Science.gov

Sample records for anisotropic transport properties

  1. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    NASA Astrophysics Data System (ADS)

    Umeda, Minoru; Katagiri, Mitsuhiko; Shironita, Sayoko; Nagayama, Norio

    2016-12-01

    This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor's technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  2. Highly Anisotropic intrinsic electronic transport properties of monolayer and bilayer phosphorene from first principles1

    NASA Astrophysics Data System (ADS)

    Jin, Zhenghe; Mullen, Jeffrey; Kim, Ki Wook

    We present an analysis of the electron(hole)-phonon scattering in monolayer and bilayer phosphorene using first principles. Density Functional Theory (DFT) and Density Functional Perturbation Theory (DFPT) are used to calculate the scattering matrix elements and full band Monte Carlo carrier transport simulation is employed to obtain the intrinsic electron/hole mobility. Room temperature mobility and saturation velocity in monolayer and bilayer phosphorene are extracted and significant layer number dependence in the mobility is revealed which results from the carrier-phonon interaction matrix elements. The transport properties are also varied with the crystal orientation with anisotropy mobility mostly attributed to the anisotropic band structure and effective masses. Our calculation reveals monolayer phosphorene has anisotropic hole transport property with the room temperature mobility in the armchair direction (458 cm2/Vs) about five times larger than in the zigzag direction (90 cm2/Vs). For bilayer phosphorene, the mobility on both directions increases to 1610 cm2/Vs and 760 cm2/Vs along armchair and zigzag direction respectively. The increased mobility in bilayer is consistent with the experiments which revealed low field mobility of over one thousand in multiple layer phosphorene structure, which provides optimal material for channel in field-effect transistor and a good opportunity for high-performance p-type device. 1This work was supported, in part, by SRC/NRI SWAN.

  3. Synthesis and anisotropic magnetic and transport properties of cubic SrCoO3 single crystal

    NASA Astrophysics Data System (ADS)

    Long, Youwen; Kaneko, Yoshio; Ishiwata, Shintaro; Taguchi, Yasujiro; Tokura, Yoshinori

    2011-03-01

    Solid state oxides containing transition metals with unusually high valence states exhibit interesting physical properties. However, due to the unstableness of these high valence states, high pressure is often needed to stabilize such high valence states. We were successful in growing a large-size SrCo O3 single crystal by using high-pressure technique. This material shows good metallic behavior with high ferromagnetic Curie temperature about 305 K, and the easy magnetization axis is 111 > direction . ThespinmomentofCo 4+ ionmeasuredat 2 Kand 7 Tisabout 2.50 μB , suggesting an spin configuration as predicted by theoretical calculations. Although SrCoO3 has a highly symmetric cubic crystal structure (Pm-3m), it exhibits significant anisotropic magnetoresistance at low temperatures.

  4. Anisotropic thermodynamic and transport properties of single-crystalline CaKFe4As4

    DOE PAGES

    Meier, W. R.; Kong, T.; Kaluarachchi, U. S.; ...

    2016-08-01

    We grew single-crystalline, single-phase CaKFe4As4 out of a high-temperature, quaternary melt. Temperature-dependent measurements of x-ray diffraction, anisotropic electrical resistivity, elastoresistivity, thermoelectric power, Hall effect, magnetization, and specific heat, combined with field-dependent measurements of electrical resistivity and field and pressure-dependent measurements of magnetization indicate that CaKFe4As4 is an ordered, stoichiometric, Fe-based superconductor with a superconducting critical temperature, Tc=35.0±0.2 K. Other than superconductivity, there is no indication of any other phase transition for 1.8K≤T≤300 K. All of these thermodynamic and transport data reveal striking similarities to those found for optimally or slightly overdoped (Ba1-xKx)Fe2As2, suggesting that stoichiometric CaKFe4As4 is intrinsically close to what is referred to as “optimal-doped” on a generalized, Fe-based superconductor, phase diagram. Furthermore, the anisotropic superconducting upper critical field, Hc2(T), of CaKFe4As4 was determined up to 630 kOe. The anisotropy parameter γ(T)=Hmore » $$⊥\\atop{c2}$$/H$$∥\\atop{c2}$$, for H applied perpendicular and parallel to the c axis, decreases from ≃2.5 at Tc to ≃1.5 at 25 K, which can be explained by interplay of paramagnetic pair breaking and orbital effects. The slopes of dH$$∥\\atop{c2}$$/dT≃-44 kOe/K and dH$$⊥\\atop{c2}$$/dT≃-109 kOe/K at Tc yield an electron mass anisotropy of m⊥/m∥≃1/6 and short Ginzburg-Landau coherence lengths ξ∥(0)≃5.8Å and ξ⊥(0)≃14.3Å. Finally, the value of H$$⊥\\atop{c2}$$(0) can be extrapolated to ≃920 kOe, well above the BCS paramagnetic limit.« less

  5. Anisotropic transport properties in the phase-separated La0.67Ca0.33MnO3/NdGaO3 (001) films

    NASA Astrophysics Data System (ADS)

    Hong-Rui, Zhang; Yuan-Bo, Liu; Shuan-Hu, Wang; De-Shun, Hong; Wen-Bin, Wu; Ji-Rong, Sun

    2016-07-01

    The anisotropic transport property was investigated in a phase separation La0.67Ca0.33MnO3 (LCMO) film grown on (001)-oriented NdGaO3 (NGO) substrate. It was found that the resistivity along the b-axis is much higher than that along the a-axis. Two resistivity peaks were observed in the temperature dependent measurement along the b-axis, one located at 91 K and the other centered at 165 K. Moreover, we also studied the response of the resistivities along the two axes to various electric currents, magnetic fields, and light illuminations. The resistivities along the two axes are sensitive to the magnetic field. However, the electric current and light illumination can influence the resistivity along the b-axis obviously, but have little effect on the resistivity along the a-axis. Based on these results, we believe that an anisotropic-strain-controlled MnO6 octahedra shear-mode deformation may provide a mechanism of conduction filaments paths along the a-axis, which leads to the anisotropic transport property. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921801, 2012CB921403, and 2013CB921701) and the National Natural Science Foundation of China (Grant Nos. 11074285, 51372064, and 11134007).

  6. Drastic changes in electronic properties of Kondo semiconductor CeRu2Al10 induced by Rh doping: Anisotropic transport properties in the antiferromagnetic ordered state

    NASA Astrophysics Data System (ADS)

    Tanida, H.; Nohara, H.; Nakagawa, F.; Yoshida, K.; Sera, M.; Nishioka, T.

    2016-10-01

    Electrical resistivity (ρ ), thermopower, and specific heat measurements have been performed on the novel Kondo semiconductor Ce (Ru1-xRhx) 2Al10 (x =0 , 0.02, 0.03, and 0.05), which has been attracting a great deal of interest due to an unusual antiferromagnetic (AFM) order below T0, in order to clarify the Rh doping effect on the anisotropy of the electronic properties in the ordered state. In CeRu2Al10 , ρ shows an anisotropic increase below T0 independently of the electric current direction. We propose the existence of two different mechanisms to explain the anisotropic increase of ρ . One is an isotropic charge gap which enhances ρ below T0 isotropically, although its origin is not known at present. The other is an anisotropic suppression of ρ which originates from the anisotropic c-f hybridization and is largest along the orthorhombic a axis. By the Rh doping, the anisotropic temperature dependence of ρ below T0 is drastically changed. For I ∥b , the increase is almost completely suppressed and a metallic-like behavior is observed, whereas it is small and isotropic for I ∥a and c . From these results, we propose that as a result of the destruction of the spin-gap excitation by the Rh doping, a metallic-like electronic state is formed along the b axis and the small isotropic charge gap is opened in the a c plane. By taking into account the present results and the still high T0 even in x =0.05 , we conclude that the AFM order in the Rh-doped CeRu2Al10 should be viewed as unusual as the AFM order in CeRu2Al10 although the localized character of the Ce-4 f electron is apparently enhanced by the Rh doping. We have also examined the evolution of the AFM ordered state from x =0 to x =0.05 , where the AFM ordered moment (mAF) is aligned along the c axis in x =0 and a axis in x =0.05 . From the results of those experiments in magnetic field, we have revealed that the spin reorientation from mAF∥c to mAF∥a takes place quite abruptly just at xc˜0

  7. On the anisotropic elastic properties of hydroxyapatite.

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  8. Synthesis of cubic SrCoO3 single crystal and its anisotropic magnetic and transport properties

    NASA Astrophysics Data System (ADS)

    Long, Youwen; Kaneko, Yoshio; Ishiwata, Shintaro; Taguchi, Yasujiro; Tokura, Yoshinori

    2011-06-01

    A large-size single crystal of nearly stoichiometric SrCoO3 was prepared with a two-step method combining the floating-zone technique and subsequent high oxygen pressure treatment. SrCoO3 crystallizes in a cubic perovskite structure with space group Pm\\bar {3}m , and displays an itinerant ferromagnetic behavior with the Curie temperature of 305 K. The easy magnetization axis is found to be along the [111] direction, and the saturation moment is 2.5 µB/f.u., in accord with the picture of the intermediate spin state. The resistivity at low temperatures (T) is proportional to T2, indicative of the possible effect of orbital fluctuation in the intermediate spin ferromagnetic metallic state. Unusual anisotropic magnetoresistance is also observed and its possible origin is discussed.

  9. An Engineered Anisotropic Nanofilm with Unidirectional Wetting Properties

    DTIC Science & Technology

    2010-01-01

    ARTICLES PUBLISHED ONLINE: 10 OCTOBER 2010 | DOI: 10.1038/NMAT2864 An engineered anisotropic nanofilm with unidirectional wetting properties Niranjan...body3. Engineering synthetic materials with such anisotropic adhesive properties has led to advances in digitalmicrofluidic devices5,6 andmedicine7,8...The anisotropic wetting properties of existing engineered surfaces are derived either from spatial gradients (for example, temperature, surface

  10. Anisotropic transport in modulation doped quantum well structures

    NASA Technical Reports Server (NTRS)

    Radulescu, D. C.; Wicks, G. W.; Schaff, W. J.; Calawa, A. R.; Eastman, L. F.

    1987-01-01

    The degree of anisotropy in the anisotropic electron transport that has been observed in GaAs modulation-doped quantum wells grown by MBE on Al(0.3)Ga(0.7)As is related to the thickness and growth parameters of this substrate, which is grown just prior to the inverted interface. It is presently observed that the inverted interface has an anisotropic roughness which affects the 77 K low field electron transport parallel to the interface, and gives rise to anisotropic electron scattering in the GaAs modulation-doped quantum well.

  11. Textured silicon nitride: processing and anisotropic properties

    PubMed Central

    Zhu, Xinwen; Sakka, Yoshio

    2008-01-01

    Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the

  12. Textured silicon nitride: processing and anisotropic properties.

    PubMed

    Zhu, Xinwen; Sakka, Yoshio

    2008-07-01

    Textured silicon nitride (Si3N4) has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW) and templated grain growth (TGG). The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured α-Sialon using the

  13. Field dependent spin transport of anisotropic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Rezania, H.

    2016-04-01

    We have addressed the static spin conductivity and spin Drude weight of one-dimensional spin-1/2 anisotropic antiferromagnetic Heisenberg chain in the finite magnetic field. We have investigated the behavior of transport properties by means of excitation spectrum in terms of a hard core bosonic representation. The effect of in-plane anisotropy on the spin transport properties has also been studied via the bosonic model by Green's function approach. This anisotropy is considered for exchange constants that couple spin components perpendicular to magnetic field direction. We have found the temperature dependence of the spin conductivity and spin Drude weight in the gapped field induced spin-polarized phase for various magnetic field and anisotropy parameters. Furthermore we have studied the magnetic field dependence of static spin conductivity and Drude weight for various anisotropy parameters. Our results show the regular part of spin conductivity vanishes in isotropic case however Drude weight has a finite non-zero value and the system exhibits ballistic transport properties. We also find the peak in the static spin conductivity factor moves to higher temperature upon increasing the magnetic field at fixed anisotropy. The static spin conductivity is found to be monotonically decreasing with magnetic field due to increase of energy gap in the excitation spectrum. Furthermore we have studied the temperature dependence of spin Drude weight for different magnetic field and various anisotropy parameters.

  14. Transport equations for multicomponent anisotropic space plasmas - A review

    NASA Technical Reports Server (NTRS)

    Barakat, A. R.; Schunk, R. W.

    1982-01-01

    An attempt is made to present a unified approach to the study of transport phenomena in multicomponent anisotropic space plasmas. In particular, a system of generalized transport equations is presented that can be applied to widely different plasma flow conditions. The generalized transport equations can describe subsonic and supersonic flows, collision-dominated and collisionless flows, plasma flows in rapidly changing magnetic field configurations, multicomponent plasma flows with large temperature differences between the interacting species, and plasma flows that contain anisotropic temperature distributions. In addition, if Maxwell's equations of electricity and magnetism are added to the system of transport equations, they can be used to model electrostatic shocks, double layers, and magnetic merging processes. These transport equations also contain terms which act to regulate both the heat flow and temperature anisotropy, processes which appear to be operating in the solar wind.

  15. Anisotropic thermal transport in phosphorene: effects of crystal orientation

    NASA Astrophysics Data System (ADS)

    Liu, Te-Huan; Chang, Chien-Cheng

    2015-06-01

    As an intrinsic thermally anisotropic material, the thermal properties of phosphorene must vary with respect to the crystal chirality. Nevertheless, previous studies of heat transfer in phosphorene have been limited to the 0.0° (zigzag, ZZ) and 90.0° (armchair, AC) chiralities. In this study, we investigate the orientation-dependent thermal transport in phosphorene sheets with a complete set of crystal chirality ranging from 0.0° to 90.0° using the Boltzmann transport equation (BTE) associated with the first-principles calculations. It was found that in the phosphorene sheets, the intrinsic thermal conductivity is a smooth monotonic decreasing function of the crystal chirality, which exhibits sinusoidal behavior bounded by the two terminated values 48.9 (0.0°) and 27.8 (90.0°) W m-1 K-1. The optical modes have unusually large contributions to heat transfer, which account for almost 30% of the total thermal conductivity of phosphorene sheets. This is because the optical phonons have comparable group velocities and relaxation times to the acoustic phonons.

  16. Anisotropic thermal transport in phosphorene: effects of crystal orientation.

    PubMed

    Liu, Te-Huan; Chang, Chien-Cheng

    2015-06-28

    As an intrinsic thermally anisotropic material, the thermal properties of phosphorene must vary with respect to the crystal chirality. Nevertheless, previous studies of heat transfer in phosphorene have been limited to the 0.0° (zigzag, ZZ) and 90.0° (armchair, AC) chiralities. In this study, we investigate the orientation-dependent thermal transport in phosphorene sheets with a complete set of crystal chirality ranging from 0.0° to 90.0° using the Boltzmann transport equation (BTE) associated with the first-principles calculations. It was found that in the phosphorene sheets, the intrinsic thermal conductivity is a smooth monotonic decreasing function of the crystal chirality, which exhibits sinusoidal behavior bounded by the two terminated values 48.9 (0.0°) and 27.8 (90.0°) W m(-1) K(-1). The optical modes have unusually large contributions to heat transfer, which account for almost 30% of the total thermal conductivity of phosphorene sheets. This is because the optical phonons have comparable group velocities and relaxation times to the acoustic phonons.

  17. Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li1–x Sn 2+x As2

    DOE PAGES

    Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; ...

    2015-02-22

    A new ternary compound, Li1-xSn2+xAs2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the Rmore » $$\\overline{3}m$$ space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn. The Sn-As layers are comprised of Sn3As3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As6 octahedron. Thorough investigations by synchrotron x-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, local Sn/Li ordering was revealed by synergistic investigations via solid-state 6,7Li NMR spectroscopy, HR-TEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions creating substantial inhomogeneity on the nanoscale. Inhomogeneous local structure has high impact on the physical properties of the synthesized compounds: local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li1-xSn2+xAs2.« less

  18. Investigation of anisotropic thermal transport in cross-linked polymers

    NASA Astrophysics Data System (ADS)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  19. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  20. Anisotropic mesoscale eddy transport in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan

    2014-11-01

    In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.

  1. Anisotropic magnetization and transport properties of RAgSb2 (R=Y, La-Nd, Sm, Gd-Tm)

    SciTech Connect

    Myers, Kenneth D.

    1999-11-08

    This study of the RAgSb2 series of compounds arose as part of an investigation of rare earth intermetallic compounds containing antimony with the rare earth in a position with tetragonal point symmetry. Materials with the rare earth in a position with tetragonal point symmetry frequently manifest strong anisotropies and rich complexity in the magnetic properties, and yet are simple enough to analyze. Antimony containing intermetallic compounds commonly possess low carrier densities and have only recently been the subject of study. Large single grain crystals were grown of the RAgSb2 (R=Y, La-Nd, Sm, Gd-Tm) series of compounds out of a high temperature solution. This method of crystal growth, commonly known as flux growth is a versatile method which takes advantage of the decreasing solubility of the target compound with decreasing temperature. Overall, the results of the crystal growth were impressive with the synthesis of single crystals of LaAgSb2 approaching one gram. However, the sample yield diminishes as the rare earth elements become smaller and heavier. Consequently, no crystals could be grown with R=Yb or Lu. Furthermore, EuAgSb2 could not be synthesized, likely due to the divalency of the Eu ion. For most of the RAgSb2 compounds, strong magnetic anisotropies are created by the crystal electric field splitting of the Hund's rule ground state. This splitting confines the local moments to lie in the basal plane (easy plane) for the majority of the members of the series. Exceptions to this include ErAgSb2 and TmAgSb2, which have moments along the c-axis (easy axis) and CeAgSb2, which at intermediate temperatures has an easy plane, but exchange coupling at low temperatures is anisotropic with an easy axis. Additional anisotropy is also observed within the basal plane of DyAgSb2, where the moments are restricted to align along one of the <110> axes. Most of the

  2. An engineered anisotropic nanofilm with unidirectional wetting properties

    NASA Astrophysics Data System (ADS)

    Malvadkar, Niranjan A.; Hancock, Matthew J.; Sekeroglu, Koray; Dressick, Walter J.; Demirel, Melik C.

    2010-12-01

    Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80μN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the film's anisotropic wetting behaviour as a function of measurable film morphology parameters.

  3. Transport of inertial anisotropic particles under surface gravity waves

    NASA Astrophysics Data System (ADS)

    Dibenedetto, Michelle; Koseff, Jeffrey; Ouellette, Nicholas

    2016-11-01

    The motion of neutrally and almost-neutrally buoyant particles under surface gravity waves is relevant to the transport of microplastic debris and other small particulates in the ocean. Consequently, a number of studies have looked at the transport of spherical particles or mobile plankton in these conditions. However, the effects of particle-shape anisotropy on the trajectories and behavior of irregularly shaped particles in this type of oscillatory flow are still relatively unknown. To better understand these issues, we created an idealized numerical model which simulates the three-dimensional behavior of anisotropic spheroids in flow described by Airy wave theory. The particle's response is calculated using a simplified Maxey-Riley equation coupled with Jeffery's equation for particle rotation. We show that the particle dynamics are strongly dependent on their initial conditions and shape, with some some additional dependence on Stokes number.

  4. Anisotropic Tribological Properties of Silicon Carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    The anisotropic friction, deformation and fracture behavior of single crystal silicon carbide surfaces were investigated in two categories. The categories were called adhesive and abrasive wear processes, respectively. In the adhesive wear process, the adhesion, friction and wear of silicon carbide were markedly dependent on crystallographic orientation. The force to reestablish the shearing fracture of adhesive bond at the interface between silicon carbide and metal was the lowest in the preferred orientation of silicon carbide slip system. The fracturing of silicon carbide occurred near the adhesive bond to metal and it was due to primary cleavages of both prismatic (10(-1)0) and basal (0001) planes.

  5. Modeling anisotropic Maxwell-Jüttner distributions: derivation and properties

    NASA Astrophysics Data System (ADS)

    Livadiotis, George

    2016-12-01

    In this paper we develop a model for the anisotropic Maxwell-Jüttner distribution and examine its properties. First, we provide the characteristic conditions that the modeling of consistent and well-defined anisotropic Maxwell-Jüttner distributions needs to fulfill. Then, we examine several models, showing their possible advantages and/or failures in accordance to these conditions. We derive a consistent model, and examine its properties and its connection with thermodynamics. We show that the temperature equals the average of the directional temperature-like components, as it holds for the classical, anisotropic Maxwell distribution. We also derive the internal energy and Boltzmann-Gibbs entropy, where we show that both are maximized for zero anisotropy, that is, the isotropic Maxwell-Jüttner distribution.

  6. Laser Generated Anisotropic Drives for Radiation Transport Validation

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Kline, J. K.; Hager, J. D.

    2013-10-01

    Many astrophysical phenomena are studied in the laboratory by developing a scaled platform whose energy drive is produced via a laser or pulsed power facility. The push to reach more energetic regimes often results in radiation drives that diverge from well-behaved Lambertian Planckian sources. In these cases, typical diffusive radiation flow models can break down. A new platform, that deliberately generates a well-characterized non-Planckian, anisotropic source, has been developed for the OMEGA laser. The resulting data will help validate more complex computational transport schemes like Sn or implicit Monte-Carlo (IMC) models. The platform contains a SiO2 foam mounted on a half-hohlraum. Anisotropy is achieved by inserting an obstruction of either a singular round aperture or annular ring between the foam and hohlraum. In addition, a thin beryllium layer delays the thermal component of the drive while the higher energy M-shell radiation propagates unhindered. The result is a highly non-Planckian, anisotropic, supersonic drive that eventually transitions to sub-sonic. Spectroscopic measurements constrain the source anisotropy, magnitude, and spectral content. Moreover, the Marshak position coupled with spectroscopic absorption measurements quantify the foam's internal energy.

  7. Measurement of Anisotropic Mechanical Properties of the Tectorial Membrane

    NASA Astrophysics Data System (ADS)

    Gavara, N.; Chadwick, R. S.

    2009-02-01

    The tectorial membrane (TM) in the cochlea is an anisotropic tissue with a key role in hearing. The TM's structural andmechanical anisotropy is provided by oriented collagen bundles about 1 micron thick. Here we report the three elastic moduli that characterize the TM, as well as the novel technique used to measure the mechanical properties of an anisotropic material. We have measured mechanical anisotropy by combining Atomic Force Microscopy (AFM) and optical tracking of microspheres. The surface Green's tensor for an incompressible anisotropic material was then used to compute the elastic moduli from imposed forces and the resulting surface deformations. Our results suggest a critical role of TM's strong anisotropy by enhancing the cochlear amplifier.

  8. The FN method for anisotropic scattering in neutron transport theory: the critical slab problem.

    NASA Astrophysics Data System (ADS)

    Gülecyüz, M. C.; Tezcan, C.

    1996-08-01

    The FN method which has been applied to many physical problems for isotropic and anisotropic scattering in neutron transport theory is extended for problems for extremely anisotropic scattering. This method depends on the Placzek lemma and the use of the infinite medium Green's function. Here the Green's function for extremely anisotropic scattering which was expressed as a combination of the Green's functions for isotropic scattering is used to solve the critical slab problem. It is shown that the criticality condition is in agreement with the one obtained previously by reducing the transport equation for anisotropic scattering to isotropic scattering and solving using the FN method.

  9. Identifying heterogeneous anisotropic properties in cerebral aneurysms: a pointwise approach.

    PubMed

    Zhao, Xuefeng; Raghavan, Madhavan L; Lu, Jia

    2011-04-01

    The traditional approaches of estimating heterogeneous properties in a soft tissue structure using optimization-based inverse methods often face difficulties because of the large number of unknowns to be simultaneously determined. This article proposes a new method for identifying the heterogeneous anisotropic nonlinear elastic properties in cerebral aneurysms. In this method, the local properties are determined directly from the pointwise stress-strain data, thus avoiding the need for simultaneously optimizing for the property values at all points/regions in the aneurysm. The stress distributions needed for a pointwise identification are computed using an inverse elastostatic method without invoking the material properties in question. This paradigm is tested numerically through simulated inflation tests on an image-based cerebral aneurysm sac. The wall tissue is modeled as an eight-ply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain energy function containing four parameters. The parameters are assumed to vary continuously in the sac. Deformed configurations generated from forward finite element analysis are taken as input to inversely establish the parameter distributions. The delineated and the assigned distributions are in excellent agreement. A forward verification is conducted by comparing the displacement solutions obtained from the delineated and the assigned material parameters at a different pressure. The deviations in nodal displacements are found to be within 0.2% in most part of the sac. The study highlights some distinct features of the proposed method, and demonstrates the feasibility of organ level identification of the distributive anisotropic nonlinear properties in cerebral aneurysms.

  10. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue.

    PubMed

    Linninger, Andreas A; Somayaji, Mahadevabharath R; Erickson, Terrianne; Guo, Xiaodong; Penn, Richard D

    2008-07-19

    Effective drug delivery for many neurodegenerative diseases or tumors of the central nervous system is challenging. Targeted invasive delivery of large macromolecules such as trophic factors to desired locations inside the brain is difficult due to anisotropy and heterogeneity of the brain tissue. Despite much experimental research, prediction of bio-transport phenomena inside the brain remains unreliable. This article proposes a rigorous computational approach for accurately predicting the fate of infused therapeutic agents inside the brain. Geometric and physiological properties of anisotropic and heterogeneous brain tissue affecting drug transport are accounted for by in-vivo diffusion tensor magnetic resonance imaging data. The three-dimensional brain anatomy is reconstructed accurately from subject-specific medical images. Tissue anisotropy and heterogeneity are quantified with the help of diffusion tensor imaging (DTI). Rigorous first principles physical transport phenomena are applied to predict the fate of a high molecular weight trophic factor infused into the midbrain. Computer prediction of drug distribution in humans accounting for heterogeneous and anisotropic brain tissue properties have not been adequately researched in open literature before.

  11. Anisotropic transport in modulation-doped quantum-well structures

    NASA Technical Reports Server (NTRS)

    Radulescu, D. C.; Wicks, G. W.; Schaff, W. J.; Calawa, A.R.; Eastman, L. F.

    1987-01-01

    Anisotropic electron transport has been observed in GaAs modulation-doped quantum wells grown by molecular-beam epitaxy on a thick (001) Al(0.3)Ga(0.7)As buffer grown at 620 C. Thicker quantum wells (150, 200, and 300 A) show progressively less anisotropy, which vanishes for a 300-A quantum well. The degree of anisotropy is also reduced or eliminated by suspending growth of the Al(0.3)Ga(0.7)As for a period of 300 s prior to growing the GaAs quantum well. Growing the Al(0.3)Ga(0.7)As buffer at higher temperatures (680 C) also reduces the degree of anisotropy. Higher two-dimensional electron gas sheet densities result in less anisotropy.The anisotropy is eliminated by replacing the thick Al(0.3)Ga(0.7)As buffer with a periodic multilayer structure comprising 15 A of GaAs and 200 A of Al(0.3)Ga(0.7)As. The degree of anisotropy is related to the thickness and growth parameters of the Al(0.3)Ga(0.7)As layer grown just prior to the growth of the GaAs.

  12. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Effective Anisotropic Dielectric Properties of Crystal Composites

    NASA Astrophysics Data System (ADS)

    Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming; Franklin, G. Shin

    2010-02-01

    Transformation field method (TFM) is developed to estimate the anisotropic dielectric properties of crystal composites having arbitrary shapes and dielectric properties of crystal inclusions, whose principal dielectric axis are different from those of anisotropic crystal matrix. The complicated boundary-value problem caused by inclusion shapes is circumvented by introducing a transformation electric field into the crystal composites regions, and the effective anisotropic dielectric responses are formulated in terms of the transformation field. Furthermore, the numerical results show that the effective anisotropic dielectric responses of crystal composites periodically vary as a function of the rotating angle between the principal dielectric axes of inclusion and matrix crystal materials. It is found that at larger inclusion volume fraction the inclusion shapes induce profound effect on the effective anisotropic dielectric responses.

  13. Measurements of anisotropic thermoelectric properties in superlattices

    NASA Astrophysics Data System (ADS)

    Yang, B.; Liu, W. L.; Liu, J. L.; Wang, K. L.; Chen, G.

    2002-11-01

    Thermoelectric properties, i.e., thermal conductivity, electrical conductivity, and the Seebeck coefficient, have been measured in the directions parallel (in-plane) and perpendicular to the interface of an n-type Si(80 A)/Ge(20 A) superlattice. A two-wire 3omega method is employed to measure the in-plane and cross-plane thermal conductivities. The cross-plane Seebeck coefficient is deduced by using a differential measurement between the superlattice and reference samples and the cross-plane electrical conductivity is determined through a modified transmission-line method. The in-plane thermal conductivity of the Si/Ge superlattice is 5-6 times higher than the cross-plane one, and the electrical conductivity shows a similar anisotropy. The anisotropy of the Seebeck coefficients is smaller in comparison to electrical and thermal conductivities in the temperature range from 150 to 300 K. However, the cross-plane Seebeck coefficient rises faster with increasing temperature than that of the in-plane direction.

  14. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    NASA Astrophysics Data System (ADS)

    Crowgey, Benjamin Reid

    for characterization of a sample filling the cross-section of a waveguide. Due to the rectangular nature of the waveguide, typically three different samples are manufactured from the same material in order to characterize the six complex material parameters. The second technique for measuring the electromagnetic properties of a biaxially anisotropic material sample uses a reduced-aperture waveguide sample holder designed to accommodate a cubical sample. All the tensor material parameters can then be determined by measuring the reflection and transmission coefficients of a single sample placed into several orientations. The parameters are obtained using a root-searching algorithm by comparing theoretically computed and measured reflection and transmission coefficients. The theoretical coefficients are determined using a mode matching technique. The first technique for characterizing the electromagnetic properties of gyromagnetic materials considers requires filling the cross-section of a waveguide. The material parameters are extracted from the measured reflection and transmission coefficients. Since the cross-sectional dimensions of waveguides become prohibitively large at low frequencies, and it is at these frequencies that the gyromagnetic properties are most pronounced, sufficiently large samples may not be available. Therefore, the second technique uses a reduced-aperture sample holder that does not require the sample to fill the entire cross section of the guide. The theoretical reflection and transmission coefficients for both methods are determined using a mode matching technique. A nonlinear least squares method is employed to extract the gyromagnetic material parameters. Finally, this dissertation introduces a waveguide standard that acts as a surrogate material with both electric and magnetic properties and is useful for verifying systems designed to characterize engineered materials using the NRW technique. A genetic algorithm is used to optimize the all

  15. High field dielectric properties of anisotropic polymer-ceramic composites

    SciTech Connect

    Tomer, V.; Randall, C. A.

    2008-10-01

    Using dielectrophoretic assembly, we create anisotropic composites of BaTiO{sub 3} particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems.

  16. Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation

    SciTech Connect

    Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb

    2014-11-24

    The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.

  17. Investigating the Effects of Anisotropic Mass Transport on Dendrite Growth in High Energy Density Lithium Batteries

    SciTech Connect

    Tan, Jinwang; Tartakovsky, Alexandre M.; Ferris, Kim F.; Ryan, Emily M.

    2016-01-01

    Dendrite formation on the electrode surface of high energy density lithium (Li) batteries causes safety problems and limits their applications. Suppressing dendrite growth could significantly improve Li battery performance. Dendrite growth and morphology is a function of the mixing in the electrolyte near the anode interface. Most research into dendrites in batteries focuses on dendrite formation in isotropic electrolytes (i.e., electrolytes with isotropic diffusion coefficient). In this work, an anisotropic diffusion reaction model is developed to study the anisotropic mixing effect on dendrite growth in Li batteries. The model uses a Lagrangian particle-based method to model dendrite growth in an anisotropic electrolyte solution. The model is verified by comparing the numerical simulation results with analytical solutions, and its accuracy is shown to be better than previous particle-based anisotropic diffusion models. Several parametric studies of dendrite growth in an anisotropic electrolyte are performed and the results demonstrate the effects of anisotropic transport on dendrite growth and morphology, and show the possible advantages of anisotropic electrolytes for dendrite suppression.

  18. Anisotropic Elastic Properties of Muscle-like Nematic Elastomers

    NASA Astrophysics Data System (ADS)

    Ratna, Banahalii; Thomseniii, Donald L.; Shenoy, Devanand; Srinivasan, Amritha; Keller, Patrick

    2001-03-01

    De Gennes suggested in 1997 that the liquid crystal elastomers are an excellent framework to mimic muscular action. We have prepared anisotropic freestanding films of nematic elastomers from laterally attached side-chain polymers that show muscle-like mechanical properties. The orientational order of the liquid crystal side groups imposes a conformational anisotropy in the polymer backbone. When the order parameter drops at the nematic-isotropic phase transition, there is a concomitant loss of order in the backbone which results in a contraction of the film in the direction of the director orientation. Dynamic mechanical data along directions parallel and perpendicular to the optic axis, show anisotropic stress-strain behavior. The film exhibits soft elasticity when strained in the perpendicular direction when the liquid crystal mesogens reorient without appreciable stress build up. Thermostrictive studies in the parallel direction show 40constriction at the nematic-isotropic phase transition. Isometric studies show that the elastic energy stored is purely entropic in origin and the elastomer acts like a spring with unusually large spring constant at the NI transition. The maximum stress measured is 300kPa. A strain rate of 5s-1 is estimated from shear relaxation studies.

  19. Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Finazzo, Stefano Ivo; Critelli, Renato; Rougemont, Romulo; Noronha, Jorge

    2016-09-01

    We present a holographic perspective on momentum transport in strongly coupled, anisotropic non-Abelian plasmas in the presence of strong magnetic fields. We compute the anisotropic heavy quark drag forces and Langevin diffusion coefficients and also the anisotropic shear viscosities for two different holographic models, namely, a top-down deformation of strongly coupled N =4 super-Yang-Mills theory triggered by an external Abelian magnetic field, and a bottom-up Einstein-Maxwell-dilaton (EMD) model which is able to provide a quantitative description of lattice QCD thermodynamics with (2 +1 ) flavors at both zero and nonzero magnetic fields. We find that, in general, energy loss and momentum diffusion through strongly coupled anisotropic plasmas are enhanced by a magnetic field being larger in transverse directions than in the direction parallel to the magnetic field. Moreover, the anisotropic shear viscosity coefficient is smaller in the direction of the magnetic field than in the plane perpendicular to the field, which indicates that strongly coupled anisotropic plasmas become closer to the perfect fluid limit along the magnetic field. We also present, in the context of the EMD model, holographic predictions for the entropy density and the crossover critical temperature in a wider region of the (T , B ) phase diagram that has not yet been covered by lattice simulations. Our results for the transport coefficients in the phenomenologically realistic magnetic EMD model could be readily used as inputs in numerical codes for magnetohydrodynamics.

  20. Shape-Dependent Nonlinear Optical Properties of Anisotropic Gold Nanoparticles.

    PubMed

    Hua, Yi; Chandra, Kavita; Dam, Duncan Hieu M; Wiederrecht, Gary P; Odom, Teri W

    2015-12-17

    This Letter reports the shape-dependent third-order nonlinear optical properties of anisotropic gold nanoparticles. We characterized the nonlinear absorption coefficients of nanorods, nanostars, and nanoshells using femtosecond Z-scan measurements. By comparing nanoparticle solutions with a similar linear extinction at the laser excitation wavelength, we separated shape effects from that of the localized surface plasmon wavelength. We found that the nonlinear response depended on particle shape. Using pump-probe spectroscopy, we measured the ultrafast transient response of nanoparticles, which supported the strong saturable absorption observed in nanorods and weak nonlinear response in nanoshells. We found that the magnitude of saturable absorption as well as the ultrafast spectral responses of nanoparticles were affected by the linear absorption of the nanoparticles.

  1. Anisotropic thermodynamic and transport properties of single-crystalline CaKFe4As4

    SciTech Connect

    Meier, W. R.; Kong, T.; Kaluarachchi, U. S.; Taufour, V.; Jo, N. H.; Drachuck, G.; Böhmer, A. E.; Saunders, S. M.; Sapkota, A.; Kreyssig, A.; Tanatar, M. A.; Prozorov, R.; Goldman, A. I.; Balakirev, Fedor F.; Gurevich, Alex; Bud'ko, S. L.; Canfield, P. C.

    2016-08-01

    We grew single-crystalline, single-phase CaKFe4As4 out of a high-temperature, quaternary melt. Temperature-dependent measurements of x-ray diffraction, anisotropic electrical resistivity, elastoresistivity, thermoelectric power, Hall effect, magnetization, and specific heat, combined with field-dependent measurements of electrical resistivity and field and pressure-dependent measurements of magnetization indicate that CaKFe4As4 is an ordered, stoichiometric, Fe-based superconductor with a superconducting critical temperature, Tc=35.0±0.2 K. Other than superconductivity, there is no indication of any other phase transition for 1.8K≤T≤300 K. All of these thermodynamic and transport data reveal striking similarities to those found for optimally or slightly overdoped (Ba1-xKx)Fe2As2, suggesting that stoichiometric CaKFe4As4 is intrinsically close to what is referred to as “optimal-doped” on a generalized, Fe-based superconductor, phase diagram. Furthermore, the anisotropic superconducting upper critical field, Hc2(T), of CaKFe4As4 was determined up to 630 kOe. The anisotropy parameter γ(T)=H$⊥\\atop{c2}$/H$∥\\atop{c2}$, for H applied perpendicular and parallel to the c axis, decreases from ≃2.5 at Tc to ≃1.5 at 25 K, which can be explained by interplay of paramagnetic pair breaking and orbital effects. The slopes of dH$∥\\atop{c2}$/dT≃-44 kOe/K and dH$⊥\\atop{c2}$/dT≃-109 kOe/K at Tc yield an electron mass anisotropy of m/m≃1/6 and short Ginzburg-Landau coherence lengths ξ(0)≃5.8Å and ξ(0)≃14.3Å. Finally, the value of H$⊥\\atop{c2}$(0) can be extrapolated to ≃920 kOe, well above the BCS paramagnetic limit.

  2. Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties

    NASA Astrophysics Data System (ADS)

    Liu, Bilu; Zhou, Chongwu

    2D layered materials with diverse properties have attracted significant interest in the past decade. The layered materials discovered so far have covered a wide, yet discontinuous electromagnetic spectral range from semimetallic graphene, insulating boron nitride, to semiconductors with bandgaps from middle infrared to visible light. Here, we introduce new layered semiconductors, black arsenic-phosphorus (b-AsP), with highly tunable chemical compositions and electronic and optical properties. Transport and infrared absorption studies demonstrate the semiconducting nature of b-AsP with tunable bandgaps, ranging from 0.3 to 0.15 eV. These bandgaps fall into long-wavelength infrared (LWIR) regime and cannot be readily reached by other layered materials. Moreover, polarization-resolved infrared absorption and Raman studies reveal in-plane anisotropic properties of b-AsP. This family of layered b-AsP materials extend the electromagnetic spectra covered by 2D layered materials to the LWIR regime, and may find unique applications for future all 2D layered material based devices. Ref. Liu, B., et al., Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties. Adv. Mater., 2015, 27, 4423-4429.

  3. Intricate Short-Range Ordering and Strongly Anisotropic Transport Properties of Li1–x Sn 2+x As2

    SciTech Connect

    Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; Hung, Ivan; Gan, Zhehong; Gerke, Birgit; Pöttgen, Rainer; Feygenson, Mikhail; Neuefeind, Jörg; Lebedev, Oleg I.; Kovnir, Kirill

    2015-02-22

    A new ternary compound, Li1-xSn2+xAs2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the R$\\overline{3}m$ space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn. The Sn-As layers are comprised of Sn3As3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As6 octahedron. Thorough investigations by synchrotron x-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, local Sn/Li ordering was revealed by synergistic investigations via solid-state 6,7Li NMR spectroscopy, HR-TEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions creating substantial inhomogeneity on the nanoscale. Inhomogeneous local structure has high impact on the physical properties of the synthesized compounds: local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li1-xSn2+xAs2.

  4. Modeling anisotropic flow and heat transport by using mimetic finite differences

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Büsing, Henrik

    2016-08-01

    Modeling anisotropic flow in porous or fractured rock often assumes that the permeability tensor is diagonal, which means that its principle directions are always aligned with the coordinate axes. However, the permeability of a heterogeneous anisotropic medium usually is a full tensor. For overcoming this shortcoming, we use the mimetic finite difference method (mFD) for discretizing the flow equation in a hydrothermal reservoir simulation code, SHEMAT-Suite, which couples this equation with the heat transport equation. We verify SHEMAT-Suite-mFD against analytical solutions of pumping tests, using both diagonal and full permeability tensors. We compare results from three benchmarks for testing the capability of SHEMAT-Suite-mFD to handle anisotropic flow in porous and fractured media. The benchmarks include coupled flow and heat transport problems, three-dimensional problems and flow through a fractured porous medium with full equivalent permeability tensor. It shows firstly that the mimetic finite difference method can model anisotropic flow both in porous and in fractured media accurately and its results are better than those obtained by the multi-point flux approximation method in highly anisotropic models, secondly that the asymmetric permeability tensor can be included and leads to improved results compared the symmetric permeability tensor in the equivalent fracture models, and thirdly that the method can be easily implemented in existing finite volume or finite difference codes, which has been demonstrated successfully for SHEMAT-Suite.

  5. Nanostructured SnS with inherent anisotropic optical properties for high photoactivity

    NASA Astrophysics Data System (ADS)

    Patel, Malkeshkumar; Chavda, Arvind; Mukhopadhyay, Indrajit; Kim, Joondong; Ray, Abhijit

    2016-01-01

    In view of the worldwide energy challenge in the 21st century, the technology of semiconductor-based photoelectrochemical (PEC) water splitting has received considerable attention as an alternative approach for solar energy harvesting and storage. Two-dimensional (2D) structures such as nanosheets have the potential to tap the solar energy by unlocking the functional properties at the nanoscale. Tin(ii) sulfide is a fascinating solar energy material due to its anisotropic material properties. In this manuscript, we report on exploiting the 2D structure modulated optical properties of nanocrystalline SnS thin film synthesized by chemical spray pyrolysis using ambient transport in the harvesting of solar energy. We obtained the nanostructured SnS with well-preserved dimensions and morphologies with one step processing. The work demonstrates that the intrinsically ordered SnS nanostructure on FTO coated glass can tap the incident radiation in an efficient manner. The structure-property relationship to explain the photo-response in nanocrystalline-SnS is verified experimentally and theoretically. The novel design scheme for antireflection coating along with the anisotropic properties of SnS is conceived for realizing a PEC cell. The developed PEC cell consists of a SnS photoanode which shows considerably high photocurrent density of 7 mA cm-2 with aqueous media under AM 1.5G, 100 mW cm-2 exposure with notably stable operation. Electrochemical impedance spectroscopy revealed that a non-ideal capacitive behavior as well as drift assisted transport across the solid-state interface is responsible for such a high photo-current density in the nanocrystalline-SnS photoanode.In view of the worldwide energy challenge in the 21st century, the technology of semiconductor-based photoelectrochemical (PEC) water splitting has received considerable attention as an alternative approach for solar energy harvesting and storage. Two-dimensional (2D) structures such as nanosheets have the

  6. Anisotropic properties of high permeability grain-oriented 3.25% Si-Fe electrical steel

    SciTech Connect

    Shirkoohi, G.H.; Arikat, M.A.M.

    1994-03-01

    Anisotropic magnetic properties of two grades of 0.27 mm thick 3.25% silicon grain-oriented electrical steels are investigated using Epstein size samples cut at 10{degree} intervals between the direction of rolling and its transverse. The global anisotropic variation of the steels is shown to be directly proportionality that of the intrinsic anisotropy energy of the cubic single crystal.

  7. Applying nonlinear diffusion acceleration to the neutron transport k-Eigenvalue problem with anisotropic scattering

    DOE PAGES

    Willert, Jeffrey; Park, H.; Taitano, William

    2015-11-01

    High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.

  8. Measurement of anisotropic thermophysical properties of cylindrical Li-ion cells

    NASA Astrophysics Data System (ADS)

    Drake, S. J.; Wetz, D. A.; Ostanek, J. K.; Miller, S. P.; Heinzel, J. M.; Jain, A.

    2014-04-01

    Cylindrical Li-ion cells have demonstrated among the highest power density of all Li-ion cell types and typically employ a spiral electrode assembly. This spiral assembly is expected to cause large anisotropy in thermal conductance between the radial and axial directions due to the large number of interfaces between electrode and electrolyte layers in the radial conduction path, which are absent in the axial direction. This paper describes a novel experimental technique to measure the anisotropic thermal conductivity and heat capacity of Li-ion cells using adiabatic unsteady heating. Analytical modeling of the method is presented and is shown to agree well with finite-element simulation models. Experimental measurements indicate that radial thermal conductivity is two orders of magnitude lower than axial thermal conductivity for cylindrical 26650 and 18650 LiFePO4 cells. Due to the strong influence of temperature on cell performance and behavior, accounting for this strong anisotropy is critical when modeling battery behavior and designing battery cooling systems. This work improves the understanding of thermal transport in Li-ion cells, and presents a simple method for measuring anisotropic thermal transport properties in cylindrical cells.

  9. Spin transport in the frustrated anisotropic three-dimensional XY model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-12-01

    We use the SU(3) Schwinger's boson theory to study the spin transport in the frustrated anisotropic three-dimensional XY model at T=0 with single ion anisotropy. We have investigated the behavior of the spin conductivity for this model that presents exchange interactions J1, J2 and J ‧ . We study the spin transport in the Bose-Einstein regime where we have that the tz bosons are condensed i.e. = < tz†> = t . Our results show a metallic spin transport for ω > 0 and a superconductor spin transport in the limit of DC conductivity.

  10. Anisotropic Heat Transport in the Presence of Resonant Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Held, Eric; Kruger, Scott

    2009-05-01

    Heat transport in the H-mode tokamak edge is significantly modified by the presence of resonant magnetic perturbations. Application of collisional transport models to this problem ignores the fact that temperatures at the top of the edge pedestal may be several keV. Here, we compare the effective radial heat transport predicted by local (diffusive) and nonlocal (integral) forms for the parallel heat flux. Accurately predicting this effective radial heat transport becomes important when significant magnetic field line stochasticity is present, as in the case of overlapping magnetic perturbations. For such cases, the integral form for the parallel heat transport correctly assesses the effects of temperature perturbations all along the magnetic field line and yields predictions that vary substantially from the diffusive closure, which relies only on the local temperature gradient. Quantitative comparisons of effective radial transport are given for single helicity and multiple helicity magnetic perturbations in cylindrical and toroidal geometry, with emphasis given to a toroidal case with a narrow pedestal width and a high temperature at the top of the pedestal. E. D. Held, J. D. Callen, C. C. Hegna, C. R. Sovinec, T. A. Gianakon,and S. E. Kruger, Phys Plasmas, 11, 2419 (2004).

  11. Anisotropic Heat Transport in the Presence of Resonant Magnetic Perturbations

    NASA Astrophysics Data System (ADS)

    Kruger, Scott; Held, Eric

    2008-11-01

    Heat transport in the H-mode tokamak edge is significantly modified by the presence of resonant magnetic perturbations. Application of collisional transport models to this problem ignores the fact that temperatures at the top of the edge pedestal may be several keV. Here, we compare the effective radial heat transport predicted by local (diffusive) and nonlocal [1] (integral) forms for the parallel heat flux. Accurately predicting this effective radial heat transport becomes important when significant magnetic field line stochasticity is present, as in the case of overlapping magnetic perturbations. For such cases, the integral form for the parallel heat transport correctly assesses the effects of temperature perturbations all along the magnetic field line and yields predictions that vary substantially from the diffusive closure, which relies only on the local temperature gradient. Quantitative comparisons of effective radial transport are given for single helicity and multiple helicity magnetic perturbations in cylindrical and toroidal geometry, with emphasis given to a toroidal case with a narrow pedestal width and a high temperature at the top of the pedestal. [0pt] [1] E. D. Held, J. D. Callen, C. C. Hegna, C. R. Sovinec, T. A. Gianakon, and S. E. Kruger, Phys Plasmas, 11, 2419 (2004).

  12. Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties.

    PubMed

    Sun, Yaoming; Xiao, Xiudi; Xu, Gang; Dong, Guoping; Chai, Guanqi; Zhang, Hua; Liu, Pengyi; Zhu, Hanmin; Zhan, Yongjun

    2013-09-25

    VO2 (M) STF through reduction of V2O5 STF was prepared. The results illustrate that V2O5 STF can be successfully obtained by oblique angle thermal evaporation technique. After annealing at 550 °C/3 min, the V2O5 STF deposited at 85° can be easily transformed into VO2 STF with slanted columnar structure and superior thermochromic properties. After deposition SiO2 antireflective layer, Tlum of VO2 STF is enhanced 26% and ΔTsol increases 60% compared with that of normal VO2 thin films. Due to the anisotropic microstructure of VO2 STF, angular selectivity transmission of VO2 STF is observed and the solar modulation ability is further improved from 7.2% to 8.7% when light is along columnar direction. Moreover, the phase transition temperature of VO2 STF can be depressed into 54.5 °C without doping. Considering the oblique incidence of sunlight on windows, VO2 STF is more beneficial for practical application as smart windows compared with normal homogenous VO2 thin films.

  13. Anisotropic vanadium dioxide sculptured thin films with superior thermochromic properties

    PubMed Central

    Sun, Yaoming; Xiao, Xiudi; Xu, Gang; Dong, Guoping; Chai, Guanqi; Zhang, Hua; Liu, Pengyi; Zhu, Hanmin; Zhan, Yongjun

    2013-01-01

    VO2 (M) STF through reduction of V2O5 STF was prepared. The results illustrate that V2O5 STF can be successfully obtained by oblique angle thermal evaporation technique. After annealing at 550°C/3 min, the V2O5 STF deposited at 85° can be easily transformed into VO2 STF with slanted columnar structure and superior thermochromic properties. After deposition SiO2 antireflective layer, Tlum of VO2 STF is enhanced 26% and ΔTsol increases 60% compared with that of normal VO2 thin films. Due to the anisotropic microstructure of VO2 STF, angular selectivity transmission of VO2 STF is observed and the solar modulation ability is further improved from 7.2% to 8.7% when light is along columnar direction. Moreover, the phase transition temperature of VO2 STF can be depressed into 54.5°C without doping. Considering the oblique incidence of sunlight on windows, VO2 STF is more beneficial for practical application as smart windows compared with normal homogenous VO2 thin films. PMID:24067743

  14. Anisotropic quantum transport in a network of vertically aligned graphene sheets.

    PubMed

    Huang, J; Guo, L-W; Li, Z-L; Chen, L-L; Lin, J-J; Jia, Y-P; Lu, W; Guo, Y; Chen, X-L

    2014-08-27

    Novel anisotropic quantum transport was observed in a network of vertically aligned graphene sheets (VAGSs), which can be regarded as composed of plenty of quasi-parallel, nearly intrinsic, freestanding monolayers of graphene. When a magnetic field was perpendicular to most graphene sheets, magnetoresistance (MR) curves showed a weak localization (WL) effect at low field and a maximum value at a critical field ascribed to diffusive boundary scattering. While the magnetic field was parallel to the graphene sheets, the MR maximum disappeared and exhibited a transition from WL to weak antilocalization (WAL) with increasing temperature and magnetic field. Edges as atomically sharp defects are the main elastic and inelastic intervalley scattering sources, and inelastic scattering is ascribed to electron-electron intervalley scattering in the ballistic regime. This is the first time simultaneously observing WL, WAL and diffusive boundary scattering in such a macroscopic three-dimensional graphene system. These indicate the VAGS network is a robust platform for the study of the intrinsic physical properties of graphene.

  15. Anisotropic nanomaterials: Synthesis, optical and magnetic properties, and applications

    NASA Astrophysics Data System (ADS)

    Banholzer, Matthew John

    As nanoscience and nanotechnology mature, anisotropic metal nanostructures are emerging in a variety of contexts as valuable class of nanostructures due to their distinctive attributes. With unique properties ranging from optical to magnetic and beyond, these structures are useful in many new applications. Chapter two discusses the nanodisk code: a linear array of metal disk pairs that serve as surface-enhanced Raman scattering substrates. These multiplexing structures employ a binary encoding scheme, perform better than previous nanowires designs (in the context of SERS) and are useful for both convert encoding and tagging of substrates (based both on spatial disk position and spectroscopic response) as well as biomolecule detection (e.g. DNA). Chapter three describes the development of improved, silver-based nanodisk code structures. Work was undertaken to generate structures with high yield and reproducibility and to reoptimize the geometry of each disk pair for maximum Raman enhancement. The improved silver structures exhibit greater enhancement than Au structures (leading to lower DNA detection limits), convey additional flexibility, and enable trinary encoding schemes where far more unique structures can be created. Chapter four considers the effect of roughness on the plasmonic properties of nanorod structures and introduces a novel method to smooth the end-surfaces of nanorods structures. The smoothing technique is based upon a two-step process relying upon diffusion control during nanowires growth and selective oxidation after each step of synthesis is complete. Empirical and theoretical work show that smoothed nanostructures have superior and controllable optical properties. Chapter five concerns silica-encapsulated gold nanoprisms. This encapsulation allows these highly sensitive prisms to remain stable and protected in solution, enabling their use as class-leading sensors. Theoretical study complements the empirical work, exploring the effect of

  16. Anisotropic heat transport in integrable and chaotic 3-D magnetic fields

    SciTech Connect

    Del-Castillo-Negrete, Diego B; Blazevski, D.; Chacon, Luis

    2012-01-01

    A study of anisotropic heat transport in 3-D chaotic magnetic fields is presented. The approach is based on the recently proposed Lagrangian-Green s function (LG) method in Ref. [1] that allows an efficient and accurate integration of the parallel transport equation applicable to general magnetic fields with local or non-local parallel flux closures. We focus on reversed shear magnetic field configurations known to exhibit separatrix reconnection and shearless transport barriers. The role of reconnection and magnetic field line chaos on temperature transport is studied. Numerical results are presented on the anomalous relaxation of radial temperature gradients in the presence of shearless Cantori partial barri- ers. Also, numerical evidence of non-local effective radial temperature transport in chaotic fields is presented. Going beyond purely parallel transport, the LG method is generalized to include finite perpendicular diffusivity, and the problem of temperature flattening inside a magnetic island is studied.

  17. Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media.

    PubMed

    Cheng, Qiang; Cui, Tie Jun

    2006-12-01

    We have investigated the reflection and refraction properties of plane waves incident from free space into a uniaxially anisotropic chiral medium, where the chirality appears only in one direction and the host medium can be either an isotropic dielectric or an anisotropic electric plasma. We show that the reflection and refraction properties are closely related to the dispersion relation of the chiral medium and that negative phase refractions and/or negative group refractions may occur. We further demonstrate that the two eigenwaves within the uniaxially anisotropic chiral medium behave differently with respect to the incident angle, and in some cases only one of them can be supported and transmitted. We have studied the critical angle and Brewster's angle with some special properties. We have also discussed the potential application of the uniaxially anisotropic chiral medium for the polarization beam splitter. Numerical results are given to validate our analysis.

