k=0 , this theory is dual to a free z=2 scalar field theory describing a quantum Lifshitz transition, but k≠0 renders the scalar description nonlocal. The k≠0 theory exhibits properties intermediate between the (topological) pure Chern-Simons theory and the scalar theory. For instance, the Chern-Simons term does not make the gauge field massive. Nevertheless, there are chiral edge modes when the theory is placed on a space with boundary and a nontrivial ground-state degeneracy kg when it is placed on a finite-size Riemann surface of genus g . The coefficient of ei2 is the only relevant coupling; it tunes the system through a quantum phase transition between an isotropic fractional quantum Hall state and an anisotropic fractional quantum Hall state. We compute zero-temperature transport coefficients in both phases and at the critical point and comment briefly on the relevance of our results to recent experiments.

  5. Global sound modes in mirror traps with anisotropic pressure

    SciTech Connect

    Skovorodin, D. I.; Zaytsev, K. V.; Beklemishev, A. D.

    2013-10-15

    Global oscillations of inhomogeneous plasma with frequencies close to the bounce frequency of ions in mirror traps have been studied. It has been shown that, in some cases, the sound can be reflected from the axial plasma inhomogeneity. The ideal magnetohydrodynamic (MHD) model with Chew-Goldberger-Low approximation has been utilized to determine conditions of existence of the standing waves in the mirror-confined plasma. Linearized wave equation for the longitudinal plasma oscillations in thin anisotropic inhomogeneous plasma with finite β has been derived. The wave equation has been treated numerically. The oscillations are studied for the case of the trap with partially filled loss-cone and the trap with sloshing ions. It has been shown that in cells of the multiple-mirror trap standing waves can exist. The frequency of the wave is of the order of the mean bounce-frequency of ions. In the trap with sloshing ions, the mode supported by the pressure of fast ions could exist. The results of oscillations observation in the experiment on the Gas Dynamic Trap have been presented.

  6. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    PubMed

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  7. Analysis Method for Inelastic, Adhesively Bonded Joints with Anisotropic Adherends

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Klang, Eric C.

    2003-01-01

    A one-dimensional analysis method for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives with nonlinear material behavior is presented in the proposed paper. The strain and resulting stress field in a general, bonded joint overlap are determined by using a variable-step, finite-difference solution algorithm to iteratively solve a system of first-order differential equations. Applied loading is given by a system of combined extensional, bending, and shear forces that are applied to the edge of the joint overlap. Adherends are assumed to behave as linear, cylindrically bent plates using classical laminated plate theory that includes the effects of first-order transverse shear deformation. Using the deformation theory of plasticity and a modified von-Mises yield criterion, inelastic material behavior is modeled in the adhesive layer. Results for the proposed method are verified against previous results from the literature and shown to be in excellent agreement. An additional case that highlights the effects of transverse shear deformation between similar adherends is also presented.

  8. Observation of an Anisotropic Wigner Crystal

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Hasdemir, S.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-09-01

    We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1 /3 ≲ν ≲2 /3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B∥) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B∥. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B∥ about 10 times smaller than the resistance perpendicular to B∥. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.

  9. Wireless energy transfer between anisotropic metamaterials shells

    SciTech Connect

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  10. Comparing anisotropic displacement parameters in protein structures.

    PubMed

    Merritt, E A

    1999-12-01

    The increasingly widespread use of synchrotron-radiation sources and cryo-preparation of samples in macromolecular crystallography has led to a dramatic increase in the number of macromolecular structures determined at atomic or near-atomic resolution. This permits expansion of the structural model to include anisotropic displacement parameters U(ij) for individual atoms. In order to explore the physical significance of these parameters in protein structures, it is useful to be able to compare quantitatively the electron-density distribution described by the refined U(ij) values associated with corresponding crystallographically independent atoms. This paper presents the derivation of an easily calculated correlation coefficient in real space between two atoms modeled with anisotropic displacement parameters. This measure is used to investigate the degree of similarity between chemically equivalent but crystallographically independent atoms in the set of protein structural models currently available from the Protein Data Bank.

  11. Rotating Anisotropic Crystalline Silicon Nanoclusters in Graphene.

    PubMed

    Chen, Qu; Koh, Ai Leen; Robertson, Alex W; He, Kuang; Lee, Sungwoo; Yoon, Euijoon; Lee, Gun-Do; Sinclair, Robert; Warner, Jamie H

    2015-10-27

    The atomic structure and dynamics of silicon nanoclusters covalently bonded to graphene are studied using aberration-corrected transmission electron microscopy. We show that as the cluster size increases to 4-10 atoms, ordered crystalline cubic phases start to emerge. Anisotropic crystals are formed due to higher stability of the Si-C bond under electron beam irradiation compared to the Si-Si bond. Dynamics of the anisotropic crystalline Si nanoclusters reveal that they can rotate perpendicular to the graphene plane, with oscillations between the two geometric configurations driven by local volume constraints. These results provide important insights into the crystalline phases of clusters of inorganic dopants in graphene at the intermediate size range between isolated single atoms and larger bulk 2D forms.

  12. Disentangling scaling properties in anisotropic fracture.

    PubMed

    Bouchbinder, Eran; Procaccia, Itamar; Sela, Shani

    2005-12-16

    Structure functions of rough fracture surfaces in isotropic materials exhibit complicated scaling properties due to the broken isotropy in the fracture plane generated by a preferred propagation direction. Decomposing the structure functions into the even order irreducible representations of the SO(2) symmetry group indexed by (m = 0, 2, 4, . . .) results in a lucid and quickly convergent description. The scaling exponent of the isotropic sector (m = 0) dominates at small length scales. One can reconstruct the anisotropic structure functions using only the isotropic and the first nonvanishing anisotropic sector (m = 2) [or at most the next one (m = 4)]. The scaling exponent of the isotropic sector should be observed in a proposed, yet unperformed, experiment.

  13. Cosmological signatures of anisotropic spatial curvature

    NASA Astrophysics Data System (ADS)

    Pereira, Thiago S.; Mena Marugán, Guillermo A.; Carneiro, Saulo

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  14. Acoustic analysis of anisotropic poroelastic multilayered systems

    NASA Astrophysics Data System (ADS)

    Parra Martinez, Juan Pablo; Dazel, Olivier; Göransson, Peter; Cuenca, Jacques

    2016-02-01

    The proposed method allows for an extended analysis of the wave analysis, internal powers, and acoustic performance of anisotropic poroelastic media within semi-infinite multilayered systems under arbitrary excitation. Based on a plane wave expansion, the solution is derived from a first order partial derivative as proposed by Stroh. This allows for an in-depth analysis of the mechanisms controlling the acoustic behaviour in terms of internal powers and wave properties in the media. In particular, the proposed approach is used to highlight the influence of the phenomena intrinsic to anisotropic poroelastic media, such as compression-shear coupling related to the material alignment, the frequency shift of the fundamental resonance, or the appearance of particular geometrical coincidences in multilayered systems with such materials.

  15. Performance analysis of anisotropic scattering center detection

    NASA Astrophysics Data System (ADS)

    Moses, Randolph L.; Erten, Eniz; Potter, Lee C.

    1997-07-01

    We consider the problem of detecting anisotropic scattering of targets from wideband SAR measurements. We first develop a scattering model for the response of an ideal dihedral when interrogated by a wideband radar. We formulate a stochastic detection problem based on this model and Gaussian clutter models. We investigate the performance of three detectors, the conventional imaging detector, a generalized likelihood ratio test (GLRT) detector based on the dihedral anisotropic scattering model, and a sum-of- squares detector motivated as a computationally attractive alternative to the GLRT test. We also investigate the performance degradation of the GLRT detector when using truncated angle response filters, and analyze detector sensitivity to changes in target length. Finally, we present initial results of angular matched filter detection applied to UWB radar measurements collected by the Army Research Laboratory at Aberdeen Proving Grounds.

  16. Formation of Anisotropic Block Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Liaw, Chya Yan; Shull, Kenneth; Henderson, Kevin; Joester, Derk

    2011-03-01

    Anisotropic, fibrillar gels are important in a variety of processes. Biomineralization is one example, where the mineralization process often occurs within a matrix of collagen or chitin fibers that trap the mineral precursors and direct the mineralization process. We wish to replicate this type of behavior within block copolymer gels. Particularly, we are interested in employing gels composed of cylindrical micelles, which are anisotropic and closely mimic biological fibers. Micelle geometry is controlled in our system by manipulating the ratio of molecular weights of the two blocks and by controlling the detailed thermal processing history of the copolymer solutions. Small-Angle X-ray Scattering and Dynamic Light Scattering are used to determine the temperature dependence of the gel formation process. Initial experiments are based on a thermally-reversible alcohol-soluble system, that can be subsequently converted to a water soluble system by hydrolysis of a poly(t-butyl methacrylate) block to a poly (methacrylic acid) block. MRSEC.

  17. Observation of an Anisotropic Wigner Crystal.

    PubMed

    Liu, Yang; Hasdemir, S; Pfeiffer, L N; West, K W; Baldwin, K W; Shayegan, M

    2016-09-01

    We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1/3≲ν≲2/3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B_{∥}) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B_{∥}. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B_{∥} about 10 times smaller than the resistance perpendicular to B_{∥}. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal. PMID:27636486

  18. Differential dynamic microscopy for anisotropic colloidal dynamics.

    PubMed

    Reufer, Mathias; Martinez, Vincent A; Schurtenberger, Peter; Poon, Wilson C K

    2012-03-13

    Differential dynamic microscopy (DDM) is a low-cost, high-throughput technique recently developed for characterizing the isotropic diffusion of spherical colloids using white-light optical microscopy. (1) We develop the theory for applying DDM to probe the dynamics of anisotropic colloidal samples such as various ordered phases, or particles interacting with an external field. The q-dependent dynamics can be measured in any direction in the image plane. We demonstrate the method on a dilute aqueous dispersion of anisotropic magnetic particles (hematite) aligned in a magnetic field. The measured diffusion coefficients parallel and perpendicular to the field direction are in good agreement with theoretical values. We show how these measurements allow us to extract the orientational order parameter S(2) of the system.

  19. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    NASA Astrophysics Data System (ADS)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  20. On constitutive relations at finite strain - Hypo-elasticity and elasto-plasticity with isotropic or kinematic hardening

    NASA Technical Reports Server (NTRS)

    Atluri, S. N.

    1984-01-01

    Nagtegaal and de Jong (1982) have studied stresses generated by simple finite shear in the case of elastic-plastic and rigid-plastic materials which exhibit anisotropic hardening. They reported that the shear stress is oscillatory in time. It was found that the occurrence of such an 'anomaly' is not restricted to anisotropic plasticity. Similar behavior in finite shear may result even in the case of hypoelasticity and classical isotropic hardening plasticity theory. The present investigation is concerned with the central problem of 'generalizing' with respect to the finite strain case, taking into account the constitutive relations of infinitesimal strain theories of classical plasticity with isotropic or kinematic hardening. The problem of hypoelasticity is also considered. It is shown that current controversies surrounding the choice of stress rate in the finite-strain generalizations of the constitutive relations and the anomalies surrounding kinematic hardening plasticity theory are easily resolvable.

  1. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    NASA Astrophysics Data System (ADS)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  2. Anisotropic resonant scattering from polymer photonic crystals.

    PubMed

    Haines, Andrew I; Finlayson, Chris E; Snoswell, David R E; Spahn, Peter; Hellmann, G Peter; Baumberg, Jeremy J

    2012-11-20

    Hyperspectral goniometry reveals anisotropic scattering which dominates the visual appearance of self-assembled polymer opals. The technique allows reconstruction of the reciprocal-space of nanostructures, and indicates that chain defects formed during shear-ordering are responsible for the anisotropy in these samples. Enhanced scattering with improving order is shown to arise from increased effective refractive index contrast, while broadband background scatter is suppressed by absorptive dopants. PMID:22915079

  3. Perspectives of anisotropic flow measurements at NICA

    NASA Astrophysics Data System (ADS)

    Korotkikh, V. L.; Lokhtin, I. P.; Malinina, L. V.; Petrushanko, S. V.; Snigirev, A. M.

    2016-08-01

    High-accuracy and high-luminosity measurements of anisotropic flow for various hadron types over full NICA energy range will provide important constraints on the early dynamics of heavy-ion reactions under the conditions where a first-order quark-hadron phase transition may occur. The statistical reach for elliptic flow measurements at NICA is estimated with HYDJET++ heavy-ion event generator.

  4. Anisotropic conducting films for electromagnetic radiation applications

    DOEpatents

    Cavallo, Francesca; Lagally, Max G.; Rojas-Delgado, Richard

    2015-06-16

    Electronic devices for the generation of electromagnetic radiation are provided. Also provided are methods for using the devices to generate electromagnetic radiation. The radiation sources include an anisotropic electrically conducting thin film that is characterized by a periodically varying charge carrier mobility in the plane of the film. The periodic variation in carrier mobility gives rise to a spatially varying electric field, which produces electromagnetic radiation as charged particles pass through the film.

  5. Multidimensional Contact Moduli of Elastically Anisotropic Solids

    SciTech Connect

    Gao, Yanfei; Pharr, George Mathews

    2007-01-01

    Effective moduli of elastically anisotropic solids under normal and tangential contacts are derived using the Stroh formalism and the two dimensional Fourier transform. Each Fourier component corresponds to a plane field in the plane spanned by the surface normal and a wavevector, the solution of which only involves an algebraic eigenvalue problem. Exact solutions are obtained for indenters described by parabolae of revolution, which are found to be a good approximation for arbitrary axisymmetric indenters.

  6. Restoring unitarity in anisotropic quantum cosmological models

    NASA Astrophysics Data System (ADS)

    Pal, Sridip; Banerjee, Narayan

    2015-02-01

    The present work shows that a properly chosen ordering of operators can restore unitarity in anisotropic quantum cosmological models. Bianchi V and Bianchi IX models with a perfect fluid are worked out. A transformation of coordinates takes the Hamiltonian to that of an inverse square potential which has equal deficiency indices; thus, a self-adjoint extension is possible. Although not clearly detected before, we show here that isotropic models are also apt to violate the conservation of probability for careless operator ordering.

  7. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    PubMed

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction.

  8. Observational signatures of anisotropic inflationary models

    SciTech Connect

    Ohashi, Junko; Tsujikawa, Shinji; Soda, Jiro E-mail: jiro@phys.sci.kobe-u.ac.jp

    2013-12-01

    We study observational signatures of two classes of anisotropic inflationary models in which an inflaton field couples to (i) a vector kinetic term F{sub μν}F{sup μν} and (ii) a two-form kinetic term H{sub μνλ}H{sup μνλ}. We compute the corrections from the anisotropic sources to the power spectrum of gravitational waves as well as the two-point cross correlation between scalar and tensor perturbations. The signs of the anisotropic parameter g{sub *} are different depending on the vector and the two-form models, but the statistical anisotropies generally lead to a suppressed tensor-to-scalar ratio r and a smaller scalar spectral index n{sub s} in both models. In the light of the recent Planck bounds of n{sub s} and r, we place observational constraints on several different inflaton potentials such as those in chaotic and natural inflation in the presence of anisotropic interactions. In the two-form model we also find that there is no cross correlation between scalar and tensor perturbations, while in the vector model the cross correlation does not vanish. The non-linear estimator f{sub NL} of scalar non-Gaussianities in the two-form model is generally smaller than that in the vector model for the same orders of |g{sub *}|, so that the former is easier to be compatible with observational bounds of non-Gaussianities than the latter.

  9. Symmetry analysis for anisotropic field theories

    SciTech Connect

    Parra, Lorena; Vergara, J. David

    2012-08-24

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  10. Nonparaxial solitary waves in anisotropic dielectrics

    SciTech Connect

    Alberucci, Alessandro; Assanto, Gaetano

    2011-03-15

    We account for the vectorial character of electromagnetic waves in the study of nonlinear self-action and transverse localization in dielectric anisotropic media. With reference to uniaxials, we address spatial solitons propagating in the nonparaxial regime in the presence of an arbitrary degree of nonlocality, going from the standard Kerr response to the highly nonlocal case, unveiling various effects, including transverse profile asymmetry and bending of the trajectory, as well as a weak effective nonlocality even in local media.

  11. Multidimensional reaction rate theory with anisotropic diffusion.

    PubMed

    Berezhkovskii, Alexander M; Szabo, Attila; Greives, Nicholas; Zhou, Huan-Xiang

    2014-11-28

    An analytical expression is derived for the rate constant that describes diffusive transitions between two deep wells of a multidimensional potential. The expression, in contrast to the Kramers-Langer formula for the rate constant, is valid even when the diffusion is highly anisotropic. Our approach is based on a variational principle for the reactive flux and uses a trial function for the splitting probability or commitor. The theoretical result is validated by Brownian dynamics simulations.

  12. Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.

    PubMed

    Jang, Hyejin; Wood, Joshua D; Ryder, Christopher R; Hersam, Mark C; Cahill, David G

    2015-12-22

    The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direction. PMID:26516073

  13. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  14. ARTc: Anisotropic reflectivity and transmissivity calculator

    NASA Astrophysics Data System (ADS)

    Malehmir, Reza; Schmitt, Douglas R.

    2016-08-01

    While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.

  15. Anisotropic representations for superresolution of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Bosch, Edward H.; Czaja, Wojciech; Murphy, James M.; Weinberg, Daniel

    2015-05-01

    We develop a method for superresolution based on anisotropic harmonic analysis. Our ambition is to efficiently increase the resolution of an image without blurring or introducing artifacts, and without integrating additional information, such as sub-pixel shifts of the same image at lower resolutions or multimodal images of the same scene. The approach developed in this article is based on analysis of the directional features present in the image that is to be superesolved. The harmonic analytic technique of shearlets is implemented in order to efficiently capture the directional information present in the image, which is then used to provide smooth, accurate images at higher resolutions. Our algorithm is compared to both a recent anisotropic technique based on frame theory and circulant matrices,1 as well as to the standard superresolution method of bicubic interpolation. We evaluate our algorithm on synthetic test images, as well as a hyperspectral image. Our results indicate the superior performance of anisotropic methods, when compared to standard bicubic interpolation.

  16. Anisotropic materials appearance analysis using ellipsoidal mirror

    NASA Astrophysics Data System (ADS)

    Filip, Jiří; Vávra, Radomír.

    2015-03-01

    Many real-world materials exhibit significant changes in appearance when rotated along a surface normal. The presence of this behavior is often referred to as visual anisotropy. Anisotropic appearance of spatially homogeneous materials is commonly characterized by a four-dimensional BRDF. Unfortunately, due to simplicity most past research has been devoted to three dimensional isotropic BRDFs. In this paper, we introduce an innovative, fast, and inexpensive image-based approach to detect the extent of anisotropy, its main axes and width of corresponding anisotropic highlights. The method does not rely on any moving parts and uses only an off-the-shelf ellipsoidal reflector with a compact camera. We analyze our findings with a material microgeometry scan, and present how results correspond to the microstructure of individual threads in a particular fabric. We show that knowledge of a material's anisotropic behavior can be effectively used in order to design a material-dependent sampling pattern so as the material's BRDF could be measured much more precisely in the same amount of time using a common gonioreflectometer.

  17. Understanding conoscopic interference patterns in anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Olorunsola, Oluwatobi Gabriel

    The interference patterns observed in conoscopy are important in studying the optical and geometrical properties of anisotropic materials. They have also been used to identify minerals and to explore the structure of biological tissues. In a conoscopic interferometer, an optically anisotropic specimen is placed between two crossed linear polarizers and illuminated by a convergent light beam. The interference patterns are produced because in an anisotropic material an incident light is split into two eigenwaves, namely the ordinary and the extraordinary waves. We report our work on the theoretical simulation and experimental observation of the conoscopic interference patterns in anisotropic crystals. In our simulation, the interference patterns are decomposed into fringes of isogyres and isochromates. For each light propagation direction inside the crystal there exist two eigenwaves that have their own characteristic velocities and vibration directions. The isogyres are obtained by computing the angle between the polarization of the incident light and the vibration directions of the two eigenwaves. The isochromates are obtained by computing the phase retardance between the two eigenwaves inside the crystal. The interference patterns are experimentally observed in several crystals, with their optic axes either parallel or perpendicular to their surfaces. An external electric field is applied to deform the crystals from uniaxial to biaxial. The results of our experimental observation agree well with our computer simulation. In conventional interferometers the isochromatic interference fringes are observed by using a circular polarizer and a circular analyzer, both constructed by a linear polarizer and a quarter wave plate. However, due to the dispersion of the quarter wave plates, the phase-retardance between the two light waves inside the quarter wave plates is wavelength-dependent, which results in different conoscopic interference patterns for different colors of

  18. An efficient Matlab script to calculate heterogeneous anisotropically elastic wave propagation in three dimensions

    USGS Publications Warehouse

    Boyd, O.S.

    2006-01-01

    We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.

  19. Effect of anisotropic interfacial energy on grain boundary distributions during grain growth

    SciTech Connect

    Gruber, J. A.; George, D. C.; Kuprat, A. P.; Rohrer, Gregory S.; Rollett, A. D.

    2004-01-01

    Through simulations with the moving finite element program GRAIN3D, we have studied the effect of anisotropic grain boundary energy on the distribution of boundary types in a polycrystal during normal grain growth. An energy function similar to that hypothesized for magnesia was used, and the simulated grain boundary distributions were found to agree well with measured distributions. The simulated results suggest that initially random microstructures develop nearly steady state grain boundary distributions that have local maxima and minima corresponding to local minima and maxima, respectively, of the energy function. It is well known that the properties and area fractions of various grain boundary types in polycrystals have a dramatic effect on macroscopic materials properties. The goal of the present study is to examine the quantitative relation between grain boundary energies and the distribution of grain boundary types that result from grain growth. In keeping with the prior work, we parameterize the five-dimensional space of grain boundary types using three parameters to describe the lattice misorientation and two parameters to describe the orientation of the grain boundary plane. Of particular interest is the observation that at fixed misorientations, there is significant texture in the distribution of the grain boundary planes and planes with low surface energies appear more frequently. Here we use simulation to test the idea that the observed distributions arise because of the grain boundary energy anisotropy. In comparison to the experiments, the simulations are advantageous because they make it possible to monitor the time evolution of the distribution and to independently determine the influence of different grain boundary properties on the development of the distribution. A moving finite element program, GRAIN3D, has been developed with the capability to incorporate anisotropic grain boundary energy and mobility functions into grain growth simulations

  20. Anisotropic Alfven-ballooning modes in the Earth`s magnetosphere

    SciTech Connect

    Chan, A.A.; Xia, Mengfen; Chen, Liu

    1993-05-01

    We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth`s inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P{perpendicular} > P{parallel}. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value {beta}{sub o}{sup B} {approx} 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P{parallel} > P{perpendicular}, or due to increased ballooning-mirror destabilization when P{perpendicular} > P{parallel}. We use a ``{beta}-6 stability diagram`` to display the regions of instability with respect to the equatorial values of the parameters {bar {beta}} and {delta}, where {bar {beta}} = (1/3)({beta}{sub {parallel}} + 2 {beta}{perpendicular}) is an average beta value and {delta} = 1 - P{parallel}/P{perpendicular} is a measure of the plasma anisotropy.

  1. Finite-element simulation of myocardial electrical excitation

    NASA Astrophysics Data System (ADS)

    Vasserman, I. N.; Matveenko, V. P.; Shardakov, I. N.; Shestakov, A. P.

    2014-01-01

    Based on a single-domain model of myocardial conduction, isotropic and anisotropic finite element models of the myocardium are developed allowing excitation wave propagation to be studied. The Aliev-Panfilov phenomenological equations were used as the relations between the transmembrane current and the transmembrane potential. Interaction of an additional source of initial excitation with an excitation wave that passed and the spread of the excitation wave are studied using heart tomograms. A numerical solution is obtained using a splitting algorithm that allows the nonlinear boundary-value problem to be reduced to a sequence of simpler problems: ordinary differential equations and linear boundary-value problems in partial derivatives.

  2. Ultrasonic guided wave nondestructive evaluation using generalized anisotropic interface waves

    NASA Astrophysics Data System (ADS)

    Gardner, Michael D.

    The motivation for this work is a goal to inspect interfaces between thick layers of materials that can be anisotropic. The specific application is a thick composite bonded to a metal substrate. The interface is inspected for disbonds between the metal and composite. The large thickness allows the problem to be modeled as a half space. The theory behind guided waves in plates is presented. This theory includes the calculation and analysis of dispersion curves and the resulting wave structure. It is noted that for high frequency-thickness values, certain modes will converge to the half-space waves, e.g. the Rayleigh wave and the Stoneley wave. Points of high energy, especially shear energy, at the interface are desirable for interfacial inspection. Therefore, the wave structure for all modes and frequencies is searched for ideal inspection points. Interface waves are inherently good modes to use for interface inspection. Results from the dispersion curves and wave structures are verified in the finite element model software package called Abaqus. It is confirmed that the group speeds and wave structures of the modes match the predicted values. A theoretical development of interface waves is given wherein Rayleigh, Stoneley, and generalized interface waves are discussed. This is applied to both isotropic and anisotropic materials. It is shown that the Stoneley wave only exists for a certain range of material parameters. Because the Stoneley wave is the interface wave between two solid half spaces, it might appear that only certain pairs of solids would allow for inspection via interface wave. However, it is shown that for perturbations of the Stoneley-wave-valid material properties, interface waves which leak energy away from the interface can still propagate. They can also be used for inspection. Certain choices of materials will leak less energy and will therefore allow for longer inspection distances. The solutions to the isotropic leaky wave problem exist on

  3. Competition for finite resources

    NASA Astrophysics Data System (ADS)

    Cook, L. Jonathan; Zia, R. K. P.

