Sample records for ankle disk training

  1. Systematic review of postural control and lateral ankle instability, part II: is balance training clinically effective?

    PubMed

    McKeon, Patrick O; Hertel, Jay

    2008-01-01

    To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability.

  2. Systematic Review of Postural Control and Lateral Ankle Instability, Part II: Is Balance Training Clinically Effective

    PubMed Central

    McKeon, Patrick O; Hertel, Jay

    2008-01-01

    Objective: To answer the following clinical questions: (1) Can prophylactic balance and coordination training reduce the risk of sustaining a lateral ankle sprain? (2) Can balance and coordination training improve treatment outcomes associated with acute ankle sprains? (3) Can balance and coordination training improve treatment outcomes in patients with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing the influence of balance training on the primary outcomes of risk of ankle sprain or instrumented postural control measures derived from testing on a stable force plate using the modified Romberg test were included. Studies had to provide results for calculation of relative risk reduction and numbers needed to treat for the injury prevention outcomes or effect sizes for the postural control measures. Data Extraction: We calculated the relative risk reduction and numbers needed to treat to assess the effect of balance training on the risk of incurring an ankle sprain. Effect sizes were estimated with the Cohen d for comparisons of postural control performance between trained and untrained groups. Data Synthesis: Prophylactic balance training substantially reduced the risk of sustaining ankle sprains, with a greater effect seen in those with a history of a previous sprain. Completing at least 6 weeks of balance training after an acute ankle sprain substantially reduced the risk of recurrent ankle sprains; however, consistent improvements in instrumented measures of postural control were not associated with training. Evidence is lacking to assess the reduction in the risk of recurrent sprains and inconclusive to demonstrate improved instrumented postural control measures in those with chronic ankle instability who complete balance training. Conclusions: Balance training can be used prophylactically or after an acute ankle sprain in an effort to reduce future ankle sprains, but current evidence is insufficient to assess this effect in patients with chronic ankle instability. PMID:18523567

  3. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report

    PubMed Central

    2011-01-01

    Background Ankle joint sprain and the subsequent development of chronic ankle instability (CAI) are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. Methods The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed/agility drills. The outcome measures chosen to assess for interventional efficacy were: [1] Cumberland Ankle Instability Tool (CAIT) scores, [2] Star Excursion Balance Test (SEBT) reach distances, [3] ankle joint plantar flexion during drop landing and drop vertical jumping, and [4] ground reaction forces (GRFs) during walking. Results CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. Conclusions The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors. PMID:21658224

  4. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report.

    PubMed

    O'Driscoll, Jeremiah; Kerin, Fearghal; Delahunt, Eamonn

    2011-06-09

    Ankle joint sprain and the subsequent development of chronic ankle instability (CAI) are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed/agility drills. The outcome measures chosen to assess for interventional efficacy were: 1 Cumberland Ankle Instability Tool (CAIT) scores, 2 Star Excursion Balance Test (SEBT) reach distances, 3 ankle joint plantar flexion during drop landing and drop vertical jumping, and 4 ground reaction forces (GRFs) during walking. CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors.

  5. Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability.

    PubMed

    Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung

    2015-11-01

    [Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost.

  6. Four Weeks of Balance Training does not Affect Ankle Joint Stiffness in Subjects with Unilateral Chronic Ankle Instability

    PubMed Central

    Jain, Tarang Kumar; Wauneka, Clayton N.; Liu, Wen

    2016-01-01

    Background Balance training has been shown to be effective in preventing ankle sprain recurrences in subjects with chronic ankle instability (CAI) but the biomechanical pathways underlying the clinical outcomes are still unknown. This study was conducted to determine if a 4-week balance training intervention can alter the mechanical characteristics in ankles with CAI. Methods Twenty-two recreationally active subjects with unilateral CAI were randomized to either a control (n = 11, 35.1 ± 9.3 years) or intervention (n = 11, 33.5 ± 6.6 years) group. Subjects in the intervention group were trained on the affected limb with static and dynamic components using a Biodex balance stability system for 4-weeks. The ankle joint stiffness and neutral zone in inversion and eversion directions on the involved and uninvolved limbs was measured at baseline and post-intervention using a dynamometer. Results At baseline, the mean values of the inversion stiffness (0.69 ± 0.37 Nm/degree) in the involved ankle was significantly lower (p < 0.011, 95% CI [0.563, 0.544]) than that of uninvolved contralateral ankle (0.99 ± 0.41 Nm/degree). With the available sample size, the eversion stiffness, inversion neutral zone, and eversion neutral zone were not found to be significantly different between the involved and uninvolved contralateral ankles. The 4-week balance training intervention failed to show any significant effect on the passive ankle stiffness and neutral zones in inversion and eversion. Conclusion Decreased inversion stiffness in the involved chronic unstable ankle was found that of uninvolved contralateral ankle. The 4-week balance training program intervention was ineffective in altering the mechanical characteristics of ankles with CAI. Level of evidence Randomized controlled clinical trial; Level of evidence, 1. PMID:27642647

  7. Effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability.

    PubMed

    Nam, Seung-Min; Kim, Kyoung; Lee, Do Youn

    2018-01-01

    [Purpose] This study examined the effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability. [Subjects and Methods] Twenty eight adults with functional ankle instability, divided randomly into an experimental group, which performed visual feedback balance training for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Bio rescue was used for balance ability. It measured limit of stability at one minute. For ankle instability was measured using Cumberland ankle instability tool (CAIT). This measure was performed before and after the experiments in each group. [Results] The experimental group had significant increase in the Limit of Stability and CAIT score. The control group had significant increase in CAIT score. While the Limit of Stability increased without significance. [Conclusion] In conclusion, visual feedback balance training can be recommended as a treatment method for patients with functional ankle instability.

  8. Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability

    PubMed Central

    Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung

    2015-01-01

    [Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost. PMID:26696703

  9. Proprioceptive Training for the Prevention of Ankle Sprains: An Evidence-Based Review.

    PubMed

    Rivera, Matthew J; Winkelmann, Zachary K; Powden, Cameron J; Games, Kenneth E

    2017-11-01

    Reference:  Schiftan GS, Ross LA, Hahne AJ. The effectiveness of proprioceptive training in preventing ankle sprains in sporting populations: a systematic review and meta-analysis. J Sci Med Sport. 2015;18(3):238-244.   Does the use of proprioceptive training as a sole intervention decrease the incidence of initial or recurrent ankle sprains in the athletic population?   The authors completed a comprehensive literature search of MEDLINE, CINAHL, SPORTDiscus, and Physiotherapy Evidence Database (PEDro) from inception to October 2013. The reference lists of all identified articles were manually screened to obtain additional studies. The following key words were used. Phase 1 population terms were sport*, athlet*, and a combination of the two. Phase 2 intervention terms were propriocept*, balance, neuromusc* adj5 train*, and combinations thereof. Phase 3 condition terms were ankle adj5 sprain*, sprain* adj5 ankle, and combinations thereof.   Studies were included according to the following criteria: (1) the design was a moderate- to high-level randomized controlled trial (>4/10 on the PEDro scale), (2) the participants were physically active (regardless of previous ankle injury), (3) the intervention group received proprioceptive training only, compared with a control group that received no proprioceptive training, and (4) the rate of ankle sprains was reported as a main outcome. Search results were limited to the English language. No restrictions were placed on publication dates.   Two authors independently reviewed the studies for eligibility. The quality of the pertinent articles was assessed using the PEDro scale, and data were extracted to calculate the relative risk. Data extracted were number of participants, intervention, frequency, duration, follow-up period, and injury rate.   Of the initial 345 studies screened, 7 were included in this review for a total of 3726 participants. Three analyses were conducted for proprioceptive training used (1) to prevent ankle sprains regardless of history (n = 3654), (2) to prevent recurrent ankle sprains (n = 1542), or (3) as the primary preventive measure for those without a history of ankle sprain (n = 946). Regardless of a history of ankle sprain, participants had a reduction in ankle-sprain rates (relative risk [RR] = 0.65, 95% confidence interval [CI] = 0.55, 0.77; numbers needed to treat [NNT] = 17, 95% CI = 11, 33). For individuals with a history of ankle sprains, proprioceptive training demonstrated a reduction in repeat ankle sprains (RR = 0.64, 95% CI = 0.51, 0.81; NNT = 13, 95% CI = 7, 100). Proprioceptive training as a primary preventive measure demonstrated significant results (RR = 0.57, 95% CI = 0.34, 0.97; NNT = 33, 95% CI = 16, 1000).   Proprioceptive training programs were effective in reducing the incidence rates of ankle sprains in the athletic population, including those with and those without a history of ankle sprains.