  18. Anisotropic Pressure, Transport, and Shielding of Magnetic Perturbations

    SciTech Connect

    H.E. Mynick and A.H. Boozer

    2008-05-23

    We compute the effect on a tokamak of applying a nonaxisymmetric magnetic perturbation δΒ. An equilibrium with scalar pressure p yields zero net radial current, and therefore zero torque. Thus, the usual approach, which assumes scalar pressure, is not self-consistent, and masks the close connection which exists between that radial current and the in-surface currents, which provide shielding or amplification of δΒ. Here, we analytically compute the pressure anisoptropy, anisoptropy, pll, p⊥ ≠ p, and from this, both the radial and in-surface currents. The surface-average of the radial current recovers earlier expressions for ripple transport, while the in-surface currents provide an expression for the amount of self-consistent shielding the plasma provides.

  19. Anisotropic charge transport in flavonoids as organic semiconductors

    NASA Astrophysics Data System (ADS)

    Hou, Chunyuan; Chen, Xin

    2015-03-01

    A quantum mechanical approach has been used to investigate on the potential for using two naturally occurring flavonoids: quercetin and luteolin as candidates for organic semiconductor. Selection of flavonoids enables to evaluate the effects of hydroxyl group structural features. The relationship between molecular packing and charge transport in flavonoids is presented. The calculated results indicate that quercetin should be an ideal candidate as high-performance p-type organic semiconductor material, while luteolin is predicted as n-type organic semiconductor material. The predicted maximum electron mobility value of quercetin is 0.075 cm2 V-1 s-1, which appears at the orientation angle near 91°/271° of conducting channel on the reference planes b-c. Theoretical investigation of natural semiconductors is helpful for designing higher performance electronic materials used in biochemical and industrial field to replace expensive and rare organic materials.

  20. An Algorithm for the Transport of Anisotropic Neutrons

    NASA Technical Reports Server (NTRS)

    Tweed, J.

    2005-01-01

    One major obstacle to human space exploration is the possible limitations imposed by the adverse effect of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar particle events (SPE) were of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated GCR exposures can be high. Because cancer induction rates increase behind low to rather large thicknesses of aluminum shielding, according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Therefore, a critical issue in the Human Exploration and Development of Space enterprise is cost effective mitigation of risk associated with ionizing radiation exposure. In order to estimate astronaut risk to GCR exposure and associated cancer risks and health hazards, it is necessary to do shield material studies. To determine an optimum radiation shield material it is necessary to understand nuclear interaction processes such as fragmentation and secondary particle production which is a function of energy dependent cross sections. This requires knowledge of material transmission characteristics either through laboratory testing or improved theoretical modeling. Here ion beam transport theory is of importance in that testing of materials in the laboratory environment generated by particle accelerators is a necessary step in materials development and evaluation for space use. The approximations used in solving the Boltzmann transport equation for the space setting are often not sufficient for laboratory work and those issues are a major emphasis of the present work.

  1. Effective Transport Properties

    NASA Astrophysics Data System (ADS)

    Mauri, Roberto

    In this chapter we study a particular case of multiphase systems, namely two-phase materials in which one of the phases is randomly dispersed in the other, so that the composite can be viewed on a macroscale as an effective continuum, with well defined properties. In general, the theoretical determination of the parameter for an effective medium requires, as a rule, the solution of a corresponding transport problem at the microscale, which takes into account the morphology of the system and its evolution. As the mathematical problem is well-posed on a microscale, this can be accomplished using, for example, the multiple scale approach shown in Chap. 11 ; however, the task requires massive computations and is therefore difficult to implement from the practical standpoint. Here, instead, we focus on a deterministic approach to the problem, where the geometry and spatial configuration of the particles comprising the included phase are given and the solution to the microscale problem is therefore sought analytically. As examples, we study the effective thermal conductivity of solid reinforced materials (Sect. 10.1), the effective viscosity of non-colloidal suspensions (Sect. 10.2), the effective permeability of porous materials (10.3) and the effective self- and gradient diffusivities of colloidal suspensions (Sect. 10.4). Then, in Sect. 10.5, an alternative dynamic definition of the transport coefficients is considered, which can also serve as a basis to determine the effective properties of complex systems.

  2. Uncluttering graph layouts using anisotropic diffusion and mass transport.

    PubMed

    Frishman, Yaniv; Tal, Ayellet

    2009-01-01

    Many graph layouts include very dense areas, making the layout difficult to understand. In this paper, we propose a technique for modifying an existing layout in order to reduce the clutter in dense areas. A physically inspired evolution process based on a modified heat equation is used to create an improved layout density image, making better use of available screen space. Using results from optimal mass transport problems, a warp to the improved density image is computed. The graph nodes are displaced according to the warp. The warp maintains the overall structure of the graph, thus limiting disturbances to the mental map, while reducing the clutter in dense areas of the layout. The complexity of the algorithm depends mainly on the resolution of the image visualizing the graph and is linear in the size of the graph. This allows scaling the computation according to required running times. It is demonstrated how the algorithm can be significantly accelerated using a graphics processing unit (GPU), resulting in the ability to handle large graphs in a matter of seconds. Results on several layout algorithms and applications are demonstrated.

  3. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    PubMed

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field.

  4. Anisotropic charge transport in ion-conductive photoresponsive polyethylene oxide-based mesomorphic materials

    NASA Astrophysics Data System (ADS)

    Binet, Corinne; Allart, Alexandre; Judeinstein, Patrick; Roussel, Frédérick

    2017-01-01

    The mechanism of charge motion in conductive and photosensitive mesogenic block copolymers containing polyethylene oxide (PEO) segments is investigated over a wide frequency and temperature range with the broadband dielectric spectroscopy technique. It is found that the ultraviolet (UV) irradiation, the UV intensity, and the anchoring conditions of mesogenic unit in the cells produce changes in conductivity properties and in the molecular arrangement. The anisotropic nature of the conductivity is established.

  5. Anisotropic charge transport in ion-conductive photoresponsive polyethylene oxide-based mesomorphic materials.

    PubMed

    Binet, Corinne; Allart, Alexandre; Judeinstein, Patrick; Roussel, Frédérick

    2017-01-01

    The mechanism of charge motion in conductive and photosensitive mesogenic block copolymers containing polyethylene oxide (PEO) segments is investigated over a wide frequency and temperature range with the broadband dielectric spectroscopy technique. It is found that the ultraviolet (UV) irradiation, the UV intensity, and the anchoring conditions of mesogenic unit in the cells produce changes in conductivity properties and in the molecular arrangement. The anisotropic nature of the conductivity is established.

  6. Anisotropic electrical and lattice transport properties of ordered quaternary phases Cr2TiAlC2 and Mo2TiAlC2: A first principles study

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Ding, Y. C.; Xiao, B.; Cheng, Y. H.

    2016-11-01

    Electrical conductivities of Cr2TiAlC2 and Mo2TiAlC2 in a and c directions are calculated from semi-classic Boltzmann transport theory. The values are found to be σa = 5.68 ×105 S /m (6.56 ×105 S /m) and σc = 2.15 ×105 S /m (2.69 ×105 S /m) for Cr2TiAlC2 (Mo2TiAlC2) at 300 K. Using the phonon-mode Debye temperature and Slack-model, the lattice thermal conductivities in the two directions are also evaluated, and the values are κa = 18.71 W /m K (16.11 W/m K) and κc = 0.48 W /m K (0.25 W /m K) for Cr2TiAlC2 (Mo2TiAlC2) at room temperature. The anisotropy in lattice thermal conductivity is found to be stronger than that of electrical conductivity. The predicted Seebeck coefficients and thermoelectric figure of merit (ZT) indicate that they are poor thermoelectric materials. Due to the relatively high conductivities, they might be used to fabricate high temperature conductive components in aerospace industry. In addition, our results in a direction have the direct implications for the relevant properties of MXenes (Cr2TiC2 and Mo2TiC2), produced from their bulk phases.

  7. Semi-implicit anisotropic cosmic ray transport on an unstructured moving mesh

    NASA Astrophysics Data System (ADS)

    Pakmor, Rüdiger; Pfrommer, Christoph; Simpson, Christine M.; Kannan, Rahul; Springel, Volker

    2016-11-01

    In the interstellar medium of galaxies and the intracluster gas of galaxy clusters, the charged particles making up cosmic rays are moving almost exclusively along (but not across) magnetic field lines. The resulting anisotropic transport of cosmic rays in the form of diffusion or streaming not only affects the gas dynamics but also rearranges the magnetic fields themselves. The coupled dynamics of magnetic fields and cosmic rays can thus impact the formation and evolution of galaxies and the thermal evolution of galaxy clusters in critical ways. Numerically studying these effects requires solvers for anisotropic diffusion that are accurate, efficient, and robust, requirements that have proved difficult to be satisfied in practice. Here, we present an anisotropic diffusion solver on an unstructured moving mesh that is conservative, does not violate the entropy condition, allows for semi-implicit time integration with individual timesteps, and only requires solving a single linear system of equations per timestep. We apply our new scheme to a large number of test problems and show that it works as well or better than previous implementations. Finally, we demonstrate for a numerically demanding simulation of the formation of an isolated disc galaxy that our local time-stepping scheme reproduces the results obtained with global time-stepping at a fraction of the computational cost.

  8. CHARGED-PARTICLE TRANSPORT IN MAGNETIC TURBULENCE. I. A GLOBALLY ANISOTROPIC FIELD

    SciTech Connect

    Sun, P.; Jokipii, J. R.

    2015-12-10

    Collisionless magnetohydrodynamic Turbulence is common in large scale astrophysical environments. The determination of the transport of charged particles both parallel and perpendicular in such a system is of considerable interest. Quasi-linear analysis or direct numerical simulation can be used to find the effects of the turbulent magnetic field on the transport of charged particles. A number of different magnetic turbulence models have been proposed in the last several decades. We present here the results of studying particle transport in synthesized, anisotropic turbulence and compare the results with those obtained using the standard isotropic turbulence model in a series of papers. In this paper we consider the magnetic field turbulence model with global anisotropy.

  9. An asymptotic-preserving Lagrangian algorithm for the time-dependent anisotropic heat transport equation

    SciTech Connect

    Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.

    2014-09-01

    We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while the second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X /X becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L2/X1L2 → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.

  10. Anisotropic multicarrier transport at the (111) LaAlO3/SrTiO3 interface

    NASA Astrophysics Data System (ADS)

    Davis, S.; Chandrasekhar, V.; Huang, Z.; Han, K.; Ariando, Venkatesan, T.

    2017-01-01

    The conducting gas that forms at the interface between LaAlO3 and SrTiO3 has proven to be a fertile playground for a wide variety of physical phenomena. The bulk of previous research has focused on the (001) and (110) crystal orientations. Here we report detailed measurements of the low-temperature electrical properties of (111) LAO/STO interface samples. We find that the low-temperature electrical transport properties are highly anisotropic in that they differ significantly along two mutually orthogonal crystal orientations at the interface. While anisotropy in the resistivity has been reported in some (001) samples and in (110) samples, the anisotropy in the (111) samples reported here is much stronger and also manifests itself in the Hall coefficient as well as the capacitance. In addition, the anisotropy is not present at room temperature and at liquid nitrogen temperatures, but only at liquid helium temperatures and below. The anisotropy is accentuated by exposure to ultraviolet light, which disproportionately affects transport along one surface crystal direction. Furthermore, analysis of the low-temperature Hall coefficient and the capacitance as a function of back gate voltage indicates that in addition to electrons, holes contribute to the electrical transport.

  11. Multimodel analysis of anisotropic diffusive tracer-gas transport in a deep arid unsaturated zone

    USGS Publications Warehouse

    Green, Christopher T.; Walvoord, Michelle Ann; Andraski, Brian J.; Striegl, Robert G.; Stonestrom, David A.

    2015-01-01

    Gas transport in the unsaturated zone affects contaminant flux and remediation, interpretation of groundwater travel times from atmospheric tracers, and mass budgets of environmentally important gases. Although unsaturated zone transport of gases is commonly treated as dominated by diffusion, the characteristics of transport in deep layered sediments remain uncertain. In this study, we use a multimodel approach to analyze results of a gas-tracer (SF6) test to clarify characteristics of gas transport in deep unsaturated alluvium. Thirty-five separate models with distinct diffusivity structures were calibrated to the tracer-test data and were compared on the basis of Akaike Information Criteria estimates of posterior model probability. Models included analytical and numerical solutions. Analytical models provided estimates of bulk-scale apparent diffusivities at the scale of tens of meters. Numerical models provided information on local-scale diffusivities and feasible lithological features producing the observed tracer breakthrough curves. The combined approaches indicate significant anisotropy of bulk-scale diffusivity, likely associated with high-diffusivity layers. Both approaches indicated that diffusivities in some intervals were greater than expected from standard models relating porosity to diffusivity. High apparent diffusivities and anisotropic diffusivity structures were consistent with previous observations at the study site of rapid lateral transport and limited vertical spreading of gas-phase contaminants. Additional processes such as advective oscillations may be involved. These results indicate that gases in deep, layered unsaturated zone sediments can spread laterally more quickly, and produce higher peak concentrations, than predicted by homogeneous, isotropic diffusion models.

  12. Properties of solid and gaseous hydrogen, based upon anisotropic pair interactions

    NASA Technical Reports Server (NTRS)

    Etters, R. D.; Danilowicz, R.; England, W.

    1975-01-01

    Properties of H2 are studied on the basis of an analytic anisotropic potential deduced from atomic orbital and perturbation calculations. The low-pressure solid results are based on a spherical average of the anisotropic potential. The ground state energy and the pressure-volume relation are calculated. The metal-insulator phase transition pressure is predicted. Second virial coefficients are calculated for H2 and D2, as is the difference in second virial coefficients between ortho and para H2 and D2.

  13. Time-resolved measurements of the optical properties of fibrous media using the anisotropic diffusion equation

    NASA Astrophysics Data System (ADS)

    Simon, Emanuel; Krauter, Philipp; Kienle, Alwin

    2014-07-01

    Transmittance and reflectance from spruce wood and bovine ligamentum nuchae as two different fibrous media are examined by time-of-flight spectroscopy for varying source detector separations and several orientations of the fibers in the sample. The anisotropic diffusion theory is used to obtain the absorption coefficient and the diffusion coefficients parallel and perpendicular to the fibers. The results are compared to those obtained with the isotropic diffusion theory. It is shown that for increasing source detector separations, the retrieved optical properties change as expected from Monte Carlo simulations performed in a previous study. This confirms that the anisotropic diffusion theory yields useful results for certain experimental conditions.

  14. Synthesis and optical properties of anisotropic metal nanoparticles.

    PubMed

    Hao, Encai; Schatz, George C; Hupp, Joseph T

    2004-07-01

    In this paper we overview our recent studies of anisotropic noble metal (e.g. gold and silver) nanoparticles, in which a combination of theory and experiment has been used to elucidate the extinction spectra of the particles, as well as information related to their surface enhanced Raman spectroscopy. We used wet-chemical methods to generate several structurally well-defined nanostructures other than solid spheres, including silver nanodisks and triangular nanoprisms, and gold nanoshells and multipods. When solid spheres are transformed into one of these shapes, the surface plasmon resonances in these particles are strongly affected, typically red-shifting and even splitting into distinctive dipole and quadrupole plasmon modes. In parallel, we have developed computational electrodynamics methods based on the discrete dipole approximation (DDA) method to determine the origins of these intriguing optical features. This has resulted in considerable insight concerning the variation of plasmon wavelength with nanoparticle size, shape and dielectric environment, as well as the use of these particles for optical sensing applications.

  15. Computing Thermodynamic And Transport Properties

    NASA Technical Reports Server (NTRS)

    Mcbride, B.; Gordon, Sanford

    1993-01-01

    CET89 calculates compositions in chemical equilibrium and properties of mixtures of any chemical system for which thermodynamic data available. Provides following options: obtains chemical-equilibrium compositions and corresponding thermodynamic mixture properties for assigned thermodynamic states; calculates dilute-gas transport properties of complex chemical mixtures; obtains Chapman-Jouguet detonation properties for gaseous mixtures; calculates properties of incident and reflected shocks in terms of assigned velocities; and calculates theoretical performance of rocket for both equilibrium and frozen compositions during expansion. Rocket performance based on optional models of finite or infinite area combustor.

  16. Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties

    SciTech Connect

    Cheng, Guang; Sun, Xin; Wang, Yuxin; Tay, See Leng; Gao, Wei

    2017-01-01

    A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validated with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.

  17. Asymptotic-preserving Lagrangian approach for modeling anisotropic transport in magnetized plasmas for arbitrary magnetic fields

    NASA Astrophysics Data System (ADS)

    Chacon, Luis; Del-Castillo-Negrete, Diego; Hauck, Cory

    2012-10-01

    Modeling electron transport in magnetized plasmas is extremely challenging due to the extreme anisotropy between parallel (to the magnetic field) and perpendicular directions (χ/χ˜10^10 in fusion plasmas). Recently, a Lagrangian Green's function approach, developed for the purely parallel transport case,footnotetextD. del-Castillo-Negrete, L. Chac'on, PRL, 106, 195004 (2011)^,footnotetextD. del-Castillo-Negrete, L. Chac'on, Phys. Plasmas, 19, 056112 (2012) has been extended to the anisotropic transport case in the tokamak-ordering limit with constant density.footnotetextL. Chac'on, D. del-Castillo-Negrete, C. Hauck, JCP, submitted (2012) An operator-split algorithm is proposed that allows one to treat Eulerian and Lagrangian components separately. The approach is shown to feature bounded numerical errors for arbitrary χ/χ ratios, which renders it asymptotic-preserving. In this poster, we will present the generalization of the Lagrangian approach to arbitrary magnetic fields. We will demonstrate the potential of the approach with various challenging configurations, including the case of transport across a magnetic island in cylindrical geometry.

  18. Transport properties of uranium dioxide

    SciTech Connect

    Fink, J.K.; Chasanov, M.G.; Leibowitz, L.

    1981-04-01

    In order to provide reliable and consistent data on the thermophysical properties of reactor materials for reactor safety studies, this revision is prepared for the transport properties of the uranium dioxide portion of the fuel property section of the report Properties for LMFBR Safety Analysis. Since the original report was issued in 1976, measurements of thermal diffusivity and emissivity have been made. In addition to incorporating this new data, new equations have been derived to fit the thermal diffusivity and thermal conductivity data. This analysis is consistent with the analysis of enthalpy and heat capacity. A new form of equation for the emissivity is also given. The present report comprises the transport part of the UO/sub 2/ portion of section A of the planned complete revision of Properties for LMFBR Safety Analysis.

  19. Anisotropic magnetic properties of the KMo4O6

    NASA Astrophysics Data System (ADS)

    Andrade, M.; Maffei, M. L.; Dos Santos, C. A. M.; Ferreira, B.; Sartori, A. F.

    2012-02-01

    Electrical resistivity measurements in the tetragonal KMo4O6 single crystals show a metal-insulator transition (MIT) near 100K. Magnetization measurements as a function of temperature show no evidence of magnetic ordering at this MIT [1]. Single crystals of KMo4O6 were obtained by electrolysis of a melt with a molar ratio of K2MoO4:MoO3 = 6:1. The process were carried out at 930 C with a current of 20-25mA for 52h in argon atmosphere. After that, electrodes were removed from the melt alloying the crystals to cool down to room temperature rapidly. Scanning Electron Microscopy (SEM) showed that the black single crystals were grown on the platinum cathode. Typical dimensions of the single crystals are 1x0.2x0.2mm^3. X-ray diffractometry confirmed that the single crystals have KMo4O6 tetragonal crystalline structure with space group P4. Magnetization measurements were performed parallel and perpendicular to the c-axis from 2 to 300K. The results show anisotropic behavior between both directions. Furthermore, the temperature independence of the magnetization at high temperature and the upturn at low temperature are observed in agreement with previous results [1]. MxH curves measured at several temperatures show nonlinear behavior and a small magnetic ordering. The magnetic ordering seems to be related to the MIT near 100K. This material is based upon support by FAPESP (2009/14524-6 and 2009/54001-6) and CNPq/NSF (490182/2009-7). M. Andrade is CAPES fellow and C.A.M. dos Santos is CNPq fellow. [4pt] [1] K. V. Ramanujachary et al., J. Sol. State Chem.102 (1993) 69.

  20. The effect of anisotropic heat transport on magnetic islands in 3-D configurations

    SciTech Connect

    Schlutt, M. G.; Hegna, C. C.

    2012-08-15

    An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlueter current effects. Implications for finite pressure-induced island healing are discussed.

  1. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    SciTech Connect

    Chen, Qian

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  2. Transport Properties in Nuclear Pasta

    NASA Astrophysics Data System (ADS)

    Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre

    2016-09-01

    At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.

  3. Picosecond Acoustic Measurement of Anisotropic Properties of Thin Films

    SciTech Connect

    Perton, M.; Rossignol, C.; Chigarev, N.; Audoin, B.

    2007-03-21

    Properties of thin metallic films have been studied extensively by means of laser-picosecond ultrasonics. Generation of longitudinal and shear waves via thermoelastic mechanism and large source has been only demonstrated for waves vectors along the normal to the interface. However, such measurements cannot provide complete information about elastic properties of films. As it has been already shown for nanosecond ultrasonics, the knowledge of group or phase velocities in several directions for sources with small lateral size allows determining the stiffness tensor coefficients of a sample. The experimental set-up was prepared to obtain the thinnest size for the source to achieve acoustic diffraction. The identification of the stiffness tensor components, based on the inversion of the bulk waves phase velocities, is applied to signals simulated and experimentally recorded for a material with hexagonal properties. First estimation of stiffness tensor coefficients for thin metallic film 2.1 {mu}m has been performed.

  4. Perylenetetracarboxylic-metal assemblies and anisotropic charge transport in a CuII assembly

    NASA Astrophysics Data System (ADS)

    Bai, Linyi; Xia, Youyi; Jana, Avijit; Ang, Chung Yen; Zhao, Lingzhi; Fan, Zhi; Zhao, Yanli

    2016-04-01

    Structural diversity and uniformity of nanomaterials are usually prerequisites for many practical applications involving the oriented fabrication of various devices with full control over their desired physiochemical properties. Particularly in the optoelectronic field, ordered assembly inside cells is required not only for obtaining attractive configurations but also for playing an important role in the characteristics of photoconduction and conductivity. Here, we present a synergetic self-assembly driven by coordination and intermolecular interactions for the construction of organic-inorganic hybrids with multi-morphologies and tunable physical properties. 3,4,9,10-Perylenetetracarboxylic dianhydride was treated with base to produce various assemblies by coordination with metal ions, showing morphologies of nanowires, nanosheets, nanoribbons and nanorods. The organic π-spacer affords an extension in different directions through the suitable incorporation of metal ions with different coordination modes for the formation of metal-ligand complexes. Interestingly, the obtained nanorods were twisted rods with obvious screw threads on the rod wall, supporting the synergetic self-assembly. Then, anisotropic mobility measurements of the obtained Cu2+-ligand assembly were carried out to show the importance of the size- and shape-confined synthesis of the hybrids. By presenting a series of ordered metal-ligand complex superstructures driven by synergetic self-assembly, this work is expected to pave the way for future anisotropic measurements of complex assemblies.Structural diversity and uniformity of nanomaterials are usually prerequisites for many practical applications involving the oriented fabrication of various devices with full control over their desired physiochemical properties. Particularly in the optoelectronic field, ordered assembly inside cells is required not only for obtaining attractive configurations but also for playing an important role in the

  5. Linear and nonlinear optical properties of anisotropic quantum dots in a magnetic field

    NASA Astrophysics Data System (ADS)

    Xie, Wenfang

    2013-05-01

    We have investigated the linear and nonlinear optical properties of a two-dimensional anisotropic quantum dot in a magnetic field. Based on the computed energies and wave functions, the linear, third-order nonlinear and total optical absorption coefficients as well as the refractive index changes have been examined. The results are presented as a function of the incident photon energy for the different cases of anisotropy, dot size and external magnetic field. The results show that the linear and nonlinear optical properties of anisotropic quantum dots are strongly affected by the degree of anisotropy, the dot size, the external magnetic field and the polarized direction of the incident electromagnetic wave. The result also shows that the size effect of anisotropy quantum dots on the optical absorptions is different from that of isotropic quantum dots.

  6. A Numerical Model of Anisotropic Mass Transport Through Grain Boundary Networks

    NASA Astrophysics Data System (ADS)

    Wang, Yibo

    Tin (Sn) thin films are commonly used in electronic circuit applications as coatings on contacts and solders for joining components. It is widely observed, for some such system, that whiskers---long, thin crystalline structures---emerge and grow from the film. The Sn whisker phenomenon has become a highly active research area since Sn whiskers have caused a large amount of damage and loss in manufacturing, military, medical and power industries. Though lead (Pb) addition to Sn has been used to solve this problem for over five decades, the adverse environmental and health effects of Pb have motivated legislation to severely constrain Pb use in society. People are researching and seeking the reasons which cause whiskers and corresponding methods to solve the problem. The contributing factors to cause a Sn whisker are potentially many and much still remains unknown. Better understanding of fundamental driving forces should point toward strategies to improve (a) the accuracy with which we can predict whisker formation, and (b) our ability to mitigate the phenomenon. This thesis summarizes recent important research achievements in understanding Sn whisker formation and growth, both experimentally and theoretically. Focus is then placed on examining the role that anisotropy in grain boundary diffusivity plays in determining whisker characteristics (specifically, whether they form and, if so, where on a surface). To study this aspect of the problem and to enable future studies on stress driven grain boundary diffusion, this thesis presents a numerical anisotropic mass transport model. In addition to presenting details of the model and implementation, model predictions for a set of increasingly complex grain boundary networks are discussed. Preliminary results from the model provide evidence that anisotropic grain boundary diffusion may be a primary driving mechanism in whisker formation.

  7. Blow-up properties in the parabolic problems with anisotropic nonstandard growth conditions

    NASA Astrophysics Data System (ADS)

    Liu, Bingchen; Yang, Jie

    2016-03-01

    In this paper, we study the parabolic problems with anisotropic nonstandard growth nonlinearities. We first give the existence and uniqueness of weak solutions in variable Sobolev spaces. Second, we use the energy methods to show the existence of blow-up solutions with negative or positive initial energy, respectively. Both the variable exponents and the coefficients make important roles in Fujita blow-up phenomena. Moreover, asymptotic properties of the blow-up solutions are determined.

  8. The paramagnetic properties of one-dimensional spin-1 single-ion anisotropic ferromagnet

    NASA Astrophysics Data System (ADS)

    Wang, Hai-Jun; Chen, Yuan; Fu, Liang-Jie; Lin, Rui-Na; Song, Chuang-Chuang

    2009-06-01

    One-dimensional single-ion anisotropic ferromagnet with spin-1 is investigated by means of Green's function treatment in this paper. The model Hamiltonian includes a Heisenberg ferromagnetic term, an external magnetic field, and a second-order single-ion anisotropy. The magnetic properties of the system are treated by the random phase approximation for the exchange interaction term and the Anderson-Callen approximation for the anisotropy term. Our paramagnetic results are in agreement with the other theoretical results.

  9. Transport Properties for Combustion Modeling

    SciTech Connect

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  10. An inverse finite element method for determining the anisotropic properties of the cornea.

    PubMed

    Nguyen, T D; Boyce, B L

    2011-06-01

    An inverse finite element method was developed to determine the anisotropic properties of bovine cornea from an in vitro inflation experiment. The experiment used digital image correlation (DIC) to measure the three-dimensional surface geometry and displacement field of the cornea at multiple pressures. A finite element model of a bovine cornea was developed using the DIC measured surface geometry of the undeformed specimen. The model was applied to determine five parameters of an anisotropic hyperelastic model that minimized the error between the measured and computed surface displacement field and to investigate the sensitivity of the measured bovine inflation response to variations in the anisotropic properties of the cornea. The results of the parameter optimization revealed that the collagen structure of bovine cornea exhibited a high degree of anisotropy in the limbus region, which agreed with recent histological findings, and a transversely isotropic central region. The parameter study showed that the bovine corneal response to the inflation experiment was sensitive to the shear modulus of the matrix at pressures below the intraocular pressure, the properties of the collagen lamella at higher pressures, and the degree of anisotropy in the limbus region. It was not sensitive to a weak collagen anisotropy in the central region.

  11. Transport properties of ceramic composites

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-08-01

    Instrumentation and procedures have been completed for measurement of gas permeability and mass diffusivity of fiber preforms and porous materials. Results are reported for composites reinforced with Nicalon fiber in cloth lay-up and 3-D weave and with Nextel fiber in multi-layer braid. Measured permeability values range from near 100 to less than 0.1 darcies. Mass diffusivity is reported as a structure factor relating the diffusion through the porous material to that in free space. This measure is independent of the diffusing species and depends only on the pore structure of the material. Measurements are compared to predictions of a node-bond model for gas transport. Model parameters adjusted to match measured transport properties relate to physical microstructure features of the different architectures. Combination of this transport model with the CVI process model offers a predictive method to evaluate the densification behavior of various fiber preforms.

  12. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold.

    PubMed

    Kim, Geun Hyung

    2008-06-01

    To design an ideal scaffold, various factors should be considered, such as pore size and morphology, mechanical properties versus porosity, surface properties and appropriate biodegradability. Of these factors, the importance of mechanical properties on cell growth is particularly obvious in tissues such as bone, cartilage, blood vessels, tendons and muscles. Although electrospun nanofibers provide easily applicable nano-sized structures which could be used as biomedical scaffolds, the mechanical properties are poor since an increased pore size and porosity are generally accompanied by a decrease in mechanical properties. In addition, the general electrospinning has been limited to the fabrication of a variety of anisotropic mechanical properties, which are extremely important parameters for designing a musculoskeletal system. In this study, scaffolds consisting of variously oriented nanofibers were produced using an electrospinning process modified with an auxiliary electrode and a two-axis robot collecting system. Using an auxiliary electrode, a stable Taylor cone and initial spun jets were obtained. The influence of the electrode was evaluated with electric field simulation. Using the modified electrospinning process, various directions of orientation of electrospun fibers could be acquired and the fabricated oriented nanofiber webs showed a mechanically anisotropic behavior and a higher hydrophilic property compared to randomly distributed fibrous mats.

  13. Simultaneous inversion for anisotropic and structural crustal properties by stacking of radial and transverse receiver functions

    NASA Astrophysics Data System (ADS)

    Link, Frederik; Rümpker, Georg; Kaviani, Ayoub; Singh, Manvendra

    2016-04-01

    The well-known H-κ-stacking method of Zhu and Kanamori (2000) has developed into a standard tool to infer the thickness of the crust, H, and the average P to S-wave velocity ratio, κ. The stacking approach allows for the largely automated analysis of teleseismic waveforms recorded in the distance range between 30° and 95° . Here, we present an extension of the method to include the inversion for anisotropic crustal properties. For a single anisotropic crustal layer, this involves the computation of delay times and amplitudes for 20 P-to-S converted phases and their crustal reverberations, instead of (up to) five phases in the isotropic case (Kaviani and Rümpker, 2015). The delay times and amplitudes exhibit a complex dependency on slowness and backazimuth. They can be calculated semi-analytically from the eigenvalues and eigenvectors of the system matrix, as defined by Woodhouse (1974). A comparison of the calculated delay times and amplitudes with those obtained by similar methods (Frederiksen and Bostock, 2000) shows a very good agreement between the results. In our approach, the crust exhibits hexagonal anisotropy with a horizontal symmetry axis, such that the anisotropic properties are defined by two parameters: the orientation of the symmetry axis w.r.t. North, φ, and the percentage of anisotropy, a. The inversion, thus, involves a grid search in a 4-dimensional parameter space (H, κ, φ, a) and the stacking of both radial and transverse receiver functions. Known input parameters are the average P-wave velocity of the crust, and the slowness vector (as given by the event-receiver configuration and a global 1D-velocity model). The computations are performed by the new software package AnStack which is based on MATLAB. Synthetic test show that the extended anisotropic stacking has advantages compared to the conventional H-κ stacking as it may allow for inversions at even higher noise levels. We further test for the effect of the azimuthal distribution of

  14. Simulation of charge transport in ion channels and nanopores with anisotropic permittivity

    PubMed Central

    Mashl, R. Jay; Lee, Kyu Il; Jakobsson, Eric; Ravaioli, Umberto

    2010-01-01

    Ion channels are part of nature's solution for regulating biological environments. Every ion channel consists of a chain of amino acids carrying a strong and sharply varying permanent charge, folded in such a way that it creates a nanoscopic aqueous pore spanning the otherwise mostly impermeable membranes of biological cells. These naturally occurring proteins are particularly interesting to device engineers seeking to understand how such nanoscale systems realize device-like functions. Availability of high-resolution structural information from X-ray crystallography, as well as large-scale computational resources, makes it possible to conduct realistic ion channel simulations. In general, a hierarchy of simulation methodologies is needed to study different aspects of a biological system like ion channels. Biology Monte Carlo (BioMOCA), a three-dimensional coarse-grained particle ion channel simulator, offers a powerful and general approach to study ion channel permeation. BioMOCA is based on the Boltzmann Transport Monte Carlo (BTMC) and Particle-Particle-Particle-Mesh (P3M) methodologies developed at the University of Illinois at Urbana-Champaign. In this paper we briefly discuss the various approaches to simulating ion flow in channel systems that are currently being pursued by the biophysics and engineering communities, and present the effect of having anisotropic dielectric constants on ion flow through a number of nanopores with different effective diameters. PMID:20445807

  15. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1979-01-01

    Activities reported include: (1) testing of the computer program used to obtain transport properties for the Hulburt-Hirschfelder potential; (2) calculation of transport properties for the C2-C interaction; (3) preliminary calculations for the C2-C2 interaction; (4) calculation of transport properties for the C2H-He interaction; (5) consideration of the effect of inelastic collisions on the transport properties; and (6) the use of the Hulburt-Hirschfelder potential to model ion-atom interactions.

  16. Transport properties in the atmosphere of Jupiter

    NASA Technical Reports Server (NTRS)

    Biolsi, L., Jr.

    1978-01-01

    The calculation of transport properties near the surface of a probe entering the atmosphere of Jupiter is discussed for (1) transport properties in the pure Jovian atmosphere, (2) transport properties for collisions between monatomic carbon atoms, including the effect of excited electronic states, (3) transport properties at the boundaries for mixing of the pure Jovian atmosphere and the atmosphere due to the injection of gaseous ablation products, and (4) transport properties for interactions involving some of the molecular ablation products. The transport properties were calculated using the kinetic theory of gases. Transport collision integrals were calculated for only a limited set of empirical and semiempirical interaction potentials. Since the accuracy of the fit of these empirical potentials to the true potential usually determines the accuracy of the calculation of the transport properties, the various interaction potentials used in these calculations are discussed.

  17. Anisotropic physical properties of myocardium characterized by ultrasonic measurements of backscatter, attenuation, and velocity

    NASA Astrophysics Data System (ADS)

    Baldwin, Steven L.

    The goal of elucidating the physical mechanisms underlying the propagation of ultrasonic waves in anisotropic soft tissue such as myocardium has posed an interesting and largely unsolved problem in the field of physics for the past 30 years. In part because of the vast complexity of the system being studied, progress towards understanding and modeling the mechanisms that underlie observed acoustic parameters may first require the guidance of careful experiment. Knowledge of the causes of observed ultrasonic properties in soft tissue including attenuation, speed of sound, and backscatter, and how those properties are altered with specific pathophysiologies, may lead to new noninvasive approaches to the diagnosis of disease. The primary aim of this Dissertation is to contribute to an understanding of the physics that underlies the mechanisms responsible for the observed interaction of ultrasound with myocardium. To this end, through-transmission and backscatter measurements were performed by varying acoustic properties as a function of angle of insonification relative to the predominant myofiber direction and by altering the material properties of myocardium by increased protein cross-linking induced by chemical fixation as an extreme form of changes that may occur in certain pathologies such as diabetes. Techniques to estimate acoustic parameters from backscatter were broadened and challenges to implementing these techniques in vivo were addressed. Provided that specific challenges identified in this Dissertation can be overcome, techniques to estimate attenuation from ultrasonic backscatter show promise as a means to investigate the physical interaction of ultrasound with anisotropic biological media in vivo. This Dissertation represents a step towards understanding the physics of the interaction of ultrasonic waves with anisotropic biological media.

  18. Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun

    2016-10-01

    The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.

  19. Anisotropic layered Bi2Te3-In2Te3 composites: control of interface density for tuning of thermoelectric properties

    PubMed Central

    Liu, Dongmei; Li, Xinzhong; Borlido, Pedro Miguel de Castro; Botti, Silvana; Schmechel, Roland; Rettenmayr, Markus

    2017-01-01

    Layered (Bi1−xInx)2Te3-In2Te3 (x = 0.075) composites of pronounced anisotropy in structure and thermoelectric properties were produced by zone melting and subsequent coherent precipitation of In2Te3 from a (Bi1−xInx)2Te3 (x > 0.075) matrix. Employing solid state phase transformation, the Bi2Te3/In2Te3 interface density was tuned by modifying the driving force for In2Te3 precipitation. The structure-property relationship in this strongly anisotropic material is characterized thoroughly and systematically for the first time. Unexpectedly, with increasing Bi2Te3/In2Te3 interface density, an increase in electrical conductivity and a decrease in the absolute Seebeck coefficient were found. This is likely to be due to electron accumulation layers at the Bi2Te3/In2Te3 interfaces and the interplay of bipolar transport in Bi2Te3. Significantly improved thermoelectric properties of Bi2Te3-In2Te3 composites as compared to the single phase (Bi1−xInx)2Te3 solid solution are obtained. PMID:28272541

  20. Anisotropic layered Bi2Te3-In2Te3 composites: control of interface density for tuning of thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Liu, Dongmei; Li, Xinzhong; Borlido, Pedro Miguel De Castro; Botti, Silvana; Schmechel, Roland; Rettenmayr, Markus

    2017-03-01

    Layered (Bi1‑xInx)2Te3-In2Te3 (x = 0.075) composites of pronounced anisotropy in structure and thermoelectric properties were produced by zone melting and subsequent coherent precipitation of In2Te3 from a (Bi1‑xInx)2Te3 (x > 0.075) matrix. Employing solid state phase transformation, the Bi2Te3/In2Te3 interface density was tuned by modifying the driving force for In2Te3 precipitation. The structure-property relationship in this strongly anisotropic material is characterized thoroughly and systematically for the first time. Unexpectedly, with increasing Bi2Te3/In2Te3 interface density, an increase in electrical conductivity and a decrease in the absolute Seebeck coefficient were found. This is likely to be due to electron accumulation layers at the Bi2Te3/In2Te3 interfaces and the interplay of bipolar transport in Bi2Te3. Significantly improved thermoelectric properties of Bi2Te3-In2Te3 composites as compared to the single phase (Bi1‑xInx)2Te3 solid solution are obtained.

  1. Anisotropic layered Bi2Te3-In2Te3 composites: control of interface density for tuning of thermoelectric properties.

    PubMed

    Liu, Dongmei; Li, Xinzhong; Borlido, Pedro Miguel de Castro; Botti, Silvana; Schmechel, Roland; Rettenmayr, Markus

    2017-03-08

    Layered (Bi1-xInx)2Te3-In2Te3 (x = 0.075) composites of pronounced anisotropy in structure and thermoelectric properties were produced by zone melting and subsequent coherent precipitation of In2Te3 from a (Bi1-xInx)2Te3 (x > 0.075) matrix. Employing solid state phase transformation, the Bi2Te3/In2Te3 interface density was tuned by modifying the driving force for In2Te3 precipitation. The structure-property relationship in this strongly anisotropic material is characterized thoroughly and systematically for the first time. Unexpectedly, with increasing Bi2Te3/In2Te3 interface density, an increase in electrical conductivity and a decrease in the absolute Seebeck coefficient were found. This is likely to be due to electron accumulation layers at the Bi2Te3/In2Te3 interfaces and the interplay of bipolar transport in Bi2Te3. Significantly improved thermoelectric properties of Bi2Te3-In2Te3 composites as compared to the single phase (Bi1-xInx)2Te3 solid solution are obtained.

  2. Imaging Anisotropic Elastic Properties of an Orthotropic Paper Sheet Using Photorefractive Dynamic Holography

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert

    2002-12-01

    An important material property in the paper industry is the anisotropic stiffness distribution due to the fibrous microstructure of paper and to processing procedures. Ultrasonic methods offer a means of determining the stiffness of sheets of paper from the anisotropic propagation characteristics of elastic Lamb waves along the machine direction and the cross direction. That is, along and perpendicular to the direction of paper production. Currently, piezoelectric ultrasonic methods are employed in the industry to measure the elastic polar diagram of paper through multiple contacting measurements made in all directions. This paper describes a new approach utilizing the INEEL Laser Ultrasonic Camera to provide a complete image of the elastic waves traveling in all directions in the plane of the paper sheet. This approach is based on optical dynamic holographic methods that record the out of plane ultrasonic motion over the entire paper surface simultaneously without scanning. The full-field imaging technique offers great potential for increasing the speed of the measurement and it ultimately provides a substantial amount of information concerning local property variations and flaws in the paper. This report shows the success of the method and the manner in which it yields the elastic polar diagram for the paper from the dispersive flexural or antisymmetric Lamb wave.

  3. Transport properties of ceramic composites

    SciTech Connect

    Starr, T.L.

    1995-08-01

    This project involves experimental and modeling investigation of the transport properties of chemical vapor infiltration (CVI) preforms and densified composites, with particular emphasis on gas permeability and mass diffusivity. The results of this work will be useful both for on-going CVI process development and for evaluation and optimization of composite materials for fossil energy applications. With preforms made with 500 filaments/tow Nicalon at 40 vol% fiber loading, permeability values are similar for square-weave cloth layup and 3-D weave at low density. At greater densification the 3-D weave permeability is lower and approaches zero with significantly more closed porosity than the cloth layup. For filament wound preforms we were unable to make reliable measurements with the available materials. A model for gas transport in these materials utilizes percolation theory concepts. The ultimate achievable density is related to the closing of a continuous gas path through the preform. As the density approaches this limit the gas permeability and diffusivity vanish exponentially. The value of this limit is controlled primarily by the preform fiber architecture. The observed difference between the cloth layup and 3-D weave materials is due to the larger pores at tow crossing points found in the 3-D weave.

  4. A solution of the monoenergetic neutral particle transport equation for adjacent half-spaces with anisotropic scattering

    SciTech Connect

    Ganapol, B.D.; Mostacci, D.; Previti, A.

    2016-07-01

    We present highly accurate solutions to the neutral particle transport equation in a half-space. While our initial motivation was in response to a recently published solution based on Chandrasekhar's H-function, the presentation to follow has taken on a more comprehensive tone. The solution by H-functions certainly did achieved high accuracy but was limited to isotropic scattering and emission from spatially uniform and linear sources. Moreover, the overly complicated nature of the H-function approach strongly suggests that its extension to anisotropic scattering and general sources is not at all practical. For this reason, an all encompassing theory for the determination of highly precise benchmarks, including anisotropic scattering for a variety of spatial source distributions, is presented for particle transport in a half-space. We illustrate the approach via a collection of cases including tables of 7-place flux benchmarks to guide transport methods developers. The solution presented can be applied to a considerable number of one and two half-space transport problems with variable sources and represents a state-of-the-art benchmark solution.

  5. Anisotropic Elastography for Local Passive Properties and Active Contractility of Myocardium from Dynamic Heart Imaging Sequence

    PubMed Central

    Wang, Ge; Sun, L. Z.

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters. PMID:23165032

  6. Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique

    NASA Astrophysics Data System (ADS)

    Turba, K.; Hurst, R. C.; Hähner, P.

    2012-09-01

    The small punch testing technique was used to assess both creep and fracture properties of the MA956 oxide dispersion strengthened ferritic steel. The anisotropy in mechanical properties was addressed, as well as the alloy's susceptibility to thermal embrittlement. Strong anisotropy was found in the material's creep resistance at 725 °C for longer rupture times. Anisotropic behavior was also observed for the ductile-brittle transition temperature (DBTT). The origin of the anisotropy can be related to the strongly directional microstructure which enables a large amount of intergranular cracking during straining at both high and low temperatures. The DBTT of the alloy is very high, and can be further increased by at least 200 °C after 1000 h of ageing at 475 °C, due to the formation of the Cr-rich α' phase. The particularly high susceptibility of the MA956 to thermal embrittlement is mainly a consequence of its high chromium content.

  7. Dispersion properties of transverse anisotropic liquid crystal core photonic crystal fibers

    NASA Astrophysics Data System (ADS)

    Karasawa, Naoki

    2016-04-01

    The dispersion properties of liquid crystal core photonic crystal fibers for different core diameters have been calculated by a full vectorial finite difference method. In calculations, air holes are assumed to be arranged in a regular hexagonal array in fused silica and a central hole is filled with liquid crystal to create a core. In this study, three types of transverse anisotropic configurations, where liquid crystal molecules are oriented in a transverse plane, and a planar configuration, where liquid crystal molecules are oriented in a propagation direction, are considered. The large changes of the dispersion properties are found when the orientation of the liquid crystal molecules is changed from a planar configuration to a uniform configuration, where all molecules are oriented in the same direction in a transverse plane. Since the orientation of liquid crystal molecules may be controlled by applying an electric field, it could be utilized for various applications including the spectral control of supercontinuum generation.

  8. Impact of magnetic properties on the Casimir torque between anisotropic metamaterial plates

    SciTech Connect

    Deng Gang; Liu Zhongzhu; Luo Jun

    2009-12-15

    The quantized surface mode technique is used to calculate the Casimir torque between two parallel anisotropic metamaterial plates with in-plane optical axes, and our main concern is focused on the impact of the magnetic properties of the plates on the Casimir torque. Our result shows that at small separation, the Casimir torque between the two plates with frequency dependent permeabilities is larger than that between two nonmagnetic plates, while at large separation it is smaller. This can be explained as a result of the impact of both magnetic properties and material dispersion of the plates. The impact of the Drude background in connected metallic metamaterial is also discussed. These phenomena provide us with new understanding about the Casimir effect and show great potential in application.

  9. Anisotropic elastography for local passive properties and active contractility of myocardium from dynamic heart imaging sequence.

    PubMed

    Liu, Yi; Wang, Ge; Sun, L Z

    2006-01-01

    Major heart diseases such as ischemia and hypertrophic myocardiopathy are accompanied with significant changes in the passive mechanical properties and active contractility of myocardium. Identification of these changes helps diagnose heart diseases, monitor therapy, and design surgery. A dynamic cardiac elastography (DCE) framework is developed to assess the anisotropic viscoelastic passive properties and active contractility of myocardial tissues, based on the chamber pressure and dynamic displacement measured with cardiac imaging techniques. A dynamic adjoint method is derived to enhance the numerical efficiency and stability of DCE. Model-based simulations are conducted using a numerical left ventricle (LV) phantom with an ischemic region. The passive material parameters of normal and ischemic tissues are identified during LV rapid/reduced filling and artery contraction, and those of active contractility are quantified during isovolumetric contraction and rapid/reduced ejection. It is found that quasistatic simplification in the previous cardiac elastography studies may yield inaccurate material parameters.

  10. Unusual Transport and Strongly Anisotropic Thermopower in PtCoO2 and PdCoO2

    NASA Astrophysics Data System (ADS)

    Ong, Khuong; Singh, David; Wu, Ping

    2011-03-01

    Thermoelectrics provide a technology for producing electrical energy from solar and other heat sources. Thermoelectric performance requires materials with high thermopower, normally found in doped semiconductors, where the thermopower is generally nearly isotropic. We discovered using first principles calculations and Boltzmann transport theory that two oxides, PtCo O2 and PdCo O2 , which are not semiconductors, but rather good metals, have exceptionally large thermopowers in one direction, and moreover that the thermopower in these materials is highly anisotropic. This places these compounds in a highly unusual transport regime. Besides providing a new direction for thermoelectric materials research, they may be very useful in probing the fundamental limits of conventional transport theory for metals.

  11. Anisotropic superconducting property studies of single crystal PbTaSe2.

    PubMed

    Sankar, Raman; Rao, G Narsinga; Muthuselvam, I Panneer; Chang, Tay-Rong; Jeng, H T; Murugan, G Senthil; Lee, Wei-Li; Chou, F C

    2017-03-08

    The anisotropic superconducting properties of PbTaSe2 single crystal is reported. Superconductivity with T c  =  3.83  ±  0.02 K has been characterized fully with electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C p (T) measurements using single crystal samples. The superconductivity is type-II with lower critical field H c1 and upper critical field H c2 of 65 and 450 Oe (H⊥  to the ab-plane), 140 and 1500 Oe (H|| to the ab-plane), respectively. These results indicate that the superconductivity of PbTaSe2 is anisotropic. The superconducting anisotropy, electron-phonon coupling λ ep, superconducting energy gap Δ0, and the specific heat jump ΔC/γT c at T c confirms that PbTaSe2 can be categorized as a bulk superconductor.

  12. Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites.

    PubMed

    Reyes-Esqueda, Jorge Alejandro; Rodríguez-Iglesias, Vladimir; Silva-Pereyra, Héctor-Gabriel; Torres-Torres, Carlos; Santiago-Ramírez, Ana-Laura; Cheang-Wong, Juan Carlos; Crespo-Sosa, Alejandro; Rodríguez-Fernández, Luis; López-Suárez, Alejandra; Oliver, Alicia

    2009-07-20

    High-energy metallic ions were implanted in silica matrices, obtaining spherical-like metallic nanoparticles (NPs) after a proper thermal treatment. These NPs were then deformed by irradiation with Si ions, obtaining an anisotropic metallic nanocomposite. An average large birefringence of 0.06 was measured for these materials in the 300-800 nm region. Besides, their third order nonlinear optical response was measured using self-diffraction and P-scan techniques at 532 nm with 26 ps pulses. By adjusting the incident light's polarization and the angular position of the nanocomposite, the measurements could be directly related to, at least, two of the three linear independent components of its third order susceptibility tensor, finding a large, but anisotropic, response of around 10(-7) esu with respect to other isotropic metallic systems. For the nonlinear optical absorption, we were able to shift from saturable to reverse saturable absorption depending on probing the Au NP's major or minor axes, respectively. This fact could be related to local field calculations and NP's electronic properties. For the nonlinear optical refraction, we passed from self-focusing to self-defocusing, when changing from Ag to Au.

  13. Anisotropic superconducting property studies of single crystal PbTaSe2

    NASA Astrophysics Data System (ADS)

    Sankar, Raman; Narsinga Rao, G.; Panneer Muthuselvam, I.; Chang, Tay-Rong; Jeng, H. T.; Senthil Murugan, G.; Lee, Wei-Li; Chou, F. C.

    2017-03-01

    The anisotropic superconducting properties of PbTaSe2 single crystal is reported. Superconductivity with T c  =  3.83  ±  0.02 K has been characterized fully with electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C p (T) measurements using single crystal samples. The superconductivity is type-II with lower critical field H c1 and upper critical field H c2 of 65 and 450 Oe (H⊥  to the ab-plane), 140 and 1500 Oe (H|| to the ab-plane), respectively. These results indicate that the superconductivity of PbTaSe2 is anisotropic. The superconducting anisotropy, electron-phonon coupling λ ep, superconducting energy gap Δ0, and the specific heat jump ΔC/γT c at T c confirms that PbTaSe2 can be categorized as a bulk superconductor.

  14. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology.

    PubMed

    Yang, Dingzheng; Xie, Lei; Bobicki, Erin; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2014-09-16

    Understanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM). The force-distance profiles were fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which demonstrates anisotropic and pH-dependent surface charge properties of brucite-like basal plane and bilayered edge surface. The points of zero charge (PZC) of the basal and edge planes were estimated to be around pH 10-11 and 6-7, respectively. Rheology measurements of 7 vol % chrysotile (with an aspect ratio of 14.5) in 10 mM NaCl solution showed pH-dependent yield stress with a local maximum around pH 7-9, which falls between the two PZC values of the edge and basal planes of the rod particles. On the basis of the surface potentials of the edge and basal planes obtained from AFM measurements, theoretical analysis of the surface interactions of edge-edge, basal-edge, and basal-basal planes of the chrysotile rods suggests the yield stress maximum observed could be mainly attributed to the basal-edge attractions. Our results indicate that the anisotropic surface properties (e.g., charges) of chrysotile rods play an important role in the particle-particle interaction and rheological behavior, which also provides insight into the basic understanding of the colloidal interactions and rheology of nonspherical particles.

  15. Anisotropic Hc2 , thermodynamic and transport measurements, and pressure dependence of Tc in K2Cr3As3 single crystals

    DOE PAGES

    Kong, Tai; Bud'ko, Sergey L.; Canfield, Paul C.

    2015-01-30

    We present a detailed study of single crystalline K2Cr3As3 and analyze its thermodynamic and transport properties, anisotropic Hc2(T), and initial pressure dependence of Tc. In zero field, the temperature-dependent resistivity is metallic. Deviation from a linear temperature dependence is evident below 100 K and a T3 dependence is roughly followed from just above Tc (~10K) to ~40K. Anisotropic Hc2(T) data were measured up to 140 kOe with field applied along and perpendicular to the rodlike crystals. For the applied field perpendicular to the rod, Hc2(T) is linear with a slope ~–70 kOe/K. For field applied along the rod, the slopemore » is about –120 kOe/K below 70 kOe. Above 70 kOe, the magnitude of the slope decreases to ~–70 kOe/K. The electronic specific heat coefficient γ, just above Tc, is 73 mJ/mol K2; the Debye temperature ΘD is 220 K. As a result, the specific heat jump at the superconducting transition ΔC~2.2γTc. Finally, for hydrostatic pressures up to ~7 kbar, Tc decreases under pressure linearly at a rate of –0.034K/kbar.« less

  16. Anisotropic transport in single-crystal molybdenum bronze, Li0.33MoO3

    NASA Astrophysics Data System (ADS)

    Moshfeghyeganeh, Saeed; Cohn, Joshua L.; Neumeier, John J.

    2015-03-01

    We present transport measurements (resistivity, thermopower, thermal conductivity) on single crystals of the quasi-one-dimensional semiconductor Li0.33MoO3 in the temperature range 200-500 K. First synthesized and studied long ago, the thermal and thermoelectric properties for this compound have not been previously reported. We find extreme anisotropy in the Seebeck coefficient within the a - c planes, with Sc -Sa ~= 300 μ V/K near room temperature. The thermal conductivity at room temperature in the a - c planes was ~ 1 . 5 - 2 W/mK and 7-8 times smaller along b*. We also report x-ray studies of the out-of-plane (b*) lattice constants indicating a small structural transition at T ~ 350 K that coincides with anomalies in the transport properties. This material is based upon work supported by the U.S. Department of Energy Office of Basic Energy Sciences Grant DE-FG02-12ER46888 (Univ. Miami) and the National Science Foundation under Grant DMR-0907036 (Mont. St. Univ.).

  17. Solidification of Anisotropic Semiconductor Tellurium Samples in Microgravity and Their Properties

    NASA Astrophysics Data System (ADS)

    Parfeniev, R. V.; Farbshtein, I. I.; Yakimov, S. V.; Shalimov, V. P.; Turchaninov, A. M.

    A research program was partly completed to determine the influence of microgravity on the crystallization and electrical properties of tellurium, as a semiconductor with both anisotropic crystal lattice and energy spectrum. Three different tellurium samples were solidified in space by a modified Bridgman method in the Crystallizator ChSK-1 furnace aboard the MIR space station. The variation of the crystal structure, charge carrier concentration and mobility along the sample length was investigated and compared with material solidified on earth. The lowest impurity and defect concentrations were obtained in partially melted single crystals resolidified by the Bridgman method. The distribution of electric active and neutral defects along the samples with a concentration as small as 10 -5 at% were measured by a galvanomagnetic method at low temperatures. Some peculiarities of the remelting process connected with microgravity were observed.