    2012-05-01

    The resources in a cell are finite, which implies that the various components of the cell must compete for resources. One such resource is the ribosomes used during translation to create proteins. Motivated by this example, we explore this competition by connecting two totally asymmetric simple exclusion processes (TASEPs) to a finite pool of particles. Expanding on our previous work, we focus on the effects on the density and current of having different entry and exit rates.

  4. Testing different formulations of leading-order anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo; Ryblewski, Radoslaw; Florkowski, Wojciech; Strickland, Michael

    2016-02-01

    A recently obtained set of the equations for leading-order (3+1)D anisotropic hydrodynamics is tested against exact solutions of the Boltzmann equation with the collisional kernel treated in the relaxation time approximation. In order to perform detailed comparisons, the new anisotropic hydrodynamics equations are reduced to the boost-invariant and transversally homogeneous case. The agreement with the exact solutions found using the new anisotropic hydrodynamics equations is similar to that found using previous, less general formulations of anisotropic hydrodynamics. In addition, we find that, when compared to a state-of-the-art second-order viscous hydrodynamics framework, leading-order anisotropic hydrodynamics better reproduces the exact solution for the pressure anisotropy and gives comparable results for the bulk pressure evolution. Finally, we compare the transport coefficients obtained using linearized anisotropic hydrodynamics with results obtained using second-order viscous hydrodynamics.

  5. Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.

    PubMed

    Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying

    2011-02-01

    Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.

  6. Influence of the anisotropic mechanical properties of the skull in low-intensity focused ultrasound towards neuromodulation of the brain.

    PubMed

    Metwally, Mohamed K; Han, Hee-Sok; Jeon, Hyun Jae; Khang, Gon; Kim, Tae-Seong

    2013-01-01

    Lately, neuromodulation of the brain is considered one of the promising applications of ultrasound technology in which low-intensity focused ultrasound (LIFU) is used noninvasively to excite or inhibit neuronal activity. In LIFU, one of critical barriers in the propagation of ultrasound wave is the skull, which is known to be highly anisotropic mechanically: this affects the ultrasound focusing, thereby neuromodulation effects. This study aims to investigate the influence of the anisotropic properties of the skull on the LIFU via finite element head models incorporating the anisotropic properties of the skull. We have examined the pressure and stress distributions within the head in LIFU. Our results show that though most of the pressure that reaches to the brain is due to the longitudinal wave propagation through the skull, the normal stress in the transverse direction of the wave propagation has the main role to control the pressure profile inside the brain more than the shear stress. The results also show that the anisotropic properties of skull contribute in broadening the focal zone in comparison to that of the isotropic skull.

  7. A Generalized Anisotropic Hardening Rule Based on the Mroz Multi-Yield-Surface Model for Pressure Insensitive and Sensitive Materials

    SciTech Connect

    Choi, Kyoo Sil; Pan, Jwo

    2009-07-27

    In this paper, a generalized anisotropic hardening rule based on the Mroz multi-yield-surface model is derived. The evolution equation for the active yield surface is obtained by considering the continuous expansion of the active yield surface during the unloading/reloading process. The incremental constitutive relation based on the associated flow rule is then derived for a general yield function. As a special case, detailed incremental constitutive relations are derived for the Mises yield function. The closed-form solutions for one-dimensional stress-plastic strain curves are also derived and plotted for the Mises materials under cyclic loading conditions. The stress-plastic strain curves show closed hysteresis loops under uniaxial cyclic loading conditions and the Masing hypothesis is applicable. A user material subroutine based on the Mises yield function, the anisotropic hardening rule and the constitutive relations was then written and implemented into ABAQUS. Computations were conducted for a simple plane strain finite element model under uniaxial monotonic and cyclic loading conditions based on the anisotropic hardening rule and the isotropic and nonlinear kinematic hardening rules of ABAQUS. The results indicate that the plastic response of the material follows the intended input stress-strain data for the anisotropic hardening rule whereas the plastic response depends upon the input strain ranges of the stress-strain data for the nonlinear kinematic hardening rule.

  8. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  9. Tuning anisotropic electronic transport properties of phosphorene via substitutional doping.

    PubMed

    Guo, Caixia; Xia, Congxin; Fang, Lizhen; Wang, Tianxing; Liu, Yufang

    2016-10-01

    Using first-principles calculations, we studied the anisotropic electronic transport properties of pristine and X-doped phosphorene (X = B, Al, Ga, C, Si, Ge, N, As, O, S, and Se atoms). The results show that doping different elements can induce obviously different electronic transport characteristics. Moreover, isovalent doping maintains semiconducting characteristics and anisotropic transport properties, while group IV and VI atoms doping can induce metal properties. Meanwhile, Al and Ga substituting P decrease the anisotropic behaviors of transport, and other atom doping still preserves anisotropic characteristics. Interestingly, obvious negative differential resistance behaviors can be observed in C, Si, Ge, O, S, and Se-doped phosphorene.

  10. Polarisation of Thermal Emission under an Anisotropic Radiation

    NASA Astrophysics Data System (ADS)

    Onaka, T.

    1999-12-01

    Aspherical dust grains in an anisotropic radiation field have different temperatures depending on the cross-sections projected to the radiation. The temperature difference produces polarized thermal emission even without alignment, if the observer looks at the grains from a direction different from the anisotropic radiation. When the dust grains are aligned, the anisotropic radiation makes various affects on the polarization of the thermal emission, depending on the relative angle between the anisotropy and alignment directions. This paper presents examples of the effects and demonstrates the importance of anisotropic radiation field on the polarized thermal emission.

  11. Anisotropic hydrodynamics for a mixture of quark and gluon fluids

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw; Tinti, Leonardo

    2015-11-01

    A system of equations for anisotropic hydrodynamics is derived that describes a mixture of anisotropic quark and gluon fluids. The consistent treatment of the zeroth, first, and second moments of the kinetic equations allows us to construct a new framework with more general forms of the anisotropic phase-space distribution functions than used before. In this way, the main deficiencies of the previous formulations of anisotropic hydrodynamics for mixtures are overcome and a good agreement with the exact kinetic-theory results is obtained.

  12. Stability conditions for the Bianchi type II anisotropically inflating universes

    SciTech Connect

    Kao, W.F.; Lin, Ing-Chen E-mail: g9522528@oz.nthu.edu.tw

    2009-01-15

    Stability conditions for a class of anisotropically inflating solutions in the Bianchi type II background space are shown explicitly in this paper. These inflating solutions were known to break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. It can be shown that unstable modes of the anisotropic perturbations always exist for this class of expanding solutions. As a result, we show that these set of anisotropically expanding solutions are unstable against anisotropic perturbations in the Bianchi type II space.

  13. On uniqueness and non-degeneracy of anisotropic polarons

    NASA Astrophysics Data System (ADS)

    Ricaud, Julien

    2016-05-01

    We study the anisotropic Choquard-Pekar equation which describes a polaron in an anisotropic medium. We prove the uniqueness and non-degeneracy of minimizers in a weakly anisotropic medium. In addition, for a wide range of anisotropic media, we derive the symmetry properties of minimizers and prove that the kernel of the associated linearized operator is reduced, apart from three functions coming from the translation invariance, to the kernel on the subspace of functions that are even in each of the three principal directions of the medium.

  14. Ab initio determination of spin Hamiltonians with anisotropic exchange interactions: The case of the pyrochlore ferromagnet Lu2V2O7

    NASA Astrophysics Data System (ADS)

    Riedl, Kira; Guterding, Daniel; Jeschke, Harald O.; Gingras, Michel J. P.; Valentí, Roser

    2016-07-01

    We present a general framework for deriving effective spin Hamiltonians of correlated magnetic systems based on a combination of relativistic ab initio density functional theory calculations, exact diagonalization of a generalized Hubbard Hamiltonian on finite clusters, and spin projections onto the low-energy subspace. A key motivation is to determine anisotropic bilinear exchange couplings in materials of interest. As an example, we apply this method to the pyrochlore Lu2V2O7 where the vanadium ions form a lattice of corner-sharing spin-1/2 tetrahedra. In this compound, anisotropic Dzyaloshinskii-Moriya interactions (DMIs) play an essential role in inducing a magnon Hall effect. We obtain quantitative estimates of the nearest-neighbor Heisenberg exchange, the DMI, and the symmetric part of the anisotropic exchange tensor. Finally, we compare our results with experimental ones on the Lu2V2O7 compound.

  15. Chromo-natural model in anisotropic background

    SciTech Connect

    Maleknejad, Azadeh; Erfani, Encieh E-mail: eerfani@ipm.ir

    2014-03-01

    In this work we study the chromo-natural inflation model in the anisotropic setup. Initiating inflation from Bianchi type-I cosmology, we analyze the system thoroughly during the slow-roll inflation, from both analytical and numerical points of view. We show that the isotropic FRW inflation is an attractor of the system. In other words, anisotropies are damped within few e-folds and the chromo-natural model respects the cosmic no-hair conjecture. Furthermore, we demonstrate that in the slow-roll limit, the anisotropies in both chromo-natural and gauge-flation models share the same dynamics.

  16. A transitioning universe with anisotropic dark energy

    NASA Astrophysics Data System (ADS)

    Yadav, Anil Kumar

    2016-08-01

    In this paper, we present a model of transitioning universe with minimal interaction between perfect fluid and anisotropic dark energy in Bianchi I space-time. The two sources are assumed to minimally interacted and therefore their energy momentum tensors are conserved separately. The explicit expression for average scale factor are considered in hybrid form that gives time varying deceleration parameter which describes both the early and late time physical features of universe. We also discuss the physical and geometrical properties of the model derived in this paper. The solution is interesting physically as it explain accelerating universe as well as singularity free universe.

  17. Laminated anisotropic reinforced plastic plates and shells

    NASA Technical Reports Server (NTRS)

    Korolev, V. I.

    1981-01-01

    Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.

  18. Anisotropic perturbations due to dark energy

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Moss, Adam

    2006-08-01

    A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.

  19. Coarsening dynamics in elastically anisotropic alloys

    SciTech Connect

    Pfau, B.; Stadler, L.-M.; Sepiol, B.; Vogl, G.; Weinkamer, R.; Kantelhardt, J. W.; Zontone, F.

    2006-05-01

    We study in situ the coarsening dynamics in elastically anisotropic phase-separating alloys, taking advantage of coherent x rays. Temporally fluctuating speckle intensities are analyzed for two different Ni-Al-Mo samples with different lattice misfits between precipitates and matrix. The detected long-term correlations depend not only on the norm but strongly on the direction of the scattering vector--an unambiguous proof of direction-dependent coarsening dynamics. For strong lattice misfits, our results indicate coalescence of precipitates in the {l_brace}100{r_brace} planes.

  20. Scattering by anisotropic grains in beryllium mirrors

    SciTech Connect

    Church, E.L. ); Takacs, P.Z. ); Stover, J.C. )

    1990-08-01

    Scattering from mirror surfaces arises from topographic and non-topographic sources. This paper considers the nontopographic scattering of beryllium mirrors modelled as a collection of randomly oriented bireflective grains. Simple scattering theory shows that this type of scatting scales as {lambda}{sup {minus}2}, rather than as {lambda}{sup {minus}4} for topographic scattering, which means that it is relatively more important at long radiation wavelengths. Estimates of the intensity based an available short-wavelength values of the anisotropic optical constants of beryllium indicate that this type of scattering could dominate the topographic scattering from smooth surfaces at CO{sub 2} wavelengths. 10 refs., 2 figs.

  1. Watertight Anisotropic Surface Meshing Using Quadrilateral Patches

    NASA Technical Reports Server (NTRS)

    Haimes, Robert; Aftosmis, Michael J.

    2004-01-01

    This paper presents a simple technique for generating anisotropic surface triangulations using unstructured quadrilaterals when the CAD entity can be mapped to a logical rectangle. Watertightness and geometric quality measures are maintained and are consistent with the CAPRI default tessellator. These triangulations can match user specified criteria for chord-height tolerance, neighbor triangle dihedral angle, and maximum triangle side length. This discrete representation has hooks back to the owning geometry and therefore can be used in conjunction with these entities to allow for easy enhancement or modification of the tessellation suitable for grid generation or other downstream applications.

  2. Anisotropic fiber alignment in composite structures

    DOEpatents

    Graham, A.L.; Mondy, L.A.; Guell, D.C.

    1993-11-16

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic. 5 figures.

  3. Anisotropic fiber alignment in composite structures

    DOEpatents

    Graham, Alan L.; Mondy, Lisa A.; Guell, David C.

    1993-01-01

    High strength material composite structures are formed with oriented fibers to provide controlled anisotropic fibers. Fibers suspended in non-dilute concentrations (e.g., up to 20 volume percent for fibers having an aspect ratio of 20) in a selected medium are oriented by moving an axially spaced array of elements in the direction of desired fiber alignment. The array elements are generally perpendicular to the desired orientation. The suspension medium may also include sphere-like particles where the resulting material is a ceramic.

  4. Some analytical models of anisotropic strange stars

    NASA Astrophysics Data System (ADS)

    Murad, Mohammad Hassan

    2016-01-01

    Over the years of the concept of local isotropy has become a too stringent condition in modeling relativistic self-gravitating objects. Taking local anisotropy into consideration, in this work, some analytical models of relativistic anisotropic charged strange stars have been developed. The Einstein-Maxwell gravitational field equations have been solved with a particular form of one of the metric potentials. The radial pressure and the energy density have been assumed to follow the usual linear equation of state of strange quark matter, the MIT bag model.

  5. Inhomogeneous viscous fluid in anisotropic inflationary universe

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Mohsaneen, Sidra

    2015-06-01

    In this paper, we study inhomogeneous viscous fluid for inflation in the framework of locally rotationally symmetric Bianchi type I universe model. We consider an inhomogeneous equation of state with viscosity term to ensure a graceful exit from inflationary period. In order to study inflationary perturbations, we evaluate slow-roll parameters, scalar and tensor power spectra, scalar spectral index, tensor to scalar ratio for scalar field and inhomogeneous viscous fluid. It is concluded that our anisotropic inflationary universe model with inhomogeneous viscous fluid is consistent with recent data in a specific range of the model parameters.

  6. Generalized Jones matrices for anisotropic media.

    PubMed

    Ortega-Quijano, Noé; Arce-Diego, José Luis

    2013-03-25

    The interaction of arbitrary three-dimensional light beams with optical elements is described by the generalized Jones calculus, which has been formally proposed recently [Azzam, J. Opt. Soc. Am. A 28, 2279 (2011)]. In this work we obtain the parametric expression of the 3×3 differential generalized Jones matrix (dGJM) for arbitrary optical media assuming transverse light waves. The dGJM is intimately connected to the Gell-Mann matrices, and we show that it provides a versatile method for obtaining the macroscopic GJM of media with either sequential or simultaneous anisotropic effects. Explicit parametric expressions of the GJM for some relevant optical elements are provided.

  7. Anisotropic Tribological Properties of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.

  8. Symmetries in the Anisotropic Kepler Problem

    NASA Astrophysics Data System (ADS)

    Mioc, Vasile

    The two-body problem associated to an anisotropic Newtonian-type potential function is being considered. We point out the complex symmetries that feature this problem. Such symmetries, expressed in standard polar coordinates, are recovered for McGee-type coordinates of both collision-blow-up kind and infinity-blow-up kind. They form isomorphic commutative groups endowed with an idempotent structure. Expressed in Levi-Civita's coordinates, the problem exhibits a larger group of symmetries, also commutative and endowed with an idempotent structure.

  9. Multichannel image regularization using anisotropic geodesic filtering

    SciTech Connect

    Grazzini, Jacopo A

    2010-01-01

    This paper extends a recent image-dependent regularization approach introduced in aiming at edge-preserving smoothing. For that purpose, geodesic distances equipped with a Riemannian metric need to be estimated in local neighbourhoods. By deriving an appropriate metric from the gradient structure tensor, the associated geodesic paths are constrained to follow salient features in images. Following, we design a generalized anisotropic geodesic filter; incorporating not only a measure of the edge strength, like in the original method, but also further directional information about the image structures. The proposed filter is particularly efficient at smoothing heterogeneous areas while preserving relevant structures in multichannel images.

  10. Anisotropic mesh adaptation for solution of finite element problems using hierarchical edge-based error estimates

    SciTech Connect

    Lipnikov, Konstantin; Agouzal, Abdellatif; Vassilevski, Yuri

    2009-01-01

    We present a new technology for generating meshes minimizing the interpolation and discretization errors or their gradients. The key element of this methodology is construction of a space metric from edge-based error estimates. For a mesh with N{sub h} triangles, the error is proportional to N{sub h}{sup -1} and the gradient of error is proportional to N{sub h}{sup -1/2} which are optimal asymptotics. The methodology is verified with numerical experiments.

  11. Finite-difference staggered grids in GPUs for anisotropic elastic wave propagation simulation

    NASA Astrophysics Data System (ADS)

    Rubio, Felix; Hanzich, Mauricio; Farrés, Albert; de la Puente, Josep; María Cela, José

    2014-09-01

    The 3D elastic wave equations can be used to simulate the physics of waves traveling through the Earth more precisely than acoustic approximations. However, this improvement in quality has a counterpart in the cost of the numerical scheme. A possible strategy to mitigate that expense is using specialized, high-performing architectures such as GPUs. Nevertheless, porting and optimizing a code for such a platform require a deep understanding of both the underlying hardware architecture and the algorithm at hand. Furthermore, for very large problems, multiple GPUs must work concurrently, which adds yet another layer of complexity to the codes. In this work, we have tackled the problem of porting and optimizing a 3D elastic wave propagation engine which supports both standard- and fully-staggered grids to multi-GPU clusters. At the single GPU level, we have proposed and evaluated many optimization strategies and adopted the best performing ones for our final code. At the distributed memory level, a domain decomposition approach has been used which allows for good scalability thanks to using asynchronous communications and I/O.

  12. PyLith: A Finite-Element Code for Modeling Quasi-Static and Dynamic Crustal Deformation

    NASA Astrophysics Data System (ADS)

    Williams, C. A.; Aagaard, B.; Knepley, M. G.

    2009-12-01

    We have developed open-source finite-element software for 2-D and 3-D dynamic and quasi-static modeling of crustal deformation. This software, PyLith (current release is version 1.4), combines the quasi-static viscoelastic modeling functionality of PyLith 0.8 and its predecessors (LithoMop and Tecton) and the wave propagation modeling functionality of EqSim. The target applications contain spatial scales ranging from tens of meters to hundreds of kilometers with temporal scales for dynamic modeling ranging from milliseconds to minutes and temporal scales for quasi-static modeling ranging from minutes to thousands of years. PyLith development is part of the NSF funded Computational Infrastructure for Geodynamics (CIG) and the software runs on a wide variety of platforms (laptops, workstations, and Beowulf clusters). Binaries and source code are available from geodynamics.org. It uses a suite of general, parallel, graph data structures called Sieve for storing and manipulating finite-element meshes. This permits use of a variety of 2-D and 3-D cell types including triangles, quadrilaterals, hexahedra, and tetrahedra. Current features include kinematic fault ruptures with multiple sequential earthquakes and aseismic creep, time-dependent Dirichlet and Neumann boundary conditions, absorbing boundary conditions, time-dependent point forces, linear elastic rheologies, generalized Maxwell and Maxwell linear viscoelastic rheologies, power-law rheologies, and gravitational body forces. Current development focuses on implementing dynamic fault interface conditions (employing fault constitutive models) and additional viscoelastic and viscoplastic materials. Future development plans include support for large deformation and automated calculation of suites of Green's functions. We also plan to extend PyLith to allow coupling multiple simultaneous simulations. For example, this could include (1) coupling an interseismic deformation simulation to a spontaneous earthquake rupture

  13. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    SciTech Connect

    Tian, Yuan; Han, Yiping; Ai, Xia; Liu, Xiuxiang

    2014-12-15

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  14. An implicit scheme for solving the anisotropic diffusion of heat and cosmic rays in the RAMSES code

    NASA Astrophysics Data System (ADS)

    Dubois, Yohan; Commerçon, Benoît

    2016-01-01

    Astrophysical plasmas are subject to a tight connection between magnetic fields and the diffusion of particles, which leads to an anisotropic transport of energy. Under the fluid assumption, this effect can be reduced to an advection-diffusion equation, thereby augmenting the equations of magnetohydrodynamics. We introduce a new method for solving the anisotropic diffusion equation using an implicit finite-volume method with adaptive mesh refinement and adaptive time-stepping in the ramses code. We apply this numerical solver to the diffusion of cosmic ray energy and diffusion of heat carried by electrons, which couple to the ion temperature. We test this new implementation against several numerical experiments and apply it to a simple supernova explosion with a uniform magnetic field.

  15. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    NASA Astrophysics Data System (ADS)

    Tian, Yuan; Ai, Xia; Han, Yiping; Liu, Xiuxiang

    2014-12-01

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  16. Measuring anisotropic muscle stiffness properties using elastography.

    PubMed

    Green, M A; Geng, G; Qin, E; Sinkus, R; Gandevia, S C; Bilston, L E

    2013-11-01

    Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury.

  17. New formulation of leading order anisotropic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Tinti, Leonardo

    2015-05-01

    Anisotropic hydrodynamics is a reorganization of the relativistic hydrodynamics expansion, with the leading order already containing substantial momentum-space anisotropies. The latter are a cause of concern in the traditional viscous hydrodynamics, since large momentum anisotropies generated in ultrarelativistic heavy-ion collisions are not consistent with the hypothesis of small deviations from an isotropic background, i.e., from the local equilibrium distribution. We discuss the leading order of the expansion, presenting a new formulation for the (1+1)- dimensional case, namely, for the longitudinally boost invariant and cylindrically symmetric flow. This new approach is consistent with the well established framework of Israel and Stewart in the close to equilibrium limit (where we expect viscous hydrodynamics to work well). If we consider the (0+1)-dimensional case, that is, transversally homogeneous and longitudinally boost invariant flow, the new form of anisotropic hydrodynamics leads to better agreement with known solutions of the Boltzmann equation than the previous formulations, especially when we consider massive particles.

  18. EuNiGe₃, an anisotropic antiferromagnet.

    PubMed

    Maurya, A; Bonville, P; Thamizhavel, A; Dhar, S K

    2014-05-28

    Single crystals of EuNiGe3, crystallizing in the non-centrosymmetric BaNiSn3-type structure, were grown using In flux, enabling us to explore the anisotropic magnetic properties, which was not possible with previously reported polycrystalline samples. The EuNiGe3 single crystalline sample is found to order antiferromagnetically at 13.2 K, as revealed from the magnetic susceptibility, heat capacity and electrical resistivity data. The low temperature magnetization M (H) is distinctly different for the field parallel to the ab-plane and c-axis; the ab-plane magnetization varies almost linearly with the field before the occurrence of an induced ferromagnetic (FM) phase (spin-flip) at 6.2 Tesla. On the other hand M (H) along the c-axis is accompanied by two metamagnetic transitions followed by a spin-flip at 4.1 T. A model including anisotropic exchange and dipole-dipole interactions reproduces the main features of magnetization plots but falls short of full representation. (H,T) phase diagrams have been constructed for the field applied along the principal directions. From the (151)Eu Mössbauer spectra, we determine that the 13.2 K transition leads to an incommensurate antiferromagnetic (AFM) intermediate phase followed by a transition near 10.5 K to a commensurate AFM configuration. PMID:24787717

  19. Anisotropic elliptic PDEs for feature classification.

    PubMed

    Wang, Shengfa; Hou, Tingbo; Li, Shuai; Su, Zhixun; Qin, Hong

    2013-10-01

    The extraction and classification of multitype (point, curve, patch) features on manifolds are extremely challenging, due to the lack of rigorous definition for diverse feature forms. This paper seeks a novel solution of multitype features in a mathematically rigorous way and proposes an efficient method for feature classification on manifolds. We tackle this challenge by exploring a quasi-harmonic field (QHF) generated by elliptic PDEs, which is the stable state of heat diffusion governed by anisotropic diffusion tensor. Diffusion tensor locally encodes shape geometry and controls velocity and direction of the diffusion process. The global QHF weaves points into smooth regions separated by ridges and has superior performance in combating noise/holes. Our method's originality is highlighted by the integration of locally defined diffusion tensor and globally defined elliptic PDEs in an anisotropic manner. At the computational front, the heat diffusion PDE becomes a linear system with Dirichlet condition at heat sources (called seeds). Our new algorithms afford automatic seed selection, enhanced by a fast update procedure in a high-dimensional space. By employing diffusion probability, our method can handle both manufactured parts and organic objects. Various experiments demonstrate the flexibility and high performance of our method. PMID:23929843

  20. Building an Anisotropic Meniscus with Zonal Variations

    PubMed Central

    Higashioka, Michael M.; Chen, Justin A.; Hu, Jerry C.

    2014-01-01

    Toward addressing the difficult problems of knee meniscus regeneration, a self-assembling process has been used to re-create the native morphology and matrix properties. A significant problem in such attempts is the recapitulation of the distinct zones of the meniscus, the inner, more cartilaginous and the outer, more fibrocartilaginous zones. In this study, an anisotropic and zonally variant meniscus was produced by self-assembly of the inner meniscus (100% chondrocytes) followed by cell seeding the outer meniscus (coculture of chondrocytes and meniscus cells). After 4 weeks in culture, the engineered, inner meniscus exhibited a 42% increase in both instantaneous and relaxation moduli and a 62% increase in GAG/DW, as compared to the outer meniscus. In contrast, the circumferential tensile modulus and collagen/DW of the outer zone was 101% and 129% higher, respectively, than the values measured for the inner zone. Furthermore, there was no difference in the radial tensile modulus between the control and zonal engineered menisci, suggesting that the inner and outer zones of the engineered zonal menisci successfully integrated. These data demonstrate that not only can biomechanical and biochemical properties be engineered to differ by the zone, but they can also recapitulate the anisotropic behavior of the knee meniscus. PMID:23931258

  1. Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.