  10. Effects of Neuromuscular Training on the Rear-foot Angle Kinematics in Elite Women Field Hockey Players with Chronic Ankle Instability

    PubMed Central

    Kim, Eunkuk; Choi, Hokyung; Cha, Jung-Hoon; Park, Jong-Chul; Kim, Taegyu

    2017-01-01

    The aims of this study were to investigate the ankle position, the changes and persistence of ankle kinematics after neuromuscular training in athletes with chronic ankle instability (CAI). A total of 21 national women’s field hockey players participated (CAI = 12, control = 9). Ankle position at heel strike (HS), midstance (MS), and toe touch (TT) in the frontal plane during walking, running and landing were measured using 3D motion analysis. A 6-week neuromuscular training program was undertaken by the CAI group. Measurements of kinematic data for both groups were measured at baseline and the changes in kinematic data for CAI group were measured at 6 and 24 weeks. The kinematic data at HS during walking and running demonstrated that the magnitude of the eversion in the CAI group (−5.00° and −4.21°) was less than in the control group (−13.45°and −9.62°). The kinematic data at MS also exhibited less ankle eversion in the CAI group (−9.36° and −8.18°) than in the control group (−18.52° and −15.88°). Ankle positions at TT during landing were comparable between groups. Following the 6-week training, the CAI participants demonstrated a less everted ankle at HS during walking and running (−1.77° and −1.76°) compared to the previous positions. They also showed less ankle eversion at MS (−5.14° and −4.19°). Ankle orientation at TT changed significantly to an inverted ankle position (from −0.26° to 4.11°). The ankle kinematics were restored back to the previous positions at 24 weeks except for landing. It appeared that athletes with unstable ankle had a relatively inverted ankle position, and that 6-week neuromuscular training had an immediate effect on changing ankle orientation toward a less everted direction. The changed ankle kinematics seemed to persist during landing but not during walking and running. Key points Athletes with unstable ankles had a relatively inverted ankle position during the initial contact and midstance. Six-week neuromuscular training for unstable ankles had an immediate effect on changing ankle orientation toward a relatively more inverted direction. The changed ankle kinematics persisted during jump landing but not during walking and running. PMID:28344462

  11. Task-specific ankle robotics gait training after stroke: a randomized pilot study.

    PubMed

    Forrester, Larry W; Roy, Anindo; Hafer-Macko, Charlene; Krebs, Hermano I; Macko, Richard F

    2016-06-02

    An unsettled question in the use of robotics for post-stroke gait rehabilitation is whether task-specific locomotor training is more effective than targeting individual joint impairments to improve walking function. The paretic ankle is implicated in gait instability and fall risk, but is difficult to therapeutically isolate and refractory to recovery. We hypothesize that in chronic stroke, treadmill-integrated ankle robotics training is more effective to improve gait function than robotics focused on paretic ankle impairments. Participants with chronic hemiparetic gait were randomized to either six weeks of treadmill-integrated ankle robotics (n = 14) or dose-matched seated ankle robotics (n = 12) videogame training. Selected gait measures were collected at baseline, post-training, and six-week retention. Friedman, and Wilcoxon Sign Rank and Fisher's exact tests evaluated within and between group differences across time, respectively. Six weeks post-training, treadmill robotics proved more effective than seated robotics to increase walking velocity, paretic single support, paretic push-off impulse, and active dorsiflexion range of motion. Treadmill robotics durably improved gait dorsiflexion swing angle leading 6/7 initially requiring ankle braces to self-discarded them, while their unassisted paretic heel-first contacts increased from 44 % to 99.6 %, versus no change in assistive device usage (0/9) following seated robotics. Treadmill-integrated, but not seated ankle robotics training, durably improves gait biomechanics, reversing foot drop, restoring walking propulsion, and establishing safer foot landing in chronic stroke that may reduce reliance on assistive devices. These findings support a task-specific approach integrating adaptive ankle robotics with locomotor training to optimize mobility recovery. NCT01337960. https://clinicaltrials.gov/ct2/show/NCT01337960?term=NCT01337960&rank=1.

  12. Reviewing Clinical Effectiveness of Active Training Strategies of Platform-Based Ankle Rehabilitation Robots.

    PubMed

    Zeng, Xiangfeng; Zhu, Guoli; Zhang, Mingming; Xie, Sheng Q

    2018-01-01

    This review aims to provide a systematical investigation of clinical effectiveness of active training strategies applied in platform-based ankle robots. English-language studies published from Jan 1980 to Aug 2017 were searched from four databases using key words of "Ankle ∗ " AND "Robot ∗ " AND "Effect ∗ OR Improv ∗ OR Increas ∗ ." Following an initial screening, three rounds of discrimination were successively conducted based on the title, the abstract, and the full paper. A total of 21 studies were selected with 311 patients involved; of them, 13 studies applied a single group while another eight studies used different groups for comparison to verify the therapeutic effect. Virtual-reality (VR) game training was applied in 19 studies, while two studies used proprioceptive neuromuscular facilitation (PNF) training. Active training techniques delivered by platform ankle rehabilitation robots have been demonstrated with great potential for clinical applications. Training strategies are mostly combined with one another by considering rehabilitation schemes and motion ability of ankle joints. VR game environment has been commonly used with active ankle training. Bioelectrical signals integrated with VR game training can implement intelligent identification of movement intention and assessment. These further provide the foundation for advanced interactive training strategies that can lead to enhanced training safety and confidence for patients and better treatment efficacy.

  13. [Influence of Ankle Braces on the Prevalence of Ankle Inversion Injuries in the Swiss Volleyball National League A].

    PubMed

    Jaggi, J; Kneubühler, S; Rogan, S

    2016-06-01

    Ankle inversion is a common injury among volleyball players. The injury rate during a game is 2.1 times higher than during training. As a result, the preventive use of ankle braces is frequently observed in Swiss volleyball leagues. Studies have shown that ankle braces have a preventive effect on the prevalence of ankle inversion. In Switzerland there has been no investigation into the preventive use of braces and their influence on prevalence. For this reason, the goals of this study are 1) to determine when, why and by whom ankle braces are worn and 2) to evaluate the injury rate of users and non-users of ankle braces. A modified questionnaire was sent to 18 men's and women's teams of the Swiss National League A. The questionnaire included questions about injury rates and the circumstances of ankle inversion injuries. The data were statistically analysed with Microsoft Excel 2012 and SPSS Version 20. The overall response rate was 61 %, allowing data from 181 players to be analysed. 33 % (59 of 181) of the players used an ankle brace. There was a statistically significant difference in the prevalence of ankle inversion between users (12 injured) and non-users (8 injured) (p = 0.006). Wearing an ankle brace during training or during a game made no difference in the prevention of injuries (p = 0.356). More athletes were injured during training (n = 13) than during a game (n = 7). The results of the present study indicate that volleyball players preferably wear ankle braces to prevent injury. More than one third of the players in the study wore an ankle brace, 60 % for primary prevention and 40 % for secondary prevention due to a previous injury. The study shows that significantly more users than non-users of ankle braces were injured. This is contrary to literature. Furthermore it was shown that more injuries occur during training than during a game. This finding results from the fact that ankle braces were rarely worn during training. It is concluded that ankle braces must be worn consistently, especially during training. © Georg Thieme Verlag KG Stuttgart · New York.

  14. A 4-week neuromuscular training program and gait patterns at the ankle joint.

    PubMed

    Coughlan, Garrett; Caulfield, Brian

    2007-01-01

    Previous research into the rehabilitation of ankle sprains has primarily focused on outcome measures that do not replicate functional activities, thus making it difficult to extrapolate the results relative to the weight-bearing conditions under which most ankle sprains occur. To measure the effects of a training program on gait during walking and running in an active athletic population. Matched-pairs, controlled trial. University motion analysis laboratory. Ten subjects from an athletic population (7 healthy, 3 with functional ankle instability: age = 25.8 +/- 3.9 years, height = 177.6 +/- 6.1 cm, mass = 66.8 +/- 7.4 kg) and 10 controls matched for age, sex, activity, and ankle instability (7 healthy, 3 with functional ankle instability: age = 27.4 +/- 5.8 years, height = 178.7 +/- 10.8 cm, mass = 71.6 +/- 10.0 kg). A 4-week neuromuscular training program undertaken by the treatment group. We measured ankle position and velocity in the frontal (x) and sagittal (y) planes in all subjects during treadmill walking and running for the periods 100 milliseconds before heel strike, at heel strike, and 100 milliseconds after heel strike. A 4-week neuromuscular training program resulted in no significant changes in ankle position or velocity during treadmill walking and running. The mechanisms by which neuromuscular training improves function in normal subjects and those with functional ankle instability do not appear to result in measurable changes in gait kinematics. Our findings raise issues regarding methods of ankle sprain rehabilitation and the measurement of their effectiveness in improving functional activities. Further research in a larger population with functional ankle instability is necessary.

  15. Bilateral improvements in lower extremity function after unilateral balance training in individuals with chronic ankle instability.