  18. The transport properties of activated carbon fibers

    SciTech Connect

    di Vittorio, S.L. . Dept. of Materials Science and Engineering); Dresselhaus, M.S. . Dept. of Electrical Engineering and Computer Science Massachusetts Inst. of Tech., Cambridge, MA . Dept. of Physics); Endo, M. . Dept. of Electrical Engineering); Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons. 19 refs., 4 figs.

  19. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  20. The Transport Properties of Activated Carbon Fibers

    DOE R&D Accomplishments Database

    di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

    1990-07-01

    The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

  1. Transport properties of fission product vapors

    SciTech Connect

    Im, K.H.; Ahluwalia, R.K.

    1983-07-01

    Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors.

  2. Anisotropic mechanical properties of zircon and the effect of radiation damage

    DOE PAGES

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; ...

    2016-06-02

    Our study provides new insights into the relationship between radiation-dose-dependent structural damage, due to natural U and Th impurities, and the anisotropic mechanical properties (Poisson s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. 1991) and synthetic samples, covering a dose range of zero up to 6.8 x 1018 -decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by zkan (1976), revealed a general radiation-induced decrease in stiffness (~ 54 %) and hardness (~ 48 %) and an increase ofmore » the Poisson s ratio (~ 54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Rios et al. 2000a; Farnan and Salje 2001; Zhang and Salje 2001). This agreement, revealed by the different methods, indicates a huge influence of structural and even local phenomena on the macroscopic mechanical properties.« less

  3. Anisotropic mechanical properties of zircon and the effect of radiation damage

    SciTech Connect

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.

    2016-06-02

    Our study provides new insights into the relationship between radiation-dose-dependent structural damage, due to natural U and Th impurities, and the anisotropic mechanical properties (Poisson s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. 1991) and synthetic samples, covering a dose range of zero up to 6.8 x 1018 -decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by zkan (1976), revealed a general radiation-induced decrease in stiffness (~ 54 %) and hardness (~ 48 %) and an increase of the Poisson s ratio (~ 54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Rios et al. 2000a; Farnan and Salje 2001; Zhang and Salje 2001). This agreement, revealed by the different methods, indicates a huge influence of structural and even local phenomena on the macroscopic mechanical properties.

  4. Geomechanical and anisotropic acoustic properties of Lower Jurassic Posidonia shales from Whitby (UK)

    NASA Astrophysics Data System (ADS)

    Zhubayev, Alimzhan; Houben, Maartje; Smeulders, David; Barnhoorn, Auke

    2014-05-01

    The Posidonia Shale Formation (PSF) is one of the possible resource shales for unconventional gas in Northern Europe and currently is of great interest to hydrocarbon exploration and production. Due to low permeability of shales, economically viable production requires hydraulic fracturing of the reservoir. The design of hydrofractures requires an estimate of stress state within the reservoir and geomechanical properties such as Young's modulus and Poisson's ratio. Shales are often highly anisotropic and the models which neglect shale anisotropy may fail to predict the behaviour of hydrofractures. Seismic attenuation anisotropy, on the other hand, can play a key role in quantitative rock characterization. Where the attenuation anisotropy can potentially be linked to anisotropic permeability of shales, its fluid/gas saturation and preferred development of anisotropic fracture orientations. In this research, by utilizing the so-called Thomsen's notations, the elastic anisotropy of our (fractured and unfractured) shales has been investigated using a pulse transmission technique in the ultrasonic frequency range (0.3-1 MHz). Assuming transverse isotropy of the shales, and taking the axis x3 as the axis of rotational symmetry, directional Young's moduli and Poisson's ratios were obtained. The Young's modulus measured parallel to bedding (E1) is found to be larger than the Young's modulus measured orthogonal to bedding (E3). In case of the Poisson's ratios, we found that ν31 is larger than ν12, where νijrelates elastic strain in xj direction to stress applied in xi direction. Finally, attenuation anisotropy in dry and layer-parallel fractured Posidonia shale samples has been studied in the same frequency range. The attenuation of compressional (QP-1) and shear (QS-1) waves increases substantially with a macro (or wavelength) fracture introduction, especially for P and S waves propagating orthogonal to the bedding. In non-fractured and fractured dry shales, QP-1 is

  5. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    PubMed Central

    Cho, Namchul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Murali, Banavoth; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tom; Bakr, Osman M.

    2016-01-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm−3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices. PMID:27830694

  6. Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

    NASA Astrophysics Data System (ADS)

    Cho, Namchul; Li, Feng; Turedi, Bekir; Sinatra, Lutfan; Sarmah, Smritakshi P.; Parida, Manas R.; Saidaminov, Makhsud I.; Murali, Banavoth; Burlakov, Victor M.; Goriely, Alain; Mohammed, Omar F.; Wu, Tom; Bakr, Osman M.

    2016-11-01

    Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm-3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.

  7. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties.

    PubMed

    Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2017-01-24

    A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) (3)∞[Eu2(BDC)3]·2DMF·2H2O (BDC(2-) = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.

  8. Mechanical Properties of Anisotropic Conductive Adhesive Film Under Hygrothermal Aging and Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Gao, Li-Lan; Chen, Xu; Gao, Hong

    2012-07-01

    Mechanical properties of anisotropic conductive adhesive film (ACF) were investigated experimentally under various environmental conditions. The temperature sweep test was conducted to investigate the effects of temperature on dynamical mechanical properties of the ACF. The ACF exhibited transitions to the glass state, viscoelastic state, and rubber state with increasing temperature, and its glass-transition temperature ( T g) was determined to be 149°C. The creep-recovery behaviors of the ACF were investigated, and it was found that the initial strains, instantaneous strains, and creep or recovery rates increased with increasing temperature. No obvious creep phenomenon was observed at low temperatures (≤0°C). The creep strain and creep rates at any time decreased with increasing hygrothermal aging time. The uniaxial tensile behaviors of the ACF were also investigated under hygrothermal aging and thermal cycling. The results show that the Young's modulus and tensile strength of the ACF decrease with increasing hygrothermal aging time; however, they increase at first and then decrease with increasing thermal cycling time. T g decreases slightly for the ACF after hygrothermal aging; however, it increases after thermal cycling.

  9. Anisotropic optical properties of few-layer transition metal dichalcogenide ReS2

    NASA Astrophysics Data System (ADS)

    Li, Zhenglu; Cao, Ting; da Jornada, Felipe H.; Wu, Meng; Louie, Steven G.

    We present first-principles (DFT, GW and GW-BSE) calculations of the electronic and optical properties of few-layer rhenium disulfide (ReS2). Monolayer ReS2 shows strong many-electron effects with a fundamental quasiparticle band gap of 2.38 eV based on G0W0 calculation and a large exciton binding energy of 690 meV based on solving the Bethe-Salpeter equation. Highly anisotropic linear-polarized optical absorptions are revealed for few-layer and bulk ReS2. The band gap shows a decreasing trend with the optical polarization direction near the absorption edge gradually rotating from around 67 degree in the monolayer to 85 degree in the bulk, referencing to the Re-chain. Our calculations are consistent with recent experimental data and theoretical studies, and provide a systematic understanding of the electronic and optical properties in few-layer ReS2. This work was supported by National Science Foundation Grant No. DMR15-1508412 and the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Computational resources have been provided by DOE at Lawrence Berkeley National Laboratory's NERSC facility.

  10. Transport properties of alumina nanofluids.

    PubMed

    Wong, Kau-Fui Vincent; Kurma, Tarun

    2008-08-27

    Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 °C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m(-1) K(-1) was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 °C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at

  11. Anisotropic mechanical properties of zircon and the effect of radiation damage

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.

    2016-10-01

    This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson's ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510-1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772-4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson's ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401-2412, 2000a; Farnan and Salje in J Appl Phys 89:2084-2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057-3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.

  12. When do fractured media become seismically anisotropic? Some implications on quantifying fracture properties

    NASA Astrophysics Data System (ADS)

    Yousef, B. M.; Angus, D. A.

    2016-06-01

    Fractures are pervasive features within the Earth's crust and they have a significant influence on the multi-physical response of the subsurface. The presence of coherent fracture sets often leads to observable seismic anisotropy enabling seismic techniques to remotely locate and characterise fracture systems. In this study, we confirm the general scale-dependence of seismic anisotropy and provide new results specific to shear-wave splitting (SWS). We find that SWS develops under conditions when the ratio of wavelength to fracture size (λS / d) is greater than 3, where Rayleigh scattering from coherent fractures leads to an effective anisotropy such that effective medium model (EMM) theory is qualitatively valid. When 1 <λS / d < 3 there is a transition from Rayleigh to Mie scattering, where no effective anisotropy develops and hence the SWS measurements are unstable. When λS / d < 1 we observe geometric scattering and begin to see behaviour similar to transverse isotropy. We find that seismic anisotropy is more sensitive to fracture density than fracture compliance ratio. More importantly, we observe that the transition from scattering to an effective anisotropic regime occurs over a propagation distance between 1 and 2 wavelengths depending on the fracture density and compliance ratio. The existence of a transition zone means that inversion of seismic anisotropy parameters based on EMM will be fundamentally biased. More importantly, we observe that linear slip EMM commonly used in inverting fracture properties is inconsistent with our results and leads to errors of approximately 400% in fracture spacing (equivalent to fracture density) and 60% in fracture compliance. Although EMM representations can yield reliable estimates of fracture orientation and spatial location, our results show that EMM representations will systematically fail in providing quantitatively accurate estimates of other physical fracture properties, such as fracture density and compliance

  13. Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Zhi Hao; Bossard, Jeremy A.; Wang, Xiande; Werner, Douglas H.

    2011-01-01

    In this paper, we present a method to retrieve the effective electromagnetic parameters of a slab of anisotropic metamaterial from reflection and transmission coefficients (or scattering parameters). In this retrieval method, calculated or measured scattering parameters are employed for plane waves incident obliquely on a metamaterial slab at different angles. Useful analytical expressions are derived for extracting the homogeneous anisotropic medium parameters of a metamaterial. To validate the method, the effective permittivity and permeability tensor parameters for a composite split-ring resonator-wire array are retrieved and shown to be consistent with observations previously reported in the literature. This retrieval method is further incorporated into a genetic algorithm (GA) to synthesize an infrared zero-index-metamaterial with a wide field-of-view, demonstrating the utility of the new design approach. The anisotropic parameter retrieval algorithm, when combined with a robust optimizer such as GA, can provide a powerful design tool for exploiting the anisotropic properties in metamaterials to achieve specific angle dependant or independent responses.

  14. Electronic, transport, and optical properties of bulk and mono-layer PdSe2

    DOE PAGES

    Sun, Jifeng; Shi, Hongliang; Siegrist, Theo; ...

    2015-10-13

    In this study, the electronic and optical properties of bulk and monolayer PdSe2 are investigated using firstprinciples calculations. Using the modified Becke-Johnson potential, we find semiconductor behavior for both bulk and monolayer PdSe2 with indirect gap values of 0.03 eV for bulk and 1.43 eV for monolayer, respectively. Our sheet optical conductivity results support this observation and show similar anisotropic feature in the 2D plane. We further study the thermoelectric properties of the 2D PdSe2 using Blotzmann transport model and find interestingly high Seebeck coefficients (>200 μV/K) for both p- and n-type up to high doping level (–2 x 1013more » cm2) with an anisotropic character in an electrical conductivity suggesting better thermoelectric performance along y direction in the plane.V« less

  15. Numerical research on the anisotropic transport of thermal neutron in heterogeneous porous media with micron X-ray computed tomography

    PubMed Central

    Wang, Yong; Yue, Wenzheng; Zhang, Mo

    2016-01-01

    The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image. PMID:27271330

  16. Anisotropic Thermal Properties of Nanostructured Magnetic, Carbon and Hybrid Magnetic - Carbon Materials

    NASA Astrophysics Data System (ADS)

    Ramirez, Sylvester

    anisotropy of the thermal conductivity, K/K ⊥ ˜ 675, which is substantially larger even than in the high-quality graphite. The strongly anisotropic heat conduction properties of these films can be useful for the thermal filler applications. The results obtained for the nanostructured magnetic and hybrid materials are important for the renewable energy and electronic applications of permanent magnets.

  17. Electronic transport properties in graphene oxide frameworks

    NASA Astrophysics Data System (ADS)

    Zhu, P.; Cruz-Silva, E.; Meunier, V.

    2014-02-01

    The electronic transport properties in multiterminal graphene oxide framework (GOF) materials are investigated using a combination of theoretical and computational methods. GOFs make up four-terminal [origin=c]90H-shaped GNR-L-GNR junctions where sandwiched boronic acid molecules (L) are covalently linked to two graphene nanoribbons (GNRs) of different edge chiralities. The transport properties are governed by both tunneling and quasiresonant regimes. We determine how the presence of linker molecules affects the transport properties and establish that the through-molecule transport properties can be tuned by varying the chemical composition of the pillar molecules but are not significantly modified when changing the type of electrodes from zigzag GNRs to armchair GNRs. In addition, we find that in multilinker systems containing two parallel molecules in the device area, the coupling between the molecules can lead to both constructive and destructive quantum interferences. We also examine the inability of the classical Kirchhoff's superposition law to account for electron flow in multilinker GOF nanonetworks.

  18. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

    PubMed

    Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang

    2015-04-29

    The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the

  19. Anisotropic defect-induced ferromagnetism and transport in Gd-doped GaN two-dimensional electron gasses

    NASA Astrophysics Data System (ADS)

    Yang, Zihao; Kent, Thomas F.; Yang, Jing; Jin, Hyungyu; Heremans, Joseph P.; Myers, Roberto C.

    2015-12-01

    Here we report on the effect of rare-earth Gd doping on the magnetic properties and magnetotransport of GaN two-dimensional electron gasses (2DEGs). Samples are grown by plasma-assisted molecular-beam epitaxy and consist of AlN/GaN heterostructures where Gd is δ doped within a polarization-induced 2DEG. Ferromagnetism is observed in these Gd-doped 2DEGs with a Curie temperature above room temperature and an anisotropic spontaneous magnetization preferring an out-of-plane (c -axis) orientation. At magnetic fields up to 50 kOe, the magnetization remains smaller for the in-plane configuration than for the out-of-plane configuration, which is indicative of exchange-coupled spins locked along the polar c axis. The sample with the lowest Gd concentration (2.3 ×1014c m-2 ) exhibits a saturation magnetization of 41.1 μB/ G d3 + at 5 K revealing that the Gd ion spins (7 μB ) alone do not account for the magnetization. Surprisingly, control samples grown without any Gd display inconsistent magnetic properties; in some control samples weak ferromagnetism is observed, and in others paramagnetism is observed. The ferromagnetic 2DEGs do not exhibit the anomalous Hall effect; the Hall resistance varies nonlinearly with the magnetic field but does not track the magnetization, indicating the lack of coupling between the ferromagnetic phase and the conduction-band electrons within the 2DEG.

  20. Extremely large anisotropic transport caused by electronic phase separation in Ti-doped Ca3Ru2O7

    NASA Astrophysics Data System (ADS)

    Peng, Jin; Liu, J. Y.; Gu, Xiaomin; Zhou, Guotai; Wang, Wei; Hu, J.; Zhang, F. M.; Wu, X. S.

    2016-06-01

    In this paper, we reported an extremely large out-of-plane/in-plane anisotropic transport ({ρc}/{ρab} ~ 109) in double layer ruthenates. The mechanism that may be responsible for this phenomenon is also explored here. Distinct from previously well studied layered materials which show large out-of-plane/in-plane electronic anisotropy (103-106), the Ti-doped Ca3Ru2O7 single crystals not only form quasi-2D layered structure, but also show phase separation within the layers. We found that Ti doping in Ca3Ru2O7 induced electronic phase separation between the insulating phase and weak localized phase. The ratio of these two phases is very sensitive to the Ti concentration. At typical concentration, the weak localized phase may form a channel on the background of the insulating phase within the ab plane. However, the small volume of weak localized phase makes it less likely to overlap in different layers. This results in a much larger electronic anisotropy ratio than pristine compound Ca3Ru2O7. This new mechanism provides a route for further increase electronic anisotropy, which will remarkably reduce current leak and power consumption in electronic devices.

  1. Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method

    NASA Astrophysics Data System (ADS)

    Wei, Qin; Zhu, Jianguo; Chen, Wei

    2016-02-01

    The mechanical properties of plasma-sprayed thermal barrier coatings (TBC) are of great scientific and technological significance for the design and fabrication of TBC systems. The ultrasonic method combined with a sing-around method for mechanical properties measurement of TBC is deduced and the elastic modulus can be determined in the spray, or longitudinal, direction, and the transverse direction. Tested specimens of plasma-sprayed TBC are detached from the substrate and treated with thermal exposure at 1400 °C. The elastic moduli along the longitudinal and transverse directions of the TBCs are measured by different types of ultrasonic waves combined with a sing-around method, while the Poisson's ratio is also obtained simultaneously. The experimental results indicate that the magnitude of longitudinal elastic modulus is larger than that of the transverse one, and thus the plasma-sprayed TBC has an anisotropic mechanical property. Moreover, the elastic moduli along both longitudinal and transverse directions change with high-temperature exposure time, which consists of a rapid increasing stage followed by a slow decreasing stage. In addition, the magnitude of Poisson's ratio increases slightly from 0.05 to 0.2 with the high-temperature exposure time. Generally, the microstructures in the plasma-sprayed coatings and their evolution in a high-temperature environment are the main causes of the varying anisotropic mechanical properties.

  2. Preparation of mechanically aligned carbon nanotube films and their anisotropic transport phenomena

    NASA Astrophysics Data System (ADS)

    Bae, Dong Jae; Kim, Keun Soo; Park, Young Soo; An, Kay Hyeok; Moon, Jeong-Mi; Lim, Seong Chu; Lee, Young Hee

    2001-10-01

    Thin films of aligned carbon nanotubes (CNTs) were prepared by a simple mechanical rubbing from single-walled carbon nanotube (SWNT) slurry, which was synthesized by the catalytic arc discharge. The measured electrical resistivity shows high anisotropy ρN/ρP ranging from 5 to 15. The annealed samples show a monotonic decrease in the resistivity with increasing temperature. CNTs in the mat act as strong Luttinger liquids with g values ranging from 0.18 to 0.26, similar to an isolated nanotube. We propose that the transport is dominantly governed by the formation of metal-metal crossed junctions of nanotubes in the mat.

  3. Transport phenomena in an anisotropically aligned single-wall carbon nanotube film

    NASA Astrophysics Data System (ADS)

    Bae, Dong Jae; Kim, Keun Soo; Park, Young Soo; Suh, Eun Kyoung; An, Kay Hyeok; Moon, Jeong-Mi; Lim, Seong Chu; Park, Soo Hyeon; Jeong, Yoon Hee; Lee, Young Hee

    2001-12-01

    Thin films of aligned carbon nanotubes were prepared by a simple mechanical rubbing from a singlewalled carbon nanotube powder, which was synthesized by the catalytic arc discharge. The measured electrical resistivity shows high anisotropy (ρN/ρP) ranging from 5 to 15. The annealed samples show a monotonic decrease in the resistivity with increasing temperature. Carbon nanotubes in the mat act as strong Luttinger liquids with g values ranging from 0.18 to 0.26, similar to an isolated nanotube. We propose that the transport is dominantly governed by the formation of metal-metal crossed junctions of nanotubes in the mat.

  4. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    PubMed

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low

  5. Transport properties in the Jovian atmosphere

    NASA Technical Reports Server (NTRS)

    Biolsi, L.

    1978-01-01

    Transport properties in a Jupiter-like atmosphere (89 mol % hydrogen and 11 mol % helium) are obtained by using the method of the kinetic theory of gases. The transport collision integrals are calculated by fitting various two-body semiempirical interaction potentials for which the collision integrals are tabulated to ab initio quantum mechanical calculations of the two-body interactions. The collision integrals are used to calculate the binary diffusion coefficients, viscosity, and 'total' thermal conductivity of the pure gases and the gas mixtures at 1-atm pressure from 1000 K to 25,000 K.

  6. Anisotropic thermal transport in double-pancake coil wound with DI-BSCCO® tape

    NASA Astrophysics Data System (ADS)

    Naito, T.; Fujishiro, H.; Yamada, Y.

    2010-11-01

    We have measured the temperature dependence of the thermal resistances Rr(T) and Rz(T) of the parallelepiped samples cut from a double-pancake coil along the radial (r) and the thickness (z) directions, respectively. The double-pancake coil was wound with DI-BSCCO® tape fabricated by Sumitomo Electric Industries, Ltd. DI-BSCCO is a (Bi, Pb)2Sr2Ca2Cu3O10+x tape sheathed with silver. Both Rr(T) and Rz(T) increase monotonically with decreasing temperature. We analyze the thermal transport in the coil by use of the parallel and series heat current circuit of DI-BSCCO tapes and insulators.

  7. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material.

    PubMed

    Sun, Bao-Zhen; Ma, Zuju; He, Chao; Wu, Kechen

    2015-11-28

    Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS2 and SnSe2 as thermoelectric materials at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is the a direction in TE application. Most strikingly, when 800 K is reached, SnS2 can show a peak power factor (PF) of 15.50 μW cm(-1) K(-2) along the a direction, while a relatively low value (11.72 μW cm(-1) K(-2)) is obtained in the same direction of SnSe2. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (κmin) along the a direction is estimated to be about 0.67 and 0.55 W m(-1) K(-1) for SnS2 and SnSe2, respectively, even lower than the measured lattice thermal conductivity of Bi2Te3 (1.28 W m(-1) K(-1) at 300 K). The reasonable PF and κmin suggest that both SnS2 and SnSe2 are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe2 and a higher value of 0.96 for SnS2 along the a direction at a carrier concentration of 1.94 × 10(19) (SnSe2) vs. 2.87 × 10(19) cm(-3) (SnS2). The best ZT values in SnX2 (X = S, Se) are comparable to that in Bi2Te3 (0.8), a typical thermoelectric material. We hope that this theoretical investigation will provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX2 materials.

  8. Blind inversion method using Lamb waves for the complete elastic property characterization of anisotropic plates.

    PubMed

    Vishnuvardhan, J; Krishnamurthy, C V; Balasubramaniam, Krishnan

    2009-02-01

    A novel blind inversion method using Lamb wave S(0) and A(0) mode velocities is proposed for the complete determination of elastic moduli, material symmetries, as well as principal plane orientations of anisotropic plates. The approach takes advantage of genetic algorithm, introduces the notion of "statistically significant" elastic moduli, and utilizes their sensitivities to velocity data to reconstruct the elastic moduli. The unknown material symmetry and the principal planes are then evaluated using the method proposed by Cowin and Mehrabadi [Q. J. Mech. Appl. Math. 40, 451-476 (1987)]. The blind inversion procedure was verified using simulated ultrasonic velocity data sets on materials with transversely isotropic, orthotropic, and monoclinic symmetries. A modified double ring configuration of the single transmitter and multiple receiver compact array was developed to experimentally validate the blind inversion approach on a quasi-isotropic graphite-epoxy composite plate. This technique finds application in the area of material characterization and structural health monitoring of anisotropic platelike structures.

  9. Dynamical properties of transportation on complex networks

    NASA Astrophysics Data System (ADS)

    Shen, Bo; Gao, Zi-You

    2008-02-01

    We study the dynamical properties of transportation considering the topology structure of networks and congestion effects, based on a proposed simple model. We analyze the behavior of the model for finding out the relationship between the properties of transportation and the structure of network. Analysis and numerical results demonstrate that the transition from free flow to congested regime can be observed for both single link load and network load, but it is discontinuous for single link and continuous for network. We also find that networks with large average degree have small average link betweenness and are more tolerant to congestion, and networks with homogeneous structure can hold more vehicles in stationary state at the subcritical region. Furthermore, by allotting capacity with different mode to links, a manner of enhancing the performance of networks is introduced, which should be helpful in the design of traffic networks.

  10. Diffusive Transport Properties Across Coupling Regimes

    NASA Astrophysics Data System (ADS)

    Dharuman, G.; Murillo, M. S.; Verboncoeur, J.; Christlieb, A.

    2014-10-01

    Transport properties are poorly known across coupling regimes, therefore understanding them is of importance for theoretical and practical reasons. A useful tool is an ultracold plasma system because of the experimental capability to tune the system to attain Coulomb coupling Γ ranging from 0.1 to 1 to 10 with the screening parameter κ ranging from 0 to 4 to 8, spanning the regions of the phase diagram from weak to moderate to strongly coupled and screened systems. Strong coupling is possible if Disorder Induced Heating is mitigated which requires a correlated initial ion state. Of particular interest is Rydberg blockaded gas of ultracold atoms where the local blockade effect results in correlations. Predictions of higher coupling in ultracold plasma created from a Rydberg blockaded gas have been reported. In this work we examine the diffusive transport properties of ultracold plasma system using molecular dynamics simulations for experimentally realizable values of Γ and κ as discussed above.

  11. First-principles investigation on vibrational, anisotropic elastic and thermodynamic properties for L12 structure of Al3Er and Al3Yb under high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Xudong; Jiang, Wei

    2016-02-01

    To better clarify the physical properties for Al3RE precipitates, first-principles calculations are performed to investigate the vibrational, anisotropic elastic and thermodynamic properties of Al3Er and Al3Yb. The calculated results agree well with available experimental and theoretical ones. The vibrational properties indicate that Al3Er and Al3Yb will keep their dynamical stabilities with L12 structure up to 100 GPa. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 100 GPa. The mechanical anisotropy is predicted by anisotropic constants AG, AU, AZ and 3D curved surface of Young's modulus. The calculated results show that both Al3Er and Al3Yb are isotropic at zero pressure and obviously anisotropic under high pressure. Further, we systematically investigate the thermodynamic properties and provide the relationships between thermal parameters and pressure. Finally, the pressure-dependent behaviours of density of states, Mulliken charge and bond length are discussed.

  12. Analysis of an anisotropic coastal aquifer system using variable-density flow and solute transport simulation

    USGS Publications Warehouse

    Souza, W.R.; Voss, C.I.

    1987-01-01

    The groundwater system in southern Oahu, Hawaii consists of a thick, areally extensive freshwater lens overlying a zone of transition to a thick saltwater body. This system is analyzed in cross section with a variable-density groundwater flow and solute transport model on a regional scale. The simulation is difficult, because the coastal aquifer system has a saltwater transition zone that is broadly dispersed near the discharge area, but is very sharply defined inland. Steady-state simulation analysis of the transition zone in the layered basalt aquifer of southern Oahu indicates that a small transverse dispersivity is characteristic of horizontal regional flow. Further, in this system flow is generally parallel to isochlors and steady-state behavior is insensitive to the longitudinal dispersivity. Parameter analysis identifies that only six parameters control the complex hydraulics of the system: horizontal and vertical hydraulic conductivity of the basalt aquifer; hydraulic conductivity of the confining "caprock" layer; leakance below the caprock; specific yield; and aquifer matrix compressibility. The best-fitting models indicate the horizontal hydraulic conductivity is significantly greater than the vertical hydraulic conductivity. These models give values for specific yield and aquifer compressibility which imply a considerable degree of compressive storage in the water table aquifer. ?? 1987.

  13. First-principle studies on the influence of anisotropic pressure on the physical properties of aluminum nitride

    NASA Astrophysics Data System (ADS)

    Wang, Zhifan; Zhao, Junwu; Gao, Yang; Zhang, Yanning

    2017-01-01

    In this work, we performed extensive first-principle studies to discuss the effect of uniaxial and biaxial mechanical pressure on the structural and physical properties of AlN piezoelectric material, including the longitudinal elastic constant (C 33), piezoelectric constant (e 33), static dielectric constant (ε 33), and mass density (ρ). In particular, we give the relationship between the paramters mentioned above and the longitudinal acoustic wave velocity (V) under anisotropic pressure. Our results show that the applied uniaxial or biaxial pressure in the basal plane has a more obvious influence on physical properties of AlN than the uniaxial pressure along hexagonal axis. The pressure-induced variations of C 33, e 33 and ρ significantly change the V value, whereas the effect of ε 33 on V is negligible. Our theoretical results provide useful information for the performance predictions of electro-acoustic mechanics sensors, such as FBAR mechanical sensors, based on the intrinsic properties of piezoelectric materials.

  14. ANALYTIC SOLUTIONS FOR CURRENT SHEET STRUCTURE DETERMINED BY SELF-CONSISTENT, ANISOTROPIC TRANSPORT PROCESSES IN A GRAVITATIONAL FIELD

    SciTech Connect

    Goodman, Michael L.

    2011-04-10

    A Harris sheet magnetic field with maximum magnitude B{sub 0} and length scale L is combined with the anisotropic electrical conductivity, viscosity, and thermoelectric tensors for an electron-proton plasma to define a magnetohydrodynamic model that determines the steady state of the plasma. The transport tensors are functions of temperature, density, and magnetic field strength, and are computed self-consistently as functions of position x normal to the current sheet. The flow velocity, magnetic field, and gravitational force lie along the z-axis. The plasma is supported against gravity by the viscous force. Analytic solutions are obtained for temperature, density, and velocity. They are valid over a broad range of temperature, density, and magnetic field strength, and so may be generally useful in astrophysical applications. Numerical examples of solutions in the parameter range of the solar atmosphere are presented. The objective is to compare Joule and viscous heating rates, determine the velocity shear that generates viscous forces that support the plasma and are self-consistent with a mean outward mass flux comparable to the solar wind mass flux, and compare the thermoelectric and conduction current contributions to the Joule heating rate. The ratio of the viscous to Joule heating rates per unit mass can exceed unity by orders of magnitude, and increases rapidly with L. The viscous heating rate can be concentrated outside the region where the current density is localized, corresponding to a resistively heated layer of plasma bounded by viscously heated plasma. The temperature gradient drives a thermoelectric current density that can have a magnitude greater than that of the electric-field-driven conduction current density, so thermoelectric effects are important in determining the Joule heating rate.

  15. Measurement of Transport Properties of Aerosolized Nanomaterials

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 – 400 nm. Principal component analysis of the obtained airborne particle

  16. Charge Transport Properties in Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Moog, Mark; Tsui, Frank; Vonwald, Ian; You, Wei

    Electrical transport properties in poly(3-methyl)thiophene (P3MT) brushes have been studied. The P3MT brushes correspond to a new type of surface-tethered, vertically oriented conjugated molecular wires, sandwiched between two metallic electrodes to form the electrode-molecule-electrode (EME) devices. P3MT is a highly conjugated polymer, a ''workhorse'' material for organic electronics and photonics. The P3MT brushes were grown on ITO surfaces with controlled length (between 2 and 100 nm). The top electrodes were transfer-printed Au films with lateral dimensions between 200 nm and 50 μm. I-V and differential conductance measurements were performed using conductive AFM and 4-terminal techniques. Tunneling and field-emission measurements in EME devices with molecular lengths < 5 nm show HOMO mediated direct hole tunneling with energy barriers of 0.3 and 0.5 eV at the respective interfaces with ITO and Au. The transport properties in longer brushes are indicative of the two quasi-Ohmic interfaces with a characteristic offset in the conductance minimum of 0.12 V biased toward the ITO. Temperature dependent parameters have been examined at various molecular lengths. The drift mobility and the interplay between intra- and intermolecular transport have been investigated.

  17. Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties

    NASA Astrophysics Data System (ADS)

    Carbone, G.; Lorenz, B.; Persson, B. N. J.; Wohlers, A.

    2009-07-01

    In this paper we extend the theory of contact mechanics and rubber friction developed by one of us (B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)) to the case of surfaces with anisotropic surface roughness. As an application we calculate the viscoelastic contribution to the rubber friction. We show that the friction coefficient may depend significantly on the sliding direction, while the area of contact depends weakly on the sliding direction. We have carried out experiments for rubber blocks sliding on unidirectionally polished steel surfaces. The experimental data are in a good qualitative agreement with the theory.

  18. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  19. Changes in the statistical properties of stochastic anisotropic electromagnetic beams on propagation in the turbulent atmosphere.

    PubMed

    Du, Xinyue; Zhao, Daomu; Korotkova, Olga

    2007-12-10

    We report analytic formulas for the elements of the e 2 X2 cross-spectral density matrix of a stochastic electromagnetic anisotropic beam propagating through the turbulent atmosphere with the help of vector integration. From these formulas the changes in the spectral density (spectrum), in the spectral degree of polarization, and in the spectral degree of coherence of such a beam on propagation are determined. As an example, these quantities are calculated for a so-called anisotropic electromagnetic Gaussian Schell-model beam propagating in the isotropic and homogeneous atmosphere. In particular, it is shown numerically that for a beam of this class, unlike for an isotropic electromagnetic Gaussian Schell-model beam, its spectral degree of polarization does not return to its value in the source plane after propagating at sufficiently large distances in the atmosphere. It is also shown that the spectral degree of coherence of such a beam tends to zero with increasing distance of propagation through the turbulent atmosphere, in agreement with results previously reported for isotropic beams.

  20. Upscaling of Thermal Transport Properties in Enhanced Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Johnson, S.; Hao, Y.; Chiaramonte, L.

    2010-12-01

    : Engineered Geothermal Systems (EGS) have garnered significant attention as a possible source of geographically disperse, carbon-free energy without the environmental impact of many other renewable energy sources. However, a significant barrier to the adoption of EGS is the uncertainty in whether a specific site is amenable to engineering and how fluid injection rates can affect, either through stimulation of the fracture network or through deleterious channeling of the thermal fluid, the heat extraction rate possible in a specific reservoir. Because of the uncertainties involved in determining the exact fracture network topology extant in any particular reservoir, it is desirable to have a stochastic description (distribution) of the possible heat extraction rates that could be achieved. This work provides both an approach and application of the approach for simulating several synthetic fracture networks. The approach uses a coupled geomechanics and discrete fracture network (DFN) solver coupled uni-directionally with a reservoir scale, hydro-thermal transport code, the Non-isothermal Unsaturated-Saturated Flow and Transport simulation code (NUFT), to capture the coupled hydro-thermo-mechanical behavior of these synthetic networks. Particular attention is paid to the upscaling approach used to determine effective permeability and thermal transfer coefficients that are used in the dual porosity/permeability (DKM) model employed in NUFT. This upscaling is based on a multi-scale treatment of the domain, starting with the upscaling of permeability from explicitly represented fractures in the DFN model, which considers the fracture-scale effects of fluid injection, to a finely resolved, unstructured mesh representation of the subdomain. Effective properties of this subdomain are then determined for a variety of sub-sampled discrete fracture network topologies. The result catalog of spatially correlated thermal and fluid properties are then used to populate the

  1. A comparison of anisotropic statistical properties of CMB maps based on the WMAP and planck space mission data

    NASA Astrophysics Data System (ADS)

    Verkhodanov, O. V.; Naiden, Ya. V.

    2016-10-01

    We compare the anisotropic properties of the cosmic microwave background (CMB) maps constructed based on the data of NASA's WMAP (9th year of observations) and ESA's Planck (2015 release) space missions. In our analysis, we use two two-dimensional estimators of the scatter of the signal on a sphere, which amount to algorithms of mapping the ratio of the scatter in the Northern and Southern hemispheres depending on the method of dividing (specifically, rotating and cutting) the sky into hemispheres. The scatter is computed either as a standard deviation σ, or as the difference between the minimum and maximum values on a given hemisphere. Applying both estimators to the CMB anisotropy datameasured by two spacemissions, Planck and WMAP, we compared the variations of the background at different angular scales.Maps with a resolution of l ≤ 100 show that the division into regions with different levels of statistical anisotropy lies close to the ecliptic plane, and after preliminary removal of the l ≤ 20 harmonics from the CMB data, the anisotropic signal related to the Galaxy begins to dominate.

  2. Anisotropic Thermal and Electrical Properties of Thin Thermal Interface Layers of Graphite Nanoplatelet-Based Composites

    PubMed Central

    Tian, Xiaojuan; Itkis, Mikhail E.; Bekyarova, Elena B.; Haddon, Robert C.

    2013-01-01

    Thermal interface materials (TIMs) are crucial components of high density electronics and the high thermal conductivity of graphite makes this material an attractive candidate for such applications. We report an investigation of the in-plane and through-plane electrical and thermal conductivities of thin thermal interface layers of graphite nanoplatelet (GNP) based composites. The in-plane electrical conductivity exceeds its through-plane counterpart by three orders of magnitude, whereas the ratio of the thermal conductivities is about 5. Scanning electron microscopy reveals that the anisotropy in the transport properties is due to the in-plane alignment of the GNPs which occurs during the formation of the thermal interface layer. Because the alignment in the thermal interface layer suppresses the through-plane component of the thermal conductivity, the anisotropy strongly degrades the performance of GNP-based composites in the geometry required for typical thermal management applications and must be taken into account in the development of GNP-based TIMs.

  3. Methods for conditioning anisotropic, operator-scaling, fractal random fields, and the effect on solute transport simulations

    NASA Astrophysics Data System (ADS)

    Revielle, J.; Benson, D. A.

    2008-12-01

    The fractal scaling of aquifer materials have been observed in many data sets. Typically, the scaling coefficient is different in different directions. To date, only unconditional realizations with these properties can be generated. We present and analyze two methods of creating conditional operator-scaling fractal random fields (OSFRF) which have the ability to condition any number and geometry of measurements into each realization. One method is based on the theory of Orthographic Projection (Feller, 1971) and requires the continuous checking of a conditional probability function. The other method uses a best linear unbiased estimate (i.e., a kriged mean surface between known points) and an unconditional realization to create each conditional field. These two methods are analyzed for computational difficulty and their ability to recreate the desired fractal scaling along different (eigenvector) directions. Finally these methods are applied to a transport experiment through a slab of Massillon sandstone to show the advantage of using conditional OSFRF in solute transport modeling.

  4. Effect of mechanical boundary conditions on the dynamic and static properties of a strongly anisotropic ferromagnet

    SciTech Connect

    Gorelikov, G. A.; Fridman, Yu. A.

    2013-07-15

    The spectra of coupled magnetoelastic waves in a semi-infinite strongly anisotropic easy-plane ferromagnet with a rigidly fixed face are analyzed for two variants of fixation (in the basal plane and perpendicularly to it). The phase states of the system are determined. Differences in the phase diagrams and elementary excitation spectra depending on the choice of the sample fixation plane are considered. When rotational invariance is taken into account, the nonreciprocity effect for the velocities of sound in a crystal appears. It is shown that the velocity of sound in the sample considerably depends on the symmetry of the imposed mechanical boundary conditions. The phase diagrams of the system under investigation are presented.

  5. Electronic, transport, and optical properties of bulk and mono-layer PdSe2

    SciTech Connect

    Sun, Jifeng; Shi, Hongliang; Siegrist, Theo; Singh, David J.

    2015-10-13

    In this study, the electronic and optical properties of bulk and monolayer PdSe2 are investigated using firstprinciples calculations. Using the modified Becke-Johnson potential, we find semiconductor behavior for both bulk and monolayer PdSe2 with indirect gap values of 0.03 eV for bulk and 1.43 eV for monolayer, respectively. Our sheet optical conductivity results support this observation and show similar anisotropic feature in the 2D plane. We further study the thermoelectric properties of the 2D PdSe2 using Blotzmann transport model and find interestingly high Seebeck coefficients (>200 μV/K) for both p- and n-type up to high doping level (–2 x 1013 cm2) with an anisotropic character in an electrical conductivity suggesting better thermoelectric performance along y direction in the plane.V

  6. Effect of specimen-specific anisotropic material properties in quantitative computed tomography-based finite element analysis of the vertebra.

    PubMed

    Unnikrishnan, Ginu U; Barest, Glenn D; Berry, David B; Hussein, Amira I; Morgan, Elise F

    2013-10-01

    Intra- and inter-specimen variations in trabecular anisotropy are often ignored in quantitative computed tomography (QCT)-based finite element (FE) models of the vertebra. The material properties are typically estimated solely from local variations in bone mineral density (BMD), and a fixed representation of elastic anisotropy ("generic anisotropy") is assumed. This study evaluated the effect of incorporating specimen-specific, trabecular anisotropy on QCT-based FE predictions of vertebral stiffness and deformation patterns. Orthotropic material properties estimated from microcomputed tomography data ("specimen-specific anisotropy"), were assigned to a large, columnar region of the L1 centrum (n = 12), and generic-anisotropic material properties were assigned to the remainder of the vertebral body. Results were compared to FE analyses in which generic-anisotropic properties were used throughout. FE analyses were also performed on only the columnar regions. For the columnar regions, the axial stiffnesses obtained from the two categories of material properties were uncorrelated with each other (p = 0.604), and the distributions of minimum principal strain were distinctly different (p ≤ 0.022). In contrast, for the whole vertebral bodies in both axial and flexural loading, the stiffnesses obtained using the two categories of material properties were highly correlated (R2 > 0.82, p < 0.001) with, and were no different (p > 0.359) from, each other. Only moderate variations in strain distributions were observed between the two categories of material properties. The contrasting results for the columns versus vertebrae indicate a large contribution of the peripheral regions of the vertebral body to the mechanical behavior of this bone. In companion analyses on the effect of the degree of anisotropy (DA), the axial stiffnesses of the trabecular column (p < 0.001) and vertebra (p = 0.007) increased with increasing DA. These findings

  7. Complex polarization ratio to determine polarization properties of anisotropic tissue using polarization-sensitive optical coherence tomography

    PubMed Central

    Park, Jesung; Kemp, Nate J.; Rylander, H. Grady; Milner, Thomas E.

    2009-01-01

    Complex polarization ratio (CPR) in materials with birefringence and biattenuance is shown as a logarithmic spiral in the complex plane. A multi-state Levenberg-Marquardt nonlinear fitting algorithm using the CPR trajectory collected by polarization sensitive optical coherence tomography (PS-OCT) was developed to determine polarization properties of an anisotropic scattering medium. The Levenberg-Marquardt nonlinear fitting algorithm using the CPR trajectory is verified using simulated PS-OCT data with speckle noise. Birefringence and biattenuance of a birefringent film, ex-vivo rodent tail tendon and in-vivo primate retinal nerve fiber layer were determined using measured CPR trajectories and the Levenberg-Marquardt nonlinear fitting algorithm. PMID:19654746

  8. Ellipsometric characterization and density-functional theory analysis of anisotropic optical properties of single-crystal α-SnS

    SciTech Connect

    Banai, R. E.; Brownson, J. R. S.; Burton, L. A.; Walsh, A.; Choi, S. G. To, B.; Hofherr, F.; Sorgenfrei, T.; Cröll, A.

    2014-07-07

    We report on the anisotropic optical properties of single-crystal tin monosulfide (SnS). The components ε{sub a}, ε{sub b}, and ε{sub c} of the pseudodielectric-function tensor (ε)=(ε₁)+i(ε₂) spectra are taken from 0.73 to 6.45 eV by spectroscopic ellipsometry. The measured (ε) spectra are in a good agreement with the results of the calculated dielectric response from hybrid density functional theory. The (ε) spectra show the direct band-gap onset and a total of eight above-band-gap optical structures that are associated with the interband-transition critical points (CPs). We obtain accurate CP energies by fitting analytic CP expressions to second-energy-derivatives of the (ε) data. Their probable electronic origins and implications for photovoltaic applications are discussed.

  9. Structural, dynamic, and transport properties of concentrated aqueous sodium chloride solutions under an external static electric field.

    PubMed

    Ren, Gan; Shi, Rui; Wang, Yanting

    2014-04-24

    In the absence of an external electric field, it has already been known that ion clusters are formed instantaneously in moderately concentrated ionic solutions. In this work, we use molecular dynamics (MD) simulations to investigate the changes of structural, dynamic, and transport properties in a sodium chloride solution under an external electric field from the ion cluster perspective. Our MD simulation results indicate that, with a strong external electric field E (≥0.1 V/nm) applied, ion clusters become smaller and less net charged, and the structures and dynamics as well as transport properties of the ion solution become anisotropic. The influence of the cluster structure and shell structure to transport properties was analyzed and the Einstein relation was found invalid in this system.

  10. Transport properties of quark and gluon plasmas

    SciTech Connect

    Heiselberg, H.

    1993-12-01

    The kinetic properties of relativistic quark-gluon and electron-photon plasmas are described in the weak coupling limit. The troublesome Rutherford divergence at small scattering angles is screened by Debye screening for the longitudinal or electric part of the interactions. The transverse or magnetic part of the interactions is effectively screened by Landau damping of the virtual photons and gluons transferred in the QED and QCD interactions respectively. Including screening a number of transport coefficients for QCD and QED plasmas can be calculated to leading order in the interaction strength, including rates of momentum and thermal relaxation, electrical conductivity, viscosities, flavor and spin diffusion of both high temperature and degenerate plasmas. Damping of quarks and gluons as well as color diffusion in quark-gluon plasmas is, however, shown not to be sufficiently screened and the rates depends on an infrared cut-off of order the ``magnetic mass,`` m{sub mag} {approximately} g{sup 2}T.

  11. Transport properties of epitaxial lift off films

    NASA Technical Reports Server (NTRS)

    Mena, R. A.; Schacham, S. E.; Young, P. G.; Haugland, E. J.; Alterovitz, S. A.

    1993-01-01

    Transport properties of epitaxially lifted-off (ELO) films were characterized using conductivity, Hall, and Shubnikov-de Haas measurements. A 10-15 percent increase in the 2D electron gas concentration was observed in these films as compared with adjacent conventional samples. We believe this result to be caused by a backgating effect produced by a charge build up at the interface of the ELO film and the quartz substrate. This increase results in a substantial decrease in the quantum lifetime in the ELO samples, by 17-30 percent, but without a degradation in carrier mobility. Under persistent photoconductivity, only one subband was populated in the conventional structure, while in the ELO films the population of the second subband was clearly visible. However, the increase of the second subband concentration with increasing excitation is substantially smaller than anticipated due to screening of the backgating effect.

  12. Anisotropic superconducting and normal state magnetic properties of single crystals of RNi*2*B*2*C compounds (R = Y, Gd, Dy, Ho, Er, and Tm)

    SciTech Connect

    Cho, Beongki

    1995-09-26

    The interaction of superconductivity with magnetism has been one of the most interesting and important phenomena in solid state physics since the 1950`s when small amounts of magnetic impurities were incorporated in superconductors. The discovery of the magnetic superconductors RNi2B2C (R = rare earth, Y) offers a new system to study this interaction. The wide ranges of superconducting transition (Tc) and antiferromagnetic (AF) ordering temperatures (TN) (0 K ≤ Tc ≤ 16 K, 0 K ≤ TN ≤ 20 K) give a good opportunity to observe a variety of interesting phenomena. Single crystals of high quality with appropriate size and mass are crucial in examining the anisotropic intrinsic properties. Single crystals have been grown successfully by an unusual high temperature flux method and characterized thoroughly by X-ray, electrical transport, magnetization, neutron scattering, scanning electron microscopy, and other measurements.

  13. Anisotropic Artificial Impedance Surfaces

    NASA Astrophysics Data System (ADS)

    Quarfoth, Ryan Gordon

    Anisotropic artificial impedance surfaces are a group of planar materials that can be modeled by the tensor impedance boundary condition. This boundary condition relates the electric and magnetic field components on a surface using a 2x2 tensor. The advantage of using the tensor impedance boundary condition, and by extension anisotropic artificial impedance surfaces, is that the method allows large and complex structures to be modeled quickly and accurately using a planar boundary condition. This thesis presents the theory of anisotropic impedance surfaces and multiple applications. Anisotropic impedance surfaces are a generalization of scalar impedance surfaces. Unlike the scalar version, anisotropic impedance surfaces have material properties that are dependent on the polarization and wave vector of electromagnetic radiation that interacts with the surface. This allows anisotropic impedance surfaces to be used for applications that scalar surfaces cannot achieve. Three of these applications are presented in this thesis. The first is an anisotropic surface wave waveguide which allows propagation in one direction, but passes radiation in the orthogonal direction without reflection. The second application is a surface wave beam shifter which splits a surface wave beam in two directions and reduces the scattering from an object placed on the surface. The third application is a patterned surface which can alter the scattered radiation pattern of a rectangular shape. For each application, anisotropic impedance surfaces are constructed using periodic unit cells. These unit cells are designed to give the desired surface impedance characteristics by modifying a patterned metallic patch on a grounded dielectric substrate. Multiple unit cell geometries are analyzed in order to find the setup with the best performance in terms of impedance characteristics and frequency bandwidth.

  14. On the relativistic anisotropic configurations

    NASA Astrophysics Data System (ADS)

    Shojai, F.; Kohandel, M.; Stepanian, A.

    2016-06-01

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  15. Theoretical study on transport properties of topological states of matter

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Chuan

    In condensed matter physics, states of matter are usually classified by symmetry. Topological states of matter describe new quantum states of matter that cannot adiabatically connect to conventional states of matter even though they share the same symmetry. Thus, the discovery of topological states of matter has opened a new research era and attracted intensive research interests in recent years. This dissertation is devoted to the theoretical and numerical study of transport properties of topological states of matter, mainly focusing on two topological systems, time reversal invariant topological insulator nano-structures and the quantum anomalous Hall insulators. The first system studied in this dissertation is time reversal invariant topological insulator, which is an insulating material behaving as an insulator in its interior but with conducting channels on its surface. The conducting surface states of a topological insulator are known as "helical states" due to the spin texture in the momentum space and protected by time reversal symmetry. Helical surface states have been observed in surface sensitive experiments, such as angular-resolved photon emission spectroscopy and scanning tunneling microscopy. However, signatures of topological surface states in transport measurements are complicated by the dominating conduction from bulk channels and strong disorder effect. Therefore, in this dissertation, we numerically study transport in disordered topological insulator nano-structures, e.g. nanowires and nanotubes, which possess a larger surfaceto-volume ratio compared to bulk systems. For a topological insulator nanowire, it is found that a gapless mode with linear dispersion, which is refered to as a topological state in the main text, arises when a half-integer magnetic flux quantum is inserted along the nanowire. We find that topological states possess a longer localization length than other non-topological states. Thus, for a long nanowire or nanotube, a

  16. Documentation and verification of VST2D; a model for simulating transient, Variably Saturated, coupled water-heat-solute Transport in heterogeneous, anisotropic 2-Dimensional, ground-water systems with variable fluid density

    USGS Publications Warehouse

    Friedel, Michael J.

    2001-01-01

    This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water

  17. Transport properties of supercooled confined water

    NASA Astrophysics Data System (ADS)

    Mallamace, F.; Branca, C.; Broccio, M.; Corsaro, C.; Gonzalez-Segredo, N.; Spooren, J.; Stanley, H. E.; Chen, S.-H.

    2008-07-01

    This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.

  18. Strain-mediated magnetic and transport properties of epitaxial LuxFe3-xO4 films

    NASA Astrophysics Data System (ADS)

    Wang, P.; Jin, C.; Zheng, D. X.; Bai, H. L.

    2015-10-01

    Strain mediated structure, magnetic, and transport properties of spinel ferrites were investigated by growing epitaxial LuxFe3-xO4 (LFO, 0 ≤ x ≤ 0.26 ) films on SrTiO3 and MgO substrates with in-plane compressive and tensile strains, respectively. The lattice parameter of LFO films decreases on SrTiO3 substrates, while increases on MgO substrates with the increasing Lu content. The LFO films on SrTiO3 substrates exhibit larger saturation magnetization and smaller exchange bias and coercive field. Phase shift of anisotropic magnetoresistance is also observed in the LFO films on SrTiO3 substrates. In addition, the nonmagnetic Lu3+ ions in spinel ferrites enhance the spin canting, which further increases the exchange bias and coercive field and strengthens the four-fold symmetry of anisotropic magnetoresistance and the two-fold symmetry of planar Hall effect.

  19. Anisotropic Nanoparticles and Anisotropic Surface Chemistry.

    PubMed

    Burrows, Nathan D; Vartanian, Ariane M; Abadeer, Nardine S; Grzincic, Elissa M; Jacob, Lisa M; Lin, Wayne; Li, Ji; Dennison, Jordan M; Hinman, Joshua G; Murphy, Catherine J

    2016-02-18

    Anisotropic nanoparticles are powerful building blocks for materials engineering. Unusual properties emerge with added anisotropy-often to an extraordinary degree-enabling countless new applications. For bottom-up assembly, anisotropy is crucial for programmability; isotropic particles lack directional interactions and can self-assemble only by basic packing rules. Anisotropic particles have long fascinated scientists, and their properties and assembly behavior have been the subjects of many theoretical studies over the years. However, only recently has experiment caught up with theory. We have begun to witness tremendous diversity in the synthesis of nanoparticles with controlled anisotropy. In this Perspective, we highlight the synthetic achievements that have galvanized the field, presenting a comprehensive discussion of the mechanisms and products of both seed-mediated and alternative growth methods. We also address recent breakthroughs and challenges in regiospecific functionalization, which is the next frontier in exploiting nanoparticle anisotropy.

  20. Near-field investigations of the anisotropic properties of supported lipid bilayers

    NASA Astrophysics Data System (ADS)

    Johnson, Merrell A.

    2011-12-01

    The details of Polarization Modulation Near-Field Scanning Optical Microscopy (PM-NSOM) are presented. How to properly calibrate and align the system is also introduced. A measurement of Muscovite crystal is used to display the capabilities of the setup. Measurements of supported gel state 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers are presented, emphasizing how it was tooled in exploiting the anisotropic nature of the acyl chains. A discussion of how the effective retardance (DeltaS = 2 pi (ne-no) t /lambda) and the direction of the projection of the acyl chains (φ) are measured simultaneously is given, (where t is the thickness of the bilayer and lambda is the wavelength of light used). It is shown from DeltaS the birefringence (ne-n o) of the bilayer is determined, by assuming the acyl chain tilt with respect to the membrane's normal to be approximately φ ≈ 32 degrees. Time varying experiments show lateral diffusions of ˜ 2x10 -12 (cm2)/s. Temperature controlled PM-NSOM is shown to be a viable way to determine the main phase transition temperature (Tm) for going from the gel to liquid disorder state of supported DPPC bilayers. A change DeltaS ˜ (3.8+/-0.3 mrad) at the main phase transition temperature Tm (≈ 41°C) is observed. This agrees well with previous values of ( ne-no) and translates to an assumed φ ˜ 32 degrees, when T < Tm and 0 when T > Tm. Evidence of supper heating and supper cooling will be presented, along with a discussion of the fluctuations that occur around Tm. Finally it is shown how physical parameters such as the polarizability are extracted from the data. Values of the transverse (alpha t) and longitudinal (alphal) polarizabilites of the acyl chains are shown to be, alphat = 44.2A3 and alphal = 94.4 A3, which correspond well with the theoretical values of a single palmitic acid (C16) alpha t = 25.14 A3 and alpha l = 45.8 A3.

  1. Transport properties of alkali metal doped fullerides

    SciTech Connect

    Yadav, Daluram Yadav, Nishchhal

    2015-07-31

    We have studied the intercage interactions between the adjacent C{sub 60} cages and expansion of lattice due to the intercalation of alkali atoms based on the spring model to estimate phonon frequencies from the dynamical matrix for the intermolecular alkali-C{sub 60} phonons. We considered a two-peak model for the phonon density of states to investigate the nature of electron pairing mechanism for superconducting state in fullerides. Coulomb repulsive parameter and the electron phonon coupling strength are obtained within the random phase approximation. Transition temperature, T{sub c}, is obtained in a situation when the free electrons in lowest molecular orbital are coupled with alkali-C{sub 60} phonons as 5 K, which is much lower as compared to reported T{sub c} (20 K). The superconducting pairing is mainly driven by the high frequency intramolecular phonons and their effects enhance it to 22 K. The importance of the present study, the pressure effect and normal state transport properties are calculated within the same model leading superconductivity.