    1998-01-01

    A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.

  2. Nonlinear inversion for arbitrarily-oriented anisotropic models II: Inversion techniques

    NASA Astrophysics Data System (ADS)

    Bremner, P. M.; Panning, M. P.

    2011-12-01

    We present output models from inversion of a synthetic surface wave dataset. We implement new 3-D finite-frequency kernels, based on the Born approximation, to invert for upper mantle structure beneath western North America. The kernels are formulated based on a hexagonal symmetry with an arbitrary orientation. Numerical tests were performed to achieve a robust inversion scheme. Four synthetic input models were created, to include: isotropic, constant strength anisotropic, variable strength anisotropic, and both anisotropic and isotropic together. The reference model was a simplified version of PREM (dubbed PREM LIGHT) in which the crust and 220 km discontinuity have been removed. Output models from inversions of calculated synthetic data are compared against these input models to test for accurate reproduction of input model features, and the resolution of those features. The object of this phase of the study was to determine appropriate nonlinear inversion schemes that adequately recover the input models. The synthetic dataset consists of collected seismic waveforms of 126 earthquake mechanisms, of magnitude 6-7 from Dec 2006 to Feb 2009, from the IRIS database. Events were selected to correlate with USArray deployments, and to have as complete an azimuthal coverage as possible. The events occurred within a circular region of radius 150o centered about 44o lat, -110o lon (an arbitrary location within USArray coverage). Synthetic data were calculated utilizing a spectral element code (SEM) coupled to a normal mode solution. The mesh consists of a 3-D heterogeneous outer shell, representing the upper mantle above 450 km depth, coupled to a spherically symmetric inner sphere. From the synthetic dataset, multi-taper fundamental mode surface wave phase delay measurements are taken. The orthogonal 2.5π -prolate spheroidal wave function eigentapers (Slepian tapers) reduce noise biasing, and can provide error estimates in phase delay measurements. This study is a

  3. Anisotropic artificial substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Shahvarpour, Attieh

    The perfect electromagnetic conductor (PEMC) boundary is a novel fundamental electromagnetic concept. It is a generalized description of the electromagnetic boundary conditions including the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC) and due to its fundamental properties, it has the potential of enabling several electromagnetic applications. However, the PEMC boundaries concept had remained at the theoretical level and has not been practically realized. Therefore, motivated by the importance of this electromagnetic fundamental concept and its potential applications, the first contribution of this thesis is focused on the practical implementation of the PEMC boundaries by exploiting Faraday rotation principle and ground reflection in the ferrite materials which are intrinsically anisotropic. As a result, this thesis reports the first practical approach for the realization of PEMC boundaries. A generalized scattering matrix (GSM) is used for the analysis of the grounded-ferrite PEMC boundaries structure. As an application of the PEMC boundaries, a transverse electromagnetic (TEM) waveguide is experimentally demonstrated using grounded ferrite PMC (as particular case of the PEMC boundaries) side walls. Perfect electromagnetic conductor boundaries may find applications in various types of sensors, reflectors, polarization convertors and polarization-based radio frequency identifiers. Leaky-wave antennas perform as high directivity and frequency beam scanning antennas and as a result they enable applications in radar, point-to-point communications and MIMO systems. The second contribution of this thesis is introducing and analysing a novel broadband and highly directive two-dimensional leaky-wave antenna. This antenna operates differently in the lower and higher frequency ranges. Toward its lower frequencies, it allows full-space conical-beam scanning while at higher frequencies, it provides fixed-beam radiation (at a designable angle

  4. Finite element analysis of transformer model core with measured reluctivity tensor

    SciTech Connect

    Enokizono, Masato; Soda, Naoya

    1997-09-01

    The study of soft magnetic materials commonly used in rotating machines and three-phase transformers is very important for saving energy. In order to save energy, the authors have to solve lots of problems, for which they have to grasp correct behaviors of B and H in core materials, and improve finite element formulations considering the properties. This paper presents a new expression of the vector magnetic properties under alternating and rotating flux conditions. The expression is defined by an improved reluctivity tensor based on measured results. Moreover, the expression is more accurate than conventional expressions about the approximation of magnetic properties in arbitrary direction. Accordingly, the new expression is introduced into a finite element formulation, and applied to a simple anisotropic magnetic field problem. As a result, it is shown that the expression is applicable generally to anisotropic problems.

  5. Modeling the anisotropic shock response of single-crystal RDX

    NASA Astrophysics Data System (ADS)

    Luscher, Darby

    Explosives initiate under impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. Heterogeneous thermomechanical interactions at the meso-scale (i.e. between single-crystal and macroscale) leads to the formation of localized hot spots. Direct numerical simulations of mesoscale response can contribute to our understanding of hot spots if they include the relevant deformation mechanisms that are essential to the nonlinear thermomechanical response of explosive molecular crystals. We have developed a single-crystal model for the finite deformation thermomechanical response of cyclotrimethylene trinitramine (RDX). Because of the low symmetry of RDX, a complete description of nonlinear thermoelasticity requires a careful decomposition of free energy into components that represent the pressure-volume-temperature (PVT) response and the coupling between isochoric deformation and both deviatoric and hydrostatic stresses. An equation-of-state (EOS) based on Debye theory that defines the PVT response was constructed using experimental data and density functional theory calculations. This EOS replicates the equilibrium states of phase transformation from alpha to gamma polymorphs observed in static high-pressure experiments. Lattice thermoelastic parameters defining the coupled isochoric free energy were obtained from molecular dynamics calculations and previous experimental data. Anisotropic crystal plasticity is modeled using Orowan's expression relating slip rate to dislocation density and velocity. Details of the theory will be presented followed by discussion of simulations of flyer plate impact experiments, including recent experiments diagnosed with in situ X-ray diffraction at the Advanced Photon Source. Impact conditions explored within the experimental effort have spanned shock pressures ranging from 1-10 GPa for several crystallographic orientations

  6. Two Spin Liquid phases in the anisotropic triangular Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sorella, Sandro

    2005-03-01

    Recently there have been rather clean experimental realizations of the quantum spin 1/2 Heisenberg Hamiltonian on a 2D triangular lattice geometry in systems like Cs2Cu Cl4 and organic compounds like k-(ET)2Cu2(CN)3. These materials are nearly two dimensional and are characterized by an anisotropic antiferromagnetic superexchange. The strength of the spatial anisotropy can increase quantum fluctuations and can destabilize the magnetically ordered state leading to non conventional spin liquid phases. In order to understand these interesting phenomena we have studied, by Quantum Monte Carlo methods, the triangular lattice Heisenberg model as a function of the strength of this anisotropy, represented by the ratio r between the intra-chain nearest neighbor coupling J' and the inter-chain one J. We have found evidence of two spin liquid regions, well represented by projected BCS wave functions[1,2] of the type proposed by P. W. Anderson at the early stages of High temperature superconductivity [3]. The first spin liquid phase is stable for small values of the coupling r 0.6 and appears gapless and fractionalized, whereas the second one is a more conventional spin liquid, very similar to the one realized in the quantum dimer model in the triangular lattice[4]. It is characterized by a spin gap and a finite correlation length, and appears energetically favored in the region 0.6 r 0.9. The various phases are in good agreement with the experimental findings and supports the existence of spin liquid phases in 2D quantum spin-half systems. %%%%%%%%%%%%%%%%%% 1cm *[1] L. Capriotti F. Becca A. Parola and S. Sorella , Phys. Rev. Letters 87, 097201 (2001). *[2] S. Yunoki and S. Sorella Phys. Rev. Letters 92, 15003 (2004). *[3] P. W. Anderson, Science 235, 1186 (1987). *[4] P. Fendley, R. Moessner, and S. L. Sondhi Phys. Rev. B 66, 214513 (2002).

  7. Method for anisotropic etching in the manufacture of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L. (Inventor); Cross, Jon B. (Inventor)

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by hyperthermal atomic oxygen beams (translational energies of 0.2 to 20 eV, preferably 1 to 10 eV). Etching with hyperthermal oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask protected areas.

  8. Long-Range Surface Plasmons on Highly Anisotropic Dielectric Substrates

    NASA Astrophysics Data System (ADS)

    Gumen, L.; Nagaraj; Neogi, A.; Krokhin, A.

    We calculate the propagation length of surface plasmons in metal-dielectric structures with anisotropic substrates. We show that the Joule losses can be minimized by appropriate orientation of the optical axis of a birefringent substrate and that the favorable orientation of the axis depends on ω. A simple Kronig-Penney model for anisotropic plasmonic crystal is also proposed.

  9. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  10. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  11. Method for anisotropic etching in the manufacture of semiconductor devices

    DOEpatents

    Koontz, Steven L.; Cross, Jon B.

    1993-01-01

    Hydrocarbon polymer coatings used in microelectronic manufacturing processes are anisotropically etched by atomic oxygen beams (translational energies of 0.2-20 eV, preferably 1-10 eV). Etching with hyperthermal (kinetic energy>1 eV) oxygen atom species obtains highly anisotropic etching with sharp boundaries between etched and mask-protected areas.

  12. Optical isotropy at terahertz frequencies using anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Lee, In-Sung; Sohn, Ik-Bu; Kang, Chul; Kee, Chul-Sik; Yang, Jin-Kyu; Lee, Joong Wook

    2016-07-01

    We demonstrate optically isotropic filters in the terahertz (THz) frequency range using structurally anisotropic metamaterials. The proposed metamaterials with two-dimensional arrangements of anisotropic H-shaped apertures show polarization-independent transmission due to the combined effects of the dipole resonances of resonators and antennas. Our results may offer the potential for the design and realization of versatile THz devices and systems.

  13. Asymptotic modelling of a thermopiezoelastic anisotropic smart plate

    NASA Astrophysics Data System (ADS)

    Long, Yufei

    Motivated by the requirement of modelling for space flexible reflectors as well as other applications of plate structures in engineering, a general anisotropic laminated thin plate model and a monoclinic Reissner-Mindlin plate model with thermal deformation, two-way coupled piezoelectric effect and pyroelectric effect is constructed using the variational asymptotic method, without any ad hoc assumptions. Total potential energy contains strain energy, electric potential energy and energy caused by temperature change. Three-dimensional strain field is built based on the concept of warping function and decomposition of the rotation tensor. The feature of small thickness and large in-plane dimension of plate structure helped to asymptotically simplify the three-dimensional analysis to a two-dimensional analysis on the reference surface and a one-dimensional analysis through the thickness. For the zeroth-order approximation, the asymptotically correct expression of energy is derived into the form of energetic equation in classical laminated plate theory, which will be enough to predict the behavior of plate structures as thin as a space flexible reflector. A through-the-thickness strain field can be expressed in terms of material constants and two-dimensional membrane and bending strains, while the transverse normal and shear stresses are not predictable yet. In the first-order approximation, the warping functions are further disturbed into a high order and an asymptotically correct energy expression with derivatives of the two-dimensional strains is acquired. For the convenience of practical use, the expression is transformed into a Reissner-Mindlin form with optimization implemented to minimize the error. Transverse stresses and strains are recovered using the in-plane strain variables. Several numerical examples of different laminations and shapes are studied with the help of analytical solutions or shell elements in finite element codes. The constitutive relation is

  14. Anisotropic Properties of Stainless Steel—Clad Aluminum Sheet

    NASA Astrophysics Data System (ADS)

    Kim, Daeyong; Hwang, Bum Kyu; Lee, Young Seon; Kim, Ji Hoon; Kim, Min-Joong

    2010-06-01

    The production of a stainless steel—clad aluminum sheet by the cold rolling process is a more efficient and economical approach compared with the other types of processes utilized for the production of such sheets. Because both the stainless steel and aluminum sheets show the highly anisotropic behavior, it is necessary to investigate anisotropic properties of clad sheets for the design of process. In this paper, to investigate the anisotropic properties of stainless steel—clad aluminum sheet, two kinds of clad sheets were considered: STS439/AA3003 and STS439/AA1050/STS304 clad sheets. The uni-axial tension tests at 0, 45 and 90 degrees for the rolling direction were performed to obtained yield stresses and R values. The strain ratio at balanced biaxial tension state was measured from compression disk test. In order to describe the anisotropic behavior of the clad sheet, nonquadratic anisotropic yield function Yld2000-2d was utilized.

  15. Finite q-oscillator

    NASA Astrophysics Data System (ADS)

    Atakishiyev, Natig M.; Klimyk, Anatoliy U.; Wolf, Kurt Bernardo

    2004-05-01

    The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra suq(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x_s={\\case12}[2s]_q, s\\in\\{-j,-j+1,\\ldots,j\\} , and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schrödinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q rarr 1 we recover the finite oscillator Lie algebra, the N = 2j rarr infin limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.

  16. Automatic finite element generators

    NASA Technical Reports Server (NTRS)

    Wang, P. S.

    1984-01-01

    The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.

  17. Finite-temperature scaling of quantum coherence near criticality in a spin chain

    NASA Astrophysics Data System (ADS)

    Cheng, Weiwen; Zhang, Zhijun; Gong, Longyan; Zhao, Shengmei

    2016-06-01

    We explore quantum coherence, inherited from Wigner-Yanase skew information, to analyze quantum criticality in the anisotropic XY chain model at finite temperature. Based on the exact solutions of the Hamiltonian, the quantum coherence contained in a nearest-neighbor spin pairs reduced density matrix ρ is obtained. The first-order derivative of the quantum coherence is non-analytic around the critical point at sufficient low temperature. The finite-temperature scaling behavior and the universality are verified numerically. In particular, the quantum coherence can also detect the factorization transition in such a model at sufficient low temperature. We also show that quantum coherence contained in distant spin pairs can characterize quantum criticality and factorization phenomena at finite temperature. Our results imply that quantum coherence can serve as an efficient indicator of quantum criticality in such a model and shed considerable light on the relationships between quantum phase transitions and quantum information theory at finite temperature.

  18. Nonlinear, finite deformation, finite element analysis

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhung; Waas, Anthony M.

    2016-06-01

    The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated

  19. Stability of generally stiffened anisotropic noncircular cylinders

    NASA Technical Reports Server (NTRS)

    Sobh, Nahil Atef

    1992-01-01

    Continuous filament grid-stiffened structure is a stiffening concept that combines structural efficiency and damage tolerance. However, finite element design of such structures against buckling is expensive due to the complexities of the structure. An analytical model of such a structure is developed using a penalty method (artificial springs) with a first order shear deformation theory (FSDT). The buckling analysis under combined loadings is done using energy method with a penalty/Rayleigh-Ritz technique. The penalty/Rayleigh-Ritz approach is computationally less demanding when compared to the finite element solution and mesh generation. Apart from the published research works on buckling of stiffened plates and shells by finite element and finite strips, research works on buckling of stiffened plates and shells utilize three different approaches; smeared, column, and discrete approaches. The discrete approach considers the discrete effects of the stiffeners in the buckling behavior by modeling stiffeners as line of bending (EI) and torsion (GJ) stiffnesses on panel skin. Some local deformations are lost when stiffeners are modeled as (EI) and (GJ) stiffeners. This approach becomes difficult in the case of plate stiffened in more than two directions. Most of the work done using the discrete approach involved the Classical Plate Theory (CLPT) rather than the FSDT. We report on our formulation of a discrete approach coupled with a penalty formulation and FSDT.

  20. Inference for an Anisotropic Diffusion Model

    ERIC Educational Resources Information Center

    Eaves, David

    1976-01-01

    Vector sum of a white noise in an unknown hyperspace and an Ornstein-Uhlenbeck process in an unknown line is observed through sharp linear test functions over a finite time span. Parameters associated with white noise are determinable and index measure-equivalence classes in relevant sample space. Intraclass relative density provides a basis for…

  1. Primordial power spectra from anisotropic inflation

    SciTech Connect

    Dulaney, Timothy R.; Gresham, Moira I.

    2010-05-15

    We examine cosmological perturbations in a dynamical theory of inflation in which an Abelian gauge field couples directly to the inflaton, breaking conformal invariance. When the coupling between the gauge field and the inflaton takes a specific form, inflation becomes anisotropic and anisotropy can persist throughout inflation, avoiding Wald's no-hair theorem. After discussing scenarios in which anisotropy can persist during inflation, we calculate the dominant effects of a small persistent anisotropy on the primordial gravitational wave and curvature perturbation power spectra using the ''in-in'' formalism of perturbation theory. We find that the primordial power spectra of cosmological perturbations gain significant direction dependence and that the fractional direction dependence of the tensor power spectrum is suppressed in comparison to that of the scalar power spectrum.

  2. Effects of anisotropic heat conduction on solidification

    NASA Technical Reports Server (NTRS)

    Weaver, J. A.; Viskanta, R.

    1989-01-01

    Two-dimensional solidification influenced by anisotropic heat conduction has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effects of the Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k(yy)/k(yx). The nonlinearity of the interface is influenced by the solidification rate, aspect ratio, and k(yy/k(yx).

  3. Isotropic and anisotropic surface wave cloaking techniques

    NASA Astrophysics Data System (ADS)

    McManus, T. M.; La Spada, L.; Hao, Y.

    2016-04-01

    In this paper we compare two different approaches for surface waves cloaking. The first technique is a unique application of Fermat’s principle and requires isotropic material properties, but owing to its derivation is limited in its applicability. The second technique utilises a geometrical optics approximation for dealing with rays bound to a two dimensional surface and requires anisotropic material properties, though it can be used to cloak any smooth surface. We analytically derive the surface wave scattering behaviour for both cloak techniques when applied to a rotationally symmetric surface deformation. Furthermore, we simulate both using a commercially available full-wave electromagnetic solver and demonstrate a good level of agreement with their analytically derived solutions. Our analytical solutions and simulations provide a complete and concise overview of two different surface wave cloaking techniques.

  4. Anisotropic criteria for the type of superconductivity

    SciTech Connect

    Kogan, Vladimir G; Prozorov, Ruslan

    2014-08-01

    The classical criterion for classification of superconductors as type I or type II based on the isotropic Ginzburg-Landau theory is generalized to arbitrary temperatures for materials with anisotropic Fermi surfaces and order parameters. We argue that the relevant quantity for this classification is the ratio of the upper and thermodynamic critical fields Hc2/Hc, rather than the traditional ratio of the penetration depth and the coherence length λ/ξ. Even in the isotropic case, Hc2/Hc coincides with 2√λ/ξ only at the critical temperature Tc and they differ as T decreases, the long-known fact. Anisotropies of Fermi surfaces and order parameters may amplify this difference and render false the criterion based on the value of κ=λ/ξ.

  5. Anisotropic Absorption of Pure Spin Currents

    NASA Astrophysics Data System (ADS)

    Baker, A. A.; Figueroa, A. I.; Love, C. J.; Cavill, S. A.; Hesjedal, T.; van der Laan, G.

    2016-01-01

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α , in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co50 Fe50 layer leads to an anisotropic α in a polycrystalline Ni81 Fe19 layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices.

  6. Far field expansion for anisotropic wave equations

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Hagstrom, Thomas

    1989-01-01

    A necessary ingredient for the numerical simulation of many time dependent phenomena in acoustics and aerodynamics is the imposition of accurate radiation conditions at artificial boundaries. The asymptotic analysis of propagating waves provides a rational approach to the development of such conditions. A far field asymptotic expansion of solutions of anisotropic wave equations is derived. This generalizes the well known Friedlander expansion for the standard wave operator. The expansion is used to derive a hierarchy of radiation conditions of increasing accuracy. Two numerical experiments are given to illustrate the utility of this approach. The first application is the study of unsteady vortical disturbances impinging on a flat plate; the second is the simulation of inviscid flow past an impulsively started cylinder.

  7. Quarkonium states in an anisotropic QCD plasma

    SciTech Connect

    Dumitru, Adrian; Guo Yun; Mocsy, Agnes; Strickland, Michael

    2009-03-01

    We consider quarkonium in a hot quantum chromodynamics (QCD) plasma which, due to expansion and nonzero viscosity, exhibits a local anisotropy in momentum space. At short distances the heavy-quark potential is known at tree level from the hard-thermal loop resummed gluon propagator in anisotropic perturbative QCD. The potential at long distances is modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is nonzero and inversely proportional to the temperature. We obtain numerical solutions of the three-dimensional Schroedinger equation for this potential. We find that quarkonium binding is stronger at nonvanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states.

  8. Anisotropic Absorption of Pure Spin Currents.

    PubMed

    Baker, A A; Figueroa, A I; Love, C J; Cavill, S A; Hesjedal, T; van der Laan, G

    2016-01-29

    Spin transfer in magnetic multilayers offers the possibility of ultrafast, low-power device operation. We report a study of spin pumping in spin valves, demonstrating that a strong anisotropy of spin pumping from the source layer can be induced by an angular dependence of the total Gilbert damping parameter, α, in the spin sink layer. Using lab- and synchrotron-based ferromagnetic resonance, we show that an in-plane variation of damping in a crystalline Co_{50}Fe_{50} layer leads to an anisotropic α in a polycrystalline Ni_{81}Fe_{19} layer. This anisotropy is suppressed above the spin diffusion length in Cr, which is found to be 8 nm, and is independent of static exchange coupling in the spin valve. These results offer a valuable insight into the transmission and absorption of spin currents, and a mechanism by which enhanced spin torques and angular control may be realized for next-generation spintronic devices. PMID:26871353

  9. Effects of anisotropic heat conduction on solidification

    SciTech Connect

    Weaver, J.A.; Viskanta, R.

    1989-01-01

    Two-dimensional solidfication influenced by anisotropic heat conductions has been considered. The interfacial energy balance was derived to account for the heat transfer in one direction (x or y) depending on the temperature gradient in both the x and y directions. A parametric study was made to determine the effect of Stefan number, aspect ratio, initial superheat, and thermal conductivity ratios on the solidification rate. Because of the imposed boundary conditions, the interface became skewed and sometimes was not a straight line between the interface position at the upper and lower adiabatic walls (spatially nonlinear along the height). This skewness depends on the thermal conductivity ratio k/sub yy//k/sub yx/. The nonlinearity of the interface is influenced by the solidificaton rate, aspect ratio, and k/sub yy//k/sub yx/.

  10. Turbulent Output-Based Anisotropic Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Carlson, Jan-Renee

    2010-01-01

    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  11. An Anisotropic Hardening Model for Springback Prediction

    NASA Astrophysics Data System (ADS)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  12. Anisotropic acoustic metafluid for underwater operation.

    PubMed

    Popa, Bogdan-Ioan; Wang, Wenqi; Konneker, Adam; Cummer, Steven A; Rohde, Charles A; Martin, Theodore P; Orris, Gregory J; Guild, Matthew D

    2016-06-01

    The paper presents a method to design and characterize mechanically robust solid acoustic metamaterials suitable for operation in dense fluids such as water. These structures, also called metafluids, behave acoustically as inertial fluids characterized by anisotropic mass densities and isotropic bulk modulus. The method is illustrated through the design and experimental characterization of a metafluid consisting of perforated steel plates held together by rubber coated magnetic spacers. The spacers are very effective at reducing the effective shear modulus of the structure, and therefore effective at minimizing the ensuing coupling between the shear and pressure waves inside the solid effective medium. Inertial anisotropy together with fluid-like acoustic behavior are key properties that bring transformation acoustics in dense fluids closer to reality. PMID:27369158

  13. Impact location estimation in anisotropic structures

    NASA Astrophysics Data System (ADS)

    Zhou, Jingru; Mathews, V. John; Adams, Daniel O.

    2015-03-01

    Impacts are major causes of in-service damage in aerospace structures. Therefore, impact location estimation techniques are necessary components of Structural Health Monitoring (SHM). In this paper, we consider impact location estimation in anisotropic composite structures using acoustic emission signals arriving at a passive sensor array attached to the structure. Unlike many published location estimation algorithms, the algorithm presented in this paper does not require the waveform velocity profile for the structure. Rather, the method employs time-of-arrival information to jointly estimate the impact location and the average signal transmission velocities from the impact to each sensor on the structure. The impact location and velocities are estimated as the solution of a nonlinear optimization problem with multiple quadratic constraints. The optimization problem is solved by using first-order optimality conditions. Numerical simulations as well as experimental results demonstrate the ability of the algorithm to accurately estimate the impact location using acoustic emission signals.

  14. Anisotropic magnetoresistance in manganites: experiment and theory.

    PubMed

    Fuhr, J D; Granada, M; Steren, L B; Alascio, B

    2010-04-14

    We present measurements of the anisotropic magnetoresistance (AMR) of La(0.75)Sr(0.25)MnO(3) films deposited on (001) SrTiO(3) substrates, and a model that describes the experimental results. The model, based on the electronic structure of manganites plus the spin-orbit coupling, correctly accounts for the dependence of the AMR on the direction of the current to the crystalline axes. We measure an AMR of the order of 10(-3) for the current I parallel to the [100] axis of the crystal and vanishing AMR for I , in agreement with the model predictions. Further, we calculate the planar Hall effect and show its connection to AMR.

  15. Cloaking with optimized homogeneous anisotropic layers

    NASA Astrophysics Data System (ADS)

    Popa, Bogdan-Ioan; Cummer, Steven A.

    2009-02-01

    We present a method to reduce the scattering from arbitrary objects by surrounding them with shells composed of several layers of homogeneous anisotropic materials. An optimization procedure is used to find the material parameters for each layer, the starting point of which is a discretized approximation of a coordinate transformation cloaking shell. We show that an optimized, three-layer shell can reduce the maximum scattering of an object by as much as 15dB more than a 100-layer realization of a coordinate transformation cloaking shell. Moreover, using an optimization procedure can yield high-performance cloaking shell solutions that also meet external constraints, such as the maximum value of permittivity or permeability. This design approach can substantially simplify the fabrication of moderate-size cloaking shells.