    PubMed

    Hale, Sheri A; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly

    2014-01-01

    Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Cohort study. University clinical research laboratory. A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Balance training twice weekly for 4 weeks. Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation.

  16. Foot and ankle problems in Muay Thai kickboxers.

    PubMed

    Vaseenon, Tanawat; Intharasompan, Piyapong; Wattanarojanapom, Thongaek; Theeraamphon, Nipon; Auephanviriyakul, Sansanee; Phisitkul, Phinit

    2015-01-01

    Muay Thai kickboxing is a common sport that uses the foot and ankle in fighting. Muay Thai kickboxing trainees usually receive training in Thailand Foot and ankle problems in this group ofpeople who usually train barefoot remain unexplored To evaluate the prevalence of common foot and ankle problems in Muay Thai kick boxers. The present study is a cross-sectional survey of Muay Thai kick boxers practicing in northern Thailand. Interviews were conducted and foot and ankle examinations were evaluated Foot morphology was examined using a Harris mat footprint. One hundred and twenty-three Muay Thai kickbox ersinnine training gyms were included in this study. Common foot and ankle problems found in the Muay Thai kick boxers were callosity (59%), gastrocnemius contracture (57%), toe deformities (49.3%), wounds (10%) and heel pain (9%). Callosity was most commonly found on the forefoot (77.5%), on the plantar first metatarsal (55.3%) and on the big toe (33.3%). An association was found between a tight heel cord and a history of foot injury with prolonged periods of weekly training. Toe deformities such as hallux rigidus (37.6%) were also associated with prolonged periods of training (p = 0.001). No correlation was found between type of foot arch and foot and ankle problems. Plantar forefoot callosities and wounds as well as toe deformities including tight heel cords are some of the foot and ankle problems commonly found in Muay Thai kick boxers. They are associated with prolonged periods of barefoot training. The unique pattern of training and of the kicks in Muay Thai might be a path mechanism, leading to the development of foot and ankle problems.

  17. Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke

    PubMed Central

    Duan, Lihong

    2018-01-01

    A large amount of hemiplegic survivors are suffering from motor impairment. Ankle rehabilitation exercises act an important role in recovering patients' walking ability after stroke. Currently, patients mainly perform ankle exercise to reobtain range of motion (ROM) and strength of the ankle joint under a therapist's assistance by manual operation. However, therapists suffer from high work intensity, and most of the existed rehabilitation devices focus on ankle functional training and ignore the importance of neurological rehabilitation in the early hemiplegic stage. In this paper, a new robotic ankle rehabilitation platform (RARP) is proposed to assist patients in executing ankle exercise. The robotic platform consists of two three-DOF symmetric layer-stacking mechanisms, which can execute ankle internal/external rotation, dorsiflexion/plantarflexion, and inversion/eversion exercise while the rotation center of the distal zone of the robotic platform always coincides with patients' ankle pivot center. Three exercise modes including constant-speed exercise, constant torque-impedance exercise, and awareness exercise are developed to execute ankle training corresponding to different rehabilitation stages. Experiments corresponding to these three ankle exercise modes are performed, the result demonstrated that the RARP is capable of executing ankle rehabilitation, and the novel awareness exercise mode motivates patients to proactively participate in ankle training. PMID:29736231

  18. Ankle Training With a Robotic Device Improves Hemiparetic Gait After a Stroke

    PubMed Central

    Forrester, Larry W.; Roy, Anindo; Krebs, Hermano Igo; Macko, Richard F.

    2013-01-01

    Background Task-oriented therapies such as treadmill exercise can improve gait velocity after stroke, but slow velocities and abnormal gait patterns often persist, suggesting a need for additional strategies to improve walking. Objectives To determine the effects of a 6-week visually guided, impedance controlled, ankle robotics intervention on paretic ankle motor control and gait function in chronic stroke. Methods This was a single-arm pilot study with a convenience sample of 8 stroke survivors with chronic hemiparetic gait, trained and tested in a laboratory. Subjects trained in dorsiflexion–plantarflexion by playing video games with the robot during three 1-hour training sessions weekly, totaling 560 repetitions per session. Assessments included paretic ankle ranges of motion, strength, motor control, and overground gait function. Results Improved paretic ankle motor control was seen as increased target success, along with faster and smoother movements. Walking velocity also increased significantly, whereas durations of paretic single support increased and double support decreased. Conclusions Robotic feedback training improved paretic ankle motor control with improvements in floor walking. Increased walking speeds were comparable with reports from other task-oriented, locomotor training approaches used in stroke, suggesting that a focus on ankle motor control may provide a valuable adjunct to locomotor therapies. PMID:21115945

  19. A 4-Week Neuromuscular Training Program and Gait Patterns at the Ankle Joint

    PubMed Central

    Coughlan, Garrett; Caulfield, Brian

    2007-01-01

    Context: Previous research into the rehabilitation of ankle sprains has primarily focused on outcome measures that do not replicate functional activities, thus making it difficult to extrapolate the results relative to the weight-bearing conditions under which most ankle sprains occur. Objective: To measure the effects of a training program on gait during walking and running in an active athletic population. Design: Matched-pairs, controlled trial. Setting: University motion analysis laboratory. Patients or Other Participants: Ten subjects from an athletic population (7 healthy, 3 with functional ankle instability: age = 25.8 ± 3.9 years, height = 177.6 ± 6.1 cm, mass = 66.8 ± 7.4 kg) and 10 controls matched for age, sex, activity, and ankle instability (7 healthy, 3 with functional ankle instability: age = 27.4 ± 5.8 years, height = 178.7 ± 10.8 cm, mass = 71.6 ± 10.0 kg). Intervention(s): A 4-week neuromuscular training program undertaken by the treatment group. Main Outcome Measure(s): We measured ankle position and velocity in the frontal (x) and sagittal (y) planes in all subjects during treadmill walking and running for the periods 100 milliseconds before heel strike, at heel strike, and 100 milliseconds after heel strike. Results: A 4-week neuromuscular training program resulted in no significant changes in ankle position or velocity during treadmill walking and running. Conclusions: The mechanisms by which neuromuscular training improves function in normal subjects and those with functional ankle instability do not appear to result in measurable changes in gait kinematics. Our findings raise issues regarding methods of ankle sprain rehabilitation and the measurement of their effectiveness in improving functional activities. Further research in a larger population with functional ankle instability is necessary. PMID:17597944

  20. Robot-guided ankle sensorimotor rehabilitation of patients with multiple sclerosis.

    PubMed

    Lee, Yunju; Chen, Kai; Ren, Yupeng; Son, Jongsang; Cohen, Bruce A; Sliwa, James A; Zhang, Li-Qun

    2017-01-01

    People with multiple sclerosis (MS) often develop symptoms including muscle weakness, spasticity, imbalance, and sensory loss in the lower limbs, especially at the ankle, which result in impaired balance and locomotion and increased risk of falls. Rehabilitation strategies that improve ankle function may improve mobility and safety of ambulation in patients with MS. This pilot study investigated effectiveness of a robot-guided ankle passive-active movement training in reducing motor and sensory impairments and improving balance and gait functions. Seven patients with MS participated in combined passive stretching and active movement training using an ankle rehabilitation robot. Six of the patients finished robotic training 3 sessions per week over 6 weeks for a total of 18 sessions. Biomechanical and clinical outcome evaluations were done before and after the 6-week treatment, and at a follow-up six weeks afterwards. After six-week ankle sensorimotor training, there were increases in active range of motion in dorsiflexion, dorsiflexor and plantar flexor muscle strength, and balance and locomotion (p<0.05). Proprioception acuity showed a trend of improvement. Improvements in four biomechanical outcome measures and two of the clinical outcome measures were maintained at the 6-week follow-up. The study showed the six-week training duration was appropriate to see improvement of range of motion and strength for MS patients with ankle impairment. Robot-guided ankle training is potentially a useful therapeutic intervention to improve mobility in patients with MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. [The effect of supervised rehabilitation on ankle joint function and the risk of recurrence after acute ankle distortion].

    PubMed

    Barkler, E H; Magnusson, S P; Becher, K; Bieler, T; Aagaard, P; Kjaer, M; Saugbjerg, P A

    2001-06-04

    The effect of an early rehabilitation programme, including postural training, on ankle joint function after an ankle ligament sprain was investigated prospectively. Ninety-two subjects, matched for age, sex, and level of sports activity, were randomised to a control or training group. All subjects received the same standard information about early ankle mobilisation. In addition, the training group participated in supervised physical therapy rehabilitation (one hour, twice weekly) with emphasis on balance training. Postural sway, position sense, and isometric ankle strength were measured six weeks and four months after the injury, and at 12 months data on re-injury were collected. In both the training group and the control group, there were a significant difference between the injured and the uninjured side for all variables except for position sense at six weeks. The side-to-side differences in per cent were similar for both groups for all variables (p > 0.05) at six weeks, and there were no such differences at four months. Re-injury occurred in 11/38 (29%) is the control group, but in only 2/29 (7%) in the training group (p < 0.05). These data showed that an ankle injury led to reduced ankle strength and postural control at six weeks, but that these variables had become normal at four months, irrespective of supervised rehabilitation. However, the findings also showed that supervised rehabilitation may reduce the number of re-injuries, and may therefore play a role in injury prevention.