  2. Anisotropic ray trace

    NASA Astrophysics Data System (ADS)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  3. New optimization method for intermolecular potentials: Optimization of a new anisotropic united atoms potential for olefins: Prediction of equilibrium properties

    NASA Astrophysics Data System (ADS)

    Bourasseau, Emeric; Haboudou, Mehalia; Boutin, Anne; Fuchs, Alain H.; Ungerer, Philippe

    2003-02-01

    In this study, we propose a new global procedure to perform optimization of semiempirical intermolecular potential parameters on the basis of a large reference database. To obtain transferable parameters, we used the original method proposed by Ungerer [Ungerer et al., J. Chem. Phys. 112, 5499 (2000)], based on the minimization of a dimensionless error criterion. This method allows the simultaneous optimization of several parameters from a large set of reference data. However, the computational cost of such a method limits its application, because it implies the calculation of an important number of partial derivatives, calculated by finite differences between the results of several different simulations. In this work, we propose a new method to evaluate partial derivatives, in order to reduce the computing time and to obtain more consistent derivatives. This method is based on the analysis of statistical fluctuations during a single simulation. To predict equilibrium properties of olefins, we optimize the Lennard-Jones potential parameters of the unsaturated hydrocarbon groups using the anisotropic united atoms description. The resulting parameters are consistent with those previously determined for linear and branched alkanes. Test simulations have been performed at temperatures ranging from 150 to 510 K for several α-olefins (ethylene, propene, 1-butene, 1-pentene, 1-hexene, 1-octene), several β-olefins (trans-2-butene, cis-2-butene, trans-2-pentene), isobutene, and butadiene. Equilibrium properties are well predicted, and critical properties can be evaluated with a good accuracy, despite the fact that most of the results constitute pure predictions. It is concluded that the AUA potential, due to a relevant physical meaning, can be transferred to a large range of olefins with good success.

  4. Magnetic properties and anisotropic coercivity in nanogranular films of Co/Al2O3 above the percolation limit

    NASA Astrophysics Data System (ADS)

    Kulyk, M. M.; Kalita, V. M.; Lozenko, A. F.; Ryabchenko, S. M.; Stognei, O. V.; Sitnikov, A. V.; Korenivski, V.

    2014-08-01

    Magnetic properties of nanogranular ferromagnetic Co/Al2O3 films with 74.5 at% Co, which is above the percolation limit, are investigated. It is established that the films have perpendicular magnetic anisotropy and a weaker in-plane anisotropy. The magnetization curves show that the film consists of two magnetic components: a dominating contribution from magneto-anisotropic isolated grains with the anisotropy axis perpendicular to the film plane and a weaker contribution from the percolated part of the film. This two-component magnetic composition of the films, with the dominating contribution from the nanograins, is confirmed by transmission electron microscopy as well as by ferromagnetic resonance spectroscopy. It is further established that the coercive field of the film is almost entirely determined by the percolated part of the film. In this, the angular dependence of the coercive force, Hc (θH), is essentially proportional to sin-1θH, where θH is the angle between the applied field and the film's normal. However, for θH → 0, Hc (θH) there is a narrow minimum with Hc approaching zero. Such non-linear dependence agrees well with our modelling results for a two-component magnetic system of the film, where the non-percolated nanograins have a distinct perpendicular anisotropy. The reported results should be important for in-depth characterization and understanding the magnetism and anisotropy in inhomogeneous systems as well as for applications, specifically in perpendicular magnetic recording.

  5. Analysis on the anisotropic electromechanical properties of lead magnoniobate titanate single crystal for ring type ultrasonic motors

    NASA Astrophysics Data System (ADS)

    Shi, Xiang; Huang, Wenbin; Li, Fei; Li, Zhenrong; Xu, Zhuo; Jiang, Xiaoning; Wei, Xiaoyong

    2016-11-01

    This work discussed the optimized cut of single crystal lead magnoniobate titanate (PMNT) for use of ring type travelling wave ultrasonic motors (USMs), according to anisotropic analysis on electromechanical properties. The selection criterion of crystal orientation relies on the circular uniformity of the induced travelling wave amplitude on the stator surface. By calculating the equivalent elastic coefficient c11 and lateral piezoelectric constant d31, the optimal crystal orientations were proposed for PMNT single crystals poled along different directions. For single crystal poled along <001>c directions, the optimal orientation lies along [001]c with d31=-1335pC/N and k31=0.87. The crystallographic orientation [025]c is the optimized orientation for single crystals poled along <011>c direction with d31=199pC/N and k31=0.55. The optimal orientation of 1R configuration is [332 ¯ ] c with a large enhancement of d31 = 1201 and k31=0.92.

  6. Investigating linkages between atmospheric and terrain properties and spatial anisotropic multiscaling in orographic convective precipitation

    NASA Astrophysics Data System (ADS)

    Nogueira, M.; Barros, A. P.; Miranda, P. M.

    2011-12-01

    The solutions of idealized fully nonlinear cloud resolving numerical simulations of orographic convective precipitation display statistical multiscaling, similar to what is commonly found in observations in the atmosphere. This result is verified even in the absence of scaling in the initial conditions or terrain forcing, suggesting that this scaling behavior should be a general property of the nonlinear solutions of the Navier-Stokes like equations governing the atmospheric dynamics. By taking advantage of this scale invariance property, statistical downscaling methods can be constructed which can be used as sub-grid scale parameterizations and provide a way to bridge between coarser resolution numerical simulations and the high resolution needs of hydrological applications. However, the horizontal scaling exponent function (and respective multifractal parameters) varies with atmospheric and terrain properties, particularly small scale terrain spectra, atmospheric stability and mean wind speed. This result qualitatively agrees with the predictions of linear stability analysis that suggests the governing role of these parameters in embedded convective structures. Hence multiscaling statistical parameters should be computed for each particular geographical location and atmospheric conditions, bringing the necessity of development of relationships to predict them from coarse grid atmospheric data and terrain spectra. The spatial anisotropy (both vertical and horizontal) of the scaling exponent function for rain, cloud and velocity fields is also investigated. Based on the computed statistical multifractal exponents, multifractal simulations are performed to test the ability of these cascade models in reproducing the statistical properties of the atmospheric fields and the sensitivity of the statistical properties of the fields to variations in the multifractal parameters. Finally, simulations with scaling terrain forcing are created and the relationship between

  7. Unusual transport and highly anisotropic thermopower in PtCoO2 and PdCoO2

    SciTech Connect

    Ong, Khuong P; Singh, David J; Wu, Ping

    2010-01-01

    We show, using Boltzmann transport calculations and analysis of experimental data, that hexagonal PdCoO2 and PtCoO2 have a highly unusual metallic transport. The in-plane transport is typical of a very good metal, with high conductivity and low positive thermopower. The c-axis transport is completely different, with 2 orders of magnitude lower, but still coherent, conductivity and remarkably a very large negative thermopower. This large anisotropy of the thermopower provides an opportunity for investigating transport in a highly unusual regime using bulk materials.

  8. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties.

    PubMed

    Chen, Qiyi; Mangadlao, Joey Dacula; Wallat, Jaqueline; De Leon, Al; Pokorski, Jonathan K; Advincula, Rigoberto C

    2017-02-01

    Blending thermoplastic polyurethane (TPU) with poly(lactic acid) (PLA) is a proven method to achieve a much more mechanically robust material, whereas the addition of graphene oxide (GO) is increasingly applied in polymer nanocomposites to tailor further their properties. On the other hand, additive manufacturing has high flexibility of structure design which can significantly expand the application of materials in many fields. This study demonstrates the fused deposition modeling (FDM) 3D printing of TPU/PLA/GO nanocomposites and its potential application as biocompatible materials. Nanocomposites are prepared by solvent-based mixing process and extruded into filaments for FDM printing. The addition of GO largely enhanced the mechanical property and thermal stability of the nanocomposites. Interestingly, we found that the mechanical response is highly dependent on printing orientation. Furthermore, the 3D printed nanocomposites exhibit good biocompatibility with NIH3T3 cells, indicating promise as biomaterials scaffold for tissue engineering applications.

  9. Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure

    NASA Astrophysics Data System (ADS)

    Liu, Jinming; Wu, Kai; Wang, Jian-Ping

    2016-05-01

    Cubic FeCo alloy nanoparticles (NPs) with body-centered cubic (bcc) phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM) to superferromagetism (SFM). Zero-field-cooled (ZFC) and field-cooled (FC) curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.

  10. Research Update: Structural and transport properties of (Ca,La)FeAs{sub 2} single crystal

    SciTech Connect

    Caglieris, F.; Pallecchi, I.; Lamura, G.; Putti, M.; Sala, A.; Fujioka, M.; Hummel, F.; Johrendt, D.; Takano, Y.; Ishida, S.; Iyo, A.; Eisaki, H.; Ogino, H.; Yakita, H.; Shimoyama, J.

    2016-02-01

    Structural and transport properties in the normal and superconducting states are investigated in a Ca{sub 0.8}La{sub 0.2}FeAs{sub 2} single crystal with T{sub c} = 27 K, belonging to the newly discovered 112 family of iron based superconductors. The transport critical current density J{sub c} for both field directions measured in a focused ion beam patterned microbridge reveals a weakly field dependent and low anisotropic behaviour with a low temperature value as high as J{sub c}(B = 0) ∼ 10{sup 5} A/cm{sup 2}. This demonstrates not only bulk superconductivity but also the potential of 112 superconductors towards applications. Interestingly, this superconducting compound undergoes a structural transition below 100 K which is evidenced by temperature-dependent X-ray diffraction measurements. Data analysis of Hall resistance and magnetoresistivity indicate that magnetotransport properties are largely dominated by an electron band, with a change of regime observed in correspondence of the onset of a structural transition. In the low temperature regime, the contribution of a hole band to transport is suggested, possibly playing a role in determining the superconducting state.

  11. Applications of asymmetric nanotextured parylene surface using its wetting and transport properties

    NASA Astrophysics Data System (ADS)

    Sekeroglu, Koray

    In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter

  12. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-11-01

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems.

  13. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr(0.7)(Ca(0.6)Sr(0.4))(0.3)MnO₃/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-11-17

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr(0.7)(Ca(0.6)Sr(0.4))(0.3)MnO3/0.7Pb(Mg(1/3)Nb(2/3))O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems.

  14. Transport properties of Dirac semimetal Cd3As2

    NASA Astrophysics Data System (ADS)

    Liang, Tian; Gibson, Quinn; Xiong, Jun; Liu, Minhao; Hirschberger, Maximilian; Cava, Robert; Ong, Nai Phuan

    2014-03-01

    The semimetal Cd3As2 has emerged as an attractive candidate for a Dirac semimetal. A recent LDA calculation reveals that, at the Fermi energy, it has two bulk Dirac nodes which straddle the Γ point along the kz axis. The Dirac nodes were recently observed by ARPES. We have made extensive transport measurements of Cd3As2. Because of possible Cd vacancy disorder in the very large unit cell (160 atoms), the SdH oscillations reveal a quantum lifetime that is moderately damped. Despite the disorder, the observed resistivity ρ in some crystals displays a RRR of 1000. At 4 K, the residual resistivity is anomalously low (30 n Ω cm). We estimate that the mobility exceeds 106 cm2V-1s-1. A magnetic field H strongly increases ρ by factors of 100 to 1000 at 10 Tesla. This giant magnetoresistance (MR) is highly anisotropic. The MR is largest when H is perpendicular to the axis (110) and minimal when H is ∥(110). We will discuss possible origins of this unusual anisotropic giant MR. We also discuss the possibility of detecting an enhanced longitudinal MR associated with charge pumping between Weyl nodes (the chiral anomaly). Supported by Army Research Office (ARO W911NF-11-1-0379) and NSF-MRSEC Grant DMR 0819860.

  15. Neoclassical transport properties and their limits in NSTX

    NASA Astrophysics Data System (ADS)

    Houlberg, W. A.; Strand, P. I.; Shaing, K. C.

    2001-10-01

    The low aspect ratio and low toroidal field of NSTX enhance its neoclassical transport properties, but also push the limits of standard neoclassical models. Particle and energy transport, plasma rotation, the radial electric field, and bootstrap current are examined for typical NSTX discharges. Regimes of inward and outward impurity transport driven by a combination of the inductive electric field (Ware pinch), inward transport on the deuterium density gradient, and outward transport on the ion temperature gradient are identified. Orbit losses and atomic physics effects near the plasma boundary lead to modifications in the bootstrap current and impurity transport properties in the H-mode pedestal. Potato orbit effects near the axis, included as a viscosity modification, can enhance the ion energy transport, but are reduced by orbit squeezing. The low aspect ratio and high beta of NSTX plasmas provide a critical test of the limits of neoclassical theory.

  16. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms.

    PubMed

    Akseli, I; Hancock, B C; Cetinkaya, C

    2009-07-30

    The mechanical property anisotropy of compacts made from four commercially available pharmaceutical excipient powders (microcrystalline cellulose, lactose monohydrate, ascorbic acid, and aspartame) was evaluated. The speed of pressure (longitudinal) waves in the uni-axially compressed cubic compacts of each excipient in the three principle directions was determined using a contact ultrasonic method. Average Young's moduli of each compact in the axial (x) and radial (y and z) directions were characterized. The contact ultrasonic measurements revealed that average Young's modulus values vary with different testing orientations which indicate Young's modulus anisotropy in the compacts. The extent of Young's modulus anisotropy was quantified by using a dimensionless ratio and was found to be significantly different for each material (microcrystalline cellulose>lactose>aspartame>ascorbic acid). It is also observed that using the presented contact method, compacts at high solid fraction (0.857-0.859) could be differentiated than those at the solid fraction of 0.85 in their groups. The presented contact ultrasonic method is an attractive tool since it has the advantages of being sensitive to solid fraction ratio, non-destructive, requiring small amount of material and rapid. It is noteworthy that, since the approach provides insight into the performance of common pharmaceutical materials and fosters increased process knowledge, it can be applied to broaden the understanding of the effect of the mechanical properties on the performance (e.g., disintegration profiles) of solid oral dosage forms.

  17. Transport and magnetic properties in topological materials

    NASA Astrophysics Data System (ADS)

    Liang, Tian

    The notion of topology has been the central topic of the condensed matter physics in recent years, ranging from 2D quantum hall (QH) and quantum spin hall (QSH) states, 3D topological insulators (TIs), topological crystalline insulators (TCIs), 3D Dirac/Weyl semimetals, and topological superconductors (TSCs) etc. The key notion of the topological materials is the bulk edge correspondence, i.e., in order to preserve the symmetry of the whole system (bulk+edge), edge states must exist to counter-compensate the broken symmetry of the bulk. Combined with the fact that the bulk is topologically protected, the edge states are robust due to the bulk edge correspondence. This leads to interesting phenomena of chiral edge states in 2D QH, helical edge states in 2D QSH, "parity anomaly'' (time reversal anomaly) in 3D TI, helical edge states in the mirror plane of TCI, chiral anomaly in Dirac/Weyl semimetals, Majorana fermions in the TSCs. Transport and magnetic properties of topological materials are investigated to yield intriguing phenomena. For 3D TI Bi1.1Sb0.9Te 2S, anomalous Hall effect (AHE) is observed, and for TCI Pb1-x SnxSe, Seebeck/Nernst measurements reveal the anomalous sign change of Nernst signals as well as the massive Dirac fermions. Ferroelectricity and pressure measurements show that TCI Pb1-xSnxTe undergoes quantum phase transition (QPT) from trivial insulator through Weyl semimetal to anomalous insulator. Dirac semimetals Cd3As2, Na 3Bi show interesting results such as the ultrahigh mobility 10 7cm2V-1s-1 protected from backscattering at zero magnetic field, as well as anomalous Nernst effect (ANE) for Cd3As2, and the negative longitudinal magnetoresistance (MR) due to chiral anomaly for Na3Bi. In-plane and out-of-plane AHE are observed for semimetal ZrTe5 by in-situ double-axes rotation measurements. For interacting system Eu2Ir2O7, full angle torque magnetometry measurements reveal the existence of orthogonal magnetization breaking the symmetry of

  18. Anisotropic magneto-optical properties of vanadium in Bi4Ge3O12

    NASA Astrophysics Data System (ADS)

    Petkova, P.

    2016-07-01

    The paper deals with the investigation of the magneto-optical effect and photochromism in vanadium doped Bi4Ge3O12 (BGO) single crystals in a wide spectral range. It has been found out that the photosensitivity of doped crystals is significantly shifted to the visible wavelengths. This investigation reports the experimental results of Faraday rotation in the case of vanadium doped Bi4Ge3O12. The rotation angle of the polarization plane of the crystal plate has been investigated in the magnetic field in an illuminated state, obtained by exposure with ultraviolet (UV) light and an annealed state developed after annealing at 400 °C. We have observed the strong appearance of vanadium impurity in the spectral range 380-700 nm. The experimental determination of magneto-optical properties of V4+ ions gives us an opportunity for calculation of the refractive index n of the doped BGO.

  19. Anisotropic transport properties of PrBa 2Cu 3O 7

    NASA Astrophysics Data System (ADS)

    Goto, M.; Takenaka, K.; Eisaki, H.; Uchida, S.

    1997-08-01

    The in-plane resitivity is measured on the twin-free PrBa 2Cu 3O 7 crystals. The observal anisotropy indicates that dominant carrier conduction takes place in the CuO one-dimensional chain. By applying the pressure, ϱa, containing CuO 2 plane contribution increases more rapidly than ϱa, containing both and plane contributions. This is considered to be due to the increased the hybridization between Pr4f and O2p orbital at the plane site, consistent with the scenario proposed by Fehrenbacher and Rice.

  20. Anisotropic Kepler and anisotropic two fixed centres problems

    NASA Astrophysics Data System (ADS)

    Maciejewski, Andrzej J.; Przybylska, Maria; Szumiński, Wojciech

    2017-02-01

    In this paper we show that the anisotropic Kepler problem is dynamically equivalent to a system of two point masses which move in perpendicular lines (or planes) and interact according to Newton's law of universal gravitation. Moreover, we prove that generalised version of anisotropic Kepler problem as well as anisotropic two centres problem are non-integrable. This was achieved thanks to investigation of differential Galois groups of variational equations along certain particular solutions. Properties of these groups yield very strong necessary integrability conditions.

  1. Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties.

    PubMed

    Tan, Shu Min; Ambrosi, Adriano; Sofer, Zdenĕk; Huber, Štěpán; Sedmidubský, David; Pumera, Martin

    2015-05-04

    The layered structure of molybdenum disulfide (MoS2 ) is structurally similar to that of graphite, with individual sheets strongly covalently bonded within but held together through weak van der Waals interactions. This results in two distinct surfaces of MoS2 : basal and edge planes. The edge plane was theoretically predicted to be more electroactive than the basal plane, but evidence from direct experimental comparison is elusive. Herein, the first study comparing the two surfaces of MoS2 by using macroscopic crystals is presented. A careful investigation of the electrochemical properties of macroscopic MoS2 pristine crystals with precise control over the exposure of one plane surface, that is, basal plane or edge plane, was performed. These crystals were characterized thoroughly by AFM, Raman spectroscopy, X-ray photoelectron spectroscopy, voltammetry, digital simulation, and DFT calculations. In the Raman spectra, the basal and edge planes show anisotropy in the preferred excitation of E2g and A1g phonon modes, respectively. The edge plane exhibits a much larger heterogeneous electron transfer rate constant k(0) of 4.96×10(-5) and 1.1×10(-3)  cm s(-1) for [Fe(CN)6 ](3-/4-) and [Ru(NH3 )6 ](3+/2+) redox probes, respectively, compared to the basal plane, which yielded k(0) tending towards zero for [Fe(CN)6 ](3-/4-) and about 9.3×10(-4)  cm s(-1) for [Ru(NH3 )6 ](3+/2+) . The industrially important hydrogen evolution reaction follows the trend observed for [Fe(CN)6 ](3-/4-) in that the basal plane is basically inactive. The experimental comparison of the edge and basal planes of MoS2 crystals is supported by DFT calculations.

  2. Stacking-dependent transport properties in few-layers graphene

    NASA Astrophysics Data System (ADS)

    Lima, Matheus Paes; Padilha, José Eduardo; Pontes, Renato Borges; Fazzio, Adalberto; Silva, Antônio José Roque da

    2017-01-01

    By performing ab initio electronic structure and transport calculations, we investigated the effects of the stacking order (Bernal (AB) and rhombohedral (ABC)) as well as the number of layers, in the electronic structure and charge transport of few-layers graphene (FLG). We observed that for the ABC stack the transport properties are derived from surface states close to the Fermi level connected to dispersive states with an exponential penetration towards the inner layers, whereas for the AB stacking the transport is distributed over all layers. We present a simple model for the resistances as a function of the number of layers which contemplates the different contribution of the surface and inner layers for the transport. However, even if the stackings AB and ABC present completely different electronic and transport properties, both present the same cohesive energies, showing the absence of a thermodynamical preference for a given kind of stacking.

  3. Dependence of the magnetic properties on the alignment magnetic field for NdFeB bonded magnets made from anisotropic HDDR powders

    NASA Astrophysics Data System (ADS)

    Gao, R. W.; Zhang, J. C.; Zhang, D. H.; Dai, Y. Y.; Meng, X. H.; Wang, Z. M.; Zhang, Y. J.; Liu, H. Q.

    1999-01-01

    The dependence of the hard magnetic properties on the alignment magnetic field for Nd(Fe,Co)B bonded magnets made from anisotropic HDDR powders is studied. The experimental results demonstrate that addition of a little Ga can induce a strong magnetic anisotropy in the HDDR magnetic powders. The application of an alignment magnetic field while the powders are bonded can increase the remanence, the coercivity and the maximum energy product in different degrees and the hard magnetic properties of the magnet are obviously improved with increasing alignment field.

  4. A Novel Multigrid Method for Sn Discretizations of the Mono-Energetic Boltzmann Transport Equation in the Optically Thick and Thin Regimes with Anisotropic Scattering, Part I

    SciTech Connect

    Lee, Barry

    2010-05-01

    This paper presents a new multigrid method applied to the most common Sn discretizations (Petrov-Galerkin, diamond-differenced, corner-balanced, and discontinuous Galerkin) of the mono-energetic Boltzmann transport equation in the optically thick and thin regimes, and with strong anisotropic scattering. Unlike methods that use scalar DSA diffusion preconditioners for the source iteration, this multigrid method is applied directly to an integral equation for the scalar flux. Thus, unlike the former methods that apply a multigrid strategy to the scalar DSA diffusion operator, this method applies a multigrid strategy to the integral source iteration operator, which is an operator for 5 independent variables in spatial 3-d (3 in space and 2 in angle) and 4 independent variables in spatial 2-d (2 in space and 2 in angle). The core smoother of this multigrid method involves applications of the integral operator. Since the kernel of this integral operator involves the transport sweeps, applying this integral operator requires a transport sweep (an inversion of an upper triagular matrix) for each of the angles used. As the equation is in 5-space or 4-space, the multigrid approach in this paper coarsens in both angle and space, effecting efficient applications of the coarse integral operators. Although each V-cycle of this method is more expensive than a V-cycle for the DSA preconditioner, since the DSA equation does not have angular dependence, the overall computational efficiency is about the same for problems where DSA preconditioning {\\it is} effective. This new method also appears to be more robust over all parameter regimes than DSA approaches. Moreover, this new method is applicable to a variety of Sn spatial discretizations, to problems involving a combination of optically thick and thin regimes, and more importantly, to problems with anisotropic scattering cross-sections, all of which DSA approaches perform poorly or not applicable at all. This multigrid approach

  5. PROPERTIES OF INTERFACES AND TRANSPORT ACROSS THEM

    EPA Science Inventory

    Much of the biological activity in cell cytoplasm occurs in compartments which are thought to form by phase separation, and many of the functions of these compartments occur by the transport or exchange of molecules across interfaces. Thus, a fundamentally based discussion of th...

  6. Anisotropic transport and structure of single-crystal molybdenum bronze, Li0.33MoO3

    NASA Astrophysics Data System (ADS)

    Moshfeghyeganeh, Saeed; Cohn, Joshua L.; Neumeier, John J.

    We present transport measurements (resistivity, thermopower, thermal conductivity) on single crystals of the quasi-one-dimensional (Q1D), small-gap semiconductora Li0.33MoO3 in the temperature range 150-500 K. The Q1D character of this material is reflected in T = 300 K resistivity ratios, ρc:ρa:ρb* ~= 1:20:180, and extreme anisotropy in the Seebeck coefficient within the a - c planes, Sc -Sa ~= 250 μ V/K. A weak structural anomaly near Ts = 355 K (0.001Å expansions along c* and b* directions, comparable contraction along a*) is identified in the temperature-dependent lattice constants from x-ray diffraction, and is coincident with changes in the transport coefficients. Analysis of the transport data at T >Ts shows that an intrinsic semiconductor model can be applied to explain transport along the most conducting c axis, but along a and b* the transport is better described by a non-adiabatic, small-polaron picture. a B.T. Collins et al., J. Sol. St. Chem. 76, 319 (1988). This material is based upon work supported by the U.S. Department of Energy Office of Basic Energy Sciences Grant DE-FG02-12ER46888 (Univ. Miami) and the National Science Foundation under Grant DMR-0907036 (Mont. St. Univ.).

  7. Anisotropic universe with anisotropic sources

    SciTech Connect

    Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha E-mail: sukanta@iiserb.ac.in E-mail: snigdha@iiserb.ac.in

    2013-12-01

    We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.

  8. CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES: Tunable Anisotropic Absorption of Ag-Embedded SiO2 Thin Films by Oblique Angle Deposition

    NASA Astrophysics Data System (ADS)

    Xiao, Xiu-Di; Dong, Guo-Ping; Shao, Jian-Da; Fan, Zheng-Xiu; He, Hong-Bo; Qi, Hong-Ji

    2009-08-01

    Ag-embedded SiO2 thin films are prepared by oblique angle deposition. Through field emission scanning electron microscopy (SEM), an orientated slanted columnar structure is observed. Energy-dispersive x-ray (EDX) analysis shows the Ag concentration is about 3% in the anisotropic SiO2 matrix. Anisotropic surface plasma resonance (SPR) absorption is observed in the Ag-embedded SiO2 thin films, which is dependent on polarization state and incidence angle of two orthogonal polarized lights and the deposition angle. This means that optical properties and anisotropic SPR absorption can be tunable in Ag-embedded SiO2 thin films. Broadband polarization splitting is also observed and the transmission ratio Tp/Ts between p- and s-polarized lights is up to 2.7 for thin films deposited at α = 70°, which means that Ag-embedded SiO2 thin films are a promising candidate for thin film polarizers.

  9. Physical transport properties of marine microplastic pollution

    NASA Astrophysics Data System (ADS)

    Ballent, A.; Purser, A.; Mendes, P. de Jesus; Pando, S.; Thomsen, L.

    2012-12-01

    Given the complexity of quantitative collection, knowledge of the distribution of microplastic pollution in many regions of the world ocean is patchy, both spatially and temporally, especially for the subsurface environment. However, with knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of pelagic and benthic plastics from land sources into the ocean are possible. Here we investigate three aspects of plastic distribution and transport in European waters. Firstly, we assess patterns in the distribution of plastics found in fluvial strandlines of the North Sea and how distribution may be related to flow velocities and distance from source. Second, we model transport of non-buoyant preproduction pellets in the Nazaré Canyon of Portugal using the MOHID system after assessing the density, settling velocity, critical and depositional shear stress characteristics of such waste plastics. Thirdly, we investigate the effect of surface turbulences and high pressures on a range of marine plastic debris categories (various densities, degradation states and shapes tested) in an experimental water column simulator tank and pressure laboratory. Plastics deposited on North Sea strandlines varied greatly spatially, as a function of material composition and distance from source. Model outputs indicated that such dense production pellets are likely transported up and down canyon as a function of tidal forces, with only very minor net down canyon movement. Behaviour of plastic fragments under turbulence varied greatly, with the dimensions of the material, as well as density, playing major determining roles. Pressure was shown to affect hydrodynamic behaviours of only low density foam plastics at pressures ≥ 60 bar.

  10. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, S.D.; Farrington, R.B.

    1997-02-04

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.

  11. Enhancement of wall jet transport properties

    DOEpatents

    Claunch, Scott D.; Farrington, Robert B.

    1997-01-01

    By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

  12. High temperature transport properties of air

    NASA Technical Reports Server (NTRS)

    Levin, E.; Partridge, Harry; Stallcop, J. R.

    1987-01-01

    A general computer code was developed to allow calculation of atom-atom and ion-atom transport collision integrals from accurate potential energy curves described by a set of discrete data points for a broad range of scattering conditions. This code is based upon semiclassical approximations that properly account for quantum mechanical behavior such as tunneling effects near a barrier maximum, resonance charge exchange, and nuclear symmetry effects. Transport collision integrals were determined for N-N, O-O, N(+)-N, and O(+)-O interactions from complete sets of accurate potential functions derived from combined experimental and ab initio structure calculations. For the O-O case, this includes results for excited states. The calculated values of the N(+)-N and O(+)-O resonance charge exchange cross section Q(ex) agree well with measurements from beam experiment that are available at high energies where the diffusion cross section Q(d) satisfies Q(d) approximately equal to 2Q(ex).

  13. Transport properties of porous media from the microstructure

    SciTech Connect

    Torquato, S.

    1995-12-31

    The determination of the effective transport properties of a random porous medium remains a challenging area of research because the properties depend on the microstructure in a highly complex fashion. This paper reviews recent theoretical and experimental progress that we have made on various aspects of this problem. A unified approach is taken to characterize the microstructure and the seemingly disparate properties of the medium.

  14. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    NASA Technical Reports Server (NTRS)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  15. Unsaturated Zone and Saturated Zone Transport Properties (U0100)

    SciTech Connect

    J. Conca

    2000-12-20

    This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.

  16. Magnetothermoelectric transport properties of multiterminal graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Wei, Miao-Miao; Zhang, Ying-Tao; Guo, Ai-Min; Liu, Jian-Jun; Xing, Yanxia; Sun, Qing-Feng

    2016-06-01

    The Peltier effect and the Ettingshausen effect are investigated in graphene nanoribbons, where charge current produces heat current along the longitudinal direction in the former case, and longitudinal charge current generates transverse heat current in the latter case. With the aid of the nonequilibrium Green's function and the Landauer-Büttiker formalism, the Peltier coefficient Πc and the Ettingshausen coefficient Ec are obtained. We found that the Kelvin relation is always valid for the longitudinal thermoelectric transport, i.e., Πc=T Sc , with T the temperature and Sc the Seebeck coefficient. In contrast, for transverse magnetothermoelectric transport, the Kelvin relation breaks down and Ec≠T Nc usually, with Nc the Nernst coefficient. In the region of weak magnetic field, the Ettingshausen effect depends strongly on device parameters. When the Fermi energy EF is close to the Dirac point, the Ettingshausen effect of the semiconducting armchair graphene nanoribbon is much stronger than that of the metallic one. When EF is far away from the Dirac point, the Ettingshausen coefficient Ec oscillates around zero. When under a strong magnetic field, Ec is independent of the device parameters and swells only near the Dirac point. Further, the dependence of Ec on EF can be scaled by EF/kBT , with a peak value of (2 ln2 ) kBT /e for the three-terminal system and (4/3 ln2 ) kBT /e for the four-terminal system. We also study the impact of disorder on the Ettingshausen effect. Regardless of the magnetic field strength, Ec is robust against moderate disorder scattering. In addition, in the strong magnetic field, Ec with additional regular oscillating structure can be caused by disorder.

  17. Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC

    NASA Astrophysics Data System (ADS)

    Kuramochi, H.; Odaka, S.; Morita, K.; Tanaka, S.; Miyazaki, H.; Lee, M. V.; Li, S.-L.; Hiura, H.; Tsukagoshi, K.

    2012-03-01

    Thermal decomposition of vicinal SiC substrates with self-organized periodic nanofacets is a promising method to produce large graphene sheets toward the commercial exploitation of graphene's superior electronic properties. The epitaxial graphene films grown on vicinal SiC comprise two distinct regions of terrace and step; and typically exhibit anisotropic electron transport behavior, although limited areas in the graphene film showed ballistic transport. To evaluate the role of terraces and steps in electron transport properties, we compared graphene samples with terrace and step regions grown on 4H-SiC(0001). Arrays of field effect transistors were fabricated on comparable graphene samples with their channels parallel or perpendicular to the nanofacets to identify the source of measured reduced mobility. Minimum conductivity and electron mobility increased with the larger proportional terrace region area; therefore, the terrace region has superior transport properties to step regions. The measured electron mobility in the terrace region, ˜1000 cm2/Vs, is 10 times larger than that in the step region, ˜100 cm2/Vs. We conclusively determine that parasitic effects originate in regions of graphene that grow over step edges in 4H-SiC(0001).

  18. Tailoring Anisotropic Li-Ion Transport Tunnels on Orthogonally Arranged Li-Rich Layered Oxide Nanoplates Toward High-Performance Li-Ion Batteries.

    PubMed

    Xu, Ming; Fei, Linfeng; Zhang, Weibing; Li, Tao; Lu, Wei; Zhang, Nian; Lai, Yanqing; Zhang, Zhian; Fang, Jing; Zhang, Kai; Li, Jie; Huang, Haitao

    2017-03-08

    High-performance Li-rich layered oxide (LRLO) cathode material is appealing for next-generation Li-ion batteries owing to its high specific capacity (>300 mAh g(-1)). Despite intense studies in the past decade, the low initial Coulombic efficiency and unsatisfactory cycling stability of LRLO still remain as great challenges for its practical applications. Here, we report a rational design of the orthogonally arranged {010}-oriented LRLO nanoplates with built-in anisotropic Li(+) ion transport tunnels. Such a novel structure enables fast Li(+) ion intercalation and deintercalation kinetics and enhances structural stability of LRLO. Theoretical calculations and experimental characterizations demonstrate the successful synthesis of target cathode material that delivers an initial discharge capacity as high as 303 mAh g(-1) with an initial Coulombic efficiency of 93%. After 200 cycles at 1.0 C rate, an excellent capacity retention of 92% can be attained. Our method reported here opens a door to the development of high-performance Ni-Co-Mn-based cathode materials for high-energy density Li-ion batteries.

  19. Fractures in anisotropic media

    NASA Astrophysics Data System (ADS)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  20. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  1. Transport properties of high-temperature Jupiter atmosphere components

    SciTech Connect

    Bruno, D.; Colonna, G.; De Pascale, O.; Laricchiuta, A.; Catalfamo, C.; Diomede, P.; Capitelli, M.; Gorse, C.; Longo, S.; Giordano, D.; Pirani, F.

    2010-11-15

    Transport properties of high-temperature helium and hydrogen plasmas as well as Jupiter atmosphere have been calculated for equilibrium and nonequilibrium conditions using higher approximations of the Chapman-Enskog method. A complete database of transport cross sections for relevant interactions has been derived, including minority species, by using both ab initio and phenomenological potentials. Inelastic collision integrals terms, due to resonant charge-exchange channels, have been also considered.

  2. Applying distributions of hydraulic conductivity for anisotropic systems and applications to Tc Transport at the U.S. Department of Energy Hanford Site

    SciTech Connect

    Allen G Hunt

    2008-06-09

    43Tc99 is spreading mostly laterally through the U.S. Department of Energy Hanford site sediments. At higher tensions in the unsaturated zone, the hydraulic conductivity may be strongly anisotropic as a consequence of finer soils to retain more water than coarser ones, and for these soils to have been deposited primarily in horizontal structures. We have tried to develop a consistent modeling procedure that could predict the behavior of Tc plumes. Our procedure consists of: (1) Adapting existing numerical recipes based on critical path analysis to calculate the hydraulic conductivity, K, as a function of tension, h, (2) Statistically correlating the predicted K at various values of the tension with fine content, (3) Seeking a tension value, for which the anisotropy and the horizontal K values are both sufficiently large to accommodate multi-kilometer spreading, (4) Predicting the distribution of K values for vertical flow as a function of system support volume, (5) Comparing the largest likely K value in the vertical direction with the expected K in the horizontal direction, (6) Finding the length scale at which the two K values are roughly equal, (7) Comparing that length scale with the horizontal spreading of the plume. We find that our predictions of the value of the tension at which the principle spreading is likely occurring compares very well with experiment. However, we seem to underestimate the physical length scale at which the predominantly horizontal spreading begins to take on significant vertical characteristics. Our data and predictions would seem to indicate that this should happen after horizontal transport of somewhat over a km, but the chiefly horizontal transport appears to continue out to scales of 10km or so.

  3. Abnormal percolative transport and colossal electroresistance induced by anisotropic strain in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/PMN-PT heterostructure

    PubMed Central

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Zhang, Hong-Rui; Liu, Yao; Zhang, Ying; Wang, Shuan-Hu; Wu, Rong-Rong; Zhang, Ming; Bao, Li-Fu; Sun, Ji-Rong; Shen, Bao-Gen

    2014-01-01

    Abnormal percolative transport in inhomogeneous systems has drawn increasing interests due to its deviation from the conventional percolation picture. However, its nature is still ambiguous partly due to the difficulty in obtaining controllable abnormal percolative transport behaviors. Here, we report the first observation of electric-field-controlled abnormal percolative transport in (011)-Pr0.7(Ca0.6Sr0.4)0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructure. By introducing an electric-field-induced in-plane anisotropic strain-field in a phase separated PCSMO film, we stimulate a significant inverse thermal hysteresis (~ -17.5 K) and positive colossal electroresistance (~11460%), which is found to be crucially orientation-dependent and completely inconsistent with the well accepted conventional percolation picture. Further investigations reveal that such abnormal inverse hysteresis is strongly related to the preferential formation of ferromagnetic metallic domains caused by in-plane anisotropic strain-field. Meanwhile, it is found that the positive colossal electroresistance should be ascribed to the coactions between the anisotropic strain and the polarization effect from the poling of the substrate which leads to orientation and bias-polarity dependencies for the colossal electroresistance. This work unambiguously evidences the indispensable role of the anisotropic strain-field in driving the abnormal percolative transport and provides a new perspective for well understanding the percolation mechanism in inhomogeneous systems. PMID:25399635

  4. Transport properties of interacting magnetic islands in tokamak plasmas

    SciTech Connect

    Gianakon, T.A.; Callen, J.D.; Hegna, C.C.

    1993-10-01

    This paper explores the equilibrium and transient transport properties of a mixed magnetic topology model for tokamak equilibria. The magnetic topology is composed of a discrete set of mostly non-overlapping magnetic islands centered on the low-order rational surfaces. Transport across the island regions is fast due to parallel transport along the stochastic magnetic field lines about the separatrix of each island. Transport between island regions is assumed to be slow due to a low residual cross-field transport. In equilibrium, such a model leads to: a nonlinear dependence of the heat flux on the pressure gradient; a power balance diffusion coefficient which increases from core to edge; and profile resiliency. Transiently, such a model also exhibits a heat pulse diffusion coefficient larger than the power balance diffusion coefficient.

  5. Transport properties in nontwist area-preserving maps

    DOE PAGES

    Szezech Jr., J. D.; Caldas, I. L.; Lopes, S. R.; ...

    2009-10-23

    Nontwist systems, common in the dynamical descriptions of fluids and plasmas, possess a shearless curve with a concomitant transport barrier that eliminates or reduces chaotic transport, even after its breakdown. In order to investigate the transport properties of nontwist systems, we analyze the barrier escape time and barrier transmissivity for the standard nontwist map, a paradigm of such systems. We interpret the sensitive dependence of these quantities upon map parameters by investigating chaotic orbit stickiness and the associated role played by the dominant crossing of stable and unstable manifolds.

  6. On effective transport coefficients in PEM fuel cell electrodes: Anisotropy of the porous transport layers

    NASA Astrophysics Data System (ADS)

    Pharoah, J. G.; Karan, K.; Sun, W.

    This paper reviews the approach taken in the literature to model the effective transport coefficients - mass diffusivity, electrical conductivity, thermal conductivity and hydraulic permeability - of carbon-fibre based porous electrode of polymer electrolyte membrane fuel cells (PEMFCs). It is concluded that current PEMFC model do not account for the inherent anisotropic microstructure of the fibrous electrodes. Simulations using a 2-D PEMFC cathode model show that neglecting the anisotropic nature and associated transport coefficients of the porous electrodes significantly influences both the nature and the magnitude of the model predictions. This emphasizes the need to appropriately characterize the relevant anisotropic properties of the fibrous electrode.

  7. Measurement of the radiative transport properties of reticulated alumina foams

    SciTech Connect

    Hale, M.J.; Bohn, M.S.

    1992-12-01

    This paper presents a method for determining radiative transport properties of reticulated materials. The method has both experimental and analytical components. A polar nephelometer is used to measure the scattering profile of a sample of the reticulated material. The results of a Monte Carlo simulation of the experiment are then combined with the experimental results to give the scatter albedo and extinction coefficient. This paper presents the results of using this method to determine the radiative transport properties of four different porosities (10, 20, 30, 65 pores per inch) of cylindrical reticulated alumina samples ranging in thickness form 0.5 inches to 2. 5 inches.

  8. Anisotropic resistivity tomography

    NASA Astrophysics Data System (ADS)

    Herwanger, J. V.; Pain, C. C.; Binley, A.; de Oliveira, C. R. E.; Worthington, M. H.

    2004-08-01

    Geophysical tomographic techniques have the potential to remotely detect and characterize geological features, such as fractures and spatially varying lithologies, by their response to signals passed through these features. Anisotropic behaviour in many geological materials necessitates the generalization of tomographic methods to include anisotropic material properties in order to attain high-quality images of the subsurface. In this paper, we present a finite element (FE) based direct-current electrical inversion method to reconstruct the conductivity tensor at each node point of a FE mesh from electrical resistance measurements. The inverse problem is formulated as a functional optimization and the non-uniqueness of the electrical inverse problem is overcome by adding penalty terms for structure and anisotropy. We use a modified Levenberg-Marquardt method for the functional optimization and the resulting set of linear equation is solved using pre-conditioned conjugate gradients. The method is tested using both synthetic and field experiments in cross-well geometry. The acquisition geometry for both experiments uses a cross-well experiment at a hard-rock test site in Cornwall, southwest England. Two wells, spaced at 25.7 m, were equipped with electrodes at a 1 m spacing at depths from 21-108 m and data were gathered in pole-pole geometry. The test synthetic model consists of a strongly anisotropic and conductive body underlain by an isotropic resistive formation. Beneath the resistive formation, the model comprises a moderately anisotropic and moderately conductive half-space, intersected by an isotropic conductive layer. This model geometry was derived from the interpretation of a seismic tomogram and available geological logs and the conductivity values are based on observed conductivities. We use the test model to confirm the ability of the inversion scheme to recover the (known) true model. We find that all key features of the model are recovered. However

  9. Quantum-walk transport properties on graphene structures

    NASA Astrophysics Data System (ADS)

    Bougroura, Hamza; Aissaoui, Habib; Chancellor, Nicholas; Kendon, Viv

    2016-12-01

    We present numerical studies of quantum walks on C60 and related graphene structures to investigate their transport properties. Also known as a honeycomb lattice, the lattice formed by carbon atoms in the graphene phase can be rolled up to form nanotubes of various dimensions. Graphene nanotubes have many important applications, some of which rely on their unusual electrical conductivity and related properties. Quantum walks on graphs provide an abstract setting in which to study such transport properties independent of the other chemical and physical properties of a physical substance. They can thus be used to further the understanding of mechanisms behind such properties. We find that nanotube structures are significantly more efficient in transporting a quantum walk than cycles of equivalent size, provided the symmetry of the structure is respected in how they are used. We find faster transport on zigzag nanotubes compared to armchair nanotubes, which is unexpected given that for the actual materials the armchair nanotube is metallic, while the zigzag is semiconducting.

  10. Transport Properties of Metallic Ruthenates: A DFT +DMFT Investigation

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoyu; Haule, Kristjan; Kotliar, Gabriel

    2016-06-01

    We present a systematical theoretical study on the transport properties of an archetypal family of Hund's metals, Sr2RuO4 , Sr3 Ru2 O7 , SrRuO3 , and CaRuO3 , within the combination of first principles density functional theory and dynamical mean field theory. The agreement between theory and experiments for optical conductivity and resistivity is good, which indicates that electron-electron scattering dominates the transport of ruthenates. We demonstrate that in the single-site dynamical mean field approach the transport properties of Hund's metals fall into the scenario of "resilient quasiparticles." We explain why the single layered compound Sr2 RuO4 has a relative weak correlation with respect to its siblings, which corroborates its good metallicity.

  11. Technological Support of Critical Parts for Railway Transport Working Properties

    NASA Astrophysics Data System (ADS)

    Gabets, A. V.; Gabets, D. A.; Markov, A. M.; Radchenko, M. V.; Leonov, S. L.

    2017-01-01

    The materials of complex research of operational properties of a new brand cast iron CHMN-35M. Optimal chemical composition was determined. The obtained results allow to conclude about possibility of its use for the manufacture of critical parts of rolling stock of railway transport, in particular of a side bearing cap

  12. Reference Fluid Thermodynamic and Transport Properties Database (REFPROP)

    National Institute of Standards and Technology Data Gateway

    SRD 23 NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP) (PC database for purchase)   NIST 23 contains revised data in a Windows version of the database, including 105 pure fluids and allowing mixtures of up to 20 components. The fluids include the environmentally acceptable HFCs, traditional HFCs and CFCs and 'natural' refrigerants like ammonia

  13. Transport properties in semiconducting NbS{sub 2} nanoflakes

    SciTech Connect

    Huang, Y. H.; Chen, R. S. Ho, C. H.; Peng, C. C.; Huang, Y. S.

    2014-09-01

    The electronic transport properties in individual niobium disulphide (NbS{sub 2}) nanoflakes mechanically exfoliated from the bulk crystal with three rhombohedral (3R) structure grown by chemical vapor transport were investigated. It is found that the conductivity values of the single-crystalline nanoflakes are approximately two orders of magnitude lower than that of their bulk counterparts. Temperature-dependent conductivity measurements show that the 3R-NbS{sub 2} nanoflakes exhibit semiconducting transport behavior, which is also different from the metallic character in the bulk crystals. In addition, the noncontinuous conductivity variations were observed at the temperature below 180 K for both the nanoflakes and the bulks, which is attributed to the probable charge density wave transition. The photoconductivities in the semiconducting nanoflakes were also observed under the excitation at 532 nm wavelength. The probable mechanisms resulting in the different transport behaviors between the NbS{sub 2} nanostructure and bulk were discussed.

  14. Measurement of gas transport properties for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  15. Negative anisotropic magnetoresistance resulting from minority spin transport in NixFe4-xN (x = 1 and 3) epitaxial films

    NASA Astrophysics Data System (ADS)

    Takata, Fumiya; Kabara, Kazuki; Ito, Keita; Tsunoda, Masakiyo; Suemasu, Takashi

    2017-01-01

    We grew 50 nm-thick NixFe4-xN (x = 1 and 3) epitaxial films on a SrTiO3(001) single-crystal substrate by molecular beam epitaxy and measured their anisotropic magnetoresistance (AMR) ratios rAMR in the temperature range of 5-300 K with current directions set along either NixFe4-xN [100] or [110]. A negative rAMR was obtained up to 200 K or higher. Their magnitude | rAMR | increased with decreasing temperature. From the negative AMR effect and the negative spin-polarization of density of states for NixFe4-xN at the Fermi level, it can be stated that the minority spin transport is dominant in NixFe4-xN, similar to Fe4N and Co3FeN. The rAMR depends on the current direction that arises from the current direction dependence of s-d scattering. In the case of Ni3FeN, the rAMR decreased to nearly zero at 260 K. This temperature agreed well with the Curie temperature determined from the temperature dependence of magnetization. The AMR curves were reproduced well by using both cos2ϕ and cos4ϕ components below 100 K, whereas a cos2ϕ component was enough to fit those obtained above 100 K. It is assumed that the tetragonal crystal field was enhanced at low temperatures (<100 K) similar to Fe4N (<50 K).

  16. Characterization of anisotropic acoustic metamaterial slabs

    NASA Astrophysics Data System (ADS)

    Park, Jun Hyeong; Lee, Hyung Jin; Kim, Yoon Young

    2016-01-01

    In an anisotropic acoustic metamaterial, the off-diagonal components of its effective mass density tensor should be considered in order to describe the anisotropic behavior produced by arbitrarily shaped inclusions. However, few studies have been carried out to characterize anisotropic acoustic metamaterials. In this paper, we propose a method that uses the non-diagonal effective mass density tensor to determine the behavior of anisotropic acoustic metamaterials. Our method accurately evaluates the effective properties of anisotropic acoustic metamaterials by separately dealing with slabs made of single and multiple unit cells along the thickness direction. To determine the effective properties, the reflection and transmission coefficients of an acoustic metamaterial slab are calculated, and then the wave vectors inside of the slab are determined using these coefficients. The effective material properties are finally determined by utilizing the spatial dispersion relation of the anisotropic acoustic metamaterial. Since the dispersion relation of an anisotropic acoustic metamaterial is explicitly used, its effective properties can be easily determined by only using a limited number of normal and oblique plane wave incidences into a metamaterial slab, unlike existing approaches requiring a large number of wave incidences. The validity of the proposed method is verified by conducting wave simulations for anisotropic acoustic metamaterial slabs with Z-shaped elastic inclusions of tilted principal material axes.

  17. Anisotropic structural and magnetic properties of the field-aligned superconducting system SmFeAsO1-xFx (x = 0, 0.1, 0.2, 0.25 and 0.3)

    NASA Astrophysics Data System (ADS)

    You, Y. B.; Hsiao, T. K.; Chang, B. C.; Tai, M. F.; Hsu, Y. Y.; Ku, H. C.; Wei, Z.; Ruan, K. Q.; Li, X. G.

    2011-01-01

    Anisotropic structural and magnetic properties of the field-aligned superconducting system SmFeAsO1-xFx (x = 0, 0.1, 0.2, 0.25 and 0.3) are reported. Due to the Fe spin-orbital related anisotropic exchange coupling, all the tetragonal microcrystalline powders in epoxy were aligned at room temperature using the field-rotation method where the tetragonal ab-plane is parallel to the magnetic alignment field Ba of 0.9 T and the c-axis parallels to the rotating axis. Anisotropic magnetic properties are studied through low temperature magnetic measurements along the c-axis and paralleled to the ab-plane of aligned samples in both zero-field-cooled (ZFC) and field-cooled (FC) modes. The under-doped compound (x = 0.1) is not superconducting with an antiferromagnetic Néel temperature TN ~ 40 K, while the two optimum-doped compounds (x = 0.2 and 0.25) show high superconducting transition temperatures Tc of 49K and 50K, respectively. The variation of anisotropic structural and magnetic properties for this system are discussed and compared with the previously reported 52 K anisotropic superconductor Sm0.95La0.05FeAsO0.85F0.15.

  18. Transport properties of silicate melts at high pressure

    NASA Astrophysics Data System (ADS)

    Lesher, C. E.; Gaudio, S. J.; Clark, A. N.; O'Dwyer-Brown, L.

    2012-12-01

    It is well appreciated that the transport properties (e.g., diffusion, viscosity) of silicate melts are intimately linked by melt structure and the time scales of structural relaxation. These linkages have been explored exten-sively at low pressure, but our understanding is more limited for high-pressure conditions relevant to the Earth's deep interior. Transport property models based on free-volume, activation energy and/or configurational entropy have merits, but their validity in extrapolation is uncertain. Moreover, the structural implications at high pressure are conflicting and lack experimental support. We examine these issues and review theoretical efforts to model transport properties at high pressure, as well as, those constraints provided by laboratory experiments and simulations. We emphasis the need to consider the properties of melt not only for high-pressure superheated conditions, but also for supercooled conditions in the vicinity of the glass transition. For example, the time scales for density relaxation traversing the glass transition at high pressure can be monitored using in situ X-ray miroctomography/absorption and ex vivo by the Archimedes' method combined with spectroscopy. These approaches are amenable to both strong and fragile liquids. Taken together with superliquidus data, we can greatly improve the interpolation of melt properties within the melting interval for refractory mantle compositions.

  19. Review on measurement techniques of transport properties of nanowires.

    PubMed

    Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A F; Rodriguez-Viejo, J; Martín-Gonzalez, Marisol

    2013-12-07

    Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown.

  20. A general methodology for inverse estimation of the elastic and anelastic properties of anisotropic open-cell porous materials—with application to a melamine foam

    NASA Astrophysics Data System (ADS)

    Cuenca, Jacques; Van der Kelen, Christophe; Göransson, Peter

    2014-02-01

    This paper proposes an inverse estimation method for the characterisation of the elastic and anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A model of viscoelasticity based on a fractional differential constitutive equation is used, leading to an augmented Hooke's law in the frequency domain, where the elastic and anelastic phenomena appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic elastic moduli, three angles of orientation of the material principal directions and three parameters governing the anelastic frequency dependence. The inverse estimation consists in numerically fitting the model on a set of transfer functions extracted from a sample of material. The setup uses a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum chamber in order to remove the air from the pores of the sample. The method allows to reconstruct the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic effects. The characterisation of a melamine foam sample is performed and the relation between the fractional-derivative model and other types of parameterisations of the augmented Hooke's law is discussed.

  1. Effects of anisotropic interaction-induced properties of hydrogen-rare gas compounds on rototranslational Raman scattering spectra: Comprehensive theoretical and numerical analysis

    NASA Astrophysics Data System (ADS)

    Głaz, Waldemar; Bancewicz, Tadeusz; Godet, Jean-Luc; Gustafsson, Magnus; Haskopoulos, Anastasios; Maroulis, George

    2016-07-01

    A comprehensive study is presented of many aspects of the depolarized anisotropic collision induced (CI) component of light scattered by weakly bound compounds composed of a dihydrogen molecule and a rare gas (Rg) atom, H2-Rg. The work continues a series of earlier projects marking the revival of interest in linear light scattering following the development of new highly advanced tools of quantum chemistry and other theoretical, computational, and experimental means of spectral analyses. Sophisticated ab initio computing procedures are applied in order to obtain the anisotropic polarizability component's dependence on the H2-Rg geometry. These data are then used to evaluate the CI spectral lines for all types of Rg atoms ranging from He to Xe (Rn excluded). Evolution of the properties of CI spectra with growing polarizability/masses of the complexes studied is observed. Special attention is given to the heaviest, Kr and Xe based, scatterers. The influence of specific factors shaping the spectral lines (e.g., bound and metastable contribution, potential anisotropy) is discussed. Also the share of pressure broadened allowed rotational transitions in the overall spectral profile is taken into account and the extent to which it is separable from the pure CI contribution is discussed. We finish with a brief comparison between the obtained results and available experimental data.

  2. A general methodology for inverse estimation of the elastic and anelastic properties of anisotropic open-cell porous materials—with application to a melamine foam

    SciTech Connect

    Cuenca, Jacques Van der Kelen, Christophe; Göransson, Peter

    2014-02-28

    This paper proposes an inverse estimation method for the characterisation of the elastic and anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A model of viscoelasticity based on a fractional differential constitutive equation is used, leading to an augmented Hooke's law in the frequency domain, where the elastic and anelastic phenomena appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic elastic moduli, three angles of orientation of the material principal directions and three parameters governing the anelastic frequency dependence. The inverse estimation consists in numerically fitting the model on a set of transfer functions extracted from a sample of material. The setup uses a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum chamber in order to remove the air from the pores of the sample. The method allows to reconstruct the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic effects. The characterisation of a melamine foam sample is performed and the relation between the fractional-derivative model and other types of parameterisations of the augmented Hooke's law is discussed.