  16. Multistability of spontaneously curved anisotropic strips

    NASA Astrophysics Data System (ADS)

    Giomi, Luca; Mahadevan, L.

    2010-03-01

    Multistable structures are elastic objects, typically composite plates or shells, with more than one stable conformation. The common tape measure or the steel band enclosed inside the bright fabric cover of a ``slap bracelet'', are classic examples of plates that exhibit two stable configurations: folded and unfolded. Multistable structures have many potential applications, from the simple construction of objects of adjustable size to the design of mechanical devices that switch between a discrete number of states. In this talk I will discuss multistability in a quasi-one-dimensional anisotropic strip. The reduced dimensionality allows an exact analytical treatment in terms of the classic F"oppl - von K'arm'an theory of plates. In the conclusions I will comment on the possible occurrence of multistability in biological materials.

  17. Particle Behavior at Anisotropically Curved Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    McEnnis, Kathleen; Zeng, Chuan; Davidovitch, Benny; Dinsmore, Anthony; Russell, Thomas

    2011-03-01

    A particle bound to an anisotropically curved liquid interface, such as a cylinder or catenoid, cannot maintain a constant contact angle without deforming the interface. Theory suggests that the particles will experience a force that depends on the interfacial shape and migrate to minimize the total interfacial energy. To test these predictions, particles were deposited on top of liquid semi-cylinders of ionic liquid or melted polystyrene confined on chemically patterned surfaces. Particles were also deposited on liquid catenoid structures created by placing a melted polymer film under an electric field. The location of the particles on these structures was observed by optical, confocal, and scanning electron microscopy. The implications for the directed assembly of particles and stability of Pickering emulsions are also discussed.

  18. Anisotropic Cloth Modeling for Material Fabric

    NASA Astrophysics Data System (ADS)

    Zhang, Mingmin; Pan, Zhigengx; Mi, Qingfeng

    Physically based cloth simulation has been challenging the graphics community for more than three decades. With the developing of virtual reality and clothing CAD, it has become the key technique of virtual garment and try-on system. Although it has received considerable attention in computer graphics, due to its flexible property and realistic feeling that the textile engineers pay much attention to, there is not a successful methodology to simulate cloth both in visual realism and physical accuracy. We present a new anisotropic textile modeling method based on physical mass-spring system, which models the warps and wefts separately according to the different material fabrics. The simulation process includes two main steps: firstly the rigid object simulation and secondly the flexible mass simulation near to be equilibrium. A multiresolution modeling is applied to enhance the tradeoff fruit of the realistic presentation and computation cost. Finally, some examples and the analysis results show the efficiency of the proposed method.

  19. Sur le remodelage des tissus osseux anisotropes

    NASA Astrophysics Data System (ADS)

    DiCarlo, Antonio; Naili, Salah; Quiligotti, Sara

    2006-11-01

    Growth (change of relaxed lengths) and remodelling (change of mechanical properties) are both involved in the morphogenesis of biological tissues. To model them is of paramount import for progressing both in scientific understanding and health technologies. We model bone tissue as a microstructured continuum, whose mechanical properties at the macroscopic scale are described by a linear, anisotropic elastic response that evolves in time. Our kinematics is rich enough to allow for the microstructural evolution, as well as for the interplay between stress, growth and remodelling. This is a unified approach to the mechanics of growth and remodelling, in which all balance laws derive from one virtual-power principle. As a first application, we study the problem of stiffness remodelling due to planar rotation of the microstructure, excluding bulk growth and all physiological response to mechanical stimuli (passive remodelling). To cite this article: A. DiCarlo et al., C. R. Mecanique 334 (2006).

  20. Adiabatic theory for anisotropic cold molecule collisions

    SciTech Connect

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  1. Mixed models and reduction method for dynamic analysis of anisotropic shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.

  2. Routing of deep-subwavelength optical beams without reflection and diffraction using infinitely anisotropic metamaterials

    NASA Astrophysics Data System (ADS)

    Catrysse, Peter B.; Fan, Shanhui

    2015-03-01

    Media that are described by extreme electromagnetic parameters, such as very large/small permittivity/permeability, have generated significant fundamental and applied interest in recent years. Notable examples include epsilon-near-zero, ultra-low refractive-index, and ultra-high refractive-index materials. Many photonic structures, such as waveguides, lenses, and photonic band gap materials, benefit greatly from the large index contrast provided by such media. In this paper, I discuss our recent work on media with infinite anisotropy, i.e., infinite permittivity (permeability) in one direction and finite in the other directions. As an illustration of the unusual optical behaviors that result from infinite anisotropy, I describe efficient light transport in deep-subwavelength apertures filled with infinitely anisotropic media. I then point out some of the opportunities that exist for controlling light at the nano-scale using infinitely anisotropic media by themselves. First, I show that a single medium with infinite anisotropy enables diffraction-free propagation of deep-subwavelength beams. Next, I demonstrate interfaces between two infinitely anisotropic media that are impedancematched for complete deep-subwavelength beams and enable reflection-free routing with zero bend radius that is entirely free from diffraction effects even when deep-subwavelength information is encoded on the beams. These behaviors indicate an unprecedented possibility to use media with infinite anisotropy to manipulate beams with deepsubwavelength features, including complete images. To illustrate physical realizability, I demonstrate a metamaterial design using existing materials in a planar geometry, which can be implemented using well-established nanofabrication techniques. This approach provides a path to deep-subwavelength routing of information-carrying beams and far-field imaging unencumbered by diffraction and reflection.

  3. A quantum fidelity study of the anisotropic next-nearest-neighbour triangular lattice Heisenberg model

    NASA Astrophysics Data System (ADS)

    Thesberg, Mischa; Sørensen, Erik S.

    2014-10-01

    Ground- and excited-state quantum fidelities in combination with generalized quantum fidelity susceptibilites, obtained from exact diagonalizations, are used to explore the phase diagram of the anisotropic next-nearest-neighbour triangular Heisenberg model. Specifically, the J‧ - J2 plane of this model, which connects the J1 - J2 chain and the anisotropic triangular lattice Heisenberg model, is explored using these quantities. Through the use of a quantum fidelity associated with the first excited-state, in addition to the conventional ground-state fidelity, the BKT-type transition and Majumdar-Ghosh point of the J1 - J2 chain (J‧ = 0) are found to extend into the J‧ - J2 plane and connect with points on the J2 = 0 axis thereby forming bounded regions in the phase diagram. These bounded regions are then explored through the generalized quantum fidelity susceptibilities χρ, χ120\\circ , χD and χCAF which are associated with the spin stiffness, 120° spiral order parameter, dimer order parameter and collinear antiferromagnetic order parameter respectively. These quantities are believed to be extremely sensitive to the underlying phase and are thus well suited for finite-size studies. Analysis of the fidelity susceptibilities suggests that the J‧, J2 ≪ J phase of the anisotropic triangular model is either a collinear antiferromagnet or possibly a gapless disordered phase that is directly connected to the Luttinger phase of the J1 - J2 chain. Furthermore, the outer region is dominated by incommensurate spiral physics as well as dimer order.

  4. A local anisotropic adaptive algorithm for the solution of low-Mach transient combustion problems

    NASA Astrophysics Data System (ADS)

    Carpio, Jaime; Prieto, Juan Luis; Vera, Marcos

    2016-02-01

    A novel numerical algorithm for the simulation of transient combustion problems at low Mach and moderately high Reynolds numbers is presented. These problems are often characterized by the existence of a large disparity of length and time scales, resulting in the development of directional flow features, such as slender jets, boundary layers, mixing layers, or flame fronts. This makes local anisotropic adaptive techniques quite advantageous computationally. In this work we propose a local anisotropic refinement algorithm using, for the spatial discretization, unstructured triangular elements in a finite element framework. For the time integration, the problem is formulated in the context of semi-Lagrangian schemes, introducing the semi-Lagrange-Galerkin (SLG) technique as a better alternative to the classical semi-Lagrangian (SL) interpolation. The good performance of the numerical algorithm is illustrated by solving a canonical laminar combustion problem: the flame/vortex interaction. First, a premixed methane-air flame/vortex interaction with simplified transport and chemistry description (Test I) is considered. Results are found to be in excellent agreement with those in the literature, proving the superior performance of the SLG scheme when compared with the classical SL technique, and the advantage of using anisotropic adaptation instead of uniform meshes or isotropic mesh refinement. As a more realistic example, we then conduct simulations of non-premixed hydrogen-air flame/vortex interactions (Test II) using a more complex combustion model which involves state-of-the-art transport and chemical kinetics. In addition to the analysis of the numerical features, this second example allows us to perform a satisfactory comparison with experimental visualizations taken from the literature.

  5. Finite Element Analysis Code

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operationmore » of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.« less

  6. Finite Element Analysis Code

    SciTech Connect

    Sjaardema, G.; Wellman, G.; Gartling, D.

    2006-03-08

    MAPVAR-KD is designed to transfer solution results from one finite element mesh to another. MAPVAR-KD draws heavily from the structure and coding of MERLIN II, but it employs a new finite element data base, EXODUS II, and offers enhanced speed and new capabilities not available in MERLIN II. In keeping with the MERLIN II documentation, the computational algorithms used in MAPVAR-KD are described. User instructions are presented. Example problems are included to demonstrate the operation of the code and the effects of various input options. MAPVAR-KD is a modification of MAPVAR in which the search algorithm was replaced by a kd-tree-based search for better performance on large problems.

  7. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.

    PubMed

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-09-01

    An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel.

  8. Shear and compression buckling analysis for anisotropic panels with centrally located elliptical cutouts

    NASA Technical Reports Server (NTRS)

    Britt, V. O.

    1993-01-01

    An approximate analysis for buckling of biaxial- and shear-loaded anisotropic panels with centrally located elliptical cutouts is presented in the present paper. The analysis is composed of two parts, a prebuckling analysis and a buckling analysis. The prebuckling solution is determined using Lekhnitskii's complex variable equations of plane elastostatics combined with a Laurent series approximation and a boundary collocation method. The buckling solution is obtained using the principle of minimum potential energy. A by-product of the minimum potential energy equation is an integral equation which is solved using Gaussian quadrature. Comparisons with documented experimental results and finite element analyses indicate that the approximate analysis accurately predicts the buckling loads of square biaxial- and shear-loaded panels having elliptical cutouts with major axes up to sixty percent of the panel width. Results of a parametric study are presented for shear- and compression-loaded rectangular anisotropic panels with elliptical cutouts. The effects of panel aspect ratio, cutout shape, cutout size, cutout orientation, laminate anisotropy, and combined loading on the buckling load are examined.

  9. 2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Greenhalgh, Mark; Greenhalgh, S. A.

    2009-01-01

    We present a new numerical scheme for 2.5-D/3-D direct current resistivity modelling in heterogeneous, anisotropic media. This method, named the `Gaussian quadrature grid' (GQG) method, cooperatively combines the solution of the Variational Principle of the partial differential equation, Gaussian quadrature abscissae and local cardinal functions so that it has the main advantages of the spectral element method. The formulation shows that the GQG method is a modification of the spectral element method but does not employ the constant elements or require the mesh generator to match the Earth's surface. This makes it much easier to deal with geological models having a 2-D/3-D complex topography than using traditional numerical methods. The GQG technique can achieve a similar convergence rate to the spectral element method. We show it transforms the 2.5-D/3-D resistivity modelling problem into a sparse and symmetric linear equation system that can be solved by an iterative or matrix inversion method. Comparison with analytic solutions for homogeneous isotropic and anisotropic models shows that the error depends on the Gaussian quadrature order (abscissa number) and the subdomain size. The higher the order or the smaller the subdomain size that is employed, the more accurate are the results obtained. Several other synthetic examples, both homogeneous and inhomogeneous, incorporating sloping, undulating and severe topography, are presented and found to yield results comparable to finite element solutions involving a dense mesh.

  10. Composite beam analysis linear analysis of naturally curved and twisted anisotropic beams

    NASA Astrophysics Data System (ADS)

    Borri, Marco; Ghiringhelli, Gian L.; Merlini, Teodoro

    1992-05-01

    The aim of this report is to present a consistent theory for the deformation of a naturally curved and twisted anisotropic beam. The proposed formulation naturally extends the classical Saint-Venant approach to the case of curved and twisted anisotropic beams. The mathematical model developed under the assumption of span-wise uniform cross-section, curvature and twist, can take into account any kind of elastic coupling due to the material properties and the curved geometry. The consistency of the presented math-model and its generality about the cross-sectional shape, make it a useful tool even in a preliminary design optimization context such as the aeroelastic tailoring of helicopter rotor blades. The advantage of the present procedure is that it only requires a two-dimensional discretization; thus, very detailed analyses can be performed and interlaminar stresses between laminae can be evaluated. Such analyses would be extremely time consuming if performed with standard finite element codes: that prevents their recursive use as for example when optimizing a beam design. Moreover, as a byproduct of the proposed formulation, one obtains the constitutive law of the cross-section in terms of stress resultant and moment and their conjugate strain measures. This constitutive law takes into account any kind of elastic couplings, e.g., torsion-tension, tension-shear, bending-shear, and constitutes a fundamental input in aeroelastic analyses of helicopter blades. Four simple examples are given in order to show the principal features of the method.

  11. Anisotropic constitutive model incorporating multiple damage mechanisms for multiscale simulation of dental enamel.

    PubMed

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-09-01

    An anisotropic constitutive model is proposed in the framework of finite deformation to capture several damage mechanisms occurring in the microstructure of dental enamel, a hierarchical bio-composite. It provides the basis for a homogenization approach for an efficient multiscale (in this case: multiple hierarchy levels) investigation of the deformation and damage behavior. The influence of tension-compression asymmetry and fiber-matrix interaction on the nonlinear deformation behavior of dental enamel is studied by 3D micromechanical simulations under different loading conditions and fiber lengths. The complex deformation behavior and the characteristics and interaction of three damage mechanisms in the damage process of enamel are well captured. The proposed constitutive model incorporating anisotropic damage is applied to the first hierarchical level of dental enamel and validated by experimental results. The effect of the fiber orientation on the damage behavior and compressive strength is studied by comparing micro-pillar experiments of dental enamel at the first hierarchical level in multiple directions of fiber orientation. A very good agreement between computational and experimental results is found for the damage evolution process of dental enamel. PMID:27294283

  12. Design of a silicon polarization grating with a sub-wavelength anisotropic structure

    NASA Astrophysics Data System (ADS)

    Anju, Koji; Tsuda, Hiroyuki; Uetsuka, Hisato

    2016-02-01

    Polarization gratings, which have the important properties of being highly efficient for first order diffraction and having high polarization sensitivity, can be applied to beam splitters, displays, spectro-polarimeters, and so on. Usually, polarization gratings are fabricated utilizing the periodic anisotropy of liquid crystal molecules. However, high tolerance to light, heat, and humidity is required, in particular, for optical communication applications. Therefore, a polarization grating based on an inorganic material is more suitable than one based on an organic one. We propose a silicon polarization grating with form birefringence induced by an anisotropic surface microstructure with features shorter than the wavelength of light (sub-wavelength anisotropic structure), allowing the birefringence to be controlled through selection of the dimensions of the periodic structure. In this paper, we describe the design of sub-wavelength structures of half wave plates using a thin film of silicon. By optimizing the line width, the line spacing, and the thickness of the film, a transmittance of more than 99% at an incident wavelength of 1550 nm was obtained. A polarization grating based on this half wave plate was designed. The orientation of the half wave plate structure was rotated in a particular direction. Furthermore, we evaluated the wavelength dependence and incident angle dependence of the diffraction efficiency using a finite-difference time-domain method.

  13. Finite Element Analysis Code

    SciTech Connect

    Forsythe, C.; Smith, M.; Sjaardema, G.

    2005-06-26

    Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or to another format.

  14. Accurate Finite Difference Algorithms

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1996-01-01

    Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.

  15. Finite difference computation of Casimir forces

    NASA Astrophysics Data System (ADS)

    Pinto, Fabrizio

    2016-09-01

    In this Invited paper, we begin by a historical introduction to provide a motivation for the classical problems of interatomic force computation and associated challenges. This analysis will lead us from early theoretical and experimental accomplishments to the integration of these fascinating interactions into the operation of realistic, next-generation micro- and nanodevices both for the advanced metrology of fundamental physical processes and in breakthrough industrial applications. Among several powerful strategies enabling vastly enhanced performance and entirely novel technological capabilities, we shall specifically consider Casimir force time-modulation and the adoption of non-trivial geometries. As to the former, the ability to alter the magnitude and sign of the Casimir force will be recognized as a crucial principle to implement thermodynamical nano-engines. As to the latter, we shall first briefly review various reported computational approaches. We shall then discuss the game-changing discovery, in the last decade, that standard methods of numerical classical electromagnetism can be retooled to formulate the problem of Casimir force computation in arbitrary geometries. This remarkable development will be practically illustrated by showing that such an apparently elementary method as standard finite-differencing can be successfully employed to numerically recover results known from the Lifshitz theory of dispersion forces in the case of interacting parallel-plane slabs. Other geometries will be also be explored and consideration given to the potential of non-standard finite-difference methods. Finally, we shall introduce problems at the computational frontier, such as those including membranes deformed by Casimir forces and the effects of anisotropic materials. Conclusions will highlight the dramatic transition from the enduring perception of this field as an exotic application of quantum electrodynamics to the recent demonstration of a human climbing

  16. Acoustic planar hyperlens based on anisotropic density-near-zero metamaterials

    SciTech Connect

    Gu, Yuan; Cheng, Ying Liu, Xiaojun

    2015-09-28

    Based on anisotropic density-near-zero metamaterials, we demonstrate a planar hyperlens with resolution beyond the diffraction limit in both one and two lateral dimensions. In contrast to the cylindrical hyperlens with elliptical dispersions of finite anisotropy, the proposed planar hyperlens is designed with flat near-zero dispersion that supports wave tunneling with extremely high phase velocity for infinite large transverse wave vectors. Therefore, the acoustic evanescent waves immediately concentrate into the designed oblique path till the output surface, leading to a subwavelength resolution. Prototype hyperlens is constructed with a membrane-network by means of equivalent lumped-circuit model, and the subwavelength magnifying performance for a pair of one-dimensional line objects as well as the complex two-dimensional structure is demonstrated. This method provides diverse routes to construct hyperlens operating without the limitation on imaging region in practical applications.

  17. Sudden death of distillability in a two-qutrit anisotropic Heisenberg spin model

    NASA Astrophysics Data System (ADS)

    Guo, You-neng; Fang, Mao-fa; Zou, Hong-mei; Zhang, Shi-yang; Liu, Xiang

    2015-06-01

    Sudden death of distillability for a two-qutrit anisotropic Heisenberg XX chain with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous magnetic field is studied in detail. By using the negativity and realignment criterion, we show that certain initial prepared free entangled states may become bound entangled or separable states in a finite time. Moreover, the influences of the isotropic bilinear interaction parameter, the external magnetic field strength, the DM interaction parameter, as well as the intrinsic decoherence parameter on the possibility of distillability sudden death (DSD) have been studied. The results show, controlling the isotropic bilinear interaction parameter, the external magnetic field strength, the DM interaction parameter, as well as the intrinsic decoherence parameter, can accelerate the possibility of DSD in the present model.

  18. Dispersion properties of transverse anisotropic liquid crystal core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2016-04-01

    The dispersion properties of liquid crystal core photonic crystal fibers for different core diameters have been calculated by a full vectorial finite difference method. In calculations, air holes are assumed to be arranged in a regular hexagonal array in fused silica and a central hole is filled with liquid crystal to create a core. In this study, three types of transverse anisotropic configurations, where liquid crystal molecules are oriented in a transverse plane, and a planar configuration, where liquid crystal molecules are oriented in a propagation direction, are considered. The large changes of the dispersion properties are found when the orientation of the liquid crystal molecules is changed from a planar configuration to a uniform configuration, where all molecules are oriented in the same direction in a transverse plane. Since the orientation of liquid crystal molecules may be controlled by applying an electric field, it could be utilized for various applications including the spectral control of supercontinuum generation.

  19. Implementation of an Evolving non Quadratic Anisotropic Behaviour for the Closed Packed Materials

    SciTech Connect

    Revil-Baudard, Benoit; Massoni, Elisabeth

    2010-06-15

    In this paper, the mechanical behaviour of alpha-titanium alloys is modelised for the cold forming processes. The elasto-plastic constitutive law is decomposed in an anisotropic plastic criterion, an isotropic hardening and a kinematic hardening. Non quadratic criteria have been developed by Cazacu et al.[1], to model the plasticity of hexagonal closed packed materials. The implementation of this model in a finite element software switch between two bases, the equilibrium is calculated in a reference basis and the anisotropy axes define a local basis, updated by the deformation gradient. An identification procedure, based on tensile tests, allows defining all the parameters needed to model the elasto-plastic behaviour. Simulations of cold forming processes (bulging and deep drawing) have been done to validate this model. Numerical results are compared with experimental data, obtained from speckles analysis.

  20. Prediction of anisotropic behavior of nano/micro composite based on damage mechanics with cell modeling.

    PubMed

    Lee, Dock-Jin; Kim, Young-Jin; Kim, Moon-Ki; Choi, Jae-Boong; Chang, Yoon-Suk; Liu, Wing Kam

    2011-01-01

    New advanced composite materials have recently been of great interest. Especially, many researchers have studied on nano/micro composites based on matrix filled with nano-particles, nano-tubes, nano-wires and so forth, which have outstanding characteristics on thermal, electrical, optical, chemical and mechanical properties. Therefore, the need of numerical approach for design and development of the advanced materials has been recognized. In this paper, finite element analysis based on multi-resolution continuum theory is carried out to predict the anisotropic behavior of nano/micro composites based on damage mechanics with a cell modeling. The cell modeling systematically evaluates constitutive relationships from microstructure of the composite material. Effects of plastic anisotropy on deformation behavior and damage evolution of nano/micro composite are investigated by using Hill's 48 yield function and also compared with those obtained from Gurson-Tvergaard-Needleman isotropic damage model based on von Mises yield function.

  1. Autoionization of spin-polarized metastable helium in tight anisotropic harmonic traps

    SciTech Connect

    Beams, Timothy J.; Whittingham, Ian B.; Peach, Gillian

    2007-12-15

    Spin-dipole mediated interactions between tightly confined metastable helium atoms couple the spin-polarized quintet {sup 5}{sigma}{sub g}{sup +} state to the singlet {sup 1}{sigma}{sub g}{sup +} state from which autoionization is highly probable, resulting in finite lifetimes for the trap eigenstates. We extend our earlier study on spherically symmetric harmonic traps to the interesting cases of axially symmetric anisotropic harmonic traps and report results for the lowest 10 states in 'cigarlike' and 'pancakelike' traps with average frequencies of 100 kHz and 1 MHz. We find that there is a significant suppression of ionization, and subsequent increase in lifetimes, at trap aspect ratios A=p/q, where p and q are integers, for those states that are degenerate in the absence of collisions or spin-dipole interactions.

  2. Intensity fluctuations of asymmetrical optical beams in anisotropic turbulence.

    PubMed

    Baykal, Yahya

    2016-09-20

    Intensity fluctuations of asymmetrical optical beams are examined when such beams propagate through anisotropic turbulence. Anisotropic turbulence is modeled by non-Kolmogorov von Kármán spectrum. The variations of the scintillation index are observed against the changes in the asymmetry factor of the Gaussian beam, power law exponent of non-Kolmogorov spectrum, anisotropic factors in the transverse direction, and the link length. It is found that for all the conditions, asymmetry in the optical beam is a disadvantage but the anisotropy in the atmosphere is an advantage for reducing the intensity fluctuations in an optical wireless communications link operating in the atmosphere. PMID:27661570

  3. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    SciTech Connect

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H.

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  4. Anisotropic Nanomechanics of Boron Nitride Nanotubes: Nanostructured "Skin" Effect

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Menon, Madhu; Cho, KyeongJae

    2000-01-01

    The stiffness and plasticity of boron nitride nanotubes are investigated using generalized tight-binding molecular dynamics and ab-initio total energy methods. Due to boron-nitride BN bond buckling effects, compressed zigzag BN nanotubes are found to undergo novel anisotropic strain release followed by anisotropic plastic buckling. The strain is preferentially released towards N atoms in the rotated BN bonds. The tubes buckle anisotropically towards only one end when uniaxially compressed from both. A "skin-effect" model of smart nanocomposite materials is proposed which will localize the structural damage towards the 'skin' or surface side of the material.

  5. Anisotropic nature of radially strained metal tubes

    NASA Astrophysics Data System (ADS)

    Strickland, Julie N.

    Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw

  6. Unit-Sphere Anisotropic Multiaxial Stochastic-Strength Model Probability Density Distribution for the Orientation of Critical Flaws

    NASA Technical Reports Server (NTRS)

    Nemeth, Noel

    2013-01-01

    Models that predict the failure probability of monolithic glass and ceramic components under multiaxial loading have been developed by authors such as Batdorf, Evans, and Matsuo. These "unit-sphere" failure models assume that the strength-controlling flaws are randomly oriented, noninteracting planar microcracks of specified geometry but of variable size. This report develops a formulation to describe the probability density distribution of the orientation of critical strength-controlling flaws that results from an applied load. This distribution is a function of the multiaxial stress state, the shear sensitivity of the flaws, the Weibull modulus, and the strength anisotropy. Examples are provided showing the predicted response on the unit sphere for various stress states for isotropic and transversely isotropic (anisotropic) materials--including the most probable orientation of critical flaws for offset uniaxial loads with strength anisotropy. The author anticipates that this information could be used to determine anisotropic stiffness degradation or anisotropic damage evolution for individual brittle (or quasi-brittle) composite material constituents within finite element or micromechanics-based software

  7. Investigation of low field dielectric properties of anisotropic porous Pb(Zr,Ti)O3 ceramics: Experiment and modeling

    NASA Astrophysics Data System (ADS)

    Olariu, C. S.; Padurariu, L.; Stanculescu, R.; Baldisserri, C.; Galassi, C.; Mitoseriu, L.