  2. Effect of Wiihabilitation on strength ratio of ankle muscles in adults

    PubMed Central

    Khalil, Aya A.; Mohamed, Ghada A.; El Rahman, Soheir M. Abd; Elhafez, Salam M.; Nassif, Nagui S.

    2016-01-01

    [Purpose] This study was conducted to investigate the effect of Wiihabilitation on the ankle dorsiflexion/plantar flexion strength ratio in adults. [Subjects and Methods] Thirty-two healthy male volunteers were randomly assigned to two equal groups (experimental and control). Participants in the experimental group received a Wiihabilitation training program for six weeks. Data were collected using a Biodex system 3 Isokinetic dynamometer. Peak torques of the dorsiflexors and plantar flexors were measured at an angular velocity of 60°/sec which in turn were used to derive the ankle dorsiflexion/plantar flexion strength ratio. [Results] The mean values of the ankle dorsiflexion/plantar flexion strength ratio decreased significantly between before and after the training in the experimental group, meanwhile there was no significant difference between before and after the training period in the control group . [Conclusion] Wiihabilitation has an impact on the ankle dorsiflexion/plantar flexion strength ratio, so it can be considered an effective training tool in terms of the ankle strength ratio. Thus, it could be recommended for both prevention and rehabilitation of ankle instability patients. PMID:27821951

  3. Effect of Wiihabilitation on strength ratio of ankle muscles in adults.

    PubMed

    Khalil, Aya A; Mohamed, Ghada A; El Rahman, Soheir M Abd; Elhafez, Salam M; Nassif, Nagui S

    2016-10-01

    [Purpose] This study was conducted to investigate the effect of Wiihabilitation on the ankle dorsiflexion/plantar flexion strength ratio in adults. [Subjects and Methods] Thirty-two healthy male volunteers were randomly assigned to two equal groups (experimental and control). Participants in the experimental group received a Wiihabilitation training program for six weeks. Data were collected using a Biodex system 3 Isokinetic dynamometer. Peak torques of the dorsiflexors and plantar flexors were measured at an angular velocity of 60°/sec which in turn were used to derive the ankle dorsiflexion/plantar flexion strength ratio. [Results] The mean values of the ankle dorsiflexion/plantar flexion strength ratio decreased significantly between before and after the training in the experimental group, meanwhile there was no significant difference between before and after the training period in the control group . [Conclusion] Wiihabilitation has an impact on the ankle dorsiflexion/plantar flexion strength ratio, so it can be considered an effective training tool in terms of the ankle strength ratio. Thus, it could be recommended for both prevention and rehabilitation of ankle instability patients.

  4. Effects of two proprioceptive training programs on ankle range of motion, pain, functional and balance performance in individuals with ankle sprain.

    PubMed

    Lazarou, Lazaros; Kofotolis, Nikolaos; Pafis, Georgios; Kellis, Eleftherios

    2017-09-08

    Following ankle sprain, residual symptoms are often apparent, and proprioceptive training is a treatment approach. Evidence, however, is limited and the optimal program has to be identified. To investigate the effects of two post-acute supervised proprioceptive training programs in individuals with ankle sprain. Participants were recruited from a physiotherapy center for ankle sprain rehabilitation. In a pre-post treatment, blinded-assessor design, 22 individuals were randomly allocated to a balance or a proprioceptive neuromuscular facilitation (PNF) group. Both groups received 10 rehabilitation sessions, within a six-week period. Dorsiflexion range of motion (ROM), pain, functional and balance performance were assessed at baseline, at the end of training and eight weeks after training. Follow-up data were provided for 20 individuals. Eight weeks after training, statistically significant (p< 0.017) improvements were found in dorsiflexion ROM and most functional performance measures for both balance and PNF groups. Eight weeks after training, significant (p< 0.017) improvements in the frontal plane balance test and pain were observed for the balance group. Balance and PNF programs are recommended in clinical practice for improving ankle ROM and functional performance in individuals with sprain. Balance programs are also recommended for pain relief.

  5. The epidemiology of ankle injuries occurring in English Football Association academies.

    PubMed

    Cloke, D J; Spencer, S; Hodson, A; Deehan, D

    2009-12-01

    To ascertain the epidemiology of ankle injuries in elite youth football. Retrospective analysis of prospectively collected injury data from English Football Association (FA) academies. Forty-one FA football academies, between 1998 and 2006. For the complete seasons studied, a total of 14 776 players was registered from U9 to the U16 age category, a mean of 2463 players per year. All ankle injuries of sufficient severity to miss 48 h or more of training were studied, 2563 injuries in total. The incidence and burden of ankle injuries in this population and factors associated with injury. There was a mean incidence of one ankle injury per player per year, and a mean of 20 training days and two matches were missed per ankle injury. Increased injury rates were seen in older players, in competition and later in each half of match time. Peaks in injury were observed early in the season and after the winter break. In competition, more injuries were associated with a contact situation than in training. Eighty-eight injuries (3.4%) required a lay-off of 3 months or more and in 18 (0.7%) cases the player failed to return to training. In total, 52 290 training days and 5182 match appearances were lost through ankle injury. The majority of injuries were sprains, but more severe injuries occurred accounted for 3.9% of the total. Ankle injuries are common in young football players and are often severe, with prolonged loss of training time. This has potential far-reaching implications, both on and off the field.

  6. Ankles back in randomized controlled trial (ABrCt): braces versus neuromuscular exercises for the secondary prevention of ankle sprains. Design of a randomised controlled trial.

    PubMed

    Janssen, Kasper W; van Mechelen, Willem; Verhagen, Evert Alm

    2011-09-27

    Ankle sprains are the most common sports and physical activity related injury. There is extensive evidence that there is a twofold increased risk for injury recurrence for at least one year post injury. In up to 50% of all cases recurrences result in disability and lead to chronic pain or instability, requiring prolonged medical care. Therefore ankle sprain recurrence prevention in athletes is essential. This RCT evaluates the effect of the combined use of braces and neuromuscular training (e.g. proprioceptive training/sensorimotor training/balance training) against the individual use of either braces or neuromuscular training alone on ankle sprain recurrences, when applied to individual athletes after usual care. This study was designed as three way randomized controlled trial with one year follow-up. Healthy individuals between 12 and 70 years of age, who were actively participating in sports and who had sustained a lateral ankle sprain in the two months prior to inclusion, were eligible for inclusion. After subjects had finished ankle sprain treatment by means of usual care, they were randomised to any of the three study groups. Subjects in group 1 received an eight week neuromuscular training program, subjects in group 2 received a sports brace to be worn during all sports activities for the duration of one year, and group 3 received a combination of the neuromuscular training program and a sports brace to be worn during all sports activities for the duration of eight weeks. Outcomes were assessed at baseline and every month for 12 months therafter. The primary outcome measure was incidence of ankle sprain recurrences. Secondary outcome measures included the direct and indirect costs of recurrent injury, the severity of recurrent injury, and the residual complaints during and after the intervention. The ABrCt is the first randomized controlled trial to directly compare the secondary preventive effect of the combined use of braces and neuromuscular training, against the use of either braces or neuromuscular training as separate secondary preventive measures. This study expects to identify the most effective and cost-efficient secondary preventive measure for ankle sprains. The study results could lead to changes in the clinical guidelines on the prevention of ankle sprains, and they will become available in 2012. Netherlands Trial Register (NTR): NTR2157.

  7. Bilateral Improvements in Lower Extremity Function After Unilateral Balance Training in Individuals With Chronic Ankle Instability

    PubMed Central

    Hale, Sheri A.; Fergus, Andrea; Axmacher, Rachel; Kiser, Kimberly

    2014-01-01

    Context: Bilateral improvements in postural control have been reported among individuals with acute lateral ankle sprains and individuals with chronic ankle instability (CAI) when only the unstable ankle is rehabilitated. We do not know if training the stable ankle will improve function on the unstable side. Objective: To explore the effects of a unilateral balance-training program on bilateral lower extremity balance and function in individuals with CAI when only the stable limb is trained. Design: Cohort study. Setting: University clinical research laboratory. Patients or Other Participants: A total of 34 volunteers (8 men, 26 women; age = 24.32 ± 4.95 years, height = 167.01 ± 9.45 cm, mass = 77.54 ± 23.76 kg) with CAI were assigned to the rehabilitation (n = 17) or control (n = 17) group. Of those, 27 (13 rehabilitation group, 14 control group) completed the study. Intervention(s): Balance training twice weekly for 4 weeks. Main Outcome Measure(s): Foot and Ankle Disability Index (FADI), FADI Sport (FADI-S), Star Excursion Balance Test, and Balance Error Scoring System. Results: The rehabilitation and control groups differed in changes in FADI-S and Star Excursion Balance Test scores over time. Only the rehabilitation group improved in the FADI-S and in the posteromedial and anterior reaches of the Star Excursion Balance Test. Both groups demonstrated improvements in posterolateral reach; however, the rehabilitation group demonstrated greater improvement than the control group. When the groups were combined, participants reported improvements in FADI and FADI-S scores for the unstable ankle but not the stable ankle. Conclusions: Our data suggest training the stable ankle may result in improvements in balance and lower extremity function in the unstable ankle. This further supports the existence of a centrally mediated mechanism in the development of postural-control deficits after injury, as well as improved postural control after rehabilitation. PMID:24568231

  8. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis.