  3. Effects of anisotropic interaction-induced properties of hydrogen-rare gas compounds on rototranslational Raman scattering spectra: Comprehensive theoretical and numerical analysis.

    PubMed

    Głaz, Waldemar; Bancewicz, Tadeusz; Godet, Jean-Luc; Gustafsson, Magnus; Haskopoulos, Anastasios; Maroulis, George

    2016-07-21

    A comprehensive study is presented of many aspects of the depolarized anisotropic collision induced (CI) component of light scattered by weakly bound compounds composed of a dihydrogen molecule and a rare gas (Rg) atom, H2-Rg. The work continues a series of earlier projects marking the revival of interest in linear light scattering following the development of new highly advanced tools of quantum chemistry and other theoretical, computational, and experimental means of spectral analyses. Sophisticated ab initio computing procedures are applied in order to obtain the anisotropic polarizability component's dependence on the H2-Rg geometry. These data are then used to evaluate the CI spectral lines for all types of Rg atoms ranging from He to Xe (Rn excluded). Evolution of the properties of CI spectra with growing polarizability/masses of the complexes studied is observed. Special attention is given to the heaviest, Kr and Xe based, scatterers. The influence of specific factors shaping the spectral lines (e.g., bound and metastable contribution, potential anisotropy) is discussed. Also the share of pressure broadened allowed rotational transitions in the overall spectral profile is taken into account and the extent to which it is separable from the pure CI contribution is discussed. We finish with a brief comparison between the obtained results and available experimental data.

  4. Anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using double AlN buffer layers

    PubMed Central

    Zhao, Guijuan; Wang, Lianshan; Yang, Shaoyan; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Wang, Zhanguo

    2016-01-01

    We report the anisotropic structural and optical properties of semi-polar (11–22) GaN grown on m-plane sapphire using a three-step growth method which consisted of a low temperature AlN buffer layer, followed by a high temperature AlN buffer layer and GaN growth. By introducing double AlN buffer layers, we substantially improve the crystal and optical qualities of semi-polar (11–22) GaN, and significantly reduce the density of stacking faults and dislocations. The high resolution x-ray diffraction measurement revealed that the in-plane anisotropic structural characteristics of GaN layer are azimuthal dependent. Transmission electron microscopy analysis showed that the majority of dislocations in the GaN epitaxial layer grown on m-sapphire are the mixed-type and the orientation of GaN layer was rotated 58.4° against the substrate. The room temperature photoluminescence (PL) spectra showed the PL intensity and wavelength have polarization dependence along parallel and perpendicular to the [1–100] axis (polarization degrees ~ 0.63). The realization of a high polarization semi-polar GaN would be useful to achieve III-nitride based lighting emission device for displays and backlighting. PMID:26861595

  5. Kinetic theory of transport processes in partially ionized reactive plasma, II: Electron transport properties

    NASA Astrophysics Data System (ADS)

    Zhdanov, V. M.; Stepanenko, A. A.

    2016-11-01

    The previously obtained in (Zhdanov and Stepanenko, 2016) general transport equations for partially ionized reactive plasma are employed for analysis of electron transport properties in molecular and atomic plasmas. We account for both elastic and inelastic interaction channels of electrons with atoms and molecules of plasma and also the processes of electron impact ionization of neutral particles and three-body ion-electron recombination. The system of scalar transport equations for electrons is discussed and the expressions for non-equilibrium corrections to electron ionization and recombination rates and the diagonal part of the electron pressure tensor are derived. Special attention is paid to analysis of electron energy relaxation during collisions with plasma particles having internal degrees of freedom and the expression for the electron coefficient of inelastic energy losses is deduced. We also derive the expressions for electron vector and tensorial transport fluxes and the corresponding transport coefficients for partially ionized reactive plasma, which represent a generalization of the well-known results obtained by Devoto (1967). The results of numerical evaluation of contribution from electron inelastic collisions with neutral particles to electron transport properties are presented for a series of molecular and atomic gases.

  6. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid

  7. Transport properties of the Fermi hard-sphere system

    SciTech Connect

    Mecca, Angela; Lovato, Alessandro; Benhar, Omar; Polls, Artur

    2016-03-01

    The transport properties of neutron star matter play an important role in many astrophysical processes. We report the results of a calculation of the shear viscosity and thermal conductivity coefficients of the hard-sphere fermion system of degeneracy ν = 2, that can be regarded as a model of pure neutron matter. Our approach is based on the effective interaction obtained from the formalism of correlated basis functions and the cluster expansion technique. The resulting transport coefficients show a strong sensitivity to the quasiparticle effective mass, reflecting the effect of second-order contributions to the self-energy that are not taken into account in nuclear matter studies available in the literature.

  8. EPW: Electron-phonon coupling, transport and superconducting properties using maximally localized Wannier functions

    NASA Astrophysics Data System (ADS)

    Poncé, S.; Margine, E. R.; Verdi, C.; Giustino, F.

    2016-12-01

    The EPW (Electron-Phonon coupling using Wannier functions) software is a Fortran90 code that uses density-functional perturbation theory and maximally localized Wannier functions for computing electron-phonon couplings and related properties in solids accurately and efficiently. The EPW v4 program can be used to compute electron and phonon self-energies, linewidths, electron-phonon scattering rates, electron-phonon coupling strengths, transport spectral functions, electronic velocities, resistivity, anisotropic superconducting gaps and spectral functions within the Migdal-Eliashberg theory. The code now supports spin-orbit coupling, time-reversal symmetry in non-centrosymmetric crystals, polar materials, and k and q-point parallelization. Considerable effort was dedicated to optimization and parallelization, achieving almost a ten times speedup with respect to previous releases. A computer test farm was implemented to ensure stability and portability of the code on the most popular compilers and architectures. Since April 2016, version 4 of the EPW code is fully integrated in and distributed with the Quantum ESPRESSO package, and can be downloaded through QE-forge at http://qe-forge.org/gf/project/q-e.

  9. Morphology Dependence of the Thermal Transport Properties of Single-Walled Carbon Nanotube Thin Films.

    PubMed

    Yoshida, Shuhei; Feng, Ya; Delacou, Clement; Inoue, Taiki; Xiang, Rong; Kometani, Reo; Chiashi, Shohei; Kauppinen, Esko; Maruyama, Shigeo

    2017-03-14

    The thermal transport properties of random-network, single-walled carbon nanotube (SWNT) films were assessed using Raman spectroscopy. Two types of SWNT films were investigated: single-layer and stacked. The single-layer films were fabricated by aerosol chemical vapour deposition and subsequent direct dry-deposition, while the stacked films were prepared by placing the single-layer films on top of one another. The anisotropy of the network structures of each of these films was evaluated based on the angular dependence of the optical absorbance spectra. The results show that the anisotropy of the films decreases with increasing film thickness in the case of the single-layer films, and that the film anisotropy is preserved during the stacking process. The sheet thermal conductance is proportional to the SWNT area density in the case of stacked films, but is reduced with increasing thickness in the case of single-layer films. This effect is explained by a change in the network morphology from a two-dimensional anisotropic structure to the more isotropic structure. This work demonstrated the fabrication of low-density films with high sheet thermal conductance through the stacking of thin SWNT films.

  10. The magnetic properties of three-dimensional spin-1 easy-axis single-ion anisotropic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Hu, Ai-Yuan; Wang, Qin

    2010-05-01

    The ordered and disordered phases of spin-1 Heisenberg and Ising antiferromagnets with easy-axis single-ion anisotropy on a three-dimensional lattice are studied. By using of the double-time Green's function method within the Tyablikov decoupling for the exchange anisotropy and Callen's approximation for the single-ion anisotropy, the Néel temperature, magnetization and susceptibility are investigated. Their relations with the temperature and anisotropic parameter are analyzed over the entire range of temperature. It is found that our results agree well with spin wave theory results at low temperature, agree with the high temperature series results at high temperature, and compare reasonably well with the linked-cluster series approach and ratio method results at intermediate temperature.

  11. Ground State Properties and Localized Excited States around a Magnetic Impurity Described by the Anisotropic s- d Interaction in Superconductivity

    NASA Astrophysics Data System (ADS)

    Yoshioka, Tomoki; Ohashi, Yoji

    1998-04-01

    We investigate the electronic state around a magnetic impurity in thesuperconductivity in order to clarify how the anisotropy of thes-d interaction works in the presence of the superconductingenergy gap. Using the numerical renormalization group method, weobtain regions induced by the anisotropy where two localizedexcited states with different energies appear at the same time; theycannot obtain as far as the isotropic interaction is considered. Thismeans that the anisotropy of the s-d interaction works relevantlyin some cases in the superconducting state. We also examine whether ornot the bound state energy for the anisotropic and antiferromagnetics-d interaction is scaled by T K/Δ (T K: Kondotemperature, Δ: superconducting order parameter), and find thatit does not hold in the regions with two bound states.

  12. Controlling the Electrical Transport Properties of Nanocontacts to Nanowires.

    PubMed

    Lord, Alex M; Maffeis, Thierry G; Kryvchenkova, Olga; Cobley, Richard J; Kalna, Karol; Kepaptsoglou, Despoina M; Ramasse, Quentin M; Walton, Alex S; Ward, Michael B; Köble, Jürgen; Wilks, Steve P

    2015-07-08

    The ability to control the properties of electrical contacts to nanostructures is essential to realize operational nanodevices. Here, we show that the electrical behavior of the nanocontacts between free-standing ZnO nanowires and the catalytic Au particle used for their growth can switch from Schottky to Ohmic depending on the size of the Au particles in relation to the cross-sectional width of the ZnO nanowires. We observe a distinct Schottky to Ohmic transition in transport behavior at an Au to nanowire diameter ratio of 0.6. The current-voltage electrical measurements performed with a multiprobe instrument are explained using 3-D self-consistent electrostatic and transport simulations revealing that tunneling at the contact edge is the dominant carrier transport mechanism for these nanoscale contacts. The results are applicable to other nanowire materials such as Si, GaAs, and InAs when the effects of surface charge and contact size are considered.

  13. Magnetic properties and anisotropic magnetoresistance of antiperovskite nitride Mn{sub 3}GaN/Co{sub 3}FeN exchange-coupled bilayers

    SciTech Connect

    Sakakibara, H. Ando, H.; Kuroki, Y.; Kawai, S.; Ueda, K.; Asano, H.

    2015-05-07

    Epitaxial bilayers of antiferromagnetic Mn{sub 3}GaN/ferromagnetic Co{sub 3}FeN with an antiperovskite structure were grown by reactive magnetron sputtering, and their structural, magnetic, and electrical properties were investigated. Exchange coupling with an exchange field H{sub ex} of 0.4 kOe at 4 K was observed for Mn{sub 3}GaN (20 nm)/Co{sub 3}FeN (5 nm) bilayers. Negative anisotropic magnetoresistance (AMR) effect in Co{sub 3}FeN was observed and utilized to detect magnetization reversal in exchange-coupled Mn{sub 3}GaN/Co{sub 3}FeN bilayers. The AMR results showed evidence for current-induced spin transfer torque in antiferromagnetic Mn{sub 3}GaN.

  14. Structure and magnetic properties of bulk anisotropic SmCo5/α-Fe nanocomposite permanent magnets with different α-Fe content

    NASA Astrophysics Data System (ADS)

    Liu, W. Q.; Zuo, J. H.; Yue, M.; Cui, Z. Z.; Zhang, D. T.; Zhang, J. X.; Zhang, P. Y.; Ge, H. L.; Guo, Z. H.; Li, W.

    2011-04-01

    Chemical coating, hot compaction, and hot deformation techniques have been applied to prepare bulk anisotropic SmCo5/α-Fe nanocomposite magnets. The effects of α-Fe content on the structure and magnetic properties of the magnets were studied. With the increase of the α-Fe content, both the saturation magnetization (Ms) and remanence (Mr) of the magnets rise first, peak at 10 vol. % α-Fe content and then fall while the coercivity (Hci) of the magnets drops simultaneously. Crystal structure analysis shows that the magnets exhibit a strong c-axis crystal texture of the SmCo5 phase, which, however, weakens gradually as the α-Fe content increases. Microstructure observation also shows that there are many SmCo5 equiaxial grains even after hot deformation in the magnets with 15 vol. % α-Fe.

  15. Peculiarities of spectral properties of a one-dimensional photonic crystal with an anisotropic defect layer of the nanocomposite with resonant dispersion

    NASA Astrophysics Data System (ADS)

    Vetrov, S. Ya; Pankin, P. S.; Timofeev, I. V.

    2014-09-01

    We have studied the spectral properties of a one-dimensional photonic crystal with a structure defect that represents an anisotropic nanocomposite layer sandwiched between two multilayer dielectric mirrors. The nanocomposite consists of metallic nanoscale inclusions of orientationally ordered spheroidal shape, dispersed in a transparent matrix, and is characterised by an effective resonant permittivity. Each of the two orthogonal polarisations of probe radiation corresponds to a particular plasmon resonant frequency of the nanocomposite. The problem of calculating the transmittance spectrum of the waves with s- and p-polarisations for such structures is solved. Spectral manifestation of splitting of the defect mode depending on the structure parameters and volumetric fraction of the nanospheroids is studied. The essential dependence of the position of maxima of the defect modes in the bandgap of the photonic crystal and their splitting on the incidence angle, polarisation, and the ratio of lengths of the polar and equatorial semi-axes of the spheroidal nanoparticles is shown.

  16. Configurational temperature and local properties of the anisotropic Gay-Berne liquid crystal model: Applications to the isotropic liquid/vapor interface and isotropic/nematic transition

    NASA Astrophysics Data System (ADS)

    Ghoufi, Aziz; Morineau, Denis; Lefort, Ronan; Malfreyt, Patrice

    2011-01-01

    Molecular simulations in the isothermal statistical ensembles require that the macroscopic thermal and mechanical equilibriums are respected and that the local values of these properties are constant at every point in the system. The thermal equilibrium in Monte Carlo simulations can be checked through the calculation of the configurational temperature, {k_BT_{conf}={< |nabla _r U({r}^N)|2>}/{< nabla _r{^2} U({r}^N) >}}, where nabla _r is the nabla operator of position vector r. As far as we know, T_{conf} was never calculated with the anisotropic Gay-Berne potential, whereas the calculation of T_{conf} is much more widespread with more common potentials (Lennard Jones, electrostatic, …). We establish here an operational expression of the macroscopic and local configurational temperatures, and we investigate locally the isotropic liquid phase, the liquid / vapor interface, and the isotropic-nematic transition by Monte Carlo simulations.

  17. Peculiarities of spectral properties of a one-dimensional photonic crystal with an anisotropic defect layer of the nanocomposite with resonant dispersion

    SciTech Connect

    Vetrov, S Ya; Timofeev, I V; Pankin, P S

    2014-09-30

    We have studied the spectral properties of a one-dimensional photonic crystal with a structure defect that represents an anisotropic nanocomposite layer sandwiched between two multilayer dielectric mirrors. The nanocomposite consists of metallic nanoscale inclusions of orientationally ordered spheroidal shape, dispersed in a transparent matrix, and is characterised by an effective resonant permittivity. Each of the two orthogonal polarisations of probe radiation corresponds to a particular plasmon resonant frequency of the nanocomposite. The problem of calculating the transmittance spectrum of the waves with s- and p-polarisations for such structures is solved. Spectral manifestation of splitting of the defect mode depending on the structure parameters and volumetric fraction of the nanospheroids is studied. The essential dependence of the position of maxima of the defect modes in the bandgap of the photonic crystal and their splitting on the incidence angle, polarisation, and the ratio of lengths of the polar and equatorial semi-axes of the spheroidal nanoparticles is shown. (photonic crystals)

  18. A molecular-sized tunnel-porous crystal with a ratchet gear structure and its one-way guest-molecule transportation property

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Yasumoto, Tetsuaki; Manabe, Yousuke; Sato, Hiroyasu; Yamano, Akihito; Katagiri, Toshimasa

    2013-01-01

    An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet.An anisotropic tunnel microporous crystal was prepared. Active transportation of anthracene as a guest molecule in the anisotropic tunnels was observed. The direction of anthracene movement implies that the anisotropic tunnel did not work as a flap-check valve. The direction of the movement was consistent with that caused by a Brownian ratchet. Electronic supplementary information (ESI) available. CCDC reference numbers 837539 and 837540. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30880k

  19. Transport properties of anyons in random topological environments

    NASA Astrophysics Data System (ADS)

    Zatloukal, V.; Lehman, L.; Singh, S.; Pachos, J. K.; Brennen, G. K.

    2014-10-01

    The quasi-one-dimensional transport of Abelian and non-Abelian anyons is studied in the presence of a random topological background. In particular, we consider the quantum walk of an anyon that braids around islands of randomly filled static anyons of the same type. Two distinct behaviors are identified. We analytically demonstrate that all types of Abelian anyons localize purely due to the statistical phases induced by their random anyonic environment. In contrast, we numerically show that non-Abelian Ising anyons do not localize. This is due to their entanglement with the anyonic environment, which effectively induces dephasing. Our study demonstrates that localization properties strongly depend on nonlocal topological interactions, and it provides a clear distinction in the transport properties of Abelian and non-Abelian anyons.

  20. Transport properties of β-FeSi2

    NASA Astrophysics Data System (ADS)

    Arushanov, Ernest; Lisunov, Konstantin G.

    2015-07-01

    The aim of this paper is to summarize considerable experimental efforts undertaken within the last decades in the investigations of transport properties of β-FeSi2. The β-FeSi2 compound is the most investigated among a family of semiconducting silicides. This material has received considerable attention as an attractive material for optoelectronic, photonics, photovoltaics and thermoelectric applications. Previous reviews of the transport properties of β-FeSi2 have been given by Lange and Ivanenko et al. about 15 years ago. The Hall effect, the conductivity, the mobility and the magnetoresistance data are presented. Main attention is paid to the discussion of the impurity (defect) band conductivity, the anomalous Hall effect, the scattering mechanisms of charge carriers, as well as to the hopping conduction and the magnetoresistance.

  1. Volume transport and property distributions of the Mozambique Channel

    NASA Astrophysics Data System (ADS)

    DiMarco, Steven F.; Chapman, Piers; Nowlin, Worth D.; Hacker, Peter; Donohue, Kathleen; Luther, Mark; Johnson, Gregory C.; Toole, John

    We summarize previous estimates of volume transport and property distributions through the Mozambique Channel and offer additional estimates and measurements based on recently acquired hydrographic and float data. Previously published property distributions are consistent with southward spreading through the Channel. Waters of the Mozambique Channel are characterized by shallow and intermediate oxygen minima separated by a relative maximum. Based on hydrographic sections, the intermediate maximum in dissolved oxygen is seen to decrease in value as it spreads southward. The highest values are found in the westward flow of the South Equatorial Current just north of Madagascar and within the western 200 km of the Channel. Similarly, oxygen concentrations at the intermediate oxygen minimum, which derives from the Arabian Sea, increase southwards, while its depth increases from 900 to 1100 m, supporting previous studies and indicating southward spreading and mixing along the Mozambique Channel. Historical transports based on hydrographic data in the Channel vary from 5 Sv northward to 26 Sv southward depending on reference level and time of the year. Balancing transport below 2500 m (the sill depth in the Channel), we estimate the net southward transports above this depth to be 29.1 and 5.9 Sv for the northern and southern sections, respectively—the difference is presumably related to seasonality and eddy variability superimposed on the mean flow. Individual deep float trajectories show the presence of many eddies, but the overall flow in the channel is southward, and broadly consistent with hydrography. Model outputs also show mean southward transport with considerable seasonal variability. Satellite data show high variability in sea surface height anomalies and high eddy kinetic energy associated with eddy activity. Although the geostrophic transport values are consistent with the historical limits, the lowered ADCP measurements suggest a substantial barotropic

  2. Stability properties of elementary dynamic models of membrane transport.

    PubMed

    Hernández, Julio A

    2003-01-01

    Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.

  3. CALIPSO observations of changes in dust properties during transatlantic transport

    NASA Astrophysics Data System (ADS)

    Marshak, A.; Yang, W.; Varnai, T.; Kostinski, A. B.

    2015-12-01

    The vertical distribution of dust shape and size is highly important for understanding and estimating dust radiative forcing. We used CALIPSO nighttime datasets to examine the vertical structure and evolution of Saharan dust during transatlantic transport. The results show that most Saharan dust is lifted to high altitude and descends after traveling thousands of km-s. Initially, the depolarization ratio and color ratio of Saharan dust are uniformly distributed along altitude, suggesting vertically constant particle size and shape distributions. During transport, the depolarization ratio of Saharan dust drops at lower altitudes, suggesting that particle shapes become less irregular; while at relatively high altitudes, the depolarization ratio of dust increases during transport. The changes observed during transport likely come from the effects of gravitational sorting caused by variations in particle shape and size. A simple model with only two shapes qualitatively captures these features and confirms that shape-induced differential settling contribute significantly to the observed vertical stratification of dust properties. In addition, the effect of clouds on dust properties will be also discussed.

  4. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-01

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  5. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure.

    PubMed

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-24

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  6. Transport properties of polymer solutions. A comparative approach.

    PubMed Central

    Foster, K R; Cheever, E; Leonard, J B; Blum, F D

    1984-01-01

    A variety of transport properties have been measured for solutions of the water soluble polymer poly(ethylene oxide)(PEO) with molecular weights ranging from 200 to 14,000, and volume fractions ranging from 0-80%. The transport properties are thermal conductivity, electrical conductivity at audio frequencies (in solutions containing dilute electrolyte), and water self-diffusion. These data, together with dielectric relaxation data previously reported, are amenable to analysis by the same mixture theory. The ionic conductivity and water self-diffusion coefficient, but not the thermal conductivity, are substantially smaller than predicted by the Maxwell and Hanai mixture relations, calculated using the known transport properties of pure liquid water. A 25% (by volume) solution of PEO exhibits an average dielectric relaxation frequency of the suspending water of one half that of pure water, with clear evidence of a distribution of relaxation times present. The limits of the cumulative distribution of dielectric relaxation times that are consistent with the data are obtained using a linear programming technique. The application of simple mixture theory, under appropriate limiting conditions, yields hydration values for the more dilute polymer solutions that are somewhat larger than values obtained from thermodynamic measurements. PMID:6733244

  7. Viscoelastic properties of actin networks influence material transport

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Weirich, Kimberly; Gardel, Margaret

    2015-03-01

    Directed flows of cytoplasmic material are important in a variety of biological processes including assembly of a mitotic spindle, retraction of the cell rear during migration, and asymmetric cell division. Networks of cytoskeletal polymers and molecular motors are known to be involved in these events, but how the network mechanical properties are tuned to perform such functions is not understood. Here, we construct networks of either semiflexible actin filaments or rigid bundles with varying connectivity. We find that solutions of rigid rods, where unimpeded sliding of filaments may enhance transport in comparison to unmoving tracks, are the fastest at transporting network components. Entangled solutions of semiflexible actin filaments also transport material, but the entanglements provide resistance. Increasing the elasticity of the actin networks with crosslinking proteins slows network deformation further. However, the length scale of correlated transport in these networks is increased. Our results reveal how the rigidity and connectivity of biopolymers allows material transport to occur over time and length scales required for physiological processes. This work was supported by the U. Chicago MRSEC

  8. Tilted anisotropic Dirac cones in partially hydrogenated graphene

    NASA Astrophysics Data System (ADS)

    Lu, Hong-Yan; Cuamba, Armindo S.; Lin, Shih-Yang; Hao, Lei; Wang, Rui; Li, Hai; Zhao, YuanYuan; Ting, C. S.

    2016-11-01

    By means of first-principles calculations, we predict a partially hydrogenated graphene system, C6H2 , and find the one in A B -trans configuration is a Dirac material with a tilted anisotropic Dirac cone electronic structure. Different from graphene, in which the Dirac points are located at K and K' and the Fermi surfaces are circular with doping, the A B -trans C6H2 exhibits Dirac points located on the lines from Γ to M with quasielliptical Fermi surfaces when doped. Around the Dirac point, the Fermi velocity varies along different directions. Therefore, the propagation of charge carriers in this system is highly anisotropic, creating a new tunability for novel transport properties.

  9. Theoretical study of anisotropic MHD turbulence with low magnetic Reynolds number

    NASA Astrophysics Data System (ADS)

    Sukoriansky, Semion; Zemach, Efi

    2016-03-01

    Flows of electrically conducting fluids under the action of external magnetic field present an example of strongly anisotropic turbulence. Such flows are not only important for different engineering applications, but also provide an interesting framework for studies of quasi-two-dimensional turbulence with strongly modified transport properties in easily controllable laboratory experiments. We present theoretical results that advance our understanding of magnetohydrodynamic (MHD) flows with low magnetic Reynolds number by treating this phenomenon within the quasi-normal scale elimination (QNSE) theory. Previous applications of the theory to turbulent flows with stable stratification and solid body rotation have demonstrated that QNSE is a powerful tool for studies of anisotropic turbulent flows. We derive expressions for scale-dependent eddy viscosities and eddy diffusivities in the directions parallel and normal to the external magnetic field and investigate progressive anisotropization of turbulent transport of momentum and passive scalar. The theory yields analytical expressions for anisotropic one-dimensional spectra of MHD turbulence. In particular, the theory sheds light upon the modification of the Kolmogorov k-5/3 spectrum by anisotropic Ohmic (Joule) dissipation.

  10. Space radiation transport properties of polyethylene-based composites.

    PubMed

    Kaul, R K; Barghouty, A F; Dahche, H M

    2004-11-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  11. Space radiation transport properties of polyethylene-based composites

    NASA Technical Reports Server (NTRS)

    Kaul, R. K.; Barghouty, A. F.; Dahche, H. M.

    2004-01-01

    Composite materials that can serve as both effective shielding materials against cosmic-ray and energetic solar particles in deep space, as well as structural materials for habitat and spacecraft, remain a critical and mission enabling component in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density, coupled with high hydrogen content. Polyethylene-fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at the NASA Marshall Space Flight Center and tested against a 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  12. Radiation Transport Properties of Polyethylene-Fiber Composites

    NASA Technical Reports Server (NTRS)

    Kaul, Raj K.; Barghouty, A. F.; Dahche, H. M.

    2003-01-01

    Composite materials that can both serve as effective shielding materials against cosmic-ray and energetic solar particles in deep space as well as structural materials for habitat and spacecraft remain a critical and mission enabling piece in mission planning and exploration. Polyethylene is known to have excellent shielding properties due to its low density coupled with high hydrogen content. Polyethylene fiber reinforced composites promise to combine this shielding effectiveness with the required mechanical properties of structural materials. Samples of Polyethylene-fiber reinforced epoxy matrix composite 1-5 cm thick were prepared at NASA's Marshall Space Flight Center and tested against 500 MeV/nucleon Fe beam at the HIMAC facility of NIRS in Chiba, Japan. This paper presents measured and calculated results for the radiation transport properties of these samples.

  13. Red Cell Properties after Different Modes of Blood Transportation

    PubMed Central

    Makhro, Asya; Huisjes, Rick; Verhagen, Liesbeth P.; Mañú-Pereira, María del Mar; Llaudet-Planas, Esther; Petkova-Kirova, Polina; Wang, Jue; Eichler, Hermann; Bogdanova, Anna; van Wijk, Richard; Vives-Corrons, Joan-Lluís; Kaestner, Lars

    2016-01-01

    Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing, or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extent has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 h of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin, and citrate-based CPDA) for two temperatures (4°C and room temperature) were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination), red blood cell (RBC) volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations, and formation of micro vesicles), Ca2+ handling, RBC metabolism, activity of numerous enzymes, and O2 transport capacity. Our findings indicate that individual sets of parameters may require different shipment settings (anticoagulants, temperature). Most of the parameters except for ion (Na+, K+, Ca2+) handling and, possibly, reticulocytes counts, tend to favor transportation at 4°C. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, the majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using an optimized shipment protocol, the majority of parameters were stable within 24 h, a condition that may not hold for the samples of patients with rare anemias. This implies for as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the patients to

  14. Upscaling flow and transport properties in synthetic porous media

    NASA Astrophysics Data System (ADS)

    Jasinski, Lukasz; Dabrowski, Marcin

    2015-04-01

    Flow and transport through the porous media has instances in nature and industry: contaminant migration in geological formations, gas/oil extraction from proppant filled hydraulic fractures and surrounding porous matrix, underground carbon dioxide sequestration and many others. We would like to understand the behavior of propagating solute front in such medium, mainly flow preferential pathways and the solute dispersion due to the porous medium geometry. The motivation of our investigation is to find connection between the effective flow and transport properties and porous media geometry in 2D and 3D for large system sizes. The challenge is to discover a good way of upscaling flow and transport processes to obtain results comparable to these calculated on pore-scale in much faster way. We study synthetic porous media made of densely packed poly-disperse disk-or spherical-shaped grains in 2D and 3D, respectively. We use various protocols such as the random sequential addition (RSA) algorithm to generate densely packed grains. Imposed macroscopic pressure gradient invokes fluid flow through the pore space of generated porous medium samples. As the flow is considered in the low Reynolds number regime, a stationary velocity field is obtained by solving the Stokes equations by means of finite element method. Void space between the grains is accurately discretized by using body-fitting triangular or tetrahedral mesh. Finally, pure advection of a front carried by the velocity field is studied. Periodicity in all directions is applied to microstructure, flow and transport processes. Effective permeability of the media can be calculated by integrating the velocity field on cross sections, whereas effective dispersion coefficient is deduced by application of centered moment methods on the concentration field of transported solute in time. The effective parameters are investigated as a function of geometrical parameters of the media, such as porosity, specific surface area

  15. Predicting radiative transport properties of plasma sprayed porous ceramics

    NASA Astrophysics Data System (ADS)

    Wang, B. X.; Zhao, C. Y.

    2016-03-01

    The typical yttria-stabilized zirconia material for making the thermal barrier coatings (TBCs) is intrinsically semitransparent to thermal radiation, and the unique disordered microstructures in TBCs make them surprisingly highly scattering. To quantitatively understand the influence of disordered microstructures, this paper presents a quantitative prediction on the radiative properties, especially the transport scattering coefficient of plasma sprayed TBC based on microstructure analysis and rigorous electromagnetic theory. The impact of the porosity, shape, size, and orientation of different types of voids on transport scattering coefficient is comprehensively investigated under the discrete dipole approximation. An inverse model integrating these factors together is then proposed to quantitatively connect transport scattering coefficient with microstructural information, which is also validated by available experimental data. Afterwards, an optimization procedure is carried out based on this model to obtain the optimal size and orientation distribution of the microscale voids to achieve the maximal radiation insulation performance at different operating temperatures, providing guidelines for practical coating design and fabrication. This work suggests that the current model is effective and also efficient for connecting scattering properties to microstructures and can be implemented as a quantitative tool for further studies like non-destructive infrared imaging as well as micro/nanoscale thermal design of TBCs.

  16. Anisotropic Particles in Turbulence

    NASA Astrophysics Data System (ADS)

    Voth, Greg A.; Soldati, Alfredo

    2017-01-01

    Anisotropic particles are common in many industrial and natural turbulent flows. When these particles are small and neutrally buoyant, they follow Lagrangian trajectories while exhibiting rich orientational dynamics from the coupling of their rotation to the velocity gradients of the turbulence field. This system has proven to be a fascinating application of the fundamental properties of velocity gradients in turbulence. When particles are not neutrally buoyant, they experience preferential concentration and very different preferential alignment than neutrally buoyant tracer particles. A vast proportion of the parameter range of anisotropic particles in turbulence is still unexplored, with most existing research focusing on the simple foundational cases of axisymmetric ellipsoids at low concentrations in homogeneous isotropic turbulence and in turbulent channel flow. Numerical simulations and experiments have recently developed a fairly comprehensive picture of alignment and rotation in these cases, and they provide an essential foundation for addressing more complex problems of practical importance. Macroscopic effects of nonspherical particle dynamics include preferential concentration in coherent structures and drag reduction by fiber suspensions. We review the models used to describe nonspherical particle motion, along with numerical and experimental methods for measuring particle dynamics.

  17. Morphologic and transport properties of natural organic floc

    USGS Publications Warehouse

    Larsen, L.G.; Harvey, J.W.; Crimaldi, J.P.

    2009-01-01

    The morphology, entrainment, and settling of suspended aggregates ("floc") significantly impact fluxes of organic carbon, nutrients, and contaminants in aquatic environments. However, transport properties of highly organic floc remain poorly understood. In this study detrital floc was collected in the Florida Everglades from two sites with different abundances of periphyton for use in a settling column and in racetrack flume entrainment experiments. Although Everglades flocs are similar to other organic aggregates in terms of morphology and settling rates, they tend to be larger and more porous than typical mineral flocs because of biostabilization processes and relatively low prevailing shear stresses typical of wetlands. Flume experiments documented that Everglades floc was entrained at a low bed shear stress of 1.0 ?? 10-2 Pa, which is considerably smaller than the typical entrainment threshold of mineral floc. Because of similarities between Everglades floc and other organic floc populations, floc transport characteristics in the Everglades typify the behavior of floc in other organic-rich shallow-water environments. Highly organic floc is more mobile than less organic floc, but because bed shear stresses in wetlands are commonly near the entrainment threshold, wetland floc dynamics are often transport-limited rather than supply limited. Organic floc transport in these environments is therefore governed by the balance between entrainment and settling fluxes, which has implications for ecosystem metabolism, materials cycling, and even landscape evolution. Copyright 2009 by the American Geophysical Union.

  18. Rhamnolipid surface thermodynamic properties and transport in agricultural soil.

    PubMed

    Renfro, Tyler Dillard; Xie, Weijie; Yang, Guang; Chen, Gang

    2014-03-01

    Rhamnolipid is a biosurfactant produced by several Pseudomonas species, which can wet hydrophobic soils by lowering the cohesive and/or adhesive surface tension. Because of its biodegradability, rhamnolipid applications bring minimal adverse impact on the soil and groundwater as compared with that of chemical wetting agents. Subsequently, rhamnolipid applications have more advantages when used to improve irrigation in the agricultural soil, especially under draught conditions. In the presence of rhamnolipid, water surface tension dropped linearly with the increase of rhamnolipid concentration until the rhamnolipid critical micelle concentration (CMC) of 30 mg/L was reached. Below the CMC, rhamnolipid had linear adsorption isotherms on the soil with a partition coefficient of 0.126 L/kg. Rhamnolipid transport breakthrough curves had a broad and diffuse infiltration front, indicating retention of rhamnolipid on the soil increased with time. Rhamnolipid transport was found to be well represented by the advection-dispersion equation based on a local equilibrium assumption. When applied at concentrations above the CMC, the formed rhamnolipid micelles prevented rhamnolipid adsorption (both equilibrium adsorption and kinetic adsorption) in the soil. It was discovered in this research that rhamnolipid surface thermodynamic properties played the key role in controlling rhamnolipid transport. The attractive forces between rhamnolipid molecules contributed to micelle formation and facilitated rhamnolipid transport.

  19. Reservoir transport and poroelastic properties from oscillating pore pressure experiments

    NASA Astrophysics Data System (ADS)

    Hasanov, Azar K.

    Hydraulic transport properties of reservoir rocks, permeability and storage capacity are traditionally defined as rock properties, responsible for the passage of fluids through the porous rock sample, as well as their storage. The evaluation of both is an important part of any reservoir characterization workflow. Moreover, permeability and storage capacity are main inputs into any reservoir simulation study, routinely performed by reservoir engineers on almost any major oil and gas field in the world. An accurate reservoir simulation is essential for production forecast and economic analysis, hence the transport properties directly control the profitability of the petroleum reservoir and their estimation is vital for oil and gas industry. This thesis is devoted to an integrated study of reservoir rocks' hydraulic, streaming potential and poroelastic properties as measured with the oscillating pore pressure experiment. The oscillating pore pressure method is traditionally used to measure hydraulic transport properties. We modified the method and built an experimental setup, capable of measuring all aforementioned rock properties simultaneously. The measurements were carried out for four conventional reservoir-rock quality samples at a range of oscillation frequencies and effective stresses. An apparent frequency dependence of permeability and streaming potential coupling coefficient was observed. Measured frequency dispersion of drained poroelastic properties indicates an intrinsically inelastic nature of the porous mineral rock frame. Standard Linear Model demonstrated the best fit to the experimental dispersion data. Pore collapse and grain crushing effects took place during hydrostatic loading of the dolomitic sample and were observed in permeability, coupling coefficient and poroelastic measurements simultaneously. I established that hydraulically-measured storage capacities are overestimated by almost one order of magnitude when compared to elastically

  20. Properties of transportation dynamics on scale-free networks

    NASA Astrophysics Data System (ADS)

    Zheng, Jian-Feng; Gao, Zi-You; Zhao, Xiao-Mei

    2007-01-01

    In this work, we study the statistical properties of transportation dynamics considering congestion effects, based on the standard Barabási-Albert scale-free model. In terms of user equilibrium (UE) condition, congestion effects can be described by cost function. Simulation results demonstrate that the cumulative load distribution exhibits a power-law behavior with Pl∼l, where l is the flow loaded on the node and γ≈2.7 which is much bigger than that obtained in many networks without considering congestion effects. That is, there exist fewer heavily loaded nodes in the network when considering congestion effects. Furthermore, by numerically investigating overload phenomenon of the heaviest loaded link removal in transportation networks, a phase-transition phenomenon is uncovered in terms of the key parameter characterizing the node capacity.

  1. Transport Properties of Negative Ions in HBR Plasmas

    NASA Astrophysics Data System (ADS)

    Stojanovic, Vladimir; Ivanovic, Nenad; Radmilovic-Radjenovic, Marija; Raspopovic, Zoran; Bojarov, Aleksandar; Petrovic, Zoran

    2014-10-01

    Low temperature plasma in halogenated gases is standard environment for dry etching of semiconductors. Amount of negative ions in HBr plasmas determines electronegativity so modeling etching devices requires data for anion transport properties. In this work we present cross section set for Br- ions in HBr assembled by using Denpoh-Nanbu theory. The threshold energy values were calculated by known heats of formation. The calculated total cross section accounts for ion-induced-dipole and ion-permanent-dipole interaction by using the local-dipole model. The total cross section was corrected to fit the reduced mobility obtained by SACM (Statistical Adiabatic Channel Model) approximation. Existing cross section measurements were used to scale calculated cross sections. Finally, we used Monte Carlo method to determine transport parameters for Br- as a function of reduced electric fields that can be used in fluid and hybrid plasma models.

  2. Structural and robustness properties of smart-city transportation networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song

    2015-09-01

    The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).

  3. Scattering and transport properties of tight-binding random networks

    NASA Astrophysics Data System (ADS)

    Martínez-Mendoza, A. J.; Alcazar-López, A.; Méndez-Bermúdez, J. A.

    2013-07-01

    We study numerically scattering and transport statistical properties of tight-binding random networks characterized by the number of nodes N and the average connectivity α. We use a scattering approach to electronic transport and concentrate on the case of a small number of single-channel attached leads. We observe a smooth crossover from insulating to metallic behavior in the average scattering matrix elements <|Smn|2>, the conductance probability distribution w(T), the average conductance , the shot noise power P, and the elastic enhancement factor F by varying α from small (α→0) to large (α→1) values. We also show that all these quantities are invariant for fixed ξ=αN. Moreover, we proposes a heuristic and universal relation between <|Smn|2>, , and P and the disorder parameter ξ.

  4. Transport properties of zigzag graphene nanoribbon decorated with copper clusters

    SciTech Connect

    Berahman, M.; Sheikhi, M. H.

    2014-09-07

    Using non-equilibrium green function with density functional theory, the present study investigates the transport properties of decorated zigzag graphene nanoribbon with a copper cluster. We have represented the decoration of zigzag graphene nanoribbon with single copper atom and cluster containing two and three copper atoms. In all the cases, copper atoms tend to occupy the edge state. In addition, we have shown that copper can alter the current-voltage characteristic of zigzag graphene nanoribbon and create new fluctuations and negative differential resistance. These alternations are made due to discontinuity in the combination of orbitals along the graphene nanoribbon. Decoration alters these discontinuities and creates more visible fluctuations. However, in low bias voltages, the changes are similar in all the cases. The study demonstrates that in the decorated zigzag graphene nanoribbon, the edge states are the main states for transporting electron from one electrode to another.

  5. Coefficients for calculating thermodynamic and transport properties of individual species

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford; Reno, Martin A.

    1993-01-01

    Libraries of thermodynamic data and transport properties are given for individual species in the form of least-squares coefficients. Values of C(sup 0)(sub p)(T), H(sup 0)(T), and S(sup 0)(T) are available for 1130 solid, liquid, and gaseous species. Viscosity and thermal conductivity data are given for 155 gases. The original C(sup 0)(sub p)(T) values were fit to a fourth-order polynomial with integration constants for H(sup 0)(T) and S(sup 0)(T). For each species the integration constant for H(sup 0)(T) includes the heat of formation. Transport properties have a different functional form. The temperature range for most of the data is 300 to 5000 K, although some of the newer thermodynamic data have a range of 200 to 6000 K. Because the species are mainly possible products of reaction, the data are useful for chemical equilibrium and kinetics computer codes. Much of the data has been distributed for several years with the NASA Lewis equilibrium program CET89. The thermodynamic properties of the reference elements were updated along with about 175 species that involve the elements carbon, hydrogen, oxygen, and nitrogen. These sets of data will be distributed with the NASA Lewis personal computer program for calculating chemical equilibria, CETPC.

  6. Effects of surface modification of Nd-Fe-B powders using parylene C by CVDP method on the properties of anisotropic bonded Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Ma, Bin; Sun, Aizhi; Lu, Zhenwen; Cheng, Chuan; Xu, Chen

    2016-10-01

    This paper presents effects of surface modification of Nd-Fe-B powders using parylene C by means of chemical vapor deposition polymerization (CVDP) on the properties of anisotropic bonded Nd-Fe-B magnets. It can be well verified from SEM images and EDS analysis that the surface of Nd-Fe-B powder is coated with thin parylene C films. The maximum energy product ((BH)max), degree of alignment (DOA), actual density and corrosion resistance of parylene Nd-Fe-B magnets prepared at room temperature are much higher than that of non-parylene Nd-Fe-B magnets. (BH)max, DOA and actual density of parylene Nd-Fe-B magnets (70 kJ/m3, 0.342, 5.82 g/cm3) prepared at room temperature under 578 MPa are improved by 18.6%, 4.6%, 2.1% and 27.3%, 29.1%, 7.8% compared with non-parylene Nd-Fe-B magnets prepared at 140 °C (59 kJ/m3, 0327, 5.70 g/cm3) and room temperature (55 kJ/m3, 0.265, 5.40 g/cm3), respectively. Additional, the improvement of actual density and the room temperature process also solve problems such as powders' sticking wall, non-uniform powder filling, non-uniform magnetic properties, seriously mould damage, short life cycle of mould and so on, which exists during warm compaction process. Parylene Nd-Fe-B magnets have better corrosion resistance and worse mechanical properties than that of non-parylene Nd-Fe-B magnets. The reason for the improvement of magnetic properties and actual density is the low friction cofficient of parylene C films, which results in lower frictional resistance and better lubricating property of parylene Nd-Fe-B powders.

  7. Polymerizable ionic liquid with state of the art transport properties.

    PubMed

    Jeremias, Sebastian; Kunze, Miriam; Passerini, Stefano; Schönhoff, Monika

    2013-09-12

    The physicochemical properties of diallyldimethylammonium-bis(trifluoromethanesulfonyl)imide (DADMATFSI) and its binary mixture with LiTFSI are presented herein, also showing this novel compound as a polymerizable room temperature ionic liquid with excellent transport properties for Li(+) ions. In particular, results of pulsed field gradient (PFG)-NMR diffusion experiments and impedance measurements show that DADMATFSI exhibits state of the art properties of ionic liquids. Similar ionic diffusion coefficients and a similarly high conductivity as seen in the benchmark compound N-butyl-N-methylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (PYR14TFSI) are observed. In accordance, the Li transference number in the binary mixture matches the trend seen for PYR14TFSI-LiTFSI mixtures. In addition to these impressive properties as ionic liquid, DADMATFSI was polymerized by UV treatment. The polymerization is demonstrated and the ion conducting properties of the resulting gel polymer electrolyte are investigated, showing that DADMATFSI can be transformed into an ionogel and may have applications where polymerization is desirable.

  8. Study of electronic transport properties of doped 8AGNR

    SciTech Connect

    Sharma, Uma Shankar; Srivastava, Anurag; Verma, U. P.

    2014-04-24

    The electronic and transport properties of 8-armchair graphene nanoribbon (8AGNR) with defect at different sites are investigated by performing first-principles calculations based on density functional theory (DFT). The calculated results show that the 8AGNR are semiconductor. The introduction of 3d transition metals, creates the nondegenerate states in the conduction band, makes 8AGNR metallic. The computed transmission spectrum confirms that AGNR are semiconducting in nature and their band gap remain unchanged and localized states appear when there is vacancy in their structures, and the conductance decreases due to defects compared with the pristine nanoribbon.

  9. Physical and Optical Polarizability and Transport Properties of Bismuthate Glasses

    NASA Astrophysics Data System (ADS)

    Bale, Shashidhar; Rahman, Syed

    Bismuth-based glasses containing ZnO, B2O3 and Li2O are investigated through different physical, polarizability and transport properties. Raman spectroscopy reveals that these glasses are built from [BiO3] and [BiO6] units. Zinc in tetrahedral form is also observed. Density and glass transition temperature increase with the bismuth content. The refractive index, oxide ion polarizability and optical basicity also increase with the Bi2O3 content, whereas the interaction parameter decreases. The DC electrical conductivity increases and the activation energy decreases with the increase in the Li2O content.

  10. Transport properties of ZrN superconducting films

    SciTech Connect

    Cassinese, A.; Iavarone, M.; Vaglio, R.; Grimsditch, M.; Uran, S.

    2000-12-01

    Superconductivity in nitrides presents intriguing aspects related to the role of optical phonons. In the present paper we report on high-quality superconducting zirconium nitride film preparation and characterization (including Raman scattering) as well as on both dc and microwave frequency transport properties. The high-temperature dc resistivity shows no evidence of saturation effects, possibly due to the low electron-phonon coupling. Surface impedance data can be well fitted by the standard BCS expressions. The data provide further evidence of the ''conventional'' nature of superconductivity in these compounds.

  11. Effective Potential Energies and Transport Properties for Nitrogen and Oxygen

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The results of recent theoretical studies for N--N2, O--O2, N2--N2 interactions are applied to the transport properties of nitrogen and oxygen gases. The theoretical results are used to select suitable oxygen interaction energies from previous work for determining the diffusion and viscosity coefficients at high temperatures. A universal formulation is applied to determine the collision integrals for O2--O2 interactions at high temperatures and to calculate certain ratios for determining higher-order collision integrals.

  12. Transport properties of Fibonacci heterostructures: a nonparabolic approach

    NASA Astrophysics Data System (ADS)

    Palomino-Ovando, M.; Cocoletzi, G. H.

    1998-07-01

    A fourth order hamiltonian is used to explore transport properties of semiconductor Fibonacci heterostructures. The tunneling current and time delay are obtained for different Fibonacci sequences constructed withGaAsandAlxGa1 - xAs. Energy minibands are calculated to study the fractal dimension and critical electronic states in quasi-periodic arrays. Results show that nonparabolic corrections produce changes in the tunneling current, time delay and fractal dimension, and a low voltage shift of the current peaks compared with the parabolic theory. The electronic states preserve their critical nature in the presence of nonparabolic effects.

  13. Polarization distribution control of anisotropic electromagnetic Gaussian-Schell model beams on free propagation by exploiting correlation properties at the source plane.

    PubMed

    Zhang, Rong; Wang, Xiangzhao; Cheng, Xin; Qiu, Zicheng

    2010-11-01

    When propagating in free space, the transversal distribution of the degree of polarization of an anisotropic electromagnetic Gaussian-Schell model (AEGSM) beam will generally undergo a complex evolution process. We find that this transversal distribution of the degree of polarization of an AEGSM beam can be controlled by exploiting the partial correlation properties of the source. The main research of our paper falls into two parts. First, the concept of analogical propagation of the transversal distribution of the degree of polarization is proposed, and the condition for an AEGSM beam having an analogical propagation is obtained. When an AEGSM beam is on analogical propagation, the distribution of the degree of polarization on any cross section of the beam is always similar to that on the source plane, except that the size of the distribution pattern will expand continuously as the propagation distance increases. Second, the far-field transversal distribution of the degree of polarization is considered, and the condition for the far-field transversal polarization distribution of an AEGSM beam to be always of circularly symmetric shape, no matter how complicated it is on the source, is obtained. Our research is expected to find applications in areas that make use of the polarization properties of random electromagnetic beams.

  14. Simultaneous Measurement of Thermal Diffusivity and Thermal Conductivity by Means of Inverse Solution for One-Dimensional Heat Conduction (Anisotropic Thermal Properties of CFRP for FCEV)

    NASA Astrophysics Data System (ADS)

    Kosaka, Masataka; Monde, Masanori

    2015-11-01

    For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.

  15. Transport and magnetic properties of CMR manganites with antidot arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Du, Kai; Niu, Jiebin; Wei, Wengang; Chen, Jinjie; Yin, Lifeng; Shen, Jian

    2014-03-01

    We fabricated and characterized a series of manganites thin film samples with different densities of antidots. With increasing antidot density, the samples show higher MIT temperature and lower resistivity under zero and low magnetic fields. These differences become smaller and finally vanished when the magnetic field is large enough to melt the charge ordered phase in the system, which is expected in our theoretical explanations. We believe that emerging edge states at the ring of antidotes play a significant role for observed metal-insulator transition and electrical transport properties, which are of great importance of real storage and sensor device design. Magnetic property measurements and theoretical simulation also support the conclusion. These results open up new ways to control and tune the strongly correlated oxides without introduce any new material or field.

  16. Control of photon transport properties in nanocomposite nanowires

    NASA Astrophysics Data System (ADS)

    Moffa, M.; Fasano, V.; Camposeo, A.; Persano, L.; Pisignano, D.

    2016-02-01

    Active nanowires and nanofibers can be realized by the electric-field induced stretching of polymer solutions with sufficient molecular entanglements. The resulting nanomaterials are attracting an increasing attention in view of their application in a wide variety of fields, including optoelectronics, photonics, energy harvesting, nanoelectronics, and microelectromechanical systems. Realizing nanocomposite nanofibers is especially interesting in this respect. In particular, methods suitable for embedding inorganic nanocrystals in electrified jets and then in active fiber systems allow for controlling light-scattering and refractive index properties in the realized fibrous materials. We here report on the design, realization, and morphological and spectroscopic characterization of new species of active, composite nanowires and nanofibers for nanophotonics. We focus on the properties of light-confinement and photon transport along the nanowire longitudinal axis, and on how these depend on nanoparticle incorporation. Optical losses mechanisms and their influence on device design and performances are also presented and discussed.

  17. Simplified curve fits for the transport properties of equilibrium air

    NASA Technical Reports Server (NTRS)

    Srinivasan, S.; Tannehill, J. C.

    1987-01-01

    New, improved curve fits for the transport properties of equilibruim air have been developed. The curve fits are for viscosity and Prandtl number as functions of temperature and density, and viscosity and thermal conductivity as functions of internal energy and density. The curve fits were constructed using grabau-type transition functions to model the tranport properties of Peng and Pindroh. The resulting curve fits are sufficiently accurate and self-contained so that they can be readily incorporated into new or existing computational fluid dynamics codes. The range of validity of the new curve fits are temperatures up to 15,000 K densities from 10 to the -5 to 10 amagats (rho/rho sub o).

  18. Transport properties of multigrained nanocomposites with imperfect interfaces

    NASA Astrophysics Data System (ADS)

    Palla, Pier Luca; Giordano, Stefano

    2016-11-01

    Multigrained or polycrystalline composite materials have attracted a considerable attention due to their potential applications as advanced materials with outstanding thermal, mechanical, and electromagnetic properties. When the grains' morphology is displayed at the nanoscopic scale, the presence of imperfect interfaces plays a central role in determining the effective transport properties. Therefore, we develop here a self-consistent effective medium theory able to evaluate the influence of real contacts between the different phases of multigrained composite materials. This approach takes into account the classical interface schemes that have been introduced in literature, namely, the low and the high conducting interface models. The theoretical results have been compared with numerical and experimental data concerning the thermal conductivity of ( 1 - x ) Si : x Ge mixtures and the electrical conductivity of ( 1 - x ) Li 2 O : x B 2 O 3 composites.

  19. Stacking dependence of carrier transport properties in multilayered black phosphorous.

    PubMed

    Sengupta, A; Audiffred, M; Heine, T; Niehaus, T A

    2016-02-24

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green's function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  20. Stacking dependence of carrier transport properties in multilayered black phosphorous

    NASA Astrophysics Data System (ADS)

    Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.

    2016-02-01

    We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.

  1. Anisotropic Transport of Electrons in a Novel FET Channel with Chains of InGaAs Nano-Islands Embedded along Quasi-Periodic Multi-Atomic Steps on Vicinal (111)B GaAs

    SciTech Connect

    Akiyama, Y.; Kawazu, T.; Noda, T.; Sakaki, H.

    2010-01-04

    We have studied electron transport in n-AlGaAs/GaAs heterojunction FET channels, in which chains of InGaAs nano-islands are embedded along quasi-periodic steps. By using two samples, conductance G{sub para}(V{sub g}) parallel to the steps and G{sub perp}(V{sub g}) perpendicular to them were measured at 80 K as functions of gate voltage V{sub g}. At sufficiently high V{sub g}, G{sub para} at 80 K is several times as high as G{sub perp}, which manifests the anisotropic two-dimensional transport of electrons. When V{sub g} is reduced to -0.7 V, G{sub perp} almost vanishes, while {sub Gpara} stays sizable unless V{sub g} is set below -0.8 V. These results indicate that 'inter-chain' barriers play stronger roles than 'intra-chain' barriers.

  2. Nonlinear Transport and Noise Properties of Acoustic Phonons

    NASA Astrophysics Data System (ADS)

    Walczak, Kamil

    We examine heat transport carried by acoustic phonons in molecular junctions composed of organic molecules coupled to two thermal baths of different temperatures. The phononic heat flux and its dynamical noise properties are analyzed within the scattering (Landauer) formalism with transmission probability function for acoustic phonons calculated within the method of atomistic Green's functions (AGF technique). The perturbative computational scheme is used to determine nonlinear corrections to phononic heat flux and its noise power spectral density with up to the second order terms with respect to temperature difference. Our results show the limited applicability of ballistic Fourier's law and fluctuation-dissipation theorem to heat transport in quantum systems. We also derive several noise-signal relations applicable to nanoscale heat flow carried by phonons, but valid for electrons as well. We also discuss the extension of the perturbative transport theory to higher order terms in order to address a huge variety of problems related to nonlinear thermal effects which may occur at nanoscale and at strongly non-equilibrium conditions with high-intensity heat fluxes. This work was supported by Pace University Start-up Grant.