    2013-12-01

    Anisotropic porous Pb(Zr,Ti)O3 ceramics with various porosity degrees have been studied in order to determine the role of the pore shape and orientation on the low-field dielectric properties. Ceramic samples with formula Pb(Zr0.52Ti0.48)0.976Nb0.024O3 with different porosity degrees (dense, 10%, 20%, 40% vol.) have been prepared by solid state reaction. Taking into consideration the shape and orientation of the pore inclusions, the dielectric properties of porous ceramics have been described by using adapted mixing rules models. Rigorous bounds, derived on the basis on Variational Principle, were used to frame dielectric properties of porous composites. The finite element method (FEM) was additionally used to simulate the dielectric response of the porous composites under various applied fields. Among the few effective medium approximation models adapted for anisotropic oriented inclusions, the best results were obtained in case of needle-like shape inclusions (which do not correspond to the real shape of microstructure inclusions). The general case of Wiener bounds limited well the dielectric properties of anisotropic porous composites in case of parallel orientation. Among the theoretical approaches, FEM technique allowed to simulate the distribution of potential and electric field inside composites and provided a very good agreement between the computed permittivity values and experimental ones.

  8. Fabrication of anisotropic multifunctional colloidal carriers

    NASA Astrophysics Data System (ADS)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  9. Spin-nematic and spin-density-wave orders in spatially anisotropic frustrated magnets in a magnetic field.

    PubMed

    Sato, Masahiro; Hikihara, Toshiya; Momoi, Tsutomu

    2013-02-15

    We develop a microscopic theory of finite-temperature spin-nematic orderings in three-dimensional spatially anisotropic magnets consisting of weakly coupled frustrated spin-1/2 chains with nearest-neighbor and next-nearest-neighbor couplings in a magnetic field. Combining a field theoretical technique with density-matrix renormalization group results, we complete finite-temperature phase diagrams in a wide magnetic-field range that possess spin-bond-nematic and incommensurate spin-density-wave ordered phases. The effects of a four-spin interaction are also studied. The relevance of our results to quasi-one-dimensional edge-shared cuprate magnets such as LiCuVO(4) is discussed.

  10. Novel anisotropic engineered cardiac tissues: studies of electrical propagation

    PubMed Central

    Bursac, Nenad; Loo, Yihua; Leong, Kam; Tung, Leslie

    2007-01-01

    The goal of this study was to engineer cardiac tissue constructs with uniformly anisotropic architecture, and to evaluate their electrical function using multi-site optical mapping of cell membrane potentials. Anisotropic polymer scaffolds made by leaching of aligned sucrose templates were seeded with neonatal rat cardiac cells and cultured in rotating bioreactors for 6-14 days. Cells aligned and interconnected inside the scaffolds and when stimulated by a point electrode, supported macroscopically continuous, anisotropic impulse propagation. By culture day 14, the ratio of conduction velocities along vs. across cardiac fibers reached a value of 2, similar to that in native neonatal ventricles, while action potential duration and maximum capture rate respectively decreased to 120 ms and increased to ~5 Hz. The shorter culture time and larger scaffold thickness were associated with increased incidence of sustained reentrant arrhythmias. In summary, this study is the first successful attempt to engineer a cm2-size, functional anisotropic cardiac tissue patch. PMID:17689494

  11. Autofocus imaging: Experimental results in an anisotropic austenitic weld

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.; Hunter, A.

    2012-05-01

    The quality of an ultrasonic array image, especially for anisotropic material, depends on accurate information about acoustic properties. Inaccuracy of acoustic properties causes image degradation, e.g., blurring, errors in locating of reflectors and introduction of artifacts. In this paper, for an anisotropic austenitic steel weld, an autofocus imaging technique is presented. The array data from a series of beacons is captured and then used to statistically extract anisotropic weld properties by using a Monte-Carlo inversion approach. The beacon and imaging systems are realized using two separated arrays; one acts as a series of beacons and the other images these beacons. Key to the Monte-Carlo inversion scheme is a fast forward model of wave propagation in the anisotropic weld and this is based on the Dijkstra algorithm. Using this autofocus approach a measured weld map was extracted from an austenitic weld and used to reduce location errors, initially greater than 6mm, to less than 1mm.

  12. Variational bounds on the effective moduli of anisotropic composites

    NASA Astrophysics Data System (ADS)

    Milton, Graeme W.; Kohn, Robert V.

    THE VRITIONAL inequalities of Hashin and Shtrikman are transformed to a simple and concise form. They are used to bound the effective conductivity tensor σ∗ of an anisotropic composite made from an arbitrary number of possibly anisotropic phases, and to bound the effective elasticity tensor C∗ of an anisotropic mixture of two well-ordered isotropic materials. The bounds depend on the conductivities and elastic moduli of the components and their respective volume fractions. When the components are isotropic the conductivity bounds, which constrain the eigenvalues of σ∗, include those previously obtained by Hashin and Shtrikman, Murat and Tartar, and Lurie and Cherkaev. Our approach can also be used in the context of linear elasticity to derive bounds on C∗ for composites comprised of an arbitrary number of anisotropic phases. For two-component composites our bounds are tighter than those obtained by Kantor and Bergman and by Francfort and Murat, and are attained by sequentially layered laminate materials.

  13. Fabrication, testing, and analysis of anisotropic carbon/glass hybrid composites: volume 1: technical report.

    SciTech Connect

    Wetzel, Kyle K. (Wetzel Engineering, Inc. Lawrence, Kansas); Hermann, Thomas M. (Wichita state University, Wichita, Kansas); Locke, James (Wichita state University, Wichita, Kansas)

    2005-11-01

    Anisotropic carbon/glass hybrid composite laminates have been fabricated, tested, and analyzed. The laminates have been fabricated using vacuum-assisted resin transfer molding (VARTM). Five fiber complexes and a two-part epoxy resin system have been used in the study to fabricate panels of twenty different laminate constructions. These panels have been subjected to physical testing to measure density, fiber volume fraction, and void fraction. Coupons machined from these panels have also been subjected to mechanical testing to measure elastic properties and strength of the laminates using tensile, compressive, transverse tensile, and in-plane shear tests. Interlaminar shear strength has also been measured. Out-of-plane displacement, axial strain, transverse strain, and inplane shear strain have also been measured using photogrammetry data obtained during edgewise compression tests. The test data have been reduced to characterize the elastic properties and strength of the laminates. Constraints imposed by test fixtures might be expected to affect measurements of the moduli of anisotropic materials; classical lamination theory has been used to assess the magnitude of such effects and correct the experimental data for the same. The tensile moduli generally correlate well with experiment without correction and indicate that factors other than end constraints dominate. The results suggest that shear moduli of the anisotropic materials are affected by end constraints. Classical lamination theory has also been used to characterize the level of extension-shear coupling in the anisotropic laminates. Three factors affecting the coupling have been examined: the volume fraction of unbalanced off-axis layers, the angle of the off-axis layers, and the composition of the fibers (i.e., carbon or glass) used as the axial reinforcement. The results indicate that extension/shear coupling is maximized with the least loss in axial tensile stiffness by using carbon fibers oriented 15{sup

  14. Anisotropic Bianchi types VIII and IX locally rotationally symmetric cosmologies

    SciTech Connect

    Assad, M.J.D.; Soares, I.D.

    1983-10-15

    We present a class of exact cosmological solutions of Einstein-Maxwell equations, which are anisotropic and spatially homogeneous of Bianchi types VIII and IX, and class IIIb in the Stewart-Ellis classification of locally rotationally symmetric models. If we take the electromagnetic field equal to zero, a class of Bianchi types VIII/IX spatially homogeneous anisotropic cosmological solutions with perfect fluid is obtained.

  15. On the electrodynamics of Josephson effect in anisotropic superconductors

    SciTech Connect

    Mints, R.G.

    1989-01-01

    Specificities of Josephson effect electrodynamics in anisotropic superconductors are of considerable interest for the study of high temperature superconductors with strongly anisotropic layered structure. In this paper the authors give the calculation for the tunnel Josephson contact of an isolated vortex, the law of dispersion of its low-amplitude oscillations, the critical field H/sub cl/ for the penetration of magnetic flux, and the maximum current across a rectangular contact.

  16. Schwarz alternating methods for anisotropic problems with prolate spheroid boundaries.

    PubMed

    Dai, Zhenlong; Du, Qikui; Liu, Baoqing

    2016-01-01

    The Schwarz alternating algorithm, which is based on natural boundary element method, is constructed for solving the exterior anisotropic problem in the three-dimension domain. The anisotropic problem is transformed into harmonic problem by using the coordinate transformation. Correspondingly, the algorithm is also changed. Continually, we analysis the convergence and the error estimate of the algorithm. Meanwhile, we give the contraction factor for the convergence. Finally, some numerical examples are computed to show the efficiency of this algorithm. PMID:27625977

  17. Finite order variational bicomplexes

    NASA Astrophysics Data System (ADS)

    Vitolo, Raffaele

    1999-01-01

    The theory of variational bicomplexes was established at the end of the seventies by several authors [2, 17, 23, 26, 29-32]. The idea is that the operations which take a Lagrangian into its Euler-Lagrange morphism [9, 10, 12, 24] and an Euler-Lagrange morphism into its Helmholtz' conditions of local variationality [1-3, 7, 11, 13, 18, 27] are morphisms of a (long) exact sheaf sequence. This viewpoint overcomes several problems of Lagrangian formulations in mechanics and field theories [21, 28]. To avoid technical difficulties variational bicomplexes were formulated over the space of infinite jets of a fibred manifold. But in this formalism the information relative to the order of the jet where objects are defined is lost.We refer to the recent formulation of variational bicomplexes on finite order jet spaces [13]. Here, a finite order variational sequence is obtained by quotienting the de Rham sequence on a finite order jet space with an intrinsically defined sub-sequence, whose choice is inspired by the calculus of variations. It is important to find an isomorphism of the quotient sequence with a sequence of sheaves of ‘concrete’ sections of some vector bundle. This task has already been faced locally [22, 25] and intrinsically [33] in the case of one independent variable.In this paper, we give an intrinsic isomorphism of the variational sequence (in the general case of n independent variables) with a sequence which is made by sheaves of forms on a jet space of minimal order. This yields new natural solutions to problems like the minimal order Lagrangian corresponding to a locally variational Euler-Lagrange morphism and the search of variationally trivial Lagrangians. Moreover, we give a new intrinsic formulation of Helmholtz' local variationality conditions, proving the existence of a new intrinsic geometric object which, for an Euler-Lagrange morphism, plays a role analogous to that of the momentum of a Lagrangian.

  18. Anisotropic universe with magnetized dark energy

    NASA Astrophysics Data System (ADS)

    Goswami, G. K.; Dewangan, R. N.; Yadav, Anil Kumar

    2016-04-01

    In the present work we have searched the existence of the late time acceleration of the Universe filled with cosmic fluid and uniform magnetic field as source of matter in anisotropic Heckmann-Schucking space-time. The observed acceleration of universe has been explained by introducing a positive cosmological constant Λ in the Einstein's field equation which is mathematically equivalent to vacuum energy with equation of state (EOS) parameter set equal to -1. The present values of the matter and the dark energy parameters (Ωm)0 & (Ω_{Λ})0 are estimated in view of the latest 287 high red shift (0.3 ≤ z ≤1.4) SN Ia supernova data's of observed apparent magnitude along with their possible error taken from Union 2.1 compilation. It is found that the best fit value for (Ωm)0 & (Ω_{Λ})0 are 0.2820 & 0.7177 respectively which are in good agreement with recent astrophysical observations in the latest surveys like WMAP [2001-2013], Planck [latest 2015] & BOSS. Various physical parameters such as the matter and dark energy densities, the present age of the universe and deceleration parameter have been obtained on the basis of the values of (Ωm)0 & (Ω_{Λ})0. Also we have estimated that the acceleration would have begun in the past at z = 0.71131 ˜6.2334 Gyrs before from present.

  19. Details of tetrahedral anisotropic mesh adaptation

    NASA Astrophysics Data System (ADS)

    Jensen, Kristian Ejlebjerg; Gorman, Gerard

    2016-04-01

    We have implemented tetrahedral anisotropic mesh adaptation using the local operations of coarsening, swapping, refinement and smoothing in MATLAB without the use of any for- N loops, i.e. the script is fully vectorised. In the process of doing so, we have made three observations related to details of the implementation: 1. restricting refinement to a single edge split per element not only simplifies the code, it also improves mesh quality, 2. face to edge swapping is unnecessary, and 3. optimising for the Vassilevski functional tends to give a little higher value for the mean condition number functional than optimising for the condition number functional directly. These observations have been made for a uniform and a radial shock metric field, both starting from a structured mesh in a cube. Finally, we compare two coarsening techniques and demonstrate the importance of applying smoothing in the mesh adaptation loop. The results pertain to a unit cube geometry, but we also show the effect of corners and edges by applying the implementation in a spherical geometry.

  20. Anisotropic photoinduced current injection in graphene

    NASA Astrophysics Data System (ADS)

    Rioux, Julien; Sipe, John E.; Burkard, Guido

    2014-03-01

    Quantum-mechanical interference effects are considered in carrier and charge current excitation in gapless semiconductors using coherent optical field components at frequencies ω and 2 ω . Due to the absence of a bandgap, excitation scenarios outside of the typical operation regime are considered; we calculate the polarization and spectral dependence of these all-optical effects for single- and bilayer graphene. For linearly-polarized light and with one-photon absorption at ω interfering with 2 ω absorption and ω emission, the resulting current injection is five times stronger for perpendicular polarization axes compared to parallel polarization axes. This additional process results in an anisotropic current as a function of the angle between polarization axes, in stark contrast with the isotropic current resulting from the typical interference term in graphene [Rioux et al., PRB 83, 195406 (2011)]. Varying the Fermi level allows to tune the disparity parameter d closer to typical values in GaAs [ | d | ~ 0 . 2 , Rioux and Sipe, Physica E 45, 1 (2012)]: from -1, when the additional process is fully Pauli-blocked, to -3/7, when it is fully accessible, thus facilitating polarization sensitive applications.

  1. Anisotropic reflectance characteristics of natural Earth surfaces.

    PubMed

    Brennan, B; Bandeen, W R

    1970-02-01

    The patterns of reflection of solar radiation from cloud, water, and land surfaces were measured with an aircraft-borne medium resolution radiometer. Reflectances in the 0.2-4.0-micro and 0.55-0.85-micro portions of the electromagnetic spectrum were investigated. Results indicate that the reflectance characteristics of most of the surface types measured are anisotropic. The anisotropy is dependent on the type of surface and the angles of incidence and reflection. In general, the anisotropy increases with increasing solar zenith angle. Clouds and forests show similar reflectance patterns, with forward and backward scattering peaks. Ocean surfaces yield a pattern similar to those of the clouds and forests but with an additional peak which is associated with sun glitter. Reflectances measured in the 0.2-4.0-micro band are generally lower than those in the 0.55-0.85-micro band under cloudy conditions. Anisotropy and spectral bandwidth should be accounted for when computing the albedo of the earth from narrow field-of-view measurements from satellites; otherwise, large errors may be expected to occur.

  2. Colloidal aggregation and dynamics in anisotropic fluids

    PubMed Central

    Mondiot, Frédéric; Botet, Robert; Snabre, Patrick; Mondain-Monval, Olivier; Loudet, Jean-Christophe

    2014-01-01

    We present experiments and numerical simulations to investigate the collective behavior of submicrometer-sized particles immersed in a nematic micellar solution. We use latex spheres with diameters ranging from 190 to 780 nm and study their aggregation properties due to the interplay of the various colloidal forces at work in the system. We found that the morphology of aggregates strongly depends on the particle size, with evidence for two distinct regimes: the biggest inclusions clump together within minutes into either compact clusters or V-like structures that are completely consistent with attractive elastic interactions. On the contrary, the smallest particles form chains elongated along the nematic axis, within comparable timescales. In this regime, Monte Carlo simulations, based on a modified diffusion-limited cluster aggregation model, strongly suggest that the anisotropic rotational Brownian motion of the clusters combined with short-range depletion interactions dominate the system coarsening; elastic interactions no longer prevail. The simulations reproduce the sharp transition between the two regimes on increasing the particle size. We provide reasonable estimates to interpret our data and propose a likely scenario for colloidal aggregation. These results emphasize the growing importance of the diffusion of species at suboptical-wavelength scales and raise a number of fundamental issues. PMID:24715727

  3. Dynamic wetting on anisotropic patterned surfaces

    NASA Astrophysics Data System (ADS)

    Do-Quang, Minh; Wang, Jiayu; Nita, Satoshi; Shiomi, Junichiro; Amberg, Gustav; Physiochemical fluid mechanics Team; Maruyama-Chiashi Laboratory Team

    2014-11-01

    Dynamic wetting, as occurs when a droplet of a wetting liquid is brought in contact with a dry solid, is important in various engineering processes, such as printing, coating, and lubrication. Our overall aim is to investigate if and how the detailed properties of the solid surface influence the dynamics of wetting. We have recently quantified the hindering effect of fairly isotropic micron-sized patterns on the substrate. Here we will study highly anisotropic surfaces, such as parallel grooves, either perpendicular or parallel to an advancing contact line. This is done by detailed phase field simulations and experiments on structured silicon surfaces. The dynamic wetting behavior of drops on the grooved surfaces is governed by the combined interplay of the wetting line friction and the internal viscous dissipation. Influence of roughness is quantified in terms of the energy dissipation rate at the contact line using the experiment-simulation combined analysis. The energy dissipation of the contact line at the different part of the groove will be discussed. The performance of the model is assessed by comparing its predictions with the experimental data. This work was financially supported in part by, the Japan Society for the Promotion of Science (J.W., S.N., and J.S) and Swedish Governmental Agency for Innovation Systems (M.D.-Q. and G.A).

  4. Self assembly of anisotropic colloidal particles

    NASA Astrophysics Data System (ADS)

    Florea, Daniel; Wyss, Hans

    2012-02-01

    Colloidal particles have been successfully used as ''model atoms'', as their behavior can be more directly studied than that of atoms or molecules by direct imaging in a confocal microscope. Most studies have focussed on spherical particles with isotropic interactions. However, a range of interesting materials such as many supramolecular polymers or biopolymers exhibit highly directional interactions. To capture their behavior in colloidal model systems, particles with anisotropic interactions are clearly required. Here we use a colloidal system of nonspherical colloids, where highly directional interactions can be induced via depletion. By biaxially stretching spherical PMMA particles we create oblate spheroidal particles. We induce attractive interactions between these particles by adding a non-adsorbing polymer to the background liquid. The resulting depletion interaction is stronger along the minor axis of the oblate spheroids. We study the phase behavior of these materials as a function of the ellipsoid aspect ratio, the strength of the depletion interactions, and the particle concentration. The resulting morphologies are qualitatively different from those observed with spherical particles. This can be exploited for creating new materials with tailored structures.

  5. Zonal flows in tokamaks with anisotropic pressure

    NASA Astrophysics Data System (ADS)

    Ren, Haijun

    2014-04-01

    Zonal flows (ZFs) in a tokamak plasma with anisotropic pressure are investigated. The dynamics of perpendicular and parallel pressures are determined by the Chew-Goldberger-Low double equations and low-β condition is adopted, where β is the ratio of plasma pressure to the magnetic field pressure. The dispersion relation is analytically derived and illustrates two branches of ZFs. The low frequency zonal flow (LFZF) branch becomes unstable when χ, the ratio of the perpendicular pressure to the parallel one, is greater than a threshold value χc, which is about 3.8. In the stable region, its frequency increases first and then decreases with increasing χ. For χ = 1, the frequency of LFZF agrees well with the experimental observation. For the instability, the growth rate of LFZF increases with χ. The geodesic acoustic mode branch is shown to be always stable with a frequency increasing with χ. The safety factor is shown to diminish the frequencies of both branches or the growth rate of LFZF.

  6. Polarization dynamics in nonlinear anisotropic fibers

    SciTech Connect

    Komarov, Andrey; Komarov, Konstantin; Meshcheriakov, Dmitry; Amrani, Foued; Sanchez, Francois

    2010-07-15

    We give an extensive study of polarization dynamics in anisotropic fibers exhibiting a third-order index nonlinearity. The study is performed in the framework of the Stokes parameters with the help of the Poincare sphere. Stationary states are determined, and their stability is investigated. The number of fixed points and their stability depend on the respective magnitude of the linear and nonlinear birefringence. A conservation relation analogous to the energy conservation in mechanics allows evidencing a close analogy between the movement of the polarization in the Poincare sphere and the motion of a particle in a potential well. Two distinct potentials are found, leading to the existence of two families of solutions, according to the sign of the total energy of the equivalent mechanical system. The mechanical analogy allows us to fully characterize the solutions and also to determine analytically the associated beat lengths. General analytical solutions are given for the two families in terms of Jacobi's functions. The intensity-dependent transmission of a fiber placed between two crossed polarizers is calculated. Optimal conditions for efficient nonlinear switching compatible with mode-locking applications are determined. The general case of a nonlinear fiber ring with an intracavity polarizer placed between two polarization controllers is also considered.

  7. Anisotropic distributions in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Zhou, You; Xiao, Kai; Feng, Zhao; Liu, Feng; Snellings, Raimond

    2016-03-01

    With a multiphase transport (AMPT) model we investigate the relation between the magnitude, fluctuations, and correlations of the initial state spatial anisotropy ɛn and the final state anisotropic flow coefficients vn in Au+Au collisions at √{s NN}=200 GeV. It is found that the relative eccentricity fluctuations in AMPT account for the observed elliptic flow fluctuations, both are in agreement with the elliptic flow fluctuation measurements from the STAR collaboration. In addition, the studies based on two- and multiparticle correlations and event-by-event distributions of the anisotropies suggest that the elliptic-power function is a promising candidate of the underlying probability density function of the event-by-event distributions of ɛn as well as vn. Furthermore, the correlations between different order symmetry planes and harmonics in the initial coordinate space and final state momentum space are presented. Nonzero values of these correlations have been observed. The comparison between our calculations and data will, in the future, shed new insight into the nature of the fluctuations of the quark-gluon plasma produced in heavy ion collisions.

  8. Anisotropic model-based SAR processing

    NASA Astrophysics Data System (ADS)

    Knight, Chad; Gunther, Jake; Moon, Todd

    2013-05-01

    Synthetic aperture radar (SAR) collections that integrate over a wide range of aspect angles hold the potentional for improved resolution and fosters improved scene interpretability and target detection. However, in practice it is difficult to realize the potential due to the anisotropic scattering of objects in the scene. The radar cross section (RCS) of most objects changes as a function of aspect angle. The isotropic assumption is tacitly made for most common image formation algorithms (IFA). For wide aspect scenarios one way to account for anistropy would be to employ a piecewise linear model. This paper focuses on such a model but it incorporates aspect and spatial magnitude filters in the image formation process. This is advantageous when prior knowledge is available regarding the desired targets' RCS signature spatially and in aspect. The appropriate filters can be incorporated into the image formation processing so that specific targets are emphasized while other targets are suppressed. This is demonstrated on the Air Force Research Laboratory (AFRL) GOTCHA1 data set to demonstrate the utility of the proposed approach.

  9. Coefficient adaptive triangulation for strongly anisotropic problems

    SciTech Connect

    D`Azevedo, E.F.; Romine, C.H.; Donato, J.M.

    1996-01-01

    Second order elliptic partial differential equations arise in many important applications, including flow through porous media, heat conduction, the distribution of electrical or magnetic potential. The prototype is the Laplace problem, which in discrete form produces a coefficient matrix that is relatively easy to solve in a regular domain. However, the presence of anisotropy produces a matrix whose condition number is increased, making the resulting linear system more difficult to solve. In this work, we take the anisotropy into account in the discretization by mapping each anisotropic region into a ``stretched`` coordinate space in which the anisotropy is removed. The region is then uniformly triangulated, and the resulting triangulation mapped back to the original space. The effect is to generate long slender triangles that are oriented in the direction of ``preferred flow.`` Slender triangles are generally regarded as numerically undesirable since they tend to cause poor conditioning; however, our triangulation has the effect of producing effective isotropy, thus improving the condition number of the resulting coefficient matrix.

  10. Biochemical and anisotropical properties of tendons.

    PubMed

    Aparecida de Aro, Andrea; Vidal, Benedicto de Campos; Pimentel, Edson Rosa

    2012-02-01

    Tendons are formed by dense connective tissue composed of an abundant extracellular matrix (ECM) that is constituted mainly of collagen molecules, which are organized into fibrils, fibers, fiber bundles and fascicles helicoidally arranged along the largest axis of the tendon. The biomechanical properties of tendons are directly related to the organization of the collagen molecules that aggregate to become a super-twisted cord. In addition to collagen, the ECM of tendons is composed of non-fibrillar components, such as proteoglycans and non-collagenous glycoproteins. The capacity of tendons to resist mechanical stress is directly related to the structural organization of the ECM. Collagen is a biopolymer and presents optical anisotropies, such as birefringence and linear dichroism, that are important optical properties in the characterization of the supramolecular organization of the fibers. The objective of this study was to present a review of the composition and organization of the ECM of tendons and to highlight the importance of the anisotropic optical properties in the study of alterations in the ECM.