    PubMed

    Yeung, Ling-Fung; Ockenfeld, Corinna; Pang, Man-Kit; Wai, Hon-Wah; Soo, Oi-Yan; Li, Sheung-Wai; Tong, Kai-Yu

    2018-06-19

    Robot-assisted ankle-foot-orthosis (AFO) can provide immediate powered ankle assistance in post-stroke gait training. Our research team has developed a novel lightweight portable robot-assisted AFO which is capable of detecting walking intentions using sensor feedback of wearer's gait pattern. This study aims to investigate the therapeutic effects of robot-assisted gait training with ankle dorsiflexion assistance. This was a double-blinded randomized controlled trial. Nineteen chronic stroke patients with motor impairment at ankle participated in 20-session robot-assisted gait training for about five weeks, with 30-min over-ground walking and stair ambulation practices. Robot-assisted AFO either provided active powered ankle assistance during swing phase in Robotic Group (n = 9), or torque impedance at ankle joint as passive AFO in Sham Group (n = 10). Functional assessments were performed before and after the 20-session gait training with 3-month Follow-up. Primary outcome measure was gait independency assessed by Functional Ambulatory Category (FAC). Secondary outcome measures were clinical scores including Fugl-Meyer Assessment (FMA), Modified Ashworth Scale (MAS), Berg Balance Scale (BBS), Timed 10-Meter Walk Test (10MWT), Six-minute Walk Test (SMWT), supplemented by gait analysis. All outcome measures were performed in unassisted gait after patients had taken off the robot-assisted AFO. Repeated-measures analysis of covariance was conducted to test the group differences referenced to clinical scores before training. After 20-session robot-assisted gait training with ankle dorsiflexion assistance, the active ankle assistance in Robotic Group induced changes in gait pattern with improved gait independency (all patients FAC ≥ 5 post-training and 3-month follow-up), motor recovery, walking speed, and greater confidence in affected side loading response (vertical ground reaction force + 1.49 N/kg, peak braking force + 0.24 N/kg) with heel strike instead of flat foot touch-down at initial contact (foot tilting + 1.91°). Sham Group reported reduction in affected leg range of motion (ankle dorsiflexion - 2.36° and knee flexion - 8.48°) during swing. Robot-assisted gait training with ankle dorsiflexion assistance could improve gait independency and help stroke patients developing confidence in weight acceptance, but future development of robot-assisted AFO should consider more lightweight and custom-fit design. ClinicalTrials.gov NCT02471248 . Registered 15 June 2015 retrospectively registered.

  9. Enhanced balance associated with coordination training with stochastic resonance stimulation in subjects with functional ankle instability: an experimental trial.

    PubMed

    Ross, Scott E; Arnold, Brent L; Blackburn, J Troy; Brown, Cathleen N; Guskiewicz, Kevin M

    2007-12-17

    Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 +/- 0.4 cm/s vs. 2.7 +/- 0.6 cm/s), M/L COPvel (2.6 +/- 0.5 cm/s vs. 2.9 +/- 0.5 cm/s), M/L COPsd (0.63 +/- 0.12 cm vs. 0.73 +/- 0.11 cm), M/L COPmax (1.76 +/- 0.25 cm vs. 1.98 +/- 0.25 cm), and COParea (0.13 +/- 0.03 cm2 vs. 0.16 +/- 0.04 cm2) than the pooled means of the CCT and control groups (P < 0.05). Reduced values in COP measures indicated postural stability improvements. Thus, six weeks of coordination training with SR stimulation enhanced postural stability. Future research should examine the use of SR stimulation for decreasing recurrent ankle sprain injury in physically active individuals with FAI.

  10. Enhanced balance associated with coordination training with stochastic resonance stimulation in subjects with functional ankle instability: an experimental trial

    PubMed Central

    Ross, Scott E; Arnold, Brent L; Blackburn, J Troy; Brown, Cathleen N; Guskiewicz, Kevin M

    2007-01-01

    Background Ankle sprains are common injuries that often lead to functional ankle instability (FAI), which is a pathology defined by sensations of instability at the ankle and recurrent ankle sprain injury. Poor postural stability has been associated with FAI, and sports medicine clinicians rehabilitate balance deficits to prevent ankle sprains. Subsensory electrical noise known as stochastic resonance (SR) stimulation has been used in conjunction with coordination training to improve dynamic postural instabilities associated with FAI. However, unlike static postural deficits, dynamic impairments have not been indicative of ankle sprain injury. Therefore, the purpose of this study was to examine the effects of coordination training with or without SR stimulation on static postural stability. Improving postural instabilities associated with FAI has implications for increasing ankle joint stability and decreasing recurrent ankle sprains. Methods This study was conducted in a research laboratory. Thirty subjects with FAI were randomly assigned to either a: 1) conventional coordination training group (CCT); 2) SR stimulation coordination training group (SCT); or 3) control group. Training groups performed coordination exercises for six weeks. The SCT group received SR stimulation during training, while the CCT group only performed coordination training. Single leg postural stability was measured after the completion of balance training. Static postural stability was quantified on a force plate using anterior/posterior (A/P) and medial/lateral (M/L) center-of-pressure velocity (COPvel), M/L COP standard deviation (COPsd), M/L COP maximum excursion (COPmax), and COP area (COParea). Results Treatment effects comparing posttest to pretest COP measures were highest for the SCT group. At posttest, the SCT group had reduced A/P COPvel (2.3 ± 0.4 cm/s vs. 2.7 ± 0.6 cm/s), M/L COPvel (2.6 ± 0.5 cm/s vs. 2.9 ± 0.5 cm/s), M/L COPsd (0.63 ± 0.12 cm vs. 0.73 ± 0.11 cm), M/L COPmax (1.76 ± 0.25 cm vs. 1.98 ± 0.25 cm), and COParea (0.13 ± 0.03 cm2 vs. 0.16 ± 0.04 cm2) than the pooled means of the CCT and control groups (P < 0.05). Conclusion Reduced values in COP measures indicated postural stability improvements. Thus, six weeks of coordination training with SR stimulation enhanced postural stability. Future research should examine the use of SR stimulation for decreasing recurrent ankle sprain injury in physically active individuals with FAI. PMID:18086314

  11. Neuromuscular control and rehabilitation of the unstable ankle

    PubMed Central

    Hung, You-jou

    2015-01-01

    Lateral ankle sprain is a common orthopedic injury with a very high recurrence rate in athletes. After decades of research, it is still unclear what contributes to the high recurrence rate of ankle sprain, and what is the most effective intervention to reduce the incident of initial and recurrent injuries. In addition, clinicians often implement balance training as part of the rehabilitation protocol in hopes of enhancing the neuromuscular control and proprioception of the ankle joint. However, there is no consensus on whether the neuromuscular control and proprioception are compromised in unstable ankles. To reduce the prevalence of ankle sprains, the effectiveness of engaging balance training to enhance the neuromuscular control and proprioception of the ankle joint is also questionable. PMID:26085985

  12. Treadmill training with an incline reduces ankle joint stiffness and improves active range of movement during gait in adults with cerebral palsy.

    PubMed

    Lorentzen, Jakob; Kirk, Henrik; Fernandez-Lago, Helena; Frisk, Rasmus; Scharff Nielsen, Nanna; Jorsal, Martin; Nielsen, Jens Bo

    2017-05-01

    We investigated if 30 min of daily treadmill training with an incline for 6 weeks would reduce ankle joint stiffness and improve active range of movement in adults with cerebral palsy (CP). The study was designed as a randomized controlled clinical trial including 32 adults with CP (GMFCS 1-3) aged 38.1 SD 12 years. The training group (n = 16) performed uphill treadmill training at home daily for 30 min for 6 weeks in addition to their usual activities. Passive and reflex mediated stiffness and range of motion (ROM) of the ankle joint, kinematic and functional measures of gait were obtained before and after the intervention/control period. Intervention subjects trained 31.4 SD 10.1 days for 29.0 SD 2.3 min (total) 15.2 h. Passive ankle joint stiffness was reduced (F = 5.1; p = 0.031), maximal gait speed increased (F = 42.8, p < 0.001), amplitude of toe lift prior to heel strike increased (F = 5.3, p < 0.03) and ankle angle at heel strike was decreased (F = 12.5; p < 0.001) significant in the training group as compared to controls. Daily treadmill training with an incline for 6 weeks reduces ankle joint stiffness and increases active ROM during gait in adults with CP. Intensive gait training may thus be beneficial in preventing and reducing contractures and help to maintain functional gait ability in adults with CP. Implications for rehabilitation Uphill gait training is an effective way to reduce ankle joint stiffness in adult with contractures. 6 weeks of daily uphill gait training improves functional gait parameters such as gait speed and dorsal flexion during gait in adults with cerebral palsy.