  3. Topological phases and transport properties of screened interacting quantum wires

    NASA Astrophysics Data System (ADS)

    Xu, Hengyi; Xiong, Ye; Wang, Jun

    2016-10-01

    We study theoretically the effects of long-range and on-site Coulomb interactions on the topological phases and transport properties of spin-orbit-coupled quasi-one-dimensional quantum wires imposed on a s-wave superconductor. The distributions of the electrostatic potential and charge density are calculated self-consistently within the Hartree approximation. Due to the finite width of the wires and charge repulsion, the potential and density distribute inhomogeneously in the transverse direction and tend to accumulate along the lateral edges where the hard-wall confinement is assumed. This result has profound effects on the topological phases and the differential conductance of the interacting quantum wires and their hybrid junctions with superconductors. Coulomb interactions renormalize the gate voltage and alter the topological phases strongly by enhancing the topological regimes and producing jagged boundaries. Moreover, the multicritical points connecting different topological phases are modified remarkably in striking contrast to the predictions of the two-band model. We further suggest the possible non-magnetic topological phase transitions manipulated externally with the aid of long-range interactions. Finally, the transport properties of normal-superconductor junctions are further examined, in particular, the impacts of Coulomb interactions on the zero-bias peaks related to the Majorana fermions and near zero-energy peaks.

  4. Electronic structure and microscopic charge-transport properties of a new-type diketopyrrolopyrrole-based material.

    PubMed

    Huang, Jin-Dou; Li, Wen-Liang; Wen, Shu-Hao; Dong, Bin

    2015-04-15

    Recently, diketopyrrolopyrrole (DPP)-based materials have attracted much interest due to their promising performance as a subunit in organic field effect transistors. Using density functional theory and charge-transport models, we investigated the electronic structure and microscopic charge transport properties of the cyanated bithiophene-functionalized DPP molecule (compound 1). First, we analyzed in detail the partition of the total relaxation (polaron) energy into the contributions from each vibrational mode and the influence of bond-parameter variations on the local electron-vibration coupling of compound 1, which well explains the effects of different functional groups on internal reorganization energy (λ). Then, we investigated the structural and electronic properties of compound 1 in its isolated molecular state and in the solid state form, and further simulated the angular resolution anisotropic mobility for both electron- and hole-transport using two different simulation methods: (i) the mobility orientation function proposed in our previous studies (method 1); and (ii) the master equation approach (method 2). The calculated electron-transfer mobility (0.00003-0.784 cm(2) V(-1) s(-1) from method 1 and 0.02-2.26 cm(2) V(-1) s(-1) from method 2) matched reasonably with the experimentally reported value (0.07-0.55 cm(2) V(-1) s(-1) ). To the best of our knowledge, this is the first time that the transport parameters of compound 1 were calculated in the context of band model and hopping models, and both calculation results suggest that the intrinsic hole mobility is higher than the corresponding intrinsic electron mobility. Our calculation results here will be instructive to further explore the potential of other higher DPP-containing quinoidal small molecules.

  5. Shaped beam scattering by an anisotropic particle

    NASA Astrophysics Data System (ADS)

    Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang

    2017-03-01

    An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.

  6. Anisotropic and heterogeneous mechanical properties of a stratified shale/limestone sequence at Nash Point, South Wales: A case study for hydraulic fracture propagation through a layered medium

    NASA Astrophysics Data System (ADS)

    Forbes Inskip, Nathaniel; Meredith, Philip; Gudmundsson, Agust

    2016-04-01

    While considerable effort has been expended on the study of fracture propagation in rocks in recent years, our understanding of how fractures propagate through layered sedimentary rocks with different mechanical and elastic properties remains poorly constrained. Yet this is a key issue controlling the propagation of both natural and anthropogenic hydraulic fractures in layered sequences. Here we report measurements of the contrasting mechanical and elastic properties of the Lower Lias at Nash Point, South Wales, which comprises an interbedded sequence of shale and limestone layers, and how those properties may influence fracture propagation. Elastic properties of both materials have been characterised via ultrasonic wave velocity measurements as a function of azimuth on samples cored both normal and parallel to bedding. The shale is highly anisotropic, with P-wave velocities varying from 2231 to 3890 m s-1, giving an anisotropy of ~55%. By contrast, the limestone is essentially isotropic, with a mean P-wave velocity of 5828 m s-1 and an anisotropy of ~2%. The dynamic Young's modulus of the shale, calculated from P- and S-wave velocity data, is also anisotropic with a value of 36 GPa parallel to bedding and 12 GPa normal to bedding. The modulus of the limestone is again isotropic with a value of 80 GPa. It follows that for a vertical fracture propagating (i.e. normal to bedding) the modulus contrast is 6.6. This is important because the contrast in elastic properties is a key factor in controlling whether fractures arrest, deflect, or propagate across interfaces between layers in a sequence. There are three principal mechanisms by which a fracture may deflect across or along an interface, namely: Cook-Gordon debonding, stress barrier, and elastic mismatch. Preliminary numerical modelling results (using a Finite Element Modelling software) of induced fractures at Nash Point suggest that all three are important. The results demonstrate a rotation of the maximum

  7. TASK 7 DEMONSTRATION OF THAMES FOR MICROSTRUCTURE AND TRANSPORT PROPERTIES

    SciTech Connect

    Langton, C.; Bullard, J.; Stutzman, P.; Snyder, K.; Garboczi, E.

    2010-03-29

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and realible set of tools to reduce the uncertainty in predicting the structural, hydraulic and chemical performance of cement barriers used in nuclear applications that are exposed to dynamic environmental conditions over extended time frames. One of these tools, the responsibility of NIST, is THAMES (Thermodynamic Hydration and Microstructure Evolution Simulator), which is being developed to describe cementitious binder microstructures and calculate important engineering properties during hydration and degradation. THAMES is designed to be a 'micro-probe', used to evaluate changes in microstructure and properties occurring over time because of hydration or degradation reactions in a volume of about 0.001 mm{sup 3}. It will be used to map out microstructural and property changes across reaction fronts, for example, with spatial resolution adequate to be input into other models (e.g., STADIUM{reg_sign}, LeachSX{trademark}) in the integrated CBP package. THAMES leverages thermodynamic predictions of equilibrium phase assemblages in aqueous geochemical systems to estimate 3-D virtual microstructures of a cementitious binder at different times during the hydration process or potentially during degradation phenomena. These virtual microstructures can then be used to calculate important engineering properties of a concrete made from that binder at prescribed times. In this way, the THAMES model provides a way to calculate the time evolution of important material properties such as elastic stiffness, compressive strength, diffusivity, and permeability. Without this model, there would be no way to update microstructure and properties for the barrier materials considered as they are exposed to the environment, thus greatly increasing the uncertainty of long-term transport predictions. This Task 7 report demonstrates the current capabilities of THAMES. At the start of the CBP project, THAMES

  8. Grooved organogel surfaces towards anisotropic sliding of water droplets.

    PubMed

    Zhang, Pengchao; Liu, Hongliang; Meng, Jingxin; Yang, Gao; Liu, Xueli; Wang, Shutao; Jiang, Lei

    2014-05-21

    Periodic micro-grooved organogel surfaces can easily realize the anisotropic sliding of water droplets attributing to the formed slippery water/oil/solid interface. Different from the existing anisotropic surfaces, this novel surface provides a versatile candidate for the anisotropic sliding of water droplets and might present a promising way for the easy manipulation of liquid droplets for water collection, liquid-directional transportation, and microfluidics.

  9. Anisotropic ripple deformation in phosphorene

    DOE PAGES

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; ...

    2015-04-07

    Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticitymore » theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.« less

  10. Anisotropic ripple deformation in phosphorene

    SciTech Connect

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C.; Chen, Changfeng

    2015-04-07

    Here, two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  11. Anisotropic Ripple Deformation in Phosphorene.

    PubMed

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  12. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate.

    PubMed

    Zhu, Motao; Nie, Guangjun; Meng, Huan; Xia, Tian; Nel, Andre; Zhao, Yuliang

    2013-03-19

    Although a growing number of innovations have emerged in the fields of nanobiotechnology and nanomedicine, new engineered nanomaterials (ENMs) with novel physicochemical properties are posing novel challenges to understand the full spectrum of interactions at the nano-bio interface. Because these could include potentially hazardous interactions, researchers need a comprehensive understanding of toxicological properties of nanomaterials and their safer design. In depth research is needed to understand how nanomaterial properties influence bioavailability, transport, fate, cellular uptake, and catalysis of injurious biological responses. Toxicity of ENMs differ with their size and surface properties, and those connections hold true across a spectrum of in vitro to in vivo nano-bio interfaces. In addition, the in vitro results provide a basis for modeling the biokinetics and in vivo behavior of ENMs. Nonetheless, we must use caution in interpreting in vitro toxicity results too literally because of dosimetry differences between in vitro and in vivo systems as well the increased complexity of an in vivo environment. In this Account, we describe the impact of ENM physicochemical properties on cellular bioprocessing based on the research performed in our groups. Organic, inorganic, and hybrid ENMs can be produced in various sizes, shapes and surface modifications and a range of tunable compositions that can be dynamically modified under different biological and environmental conditions. Accordingly, we cover how ENM chemical properties such as hydrophobicity and hydrophilicity, material composition, surface functionalization and charge, dispersal state, and adsorption of proteins on the surface determine ENM cellular uptake, intracellular biotransformation, and bioelimination versus bioaccumulation. We review how physical properties such as size, aspect ratio, and surface area of ENMs influence the interactions of these materials with biological systems, thereby

  13. Ionic transport properties of template-synthesized gold nanotube membranes

    NASA Astrophysics Data System (ADS)

    Gao, Peng

    Ionic transport in nanotubes exhibits unique properties due to the strong interactions between ions and the nanotube surface. The main objective of my research is to explore and regulate the ionic transport in gold nanotube membranes. Chapter 1 overviews a versatile method of fabricating nanostructured materials, called the template synthesis. Important parameters of the template synthesis are introduced such as templates and deposition methods. The template synthesis method is used to prepare membranes used in this dissertation. Chapter 2 describes a method to increase the ionic conductivity in membranes containing gold nanotubes with small diameter (4 nm). The gold nanotube membrane is prepared by the electroless plating of gold in a commercially available polycarbonate membrane. Voltages are applied to the gold nanotube membrane and fixed charges are injected on the gold nanotube walls. We show that ionic conductivity of the gold nanotube membrane can be enhanced in aqueous potassium chloride (KCl) solution at negative applied voltages. When the most negative voltage (-0.8 V vs. Ag/AgCl) is applied to the membrane, the ionic conductivity of the solution inside the gold nanotube (94 mS.cm-1) is comparable to that of 1 M aqueous KCl, over two orders of magnitude higher than that of the 0.01 M KCl contacting the membrane. Chapter 3 explores another important transport property of the gold nanotube membrane -- ion permselectivity. When the permselective membrane separates two electrolyte solutions at different concentrations, a membrane potential is developed and measured by the potentiometric method. Surface charge density and the ion mobilities are estimated by fitting the experimental data with a pre-existing model. The surface charge density of the gold nanotube membrane in this research is estimated to be 2 muC/cm2. Chapter 4 describes voltage-controlled ionic transport in a gold/polypyrrole membrane doped with sodium dodecylbenzene sulfonate (DBS). Polypyrrole

  14. The transport properties of axonal microtubules establish their polarity orientation

    PubMed Central

    1993-01-01

    It is well established that axonal microtubules (MTs) are uniformly oriented with their plus ends distal to the neuronal cell body (Heidemann, S. R., J. M. Landers, and M. A. Hamborg. 1981. J. Cell Biol. 91:661-665). However, the mechanisms by which these MTs achieve their uniform polarity orientation are unknown. Current models for axon growth differ with regard to the contributions of MT assembly and transport to the organization and elaboration of the axonal MT array. Do the transport properties or assembly properties of axonal MTs determine their polarity orientation? To distinguish between these possibilities, we wished to study the initiation and outgrowth of axons under conditions that would arrest MT assembly while maintaining substantial levels of preexisting polymer in the cell body that could still be transported into the axon. We found that we could accomplish this by culturing rat sympathetic neurons in the presence of nanomolar levels of vinblastine. In concentrations of the drug up to and including 100 nM, the neurons actively extend axons. The vinblastine- axons are shorter than control axons, but clearly contain MTs. To quantify the effects of the drug on MT mass, we compared the levels of polymer throughout the cell bodies and axons of neurons cultured overnight in the presence of 0, 16, and 50 nM vinblastine with the levels of MT polymer in freshly plated neurons before axon outgrowth. Without drug, the total levels of polymer increase by roughly twofold. At 16 nM vinblastine, the levels of polymer are roughly equal to the levels in freshly plated neurons, while at 50 nM, the levels of polymer are reduced by about half this amount. Thus, 16 nM vinblastine acts as a "kinetic stabilizer" of MTs, while 50 nM results in some net MT disassembly. At both drug concentrations, there is a progressive increase in the levels of MT polymer in the axons as they grow, and a corresponding depletion of polymer from the cell body. These results indicate that

  15. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties

    PubMed Central

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-01-01

    P–type SnS compound and SnS1−xSex solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS–pressurizing direction in the temperature range 323–823 Κ. SnS compound and SnS1−xSex solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m−1 K−1 at 823 K for the composition SnS0.5Se0.5. With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS0.2Se0.8 along the parallel direction. PMID:28240324

  16. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties.

    PubMed

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-02-27

    P-type SnS compound and SnS1-xSex solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS-pressurizing direction in the temperature range 323-823 Κ. SnS compound and SnS1-xSex solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m(-1) K(-1) at 823 K for the composition SnS0.5Se0.5. With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS0.2Se0.8 along the parallel direction.

  17. Thermoelectric SnS and SnS-SnSe solid solutions prepared by mechanical alloying and spark plasma sintering: Anisotropic thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Asfandiyar; Wei, Tian-Ran; Li, Zhiliang; Sun, Fu-Hua; Pan, Yu; Wu, Chao-Feng; Farooq, Muhammad Umer; Tang, Huaichao; Li, Fu; Li, Bo; Li, Jing-Feng

    2017-02-01

    P–type SnS compound and SnS1‑xSex solid solutions were prepared by mechanical alloying followed by spark plasma sintering (SPS) and their thermoelectric properties were then studied in different compositions (x = 0.0, 0.2, 0.5, 0.8) along the directions parallel (//) and perpendicular (⊥) to the SPS–pressurizing direction in the temperature range 323–823 Κ. SnS compound and SnS1‑xSex solid solutions exhibited anisotropic thermoelectric performance and showed higher power factor and thermal conductivity along the direction ⊥ than the // one. The thermal conductivity decreased with increasing contents of Se and fell to 0.36 W m‑1 K‑1 at 823 K for the composition SnS0.5Se0.5. With increasing selenium content (x) the formation of solid solutions substantially improved the electrical conductivity due to the increased carrier concentration. Hence, the optimized power factor and reduced thermal conductivity resulted in a maximum ZT value of 0.64 at 823 K for SnS0.2Se0.8 along the parallel direction.

  18. Anisotropic surface properties of micro/nanostructured a-C:H:F thin films with self-assembly applications

    NASA Astrophysics Data System (ADS)

    Freire, V.-M.; Corbella, C.; Bertran, E.; Portal-Marco, S.; Rubio-Roy, M.; Andújar, J.-L.

    2012-06-01

    The singular properties of hydrogenated amorphous carbon (a-C:H) thin films deposited by pulsed DC plasma enhanced chemical vapor deposition (PECVD), such as hardness and wear resistance, make it suitable as protective coating with low surface energy for self-assembly applications. In this paper, we designed fluorine-containing a-C:H (a-C:H:F) nanostructured surfaces and we characterized them for self-assembly applications. Sub-micron patterns were generated on silicon through laser lithography while contact angle measurements, nanotribometer, atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to characterize the surface. a-C:H:F properties on lithographied surfaces such as hydrophobicity and friction were improved with the proper relative quantity of CH4 and CHF3 during deposition, resulting in ultrahydrophobic samples and low friction coefficients. Furthermore, these properties were enhanced along the direction of the lithography patterns (in-plane anisotropy). Finally, self-assembly properties were tested with silica nanoparticles, which were successfully assembled in linear arrays following the generated patterns. Among the main applications, these surfaces could be suitable as particle filter selector and cell colony substrate.

  19. Transport properties of copper with excited electron subsystem

    NASA Astrophysics Data System (ADS)

    Petrov, Yu V.; Migdal, K. P.; Knyazev, D. V.; Inogamov, N. A.; Levashov, P. R.

    2016-11-01

    We have investigated transport properties of an electron subsystem of copper heated by a femtosecond laser pulse. These properties change greatly in comparison with the room temperature solid metal. The electron temperature and pressure profiles significantly depend on these properties in bulk laser targets according to the two-temperature (2T) model. These profiles at the 2T stage are responsible for shock and rarefaction waves' formation. We have developed the analytical model of electroconductivity and heat conductivity of copper which takes into account changes of density, electron and ion temperatures. The model is based on the solution of the Boltzmann equation in the relaxation time approximation for consideration of electron collisions. Also we have carried out the first-principles calculations using the Kubo-Greenwood theory, methods of pseudopotential and linear augmented plane waves which are necessary to evaluate electron wavefunctions. We have provided the check of convergence of all parameters of our first-principles calculations. The results of our analytical model for electro- and heat conductivities are in good agreement with the data obtained using the linearized augmented plane wave (LAPW) method.

  20. Magneto-transport properties of PbSe single crystals

    NASA Astrophysics Data System (ADS)

    Anand, Naween; Martin, Catalin; Gu, Genda; Tanner, David

    PbSe is a low-gap semiconductor with excellent infrared photodetection properties. Here we report our high magnetic field and low temperature electrical properties measurement performed on a moderately doped PbSe single crystals with p-type bulk carrier density of around 1×1018 cm-3. Longitudinal resistance (Rxx) and Hall resistance (Rxy) were simultaneously measured between 0 T and 18 T, and at temperatures between 0.8 K and 25 K, show quantum oscillations above 6 T. The quantum oscillation frequency is ~15 T, giving an estimate for the carrier density of each L pocket in the BZ participating in these oscillations. The effective mass of the free carriers is estimated from the temperature dependence of oscillation amplitudes. Measurements as the magnetic fields is rotated reveal the magneto-transport properties of a 3D-like fermi surface. Dingle temperature and free carrier scattering rate has been estimated and compared to optical measurements. Optical measurements also show a low frequency phonon mode around 45 cm-1 and bandgap of around 0.2 eV along with other interband electronic transitions.

  1. Procedures for construction of anisotropic elastic plastic property closures for face-centered cubic polycrystals using first-order bounding relations

    NASA Astrophysics Data System (ADS)

    Proust, Gwénaëlle; Kalidindi, Surya R.

    2006-08-01

    Microstructure-sensitive design (MSD) is a novel mathematical framework that facilitates a rigorous consideration of the material microstructure as a continuous design variable in the engineering design enterprise [Adams, B.L., Henrie, A., Henrie, B., Lyon, M., Kalidindi, S.R., Garmestani, H., 2001. Microstructure-sensitive design of a compliant beam. J. Mech. Phys. Solids 49(8), 1639-1663; Adams, B.L., Lyon, M., Henrie, B., 2004. Microstructures by design: linear problems in elastic-plastic design. Int. J. Plasticity 20(8-9), 1577-1602; Kalidindi, S.R., Houskamp, J.R., Lyons, M., Adams, B.L., 2004. Microstructure sensitive design of an orthotropic plate subjected to tensile load. Int. J. Plasticity 20(8-9), 1561-1575]. MSD employs spectral representations of the local state distribution functions in describing the microstructure quantitatively, and these in turn enable development of invertible linkages between microstructure and effective properties using established homogenization (composite) theories. As a natural extension of the recent publications in MSD, we provide in this paper a detailed account of the methods that can be readily used by mechanical designers to construct first-order elastic-plastic property closures. The main focus in this paper is on the crystallographic texture (also called Orientation Distribution Function or ODF) as the main microstructural parameter controlling the elastic and yield properties of cubic (fcc and bcc) polycrystalline metals. The following specific advances are described in this paper: (i) derivation of rigorous first-order bounds for the off-diagonal terms of the effective elastic stiffness tensor and their incorporation in the MSD framework, (ii) delineation of the union of the property closures corresponding to both the upper and lower bound theories resulting in comprehensive first-order closures, (iii) development of generalized and readily usable expressions for effective anisotropic elastic-plastic properties

  2. Ab initio study of anisotropic mechanical properties of LiCoO{sub 2} during lithium intercalation and deintercalation process

    SciTech Connect

    Wu, Linmin; Zhang, Jing

    2015-12-14

    The mechanical properties of Li{sub x}CoO{sub 2} under various Li concentrations and associated anisotropy have been systematically studied using the first principles method. During the lithium intercalation process, the Young's modulus, bulk modulus, shear modulus, and ultimate strength increase with increasing lithium concentration. Strong anisotropy of mechanical properties between a-axis and c-axis in Li{sub x}CoO{sub 2} is identified at low lithium concentrations, and the anisotropy decreases with increasing lithium concentration. The observed lithium concentration dependence and anisotropy are explained by analyzing the charge transfer using Bader charge analysis, bond order analysis, and bond strength by investigating partial density of states and charge density difference. With the decrease of Li concentration, the charge depletion in the bonding regions increases, indicating a weaker Co-O bond strength. Additionally, the Young's modulus, bulk modulus, shear modulus, and toughness are obtained by simulating ab initio tensile tests. From the simulated stress-strain curves, Li{sub x}CoO{sub 2} shows the highest toughness, which is in contraction with Pugh criterion prediction based on elastic properties only.

  3. Electrical transport and thermoelectric properties of boron carbide nanowires.

    PubMed

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-07

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200-450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  4. Optical and transport properties of dense liquid silica

    SciTech Connect

    Qi, Tingting; Millot, Marius; Kraus, Richard G.; Hamel, Sebastien; Root, Seth

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequency dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.

  5. Dynamical and transport properties of liquid gallium at high pressures

    NASA Astrophysics Data System (ADS)

    Sheppard, D.; Mazevet, S.; Cherne, F. J.; Albers, R. C.; Kadau, K.; Germann, T. C.; Kress, J. D.; Collins, L. A.

    2015-06-01

    Quantum molecular dynamics (QMD) simulations are used to calculate the equation of state, structure, and transport properties of liquid gallium along the principal shock Hugoniot. The calculated Hugoniot is in very good agreement with experimental data up to a pressure of 150 GPa as well as with our earlier classical molecular dynamics calculations using a modified embedded atom method (MEAM) potential. The self-diffusion and viscosity calculated using QMD agree with experimental measurements better than the MEAM results, which we attribute to capturing the complexity of the electronic structure at elevated temperatures. Calculations of the DC conductivity were performed around the Hugoniot. Above a density of 7.5 g/cm3, the temperature increases rapidly along the Hugoniot, and the optical conductivity decreases, indicating simple liquid metal behavior.

  6. The electrical transport properties of liquid Rb using pseudopotential theory

    SciTech Connect

    Patel, A. B. Bhatt, N. K. Thakore, B. Y. Jani, A. R.; Vyas, P. R.

    2014-04-24

    Certain electric transport properties of liquid Rb are reported. The electrical resistivity is calculated by using the self-consistent approximation as suggested by Ferraz and March. The pseudopotential due to Hasegawa et al for full electron-ion interaction, which is valid for all electrons and contains the repulsive delta function due to achieve the necessary s-pseudisation was used for the calculation. Temperature dependence of structure factor is considered through temperature dependent potential parameter in the pair potential. Finally, thermo-electric power and thermal conductivity are obtained. The outcome of the present study is discussed in light of other such results, and confirms the applicability of pseudopotential at very high temperature via temperature dependent pair potential.

  7. Coarse grained modeling of transport properties in monoclonal antibody solution

    NASA Astrophysics Data System (ADS)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  8. Symmetry analysis of transport properties in helical superconductor junctions

    NASA Astrophysics Data System (ADS)

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors {{k}x}\\hat{x}+/- {{k}y}\\hat{y} or {{k}y}\\hat{x}+/- {{k}x}\\hat{y} and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  9. Electronic transport properties of a quinone-based molecular switch

    NASA Astrophysics Data System (ADS)

    Zheng, Ya-Peng; Bian, Bao-An; Yuan, Pei-Pei

    2016-09-01

    In this paper, we carried out first-principles calculations based on density functional theory and non-equilibrium Green's function to investigate the electronic transport properties of a quinone-based molecule sandwiched between two Au electrodes. The molecular switch can be reversibly switched between the reduced hydroquinone (HQ) and oxidized quinone (Q) states via redox reactions. The switching behavior of two forms is analyzed through their I- V curves, transmission spectra and molecular projected self-consistent Hamiltonian at zero bias. Then we discuss the transmission spectra of the HQ and Q forms at different bias, and explain the oscillation of current according to the transmission eigenstates of LUMO energy level for Q form. The results suggest that this kind of a quinone-based molecule is usable as one of the good candidates for redox-controlled molecular switches.

  10. Symmetry analysis of transport properties in helical superconductor junctions.

    PubMed

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors [Formula: see text] or [Formula: see text] and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  11. Electrical transport and thermoelectric properties of boron carbide nanowires

    NASA Astrophysics Data System (ADS)

    Kirihara, Kazuhiro; Mukaida, Masakazu; Shimizu, Yoshiki

    2017-04-01

    The electrical transport and thermoelectric property of boron carbide nanowires synthesized by a carbothermal method are reported. It is demonstrated that the nanowires achieve a higher Seebeck coefficient and power factor than those of the bulk samples. The conduction mechanism of the nanowires at low temperatures below 300 K is different from that of the sintered-polycrystalline and single-crystal bulk samples. In a temperature range of 200–450 K, there is a crossover between electrical conduction by variable-range hopping and phonon-assisted hopping. The inhomogeneous carbon concentration and planar defects, such as twins and stacking faults, in the nanowires are thought to modify the bonding nature and electronic structure of the boron carbide crystal substantially, causing differences in the electrical conductivity and Seebeck coefficient. The effect of boundary scattering of phonon at nanostructured surface on the thermal conductivity reduction is discussed.

  12. Transport properties of ribbon-shaped carbon fibers: Property-structure relationship

    NASA Astrophysics Data System (ADS)

    Gallego, Nidia Constanza

    Mesophase pitch-based carbon fibers are an ideal material for applications in which high rates of heat dissipation and low mass are required. Unfortunately, the high cost of current commercial high thermal conductivity mesophase pitch-based carbon fibers has limited their use in high volume applications. Understanding how the structure develops during the fiber formation process and how this structure relates to the final fiber properties is the way to optimizing the fiber properties while reducing the processing costs. Ribbon-shaped fibers have been developed at Clemson University and are being evaluated as a low-cost high thermal conductivity alternative fiber to traditional round-shaped fibers. However, the characterization of the thermal transport properties of carbon fibers is a difficult and time-consuming process. The objectives of this study were to evaluate the transport (both thermal and electronic) properties of ribbon-shaped fibers produced from an AR mesophase at different processing conditions, to characterize the structure of these fibers, to study their structure-property relationships, and to develop a model capable of estimating the thermal conductivity of carbon fibers based upon their structural parameters. For this purpose, several sets of ribbon fibers were produced from an AR mesophase at different spinning temperatures and shear rates and heat treated at a final temperature of 2400°C. The electrical resistivities, magnetoresistances and thermal conductivities of these fibers were measured and the structural parameters were determined with x-ray techniques. Two approaches (a short-fiber composite, and a periodic composite) were utilized to model the relationship between the structure of the fiber and its thermal conductivity. The results of this study confirmed that ribbon-shaped fibers develop excellent transport properties at lower graphitization temperatures than those used commercially for round-shaped fibers. Additionally, for the first

  13. Transport properties of liquid metal hydrogen under high pressures

    NASA Technical Reports Server (NTRS)

    Brown, R. C.; March, N. H.

    1972-01-01

    A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.

  14. Low temperature carrier transport properties in isotopically controlled germanium

    SciTech Connect

    Itoh, Kohei

    1994-12-01

    Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled 75Ge and 70Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [74Ge]/[70Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.

  15. Transport properties of ultrathin black phosphorus on hexagonal boron nitride

    SciTech Connect

    Doganov, Rostislav A.; Özyilmaz, Barbaros; Koenig, Steven P.; Yeo, Yuting; Watanabe, Kenji; Taniguchi, Takashi

    2015-02-23

    Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.

  16. Transport properties of elastically coupled fractional Brownian motors

    NASA Astrophysics Data System (ADS)

    Lv, Wangyong; Wang, Huiqi; Lin, Lifeng; Wang, Fei; Zhong, Suchuan

    2015-11-01

    Under the background of anomalous diffusion, which is characterized by the sub-linear or super-linear mean-square displacement in time, we proposed the coupled fractional Brownian motors, in which the asymmetrical periodic potential as ratchet is coupled mutually with elastic springs, and the driving source is the external harmonic force and internal thermal fluctuations. The transport mechanism of coupled particles in the overdamped limit is investigated as the function of the temperature of baths, coupling constant and natural length of the spring, the amplitude and frequency of driving force, and the asymmetry of ratchet potential by numerical stimulations. The results indicate that the damping force involving the information of historical velocity leads to the nonlocal memory property and blocks the traditional dissipative motion behaviors, and it even plays a cooperative role of driving force in drift motion of the coupled particles. Thus, we observe various non-monotonic resonance-like behaviors of collective directed transport in the mediums with different diffusion exponents.

  17. Magnetocaloric-transport properties correlation in doped manganites

    NASA Astrophysics Data System (ADS)

    Mohamed, Abd El-Moez A.; Hernando, B.; Ahmed, A. M.

    2016-05-01

    This investigation is interested in studying the relation between magnetocaloric effect and transport properties in La0.7Ba0.3MnO3 manganite compound. The resistivity shows a metal-semiconductor transition at Tms temperature near to its reported Curie temperature (Tc). Magnetic field application decreases resistivity and increases Tms towards higher temperatures. The magnetoresistance shows a peak around Tc and increases in value with the applied magnetic field. A similar behavior has been observed between magnetic entropy change (ΔS), resistivity and magnetoresistance around Tc, this is attributed to the spin order/disorder feature that plays a main role in the magnetocaloric-transport correlation. In spite of this similarity, the correspondence among the experimental ΔS and ΔS based resistivity calculations is missing because of lattice polarons effect on resistivity as a result of the electron-phonon interaction. The magnetocaloric-magnetoresistance relation is also studied and results show the contribution of additional factors in the magnetoresistance mechanism other than spin disorder suppression as Jahn-Teller effect and electronic phase separation.

  18. Transport properties in semiconductor-gas discharge electronic devices

    NASA Astrophysics Data System (ADS)

    Sadiq, Y.; (Yücel) Kurt, H.; Albarzanji, A. O.; Alekperov, S. D.; Salamov, B. G.

    2009-09-01

    Nonlinear electrical transport of semi-insulating (SI) GaAs detector in semiconductor-gas discharge IR image converter (SGDIC) are studied experimentally for a wide range of the gas pressures ( p = 28-55 Torr), interelectrode distances ( d = 445-525 μm) and inner electrode diameters ( D = 12-22 mm) of photocathode. The destabilization of homogeneous state observed in a planar dc-driven structure is due to nonlinear transport properties of GaAs photocathode. Experimental investigation of electrical instability in SGDIC structure was analyzed using hysteresis, N-shaped negative differential conductivity (NDC) current voltage characteristics (CVC) and dynamic behavior of current in a wide range of feeding voltage ( U = 590-1000 V) under different IR light intensities incident on cathode material. It is established that hysteresis are related to electron capture and emission from EL2 deep center on the detector substrate. We have experimentally investigated domain velocity and electron mobility based on well-understood transferred electron effect (TEE) for abovementioned nonlinear electrical characteristics of SI GaAs. The experimental findings are in good agreement with estimated results reported by other independent authors.

  19. Predicting the transport properties of sedimentary rocks from microstructure

    SciTech Connect

    Schlueter, Erika M.

    1995-01-01

    Understanding transport properties of sedimentary rocks, including permeability, relative permeability, and electrical conductivity, is of great importance for petroleum engineering, waste isolation, environmental restoration, and other applications. These transport properties axe controlled to a great extent by the pore structure. How pore geometry, topology, and the physics and chemistry of mineral-fluid and fluid-fluid interactions affect the flow of fluids through consolidated/partially consolidated porous media are investigated analytically and experimentally. Hydraulic and electrical conductivity of sedimentary rocks are predicted from the microscopic geometry of the pore space. Cross-sectional areas and perimeters of individual pores are estimated from two-dimensional scanning electron microscope (SEM) photomicrographs of rock sections. Results, using Berea, Boise, Massilon, and Saint-Gilles sandstones show close agreement between the predicted and measured permeabilities. Good to fair agreement is found in the case of electrical conductivity. In particular, good agreement is found for a poorly cemented rock such as Saint-Gilles sandstone, whereas the agreement is not very good for well-cemented rocks. The possible reasons for this are investigated. The surface conductance contribution of clay minerals to the overall electrical conductivity is assessed. The effect of partial hydrocarbon saturation on overall rock conductivity, and on the Archie saturation exponent, is discussed. The region of validity of the well-known Kozeny-Carman permeability formulae for consolidated porous media and their relationship to the microscopic spatial variations of channel dimensions are established. It is found that the permeabilities predicted by the Kozeny-Carman equations are valid within a factor of three of the observed values methods.

  20. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn

    NASA Astrophysics Data System (ADS)

    Galceran, R.; Fina, I.; Cisneros-Fernández, J.; Bozzo, B.; Frontera, C.; López-Mir, L.; Deniz, H.; Park, K.-W.; Park, B.-G.; Balcells, Ll.; Martí, X.; Jungwirth, T.; Martínez, B.

    2016-10-01

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  1. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn

    PubMed Central

    Galceran, R.; Fina, I.; Cisneros-Fernández, J.; Bozzo, B.; Frontera, C.; López-Mir, L.; Deniz, H.; Park, K.-W.; Park, B.-G.; Balcells, Ll.; Martí, X.; Jungwirth, T.; Martínez, B.

    2016-01-01

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature. PMID:27762278

  2. RELATIONSHIP BETWEEN CELL SURFACE PROPERTIES AND TRANSPORT OF BACTERIA THROUGH SOIL

    EPA Science Inventory

    A study was conducted to relate the properties of Enterobacter, Pseudomonas, Bacillus, Achromobacter, Flavobacterium, and Arthrobacter strains to their transport with water moving through soil. the bacteria differed markedly in their extent of transport; their hydrophobicity, as...

  3. Dependence of dynamic magnetization and magneto-transport properties of FeAlSi films with oblique sputtering studied via spin rectification effect

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Zhong, Xiaoxi

    2014-09-15

    FeAlSi (Sendust) is known to possess excellent soft magnetic properties comparable to traditional soft magnetic alloys such as NiFe (Permalloy), while having a relatively higher resistance for lower eddy current losses. However, their dynamic magnetic and magneto-transport properties are not well-studied. Via the spin rectification effect, we electrically characterize a series of obliquely sputtered FeAlSi films at ferromagnetic resonance. The variations of the anisotropy fields and damping with oblique angle are extracted and discussed. In particular, two-magnon scattering is found to dominate the damping behavior at high oblique angles. An analysis of the results shows large anomalous Hall effect and anisotropic magneto-resistance across all samples, which decreases sharply with increasing oblique incidence.

  4. Novel 18650 lithium-ion battery surrogate cell design with anisotropic thermophysical properties for studying failure events

    NASA Astrophysics Data System (ADS)

    Spinner, Neil S.; Hinnant, Katherine M.; Mazurick, Ryan; Brandon, Andrew; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2016-04-01

    Cylindrical 18650-type surrogate cells were designed and fabricated to mimic the thermophysical properties and behavior of active lithium-ion batteries. An internal jelly roll geometry consisting of alternating stainless steel and mica layers was created, and numerous techniques were used to estimate thermophysical properties. Surrogate cell density was measured to be 1593 ± 30 kg/m3, and heat capacity was found to be 727 ± 18 J/kg-K. Axial thermal conductivity was determined to be 5.1 ± 0.6 W/m-K, which was over an order of magnitude higher than radial thermal conductivity due to jelly roll anisotropy. Radial heating experiments were combined with numerical and analytical solutions to the time-dependent, radial heat conduction equation, and from the numerical method an additional estimate for heat capacity of 805 ± 23 J/kg-K was found. Using both heat capacities and analysis techniques, values for radial thermal conductivity were between 0.120 and 0.197 W/m-K. Under normal operating conditions, relatively low radial temperature distributions were observed; however, during extreme battery failure with a hexagonal cell package, instantaneous radial temperature distributions as high as 43-71 °C were seen. For a vertical cell package, even during adjacent cell failure, similar homogeneity in internal temperatures were observed, demonstrating thermal anisotropy.

  5. Use of the correct heat conduction-convection equation as basis for heat-pulse sap flow methods in anisotropic wood.

    PubMed

    Vandegehuchte, Maurits W; Steppe, Kathy

    2012-05-01

    Heat-pulse methods to determine sap flux density in trees are founded on the theory of heat conduction and heat convection in an isotropic medium. However, sapwood is clearly anisotropic, implying a difference in thermal conductivity along and across the grain, and hence necessitates the theory for an anisotropic medium. This difference in thermal conductivities, which can be up to 50%, is, however, not taken into account in the key equation leading to the currently available heat-pulse methods. Despite this major flaw, the methods remain theoretically correct as they are based on derivations of the key equation, ruling out any anisotropic aspects. The importance of specifying the thermal characteristics of the sapwood according to axial, tangential or radial direction is revealed as well as referring to and using the proper anisotropic theory in order to avoid confusion and misinterpretation of thermal properties when dealing with sap flux density measurements or erroneous results when modelling heat transport in sapwood.

  6. Transport properties and nanosensors of oxide nanowires and nanobelts

    NASA Astrophysics Data System (ADS)

    Lao, Changshi

    ZnO is one of the most important materials for electronics, optoelectronics, piezoelectricity and optics. With a wide band gap of 3.37eV and an exiton binding energy of 60meV, ZnO ID nanostructures exhibit promising properties in a lot of optical device applications. It is also an important piezoelectric material and has applications in a new category of nanodevices, nano-piezotronics. Demonstrated prototype of devices includes nanogenerators, piezoelectric-FET, and a series of evolutive devices based on the concept of nanogenerator. This is based on working principle of a semiconductor and piezoelectric coupled property. This thesis is about the growth, characterization and device fabrication of ZnO nanowires and nanobelts for sensors and UV detectors. First, the fundamental synthesis of ZnO nanostructurs is investigated, particularly polar surface dominated nanostructues, to illustrate the unique growth configurations of ZnO nanobelts, nanorings and nanosprings. Detail study in this part includes nanobelts, nanorings, nanocombs, nanonetworks, and nanodiskettes synthesis. Important factors in driving the nanostructure synthesis mechanism are analyzed, such as the chemical activities of different surface of ZnO, the abundant of available Zn ions in the vapor, and the polar surface dominated effects. These factors contribute to the large abundant available ZnO nanostructures. Then, the devices fabricated methods using individual nanowires/nanobelts and their electrical transport properties were carefully characterized. In this part, dominant factors which are critical for nanobelt device performance are investigated, such as the contact properties, interface effects, and durability testing. Also, a metal doping method is studied to explore the controlling and modification of nanowire electric and optical properties. Research results obtained here provide a basic and thoroughly understanding the control process and fabrication criteria in building a functional

  7. Anisotropic macroturbulence and diffusion associated with a westward zonal jet: From laboratory to planetary atmospheres and oceans

    NASA Astrophysics Data System (ADS)

    Galperin, Boris; Hoemann, Jesse; Espa, Stefania; Di Nitto, Gabriella; Lacorata, Guglielmo

    2016-12-01

    Turbulence with inverse energy cascade and its transport properties are investigated experimentally in a flow associated with a westward propagating jet. Turbulence and the jet were produced by an electromagnetic force in a rotating tank filled with an electrolytic saline solution. The parabolic free surface emulated the topographic β effect which evoked the zonation. The spectral and transport flow characteristics were highly anisotropic. Turbulence is diagnosed by exploring the analogy between vertical and horizontal turbulent overturns in, respectively, stably stratified and quasigeostrophic flows which gives rise to a method of potential vorticity (PV) monotonizing. The anisotropization of transport properties of the flow is investigated using the finite scale Lyapunov exponent technique. After initial exponential particle separation, radial (meridional in geophysical and planetary applications) diffusion attains a short-ranged Richardson regime which transitions to the Taylor (scale-independent diffusivity) one. The azimuthal (zonal) diffusion exhibits a double-plateau structure which attains a superdiffusive regime on large scales. The transition to the Taylor regime for the radial diffusion takes place at a scale of turbulence anisotropization. The radial eddy diffusivity in both regimes as well as the transition scale are all determined by the rate of the inverse energy cascade, ɛ , that can be diagnosed by the PV monotonizing. Conversely, ɛ can be deduced from the scale of the Richardson-Taylor regime transition in the radial eddy diffusivity which, thus, provides an additional tool of diagnosing anisotropic macroturbulence with inverse energy cascade.

  8. Anisotropic macroturbulence and diffusion associated with a westward zonal jet: From laboratory to planetary atmospheres and oceans.

    PubMed

    Galperin, Boris; Hoemann, Jesse; Espa, Stefania; Di Nitto, Gabriella; Lacorata, Guglielmo

    2016-12-01

    Turbulence with inverse energy cascade and its transport properties are investigated experimentally in a flow associated with a westward propagating jet. Turbulence and the jet were produced by an electromagnetic force in a rotating tank filled with an electrolytic saline solution. The parabolic free surface emulated the topographic β effect which evoked the zonation. The spectral and transport flow characteristics were highly anisotropic. Turbulence is diagnosed by exploring the analogy between vertical and horizontal turbulent overturns in, respectively, stably stratified and quasigeostrophic flows which gives rise to a method of potential vorticity (PV) monotonizing. The anisotropization of transport properties of the flow is investigated using the finite scale Lyapunov exponent technique. After initial exponential particle separation, radial (meridional in geophysical and planetary applications) diffusion attains a short-ranged Richardson regime which transitions to the Taylor (scale-independent diffusivity) one. The azimuthal (zonal) diffusion exhibits a double-plateau structure which attains a superdiffusive regime on large scales. The transition to the Taylor regime for the radial diffusion takes place at a scale of turbulence anisotropization. The radial eddy diffusivity in both regimes as well as the transition scale are all determined by the rate of the inverse energy cascade, ε, that can be diagnosed by the PV monotonizing. Conversely, ε can be deduced from the scale of the Richardson-Taylor regime transition in the radial eddy diffusivity which, thus, provides an additional tool of diagnosing anisotropic macroturbulence with inverse energy cascade.

  9. Elastic and transport properties in polycrystals of crackedgrains: Cross-property relations and microstructure

    SciTech Connect

    Berryman, J.G.

    2007-10-02

    Some arguments of Bristow (1960) concerning the effects of cracks on elastic and transport (i.e., electrical or thermal conduction) properties of cold-worked metals are reexamined. The discussion is posed in terms of a modern understanding of bounds and estimates for physical properties of polycrystals--in contrast to Bristow's approach using simple mixture theory. One type of specialized result emphasized here is the cross-property estimates and bounds that can be obtained using the methods presented. Our results ultimately agree with those of Bristow, i.e., confirming that microcracking is not likely to be the main cause of the observed elastic behavior of cold-worked metals. However, it also becomes clear that the mixture theory approach to the analysis is too simple and that crack-crack interactions are necessary for proper quantitative study of Bristow's problem.

  10. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  11. Anisotropic nanomaterials: structure, growth, assembly, and functions.

    PubMed

    Sajanlal, Panikkanvalappil R; Sreeprasad, Theruvakkattil S; Samal, Akshaya K; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications.

  12. Phase stability, single crystal growth, and anisotropic magnetic properties of Ca-La magnetoplumbite-type ferrite

    NASA Astrophysics Data System (ADS)

    Uji, K.; Waki, T.; Tabata, Y.; Nakamura, H.

    2017-01-01

    The cation compositions in the Ca-La magnetoplumbite-type (M-type) ferrite, CaxLayFezO19, prepared from various initial fractions of reagents, were analyzed by wavelength-dispersive X-ray (WDX) spectroscopy. The reliability of the WDX composition analysis was confirmed by a crosscheck using inductively coupled plasma atomic emission spectrometry (ICP-AES). For particular polycrystalline samples furnace-cooled from 1250 ° C , the solubility ranges of Ca, La, and Fe were found to be 0.45 ≤ x ≤ 0.70 , 0.39 ≤ y ≤ 0.66 , and 11.82 ≤ z ≤ 11.92 , respectively, assuming x + y + z = 13 . Despite that the samples were synthesized from various starting compositions, the values of z / (x + y) of the matrix M phase are smaller than the M-type regular value, 12, for all the samples and comes in a very limited range at ∼ 11 , suggesting most probably Ca occupation at particular Fe sites or Fe deficiency due to insertion of stacking fault to Ca/La/O packing. Single crystals of CaxLayFezO19 with various x / y ratios were synthesized successfully by the self-flux method, followed by the characterization of their magnetic properties. The saturation magnetization and the Curie temperature were found to be almost independent of the cation composition. In contrast, the hard-axis magnetization process at low temperature depended significantly on the Ca/La ratio, and showed a sharp jump at ≲ 10 kOe, which can be attributed to a spin reorientation transition associated with the appearance of Fe2+.

  13. Momentum and spin transport properties of spin polarized Fermi systems

    NASA Astrophysics Data System (ADS)

    Wei, Lijuan

    We carried out experiments on a spin polarized 3He- 4He mixture with 3He concentration x 3 = 6.26 x 10-4, and on pure 3He liquid. Spin polarization affects the transport properties of these Fermi systems. The effect on momentum transport was studied by using a vibrating-wire viscometer to measure viscosity of the 3He-4He mixture over the temperature range 6.09 mK--100 mK in 7.96 T and 1.00 T magnetic fields. A large viscosity increase was observed upon application of the 7.96 T magnetic field for temperature T < TF(TF = 19.5 mK is the Fermi temperature). The observed viscosity is in very good agreement with theoretical calculations for a dilute Fermi gas by Jeon and Mullin [1988, 1989] and Mullin and Jeon [1992]. The polarization effect on spin transport was investigated by measuring the transverse diffusion coefficient D ⊥ in pure 3He liquid at saturated vapor pressure and at 15.85 bar over the temperature range 4.5 mK--159 mK in a 7.96 T magnetic field. We used a pulsed NMR spin echo technique in a field gradient of 16.0 G/cm to do the measurements and fits to the Leggett equations [1970] to obtain D⊥. For T < 20 mK, we found D⊥ is less than measured in earlier experiments at lower magnetic fields. D⊥ does not increase with decreasing temperature as 1/T2, but appears to approach a constant as T → 0 while it is expected that the longitudinal spin diffusion coefficient D∥ ∝ 1/ T2. This is called spin diffusion anisotropy and it was observed for the first time in our 3He liquid experiments. The anisotropy temperature we determined for 3He liquid was Ta = 16.4 +/- 2.2 mK at saturated vapor pressure and in a 7.96 T magnetic field. The transverse spin diffusion in 3 He results agree qualitatively with theories proposed by Meyerovich and Musaeflan [1992, 1994]. They also agree qualitatively with theories proposed by Golosov and Ruckenstein [1995, 1998] by extrapolation of the dilute theory to a strongly interacting system.

  14. Crystal growth and anisotropic thermal properties of the nonlinear and polar oxide Cs{sub 2}TeW{sub 3}O{sub 12}

    SciTech Connect

    Feng, Jiang-He; Xiang Xu; Mao, Jiang-Gao

    2015-12-15

    Large crystal of the nonlinear optical and polar oxide Cs{sub 2}TeW{sub 3}O{sub 12} with a size of 20×15×4 mm{sup 3} has been grown by the top-seeded solution growth (TSSG) method. This crystal can be thermally stable up to 808 °C and melts incongruently. It possesses a large transparent range of 0.415–5.250 μm. Thermal properties, including thermal expansion, specific heat, thermal diffusivity and thermal conductivity were investigated. The average linear thermal expansion coefficients were calculated based on the measurement in the temperature range of 30–390 °C. It exhibits strong anisotropic thermal expansion which was discussed according to the relationships between the structure and thermal properties. Furthermore, laser-induced damage threshold has been estimated to be 591.28 MW/cm{sup 2} with a laser wavelength of 1064 nm and pulse duration of 8 ns. - Graphical abstract: The crystallization region of Cs{sub 2}TeW{sub 3}O{sub 12} single-phase in the quasi-ternary Cs{sub 2}TeW{sub 3}O{sub 12}–TeO{sub 2}–Cs{sub 2}O system has been investigated. And Cs{sub 2}TeW{sub 3}O{sub 12} large crystal has been grown by the top-seeded solution growth method. - Highlights: • The crystallization region of Cs{sub 2}TeW{sub 3}O{sub 12} in Cs{sub 2}TeW{sub 3}O{sub 12}–TeO{sub 2}–Cs{sub 2}O system has been investigated. • Large Cs{sub 2}TeW{sub 3}O{sub 12} crystal has been grown. • Cs{sub 2}TeW{sub 3}O{sub 12} possesses a large transparent range of 0.415–5.250 μm. • Cs{sub 2}TeW{sub 3}O{sub 12} possesses large laser-induced damage threshold of 591.28 MW/cm{sup 2}. • Detialed thermal properties have been investigated.

  15. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  16. Transport properties of damaged materials. Cementitious barriers partnership

    SciTech Connect

    Langton, C.

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  17. Stochastic microstructural modeling of fuel cell gas diffusion layers and numerical determination of transport properties in different liquid water saturation levels

    NASA Astrophysics Data System (ADS)

    Tayarani-Yoosefabadi, Z.; Harvey, D.; Bellerive, J.; Kjeang, E.

    2016-01-01

    Gas diffusion layer (GDL) materials in polymer electrolyte membrane fuel cells (PEMFCs) are commonly made hydrophobic to enhance water management by avoiding liquid water blockage of the pores and facilitating reactant gas transport to the adjacent catalyst layer. In this work, a stochastic microstructural modeling approach is developed to simulate the transport properties of a commercial carbon paper based GDL under a range of PTFE loadings and liquid water saturation levels. The proposed novel stochastic method mimics the GDL manufacturing process steps and resolves all relevant phases including fiber, binder, PTFE, liquid water, and gas. After thorough validation of the general microstructure with literature and in-house data, a comprehensive set of anisotropic transport properties is simulated for the reconstructed GDL in different PTFE loadings and liquid water saturation levels and validated through a comparison with in-house ex situ experimental data and empirical formulations. In general, the results show good agreement between simulated and measured data. Decreasing trends in porosity, gas diffusivity, and permeability is obtained by increasing the PTFE loading and liquid water content, while the thermal conductivity is found to increase with liquid water saturation. Using the validated model, new correlations for saturation dependent GDL properties are proposed.

  18. Nanostructured semiconductors for thermoelectric energy conversion: Synthesis and transport properties

    NASA Astrophysics Data System (ADS)

    Sahoo, Pranati

    Increasing energy demands and decreasing natural energy resources have sparked search for alternative clean and renewable energy sources. For instance, currently there is a tremendous interest in thermoelectric and photovoltaic solar energy production technologies. Half-Heusler (HH) alloys are among the most popular material systems presently under widespread investigations for high temperature thermoelectric energy conversion. Approaches to increase the thermoelectric figure of merit (ZT) of HH range from (1) chemical substitution of atoms with different masses within the same atomic position in the crystal structure to optimize carrier concentration and enhance phonon scattering via mass fluctuation and (2) embedding secondary phonon scattering centers in the matrix (nanostructuring) to further reduce thermal conductivity. This work focuses on three material systems. The first part describes the synthesis and properties (thermal conductivity, electrical conductivity, magnetic) of various oxide nanostructures (NiO, Co3O4) which were subsequently used as inclusion phases in a HH matrix to reduce the thermal conductivity. Detailed reviews of the past efforts along with the current effort to optimize synthetic routes are presented. The effects of the synthesis conditions on the thermoelectric properties of compacted pellets of NiO and Co3O4 are also discussed. The second part of the work discusses the development of synthetic strategies for the fabrication of p-type and n-type bulk nanostructured thermoelectric materials made of a half-Heusler matrix based on (Ti,Hf)CoSb, containing nanostructures with full-Heusler (FH) compositions and structures coherently embedded inside the half-Heusler matrix. The role of the nanostructures in the regulation of phonon and charge carrier transports within the half-heusler matrix is extensively discussed by combining transport data and electron microscopy images. It was found that the FH nanoinclusions form staggered

  19. Polymorphous silicon: Transport properties and solar cell applications

    SciTech Connect

    Longeaud, C.; Kleider, J.P.; Gauthier, M.; Brueggemann, R.; Poissant, Y.; Cabarrocas, P.R.

    1999-07-01

    Transport properties of hydrogenated polymorphous silicon layers (pm-Si:H) deposited at 150 C under various pressures in the range 80--293 Pa in sandwich (Schottky and p-i-n diodes) and coplanar structures have been compared to those of hydrogenated amorphous silicon (a-Si:H) samples deposited at the same temperature in standard conditions. The layers have been studied as-deposited, annealed and after light-soaking. With increasing pressure up to 240 Pa: (1) the density of states above the Fermi level decreases as determined by means of the modulated photocurrent technique, (2) the mobility-lifetime products of electrons and holes measured by means of steady-state photoconductivity and photocarrier grating techniques both increase. The highest values for the diffusion length of minority carriers exceed 200 nm. Capacitance measurements as a function of frequency and temperature show that the density of states at the Fermi level is lower in the pm-Si:H than in the a-Si:H films. After light-soaking the diffusion length of minority carriers in a-Si:H is reduced by a factor of two whereas it is less reduced or not affected in the pm-Si:H layers. Solar cells including this new material present an excellent stability.

  20. Magnetic and transport properties of PrRhSi3.

    PubMed

    Anand, V K; Adroja, D T; Hillier, A D

    2013-05-15

    We have investigated the magnetic and transport properties of a noncentrosymmetric compound PrRhSi3 by dc magnetic susceptibility χ(T), isothermal magnetization M(H), thermoremanent magnetization M(t), specific heat Cp(T), electrical resistivity ρ(T,H) and muon spin relaxation (μSR) measurements. At low fields χ(T) shows two anomalies near 15 and 7 K with an irreversibility between ZFC and FC data below 15 K. In contrast, no anomaly is observed in Cp(T) or ρ(T) data. M(H) data at 2 K exhibit very sharp increase below 0.5 T and a weak hysteresis. M(t) exhibits very slow relaxation, typical for a spin-glass system. Even though the absence of any anomaly in Cp(T) is consistent with the spin-glass type behavior, there is no obvious origin of spin-glass behavior in this structurally well ordered compound. The crystal electric field (CEF) analysis of Cp(T) data indicates a CEF-split singlet ground state lying below a doublet at 81(1) K and a quasi-triplet at 152(2) K. The ρ(T) data indicate a metallic behavior, and ρ(H) exhibits a very high positive magnetoresistance, as high as ~300% in 9 T at 2 K. No long range magnetic order or spin-glass behavior was detected in a μSR experiment down to 1.2 K.