  11. THE ANISOTROPIC TRANSPORT EFFECTS ON DILUTE PLASMAS

    SciTech Connect

    Devlen, Ebru

    2011-04-20

    We examine the linear stability analysis of a hot, dilute, and differentially rotating plasma by considering anisotropic transport effects. In dilute plasmas, the ion Larmor radius is small compared with its collisional mean free path. In this case, the transport of heat and momentum along the magnetic field lines becomes important. This paper presents a novel linear instability that may be more powerful and greater than ideal magnetothermal instability and ideal magnetorotational instability in the dilute astrophysical plasmas. This type of plasma is believed to be found in the intracluster medium (ICM) of galaxy clusters and radiatively ineffective accretion flows around black holes. We derive the dispersion relation of this instability and obtain the instability condition. There is at least one unstable mode that is independent of the temperature gradient direction for a helical magnetic field geometry. This novel instability is driven by the gyroviscosity coupled with differential rotation. Therefore, we call it gyroviscous-modified magnetorotational instability (GvMRI). We examine how the instability depends on signs of the temperature gradient and the gyroviscosity and also on the magnitude of the thermal frequency and on the values of the pitch angle. We provide a detailed physical interpretation of the obtained results. The GvMRI is applicable not only to the accretion flows and ICM but also to the transition region between cool dense gas and the hot low-density plasma in stellar coronae, accretion disks, and the multiphase interstellar medium because it is independent of the temperature gradient direction.

  12. Factorizations in finite groups

    SciTech Connect

    Kulikov, Viktor S

    2013-02-28

    A necessary condition for uniqueness of factorizations of elements of a finite group G with factors belonging to a union of some conjugacy classes of G is given. This condition is sufficient if the number of factors belonging to each conjugacy class is big enough. The result is applied to the problem on the number of irreducible components of the Hurwitz space of degree d marked coverings of P{sup 1} with given Galois group G and fixed collection of local monodromies. Bibliography: 9 titles.

  13. Finite Element Analysis Code

    2005-06-26

    Exotxt is an analysis code that reads finite element results data stored in an exodusII file and generates a file in a structured text format. The text file can be edited or modified via a number of text formatting tools. Exotxt is used by analysis to translate data from the binary exodusII format into a structured text format which can then be edited or modified and then either translated back to exodusII format or tomore » another format.« less

  14. Finite Element Analysis Code

    SciTech Connect

    Sjaardema, G.; Forsythe, C.

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases into a single database which makes it easier to postprocess the results data.

  15. Finite Element Analysis Code

    2005-05-07

    CONEX is a code for joining sequentially in time multiple exodusll database files which all represent the same base mesh topology and geometry. It is used to create a single results or restart file from multiple results or restart files which typically arise as the result of multiple restarted analyses. CONEX is used to postprocess the results from a series of finite element analyses. It can join sequentially the data from multiple results databases intomore » a single database which makes it easier to postprocess the results data.« less

  16. Production and characterization of anisotropic particles from biodegradable materials.

    PubMed

    Romanski, Francis S; Winkler, Jennifer S; Riccobene, Ryan C; Tomassone, M Silvina

    2012-02-28

    In recent years, production and characterization of anisotropic particles has become of interest in a wide range of scientific fields including polymer chemistry, drug delivery, electronics, energy, and nanotechnology. In this work, we demonstrate a novel formulation for production of anisotropic particles via an internal phase separation of biodegradable components. Specifically, binary mixtures of biodegradable polymers poly(lactic-co-glycolic acid), polycaprolactone, and biodegradable lipid Precirol (glyceryl palmitostearate) were dissolved in dichloromethane, emulsified, and prepared into anisotropic particles using a modified solvent evaporation technique. During the slow evaporation process the components self-assembled into anisotropic particles with distinct morphologies. Polymer/polymer formulations resulted in compartmentalized anisotropic heterodimer particles, while polymer/lipid combinations yielded "ice cream cone" shaped particles. It was found that addition of certain active pharmaceuticals resulted in an altered, pox-like segregation at the particle surface of polymer/polymer formulations. The anisotropic nature of the particles was subsequently characterized using optical microscopy, scanning electron microscopy, zeta potential, electrophoresis, and X-ray diffraction. Successful formulations presented here may potentially be employed as multicompartmental drug carriers with staggered drug release rates or alternatively as a colloidal excipient for an arsenal of pharmaceutical applications.

  17. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    DOE PAGESBeta

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; Ling, Xi; Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attractedmore » great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.« less

  18. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    SciTech Connect

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; Ling, Xi; Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.

  19. a New Approach to Bulk Wave Propagation in Anisotropic Media.

    NASA Astrophysics Data System (ADS)

    Tverdokhlebov, Andrey

    A new approach to a theoretical description of ultrasonic bulk wave propagation through anisotropic media is developed from the retarded potential representation which was obtained for the Green's function of the elastic wave equation in anisotropic media. The general formulation of the problem and the method of solution are presented. On the basis of the theoretical development, a quantitative model was obtained that yields and properly describes all major features of the phenomena of an anisotropic filter influence. A comparison with other contemporary methods and models for the quantitative evaluation of the bulk wave propagation in anisotropic media is outlined and briefly discussed. The experimental proof of principle was established by ultrasonic measurements performed on centrifugally cast stainless steel (CCSS) and unidirectional graphite fiber -epoxy composite specimens. The experimental technique used a skip-distance arrangement of the identical quasi -point probes serving as a sender and a receiver. Consistent experimental results were attained allowing us to consider the suggested experimental arrangements as a basis for the future development of NDE technique for anisotropic material characterization. Three different types of pilot computer software were developed from this generalized retarded potential model. The results of the simulation runs turn out to be self- and mutually consistent and supported by experiments. The phenomena, such as beam skewing, beam splitting, beam focusing, unsymmetrical beams and other anisotropic effects, some of which have been already known from earlier experimental observations, emerge as computational results of the software developed from the model.

  20. Improved Mesh Interpolation for Ray Tracing by Wavefront Construction Methods for Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Gibson, R. L.

    2001-12-01

    Ray methods are useful for the calculation of Green's tensors for three-dimensional, anisotropic media because they are much faster than more exact algorithms such as finite differences. At the same time, there are significant challenges because of difficulties in implementation, particularly those related to the solution of the two-point problem. Classical shooting methods often either fail to determine a solution and can be very slow. Some approaches, such as eikonal methods, are fast, but they do not compute amplitudes, consider only first arrivals, and cannot be easily applied to anisotropic models. Therefore, they cannot be used to compute Green's tensors. Wavefront construction methods, on the other hand, do evaluate both traveltime and amplitude throughout an earth model (e.g., Lambaré et al., 1996). By tracking propagating wavefronts, the geometry of an entire field of rays can be taken into account, and Green's tensors can be computed for the entire model space. These algorithms begin with a small number of rays traced directly from the source. At regular increments in traveltime, a mesh is constructed from the set of points on all rays at the time of interest. As the wavefront propagates away from the source, new rays are inserted into the mesh based on an interpolation criterion. Previous implementations for isotropic media have typically inserted new rays either when the separation between existing rays exceeds an arbitrary distance or when wavefront curvature exceeds some threshold value. Because most rays are computed for only a portion of the overall time of propagation, the simulation requires less time overall. In our current implementation for anisotropic media, we pose the wavefront construction method as a process of adaptive mesh construction, and we seek to increase the speed of the algorithm in several ways that distinguish it from other approaches. First, rather than applying dynamic ray tracing, we perform only kinematic ray tracing

  1. Isotropic behavior of an anisotropic material: single crystal silicon

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.; Paquin, Roger A.

    2013-09-01

    Zero defect single crystal silicon (Single-Crystal Si), with its diamond cubic crystal structure, is completely isotropic in most properties important for advanced aerospace systems. This paper will identify behavior of the three most dominant planes of the Single-Crystal Si cube (110), (100) and (111). For example, thermal and optical properties are completely isotropic for any given plane. The elastic and mechanical properties however are direction dependent. But we show through finite element analysis that in spite of this, near-isotropic behavior can be achieved with component designs that utilize the optimum elastic modulus in directions with the highest loads. Using glass frit bonding to assemble these planes is the only bonding agent that doesn't degrade the performance of Single-Crystal Si. The most significant anisotropic property of Single-Crystal Si is the Young's modulus of elasticity. Literature values vary substantially around a value of 145 GPa. The truth is that while the maximum modulus is 185 GPa, the most useful <110< crystallographic direction has a high 169 GPa, still higher than that of many materials such as aluminum and invar. And since Poisson's ratio in this direction is an extremely low 0.064, distortion in the plane normal to the load is insignificant. While the minimum modulus is 130 GPa, a calculated average value is close to the optimum at approximately 160 GPa. The minimum modulus is therefore almost irrelevant. The (111) plane, referred to as the natural cleave plane survives impact that would overload the (110) and/or (100) plane due to its superior density. While mechanical properties vary from plane to plane each plane is uniform and response is predictable. Understanding the Single-Crystal Si diamond cube provides a design and manufacture path for building lightweight Single-Crystal Si systems with near-isotropic response to loads. It is clear then that near-isotropic elastic behavior is achievable in Single-Crystal Si

  2. Anisotropic Hardy-Lorentz spaces and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Jun; Yang, DaChun; Yuan, Wen

    2016-09-01

    Let $p\\in(0,1]$, $q\\in(0,\\infty]$ and $A$ be a general expansive matrix on $\\mathbb{R}^n$. The authors introduce the anisotropic Hardy-Lorentz space $H^{p,q}_A(\\mathbb{R}^n)$ associated with $A$ via the non-tangential grand maximal function and then establish its various real-variable characterizations in terms of the atomic or the molecular decompositions, the radial or the non-tangential maximal functions, or the finite atomic decompositions. All these characterizations except the $\\infty$-atomic characterization are new even for the classical isotropic Hardy-Lorentz spaces on $\\mathbb{R}^n$. As applications, the authors first prove that $H^{p,q}_A(\\mathbb{R}^n)$ is an intermediate space between $H^{p_1,q_1}_A(\\mathbb{R}^n)$ and $H^{p_2,q_2}_A(\\mathbb{R}^n)$ with $0

  3. Collective dynamics in dispersions of anisotropic and deformable particles

    NASA Astrophysics Data System (ADS)

    Saintillan, David

    The modeling of complex fluids, such as particulate suspensions, emulsions and polymer solutions, is a great challenge owing to the slow decay of hydrodynamic disturbances at low Reynolds numbers, which lead to long-ranged interactions between suspended particles. In this work, we use theory and numerical simulations to address a few problems in which hydrodynamic interactions result in collective dynamics, with emphasis on the effects of particle shape and deformability. We first address the behavior of suspensions of anisotropic particles such as rigid fibers, and deformable particles such as viscous droplets, under sedimentation. Hydrodynamic interactions in these systems result in a concentration instability by which the particles aggregate into dense clusters surrounded by clarified fluid. Using newly developed efficient algorithms, we perform large-scale simulations of such suspensions with the aim of elucidating the instability mechanism. The salient features of the instability are adequately captured, and simulations in finite containers exhibit a wavenumber selection. Using a linear, stability analysis we demonstrate that the size of the concentration fluctuations is controlled by the stratification that is observed to form during the sedimentation process. We then investigate the dynamics in suspensions of uncharged polarizable rigid rods placed in an electric field. The polarization of a rod results in the formation of a dipolar charge cloud around its surface, leading to a non-linear electrokinetic phenomenon termed induced-charge electrophoresis, which causes particle alignment and creates a disturbance flow. We derive a simple slender-body formulation for this effect valid for high-aspect-ratio particles, and use it to study hydrodynamic interactions in these systems. Using both theory and numerical simulations we show that experimentally observed particle pairings can be explained based on these interactions. Finally, we apply Brownian dynamics to

  4. Finite quantum gauge theories

    NASA Astrophysics Data System (ADS)

    Modesto, Leonardo; Piva, Marco; Rachwał, Lesław

    2016-07-01

    We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).

  5. Nonlinear probabilistic finite element models of laminated composite shells

    NASA Technical Reports Server (NTRS)

    Engelstad, S. P.; Reddy, J. N.

    1993-01-01

    A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.

  6. Crystal level simulations using Eulerian finite element methods

    SciTech Connect

    Becker, R; Barton, N R; Benson, D J

    2004-02-06

    Over the last several years, significant progress has been made in the use of crystal level material models in simulations of forming operations. However, in Lagrangian finite element approaches simulation capabilities are limited in many cases by mesh distortion associated with deformation heterogeneity. Contexts in which such large distortions arise include: bulk deformation to strains approaching or exceeding unity, especially in highly anisotropic or multiphase materials; shear band formation and intersection of shear bands; and indentation with sharp indenters. Investigators have in the past used Eulerian finite element methods with material response determined from crystal aggregates to study steady state forming processes. However, Eulerian and Arbitrary Lagrangian-Eulerian (ALE) finite element methods have not been widely utilized for simulation of transient deformation processes at the crystal level. The advection schemes used in Eulerian and ALE codes control mesh distortion and allow for simulation of much larger total deformations. We will discuss material state representation issues related to advection and will present results from ALE simulations.

  7. Modified anisotropic turbulence refractive-index fluctuations spectral model and its application in moderate-to-strong anisotropic turbulence.

    PubMed

    Cui, Linyan; Xue, Bindang; Zhou, Fugen

    2016-04-01

    In this study, the modified anisotropic turbulence refractive-index fluctuations spectral model is derived based on the extended Rytov approximation theory for the theoretical investigations of optical plane and spherical waves propagating through moderate-to-strong anisotropic non-Kolmogorov turbulence. The anisotropic factor which parameterizes the asymmetry of turbulence cells or eddies in the horizontal and vertical directions is introduced. The general spectral power law in the range of 3-4 is also considered compared with the conventional classic value of 11/3 for Kolmogorov turbulence. Based on the modified anisotropic turbulence refractive-index fluctuations spectrum, the analytic expressions of the irradiance scintillation index are also derived for optical plane and spherical waves propagating through moderate-to-strong anisotropic non-Kolmogorov turbulence. They are applicable in a wide range of turbulence strengths and can reduce correctly to the previously published results in the special cases of weak anisotropic turbulence and moderate-to-strong isotropic turbulence. Calculations are performed to analyze the derived models.

  8. Bose condensates with strong anisotropic interaction

    NASA Astrophysics Data System (ADS)

    Avdeenkov, Alexander; Bohn, John L.; Bortolotti, Daniele C. E.

    2004-05-01

    We theoretically investigate trapped Bose condensates with strong dipolar interactions, in the presence of an external electrostatic field. As a prototype we consider polar OH molecules. Previously such systems have been studied in the case of a very strong external field that aligns all the dipoles along the field axis[1,2]. Here we relax this assumption and investigate the influence of finite external field, also taking into account the internal fine structure of the molecules. As a first approximation we treat the intermolecular coordinates as adiabatic and construct an effective potential by diagonalizing Stark and dipole-dipole hamiltonians. The anisotropy of these adiabatic surfaces is a function of an external field, and does not always resemble the interaction between polarized dipoles. We discuss the implications of finite electric field on the stability and geometry of the condensate. [1] K.Goral, K.Rzazewski, and T.Pfau, Phys.Rev.A 61, 051601/1(2000) [2] L.Santos, G.V.Shlyapnikov, P.Zoller and M.Lewenstein, Phys.Rev.Lett.85,1791(2000)

  9. Wave Propagation in Fractured Anisotropic Media

    NASA Astrophysics Data System (ADS)

    Shao, S.; Pyrak-Nolte, L. J.

    2012-12-01

    Discontinuities such as fractures, joints and faults occur in the Earth's crusts in a variety of rock types. While much theoretical, experimental and computational research have examined seismic wave propagation in fractured isotropic rock, few experimental studies have investigated seismic wave propagation in fractured anisotropic media. The co-existence of fractures and layers can complicate the interpretation of seismic properties because of the discrete guided modes that propagate along or are confined by the fractures. In this study, we use seismic arrays and acoustic wavefront imaging techniques to examine the competing sources of seismic anisotropy from fractures and from layers. Samples with textural anisotropy (100 mm x 100 mm x 100 mm) were fabricated from garolite, an epoxy - cloth laminate, with layer thickness 0f ~ 0.5 mm. Two sets of fractured samples were fabricated: (1) two single fractured samples with one fracture either parallel or (and) perpendicular to layers, and (2) four multi-fractured samples with 5 parallel fractures oriented either parallel, 30 degrees, 60 degrees or perpendicular to the layers. An intact sample containing no fractures was used as a standard orthorhombic medium for reference. Seismic arrays were used on the first set of samples to measure bulk waves and fracture interface waves as a function of stress. The seismic array contained two compressional and five shear-wave source-receiver pairs with a central frequency of 1 MHz. Shear wave transducers were polarized both perpendicular and parallel to the layering as well as to the fracture. Measurements were made for a range of stresses (0.4 - 4MPa). From these measurements it was observed that a fractured layered medium appears more isotropic or anisotropic than the orthorhombic background, depending on the orientation of the fracture relative to layers. The matrix anisotropy was recovered by increasing the normal stress on a fracture (i.e., by closing the fracture). For the

  10. Collisionless magnetic reconnection under anisotropic MHD approximation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Kota; Hoshino, Masahiro

    We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless magneto-hydro-dynamic (MHD) simulations based on the double adiabatic approximation, which is an important step to bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observation. According to our results, a pair of slow shocks does form in the reconnection layer. The resultant shock waves, however, are quite weak compared with those in an isotropic MHD from the point of view of the plasma compression and the amount of the magnetic energy released across the shock. Once the slow shock forms, the downstream plasma are heated in highly anisotropic manner and a firehose-sense (P_{||}>P_{⊥}) pressure anisotropy arises. The maximum anisotropy is limited by the marginal firehose criterion, 1-(P_{||}-P_{⊥})/B(2) =0. In spite of the weakness of the shocks, the resultant reconnection rate is kept at the same level compared with that in the corresponding ordinary MHD simulations. It is also revealed that the sequential order of propagation of the slow shock and the rotational discontinuity, which appears when the guide field component exists, changes depending on the magnitude of the guide field. Especially, when no guide field exists, the rotational discontinuity degenerates with the contact discontinuity remaining at the position of the initial current sheet, while with the slow shock in the isotropic MHD. Our result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere.

  11. MOSSFRAC: An anisotropic 3D fracture model

    SciTech Connect

    Moss, W C; Levatin, J L

    2006-08-14

    Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.

  12. A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method

    NASA Technical Reports Server (NTRS)

    Wilt, Thomas E.; Arnold, Steven M.

    1994-01-01

    A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.

  13. Anisotropic nonlinear elasticity in a spherical-bead pack: influence of the fabric anisotropy.

    PubMed

    Khidas, Yacine; Jia, Xiaoping

    2010-02-01

    Stress-strain measurements and ultrasound propagation experiments in glass bead packs have been simultaneously conducted to characterize the stress-induced anisotropy under uniaxial loading. These measurements realized, respectively, with finite and incremental deformations of the granular assembly, are analyzed within the framework of the effective-medium theory based on the Hertz-Mindlin contact theory. Our work shows that both compressional and shear wave velocities and consequently the incremental elastic moduli agree fairly well with an effective-medium model developed by Johnson [J. Appl. Mech. 65, 380 (1998)] for the oedometric test, but the anisotropic stress ratio resulting from finite deformation does not at all. As indicated by numerical simulations, the discrepancy may arise from the fact that the model does not properly allow the grains to relax from the affine motion approximation. Here we find that the interaction nature at the grain contact could also play a crucial role for the relevant prediction by the model; indeed, such discrepancy can be significantly reduced if the frictional resistance between grains is removed. Another main experimental finding is the influence of the inherent anisotropy of granular packs, realized by different protocols of the sample preparation. Our results reveal that compressional waves are more sensitive to the stress-induced anisotropy, whereas the shear waves are more sensitive to the fabric anisotropy. PMID:20365559

  14. Three discontinuous Galerkin schemes for the anisotropic heat conduction equation on non-aligned grids

    NASA Astrophysics Data System (ADS)

    Held, M.; Wiesenberger, M.; Stegmeir, A.

    2016-02-01

    We present and discuss three discontinuous Galerkin (dG) discretizations for the anisotropic heat conduction equation on non-aligned cylindrical grids. Our non-aligned scheme relies on a self-adjoint local dG (LDG) discretization of the elliptic operator. It conserves the energy exactly and converges with arbitrary order. The pollution by numerical perpendicular heat fluxes decreases with superconvergence rates. We compare this scheme with aligned schemes that are based on the flux-coordinate independent approach for the discretization of parallel derivatives. Here, the dG method provides the necessary interpolation. The first aligned discretization can be used in an explicit time-integrator. However, the scheme violates conservation of energy and shows up stagnating convergence rates for very high resolutions. We overcome this partly by using the adjoint of the parallel derivative operator to construct a second self-adjoint aligned scheme. This scheme preserves energy, but reveals unphysical oscillations in the numerical tests, which result in a decreased order of convergence. Both aligned schemes exhibit low numerical heat fluxes into the perpendicular direction and are superior for flute-modes with finite parallel gradients. We build our argumentation on various numerical experiments on all three schemes for a general axisymmetric magnetic field, which is closed by a comparison to the aligned finite difference (FD) schemes of Stegmeir et al. (2014) and Stegmeir et al. (submitted for publication).

  15. Finite resolution multitarget tracking

    NASA Astrophysics Data System (ADS)

    Mušicki, Darko; Morelande, Mark R.

    2005-09-01

    Target tracking algorithms have to operate in an environment of uncertain measurement origin, due to the presence of randomly detected target measurements as well as clutter measurements from unwanted random scatterers. A majority of Bayesian multi-target tracking algorithms suffer from computational complexity which is exponential in the number of tracks and the number of shared measurements. The Linear Multi-target (LM) tracking procedure is a Bayesian multi-target tracking approximation with complexity which is linear in the number of tracks and the number of shared measurements. It also has a much simpler structure than the "optimal" Bayesian multi-target tracking, with apparently negligible decrease in performance. A vast majority of target tracking algorithms have been developed with the assumption of infinite sensor resolution, where a measurement can have only one source. This assumption is not valid for real sensors, such as radars. This paper presents a multi-target tracking algorithm which removes this restriction. The procedure utilizes a simple structure of LM tracking procedure to obtain a LM Finite Resolution (LMfr) tracking procedure which is much simpler than the previously published efforts. Instead of calculating the probability of measurement merging for each combination of potentially merging targets, we evaluate only one merging hypotheses for each measurement and each track. A simulation study is presented which compares LMfr-IPDA with LM-IPDA and IPDA target tracking in a cluttered environment utilizing a finite resolution sensor with five crossing targets. The study concentrates on the false track discrimination performance and the track retention capabilities.

  16. Advance finite element modeling of rotor blade aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Sangha, K. B.; Panda, B.

    1994-01-01

    An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.

  17. Finite element based optimization study on hydroformed stepped tube

    NASA Astrophysics Data System (ADS)

    Harisankar, K. R.; Omar, A.; Narasimhan, K.

    2016-08-01

    Tube hydroforming process is an advanced manufacturing process in which tube is placed in between the dies and deformed with the help of hydraulic pressure. A sound tube hydroformed part depends upon die conditions, material properties and process conditions. In this work, a finite element study, along with response surface methodology (RSM) for designing the simulation, has been used to construct models with loading path, friction, anisotropic index, strain hardening exponent and tube thickness. The responses studied are the die corner radius filling and strain non-uniformity index (SNI) chosen in each step of the tube with maximum 30% thinning as stopping criteria. The factors effect and their interactions on each response were determined and analysed.

  18. Finite volume form factors and correlation functions at finite temperature

    NASA Astrophysics Data System (ADS)

    Pozsgay, Balázs

    2009-07-01

    In this thesis we investigate finite size effects in 1+1 dimensional integrable QFT. In particular we consider matrix elements of local operators (finite volume form factors) and vacuum expectation values and correlation functions at finite temperature. In the first part of the thesis we give a complete description of the finite volume form factors in terms of the infinite volume form factors (solutions of the bootstrap program) and the S-matrix of the theory. The calculations are correct to all orders in the inverse of the volume, only exponentially decaying (residual) finite size effects are neglected. We also consider matrix elements with disconnected pieces and determine the general rule for evaluating such contributions in a finite volume. The analytic results are tested against numerical data obtained by the truncated conformal space approach in the Lee-Yang model and the Ising model in a magnetic field. In a separate section we also evaluate the leading exponential correction (the μ-term) associated to multi-particle energies and matrix elements. In the second part of the thesis we show that finite volume factors can be used to derive a systematic low-temperature expansion for correlation functions at finite temperature. In the case of vacuum expectation values the series is worked out up to the third non-trivial order and a complete agreement with the LeClair-Mussardo formula is observed. A preliminary treatment of the two-point function is also given by considering the first nontrivial contributions.

  19. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  20. 2D seismic reflection tomography in strongly anisotropic media

    NASA Astrophysics Data System (ADS)

    Huang, Guangnan; Zhou, Bing; Li, Hongxi; Zhang, Hua; Li, Zelin

    2014-12-01

    Seismic traveltime tomography is an effective method to reconstruct underground anisotropic parameters. Currently, most anisotropic tomographic methods were developed under the assumption of weak anisotropy. The tomographic method proposed here can be implemented for imaging subsurface targets in strongly anisotropic media with a known tilted symmetry axis, since the adopted ray tracing method is suitable for anisotropic media with arbitrary degree. There are three kinds of reflection waves (qP, qSV and qSH waves) that were separately used to invert the blocky abnormal body model. The reflection traveltime tomographiy is developed here because a surface observation system is the most economical and practical way compared with crosswell and VSP. The numerical examples show that the traveltimes of qP reflection wave have inverted parameters {{c}11},{{c}13},{{c}33} \\text{and} {{c}44} successfully. Traveltimes of qSV reflection wave have inverted parameters {{c}11},{{c}33} \\text{and} {{c}44} successfully, with the exception of the {{c}13}, since it is less sensitive than other parameters. Traveltimes of qSH reflection wave also have inverted parameters {{c}44} \\text{and} {{c}66} successfully. In addition, we find that the velocity sensitivity functions (derivatives of phase velocity with respect to elastic moduli parameters) and raypath illuminating angles have a great influence on the qualities of tomograms according to the inversion of theoretical models. Finally, the numerical examples confirm that the reflection traveltime tomography can be applied to invert strongly anisotropic models.