  13. Relationship between balance ability, training and sports injury risk.

    PubMed

    Hrysomallis, Con

    2007-01-01

    Traditionally, balance training has been used as part of the rehabilitation programme for ankle injuries. More recently, balance training has been adopted to try and prevent injuries to the ankle and knee joints during sport. The purpose of this review is to synthesise current knowledge in the area of balance ability, training and injury risk, highlight the findings and identify any future research needs. A number of studies have found that poor balance ability is significantly related to an increased risk of ankle injuries in different activities. This relationship appears to be more common in males than females. Multifaceted intervention studies that have included balance training along with jumping, landing and agility exercises have resulted in a significant decrease in ankle or knee injuries in team handball, volleyball and recreational athletes. It is unknown which component of the multifaceted intervention was most effective and whether the effects are additive. As a single intervention, balance training has been shown to significantly reduce the recurrence of ankle ligament injuries in soccer, volleyball and recreational athletes; however, it has not been clearly shown to reduce ankle injuries in athletes without a prior ankle injury. Balance training on its own has also been shown to significantly reduce anterior cruciate ligament injuries in male soccer players. Surprisingly, it was also found to be significantly associated with an increased risk of major knee injuries in female soccer players and overuse knee injuries in male and female volleyball players. The studies with the contrasting findings differed in aspects of their balance training programmes. It would appear that balance training, as a single intervention, is not as effective as when it is part of a multifaceted intervention. Research is required to determine the relative contribution of balance training to a multifaceted intervention so as to generate an effective and efficient preventative programme that can be adopted by athletes of most levels.

  14. Rehabilitation of the Ankle After Acute Sprain or Chronic Instability.

    PubMed

    Mattacola, Carl G; Dwyer, Maureen K

    2002-12-01

    OBJECTIVE: To outline rehabilitation concepts that are applicable to acute and chronic injury of the ankle, to provide evidence for current techniques used in the rehabilitation of the ankle, and to describe a functional rehabilitation program that progresses from basic to advanced, while taking into consideration empirical data from the literature and clinical practice. BACKGROUND: Important considerations in the rehabilitation of ankle injuries include controlling the acute inflammatory process, regaining full ankle range of motion, increasing muscle strength and power, and improving proprioceptive abilities. These goals can be achieved through various modalities, flexibility exercises, and progressive strength- and balance-training exercises. In this article, we discuss the deleterious effects of ankle injury on ankle-joint proprioception and muscular strength and how these variables can be quantifiably measured to follow progress through a rehabilitation program. Evidence to support the effectiveness of applying orthotics and ankle braces during the acute and subacute phases of ankle rehabilitation is provided, along with recommendations for functional rehabilitation of ankle injuries, including a structured progression of exercises. RECOMMENDATIONS: Early functional rehabilitation of the ankle should include range-of-motion exercises and isometric and isotonic strength-training exercises. In the intermediate stage of rehabilitation, a progression of proprioception-training exercises should be incorporated. Advanced rehabilitation should focus on sport-specific activities to prepare the athlete for return to competition. Although it is important to individualize each rehabilitation program, this well-structured template for ankle rehabilitation can be adapted as needed.

  15. Rehabilitation of the Ankle After Acute Sprain or Chronic Instability

    PubMed Central

    Mattacola, Carl G.; Dwyer, Maureen K.

    2002-01-01

    Objective: To outline rehabilitation concepts that are applicable to acute and chronic injury of the ankle, to provide evidence for current techniques used in the rehabilitation of the ankle, and to describe a functional rehabilitation program that progresses from basic to advanced, while taking into consideration empirical data from the literature and clinical practice. Background: Important considerations in the rehabilitation of ankle injuries include controlling the acute inflammatory process, regaining full ankle range of motion, increasing muscle strength and power, and improving proprioceptive abilities. These goals can be achieved through various modalities, flexibility exercises, and progressive strength- and balance-training exercises. In this article, we discuss the deleterious effects of ankle injury on ankle-joint proprioception and muscular strength and how these variables can be quantifiably measured to follow progress through a rehabilitation program. Evidence to support the effectiveness of applying orthotics and ankle braces during the acute and subacute phases of ankle rehabilitation is provided, along with recommendations for functional rehabilitation of ankle injuries, including a structured progression of exercises. Recommendations: Early functional rehabilitation of the ankle should include range-of-motion exercises and isometric and isotonic strength-training exercises. In the intermediate stage of rehabilitation, a progression of proprioception-training exercises should be incorporated. Advanced rehabilitation should focus on sport-specific activities to prepare the athlete for return to competition. Although it is important to individualize each rehabilitation program, this well-structured template for ankle rehabilitation can be adapted as needed. PMID:12937563

  16. Reviewing Clinical Effectiveness of Active Training Strategies of Platform-Based Ankle Rehabilitation Robots

    PubMed Central

    2018-01-01

    Objective This review aims to provide a systematical investigation of clinical effectiveness of active training strategies applied in platform-based ankle robots. Method English-language studies published from Jan 1980 to Aug 2017 were searched from four databases using key words of “Ankle∗” AND “Robot∗” AND “Effect∗ OR Improv∗ OR Increas∗.” Following an initial screening, three rounds of discrimination were successively conducted based on the title, the abstract, and the full paper. Result A total of 21 studies were selected with 311 patients involved; of them, 13 studies applied a single group while another eight studies used different groups for comparison to verify the therapeutic effect. Virtual-reality (VR) game training was applied in 19 studies, while two studies used proprioceptive neuromuscular facilitation (PNF) training. Conclusion Active training techniques delivered by platform ankle rehabilitation robots have been demonstrated with great potential for clinical applications. Training strategies are mostly combined with one another by considering rehabilitation schemes and motion ability of ankle joints. VR game environment has been commonly used with active ankle training. Bioelectrical signals integrated with VR game training can implement intelligent identification of movement intention and assessment. These further provide the foundation for advanced interactive training strategies that can lead to enhanced training safety and confidence for patients and better treatment efficacy. PMID:29675142

  17. Robotics and gaming to improve ankle strength, motor control, and function in children with cerebral palsy--a case study series.

    PubMed

    Burdea, Grigore C; Cioi, Daniel; Kale, Angad; Janes, William E; Ross, Sandy A; Engsberg, Jack R

    2013-03-01

    The objective of this study was to investigate the feasibility of game-based robotic training of the ankle in children with cerebral palsy (CP). The design was a case study, 12 weeks intervention, with no follow-up. The setting was a university research laboratory. The participants were a referred sample of three children with cerebral palsy, age 7-12, all male. All completed the intervention. Participants trained on the Rutgers Ankle CP system for 36 rehabilitation sessions (12 weeks, three times/week), playing two custom virtual reality games. The games were played while participants were seated, and trained one ankle at-a-time for strength, motor control, and coordination. The primary study outcome measures were for impairment (DF/PF torques, DF initial contact angle and gait speed), function (GMFM), and quality of life (Peds QL). Secondary outcome measures relate to game performance (game scores as reflective of ankle motor control and endurance). Gait function improved substantially in ankle kinematics, speed and endurance. Overall function (GMFM) indicated improvements that were typical of other ankle strength training programs. Quality of life increased beyond what would be considered a minimal clinical important difference. Game performance improved in both games during the intervention. This feasibility study supports the assumption that game-based robotic training of the ankle benefits gait in children with CP. Game technology is appropriate for the age group and was well accepted by the participants. Additional studies are needed however, to quantify the level of benefit and compare the approach presented here to traditional methods of therapy.