  1. Defects and transport properties of molybdenum doped indium oxide

    NASA Astrophysics Data System (ADS)

    Yoshida, Yuki; Gessert, Timothy; Wood, David; Coutts, Timothy

    2004-03-01

    Mo-doped indium oxide (IMO) films were deposited using an r.f. magnetron sputtering system under various oxygen concentrations. Using the `method of four coefficients', the conductivity, Hall, Nernst, and Seebeck coefficients were measured for IMO. These coefficients can be used with solutions to the Boltzmann transport equation to extract the carrier density-of-states effective mass, the Fermi level relative to the conduction-band minimum, and an energy-dependent scattering parameter related to the scattering mechanism. We find the conduction band is parabolic with a band effective mass of ˜ 0.32 me over a carrier concentration range from 4×10^19 to 5× 10^20 cm-3, indicating that relaxation time controls mobility in IMO. Temperature-dependent Hall measurements show that phonon and ionized-impurity scattering dominate at high mobility and high carrier concentration, respectively. We will also discuss possible defects in the film using XPS and electrical property data.

  2. Transport properties of C and O in UN fuels

    NASA Astrophysics Data System (ADS)

    Schuler, Thomas; Lopes, Denise Adorno; Claisse, Antoine; Olsson, Pär

    2017-03-01

    Uranium nitride fuel is considered for fast reactors (GEN-IV generation and space reactors) and for light water reactors as a high-density fuel option. Despite this large interest, there is a lack of information about its behavior for in-pile and out-of-pile conditions. From the present literature, it is known that C and O impurities have significant influence on the fuel performance. Here we perform a systematic study of these impurities in the UN matrix using electronic-structure calculations of solute-defect interactions and microscopic jump frequencies. These quantities were calculated in the DFT +U approximation combined with the occupation matrix control scheme, to avoid convergence to metastable states for the 5 f levels. The transport coefficients of the system were evaluated with the self-consistent mean-field theory. It is demonstrated that carbon and oxygen impurities have different diffusion properties in the UN matrix, with O atoms having a higher mobility, and C atoms showing a strong flux coupling anisotropy. The kinetic interplay between solutes and vacancies is expected to be the main cause for surface segregation, as incorporation energies show no strong thermodynamic segregation preference for (001) surfaces compared with the bulk.

  3. Lévy Flights due to Anisotropic Disorder in Graphene.

    PubMed

    Gattenlöhner, S; Gornyi, I V; Ostrovsky, P M; Trauzettel, B; Mirlin, A D; Titov, M

    2016-07-22

    We study transport properties of graphene with anisotropically distributed on-site impurities (adatoms) that are randomly placed on every third line drawn along carbon bonds. We show that stripe states characterized by strongly suppressed backscattering are formed in this model in the direction of the lines. The system reveals Lévy-flight transport in the stripe direction such that the corresponding conductivity increases as the square root of the system length. Thus, adding this type of disorder to clean graphene near the Dirac point strongly enhances the conductivity, which is in stark contrast with a fully random distribution of on-site impurities, which leads to Anderson localization. The effect is demonstrated both by numerical simulations using the Kwant code and by an analytical theory based on the self-consistent T-matrix approximation.

  4. Lévy Flights due to Anisotropic Disorder in Graphene

    NASA Astrophysics Data System (ADS)

    Gattenlöhner, S.; Gornyi, I. V.; Ostrovsky, P. M.; Trauzettel, B.; Mirlin, A. D.; Titov, M.

    2016-07-01

    We study transport properties of graphene with anisotropically distributed on-site impurities (adatoms) that are randomly placed on every third line drawn along carbon bonds. We show that stripe states characterized by strongly suppressed backscattering are formed in this model in the direction of the lines. The system reveals Lévy-flight transport in the stripe direction such that the corresponding conductivity increases as the square root of the system length. Thus, adding this type of disorder to clean graphene near the Dirac point strongly enhances the conductivity, which is in stark contrast with a fully random distribution of on-site impurities, which leads to Anderson localization. The effect is demonstrated both by numerical simulations using the Kwant code and by an analytical theory based on the self-consistent T -matrix approximation.

  5. Thermodynamic and transport combustion properties of hydrocarbons with air. Part 1: Properties in SI units

    NASA Technical Reports Server (NTRS)

    Gordon, S.

    1982-01-01

    Thermodynamic and transport combustion properties were calculated for a wide range of conditions for the reaction of hydrocarbons with air. Three hydrogen-carbon atom ratios (H/C = 1.7, 2.0, 2.1) were selected to represent the range of aircraft fuels. For each of these H/C ratios, combustion properties were calculated for the following conditions: Equivalence ratio: 0, 0.25, 0.5, 0.75, 1.0, 1.25 Water - dry air mass ratio: 0, 0.03 Pressure, kPa: 1.01325, 10.1325, 101.325, 1013.25, 5066.25 (or in atm: 0.01, 0.1, 1, 10, 50) Temperature, K: every 10 degrees from 200 to 900 K; every 50 degrees from 900 to 3000 K Temperature, R: every 20 degrees from 360 to 1600 R; very 100 degrees from 1600 to 5400 R. The properties presented are composition, density, molecular weight, enthalphy, entropy, specific heat at constant pressure, volume derivatives, isentropic exponent, velocity of sound, viscosity, thermal conductivity, and Prandtl number. Property tables are based on composites that were calculated by assuming both: (1) chemical equilibrium (for both homogeneous and heterogeneous phases) and (2) constant compositions for all temperatures. Properties in SI units are presented in this report for the Kelvin temperature schedules.

  6. Computational rock physics: Transport properties in porous media and applications

    NASA Astrophysics Data System (ADS)

    Keehm, Youngseuk

    Earth sciences is undergoing a gradual but massive shift from descriptions of the earth and earth systems, toward process modeling, simulation, and process visualization. This shift is very challenging because the underlying physical and chemical processes are often nonlinear and coupled, and take place in strongly heterogeneous systems. An example is two-phase fluid flow in rocks: a nonlinear, coupled, and time-dependent problem in complex microgeometry. To understand these complex processes, the knowledge of the underlying pore-scale processes is essential. This work focuses on building transport process simulators in realistic pore microstructures. These pore-scale simulators will be modules of a computational rock physics framework with future acoustic, elastic, electrical and NMR property simulators. This computational environment can significantly complement the physical laboratory, with several distinct advantages: rigorous prediction of physical properties, interrelations among the physical properties, and simulation of dynamic problems with multiple physical responses. This dissertation is initiative for the computational rock physics framework---a quantitative model for coupled, nonlinear, transient and complex behavior of earth systems. A rigorous pore-scale simulation requires three important traits: reliability, efficiency, and the ability to handle complex microgeometry. We implemented single-phase and two-phase flow simulators using the Lattice-Boltzmann algorithm, since it handles very complex pore geometries without idealization of the pore space. The single-phase flow simulator successfully replicates fluid flow in a digital representation of real sandstone, and predicts permeability very accurately. Furthermore, two applications using the single-phase flow simulator are proposed: a permeability estimation technique from thin sections, and diagenesis modeling with fluid flow. These two applications show the potential applicability of this robust

  7. Differential matrix formalism for depolarizing anisotropic media.

    PubMed

    Ossikovski, Razvigor

    2011-06-15

    Azzam's differential matrix formalism [J. Opt. Soc. Am. 68, 1756 (1978)], originally developed for longitudinally inhomogeneous anisotropic nondepolarizing media, is extended to include depolarizing media. The generalization is physically interpreted in terms of means and uncertainties of the elementary optical properties of the medium, as well as of three anisotropy absorption parameters introduced to describe the depolarization. The formalism results in a particularly simple mathematical procedure for the retrieval of the elementary properties of a generally depolarizing anisotropic medium, assumed to be globally homogeneous, from its experimental Mueller matrix. The approach is illustrated on literature data and the conditions of its validity are identified and discussed.

  8. Directional wetting in anisotropic inverse opals.

    PubMed

    Phillips, Katherine R; Vogel, Nicolas; Burgess, Ian B; Perry, Carole C; Aizenberg, Joanna

    2014-07-01

    Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy.

  9. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    NASA Astrophysics Data System (ADS)

    Gordon, S.; McBride, B.; Zeleznik, F. J.

    1984-10-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  10. Computer program for calculation of complex chemical equilibrium compositions and applications. Supplement 1: Transport properties

    NASA Technical Reports Server (NTRS)

    Gordon, S.; Mcbride, B.; Zeleznik, F. J.

    1984-01-01

    An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.

  11. SPECIES - EVALUATING THERMODYNAMIC PROPERTIES, TRANSPORT PROPERTIES & EQUILIBRIUM CONSTANTS OF AN 11-SPECIES AIR MODEL

    NASA Technical Reports Server (NTRS)

    Thompson, R. A.

    1994-01-01

    Accurate numerical prediction of high-temperature, chemically reacting flowfields requires a knowledge of the physical properties and reaction kinetics for the species involved in the reacting gas mixture. Assuming an 11-species air model at temperatures below 30,000 degrees Kelvin, SPECIES (Computer Codes for the Evaluation of Thermodynamic Properties, Transport Properties, and Equilibrium Constants of an 11-Species Air Model) computes values for the species thermodynamic and transport properties, diffusion coefficients and collision cross sections for any combination of the eleven species, and reaction rates for the twenty reactions normally occurring. The species represented in the model are diatomic nitrogen, diatomic oxygen, atomic nitrogen, atomic oxygen, nitric oxide, ionized nitric oxide, the free electron, ionized atomic nitrogen, ionized atomic oxygen, ionized diatomic nitrogen, and ionized diatomic oxygen. Sixteen subroutines compute the following properties for both a single species, interaction pair, or reaction, and an array of all species, pairs, or reactions: species specific heat and static enthalpy, species viscosity, species frozen thermal conductivity, diffusion coefficient, collision cross section (OMEGA 1,1), collision cross section (OMEGA 2,2), collision cross section ratio, and equilibrium constant. The program uses least squares polynomial curve-fits of the most accurate data believed available to provide the requested values more quickly than is possible with table look-up methods. The subroutines for computing transport coefficients and collision cross sections use additional code to correct for any electron pressure when working with ionic species. SPECIES was developed on a SUN 3/280 computer running the SunOS 3.5 operating system. It is written in standard FORTRAN 77 for use on any machine, and requires roughly 92K memory. The standard distribution medium for SPECIES is a 5.25 inch 360K MS-DOS format diskette. The contents of the

  12. Transport properties of multicomponent thermal plasmas: Grad method versus Chapman-Enskog method

    SciTech Connect

    Porytsky, P.; Krivtsun, I.; Demchenko, V.; Reisgen, U.; Mokrov, O.; Zabirov, A.; Gorchakov, S.; Timofeev, A.; Uhrlandt, D.

    2013-02-15

    Transport properties (thermal conductivity, viscosity, and electrical conductivity) for multicomponent Ar-Fe thermal plasmas at atmospheric pressure have been determined by means of two different methods. The transport coefficients set based on Grad's method is compared with the data obtained when using the Chapman-Enskog's method. Results from both applied methods are in good agreement. It is shown that the Grad method is suitable for the determination of transport properties of the thermal plasmas.

  13. Holographic Wilson loops in anisotropic quark-gluon plasma.

    NASA Astrophysics Data System (ADS)

    Ageev, Dmitry

    2016-10-01

    The nonequilibrium properties of the anisotropic quark-gluon plasma are condidered from the holographic viewpoint. Lifshitz-like solution is considered as a holographic dual of anisotropic QGP. The black brane formation in such background is considered as a thermalization in dual theory. As a probe of thermalization we consider rectangular spatial Wilson loops with different orientation.

  14. Anisotropic magnetic and superconducting properties of aligned weak-ferromagnetic superconductor RuSr2GdCu2O8

    NASA Astrophysics Data System (ADS)

    Ku, H. C.; Chang, B. C.; Hsu, C. H.; Chen, Y. F.; Tai, M. F.

    2009-03-01

    The RuSr2GdCu2O8 Ru-1212 cuprate is a weak-ferromagnetic superconductor with a magnetic ordering of Ru moments at TN(Ru) = 131 K, a superconducting transition in the CuO2 layers at Tc = 56 K, and a low temperature Gd antiferromagnetic ordering at TN(Gd) = 2.5 K. The c-axis aligned powder can be achieved at room temperature using the field-rotation method where the tetragonal c-axis is perpendicular to the aligned magnetic field Ba and along the rotation axis. The anisotropic temperature dependence of magnetic susceptibility for the aligned powder down to 2 K indicates weak anisotropy with Xc > Xab at room temperature due to strong anisotropic Gd contribution and Xc < Xab below 185 K where strong Ru anisotropic short-range exchange interaction overtakes the Gd contribution. Anisotropic diamagnetic superconducting intragrain shielding signal of aligned microcrystalline powder-in-epoxy below vortex lattice melting temperature at 39 K in 1-G field is much weaker than the intergrain polycrystalline bulk sample signal due to the small grain size (d ~ 1-10 μm), long penetration depth (λab ~ 0.6 μm, λc ~ 2 μm) and the two-dimensional (2D) character of CuO2 layers.

  15. Confined, Oriented, and Electrically Anisotropic Graphene Wrinkles on Bacteria.

    PubMed

    Deng, Shikai; Gao, Enlai; Wang, Yanlei; Sen, Soumyo; Sreenivasan, Sreeprasad Theruvakkattil; Behura, Sanjay; Král, Petr; Xu, Zhiping; Berry, Vikas

    2016-09-27

    Curvature-induced dipole moment and orbital rehybridization in graphene wrinkles modify its electrical properties and induces transport anisotropy. Current wrinkling processes are based on contraction of the entire substrate and do not produce confined or directed wrinkles. Here we show that selective desiccation of a bacterium under impermeable and flexible graphene via a flap-valve operation produces axially aligned graphene wrinkles of wavelength 32.4-34.3 nm, consistent with modified Föppl-von Kármán mechanics (confinement ∼0.7 × 4 μm(2)). Further, an electrophoretically oriented bacterial device with confined wrinkles aligned with van der Pauw electrodes was fabricated and exhibited an anisotropic transport barrier (ΔE = 1.69 meV). Theoretical models were developed to describe the wrinkle formation mechanism. The results obtained show bio-induced production of confined, well-oriented, and electrically anisotropic graphene wrinkles, which can be applied in electronics, bioelectromechanics, and strain patterning.

  16. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    NASA Astrophysics Data System (ADS)

    Das, K. S.; Dejene, F. K.; van Wees, B. J.; Vera-Marun, I. J.

    2016-11-01

    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times for in-plane and out-of-plane spin orientations as for the case of two-dimensional materials like graphene, but it is unexpected in a polycrystalline metallic channel. Systematic measurements as a function of temperature and channel length, combined with both analytical and numerical thermoelectric transport models, demonstrate that the anisotropy in the Hanle line shape is magnetothermal in origin, caused by the anisotropic modulation of the Peltier and Seebeck coefficients of the ferromagnetic electrodes. Our results call for the consideration of such magnetothermoelectric effects in the study of anisotropic spin relaxation.

  17. Effects of interlayer coupling on the magnetic and transport properties of superconducting multilayers and high-temperature superconductors

    SciTech Connect

    Gray, K.E.; Hettinger, J.D.; Kim, D.H.

    1994-06-01

    The effect of interlayer coupling on the transport properties and dissipation in a magnetic field is reviewed for superconducting multilayers including highly-anisotropic high-temperature superconductors (HTS). For the applied field parallel to the superconducting layers the absence of any Lorentz-force dependence of the dissipation leads to an explanation other than flux motion. This is consistent with a Josephson junction dissipation which dominates flux motion of the insulating regions between layers. However, in is seen to cross over from phase slips at Josephson junctions to depinning of vortices from the external field at high fields and temperatures. For fields perpendicular to the superconducting layers the much greater resistive broadening in HTS is due to dissipation by thermally-activated flux motion, consistent with a lack of intrinsic pinning. We show experimental evidence that the associated flux motion occurs as a result of a crossover from three dimensional (3D) vortex lines to 2D independent pancake-like vortices, residing in the Cu-O layers. This 3D to 2D crossover occurs after k{sub B}T exceeds the Josephson coupling energy.

  18. Magnetization and transport properties of single RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb)

    NASA Astrophysics Data System (ADS)

    Drachuck, Gil; Boehmer, Anna; Bud'Ko, Sergey L.; Canfield, Paul

    Single crystals of RPd2P2 (R=Y, La-Nd, Sm-Ho, Yb) were grown using a self-flux method and were characterized by room-temperature powder X-ray diffraction, anisotropic temperature and field dependent magnetization and temperature dependent in-plane resistivity. Anisotropic magnetic properties, arising mostly from crystal electric field (CEF) effects, were observed for most magnetic rare earths. The experimentally estimated CEF parameters B02 were calculated from the anisotropic paramagnetic θab and θcvalues. Ordering temperatures, as well as the polycrystalline averaged paramagnetic Curie-Weiss temperature, θave, were extracted from magnetization and resistivity measurements. Work done at Ames Laboratory was supported by US Department of Energy, Basic Energy Sciences, Division of Materials Sciences and Engineering under Contract No. DE-AC02-07CH111358.

  19. Decoupling Mechanical and Ion Transport Properties in Polymer Electrolyte Membranes

    NASA Astrophysics Data System (ADS)

    McIntosh, Lucas D.

    Polymer electrolytes are mixtures of a polar polymer and salt, in which the polymer replaces small molecule solvents and provides a dielectric medium so that ions can dissociate and migrate under the influence of an external electric field. Beginning in the 1970s, research in polymer electrolytes has been primarily motivated by their promise to advance electrochemical energy storage and conversion devices, such as lithium ion batteries, flexible organic solar cells, and anhydrous fuel cells. In particular, polymer electrolyte membranes (PEMs) can improve both safety and energy density by eliminating small molecule, volatile solvents and enabling an all-solid-state design of electrochemical cells. The outstanding challenge in the field of polymer electrolytes is to maximize ionic conductivity while simultaneously addressing orthogonal mechanical properties, such as modulus, fracture toughness, or high temperature creep resistance. The crux of the challenge is that flexible, polar polymers best-suited for polymer electrolytes (e.g., poly(ethylene oxide)) offer little in the way of mechanical robustness. Similarly, polymers typically associated with superior mechanical performance (e.g., poly(methyl methacrylate)) slow ion transport due to their glassy polymer matrix. The design strategy is therefore to employ structured electrolytes that exhibit distinct conducting and mechanically robust phases on length scales of tens of nanometers. This thesis reports a remarkably simple, yet versatile synthetic strategy---termed polymerization-induced phase separation, or PIPS---to prepare PEMs exhibiting an unprecedented combination of both high conductivity and high modulus. This performance is enabled by co-continuous, isotropic networks of poly(ethylene oxide)/ionic liquid and highly crosslinked polystyrene. A suite of in situ, time-resolved experiments were performed to investigate the mechanism by which this network morphology forms, and it appears to be tied to the

  20. Effect of interfacial properties on polymer-nanocrystal thermoelectric transport.

    PubMed

    Coates, Nelson E; Yee, Shannon K; McCulloch, Bryan; See, Kevin C; Majumdar, Arun; Segalman, Rachel A; Urban, Jeffrey J

    2013-03-20

    The electrical behavior of a conducting-polymer/inorganic-nanowire composite is explained with a model in which carrier transport occurs predominantly through a highly conductive volume of polymer that exists at the polymer-nanowire interface. This result highlights the importance of controlling nanoscale interfaces for thermoelectric materials, and provides a general route for improving carrier transport in organic/inorganic composites.

  1. A Review of the Thermodynamic, Transport, and Chemical Reaction Rate Properties of High-temperature Air

    NASA Technical Reports Server (NTRS)

    Hansen, C Frederick; Heims, Steve P

    1958-01-01

    Thermodynamic and transport properties of high temperature air, and the reaction rates for the important chemical processes which occur in air, are reviewed. Semiempirical, analytic expressions are presented for thermodynamic and transport properties of air. Examples are given illustrating the use of these properties to evaluate (1) equilibrium conditions following shock waves, (2) stagnation region heat flux to a blunt high-speed body, and (3) some chemical relaxation lengths in stagnation region flow.

  2. Quasiparticle band structures and thermoelectric transport properties of p-type SnSe

    SciTech Connect

    Shi, Guangsha; Kioupakis, Emmanouil

    2015-02-14

    We used density functional and many-body perturbation theory to calculate the quasiparticle band structures and electronic transport parameters of p-type SnSe both for the low-temperature Pnma and high-temperature Cmcm phases. The Pnma phase has an indirect band gap of 0.829 eV, while the Cmcm has a direct band gap of 0.464 eV. Both phases exhibit multiple local band extrema within an energy range comparable to the thermal energy of carriers from the global extrema. We calculated the electronic transport coefficients as a function of doping concentration and temperature for single-crystal and polycrystalline materials to understand the previous experimental measurements. The electronic transport coefficients are highly anisotropic and are strongly affected by bipolar transport effects at high temperature. Our results indicate that SnSe exhibits optimal thermoelectric performance at high temperature when doped in the 10{sup 19}–10{sup 20 }cm{sup −3} range.

  3. Tuning the electronic transport properties of grapheme through functionalisation with fluorine.

    PubMed

    Withers, Freddie; Russo, Saverio; Dubois, Marc; Craciun, Monica F

    2011-09-12

    We demonstrate the possibility to tune the electronic transport properties of graphene mono-layers and multi-layers by functionalisation with fluorine. For mono-layer samples, with increasing the fluorine content, we observe a transition from electronic transport through Mott variable range hopping (VRH) in two dimensions to Efros-Shklovskii VRH. Multi-layer fluorinated graphene with high concentration of fluorine show two-dimensional Mott VRH transport, whereas CF0.28 multi-layer flakes exhibit thermally activated transport through near neighbour hopping. Our experimental findings demonstrate that the ability to control the degree of functionalisation of graphene is instrumental to engineer different electronic properties in graphene materials.

  4. Quantum chaos and electron transport properties in a quantum waveguide

    NASA Astrophysics Data System (ADS)

    Lee, Hoshik

    We numerically investigate electron transport properties in an electron waveguide which can be constructed in 2DEG of the heterostructure of GaAs and AlGaAs. We apply R-matrix theory to solve a Schrodinger equation and construct a S-matrix, and we then calculate conductance of an electron waveguide. We study single impurity scattering in a waveguide. A delta-function model as a single impurity is very attractive, but it has been known that delta-function potential does not give a convergent result in two or higher space dimensions. However, we find that it can be used as a single impurity in a waveguide with the truncation of the number of modes. We also compute conductance for a finite size impurity by using R-matrix theory. We propose an appropriate criteria for determining the cut-off mode for a delta-function impurity that reproduces the conductance of a waveguide when a finite impurity presents. We find quantum scattering echoes in a ripple waveguide. A ripple waveguide (or cavity) is widely used for quantum chaos studies because it is easy to control a particle's dynamics. Moreover we can obtain an exact expression of Hamiltonian matrix with for the waveguide using a simple coordinate transformation. Having an exact Hamiltonian matrix reduces computation time significantly. It saves a lot of computational needs. We identify three families of resonance which correspond to three different classical phase space structures. Quasi bound states of one of those resonances reside on a hetero-clinic tangle formed by unstable manifolds and stable manifolds in the phase space of a corresponding classical system. Resonances due to these states appear in the conductance in a nearly periodic manner as a function of energy. Period from energy frequency gives a good agreement with a prediction of the classical theory. We also demonstrate wavepacket dynamics in a ripple waveguide. We find quantum echoes in the transmitted probability of a wavepacket. The period of echoes also

  5. Equations of state and transport properties of mixtures in the warm dense regime

    SciTech Connect

    Hou, Yong; Dai, Jiayu; Kang, Dongdong; Ma, Wen; Yuan, Jianmin

    2015-02-15

    We have performed average-atom molecular dynamics to simulate the CH and LiH mixtures in the warm dense regime, and obtained equations of state and the ionic transport properties. The electronic structures are calculated by using the modified average-atom model, which have included the broadening of energy levels, and the ion-ion pair potentials of mixtures are constructed based on the temperature-dependent density functional theory. The ionic transport properties, such as ionic diffusion and shear viscosity, are obtained through the ionic velocity correlation functions. The equations of state and transport properties for carbon, hydrogen and lithium, hydrogen mixtures in a wide region of density and temperature are calculated. Through our computing the average ionization degree, average ion-sphere diameter and transition properties in the mixture, it is shown that transport properties depend not only on the ionic mass but also on the average ionization degree.

  6. Transport and magnetic properties of Fe3Si epitaxial films

    NASA Astrophysics Data System (ADS)

    Vinzelberg, H.; Schumann, J.; Elefant, D.; Arushanov, E.; Schmidt, O. G.

    2008-11-01

    The paper presents resistivity and magnetization measurements on nearly stoichiometric Fe3Si films epitaxially grown on GaAs substrates by electron-beam evaporation in an ultrahigh vacuum chamber. In the low-temperature resistivity a T3 term was found in all samples. A term like that is known to describe the anomalous single-magnon scattering processes in half-metallic materials and confirms so for our samples the hypothesis of half-metallic ferromagnetism in Fe3Si. The films show an anisotropic magnetoresistance in low magnetic fields. In high magnetic fields a negative longitudinal and transverse magnetoresistance (MR) has been observed linearly depending on the field strength. In the vicinity of 200 K the MR shows maximum absolute values up to 1.5% at magnetic fields of about 8 T. From the magnetization measurements a magnetic moment of 0.86μB/atom was obtained, which is close to that of bulk Fe3Si.

  7. Electrolytes: transport properties and non-equilibrium thermodynamics

    SciTech Connect

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions.

  8. Thermodynamic and transport properties of air/water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1981-01-01

    Subroutine WETAIR calculates properties at nearly 1,500 K and 4,500 atmospheres. Necessary inputs are assigned values of combinations of density, pressure, temperature, and entropy. Interpolation of property tables obtains dry air and water (steam) properties, and simple mixing laws calculate properties of air/water mixture. WETAIR is used to test gas turbine engines and components operating in relatively humid air. Program is written in SFTRAN and FORTRAN.

  9. Raman scattering study of spin-density-wave-induced anisotropic electronic properties in A Fe2As2 (A =Ca , Eu)

    NASA Astrophysics Data System (ADS)

    Zhang, W.-L.; Yin, Z. P.; Ignatov, A.; Bukowski, Z.; Karpinski, Janusz; Sefat, Athena S.; Ding, H.; Richard, P.; Blumberg, G.

    2016-05-01

    We present a polarization-resolved and temperature-dependent Raman scattering study of A Fe2As2 (A =Ca , Eu). In the spin-density-wave phase, spectral weight redistribution is observed in the fully symmetric and nonsymmetric scattering channels at different energies. An anisotropic Raman response is observed in the fully symmetric channel in spontaneously detwinned CaFe2As2 samples. We calculate the orbital-resolved electronic structures using a combination of density functional theory and dynamical mean field theory. We identify the electronic transitions corresponding to these two spectral features and find that the anisotropic Raman response originates from the lifted degeneracy of the dx z /y z orbitals in the broken-symmetry phase.

  10. 41 CFR 302-7.10 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.10 Is property acquired en route eligible for transportation...

  11. 41 CFR 302-7.11 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.11 Is property acquired en route eligible for transportation...

  12. 41 CFR 302-7.10 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.10 Is property acquired en route eligible for transportation...

  13. 41 CFR 302-7.11 - Is property acquired en route eligible for transportation at Government expense?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROPERTY 7-TRANSPORTATION AND TEMPORARY STORAGE OF HOUSEHOLD GOODS AND PROFESSIONAL BOOKS, PAPERS, AND EQUIPMENT (PBP&E) General Rules § 302-7.11 Is property acquired en route eligible for transportation...

  14. Electronic Properties, Screening, and Efficient Carrier Transport in NaSbS2

    NASA Astrophysics Data System (ADS)

    Sun, Jifeng; Singh, David J.

    2017-02-01

    NaSbS2 is a semiconductor that was recently shown to have remarkable efficacy as a solar absorber indicating efficient charge collection even in material containing defects. We report first-principles calculations of properties that show (1) an indirect gap only slightly smaller than the direct gap, which may impede the recombination of photoexcited carriers, (2) highly anisotropic electronic and optical properties reflecting a layered crystal structure, (3) a pushed-up valence-band maximum due to repulsion from the Sb 5 s states, and (4) cross-gap hybridization between the S p —derived valence bands and the Sb 5 p states. This latter feature leads to enhanced Born effective charges that can provide local screening and, therefore, defect tolerance. These features are discussed in relation to the performance of the compound as a semiconductor with efficient charge collection.

  15. Matter sourced anisotropic stress for dark energy

    NASA Astrophysics Data System (ADS)

    Chang, Baorong; Lu, Jianbo; Xu, Lixin

    2014-11-01

    Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w =p /ρ ) and the ratio of their perturbations in its rest frame (cs2=δ p /δ ρ ). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O (1 0-3)Δm . We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1 σ region.

  16. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    NASA Technical Reports Server (NTRS)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  17. Gravitational stresses in anisotropic rock masses

    USGS Publications Warehouse

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  18. Anisotropic contrast optical microscope.

    PubMed

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm(2) object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  19. Anisotropic contrast optical microscope

    NASA Astrophysics Data System (ADS)

    Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  20. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  1. The spin-dependent transport properties of zigzag α-graphyne nanoribbons and new device design

    PubMed Central

    Ni, Yun; Wang, Xia; Tao, Wei; Zhu, Si-Cong; Yao, Kai-Lun

    2016-01-01

    By performing first-principle quantum transport calculations, we studied the electronic and transport properties of zigzag α-graphyne nanoribbons in different magnetic configurations. We designed the device based on zigzag α-graphyne nanoribbon and studied the spin-dependent transport properties, whose current-voltage curves show obvious spin-polarization and conductance plateaus. The interesting transport behaviours can be explained by the transport spectra under different magnetic configurations, which basically depends on the symmetry matching of the electrodes’ bandstructures. Simultaneously, spin Seebeck effect is also found in the device. Thus, according to the transport behaviours, zigzag α-graphyne nanoribbons can be used as a dual spin filter diode, a molecule signal converter and a spin caloritronics device, which indicates that α-graphyne is a promising candidate for the future application in spintronics. PMID:27180808

  2. Transport properties of dense deuterium-tritium plasmas.

    PubMed

    Wang, Cong; Long, Yao; He, Xian-Tu; Wu, Jun-Feng; Ye, Wen-Hua; Zhang, Ping

    2013-07-01

    Consistent descriptions of the equation of states and information about the transport coefficients of the deuterium-tritium mixture are demonstrated through quantum molecular dynamic (QMD) simulations (up to a density of 600 g/cm(3) and a temperature of 10(4) eV). Diffusion coefficients and viscosity are compared to the one-component plasma model in different regimes from the strong coupled to the kinetic one. Electronic and radiative transport coefficients, which are compared to models currently used in hydrodynamic simulations of inertial confinement fusion, are evaluated up to 800 eV. The Lorentz number is discussed from the highly degenerate to the intermediate region. One-dimensional hydrodynamic simulation results indicate that different temperature and density distributions are observed during the target implosion process by using the Spitzer model and ab initio transport coefficients.

  3. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    SciTech Connect

    Takezawa, Akihiro Kitamura, Mitsuru

    2014-01-15

    Cloaking techniques conceal objects by controlling the flow of electromagnetic waves to minimize scattering. Herein, the effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, anisotropic materials can be efficiently designed through optimization of their physical properties. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 2.8% and 25% in eight- and three-layer cylindrical cloaking materials, respectively, compared with multilayer cloaking by isotropic materials. In all cloaking examples, the optimized microstructures of the two-phase composites are identified as the simple lamination of two materials, which maximizes the anisotropy. The same performance as published for eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using the anisotropic material. Cloaking with an approximately 50% reduction of total scattering width is achieved even in an octagonal object. Since the cloaking effect can be realized using just a few layers of the laminated anisotropic dielectric composite, this may have an advantage in the mass production of cloaking devices.

  4. Constitutive Equation for Anisotropic Rock

    NASA Astrophysics Data System (ADS)

    Cazacu, O.

    2006-12-01

    In many rocks, due to the existence of well-defined fabric elements such as bedding, layering, foliation or lamination planes, or due to the existence of linear structures, anisotropy can be important. The symmetries most frequently encountered are: transverse isotropy and orthotropy. By adopting both theoretical and experimental approaches, many authors have investigated the effect of the presence within the rock of pronounced anisotropic feature on the mechanical behavior in the elastic regime and on strength properties. Fewer attempts however have been made to capture the anisotropy of rocks in the plastic range. In this paper an elastic/viscoplastic non-associated constitutive equation for an initially transversely isotropic material is presented. The model captures the observed dependency of the elastic moduli on the stress state. The limit of the elastic domain is given by an yield function whose expression is a priori unknown and is determined from data. The basic assumption adopted is that the type of anisotropy of the rock does not change during the deformation process. The anisotropy is thus described by a fourth order tensor invariant with respect to any transformation belonging to the symmetry group of the material. This tensor is assumed to be constant: it does not depend on time nor on deformation; A is involved in the expression of the flow rule, of the yield function, and of the failure criterion in the form of a transformed stress tensor. The components of the anisotropic tensor A are determined from the compressive strengths in conjunction with an anisotropic short- term failure The irreversibility is supposed to be due to transient creep, the irreversible stress work per unit volume being considered as hardening parameter. The adequacy of the model is demonstrated by applying it to a stratified sedimentary rock, Tournemire shale.

  5. Saving Moore’s Law Down To 1 nm Channels With Anisotropic Effective Mass

    NASA Astrophysics Data System (ADS)

    Ilatikhameneh, Hesameddin; Ameen, Tarek; Novakovic, Bozidar; Tan, Yaohua; Klimeck, Gerhard; Rahman, Rajib

    2016-08-01

    Scaling transistors’ dimensions has been the thrust for the semiconductor industry in the last four decades. However, scaling channel lengths beyond 10 nm has become exceptionally challenging due to the direct tunneling between source and drain which degrades gate control, switching functionality, and worsens power dissipation. Fortunately, the emergence of novel classes of materials with exotic properties in recent times has opened up new avenues in device design. Here, we show that by using channel materials with an anisotropic effective mass, the channel can be scaled down to 1 nm and still provide an excellent switching performance in phosphorene nanoribbon MOSFETs. To solve power consumption challenge besides dimension scaling in conventional transistors, a novel tunnel transistor is proposed which takes advantage of anisotropic mass in both ON- and OFF-state of the operation. Full-band atomistic quantum transport simulations of phosphorene nanoribbon MOSFETs and TFETs based on the new design have been performed as a proof.

  6. Laser Optical Biasing of the Quantum Transport Properties of n-InSb.

    DTIC Science & Technology

    1976-10-01

    of the SdH oscillations. The research being done is directed at obtaining fundamental information concerning the effects of CO and CO2 laser radiation on the quantum transport properties on n-InSb. (Author)

  7. Transport properties of high-temperature air in a magnetic field

    SciTech Connect

    Bruno, D.; Capitelli, M.; Catalfamo, C.; Giordano, D.

    2011-01-15

    Transport properties of equilibrium air plasmas in a magnetic field are calculated with the Chapman-Enskog method. The range considered for the temperature is [50-50 000] K and for the magnetic induction is [0-300] T.

  8. Tuning the ambipolar charge transport properties of tricyanovinyl-substituted carbazole-based materials.

    PubMed

    Reig, Marta; Bagdziunas, Gintautas; Volyniuk, Dmytro; Grazulevicius, Juozas V; Velasco, Dolores

    2017-03-01

    A series of push-pull carbazole-based compounds has been experimentally and theoretically characterized in combination with the X-ray analysis of the corresponding single crystals. The introduction of the strong electron-withdrawing tricyanovinyl group in the carbazole core affords electron-transporting ability in addition to the characteristic hole-transporting properties exhibited by donor carbazole derivatives.

  9. The phase diagram and transport properties for hydrogen-helium fluid planets

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.; Salpeter, E. E.

    1977-01-01

    The properties of pure hydrogen and helium are examined, taking into account metallic hydrogen, molecular hydrogen, and the molecular-metallic transition. Metallic hydrogen-helium mixtures are considered along with molecular hydrogen-helium mixtures, the total phase diagram, and minor constituents, including deuterium. The transport properties of the metallic and the molecular phase are also discussed, giving attention to electrical conductivity, thermal conductivity, viscosity, self-diffusion, interdiffusion, radiative opacity, and second-order transport coefficients.

  10. Transport Properties of the Dust Components in Weakly Ionized Plasma

    SciTech Connect

    Vaulina, O. S.; Adamovich, X. G.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    The experimental study of transport processes are presented for the dusty plasma in radio-frequency (RF-) capacitive discharge. Validity of the Langevin and Green-Kubo equations for the description of dynamics of dusty grains is verified. Experimental examination of the Einstein-Stokes relation between the viscosity and diffusion constants is carried out.

  11. Hydrodynamic and Mass Transport Properties of Microfluidic Geometries

    DTIC Science & Technology

    2013-12-01

    Bioanalytical Chemistry, 391:2453–2467, 2008. 18 [34] D. Mark, S. Haeberle, G. Roth , F. Von Setten, and R. Zengerle. Microfluidic lab-on-a-chip platforms...Biophysical Journal, 75:583–594, 1998. 23 [81] T. Mason , A. Pineda, C. Wofsy, and B. Goldstein. Effec- tive Rate Models for the Analysis of Transport

  12. ELECTRONIC AND TRANSPORT PROPERTIES OF THERMOELECTRIC Ru2Si3

    NASA Astrophysics Data System (ADS)

    Singh, David J.; Parker, David

    2013-08-01

    We report calculations of the doping and temperature dependent thermopower of Ru2Si3 based on Boltzmann transport theory and the first principles electronic structure. We find that the performance reported to date can be significantly improved by optimization of the doping level and that ultimately n-type should have higher ZT than p-type.

  13. Anisotropic eddy viscosity models

    NASA Technical Reports Server (NTRS)

    Carati, D.; Cabot, W.

    1996-01-01

    A general discussion on the structure of the eddy viscosity tensor in anisotropic flows is presented. The systematic use of tensor symmetries and flow symmetries is shown to reduce drastically the number of independent parameters needed to describe the rank 4 eddy viscosity tensor. The possibility of using Onsager symmetries for simplifying further the eddy viscosity is discussed explicitly for the axisymmetric geometry.

  14. Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing.

    PubMed

    Tian, Ye; Wen, Liping; Hou, Xu; Hou, Guanglei; Jiang, Lei

    2012-07-16

    Biological ion channels are able to control ion-transport processes precisely because of their intriguing properties, such as selectivity, rectification, and gating. Learning from nature, scientists have developed a promising system--solid-state single nanochannels--to mimic biological ion-transport properties. These nanochannels have many impressive properties, such as excess surface charge, making them selective; the ability to be produced or modified asymmetrically, endowing them with rectification; and chemical reactivity of the inner surface, imparting them with desired gating properties. Based on these unique characteristics, solid-state single nanochannels have been explored in various applications, such as sensing. In this context, we summarize recent developments of bioinspired solid-state single nanochannels with ion-transport properties that resemble their biological counterparts, including selectivity, rectification, and gating; their applications in sensing are also introduced briefly.

  15. Geochemical & Physical Aquifer Property Heterogeneity: A Multiscale Sedimentologic Approach to Reactive Solute Transport

    SciTech Connect

    Murray, Chris; Allen-King, Richelle; Weissmann, Gary

    2006-06-01

    This project is testing the hypothesis that sedimentary lithofacies determine the geochemical and physical hydrologic properties that control reactive solute transport (Figure 1). We are testing that hypothesis for one site, a portion of the saturated zone at the Hanford Site (Ringold Formation), and for a model solute, carbon tetrachloride (CT). The representative geochemical and physical aquifer properties selected for quantification in the proposed project are the properties that control CT transport: hydraulic conductivity (K) and reactivity (sorption distribution coefficient, Kd, and anaerobic transformation rate constant, kn). We are combining observations at outcrop analog sites (to measure lithofacies dimensions and statistical relations) with measurements from archived and fresh core samples (for geochemical experiments and to provide additional constraint to the stratigraphic model) from the Ringold Formation to place local-scale lithofacies successions, and their distinct hydrologic property distributions, into the basinal context, thus allowing us to estimate the spatial distributions of properties that control reactive solute transport in the subsurface.

  16. Heat transport in nonuniform superconductors

    NASA Astrophysics Data System (ADS)

    Richard, Caroline; Vorontsov, Anton B.

    2016-08-01

    We calculate electronic energy transport in inhomogeneous superconductors using a fully self-consistent nonequilibrium quasiclassical Keldysh approach. We develop a general theory and apply it to a superconductor with an order parameter that forms domain walls of the type encountered in the Fulde-Ferrell-Larkin-Ovchinnikov state. The heat transport in the presence of a domain wall is inherently anisotropic and nonlocal. The bound states in the nonuniform region play a crucial role and control heat transport in several ways: (i) they modify the spectrum of quasiparticle states and result in Andreev reflection processes and (ii) they hybridize with the impurity band and produce a local transport environment with properties very different from those in a uniform superconductor. As a result of this interplay, heat transport becomes highly sensitive to temperature, magnetic field, and disorder. For strongly scattering impurities, we find that the transport across domain walls at low temperatures is considerably more efficient than in the uniform superconducting state.

  17. Determination of neutron flux distribution by using ANISN, a one-dimensional discrete S sub n ordinates transport code with anisotropic scattering

    NASA Technical Reports Server (NTRS)

    Ghorai, S. K.

    1983-01-01

    The purpose of this project was to use a one-dimensional discrete coordinates transport code called ANISN in order to determine the energy-angle-spatial distribution of neutrons in a 6-feet cube rock box which houses a D-T neutron generator at its center. The project was two-fold. The first phase of the project involved adaptation of the ANISN code written for an IBM 360/75/91 computer to the UNIVAC system at JSC. The second phase of the project was to use the code with proper geometry, source function and rock material composition in order to determine the neutron flux distribution around the rock box when a 14.1 MeV neutron generator placed at its center is activated.

  18. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  19. Opto-electronic transport properties of graphene oxide based devices

    SciTech Connect

    Das, Poulomi; Ibrahim, Sk; Pal, Tanusri; Chakraborty, Koushik; Ghosh, Surajit

    2015-06-24

    Large area, solution-processed, graphene oxide (GO)nanocomposite based photo FET has been successfully fabricated. The device exhibits p-type charge transport characteristics in dark condition. Our measurements indicate that the transport characteristics are gate dependent and extremely sensitive to solar light. Photo current decay mechanism of GO is well explained and is associated with two phenomena: a) fast response process and b) slow response process. Slow response photo decay can be considered as the intrinsic phenomena which are present for both GO and reduced GO (r-GO), whereas the first response photo decay is controlled by the surface defect states. Demonstration of photo FET performance of GO thin film is a significant step forward in integrating these devices in various optoelectronic circuits.

  20. Investigation of Laser Optical Biasing on the Quantum Transport Properties of n-InSb.

    DTIC Science & Technology

    1979-10-01

    Af-01578 NOTH TEXAS STATE UNIV DENTON DEPT OF PHYSICS FIG 20/12 INVESTIGATION OF LASER OPTICAL BIASING ON THE QUANTUM TRANSPORT -ETC(U) OCT 79 0 6...SEILER NOOO-76-C-0319 NCLASSIFIED NL MEEEEEEE4N VEt IC?) ’ ,~CUAL)SUMMARY E’--. C Ii Investigation of Laser Optical Biasing on the Quantum Transport Properties...the investigation of laser optical biasing ef- fects on the quantum transport properties of n-InSb is given for the period October 1, 1978 - September

  1. The effect of electron induced hydrogenation of graphene on its electrical transport properties

    SciTech Connect

    Woo, Sung Oh; Teizer, Winfried

    2013-07-22

    We report a deterioration of the electrical transport properties of a graphene field effect transistor due to energetic electron irradiation on a stack of Poly Methyl Methacrylate (PMMA) on graphene (PMMA/graphene bilayer). Prior to electron irradiation, we observed that the PMMA layer on graphene does not deteriorate the carrier transport of graphene but improves its electrical properties instead. As a result of the electron irradiation on the PMMA/graphene bilayer, the Raman “D” band appears after removal of PMMA. We argue that the degradation of the transport behavior originates from the binding of hydrogen generated during the PMMA backbone secession process.

  2. Surf Zone Properties and On/Offshore Sediment Transport.

    DTIC Science & Technology

    1982-06-01

    wave properties. A review of the previous related works was made. The investigators who developed and applied the surf zone parameter included Iribarren ...breaking wave properties characterized by this parameter are summarized. L~.. _ _ _ _ _ _ _ • - Il~i/ l I rT L I - - .- -9- Iribarren and Nogales (1949...where Le is the deep water wave length and rearranging gives 4 a-5_ -10- The derivation given by Iribarren and Nogales sug- gested that the incipient

  3. Thermoelectric transport properties of high mobility organic semiconductors

    NASA Astrophysics Data System (ADS)

    Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning

    2016-09-01

    Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states

  4. Understanding hopping transport and thermoelectric properties of conducting polymers

    NASA Astrophysics Data System (ADS)

    Ihnatsenka, S.; Crispin, X.; Zozoulenko, I. V.

    2015-07-01

    We calculate the conductivity σ and the Seebeck coefficient S for the phonon-assisted hopping transport in conducting polymers poly(3,4-ethylenedioxythiophene) or PEDOT, experimentally studied by Bubnova et al. [J. Am. Chem. Soc. 134, 16456 (2012)], 10.1021/ja305188r. We use the Monte Carlo technique as well as the semianalytical approach based on the transport energy concept. We demonstrate that both approaches show a good qualitative agreement for the concentration dependence of σ and S . At the same time, we find that the semianalytical approach is not in a position to describe the temperature dependence of the conductivity. We find that both Gaussian and exponential density of states (DOS) reproduce rather well the experimental data for the concentration dependence of σ and S giving similar fitting parameters of the theory. The obtained parameters correspond to a hopping model of localized quasiparticles extending over 2-3 monomer units with typical jumps over a distance of 3-4 units. The energetic disorder (broadening of the DOS) is estimated to be 0.1 eV. Using the Monte Carlo calculation we reproduce the activation behavior of the conductivity with the calculated activation energy close to the experimentally observed one. We find that for a low carrier concentration a number of free carriers contributing to the transport deviates strongly from the measured oxidation level. Possible reasons for this behavior are discussed. We also study the effect of the dimensionality on the charge transport by calculating the Seebeck coefficient and the conductivity for the cases of three-, two-, and one-dimensional motion.

  5. Theoretical studies of the transport properties in compound semiconductors

    NASA Technical Reports Server (NTRS)

    Segall, Benjamin

    1994-01-01

    This final report is an overview of the work done on Cooperative Agreement NCC 3-55 with the Solid State Technology Branch of the NASA-Lewis Research Center (LeRC). Over the period of time that the agreement was in effect, the principal investigator and, in the last three years, the co-principal investigator worked on a significant number of projects and interacted with members of the Solid State Technology (SST) branch in a number of different ways. For the purpose of this report, these efforts will be divided into five categories: 1) work directly with experimental electrical transport studies conducted by members of the SST branch; 2) theoretical work on electrical transport in compound semiconductors; 3) electronic structure calculations which are relevant to the electrical transport in polytypes of SiC and SiC-AlN alloys; 4) the electronic structure calculations of polar interfaces; and 5) consultative and supportive activities related to experiments and other studies carried out by SST branch members. Work in these categories is briefly discussed.

  6. Detecting the local transport properties and the dimensionality of transport of epitaxial graphene by a multi-point probe approach

    NASA Astrophysics Data System (ADS)

    Barreto, Lucas; Perkins, Edward; Johannsen, Jens; Ulstrup, Søren; Fromm, Felix; Raidel, Christian; Seyller, Thomas; Hofmann, Philip

    2013-01-01

    The electronic transport properties of epitaxial monolayer graphene (MLG) and hydrogen-intercalated quasi free-standing bilayer graphene (QFBLG) on SiC(0001) are investigated by micro multi-point probes. Using a probe with 12 contacts, we perform four-point probe measurements with the possibility to effectively vary the contact spacing over more than one order of magnitude, allowing us to establish that the transport is purely two-dimensional. Combined with the carrier density obtained by angle-resolved photoemission spectroscopy, we find the room temperature mobility of MLG to be (870±120) cm2/V s. The transport in QFBLG is also found to be two-dimensional with a mobility of (1600±160) cm2/V s.

  7. Systematic characterization of porosity and mass transport and mechanical properties of porous polyurethane scaffolds.

    PubMed

    Wang, Yu-Fu; Barrera, Carlos M; Dauer, Edward A; Gu, Weiyong; Andreopoulos, Fotios; Huang, C-Y Charles

    2017-01-01

    One of the key challenges in porous scaffold design is to create a porous structure with desired mechanical function and mass transport properties which support delivery of biofactors and development of function tissue substitute. In recent years, polyurethane (PU) has become one of the most popular biomaterials in various tissue engineering fields. However, there are no studies fully investigating the relations between porosity and both mass transport and mechanical properties of PU porous scaffolds. In this paper, we fabricated PU scaffolds by combining phase inversion and salt (sodium chloride) leaching methods. The tensile and compressive moduli were examined on PU scaffolds fabricated with different PU concentrations (25%, 20% and 15% w/v) and salt/PU weight ratios (9/1, 6/1, 3/1 and 0/1). The mass transport properties of PU scaffolds including hydraulic permeability and glucose diffusivity were also measured. Furthermore, the relationships between the porosity and mass transport and mechanical properties of porous PU scaffold were systemically investigated. The results demonstrated that porosity is a key parameter which governs both mass transport and mechanical properties of porous PU scaffolds. With similar pore sizes, the mass transport and mechanical properties of porous PU scaffold can be described as single functions of porosity regardless of initial PU concentration. The relationships between scaffold porosity and properties can be utilized to facilitate porous PU scaffold fabrication with specific mass transport and mechanical properties. The systematic approach established in this study can be applied to characterization of other biomaterials for scaffold design and fabrication.

  8. A generalized anisotropic deformation formulation for geomaterials

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, Esteban; Knight, E. E.; Munjiza, A.; Viswanathan, H.

    2016-04-01

    In this paper, the combined finite-discrete element method (FDEM) has been applied to analyze the deformation of anisotropic geomaterials. In the most general case geomaterials are both non-homogeneous and non-isotropic. With the aim of addressing anisotropic material problems, improved 2D FDEM formulations have been developed. These formulations feature the unified hypo-hyper elastic approach combined with a multiplicative decomposition-based selective integration for volumetric and shear deformation modes. This approach is significantly different from the co-rotational formulations typically encountered in finite element codes. Unlike the co-rotational formulation, the multiplicative decomposition-based formulation naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. This approach can be implemented for a whole family of finite elements from solids to shells and membranes. This novel 2D FDEM based material formulation was designed in such a way that the anisotropic properties of the solid can be specified in a cell by cell basis, therefore enabling the user to seed these anisotropic properties following any type of spatial variation, for example, following a curvilinear path. In addition, due to the selective integration, there are no problems with volumetric or shear locking with any type of finite element employed.

  9. Anomalous solute transport in saturated porous media: Relating transport model parameters to electrical and nuclear magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Swanson, Ryan D.; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini

    2015-02-01

    The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.

  10. Autofocus imaging: Experimental results in an anisotropic austenitic weld

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Drinkwater, B. W.; Wilcox, P. D.; Hunter, A.

    2012-05-01

    The quality of an ultrasonic array image, especially for anisotropic material, depends on accurate information about acoustic properties. Inaccuracy of acoustic properties causes image degradation, e.g., blurring, errors in locating of reflectors and introduction of artifacts. In this paper, for an anisotropic austenitic steel weld, an autofocus imaging technique is presented. The array data from a series of beacons is captured and then used to statistically extract anisotropic weld properties by using a Monte-Carlo inversion approach. The beacon and imaging systems are realized using two separated arrays; one acts as a series of beacons and the other images these beacons. Key to the Monte-Carlo inversion scheme is a fast forward model of wave propagation in the anisotropic weld and this is based on the Dijkstra algorithm. Using this autofocus approach a measured weld map was extracted from an austenitic weld and used to reduce location errors, initially greater than 6mm, to less than 1mm.

  11. Effect of spin reorientation on magnetocaloric and transport properties of NdAl2

    NASA Astrophysics Data System (ADS)

    de Souza, M. V.; da Silva, J. A.; Silva, L. S.

    2017-01-01

    We report the magneto-thermal and resistive properties of rare-earth dialuminide NdAl2, including spin reorientation transition. To this purpose, we used a theoretical model that considers the interactions of exchange and Zeeman, besides the anisotropy due to the electrical crystal field. The theoretical results obtained were compared to experimental data of the NdAl2 in single crystal and bulk forms. Explicitly, we have calculated the anisotropic variation of magnetic entropy with the magnetic field oriented along the three principal crystallographic directions: [100], [110], and [111] of NdAl2 single crystal, where a signature of the spin reorientation is observed in the [110] and [111] directions. Moreover, of magnetoresistivity we consider the applied magnetic field along the crystallographic directions [100] and [110]. In turn, for the polycrystalline form, the good agreement between theory and experiment confirms the presence of spin reorientation, which was predicted theoretically in magnetization curves.

  12. Pesticide transport with runoff from creeping bentgrass turf: Relationship of pesticide properties to mass transport.

    PubMed

    Rice, Pamela J; Horgan, Brian P; Rittenhouse, Jennifer L

    2010-06-01

    The off-site transport of pesticides with runoff is both an agronomic and environmental concern, resulting from reduced control of target pests in the area of application and contamination of surrounding ecosystems. Experiments were designed to measure the quantity of pesticides in runoff from creeping bentgrass (Agrostis palustris) turf managed as golf course fairway to gain a better understanding of factors that influence chemical availability and mass transport. Less than 1 to 23% of applied chloropyrifos, flutolanil, mecoprop-p (MCPP), dimethylamine salt of 2,4-dichlorophenoxyacetic acid (2,4-D), or dicamba was measured in edge-of-plot runoff when commercially available pesticide formulations were applied at label rates 23 +/- 9 h prior to simulated precipitation (62 +/- 13 mm). Time differential between hollow tine core cultivation and runoff did not significantly influence runoff volumes or the percentage of applied chemicals transported in the runoff. With the exception of chlorpyrifos, all chemicals of interest were detected in the initial runoff samples and throughout the runoff events. Chemographs of the five pesticides followed trends in agreement with mobility classifications associated with their soil organic carbon partition coefficient (K(OC).) Data collected from the present study provides information on the transport of chemicals with runoff from turf, which can be used in model simulations to predict nonpoint source pollution potentials and estimate ecological risks.

  13. 26 CFR 49.4271-1 - Tax on transportation of property by air.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certificated takeoff weight (as defined in section 4492(b)) of 6,000 pounds or less, unless such aircraft is... property, even though there may be stopovers in the United States (such as, for example, to consolidate... the business of transporting property by air for hire (for example, by a freight forwarder), the...

  14. Transport Properties of the Tomato Fruit Tonoplast : III. Temperature Dependence of Calcium Transport.

    PubMed

    Joyce, D C; Cramer, G R; Reid, M S; Bennett, A B

    1988-12-01

    Calcium transport into tomato (Lycopersicon esculentum Mill, cv Castlemart) fruit tonoplast vesicles was studied. Calcium uptake was stimulated approximately 10-fold by MgATP. Two ATP-dependent Ca(2+) transport activities could be resolved on the basis of sensitivity to nitrate and affinity for Ca(2+). A low affinity Ca(2+) uptake system (K(m) > 200 micromolar) was inhibited by nitrate and ionophores and is thought to represent a tonoplast localized H(+)/Ca(2+) antiport. A high affinity Ca(2+) uptake system (K(m) = 6 micromolar) was not inhibited by nitrate, had reduced sensitivity to ionophores, and appeared to be associated with a population of low density endoplasmic reticulum vesicles that contaminated the tonoplast-enriched membrane fraction. Arrhenius plots of the temperature dependence of Ca(2+) transport in tomato membrane vesicles showed a sharp increase in activation energy at temperatures below 10 to 12 degrees C that was not observed in red beet membrane vesicles. This low temperature effect on tonoplast Ca(2+)/H(+) antiport activity could only by partially ascribed to an effect of low temperature on H(+)-ATPase activity, ATP-dependent H(+) transport, passive H(+) fluxes, or passive Ca(2+) fluxes. These results suggest that low temperature directly affects Ca(2+)/H(+) exchange across the tomato fruit tonoplast, resulting in an apparent change in activation energy for the transport reaction. This could result from a direct effect of temperature on the Ca(2+)/H(+) exchange protein or by an indirect effect of temperature on lipid interactions with the Ca(2+)/H(+) exchange protein.