  1. Anisotropic Solution Adaptive Unstructured Grid Generation Using AFLR

    NASA Technical Reports Server (NTRS)

    Marcum, David L.

    2007-01-01

    An existing volume grid generation procedure, AFLR3, was successfully modified to generate anisotropic tetrahedral elements using a directional metric transformation defined at source nodes. The procedure can be coupled with a solver and an error estimator as part of an overall anisotropic solution adaptation methodology. It is suitable for use with an error estimator based on an adjoint, optimization, sensitivity derivative, or related approach. This offers many advantages, including more efficient point placement along with robust and efficient error estimation. It also serves as a framework for true grid optimization wherein error estimation and computational resources can be used as cost functions to determine the optimal point distribution. Within AFLR3 the metric transformation is implemented using a set of transformation vectors and associated aspect ratios. The modified overall procedure is presented along with details of the anisotropic transformation implementation. Multiple two-and three-dimensional examples are also presented that demonstrate the capability of the modified AFLR procedure to generate anisotropic elements using a set of source nodes with anisotropic transformation metrics. The example cases presented use moderate levels of anisotropy and result in usable element quality. Future testing with various flow solvers and methods for obtaining transformation metric information is needed to determine practical limits and evaluate the efficacy of the overall approach.

  2. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials.

    PubMed

    Lin, Jingjing; Liang, Liangbo; Ling, Xi; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Sumpter, Bobby G; Meunier, Vincent; Tong, Lianming; Zhang, Jin

    2015-12-16

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structures, including orthorhombic black phosphorus (BP) and triclinic rhenium disulfide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions between the 2D materials and molecules are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials. PMID:26583533

  3. Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials.

    PubMed

    Lin, Jingjing; Liang, Liangbo; Ling, Xi; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Sumpter, Bobby G; Meunier, Vincent; Tong, Lianming; Zhang, Jin

    2015-12-16

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structures, including orthorhombic black phosphorus (BP) and triclinic rhenium disulfide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions between the 2D materials and molecules are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.

  4. Weibel Instability Driven by Spatially Anisotropic Density Structures

    NASA Astrophysics Data System (ADS)

    Tomita, Sara; Ohira, Yutaka

    2016-07-01

    Observations of afterglows of gamma-ray bursts (GRBs) suggest that post-shock magnetic fields are strongly amplified to about 100 times the shock-compressed value. The Weibel instability appears to play an important role in generating the magnetic field. However, recent simulations of collisionless shocks in homogeneous plasmas show that the magnetic field generated by the Weibel instability rapidly decays. There must be some density fluctuations in interstellar and circumstellar media. The density fluctuations are anisotropically compressed in the downstream region of relativistic shocks. In this paper, we study the Weibel instability in electron-positron plasmas with spatially anisotropic density distributions by means of two-dimensional particle-in-cell simulations. We find that large magnetic fields are maintained for a longer time by the Weibel instability driven by spatially anisotropic density structure. Particles anisotropically escape from the high density region, so that a temperature anisotropy is generated and the Weibel instability becomes unstable. Our simulation results suggest that the Weibel instability driven by an anisotropic density structure can generate sufficiently large magnetic fields and they can cover sufficiently large regions to explain the afterglow emission of GRBs.

  5. Anisotropic shrinkage characteristics of tape cast alumina

    NASA Astrophysics Data System (ADS)

    Patwardhan, Jaideep Suresh

    Dimensional control during sintering is a major issue in ceramics processing to avoid high post-sintering costs associated with machining of the fired ceramic part to desired tolerances and dimensions. Ceramic forming processes such as tape casting, injection molding, and extrusion involve shear of anisotropic particles resulting in preferential alignment of the particles in the green body. This preferential alignment causes directionality in mechanical, electrical, optical, and magnetic properties and most importantly warpage or distortion during sintering. A large effort has been devoted to synthesizing ceramic green bodies with minimal density gradients and uniform packing and modeling the sintering behavior evolution but little effort has been devoted to characterizing orientation of particles and the effect of preferential alignment on sintering shrinkage anisotropy. A systematic study was initiated to study the effect of processing variables such as shear rate, solids loading, temperature, and binder content on aqueous tape cast alumina. Three different alumina systems: A16-SG, Baikowski RC-UFX DBM and RC-LS DBM were investigated. Aqueous tapes of high solids loading alumina (56 vol. %) were tape cast at various speeds and thicknesses and assuming plane Couette flow a shear rate regime of 21--270 s-1 was investigated. Higher shear rates and high solids loading resulted in higher in-plane anisotropy whereas the anisotropy in the thickness direction was higher for low solids loading systems. The anisotropy was found to be fairly constant above a certain critical shear rate (˜100 s-1) irrespective of the temperature and the solids loading and this correlated with the viscosity-shear rate relationship of the cast slips. The higher shrinkage anisotropy in the thickness direction for the low solids loading systems (35 and 45 vol. %) was attributed to the higher amount of organics in the slip required to sustain the suitable viscosity for tape casting and

  6. On the material modelling of anisotropy, hardening and failure of sheet metals in the finite strain regime

    SciTech Connect

    Vladimirov, I. N.; Tini, V.; Kiliclar, Y.; Reese, S.

    2011-05-04

    In this paper, we discuss the application of a newly developed coupled material model of finite anisotropic multiplicative plasticity and continuum damage to the numerical prediction of the forming limit diagram at fracture (FLDF). The model incorporates Hill-type plastic anisotropy, nonlinear Armstrong-Frederick kinematic hardening and nonlinear isotropic hardening. The numerical examples examine the simulation of forming limit diagrams at fracture by means of the so-called Nakajima stretching test. Comparisons with experimental data for aluminium sheets show a good agreement with the finite element results.

  7. Geodesic acoustic mode in anisotropic plasma with heat flux

    SciTech Connect

    Ren, Haijun

    2015-10-15

    Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q{sup 2}, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.

  8. Shear-free anisotropic cosmological models in {f (R)} gravity

    NASA Astrophysics Data System (ADS)

    Abebe, Amare; Momeni, Davood; Myrzakulov, Ratbay

    2016-04-01

    We study a class of shear-free, homogeneous but anisotropic cosmological models with imperfect matter sources in the context of f( R) gravity. We show that the anisotropic stresses are related to the electric part of the Weyl tensor in such a way that they balance each other. We also show that within the class of orthogonal f( R) models, small perturbations of shear are damped, and that the electric part of the Weyl tensor and the anisotropic stress tensor decay with the expansion as well as the heat flux of the curvature fluid. Specializing in locally rotationally symmetric spacetimes in orthonormal frames, we examine the late-time behaviour of the de Sitter universe in f( R) gravity. For the Starobinsky model of f( R), we study the evolutionary behavior of the Universe by numerically integrating the Friedmann equation, where the initial conditions for the expansion, acceleration and jerk parameters are taken from observational data.

  9. Reduction of noise in diffusion tensor images using anisotropic smoothing.

    PubMed

    Ding, Zhaohua; Gore, John C; Anderson, Adam W

    2005-02-01

    To improve the accuracy of tissue structural and architectural characterization with diffusion tensor imaging, a novel smoothing technique is developed for reducing noise in diffusion tensor images. The technique extends the traditional anisotropic diffusion filtering method by allowing isotropic smoothing within homogeneous regions and anisotropic smoothing along structure boundaries. This is particularly useful for smoothing diffusion tensor images in which direction information contained in the tensor needs to be restored following noise corruption and preserved around tissue boundaries. The effectiveness of this technique is quantitatively studied with experiments on simulated and human in vivo diffusion tensor data. Illustrative results demonstrate that the anisotropic smoothing technique developed can significantly reduce the impact of noise on the direction as well as anisotropy measures of the diffusion tensor images.

  10. Anisotropic Smoothing Improves DT-MRI-Based Muscle Fiber Tractography

    PubMed Central

    Buck, Amanda K. W.; Ding, Zhaohua; Elder, Christopher P.; Towse, Theodore F.; Damon, Bruce M.

    2015-01-01

    Purpose To assess the effect of anisotropic smoothing on fiber tracking measures, including pennation angle, fiber tract length, and fiber tract number in the medial gastrocnemius (MG) muscle in healthy subjects using diffusion-weighted magnetic resonance imaging (DW-MRI). Materials and Methods 3T DW-MRI data were used for muscle fiber tractography in the MG of healthy subjects. Anisotropic smoothing was applied at three levels (5%, 10%, 15%), and pennation angle, tract length, fiber tract number, fractional anisotropy, and principal eigenvector orientation were quantified for each smoothing level. Results Fiber tract length increased with pre-fiber tracking smoothing, and local heterogeneities in fiber direction were reduced. However, pennation angle was not affected by smoothing. Conclusion Modest anisotropic smoothing (10%) improved fiber-tracking results, while preserving structural features. PMID:26010830

  11. Fermionic collective modes of an anisotropic quark-gluon plasma

    SciTech Connect

    Schenke, Bjoern; Strickland, Michael

    2006-09-15

    We determine the fermionic collective modes of a quark-gluon plasma which is anisotropic in momentum space. We calculate the fermion self-energy in both the imaginary- and real-time formalisms and find that numerically and analytically (for two special cases) there are no unstable fermionic modes. In addition we demonstrate that in the hard-loop limit the Kubo-Martin-Schwinger condition, which relates the off-diagonal components of the real-time fermion self-energy, holds even for the anisotropic, and therefore nonequilibrium, quark-gluon plasma considered here. The results obtained here set the stage for the calculation of the nonequilibrium photon production rate from an anisotropic quark-gluon plasma.

  12. Hemispherical anisotropic patterns of the Earth's inner core.

    PubMed

    Mattesini, Maurizio; Belonoshko, Anatoly B; Buforn, Elisa; Ramírez, María; Simak, Sergei I; Udías, Agustín; Mao, Ho-Kwang; Ahuja, Rajeev

    2010-05-25

    It has been shown that the Earth's inner core has an axisymmetric anisotropic structure with seismic waves traveling approximately 3% faster along polar paths than along equatorial directions. Hemispherical anisotropic patterns of the solid Earth's core are rather complex, and the commonly used hexagonal-close-packed iron phase might be insufficient to account for seismological observations. We show that the data we collected are in good agreement with the presence of two anisotropically specular east and west core hemispheres. The detected travel-time anomalies can only be disclosed by a lattice-preferred orientation of a body-centered-cubic iron aggregate, having a fraction of their [111] crystal axes parallel to the Earth's rotation axis. This is compelling evidence for the presence of a body-centered-cubic Fe phase at the top of the Earth's inner core. PMID:20457937

  13. Cosmic parallax as a probe of late time anisotropic expansion

    SciTech Connect

    Quercellini, Claudia; Cabella, Paolo; Balbi, Amedeo; Amendola, Luca

    2009-09-15

    Cosmic parallax is the change of angular separation between a pair of sources at cosmological distances induced by an anisotropic expansion. An accurate astrometric experiment like Gaia could observe or put constraints on cosmic parallax. Examples of anisotropic cosmological models are Lemaitre-Tolman-Bondi void models for off-center observers (introduced to explain the observed acceleration without the need for dark energy) and Bianchi metrics. If dark energy has an anisotropic equation of state, as suggested recently, then a substantial anisotropy could arise at z < or approx. 1 and escape the stringent constraints from the cosmic microwave background. In this paper we show that such models could be constrained by the Gaia satellite or by an upgraded future mission.

  14. Isotropic and anisotropic bouncing cosmologies in Palatini gravity

    SciTech Connect

    Barragan, Carlos; Olmo, Gonzalo J.

    2010-10-15

    We study isotropic and anisotropic (Bianchi I) cosmologies in Palatini f(R) and f(R,R{sub {mu}{nu}R}{sup {mu}{nu}}) theories of gravity with a perfect fluid and consider the existence of nonsingular bouncing solutions in the early universe. We find that all f(R) models with isotropic bouncing solutions develop shear singularities in the anisotropic case. On the contrary, the simple quadratic model R+aR{sup 2}/R{sub P}+R{sub {mu}{nu}R}{sup {mu}{nu}/}R{sub P} exhibits regular bouncing solutions in both isotropic and anisotropic cases for a wide range of equations of state, including dust (for a<0) and radiation (for arbitrary a). It thus represents a purely gravitational solution to the big bang singularity and anisotropy problems of general relativity without the need for exotic (w>1) sources of matter/energy or extra degrees of freedom.

  15. Hemispherical Anisotropic Patterns of the Earth's Inner Core

    NASA Astrophysics Data System (ADS)

    Mattesini, M.; Belonoshko, A. B.; Buforn, E.; Ramirez, M.; Simak, S. I.; Udias, A.; Mao, H.; Ahuja, R.

    2010-12-01

    It has been shown that the Earth's inner core has an axisymmetric anisotropic structure with seismic waves travelling ˜3% faster along polar paths than along equatorial directions. However, hemispherical anisotropic patterns of solid Earth's core are rather complex, and the commonly used hexagonal-close-packed (hcp) iron phase might be insufficient to account for seismological observations. We show that the data we collected are in good agreement with the presence of two anisotropically specular east and west core hemispheres. The detected travel-time anomalies can only be disclosed by a lattice preferred orientation of a body-centered-cubic iron aggregate (bcc), having a fraction of their [111] crystal axes parallel to the Earth's rotation axis. This is a compelling evidence for the presence of a body-centered-cubic Fe phase at the top 100 km of the Earth's inner core.

  16. Well behaved anisotropic compact star models in general relativity

    NASA Astrophysics Data System (ADS)

    Jasim, M. K.; Maurya, S. K.; Gupta, Y. K.; Dayanandan, B.

    2016-11-01

    Anisotropic compact star models have been constructed by assuming a particular form of a metric function e^{λ}. We solved the Einstein field equations for determining the metric function e^{ν}. For this purpose we have assumed a physically valid expression of radial pressure (pr). The obtained anisotropic compact star model is representing the realistic compact objects such as PSR 1937 +21. We have done an extensive study about physical parameters for anisotropic models and found that these parameters are well behaved throughout inside the star. Along with these we have also determined the equation of state for compact star which gives the radial pressure is purely the function of density i.e. pr=f(ρ).

  17. Adaptive anisotropic meshing for steady convection-dominated problems

    SciTech Connect

    Nguyen, Hoa; Gunzburger, Max; Ju, Lili; Burkardt, John

    2009-01-01

    Obtaining accurate solutions for convection–diffusion equations is challenging due to the presence of layers when convection dominates the diffusion. To solve this problem, we design an adaptive meshing algorithm which optimizes the alignment of anisotropic meshes with the numerical solution. Three main ingredients are used. First, the streamline upwind Petrov–Galerkin method is used to produce a stabilized solution. Second, an adapted metric tensor is computed from the approximate solution. Third, optimized anisotropic meshes are generated from the computed metric tensor by an anisotropic centroidal Voronoi tessellation algorithm. Our algorithm is tested on a variety of two-dimensional examples and the results shows that the algorithm is robust in detecting layers and efficient in avoiding non-physical oscillations in the numerical approximation.

  18. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing.

    PubMed

    Asuncion, Maria Christine Tankeh; Goh, James Cho-Hong; Toh, Siew-Lok

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. PMID:27287164

  19. Strongly interacting particles on an anisotropic kagome lattice

    NASA Astrophysics Data System (ADS)

    Hotta, Chisa; Pollmann, Frank

    2009-01-01

    We study a model of strongly interacting spinless fermions and hard-core bosons on an anisotropic kagome lattice near 2/3-filling. Our main focus lies on the strongly anisotropic case in which the nearest-neighbor repulsions V and V' are large compared to the hopping amplitudes |t| and |t'|. When t = t' = 0, the system has a charge ordered insulating ground state where the charges align in striped configurations. Doping one electron or hole into the ground state yields an anisotropic metal at V' > V, where the particle fractionalizes along the V'-bonds while propagates along the V-bonds in a one-body like manner. The sixth order ring exchange processes around the hexagonal unit of the lattice play a crucial role in forming a bound state of fractional charges.

  20. Stochastic Loewner evolution relates anomalous diffusion and anisotropic percolation

    NASA Astrophysics Data System (ADS)

    Credidio, Heitor F.; Moreira, André A.; Herrmann, Hans J.; Andrade, José S.

    2016-04-01

    We disclose the origin of anisotropic percolation perimeters in terms of the stochastic Loewner evolution (SLE) process. Precisely, our results from extensive numerical simulations indicate that the perimeters of multilayered and directed percolation clusters at criticality are the scaling limits of the Loewner evolution of an anomalous Brownian motion, being superdiffusive and subdiffusive, respectively. The connection between anomalous diffusion and fractal anisotropy is further tested by using long-range power-law correlated time series (fractional Brownian motion) as the driving functions in the evolution process. The fact that the resulting traces are distinctively anisotropic corroborates our hypothesis. Under the conceptual framework of SLE, our study therefore reveals different perspectives for mathematical and physical interpretations of non-Markovian processes in terms of anisotropic paths at criticality and vice versa.

  1. Simulating convergent extension by way of anisotropic differential adhesion.

    PubMed

    Zajac, Mark; Jones, Gerald L; Glazier, James A

    2003-05-21

    Simulations using the Extended Potts Model suggest that anisotropic differential adhesion can account for convergent extension, as observed during embryonic development of the frog Xenopus laevis for example. During gastrulation in these frogs, convergent extension produces longitudinal tissue growth from latitudinal elongation and migration of aligned constituent cells. The Extended Potts Model employs clustered points on a grid to represent subdivided cells with probabilistic displacement of cell boundaries such that small changes in energy drive gradual tissue development. For modeling convergent extension, simulations include anisotropic differential adhesion: the degree of attachment between adjacent elongated cells depends on their relative orientation. Without considering additional mechanisms, simulations based on anisotropic differential adhesion reproduce the hallmark stages of convergent extension in the correct sequence, with random fluctuations as sufficient impetus for cell reorganization. PMID:12727459

  2. Scattering of electromagnetic light waves from a deterministic anisotropic medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chang, Liping; Wu, Pinghui

    2015-11-01

    Based on the weak scattering theory of electromagnetic waves, analytical expressions are derived for the spectral densities and degrees of polarization of an electromagnetic plane wave scattered from a deterministic anisotropic medium. It is shown that the normalized spectral densities of scattered field is highly dependent of changes of the scattering angle and degrees of polarization of incident plane waves. The degrees of polarization of scattered field are also subjective to variations of these parameters. In addition, the anisotropic effective radii of the dielectric susceptibility can lead essential influences on both spectral densities and degrees of polarization of scattered field. They are highly dependent of the effective radii of the medium. The obtained results may be applicable to determine anisotropic parameters of medium by quantitatively measuring statistics of a far-zone scattered field.

  3. Anisotropic light scattering of individual sickle red blood cells

    NASA Astrophysics Data System (ADS)

    Kim, Youngchan; Higgins, John M.; Dasari, Ramachandra R.; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  4. Energy shift due to anisotropic black body radiation

    NASA Astrophysics Data System (ADS)

    Porsev, Sergey; Flambaum, Victor; Safronova, Marianna

    2016-05-01

    In many applications a source of the black-body radiation (BBR) can be highly anisotropic. This leads to the black-body radiation shift that depends on tensor polarizability and on the projection of the total angular momentum of ions and atoms in a trap. We derived formula for the anisotropic BBR shift and performed numerical calculations of this effect for Ca+ and Yb+ transitions of experimental interest. These ions are used for a design of high-precision atomic clocks, fundamental physics tests such as search for the Lorentz invariance violation and space-time variation of the fundamental constants, and quantum information. Anisotropic BBR shift may be one of the major systematic effects in these experiments. This work was supported by U.S. NSF grants and the Australian Research Council.

  5. Analysis of two-dimensional photonic crystal with anisotropic gain.

    PubMed

    Takigawa, Shinichi; Noda, Susumu

    2011-05-01

    Photonic modes in a two-dimensional square-lattice photonic crystal (PC) with anisotropic gain are analyzed for the first time. A plane-wave expansion method is improved to include the gain, which depends on not only the position but also the propagation direction of each plane wave. The anisotropic gain varies the photonic band structure, the near-field distributions, and the gain dispersion curves through variation in PC symmetry. Low-threshold operation of a PC laser with anisotropic-gain material such as nonpolar InGaN requires that the direction of higher gain in the material aligns along the ΓX direction of the PC. PMID:21643205

  6. Influence of chemistry and climate on large induced large scale stresses in anisotropically fractured carbonates.

    NASA Astrophysics Data System (ADS)

    Toussaint, R.; Cornet, F.

    2012-04-01

    the carbonate rocks. In contrast to the mechanisms described in the work of Gunzburger and Cornet (2007), we propose here to take into account the anisotropy of the dissolution surfaces, leading to the possible anisotropy of the resulting deformation (whereas the latter mechanisms resulted in axisymmetric stresses). This will be translated into stresses with simple hypothesis for the boundary conditions. The order of magnitude of the results will then be confronted to the stress observed and reported by Wileveau et al. [2007]. We will describe a simple mechanico chemical coupling model for the deformations associated to calcite dissolution in anisotropically fractured carbonate rocks. This model, properly upscaled, can serve as a basis for multiphysics simulations, in continuous models described by finite elements, or in network based models. It can also help to estimate orders of magnitudes of the expected effects on the stress, and compare these to the observations. Clark, S. P. J. 1966. Handbook of Physical Constants. Geological Society of America, New York. Cornet, F.H. and Röckel, T. 2011. Vertical stress profiles and the significance of "stress decoupling", submitted Gunzburger Y., Cornet F.H., 2007; Rheological characterization of a sedimentary formation from a stress profile inversion; Geophys. Jou. Int.; 168, pp 402-418. Koehn, D., Renard, F., Toussaint, R. & Passchier, C. W. 2007. Growth of stylolite teeth patterns depending on normal stress and finite compaction. Earth and Planetary Science Letters 257(3-4), 582-595. Renard, F., Schmittbuhl, J., Gratier, J. P., Meakin, P. & Merino, E. 2004. Three-dimensional roughness of stylolites in limestones. Journal of Geophysical Research-Solid Earth 109(B3) Schmittbuhl, J., Renard, F., Gratier, J. P. & Toussaint, R. 2004. Roughness of stylolites: Implications of 3D high resolution topography measurements. Physical Review Letters 93(23). Wileveau, Y., Cornet, F.H., Desroches, J. and Blümling P., 2007. Complete in

  7. Influence of chemistry and climate on large induced large scale stresses in anisotropically fractured carbonates.

    NASA Astrophysics Data System (ADS)

    Toussaint, R.; Cornet, F.

    2012-04-01

    the carbonate rocks. In contrast to the mechanisms described in the work of Gunzburger and Cornet (2007), we propose here to take into account the anisotropy of the dissolution surfaces, leading to the possible anisotropy of the resulting deformation (whereas the latter mechanisms resulted in axisymmetric stresses). This will be translated into stresses with simple hypothesis for the boundary conditions. The order of magnitude of the results will then be confronted to the stress observed and reported by Wileveau et al. [2007]. We will describe a simple mechanico chemical coupling model for the deformations associated to calcite dissolution in anisotropically fractured carbonate rocks. This model, properly upscaled, can serve as a basis for multiphysics simulations, in continuous models described by finite elements, or in network based models. It can also help to estimate orders of magnitudes of the expected effects on the stress, and compare these to the observations. Clark, S. P. J. 1966. Handbook of Physical Constants. Geological Society of America, New York. Cornet, F.H. and Röckel, T. 2011. Vertical stress profiles and the significance of "stress decoupling", submitted Gunzburger Y., Cornet F.H., 2007; Rheological characterization of a sedimentary formation from a stress profile inversion; Geophys. Jou. Int.; 168, pp 402-418. Koehn, D., Renard, F., Toussaint, R. & Passchier, C. W. 2007. Growth of stylolite teeth patterns depending on normal stress and finite compaction. Earth and Planetary Science Letters 257(3-4), 582-595. Renard, F., Schmittbuhl, J., Gratier, J. P., Meakin, P. & Merino, E. 2004. Three-dimensional roughness of stylolites in limestones. Journal of Geophysical Research-Solid Earth 109(B3) Schmittbuhl, J., Renard, F., Gratier, J. P. & Toussaint, R. 2004. Roughness of stylolites: Implications of 3D high resolution topography measurements. Physical Review Letters 93(23). Wileveau, Y., Cornet, F.H., Desroches, J. and Blümling P., 2007. Complete in

  8. Anisotropic metamaterials for microwave antennas and infrared nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Jian, Zhihao

    Wave-matter interactions have long been investigated to discover unknown physical phenomena and exploited to achieve improved device performance throughout the electromagnetic spectrum ranging from quasi-static limit to microwave frequencies, and even at infrared and optical wavelengths. As a nascent but fast growing field, metamaterial technology, which relies on clusters of artificially engineered subwavelength structures, has been demonstrated to provide a wide variety of exotic electromagnetic properties unattainable in natural materials. This dissertation presents the research on novel anisotropic metamaterials for tailoring microwave radiation and infrared scattering of nanostructured thin films. First, a new inversion algorithm is proposed for retrieving the anisotropic effective medium parameters of a slab of metamaterial. Secondly, low-loss anisotropic metamaterial lenses and coatings are introduced for improving the gain and/or bandwidth for a variety of antennas. In particular, a quad-beam high-gain lens for a quarter-wave monopole, a low-profile grounded leaky metamaterial coating for slot antenna, and an ultra-thin anisotropic metamaterial bandwidth-enhancing coating for a quarter-wave monopole are experimentally demonstrated. In the infrared regime, novel nanostructured metamaterial free-standing thin-films, which are inherently anisotropic, are introduced for achieving exotic index properties and further for practical photonic devices. In particular, a low-loss near-infrared fishnet zero-index metamaterial, a dispersionengineered optically-thin, low-loss broadband metamaterial filter with a suppressed group delay fluctuation in the mid-infrared, and a conformal dual-band near-perfectly absorbing coating in the mid-infrared are experimentally demonstrated. These explorations show the great promise anisotropic metamaterials hold for the flexible manipulation of electromagnetic waves and their broad applicability in a wide spectrum range.