  18. Ankle passive and active movement training in children with acute brain injury using a wearable robot.

    PubMed

    Chen, Kai; Xiong, Bo; Ren, Yupeng; Dvorkin, Assaf Y; Gaebler-Spira, Deboah; Sisung, Charles E; Zhang, Li-Qun

    2018-01-10

    To evaluate the feasibility and effectiveness of a wearable robotic device in guiding isometric torque generation and passive-active movement training for ankle motor recovery in children with acute brain injury. Ten inpatient children with acute brain injury being treated in a rehabilitation hospital. Daily robot-guided ankle passive-active movement therapy for 15 sessions, including isometric torque generation under real-time feedback, stretch-ing, and active movement training with motivating games using a wearable ankle rehabilitation robot. Ankle biomechanical improvements induced by each training session including ankle range of motion (ROM), muscle strength, and clinical (Fugl-Meyer Lower-Extremity (FMLE), Pediatric Balance Scale (PBS)) and biomechanical (ankle ROM and muscle strength) outcomes over 15 training sessions. As training progressed, improvements in biomechanical performance measures followed logarithmic curves. Each training session increased median dorsiflexion active range of motion (AROM) 2.73° (standard deviation (SD) 1.14), dorsiflexion strength 0.87 Nm (SD 0.90), and plantarflexion strength 0.60 Nm (SD 1.19). After 15 training sessions the median FMLE score had increased from 14.0 (SD 10.11) to 23.0 (SD 11.4), PBS had increased from 33.0 (SD 19.99) to 50.0 (SD 23.13) (p < 0.05), median dorsiflexion and plantarflexion strength had improved from 0.21 Nm (SD 4.45) to 4.0 Nm (SD 7.63) and 8.33 Nm (SD 10.18) to 18.45 Nm (SD 14.41), respectively, median dorsiflexion AROM had improved from -10.45° (SD 12.01) to 11.87° (SD 20.69), and median dorsiflexion PROM increased from 20.0° (SD 9.04) to 25.0° (SD 8.03). Isometric torque generation with real-time feedback, stretching and active movement training helped promote neuroplasticity and improve motor performance in children with acute brain injury.

  19. Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke.

    PubMed

    Hsiao, HaoYuan; Knarr, Brian A; Pohlig, Ryan T; Higginson, Jill S; Binder-Macleod, Stuart A

    2016-02-08

    Current rehabilitation efforts for individuals poststroke focus on increasing walking speed because it is a predictor of community ambulation and participation. Greater propulsive force is required to increase walking speed. Previous studies have identified that trailing limb angle (TLA) and ankle moment are key factors to increases in propulsive force during gait. However, no studies have determined the relative contribution of these two factors to increase propulsive force following intervention. The purpose of this study was to quantify the relative contribution of ankle moment and TLA to increases in propulsive force following 12-weeks of gait training for individuals poststroke. Forty-five participants were assigned to 1 of 3 training groups: training at self-selected speeds (SS), at fastest comfortable speeds (Fast), and Fast with functional electrical stimulation (FastFES). For participants who gained paretic propulsive force following training, a biomechanical-based model previously developed for individuals poststroke was used to calculate the relative contributions of ankle moment and TLA. A two-way, mixed-model design, analysis of covariance adjusted for baseline walking speed was performed to analyze changes in TLA and ankle moment across groups. The model showed that TLA was the major contributor to increases in propulsive force following training. Although the paretic TLA increased from pre-training to post-training, no differences were observed between groups. In contrast, increases in paretic ankle moment were observed only in the FastFES group. Our findings suggested that specific targeting may be needed to increase ankle moment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke

    PubMed Central

    Hsiao, HaoYuan; Knarr, Brian A.; Pohlig, Ryan T.; Higginson, Jill S.; Binder-Macleod, Stuart A.

    2016-01-01

    Current rehabilitation efforts for individuals poststroke focus on increasing walking speed because it is a predictor of community ambulation and participation. Greater propulsive force is required to increase walking speed. Previous studies have identified that trailing limb angle (TLA) and ankle moment are key factors to increases in propulsive force during gait. However, no studies have determined the relative contribution of these two factors to increase propulsive force following intervention. The purpose of this study was to quantify the relative contribution of ankle moment and TLA to increases in propulsive force following 12-weeks of gait training for individuals poststroke. Forty-five participants were assigned to 1 of 3 training groups: training at self-selected speeds (SS), at fastest comfortable speeds (Fast), and Fast with functional electrical stimulation (FastFES). For participants who gained paretic propulsive force following training, a biomechanical-based model previously developed for individuals poststroke was used to calculate the relative contributions of ankle moment and TLA. A two-way, mixed-model design, analysis of covariance adjusted for baseline walking speed was performed to analyze changes in TLA and ankle moment across groups. The model showed that TLA was the major contributor to increases in propulsive force following training. Although the paretic TLA increased from pre-training to post-training, no differences were observed between groups. In contrast, increases in paretic ankle moment were observed only in the FastFES group. Our findings suggested that specific targeting may be needed to increase ankle moment. PMID:26776931

  1. Pointing the foot without sickling: an examination of ankle movement during jumping.

    PubMed

    Jarvis, Danielle N; Kulig, Kornelia

    2015-03-01

    The sauté is a relatively simple dance jump that can be performed by both highly skilled dancers and non-dancers. However, there are characteristics of jumping unique to trained dancers, especially in terms of foot and ankle movement during flight. Dancers are trained not to "sickle, " or to avoid the anatomically coupled ankle inversion that occurs with plantar flexion, maintaining the appearance of a straight line through the lower leg and foot. The purpose of this study was to examine ankle movements in elite dancers compared to non-dancers. Twenty healthy females, 10 with no prior dance training and 10 professional dancers, performed 20 consecutive sautés while three-dimensional kinematic data were collected. Sagittal and frontal plane kinematics were calculated and vector coding methods were used to quantify coordination patterns within the ankle in the sagittal and frontal planes. This pattern was chosen for analysis to identify the avoidance of a sickled foot by trained dancers. Peak ankle positions and coordination patterns between groups were examined using independent t-tests (a <0.05). Dancers demonstrated greater peak plantar flexion (p<0.01) and less change in ankle angle during the flight phase (p= 0.01), signifying holding the pointed foot position during flight. There was no statistically significant difference in sagittal and frontal plane ankle coupling (p= 0.15); however, the Cohen's d effect size for the difference in coupling was medium-to-large (0.73). Dynamic analysis of the foot and ankle during jumping demonstrates how elite dancers achieve the aesthetic requirements of dance technique.

  2. Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination

    PubMed Central

    Hagen, Marco; Lescher, Stephanie; Gerhardt, Andreas; Lahner, Matthias; Felber, Stephan; Hennig, Ewald M.

    2015-01-01

    Background The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods. Methods Twenty-two healthy male recreationally active sports students performed ten weeks of single-set high resistance strength training with 3 training sessions per week. The subjects conducted subtalar pronator/supinator muscle training (ST) with the right leg by using a custom-made apparatus; the left foot muscles were exercised with machine-based talocrural plantar and dorsiflexor training (TT). Muscle strength (MVIC), muscle volume and foot biomechanics (rearfoot motion, ground reaction forces, muscle reaction times) during a sudden ankle supination were recorded before and after the intervention. Results Compared to TT, ST resulted in significantly higher pronator (14% vs. 8%, P<0.01) and supinator MVIC (25% vs. 12%, P<0.01). During sudden foot inversions, both ST and TT resulted in reduced supination velocity (-12%; P<0.01). The muscle reaction onset time was faster after the training in peroneus longus (PL) (P<0.01). Muscle volume of PL (P<0.01) and TA (P<0.01) increased significantly after both ST and TT. Conclusion After both ST and TT, the ankle joint complex is mechanically more stabilised against sudden supinations due to the muscle volume increase of PL and TA. As the reduced supination velocities indicate, the strength training effects are already present during free-fall. According to a sudden ankle supination in standing position, both machine-based dorsiflexor and pronator strength training is recommended for enhancing the mechanical stability of the ankle. PMID:26110847

  3. Lower Extremity Biomechanics in Athletes With Ankle Instability After a 6-Week Integrated Training Program

    PubMed Central

    Huang, Pi-Yin; Chen, Wen-Ling; Lin, Cheng-Feng; Lee, Heng-Ju

    2014-01-01

    Context: Plyometric exercise has been recommended to prevent lower limb injury, but its feasibility in and effects on those with functional ankle instability (FAI) are unclear. Objective: To investigate the effect of integrated plyometric and balance training in participants with FAI during a single-legged drop landing and single-legged standing position. Design: Randomized controlled clinical trial. Setting: University motion-analysis laboratory. Patients or Other Participants: Thirty athletes with FAI were divided into 3 groups: plyometric group (8 men, 2 women, age = 23.20 ± 2.82 years; 10 unstable ankles), plyometric-balance (integrated)–training group (8 men, 2 women, age = 23.80 ± 4.13 years; 10 unstable ankles), and control group (7 men, 3 women, age = 23.50 ± 3.00 years; 10 unstable ankles). Intervention(s): A 6-week plyometric-training program versus a 6-week integrated-training program. Main Outcome Measure(s): Postural sway during single-legged standing with eyes open and closed was measured before and after training. Kinematic data were recorded during medial and lateral single-legged drop landings after a 5-second single-legged stance. Results: Reduced postural sway in the medial-lateral direction and reduced sway area occurred in the plyometric- and integrated-training groups. Generally, the plyometric training and integrated training increased the maximum angles at the hip and knee in the sagittal plane, reduced the maximum angles at the hip and ankle in the frontal and transverse planes in the lateral drop landing, and reduced the time to stabilization for knee flexion in the medial drop landing. Conclusions: After 6 weeks of plyometric training or integrated training, individuals with FAI used a softer landing strategy during drop landings and decreased their postural sway during the single-legged stance. Plyometric training improved static and dynamic postural control and should be incorporated into rehabilitation programs for those with FAI. PMID:24568224

  4. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    PubMed

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  5. When can I start pointe work? Guidelines for initiating pointe training.