  15. Turbulent transport of a passive contaminant in an initially anisotropic turbulence subjected to rapid rotation: an analytical study using linear theory

    NASA Astrophysics Data System (ADS)

    El Bach, A.; Salhi, A.; Cambon, Claude

    2008-04-01

    The linear effect of rapid rotation is studied on the transport by homogeneous turbulence of a passive scalar with vertical mean scalar gradient. Connection with one-particle diffusion studied by Cambon et al. [C. Cambon, F.S. Godeferd, F. Nicolleau, J.C. Vassilicos, Turbulent diffusion in rapidly rotating turbulence with and without stable stratification, J. Fluid Mech. 499 (2004) 231-255] is discussed. The input of the initial anisotropy of the velocity field is then investigated in the axisymmetric case, using a general and systematic way to construct axisymmetric initial data: a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy and a modified expansion for the polarization anisotropy. The scalar variance exhibits a quadratic evolution (∝t) for short times and a linear one (∝t) for larger times. The long-time behaviour looks similar to the classical 'Brownian' evolution but it has a very different origin: a linear impact of dispersive inertial waves via phase-mixing instead of a nonlinearly-induced random walk. It is shown that this trend is not altered by the polarization anisotropy. The vertical scalar flux varies linearly with time for short times and tends to a plateau for larger times. To cite this article: A. El Bach et al., C. R. Mecanique 336 (2008).

  16. Transport properties of partially ionized and unmagnetized plasmas

    SciTech Connect

    Magin, Thierry E.; Degrez, Gerard

    2004-10-01

    This work is a comprehensive and theoretical study of transport phenomena in partially ionized and unmagnetized plasmas by means of kinetic theory. The pros and cons of different models encountered in the literature are presented. A dimensional analysis of the Boltzmann equation deals with the disparity of mass between electrons and heavy particles and yields the epochal relaxation concept. First, electrons and heavy particles exhibit distinct kinetic time scales and may have different translational temperatures. The hydrodynamic velocity is assumed to be identical for both types of species. Second, at the hydrodynamic time scale the energy exchanged between electrons and heavy particles tends to equalize both temperatures. Global and species macroscopic fluid conservation equations are given. New constrained integral equations are derived from a modified Chapman-Enskog perturbative method. Adequate bracket integrals are introduced to treat thermal nonequilibrium. A symmetric mathematical formalism is preferred for physical and numerical standpoints. A Laguerre-Sonine polynomial expansion allows for systems of transport to be derived. Momentum, mass, and energy fluxes are associated to shear viscosity, diffusion coefficients, thermal diffusion coefficients, and thermal conductivities. A Goldstein expansion of the perturbation function provides explicit expressions of the thermal diffusion ratios and measurable thermal conductivities. Thermal diffusion terms already found in the Russian literature ensure the exact mass conservation. A generalized Stefan-Maxwell equation is derived following the method of Kolesnikov and Tirskiy. The bracket integral reduction in terms of transport collision integrals is presented in Appendix for the thermal nonequilibrium case. A simple Eucken correction is proposed to deal with the internal degrees of freedom of atoms and polyatomic molecules, neglecting inelastic collisions. The authors believe that the final expressions are

  17. Microsphere-chain waveguides: Focusing and transport properties

    SciTech Connect

    Allen, Kenneth W. Astratov, Vasily N.; Darafsheh, Arash; Abolmaali, Farzaneh; Mojaverian, Neda; Limberopoulos, Nicholaos I.; Lupu, Anatole

    2014-07-14

    It is shown that the focusing properties of polystyrene microsphere-chain waveguides (MCWs) formed by sufficiently large spheres (D ≥ 20λ, where D is the sphere diameter and λ is the wavelength of light) scale with the sphere diameter as predicted by geometrical optics. However, this scaling behavior does not hold for mesoscale MCWs with D ≤ 10λ resulting in a periodical focusing with gradually reducing beam waists and in extremely small propagation losses. The observed effects are related to properties of nanojet-induced and periodically focused modes in such structures. The results can be used for developing focusing microprobes, laser scalpels, and polarization filters.

  18. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    SciTech Connect

    Cressault, Y.

    2015-05-15

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas.

  19. FORTRAN 4 computer program for calculation of thermodynamic and transport properties of complex chemical systems

    NASA Technical Reports Server (NTRS)

    Svehla, R. A.; Mcbride, B. J.

    1973-01-01

    A FORTRAN IV computer program for the calculation of the thermodynamic and transport properties of complex mixtures is described. The program has the capability of performing calculations such as:(1) chemical equilibrium for assigned thermodynamic states, (2) theoretical rocket performance for both equilibrium and frozen compositions during expansion, (3) incident and reflected shock properties, and (4) Chapman-Jouguet detonation properties. Condensed species, as well as gaseous species, are considered in the thermodynamic calculation; but only the gaseous species are considered in the transport calculations.

  20. Lateral transport properties of thermally excited magnons in yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Zhou, X. J.; Shi, G. Y.; Han, J. H.; Yang, Q. H.; Rao, Y. H.; Zhang, H. W.; Lang, L. L.; Zhou, S. M.; Pan, F.; Song, C.

    2017-02-01

    Spin information carried by magnons is attractive for computing technology, and the development of magnon-based computing circuits is of great interest. However, magnon transport in insulators has been challenging, different from the clear physical picture for spin transport in conductors. Here, we investigate the lateral transport properties of thermally excited magnons in yttrium iron garnet (YIG), a model magnetic insulator. Polarity reversals of detected spins in non-local geometry devices have been experimentally observed and are strongly dependent on temperature, YIG film thickness, and injector-detector separation distance. A competing two-channel transport model for thermally excited magnons is proposed, which is qualitatively consistent with the spin signal behavior. In addition to the fundamental significance for thermal magnon transport, our work furthers the development of magnonics by creating an easily accessible magnon source with controllable transport.

  1. Transport properties of droplet clusters in gravity-free fields

    NASA Technical Reports Server (NTRS)

    Brenner, Howard

    1986-01-01

    Clusters of liquid droplets are suspended in an atmosphere of saturated vapor and are subjected to an external force field. This system can be modeled as a continuum whose macroscopic properties may be determined by applying the generalized theory of Taylor dispersion.

  2. Transport and Optical Properties of N-Cadmium -

    NASA Astrophysics Data System (ADS)

    Levy, Miguel

    Transport measurements were performed on n-type CdSe near the metal-insulator transition above and below 4.2 K. The determination of compensation on the basis of transport data above 50 K is discussed. Use is made of some recent treatments of electron screening. The resistivity of three insulating samples with carrier concentrations between 0.73 and 0.80 of the critical concentration follow a temperature dependence consistent with Mott variable range hopping in the temperature range between 1.25 K and 4.2 K. The Hall coefficient is also consistent with R_{rm H} ~ exp [ T_{oH}/T]^ {1/4} in that range. We compare our results with available theory and with those of other workers and point out some discrepancies. Luminescence and Excitation spectra of metallic n-type CdSe were also obtained. We compare our results with available theory and find some discrepancies, which leads us to introduce some modifications into the theory. In particular, we consider the effect of compensation on band gap renormalization. We also look for and find evidence of acceptor states in the luminescence spectra.

  3. Studies of Transport Properties of Fractures: Final Report

    SciTech Connect

    Stephen R. Brown

    2006-06-30

    We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.

  4. Electrical Transport Properties of Polymorphic MoS2.

    PubMed

    Kim, Jun Suk; Kim, Jaesu; Zhao, Jiong; Kim, Sungho; Lee, Jin Hee; Jin, Youngjo; Choi, Homin; Moon, Byoung Hee; Bae, Jung Jun; Lee, Young Hee; Lim, Seong Chu

    2016-08-23

    The engineering of polymorphs in two-dimensional layered materials has recently attracted significant interest. Although the semiconducting (2H) and metallic (1T) phases are known to be stable in thin-film MoTe2, semiconducting 2H-MoS2 is locally converted into metallic 1T-MoS2 through chemical lithiation. In this paper, we describe the observation of the 2H, 1T, and 1T' phases coexisting in Li-treated MoS2, which result in unusual transport phenomena. Although multiphase MoS2 shows no transistor-gating response, the channel resistance decreases in proportion to the temperature, similar to the behavior of a typical semiconductor. Transmission electron microscopy images clearly show that the 1T and 1T' phases are randomly distributed and intervened with 2H-MoS2, which is referred to as the 1T and 1T' puddling phenomenon. The resistance curve fits well with 2D-variable range-hopping transport behavior, where electrons hop over 1T domains that are bounded by semiconducting 2H phases. However, near 30 K, electrons hop over charge puddles. The large temperature coefficient of resistance (TCR) of multiphase MoS2, -2.0 × 10(-2) K(-1) at 300 K, allows for efficient IR detection at room temperature by means of the photothermal effect.

  5. Ballistic anisotropic magnetoresistance in core-shell nanowires and rolled-up nanotubes

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Hao; Ortix, Carmine

    2017-01-01

    In ferromagnetic nanostructures, the ballistic anisotropic magnetoresistance (BAMR) is a change in the ballistic conductance with the direction of magnetization due to spin-orbit interaction. Very recently, a directional dependent ballistic conductance has been predicted to occur in a number of newly synthesized nonmagnetic semiconducting nanostructures subject to externally applied magnetic fields, without necessitating spin-orbit coupling. In this paper, we review past works on the prediction of this BAMR effect in core-shell nanowires (CSN) and rolled-up nanotubes (RUNTs). This is complemented by new results, we establish for the transport properties of tubular nanosystems subject to external magnetic fields.

  6. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Franco, Luís F. M.; Castier, Marcelo; Economou, Ioannis G.

    2016-08-01

    Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two { 10 1 ¯ 4 } calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property.

  7. Anisotropic parallel self-diffusion coefficients near the calcite surface: A molecular dynamics study.

    PubMed

    Franco, Luís F M; Castier, Marcelo; Economou, Ioannis G

    2016-08-28

    Applying classical molecular dynamics simulations, we calculate the parallel self-diffusion coefficients of different fluids (methane, nitrogen, and carbon dioxide) confined between two {101̄4} calcite crystal planes. We have observed that the molecules close to the calcite surface diffuse differently in distinct directions. This anisotropic behavior of the self-diffusion coefficient is investigated for different temperatures and pore sizes. The ion arrangement in the calcite crystal and the strong interactions between the fluid particles and the calcite surface may explain the anisotropy in this transport property.

  8. Parallel Anisotropic Tetrahedral Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Darmofal, David L.

    2008-01-01

    An adaptive method that robustly produces high aspect ratio tetrahedra to a general 3D metric specification without introducing hybrid semi-structured regions is presented. The elemental operators and higher-level logic is described with their respective domain-decomposed parallelizations. An anisotropic tetrahedral grid adaptation scheme is demonstrated for 1000-1 stretching for a simple cube geometry. This form of adaptation is applicable to more complex domain boundaries via a cut-cell approach as demonstrated by a parallel 3D supersonic simulation of a complex fighter aircraft. To avoid the assumptions and approximations required to form a metric to specify adaptation, an approach is introduced that directly evaluates interpolation error. The grid is adapted to reduce and equidistribute this interpolation error calculation without the use of an intervening anisotropic metric. Direct interpolation error adaptation is illustrated for 1D and 3D domains.

  9. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    SciTech Connect

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-15

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  10. Electronic transport properties of one dimensional lithium nanowire using density functional theory

    NASA Astrophysics Data System (ADS)

    Thakur, Anil; Kumar, Arun; Chandel, Surjeet; Ahluwalia, P. K.

    2015-05-01

    Single nanowire electrode devices are a unique platform for studying as energy storage devices. Lithium nanowire is of much importance in lithium ion batteries and therefore has received a great deal of attention in past few years. In this paper we investigated structural and electronic transport properties of Li nanowire using density functional theory (DFT) with SIESTA code. Electronic transport properties of Li nanowire are investigated theoretically. The calculations are performed in two steps: first an optimized geometry for Li nanowire is obtained using DFT calculations, and then the transport relations are obtained using NEGF approach. SIESTA and TranSIESTA simulation codes are used in the calculations correspondingly. The electrodes are chosen to be the same as the central region where transport is studied, eliminating current quantization effects due to contacts and focusing the electronic transport study to the intrinsic structure of the material. By varying chemical potential in the electrode regions, an I-V curve is traced which is in agreement with the predicted behavior. Agreement of bulk properties of Li with experimental values make the study of electronic and transport properties in lithium nanowires interesting because they are promising candidates as bridging pieces in nanoelectronics. Transmission coefficient and V-I characteristic of Li nano wire indicates that Li nanowire can be used as an electrode device.

  11. Electrical Transport Properties of Carbon Nanotube Metal-Semiconductor Heterojunction

    NASA Astrophysics Data System (ADS)

    Talukdar, Keka; Shantappa, Anil

    2016-10-01

    Carbon nanotubes (CNTs) have been proved to have promising applicability in various fields of science and technology. Their fascinating mechanical, electrical, thermal, optical properties have caught the attention of today’s world. We have discussed here the great possibility of using CNTs in electronic devices. CNTs can be both metallic and semiconducting depending on their chirality. When two CNTs of different chirality are joined together via topological defects, they may acquire rectifying diode property. We have joined two tubes of different chiralities through circumferential Stone-Wales defects and calculated their density of states by nearest neighbor tight binding approximation. Transmission function is also calculated to analyze whether the junctions can be used as electronic devices. Different heterojunctions are modeled and analyzed in this study. Internal stresses in the heterojunctions are also calculated by molecular dynamics simulation.

  12. Transport properties of graphene under periodic and quasiperiodic magnetic superlattices

    NASA Astrophysics Data System (ADS)

    Lu, Wei-Tao; Wang, Shun-Jin; Wang, Yong-Long; Jiang, Hua; Li, Wen

    2013-08-01

    We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue-Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue-Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.

  13. Anisotropic Total Variation Filtering

    SciTech Connect

    Grasmair, Markus; Lenzen, Frank

    2010-12-15

    Total variation regularization and anisotropic filtering have been established as standard methods for image denoising because of their ability to detect and keep prominent edges in the data. Both methods, however, introduce artifacts: In the case of anisotropic filtering, the preservation of edges comes at the cost of the creation of additional structures out of noise; total variation regularization, on the other hand, suffers from the stair-casing effect, which leads to gradual contrast changes in homogeneous objects, especially near curved edges and corners. In order to circumvent these drawbacks, we propose to combine the two regularization techniques. To that end we replace the isotropic TV semi-norm by an anisotropic term that mirrors the directional structure of either the noisy original data or the smoothed image. We provide a detailed existence theory for our regularization method by using the concept of relaxation. The numerical examples concluding the paper show that the proposed introduction of an anisotropy to TV regularization indeed leads to improved denoising: the stair-casing effect is reduced while at the same time the creation of artifacts is suppressed.

  14. Charge transport properties of CdMnTe radiation detectors

    SciTech Connect

    Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.

    2012-04-11

    Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.

  15. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  16. Collective Transport Properties of Driven Skyrmions with Random Disorder

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson

    2015-05-01

    We use particle-based simulations to examine the static and driven collective phases of Skyrmions interacting with random quenched disorder. We show that nondissipative effects due to the Magnus term reduce the depinning threshold and strongly affect the Skyrmion motion and the nature of the dynamic phases. The quenched disorder causes the Hall angle to become drive dependent in the moving Skyrmion phase, while different flow regimes produce distinct signatures in the transport curves. For weak disorder, the Skyrmions form a pinned crystal and depin elastically, while for strong disorder the system forms a pinned amorphous state that depins plastically. At high drives the Skyrmions can dynamically reorder into a moving crystal, with the onset of reordering determined by the strength of the Magnus term.

  17. Transport Properties of Water and Sodium Dodecyl Sulfate (Postprint)

    DTIC Science & Technology

    2013-08-01

    and boiling temperatures. Additionally, MP2f (Akin-Ojo et al., 2008, “Developing Ab Initio Quality Force Fields From Con- densed Phase Quantum...2,6,17,22] and modify the surface wettability [23]. Since nucleate boiling is such ubiquitous thermal management method, there is a sustained interest...system. The force field parameters are usually optimized to correctly reproduce some experimental properties and/or are developed from ab initio or

  18. The Transport Properties of Dilute Gases in Applied Fields.

    DTIC Science & Technology

    1979-03-01

    experimentally for pa ra ad ,i, a d diiama gnetic molecules, respectively, can aotually be measured "ore accurate!i than the transoort properties themselves... cross section de:pends on The angle 5 between the axis of rotation and the d-rection of motion. In the absence of a magnetic field, the direction of...precesses about the direction of the field. The collision cross section now chanoes periodically during the flight of the molecule, necessitating an

  19. Lithologic melt partitioning and transport properties of partially molten harzburgite

    NASA Astrophysics Data System (ADS)

    Miller, K. J.; Zhu, W.; Montesi, L.; Gaetani, G. A.; Le Roux, V.; Xiao, X.

    2015-12-01

    Quantitative constraints on melt transport in upper mantle are critical to understanding various dynamic processes at ocean ridges. In this study, we propose that thermodynamic gradients, resulting from spatial variations in mineralogy, can unevenly partition melt between olivine and orthopyroxene (opx), the two most abundant minerals in the upper mantle. The lithologic melt partitioning leads to higher melt fraction in olivine-rich regions compared to opx-rich regions, which may have important implications for melt transport. Lithologic partitioning has been experimentally confirmed in analogue systems, such as quartz/fluorite-H2O (Watson, 1999), but has never been observed in olivine/opx-melt samples. We synthesized olivine/opx-melt (harzburgite) samples by isostatically pressing oxide-high alumina basalt mixtures at 1350 °C and 1.5 GPa in a piston-cylinder apparatus. Nominal melt fractions of 0.02 to 0.20 and a constant 3 to 2 (olivine to opx) volume ratio were tested. Experimental charges were quenched, cored, and imaged using synchrotron X-ray microtomography. The resulting 3-D images constitute digital rock samples on which local melt fraction distributions, permeabilities, and electrical conductivities were numerically quantified. Our results are strong evidence for melt partitioning between olivine and opx: local melt fractions are 10 to 50% higher around olivine than opx grains. At the same melt fraction, permeabilities of whole harzburgite samples are lower compared to monomineralic olivine-melt samples (Miller et al., 2014). However, the presence of opx negligibly affects the permeability-porosity relation unless the abundance of opx is more than 40 vol. %. In contrast, electrical conductivities of harzburgites are systematically lower than those of olivine-melt samples. Lithological melt partitioning could be another mechanism responsible for forming high-porosity melt pathways in addition to reaction infiltration instability and deformation melt bands.

  20. Bottom-up processing and low temperature transport properties of polycrystalline SnSe

    SciTech Connect

    Ge, Zhen-Hua; Wei, Kaya; Lewis, Hutton; Martin, Joshua; Nolas, George S.

    2015-05-15

    A hydrothermal approach was employed to efficiently synthesize SnSe nanorods. The nanorods were consolidated into polycrystalline SnSe by spark plasma sintering for low temperature electrical and thermal properties characterization. The low temperature transport properties indicate semiconducting behavior with a typical dielectric temperature dependence of the thermal conductivity. The transport properties are discussed in light of the recent interest in this material for thermoelectric applications. The nanorod growth mechanism is also discussed in detail. - Graphical abstract: SnSe nanorods were synthesized by a simple hydrothermal method through a bottom-up approach. Micron sized flower-like crystals changed to nanorods with increasing hydrothermal temperature. Low temperature transport properties of polycrystalline SnSe, after SPS densification, were reported for the first time. This bottom-up synthetic approach can be used to produce phase-pure dense polycrystalline materials for thermoelectrics applications. - Highlights: • SnSe nanorods were synthesized by a simple and efficient hydrothermal approach. • The role of temperature, time and NaOH content was investigated. • SPS densification allowed for low temperature transport properties measurements. • Transport measurements indicate semiconducting behavior.

  1. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    SciTech Connect

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H.

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  2. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    NASA Astrophysics Data System (ADS)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  3. Propagation of partially coherent twisted anisotropic Gaussian Schell-model beams in dispersive and absorbing media.

    PubMed

    Cai, Yangjian; Lin, Qiang; Ge, Di

    2002-10-01

    By adopting a new tensor method, we derived an analytical propagation formula for the cross-spectral density of partially coherent twisted anisotropic Gaussian Schell-model (GSM) beams through dispersive and absorbing media. Using the derived formula, we studied the evolution properties and spectrum properties of twisted anisotropic GSM beams in dispersive and absorbing media. The results show that the dispersive and absorbing media have strong influences on the propagation properties of twisted anisotropic GSM beams and their spectrum evolution. Our method provides a simple and convenient way to study the propagation of twisted anisotropic GSM beams in media with complex refractive index.

  4. Data-driven imaging in anisotropic media

    SciTech Connect

    Volker, Arno; Hunter, Alan

    2012-05-17

    Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focus point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.

  5. Correlating substituent parameter values to electron transport properties of molecules

    NASA Astrophysics Data System (ADS)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-03-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values ( σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared ( R2) of 0.863.

  6. Transport Properties of Equilibrium Argon Plasma in a Magnetic Field

    SciTech Connect

    Bruno, D.; Laricchiuta, A.; Chikhaoui, A.; Kustova, E. V.; Giordano, D.

    2005-05-16

    Electron electrical conductivity coefficients of equilibrium Argon plasma in a magnetic field are calculated up to the 12th Chapman-Enskog approximation at pressure of 1 atm and 0.1 atm for temperatures 500K-20000K; the magnetic Hall parameter spans from 0.01 to 100. The collision integrals used in the calculations are discussed. The convergence properties of the different approximations are assessed. The degree of anisotropy introduced by the presence of the magnetic field is evaluated. Differences with the isotropic case can be very substantial. The biggest effects are visible at high ionization degrees, i.e. high temperatures, and at strong magnetic fields.

  7. Investigation of boron modified graphene nanostructures; optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Armaković, Stevan; Armaković, Sanja J.

    2016-11-01

    In this work we investigated optoelectronic properties of graphene nanoparticles and transport properties of graphene nanosheets and the consequences on these properties after modifications with boron atoms. Within the framework of density functional theory (DFT) several important optoelectronic quantities have been calculated for graphene nanoparticles: oxidation and reduction potentials, hole and electron reorganization energies, while thermally activated delayed fluorescence was assessed by calculations of energy separation between the lowest excited singlet (S1) and triplet (T1) state, Δ E (S1 -T1) . Obtained results show that optoelectronic properties of graphene nanoparticles are significantly improved by the modification with boron atoms and that investigated structures can be considered as a promising organic light emitting diode (OLED) materials. Influence of boron atoms to charge and heat transport properties of graphene nanosheets was investigated as well, employing the self-consistent non-equilibrium Green's functions with DFT. On the other side it is shown that charge transport of graphene nanosheets is not influenced by the introduction of boron atoms, while influence to the phonon subsystem is minimal.

  8. Magnetic colloid by PLA: Optical, magnetic and thermal transport properties

    NASA Astrophysics Data System (ADS)

    Pandey, B. K.; Shahi, A. K.; Gopal, Ram

    2015-08-01

    Ferrofluids of cobalt and cobalt oxide nanoparticles (NPs) have been successfully synthesized using liquid phase-pulse laser ablation (LP-PLA) in ethanol and double distilled water, respectively. The mechanism of laser ablation in liquid media and formation process for Co target in double distilled water (DDW) and ethanol are speculated based on the reactions between laser generated highly nascent cobalt species and vaporized solvent media in a confined high temperature and pressure at the plume-surrounding liquid interface region. Optical absorption, emission, vibrational and rotational properties have been investigated using UV-vis absorption, photoluminescence (PL) and Fourier transform-infra red (FT-IR) spectroscopy, respectively. In this study optical band gap of cobalt oxide ferrofluids has been engineered using different pulse energy of Nd:YAG laser in the range of (2.80-3.60 eV). Vibrating sample magnetometer (VSM) is employed to determine the magnetic properties of ferrofluids of cobalt and cobalt oxide NPs while their thermal conductivities are examined using rotating disc method. Ferrofluids have gained enormous curiosity due to many technological applications, i.e. drug delivery, coolant and heating purposes.

  9. Spin-polarized quantum transport properties through flexible phosphorene

    NASA Astrophysics Data System (ADS)

    Chen, Mingyan; Yu, Zhizhou; Xie, Yiqun; Wang, Yin

    2016-10-01

    We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension (ɛy) varying from 0% to 15% applied along the armchair transport (y-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107% at ɛy = 10%, while the SIE increases monotonously from 8% up to 43% with the increasing of the strain. Under the out-of-plane bending, the TMR overall increases from 7% to 50% within the bending ratio of 0%-3.9%, and meanwhile the SIE is largely improved to around 70%, as compared to that (30%) of the flat phosphorene. Such behaviors of the TMR and SIE are mainly affected by the transmission of spin-up electrons in the parallel configuration, which is highly dependent on the applied mechanical tension and bending. Our results indicate that the phosphorene based tunnel junctions have promising applications in flexible electronics.

  10. Transport properties of stripe-ordered high Tc cuprates

    NASA Astrophysics Data System (ADS)

    Jie, Qing; Han, Su Jung; Dimitrov, Ivo; Tranquada, J. M.; Li, Qiang

    2012-11-01

    Transport measurements provide important characterizations of the nature of stripe order in the cuprates. Initial studies of systems such as La1.6-xNd0.4SrxCuO4 demonstrated the strong anisotropy between in-plane and c-axis resistivities, but also suggested that stripe order results in a tendency towards insulating behavior within the planes at low temperature. More recent work on La2-xBaxCuO4 with x = 1/8 has revealed the occurrence of quasi-two-dimensional superconductivity that onsets with spin-stripe order. The suppression of three-dimensional superconductivity indicates a frustration of the interlayer Josephson coupling, motivating a proposal that superconductivity and stripe order are intertwined in a pair-density-wave state. Complementary characterizations of the low-energy states near the Fermi level are provided by measurements of the Hall and Nernst effects, each revealing intriguing signatures of stripe correlations and ordering. We review and discuss this work.

  11. Accurate transport properties for H–CO and H–CO{sub 2}

    SciTech Connect

    Dagdigian, Paul J.

    2015-08-07

    Transport properties for collisions of hydrogen atoms with CO and CO{sub 2} have been computed by means of quantum scattering calculations. The carbon oxides are important species in hydrocarbon combustion. The following potential energy surfaces (PES’s) for the interaction of the molecule fixed in its equilibrium geometry were employed: for H–CO, the PES was taken from the work of Song et al. [J. Phys. Chem. A 117, 7571 (2013)], while the PES for H–CO{sub 2} was computed in this study by a restricted coupled cluster method that included single, double, and (perturbatively) triple excitations. The computed transport properties were found to be significantly different from those computed by the conventional approach that employs isotropic Lennard-Jones (12-6) potentials. The effect of using the presently computed accurate transport properties in 1-dimensional combustion simulations of methane-air flames was investigated.

  12. Extensive characterization of anisotropic conductors in the Montgomery geometry

    NASA Astrophysics Data System (ADS)

    Corraze, B.; Ribault, M.

    1994-04-01

    In very anisotropic materials the transport properties of a single crystal may be equivalent to those of a long thin bar. In this geometry we show that an extension of the Montgomery method [1] allows a detailed discussion of the experimental results. It is then possible to establish the correct value of the anisotropy of the resistivity tensor. The method is used to show that in La2CuO{4+0.018}, the conductivity is activated in the Cu-O planes while it results from variable range hopping process perpendicular to the planes as previously established. Dans le cas de matériaux très anisotropes, les propriétés de transport d'un monocristal peuvent être équivalentes à celle d'une longue barre de section quasi carrée. Dans cette géométrie, nous avons analysé en détail les erreurs introduites par l'emploi de la technique de Montgomery [1]. Nous proposons une extension de cette méthode. Dans ces conditions, nous montrons qu'une analyse complète peut aisément permettre de choisir une géométrie de test conduisant à la détermination de l'anisotropie réelle du matériau et de sa variation thermique. La méthode est utilisée pour montrer que, dans le composé La2CuO{4+0.018}, la conductivité est activée dans les plans Cu-O alors que, perpendiculairement aux plans, nous avons montré précédemment qu'elle résulte d'un processus de sauts.

  13. Current-direction dependence of the transport properties in single-crystalline face-centered-cubic cobalt films

    SciTech Connect

    Xiao, X.; Liang, J. H.; Chen, B. L.; Li, J. X.; Ding, Z.; Wu, Y. Z.; Ma, D. H.

    2015-07-28

    Face-centered-cubic cobalt films are epitaxially grown on insulating LaAlO{sub 3}(001) substrates by molecular beam epitaxy. Transport measurements are conducted in different current directions relative to the crystal axes. We find that the temperature dependent anisotropic magnetoresistance ratio strongly depends on the current direction. However, the anomalous Hall effect shows isotropic behavior independent of the current direction. Our results demonstrate the interplay between the current direction and the crystalline lattice in single-crystalline ferromagnetic films. A phenomenological analysis is presented to interpret the experimental data.

  14. Effect of vertical-strain-induced symmetry breaking on transport properties of zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Zou, Dongqing; Zhao, Wenkai; Fang, Changfeng; Cui, Bin; Liu, Desheng

    2017-02-01

    Using density functional theory combined with nonequilibrium Green's function formalism, we investigate the transport properties of zigzag graphene nanoribbons (ZGNRs) under vertical strain. Our calculations show that localized state induced by vertical strain will inhibit the electronic transport of the systems at zero bias, but at nonzero bias, the localized state can enhance the electronic transport behavior if ZGNRs are symmetry with respect to the mid-plane between two edges. This is because the localized state produces an asymmetry electron density distribution which break the current suppression. These findings may be useful for the application of strain-induced ZGNR based molecular devices.

  15. Electrical transport properties in Co nanocluster-assembled granular film

    NASA Astrophysics Data System (ADS)

    Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang

    2017-03-01

    A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T < T min ), the barrier between adjacent nanoclusters governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.

  16. Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires.

    PubMed

    Lord, Alex M; Ramasse, Quentin M; Kepaptsoglou, Despoina M; Evans, Jonathan E; Davies, Philip R; Ward, Michael B; Wilks, Steve P

    2017-02-08

    Selecting the electrical properties of nanomaterials is essential if their potential as manufacturable devices is to be reached. Here, we show that the addition or removal of native semiconductor material at the edge of a nanocontact can be used to determine the electrical transport properties of metal-nanowire interfaces. While the transport properties of as-grown Au nanocatalyst contacts to semiconductor nanowires are well-studied, there are few techniques that have been explored to modify the electrical behavior. In this work, we use an iterative analytical process that directly correlates multiprobe transport measurements with subsequent aberration-corrected scanning transmission electron microscopy to study the effects of chemical processes that create structural changes at the contact interface edge. A strong metal-support interaction that encapsulates the Au nanocontacts over time, adding ZnO material to the edge region, gives rise to ohmic transport behavior due to the enhanced quantum-mechanical tunneling path. Removal of the extraneous material at the Au-nanowire interface eliminates the edge-tunneling path, producing a range of transport behavior that is dependent on the final interface quality. These results demonstrate chemically driven processes that can be factored into nanowire-device design to select the final properties.

  17. Squeezing a gel to establish network structure-transport property relationships

    NASA Astrophysics Data System (ADS)

    Chan, Edwin; Nadermann, Nichole; McLeod, Kelly; Tew, Greg

    2015-03-01

    Gels are used in many applications, ranging from drug delivery to water purification, where regulating transport of a particular permeant is critical. The structure of the gel determines its transport properties but developing the gel structure-transport property relationships often require multiple measurement techniques. In this work, we demonstrate poroelastic relaxation indentation (PRI) as a single measurement tool to establish the relationships between the polymer network structure and the transport properties of well-defined hydrogel networks synthesized via a thiol-norbornene click reaction of poly(ethylene glycol) (PEG) chains. We use PRI to quantify the mechanical and transport properties of a series of ``click'' hydrogels with different crosslink densities. By applying various thermodynamic network swelling models to the describe the mechanical response of these gels as measured from PRI, we are able to extract thermodynamic parameters of these hydrogels including the Flory chi parameter and the mesh size. We validate our approach by comparing the thermodynamic parameters obtained from PRI with results from neutrons scattering studies of the same series of hydrogels.

  18. Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects

    PubMed Central

    Shao, Cheng; Bao, Hua

    2016-01-01

    The successful exfoliation of atomically-thin bismuth telluride (Bi2Te3) quintuple layer (QL) attracts tremendous research interest in this strongly anharmonic quasi-two-dimensional material. The thermal transport properties of this material are not well understood, especially the mode-wise properties and when it is coupled with a substrate. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-resolved thermal transport in freestanding and supported Bi2Te3 QL. The detailed mode-wise phonon properties are calculated and the accumulated thermal conductivities with respect to phonon mean free path (MFP) are constructed. It is shown that 60% of the thermal transport is contributed by phonons with MFP longer than 20 nm. Coupling with a-SiO2 substrate leads to about 60% reduction of thermal conductivity. Through varying the interfacial coupling strength and the atomic mass of substrate, we also find that phonon in Bi2Te3 QL is more strongly scattered by interfacial potential and its transport process is less affected by the dynamics of substrate. Our study provides an in-depth understanding of heat transport in Bi2Te3 QL and is helpful in further tailoring its thermal property through nanostructuring. PMID:27263656

  19. Electrical Transport Properties of Polyaniline Containing HCl, CuCl2 and Multiwall Carbon Nanotube

    NASA Astrophysics Data System (ADS)

    Meikap, A. K.

    2011-07-01

    Electrical transport properties of hydrochloric acid (HCl) doped polyaniline (PANI) and composite of PANI with Copper Chloride (CuCl2) and multiwall Carbon Nanotube (MWNT) was measured within a temperature range 77⩽T⩽300 K in presence and in absence of a magnetic field up to 1Tesla. The electrical transport properties can be explained by the variable range hopping (VRH) theory. All the samples have shown negative d.c magnetoconductivity at the room temperature but PANI-HCl sample has shown a transition from positive to negative magnetoconductivity as the temperature is increased.

  20. Influence of surface reconstruction on dopant incorporation and transport properties of GaAs(Bi) alloys

    NASA Astrophysics Data System (ADS)

    Field, R. L.; Occena, J.; Jen, T.; Del Gaudio, D.; Yarlagadda, B.; Kurdak, C.; Goldman, R. S.

    2016-12-01

    We report on the influence of surface reconstruction on silicon dopant incorporation and transport properties during molecular-beam epitaxy of GaAs(Bi) alloys. GaAs(Bi) growth with an (n × 3) reconstruction leads to n-type conductivity, while growth with a (2 × 1) reconstruction leads to p-type conductivity. We hypothesize that the presence or absence of surface arsenic dimers prevents or enables dopant incorporation into arsenic lattice sites. We consider the influence of bismuth anions on arsenic-dimer mediated dopant incorporation and the resulting electronic transport properties, demonstrating the applicability of this mechanism to mixed anion semiconductor alloys.

  1. Magneto-transport properties of a random distribution of few-layer graphene patches

    NASA Astrophysics Data System (ADS)

    Iacovella, Fabrice; Trinsoutrot, Pierre; Mitioglu, Anatolie; Conédéra, Véronique; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Vergnes, Hugues; Caussat, Brigitte; Plochocka, Paulina; Escoffier, Walter

    2014-11-01

    In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime.

  2. Density Functional Study of the Transport and Electronic Properties of Waved Graphene Nanoribbons

    NASA Astrophysics Data System (ADS)

    Hammouri, Mahmoud; Vasiliev, Igor

    2015-03-01

    First principles ab initio calculations are employed to study the electronic and transport properties of waved graphene nanoribbons. Our calculations are performed using the SIESTA and TRANSIESTA density functional electronic structure codes. We find that the band gaps of graphene nanoribbons with symmetrical edges change very slightly with the increasing compression, whereas the band gaps of nanoribbons with asymmetrical edges change significantly. The computed IV-characteristics of the waved graphene nanoribbons with different compression ratios reveal the effect of compression on the transport properties of graphene nanoribbons. Supported by NMSU GREG Award and by NSF CHE-1112388.

  3. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    DOE PAGES

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; ...

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attractedmore » great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.« less

  4. Enhanced Raman Scattering on In-plane Anisotropic Layered Materials

    SciTech Connect

    Liang, Liangbo; Meunier, Vincent; Sumpter, Bobby G.; Ling, Xi; Lin, Jingjing; Zhang, Shuqing; Mao, Nannan; Zhang, Na; Tong, Lianming; Zhang, Jin

    2015-11-19

    Surface-enhanced Raman scattering (SERS) on two-dimensional (2D) layered materials has provided a unique platform to study the chemical mechanism (CM) of the enhancement due to its natural separation from electromagnetic enhancement. The CM stems from the basic charge interactions between the substrate and molecules. Despite the extensive studies of the energy alignment between 2D materials and molecules, an understanding of how the electronic properties of the substrate are explicitly involved in the charge interaction is still unclear. Lately, a new group of 2D layered materials with anisotropic structure, including orthorhombic black phosphorus (BP) and triclinic rhenium disulphide (ReS2), has attracted great interest due to their unique anisotropic electrical and optical properties. Herein, we report a unique anisotropic Raman enhancement on few-layered BP and ReS2 using copper phthalocyanine (CuPc) molecules as a Raman probe, which is absent on isotropic graphene and h-BN. According to detailed Raman tensor analysis and density functional theory calculations, anisotropic charge interactions due to the anisotropic carrier mobilities of the 2D materials are responsible for the angular dependence of the Raman enhancement. Our findings not only provide new insights into the CM process in SERS, but also open up new avenues for the exploration and application of the electronic properties of anisotropic 2D layered materials.

  5. Transport and magnetic properties of RTX and related compounds

    NASA Astrophysics Data System (ADS)

    Goruganti, Venkateshwarlu

    Physical properties of RTX compounds (R = Rare earth, T = Transition metal and X = main group element from B, C or N group) compounds have been studied by means of electrical resistivity, heat capacity, dc magnetization and NMR. Searching for new magnetic materials is always an interesting topic from both a technological and basic research prospective; it is even more interesting when unusual magnetic phases are observed. Ternary intermetallic plumbides are interesting because of their unconventional magnetic ordering and variety of multiple magnetic transitions. Crystalline electric fields (CEF) also strongly effect the magnetic properties of these intermetallics. To understand the phase transitions, CEF effects, and magnetic interactions, a systematic study of the RNiPb, R 2Ni2Pb, R5NiPb3 and RCuGe systems were conducted. Among the results for NdNiPb a single antiferromagnetic transition was found at 3.5K, while the superconductivity found in some ingots of this material was shown not to correspond to a bulk behavior for this phase. Nd2Ni 2Pb was shown to have a canted zero field magnetic structure with a low temperature metamagnetic transition 3 T. In NdCuGe, a 3K AF transition was found along with a corresponding magnon contribution to the specific heat and magnetic and thermodynamic behavior from which the detailed CEF configuration was obtained. In a series of measurements on recently-synthesized R 5NiPb3 (R=Ce, Nd, Gd), for Ce5NiPb 3 a transition at 48 K was found, which was confirmed to be ferromagnetic character from field dependent heat capacity and Curie-Weiss susceptibility. Nd5NiPb3 exhibits two transitions, an antiferromagnetic transition at 42 K and an apparently weak ferromagnetic canting transition at 8 K. For Gd5NiPb3, a ferro- or ferrimagnetic transition was found at 68 K. For the Ce and Nd materials metamagnetism was also observed at low temperatures. In addition, very large metallic type gamma terms were found in the specific heat, as well as a

  6. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  7. Thermoelectric Transport Properties of Gold-Iron at Millikelvin Temperatures.

    NASA Astrophysics Data System (ADS)

    Chesire, Daniel Patrick

    Measurements of the electrical resistivity, and both static and isoelectric thermopower have been made on a fine Au wire containing 1 ppm Fe over a range of temperatures between 7 K and 24 mK. A shallow minimum at higher temperatures and unitary limit in the resistivity data characteristic of the Kondo effect were observed in the lower temperature ranges. The minimum coincides with that observed by other workers. Both the resistivity and the two thermopowers were measured with a Superconducting Quantum Interference Detector (SQUID) which has extremely high sensitivity and a very good signal-to-noise ratio. The static and isoelectric thermopowers were measured under two different boundary conditions. The static thermopower was measured by keeping the electric current through the sample equal to zero by using a compensating current source. The isoelectric thermopower was measured under the condition that the electric field across the sample was kept equal to zero by using a superconducting short. The static and isoelectric thermopowers both exhibited a broad minimum attributed to the interaction of a dilute concentration of Fe impurities with the Au conduction electrons. The data have been analyzed in terms of linear transport theory, using the Mueller-Hartmann expression for the Kondo contribution. Since the measurements were made at low temperatures, the diffusion and phonon drag thermopowers were small enough that the major contribution to the measured thermopower was from the Kondo effect. The theory was shown to fit the data well down to 0.2 K. Below this temperature, the theoretical expression for the thermopower did not agree well with the measurements in this work. The static thermopower, S, was found to be related to the isoelectric thermopower, (SIGMA)(,E=0), and the resistivity, (rho), by the simple relation S = (rho)(SIGMA)(,E=0). The isoelectric data was found to have a better signal-to-noise ratio than the static thermopower and a large enough signal at

  8. Clay and pillard clay membranes: Synthesis, characterization and transport properties

    NASA Astrophysics Data System (ADS)

    Vercauteren, Sven

    In this work, the preparation and characterization of ceramic multilayer membranes with an Alsb2Osb3-pillared montmorillonite (Al-PILC) and a Laponite separating layer have been studied. Al-PILC is a pillared clay prepared by intercalation of polyoxo cations of aluminium between the montmorillonite clay sheets, followed by a thermal treatment (400sp°C) to obtain rigid oxide pillars. The free spacing between the clay plates is about 0.8 nm. Laponite is a synthetic clay with a pore structure formed by the stacking of very small clay plates. To deposit an Al-PILC top layer on a macro- or mesoporous aluminiumoxide support membrane, two preparation routes were considered. According to the standard preparation route of a pillared clay, the easiest way is to use a suspension of clay mixed with the pillaring solution in which the support membrane is dipped. However, it is not possible to deposit uniform and crack-free top layers in this way because of the formation of unstable suspensions. A second preparation route is based on an indirect pillaring procedure. By dipping a support membrane in a stable clay suspension, a thin clay film is deposited in a first step. Pillaring is achieved via immersion of the supported clay film in the pillaring solution in a second step. After a washing procedure, the membrane is dried and calcined at 400sp°C. Laponite membranes were simply prepared by dipping a support membrane in a suspension of this synthetic clay in water. Afterwards a drying at room temperature and a calcination at 400 ar 500sp°C is performed. Both membrane types were tested for gas separation and pervaporation purposes. Transport of permanent gases (He, N2) occurs by means of Knudsen diffusion. Diffusion is kinetically controlled and for a binary mixture, the maximum separation factor is determined by the difference in molecular weight of both components. From pervaporation experiments with water/alcohol mixtures it was found that Al-PILC membranes can be used for

  9. Anisotropic Hc2 , thermodynamic and transport measurements, and pressure dependence of Tc in K2Cr3As3 single crystals

    SciTech Connect

    Kong, Tai; Bud'ko, Sergey L.; Canfield, Paul C.

    2015-01-30

    We present a detailed study of single crystalline K2Cr3As3 and analyze its thermodynamic and transport properties, anisotropic Hc2(T), and initial pressure dependence of Tc. In zero field, the temperature-dependent resistivity is metallic. Deviation from a linear temperature dependence is evident below 100 K and a T3 dependence is roughly followed from just above Tc (~10K) to ~40K. Anisotropic Hc2(T) data were measured up to 140 kOe with field applied along and perpendicular to the rodlike crystals. For the applied field perpendicular to the rod, Hc2(T) is linear with a slope ~–70 kOe/K. For field applied along the rod, the slope is about –120 kOe/K below 70 kOe. Above 70 kOe, the magnitude of the slope decreases to ~–70 kOe/K. The electronic specific heat coefficient γ, just above Tc, is 73 mJ/mol K2; the Debye temperature ΘD is 220 K. As a result, the specific heat jump at the superconducting transition ΔC~2.2γTc. Finally, for hydrostatic pressures up to ~7 kbar, Tc decreases under pressure linearly at a rate of –0.034K/kbar.

  10. Transport Properties of Complex Oxides: New Ideas and Insights from Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Benedek, Nicole

    Complex oxides are one of the largest and most technologically important materials families. The ABO3 perovskite oxides in particular display an unparalleled variety of physical properties. The microscopic origin of these properties (how they arise from the structure of the material) is often complicated, but in many systems previous research has identified simple guidelines or `rules of thumb' that link structure and chemistry to the physics of interest. For example, the tolerance factor is a simple empirical measure that relates the composition of a perovskite to its tendency to adopt a distorted structure. First-principles calculations have shown that the tendency towards ferroelectricity increases systematically as the tolerance factor of the perovskite decreases. Can we uncover a similar set of simple guidelines to yield new insights into the ionic and thermal transport properties of perovskites? I will discuss recent research from my group on the link between crystal structure and chemistry, soft phonons and ionic transport in a family of layered perovskite oxides, the Ln2NiO4+δ Ruddlesden-Popper phases. In particular, we show how the lattice dynamical properties of these materials (their tendency to undergo certain structural distortions) can be correlated with oxide ion transport properties. Ultimately, we seek new ways to understand the microscopic origins of complex transport processes and to develop first-principles-based design rules for new materials based on our understanding.

  11. Oligonucleotide-Functionalized Anisotropic Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jones, Matthew Robert

    In this thesis, we describe the properties of oligonucleotide-functionalized gold colloids under the unique set of conditions where the particles are geometrically anisotropic and have nanometer-scale dimensions. While nearly two decades of previous work elucidated numerous unexpected and emergent phenomena arising from the combination of inorganic nanoparticles with surface-bound DNA strands, virtually nothing was known about how these properties are altered when the shape of the nanoparticle core is chosen to be non-spherical. In particular, we are interested in understanding, and ultimately controlling, the ways in which these DNA-conjugated anisotropic nanostructures interact when their attraction is governed by programmable DNA hybridization events. Chapter 1 introduces the field of DNA-based materials assembly by discussing how nanoscale building blocks which present rigid, directional interactions can be thought of as possessing artificial versions of the familiar chemical principles of "bonds" and "valency". In chapter 2 we explore the fundamental interparticle binding thermodynamics of DNA-functionalized spherical and anisotropic nanoparticles, which reveals enormous preferences for collective ligand interactions occurring between flat surfaces over those that occur between curved surfaces. Using these insights, chapter 3 demonstrates that when syntheses produce mixtures of different nanoparticle shapes, the tailorable nature of DNA-mediated interparticle association can be used to selectively crystallize and purify the desired anisotropic nanostructure products, leaving spherical impurity particles behind. Chapter 4 leverages the principle that the flat facets of anisotropic particles generate directional DNA-based hybridization interactions to assemble a variety of tailorable nanoparticle superlattices whose symmetry and dimensionality are a direct consequence of the shape of the nanoparticle building block used in their construction. Chapter 5 explores

  12. Modifying zirconia solid electrolyte surface property to enhance oxide transport

    SciTech Connect

    Liaw, B.Y.; Song, S.Y.

    1996-12-31

    Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.

  13. Structural, magnetic, and transport properties of Permalloy for spintronic experiments

    SciTech Connect

    Nahrwold, Gesche; Scholtyssek, Jan M.; Motl-Ziegler, Sandra; Albrecht, Ole; Merkt, Ulrich; Meier, Guido

    2010-07-15

    Permalloy (Ni{sub 80}Fe{sub 20}) is broadly used to prepare magnetic nanostructures for high-frequency experiments where the magnetization is either excited by electrical currents or magnetic fields. Detailed knowledge of the material properties is mandatory for thorough understanding its magnetization dynamics. In this work, thin Permalloy films are grown by dc-magnetron sputtering on heated substrates and by thermal evaporation with subsequent annealing. The specific resistance is determined by van der Pauw methods. Point-contact Andreev reflection is employed to determine the spin polarization of the films. The topography is imaged by atomic-force microscopy, and the magnetic microstructure by magnetic-force microscopy. Transmission-electron microscopy and transmission-electron diffraction are performed to determine atomic composition, crystal structure, and morphology. From ferromagnetic resonance absorption spectra the saturation magnetization, the anisotropy, and the Gilbert damping parameter are determined. Coercive fields and anisotropy are measured by magneto-optical Kerr magnetometry. The sum of the findings enables optimization of Permalloy for spintronic experiments.

  14. Transport properties of hectorite based nanocomposite single ion conductors

    NASA Astrophysics Data System (ADS)

    Singhal, Ruchi Gupta; Capracotta, Michael D.; Martin, James D.; Khan, Saad A.; Fedkiw, Peter S.

    The ionic conductivity and rheological properties of clay filled nanocomposite electrolytes are reported. These electrolytes, which have potential use in lithium-ion batteries, consist of lithium-exchanged hectorite, a 2:1 layered smectite clay, dispersed in ethylene carbonate (EC) or a mixture of EC+polyethylene glycol di-methyl ether (PEG-dm, 250 MW). All samples exhibit elastic, gel-like characteristics and room temperature conductivities of order 0.1 mS/cm. A maximum in conductivity is observed at about 25 wt.% clay concentration. A maximum in hectorite basal layer spacing is also observed in the same concentration range, suggesting a direct correlation between conductivity and layer spacing. The elastic modulus and yield stress increase by two orders of magnitude and the conductivity increases by one order of magnitude with increase in hectorite concentration from 5 to 25%, which indicates the significant influence of hectorite content in determining the characteristics of these single-ion conductors. The solvent composition plays a secondary role in this regard, with addition of PEG-dm to the base EC+hectorite electrolyte producing moderate improvement in conductivity. Similarly, the addition of PEG-dm to EC+hectorite affects an increase by only a factor of three in the elastic modulus and yield stress of the electrolyte.

  15. Effect of Mn substitution on the transport properties of co-sputtered Fe{sub 3−x}Mn{sub x}Si epilayers

    SciTech Connect

    Tang, M.; Jin, C.; Bai, H. L.

    2014-11-07

    Motivated by the theoretical calculations that Fe{sub 3−x}Mn{sub x}Si can simultaneously exhibit a high spin polarization with a high Curie temperature to be applied in spintronic devices, and in order to further study the effect of Mn contents on the physical properties of Fe{sub 3−x}Mn{sub x}Si, we have investigated the effect of Mn substitution on the transport properties of epitaxial Fe{sub 3−x}Mn{sub x}Si (0≤x≤1) films systematically. The Fe{sub 3−x}Mn{sub x}Si films were epitaxially grown on MgO(001) plane with 45° rotation. The magnetization for various x shows enhanced irreversibility, implying the antiferromagnetic ordering induced by the substitution of Mn. A metal-semiconductor crossover was observed due to the enhanced disorders of interactions and the local lowering of symmetry induced by the substitution of Mn. The single-domain state in the Fe{sub 3−x}Mn{sub x}Si films leads to twofold symmetric curves of the anisotropic magnetoresistance and planar Hall resistivity.

  16. High anisotropic pitch

    SciTech Connect

    Dickakian, G. B.

    1985-11-05

    An improved process for preparing an optically anisotropic pitch which comprises heating a pitch feed material at a temperature within the range of about 350/sup 0/ C. to 450/sup 0/ C. while passing an inert gas therethrough at a rate of at least 2.5 SCFH/lb of pitch feed material and agitating said pitch feed material at a stirrer rate of from about 500 to 600 rpm to obtain an essentially 100% mesophase pitch product suitable for carbon production.

  17. Anisotropic spinfoam cosmology

    NASA Astrophysics Data System (ADS)

    Rennert, Julian; Sloan, David

    2014-01-01

    The dynamics of a homogeneous, anisotropic universe are investigated within the context of spinfoam cosmology. Transition amplitudes are calculated for a graph consisting of a single node and three links—the ‘Daisy graph’—probing the behaviour a classical Bianchi I spacetime. It is shown further how the use of such single node graphs gives rise to a simplification of states such that all orders in the spin expansion can be calculated, indicating that it is the vertex expansion that contains information about quantum dynamics.

  18. The Effects of Atmospheric pH on the Transport Properties of Gallium Nitride

    NASA Astrophysics Data System (ADS)

    McElroy, Andrew; Dyck, Jeffrey S.; Kash, Kathleen

    2011-04-01

    It has been theorized that there exists a thin layer of water molecules on the surface of many materials when in air. This layer is predicted to have an effect on the electrochemical properties of the material. GaN is one of these materials. It has been demonstrated that the optical properties of GaN are affected by the pH of the atmosphere around the sample. In this study the effects of pH on transport properties are tested. A system was developed to test the Hall coefficient and resistivity of samples under different ambients to discover the effects of pH on carrier concentration and Hall mobility of GaN. Thus far, the results show that the pH of the ambient water vapor does not have an effect on the transport properties. This project was funded through the National Science Foundation (DMR-1006132) and the Huntington and Codrington Foundations.

  19. Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules.

    PubMed

    Kwon, Oh In; Jeong, Woo Chul; Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je

    2014-06-21

    Magnetic resonance electrical impedance tomography (MREIT) is an emerging method to visualize electrical conductivity and/or current density images at low frequencies (below 1 KHz). Injecting currents into an imaging object, one component of the induced magnetic flux density is acquired using an MRI scanner for isotropic conductivity image reconstructions. Diffusion tensor MRI (DT-MRI) measures the intrinsic three-dimensional diffusion property of water molecules within a tissue. It characterizes the anisotropic water transport by the effective diffusion tensor. Combining the DT-MRI and MREIT techniques, we propose a novel direct method for absolute conductivity tensor image reconstructions based on a linear relationship between the water diffusion tensor and the electrical conductivity tensor. We first recover the projected current density, which is the best approximation of the internal current density one can obtain from the measured single component of the induced magnetic flux density. This enables us to estimate a scale factor between the diffusion tensor and the conductivity tensor. Combining these values at all pixels with the acquired diffusion tensor map, we can quantitatively recover the anisotropic conductivity tensor map. From numerical simulations and experimental verifications using a biological tissue phantom, we found that the new method overcomes the limitations of each method and successfully reconstructs both the direction and magnitude of the conductivity tensor for both the anisotropic and isotropic regions.

  20. Development of an Anisotropic Thermal Transport Material

    DTIC Science & Technology

    2014-01-13

    either graphene oxide (GO) or reduced graphene oxide (rGO). While providing solubility, the oxidation also severely reduced the thermal conductivity of...the material. The methods developed in the work supported by this grant allow for the use of un- oxidized and un-damaged graphene for thermal...In the past, the insolubility of pristine graphene required the use of either graphene oxide (GO) or reduced graphene oxide (rGO). While providing