  9. Decorrelation of anisotropic flow along the longitudinal direction

    NASA Astrophysics Data System (ADS)

    Pang, Long-Gang; Petersen, Hannah; Qin, Guang-You; Roy, Victor; Wang, Xin-Nian

    2016-04-01

    The initial energy density distribution and fluctuations in the transverse direction lead to anisotropic flow of final hadrons through collective expansion in high-energy heavy-ion collisions. Fluctuations along the longitudinal direction, on the other hand, can result in decorrelation of anisotropic flow in different regions of pseudorapidity ( η . Decorrelation of the 2nd- and 3rd-order anisotropic flow with different η gaps for final charged hadrons in high-energy heavy-ion collisions is studied in an event-by-event (3+1)D ideal hydrodynamic model with fully fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The decorrelation is found to consist of both a linear twist and random fluctuation of the event plane angles. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation, indicating larger longitudinal fluctuations at lower beam energies. Our study also calls into question some of the current experimental methods for measuring anisotropic flow and the quantitative extraction of transport coefficients through comparisons to hydrodynamic simulations that do not include longitudinal fluctuations.

  10. Nonlinear dynamic analysis of quasi-symmetric anisotropic structures

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient computational method for the nonlinear dynamic analysis of quasi-symmetric anisotropic structures is proposed. The application of mixed models simplifies the analytical development and improves the accuracy of the response predictions, and operator splitting allows the reduction of the analysis model of the quasi-symmetric structure to that of the corresponding symmetric structure. The preconditoned conjugate gradient provides a stable and effective technique for generating the unsymmetric response of the structure as the sum of a symmetrized response plus correction modes. The effectiveness of the strategy is demonstrated with the example of a laminated anisotropic shallow shell of quadrilateral planform subjected to uniform normal loading.

  11. The traces of anisotropic dark energy in light of Planck

    SciTech Connect

    Cardona, Wilmar; Kunz, Martin; Hollenstein, Lukas E-mail: lukas.hollenstein@zhaw.ch

    2014-07-01

    We study a dark energy model with non-zero anisotropic stress, either linked to the dark energy density or to the dark matter density. We compute approximate solutions that allow to characterise the behaviour of the dark energy model and to assess the stability of the perturbations. We also determine the current limits on such an anisotropic stress from the cosmic microwave background data by the Planck satellite, and derive the corresponding constraints on the modified growth parameters like the growth index, the effective Newton's constant and the gravitational slip.

  12. Anisotropic. cap alpha. -emission of on-line separated isotopes

    SciTech Connect

    Wouters, J.; Vandeplassche, D.; van Walle, E.; Severijns, N.; Van Haverbeke, J.; Vanneste, L.

    1987-12-10

    The technical realization of particle detection at very low temperatures (4K) has made it possible to study for the first time the anisotropic ..cap alpha..-decay of oriented nuclei which have been produced, separated and implanted on line. The measured ..cap alpha..-angular distributions reveal surprising new results on nuclear aspects as well as in solid state physics. The nuclear structure information from these data questions the older ..cap alpha..-decay theoretical interpretation and urges for a reaxamination of the earliest work on anisotropic ..cap alpha..-decay.

  13. Three-parameter AVO crossplotting in anisotropic media

    USGS Publications Warehouse

    Chen, H.; Castagna, J.P.; Brown, R.L.; Ramos, A.C.B.

    2001-01-01

    Amplitude versus offset (AVO) interpretation can be facilitated by crossplotting AVO intercept (A), gradient (B), and curvature (C) terms. However, anisotropy, which exists in the real world, usually complicates AVO analysis. Recognizing anisotropic behavior on AVO crossplots can help avoid AVO interpretation errors. Using a modification to a three-term (A, B, and C) approximation to the exact anisotropic reflection coefficients for transversely isotropic media, we find that anisotropy has a nonlinear effect on an A versus C crossplot yet causes slope changes and differing intercepts on A versus B or C crossplots. Empirical corrections that result in more accurate crossplot interpretation are introduced for specific circumstances.

  14. Newtonian polytropes for anisotropic matter: General framework and applications

    NASA Astrophysics Data System (ADS)

    Herrera, L.; Barreto, W.

    2013-04-01

    We set up the general formalism to model polytropic Newtonian stars with anisotropic pressure. We obtain the corresponding Lane-Emden equation. A heuristic model based on an ansatz to obtain anisotropic matter solutions from known solutions for isotropic matter is adopted to illustrate the effects of the pressure anisotropy on the structure of the star. In particular, we calculate the Chandrasekhar mass for a white dwarf. It is clearly displayed how the Chandrasekhar mass limit changes depending on the anisotropy. Prospective astrophysical applications of the proposed approach are discussed.

  15. Perfect fluid quantum anisotropic universe: merits and challenges

    NASA Astrophysics Data System (ADS)

    Majumder, Barun; Banerjee, Narayan

    2013-01-01

    The present paper deals with quantization of perfect fluid anisotropic cosmological models. Bianchi type V and IX models are discussed following Schutz's method of expressing fluid velocities in terms of six potentials. The wave functions are found for several examples of equations of state. In one case a complete wave packet could be formed analytically. The initial singularity of a zero proper volume can be avoided in this case, but it is plagued by the usual problem of non-unitarity of anisotropic quantum cosmological models. It is seen that a particular operator ordering alleviates this problem.

  16. Design of anisotropic plates for improved damage tolerance

    NASA Technical Reports Server (NTRS)

    Guerdal, Zafer

    1986-01-01

    An analytical study is presented showing the effects of the notch tip geometry on the location and direction of crack growth from an existing notch in a unidirectional fibrous composite modeled as a homogeneous, anisotropic, elastic material. Anisotropic elasticity and the normal stress ratio theory are used to study crack growth from elliptical notches in unidirectional composites. Sharp cracks, circular holes, and ellipses are studied under far-field tension and shear loading. The capabilities of a previously developed design code was upgraded to handle more generalized plate geometries and laminates under a more generalized loading and boundary conditions. Discussion of the developments of the design code is presented.

  17. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs.

    PubMed

    Mannix, Andrew J; Zhou, Xiang-Feng; Kiraly, Brian; Wood, Joshua D; Alducin, Diego; Myers, Benjamin D; Liu, Xiaolong; Fisher, Brandon L; Santiago, Ulises; Guest, Jeffrey R; Yacaman, Miguel Jose; Ponce, Arturo; Oganov, Artem R; Hersam, Mark C; Guisinger, Nathan P

    2015-12-18

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  18. Anisotropic diffraction of bulk acoustic wave beams in lithium niobate.

    PubMed

    Naumenko, Natalya F; Chizhikov, Sergey I; Molchanov, Vladimir Ya; Yushkov, Konstantin B

    2015-12-01

    The formalism of planar diffraction tensor was applied to the analysis of anisotropy of bulk acoustic wave diffraction and to build a full map of anisotropic diffractional coefficients for three bulk acoustic wave modes propagating in lithium niobate. For arbitrary propagation direction the diffractional coefficients derived allow estimation of ultrasonic beam divergence in far-field. Analysis of obtained data revealed that the maxima of acousto-optic figure of merit for anisotropic diffraction in the YZ plane correspond to moderate diffractional spreading of the beams exceeding isotropic diffraction 2-3 times. PMID:26150402

  19. Electric double layer of anisotropic dielectric colloids under electric fields

    NASA Astrophysics Data System (ADS)

    Han, M.; Wu, H.; Luijten, E.

    2016-07-01

    Anisotropic colloidal particles constitute an important class of building blocks for self-assembly directed by electrical fields. The aggregation of these building blocks is driven by induced dipole moments, which arise from an interplay between dielectric effects and the electric double layer. For particles that are anisotropic in shape, charge distribution, and dielectric properties, calculation of the electric double layer requires coupling of the ionic dynamics to a Poisson solver. We apply recently proposed methods to solve this problem for experimentally employed colloids in static and time-dependent electric fields. This allows us to predict the effects of field strength and frequency on the colloidal properties.

  20. Dissipative spherical collapse of charged anisotropic fluid in gravity

    NASA Astrophysics Data System (ADS)

    Kausar, H. Rizwana; Noureen, Ifra

    2014-02-01

    This manuscript is devoted to the study of the combined effect of a viable model and the electromagnetic field on the instability range of gravitational collapse. We assume the presence of a charged anisotropic fluid that dissipates energy via heat flow and discuss how the electromagnetic field, density inhomogeneity, shear, and phase transition of astrophysical bodies can be incorporated by a locally anisotropic background. The dynamical equations help to investigate the evolution of self-gravitating objects and lead to the conclusion that the adiabatic index depends upon the electromagnetic background, mass, and radius of the spherical objects.

  1. Twisting of nanowires induced by anisotropic surface stresses

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Shan; Feng, Xi-Qiao; Wang, Gang-Feng; Yu, Shou-Wen

    2008-05-01

    Many natural and synthetic quasi-one-dimensional materials are of helical or twisting shape and understanding the physical mechanisms underlying the asymmetric shape is of both theoretical and technological significances. In this letter, we pointed out that anisotropic surface stresses present as a possible reason for the formation of some micro-/nanohelices. Using Gurtin's theory of surface elasticity, we quantitatively investigated the twisting deformation of nanowires due to anisotropic surface stresses. The present model can also elucidate the formation of some other helical materials at micro- and nanoscales, e.g., twisting lamellae in polymer spherulites, spiraled bacteria, and flagella.

  2. Active microwave remote sensing of an anisotropic random medium layer

    NASA Technical Reports Server (NTRS)

    Lee, J. K.; Kong, J. A.

    1985-01-01

    A two-layer anisotropic random medium model has been developed to study the active remote sensing of the earth. The dyadic Green's function for a two-layer anisotropic medium is developed and used in conjunction with the first-order Born approximation to calculate the backscattering coefficients. It is shown that strong cross-polarization occurs in the single scattering process and is indispensable in the interpretation of radar measurements of sea ice at different frequencies, polarizations, and viewing angles. The effects of anisotropy on the angular responses of backscattering coefficients are also illustrated.

  3. Anisotropic magnetoresistance dominant in a three terminal Hanle measurement

    NASA Astrophysics Data System (ADS)

    Malec, Christopher; Miller, Michael M.; Johnson, Mark

    2016-02-01

    Experiments are performed on mesoscopic nonlocal lateral spin valves with aluminum channels and Permalloy electrodes. Four-terminal magnetoresistance and Hanle measurements characterize the spin accumulation with results that compare well with published work. Three-terminal Hanle measurements of the Permalloy/aluminum (Py/Al) interfaces show bell-shaped curves that can be fit to Lorentzians. These curves are three orders of magnitude larger than the spin accumulation. Using anisotropic magnetoresistance measurements of individual Permalloy electrodes, we demonstrate that the three-terminal measurements are dominated by anisotropic magnetoresistance effects unrelated to spin accumulation.

  4. Field induced anisotropic cooperativity in a magnetic colloidal glass

    NASA Astrophysics Data System (ADS)

    Wandersman, E.; Chushkin, Y.; Dubois, E.; Dupuis, V.; Robert, A.; Perzynski, R.

    The translational dynamics in a repulsive colloidal glass-former is probed by time-resolved X-ray Photon Correlation Spectroscopy. In this dense dispersion of charge-stabilized and magnetic nanoparticles, the interaction potential can be tuned, from quasi-isotropic to anisotropic by applying an external magnetic field. Structural and dynamical anisotropies are reported on interparticle lengthscales associated with highly anisotropic cooperativity, almost two orders of magnitude larger in the field direction than in the perpendicular direction and in zero field.

  5. Anisotropic mesh adaptation on Lagrangian Coherent Structures

    NASA Astrophysics Data System (ADS)

    Miron, Philippe; Vétel, Jérôme; Garon, André; Delfour, Michel; Hassan, Mouhammad El

    2012-08-01

    The finite-time Lyapunov exponent (FTLE) is extensively used as a criterion to reveal fluid flow structures, including unsteady separation/attachment surfaces and vortices, in laminar and turbulent flows. However, for large and complex problems, flow structure identification demands computational methodologies that are more accurate and effective. With this objective in mind, we propose a new set of ordinary differential equations to compute the flow map, along with its first (gradient) and second order (Hessian) spatial derivatives. We show empirically that the gradient of the flow map computed in this way improves the pointwise accuracy of the FTLE field. Furthermore, the Hessian allows for simple interpolation error estimation of the flow map, and the construction of a continuous optimal and multiscale Lp metric. The Lagrangian particles, or nodes, are then iteratively adapted on the flow structures revealed by this metric. Typically, the L1 norm provides meshes best suited to capturing small scale structures, while the L∞ norm provides meshes optimized to capture large scale structures. This means that the mesh density near large scale structures will be greater with the L∞ norm than with the L1 norm for the same mesh complexity, which is why we chose this technique for this paper. We use it to optimize the mesh in the vicinity of LCS. It is found that Lagrangian Coherent Structures are best revealed with the minimum number of vertices with the L∞ metric.

  6. Finite element computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  7. Features of the electric-field distribution in anisotropic semiconductor wafers in a transverse magnetic field

    SciTech Connect

    Filippov, V. V.; Bormontov, E. N.

    2013-07-15

    A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material's anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors.

  8. Scale disparity and spectral transfer in anisotropic numerical turbulence

    NASA Astrophysics Data System (ADS)

    Zhou, Ye; Yeung, P. K.; Brasseur, James G.

    1994-08-01

    To study the effect of cancellations within long-range interactions on local isotropy at the small scales, we calculate explicitly the degree of cancellation in distant interactions in the simulations of Yeung & Brasseur and Yeung, Brasseur & Wang using the single scale disparity parameter 's' developed by Zhou. In the simulations, initially isotropic simulated turbulence was subjected to coherent anisotropic forcing at the large scales and the smallest scales were found to become anisotropic as a consequence of direct large-small scale couplings. We find that the marginally distant interactions in the simulation do not cancel out under summation and that the development of small-scale anisotropy is indeed a direct consequence of the distant triadic group, as argued by Yeung, et. al. A reduction of anisotropy at later times occurs as a result of the isotropizing influences of more local energy-cascading triadic interactions. Nevertheless, the local-to-nonlocal triadic group persists as an isotropizing influence at later times. We find that, whereas long-range interactions, in general, contribute little to net energy transfer into or out of a high wavenumber shell k, the anisotropic transfer of component energy within the shell increases with increasing scale separations. These results are consistent with results by Zhou, and Brasseur & Wei, and suggest that the anisotropizing influences of long range interactions should persist to higher Reynolds numbers. The residual effect of the forced distant group in this low-Reynolds number simulation is found to be forward cascading, on average.

  9. Symmetry algebra of a generalized anisotropic harmonic oscillator

    NASA Technical Reports Server (NTRS)

    Castanos, O.; Lopez-Pena, R.

    1993-01-01

    It is shown that the symmetry Lie algebra of a quantum system with accidental degeneracy can be obtained by means of the Noether's theorem. The procedure is illustrated by considering a generalized anisotropic two dimensional harmonic oscillator, which can have an infinite set of states with the same energy characterized by an u(1,1) Lie algebra.

  10. Anisotropic uniqueness classes for a degenerate parabolic equation

    SciTech Connect

    Vil'danova, V F; Mukminov, F Kh

    2013-11-30

    Anisotropic uniqueness classes of Tacklind type are identified for a degenerate linear parabolic equation of the second order in an unbounded domain. The Cauchy problem and mixed problems with boundary conditions of the first and third type are considered. Bibliography: 18 titles.

  11. A new model for spherically symmetric anisotropic compact star

    NASA Astrophysics Data System (ADS)

    Maurya, S. K.; Gupta, Y. K.; Dayanandan, Baiju; Ray, Saibal

    2016-05-01

    In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star.

  12. Boundary conditions for gas flow problems from anisotropic scattering kernels

    NASA Astrophysics Data System (ADS)

    To, Quy-Dong; Vu, Van-Huyen; Lauriat, Guy; Léonard, Céline

    2015-10-01

    The paper presents an interface model for gas flowing through a channel constituted of anisotropic wall surfaces. Using anisotropic scattering kernels and Chapman Enskog phase density, the boundary conditions (BCs) for velocity, temperature, and discontinuities including velocity slip and temperature jump at the wall are obtained. Two scattering kernels, Dadzie and Méolans (DM) kernel, and generalized anisotropic Cercignani-Lampis (ACL) are examined in the present paper, yielding simple BCs at the wall fluid interface. With these two kernels, we rigorously recover the analytical expression for orientation dependent slip shown in our previous works [Pham et al., Phys. Rev. E 86, 051201 (2012) and To et al., J. Heat Transfer 137, 091002 (2015)] which is in good agreement with molecular dynamics simulation results. More important, our models include both thermal transpiration effect and new equations for the temperature jump. While the same expression depending on the two tangential accommodation coefficients is obtained for slip velocity, the DM and ACL temperature equations are significantly different. The derived BC equations associated with these two kernels are of interest for the gas simulations since they are able to capture the direction dependent slip behavior of anisotropic interfaces.

  13. Optical Properties of Anisotropic Core-Shell Pyramidal Particles

    PubMed Central

    Sweeney, Christina M.; Hasan, Warefta; Nehl, Colleen L.; Odom, Teri W.

    2009-01-01

    This paper describes an approach to fabricate anisotropic core-shell particles by assembling dielectric beads within fabricated noble metal pyramidal structures. Particles with gold (Au) shells and different dielectric cores were generated, and their optical properties were characterized by single particle spectroscopy. Because of their unique geometry, these particles exhibit multiple plasmon resonances from visible to near-IR wavelengths. PMID:19290590

  14. Gauge-Invariant Perturbations in Anisotropic Homogeneous Cosmological Models

    NASA Astrophysics Data System (ADS)

    Patra, Amar Chandra; Ray, Dipankar

    1988-05-01

    In a recent paper K. Tomita and M. Den found a set of coupled differential equations for spatially flat, anisotropic homogeneous, N- dimensional cosmological models. Some particular exact solutions of those differential equations for a few specific equations of state were obtained by D. Lorentz-Petzold. In the present work we solve those differential equations completely.

  15. Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces

    NASA Astrophysics Data System (ADS)

    Verre, R.; Maccaferri, N.; Fleischer, K.; Svedendahl, M.; Odebo Länk, N.; Dmitriev, A.; Vavassori, P.; Shvets, I. V.; Käll, M.

    2016-05-01

    Anisotropic media induce changes in the polarization state of transmitted and reflected light. Here we combine this effect with the refractive index sensitivity typical of plasmonic nanoparticles to experimentally demonstrate self-referenced single wavelength refractometric sensing based on polarization conversion. We fabricated anisotropic plasmonic metasurfaces composed of gold dimers and, as a proof of principle, measured the changes in the rotation of light polarization induced by biomolecular adsorption with a surface sensitivity of 0.2 ng cm-2. We demonstrate the possibility of miniaturized sensing and we show that experimental results can be reproduced by analytical theory. Various ways to increase the sensitivity and applicability of the sensing scheme are discussed.Anisotropic media induce changes in the polarization state of transmitted and reflected light. Here we combine this effect with the refractive index sensitivity typical of plasmonic nanoparticles to experimentally demonstrate self-referenced single wavelength refractometric sensing based on polarization conversion. We fabricated anisotropic plasmonic metasurfaces composed of gold dimers and, as a proof of principle, measured the changes in the rotation of light polarization induced by biomolecular adsorption with a surface sensitivity of 0.2 ng cm-2. We demonstrate the possibility of miniaturized sensing and we show that experimental results can be reproduced by analytical theory. Various ways to increase the sensitivity and applicability of the sensing scheme are discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01336h

  16. Scale disparity and spectral transfer in anisotropic numerical turbulence

    NASA Technical Reports Server (NTRS)

    Zhou, YE; Yeung, P. K.; Brasseur, James G.

    1994-01-01

    To study the effect of cancellations within long-range interactions on local isotropy at the small scales, we calculate explicitly the degree of cancellation in distant interactions in the simulations of Yeung & Brasseur and Yeung, Brasseur & Wang using the single scale disparity parameter 's' developed by Zhou. In the simulations, initially isotropic simulated turbulence was subjected to coherent anisotropic forcing at the large scales and the smallest scales were found to become anisotropic as a consequence of direct large-small scale couplings. We find that the marginally distant interactions in the simulation do not cancel out under summation and that the development of small-scale anisotropy is indeed a direct consequence of the distant triadic group, as argued by Yeung, et. al. A reduction of anisotropy at later times occurs as a result of the isotropizing influences of more local energy-cascading triadic interactions. Nevertheless, the local-to-nonlocal triadic group persists as an isotropizing influence at later times. We find that, whereas long-range interactions, in general, contribute little to net energy transfer into or out of a high wavenumber shell k, the anisotropic transfer of component energy within the shell increases with increasing scale separations. These results are consistent with results by Zhou, and Brasseur & Wei, and suggest that the anisotropizing influences of long range interactions should persist to higher Reynolds numbers. The residual effect of the forced distant group in this low-Reynolds number simulation is found to be forward cascading, on average.

  17. Anisotropic negative-ion emission from cluster nanoplasmas

    NASA Astrophysics Data System (ADS)

    Rajeev, R.; Dalui, Malay; Trivikram, T. Madhu; Rishad, K. P. M.; Krishnamurthy, M.

    2015-06-01

    Recent experiments have shown that the enhanced charge transfer by Rydberg excited clusters (ECTREC) reduces the highly charged ions very efficiently to neutral atoms and negative ions with little loss of momentum. Neutral-atom emission is anisotropic with respect to the laser polarization and the anisotropy is larger than that of the ion emission from Coulomb explosion of isolated single clusters. In such a scenario, it is expected that the negative-ion emission (like neutrals) should be anisotropic and have larger propensity along the laser polarization than in the perpendicular direction. Further, it may be anticipated that negative-ion emission is more anisotropic than neutral-atom emission if ECTREC is taken in to account. We demonstrate that the negative-ion emission is anisotropic. Contrary to expectations, the negative-ion emission anisotropy is not more than that of the neutral-atom emission. We show that this can be rationalized if low-energy (about 10 eV) electron collisional detachment of the negative ions is taken into account. Electron collisional detachment depletes the negative-ion yield preferentially along the laser polarization direction and reduces the negative-ion emission anisotropy.

  18. Nonlinear theory of slow dissipative layers in anisotropic plasmas

    SciTech Connect

    Ballai, I.; Ruderman, M.S.; Erdelyi, R.

    1998-01-01

    The solar coronal plasma is a well-known example of a plasma with strongly anisotropic dissipative coefficients. The main dissipative processes in the solar corona are strongly anisotropic thermal conductivity and viscosity. Ruderman and Goossens [Astrophys. J. {bold 471}, 1015 (1996)] developed a linear theory of driven slow resonant waves in plasmas with strongly anisotropic viscosity and thermal conductivity. Linear theory shows that in the slow dissipative layer the amplitudes of oscillations become very large for high Reynolds and Pecklet numbers, so that nonlinearity may be important. In the present paper the nonlinear behavior of driven magnetohydrodynamic waves in the slow dissipative layer in plasmas with strongly anisotropic viscosity and thermal conductivity is studied. The nonlinear governing equation for wave variables in the dissipative layer is derived. The nonlinear connection formulae, which are extensions of the linear connection formulae first introduced in the theory of resonant magnetohydrodynamic waves by Sakurai, Goossens, and Hollweg [Solar Phys. {bold 133}, 127 (1991)], are derived. {copyright} {ital 1998 American Institute of Physics.}

  19. Leading-order anisotropic hydrodynamics for central collisions

    NASA Astrophysics Data System (ADS)

    Nopoush, Mohammad; Strickland, Michael; Ryblewski, Radoslaw; Bazow, Dennis; Heinz, Ulrich; Martinez, Mauricio

    2015-10-01

    We use leading-order anisotropic hydrodynamics to study an azimuthally symmetric boost-invariant quark-gluon plasma. We impose a realistic lattice-based equation of state and perform self-consistent anisotropic freeze-out to hadronic degrees of freedom. We then compare our results for the full spatiotemporal evolution of the quark-gluon plasma and its subsequent freeze-out to results obtained using 1+1D Israel-Stewart second-order viscous hydrodynamics. We find that for small shear viscosities, 4 π η /s ˜1 , the two methods agree well for nucleus-nucleus collisions; however, for large-shear-viscosity-to-entropy-density ratios or proton-nucleus collisions we find important corrections to the Israel-Stewart results for the final particle spectra and the total number of charged particles. Finally, we demonstrate that the total number of charged particles produced is a monotonically increasing function of 4 π η /s in Israel-Stewart viscous hydrodynamics, whereas in anisotropic hydrodynamics it has a maximum at 4 π η /s ˜10 . For all 4 π η /s >0 , we find that for Pb-Pb collisions Israel-Stewart viscous hydrodynamics predicts more dissipative particle production than anisotropic hydrodynamics.

  20. All static spherically symmetric anisotropic solutions of Einstein's equations

    SciTech Connect

    Herrera, L.; Di Prisco, A.; Ospino, J.

    2008-01-15

    An algorithm recently presented by Lake to obtain all static spherically symmetric perfect fluid solutions is extended to the case of locally anisotropic fluids (principal stresses unequal). As expected, the new formalism requires the knowledge of two functions (instead of one) to generate all possible solutions. To illustrate the method some known cases are recovered.