    PubMed

    Weiss, David S; Rist, Rachel Anne; Grossman, Gayanne

    2009-01-01

    The initiation of pointe training for dance students should be determined after careful evaluation of a number of factors. These include: the dance student's stage of physical development; the quality of her (or his) trunk, abdominal and pelvic control ("core" stability); the alignment of her legs (hip-knee-ankle-foot); the strength and flexibility of her feet and ankles; and the duration and frequency of her dance training. For students who meet the requirements related to all of these factors, began ballet training at age eight or later, and who are taking ballet class at least twice per week, pointe work should be initiated in the fourth year of training. Students with poor core stability or hypermobility of the feet and ankles may require additional strengthening to allow them to safely begin pointe training. For those who are only taking ballet classes once per week, or who are not truly pre-professional, pointe training should be discouraged. No student with insufficient ankle and foot plantar flexion range of motion or with poor lower extremity alignment should be allowed to do pointe work.

  6. Military Airborne Training Injuries and Injury Risk Factors, Fort Bragg North Carolina, June-December 2010

    DTIC Science & Technology

    2011-01-01

    the upper body. The most common injury/anatomic locations combinations were closed head injuries/concussions (n=74), ankle fractures (n=21), ankle ...parachute ankle brace (PAB) for reducing injuries in operational airborne units. Previous studies had shown that the PAB reduced ankle injuries by...location combinations were closed head injuries/concussions (n=74), ankle fractures (n=21), ankle sprains (n=20), low back sprains (n=14), hip contusions

  7. Effects of balance training on post-sprained ankle joint instability.

    PubMed

    Faizullin, I; Faizullina, E

    2015-01-01

    Ankle sprain is a medical condition when ankle ligaments are totally or partially torn. The primary cause of ankle sprain is sharp movements like turning or rolling the foot [1]. The ankle sprain needs to be treated right after the trauma, because if not treated it could lead to decreased stability of the ankle joint and lead to chronic ankle instability, which is characterized by increased risk of the ankle sprain [2] . We suppose that rehabilitation after the ankle sprain could significantly increase the performance of sportsmen. To investigate effects of balance exercise training on instable ankle due to the previous ankle sprain injury. In addition, the secondary aim of this systematic review was to find the effectiveness of different balance training exercises on instable ankle in order to find better opportunities for rehabilitation of sportsmen. The studies were selected from PubMed and Scopus using the library of the Friedrich-Alexander University of Erlangen-Nuremberg (further-UB FAU), we used full texts, and only texts in English were included in this review. The literature search was conducted at the end of December 2014. Texts included randomised controlled trials, which were published in the last 5 years (2009-2014). The literature was included in this review only if it was published in English and if the randomised controlled trial was conducted in the study and if the full text was available from UB FAU. The articles, which were found only in PubMed search, were excluded during Scopus search.PubMed search.First MeSH term was "Balance training for the ankle sprain" and 44 articles were found in PubMed. Then 29 articles were filtered by title and excluded from the study. Remaining 15 articles were assessed reading their abstracts, 6 of them were excluded and only 4 articles were left. The second MeSH term was "Balance training for ankle injury". Four additional articles were found by initial search. Two of them were filtered by the title and 2 were excluded at the stage of reading abstracts. The third MeSH term was "Balance exercises for instable ankle". One additional article was found by initial search and was excluded after reading the abstract.Scopus search.The same MeSH terms were used as in PubMed search. With the first MeSH term one article was found and filtered by the title. With the second MeSH term no results were found in the initial search and with the third term 2 articles were picked up by the initial search. One of these articles was filtered by the title. The other one was filtered after reading the abstract. Overall 8 articles were taken into consideration for conducting a systematic review. Nevertheless, three of them could not be downloaded for free even using UB FAU up to the 28th of December, 2014. Thus, five articles were taken for the systematic review. After reading all 5 articles, one article by Maraike Alice Wortmann and Carrie L. Docherty was excluded from the study because it was a systematic review per se and at the same time it was not mentioned neither in the article title, nor in the abstract that the current study was a systematic review [3]. Also the article by Borreani et al. 2014 [4] was excluded after reading the paragraph "Methods" as this was not an RCT but a descriptive study. Therefore, 3 articles were taken for conducting a systematic review. The first article by Janssen et al. 2011 [5] was a 3-way randomised controlled trial with 1 year follow-up. Participants aged from 12 to 70 years used this intervention. People with active participation in sports with a lateral ankle sprain during the last 2 months were eligible for inclusion in the study. Participants were divided into 3 groups. Group 1 undertook an 8 week neuromuscular training programme. Group 2 wore sports brace during their sport activities for the duration of 1 year, and group 3 was a control group and used the combination of neuromuscular training program and wore sports brace for 8 weeks. There were 122 participants in the neuromuscular training group, 126 in the brace group and 136 in combined group. The drawback of this intervention was that there was no control over the care provid.In the second study by Ben Moussa Zouita, A et al. 2013 [6] the objective was to investigate how the proprioceptive exercises effect the postural balance and isokinetic strength in athletes with ankle sprain. 16 participants were recruited in the study and divided into two groups. The experimental group consisted of 8 participants with unilateral ankle sprain symptoms. The control group included another 8 participants with bilateral non-injured ankles. The training programme included 24 sessions during 8 weeks, every session lasted between 20 and 30 minutes. Four prescribed exercises were used during the intervention: one exercise without any material, one exercise with a ball only, one exercise with a balance board only and one exercise with a ball and a balance board. As a result, after 8 weeks of proprioceptive rehabilitation a significant improvement in extensor and flexor strength of ankle at a speed of 60-deg/sec was registered.The third study by Emery, Meeuwisse 2010 [7] was aimed to examine the effectiveness of the neuromuscular prevention strategy in youth soccer players. The inclusion criteria were adolescents between 13 and 18 years of age. The exclusion criteria were injury within 6 weeks and the history of systemic disease in anamnesis (i.e. cerebral palsy, head injury). 82 soccer teams were invited to take part in the intervention. 12 trainers declined the invitation, other 10 teams declined participation. Overall 60 teams took part in the intervention programme. The teams were randomised by a club. 32 training group teams (n = 380 players) and 28 control group players (n = 364 players) took part in the intervention. The training programme included dynamic stretching exercises, agility, jumping and balance and eccentric strength. The control programme was a standardized warm-up including static, dynamic and aerobic components and home-based stretching programme using 16-inch diameter wobble board used for 15 minutes during exercises. The injury rate in the training group was 2.08 injuries/1000 player-hours, and in the control group 3.35 injuries/1000 player-hours. The neuromuscular training programme was protective in injuries of youth soccer players. Balance training is an effective training method for rehabilitation of instable ankle. Different approaches to balance training provide in general similar improvement for sprained ankle.Implications for future studies:More RCTs on chronic ankle instability are needed with large sample size and use of different intensities of exercises. It would be better for the UB FAU to provide access to articles so that students and researches could download articles for free from different electronic sources.

  8. Rehabilitation of syndesmotic (high) ankle sprains.

    PubMed

    Williams, Glenn N; Allen, Eric J

    2010-11-01

    High ankle sprains are common in athletes who play contact sports. Most high ankle sprains are treated nonsurgically with a rehabilitation program. All years of PUBMED, Cochrane Database of Systematic Reviews, CINAHL PLUS, SPORTDiscuss, Google Scholar, and Web of Science were searched to August 2010, cross-referencing existing publications. Keywords included syndesmosis ankle sprain or high ankle sprain and the following terms: rehabilitation, treatment, cryotherapy, braces, orthosis, therapeutic modalities, joint mobilization, massage, pain, pain medications, TENS (ie, transcutaneous electric nerve stimulation), acupuncture, aquatic therapy, strength, neuromuscular training, perturbation training, and outcomes. Level of evidence, 5. A 3-phase rehabilitation program is described. The acute phase is directed at protecting the joint while minimizing pain, inflammation, muscle weakness, and loss of motion. Most patients are treated with some form of immobilization and have weightbearing restrictions. A range of therapeutic modalities are used to minimize pain and inflammation. Gentle mobilization and resistance exercises are used to gain mobility and maintain muscle size and strength. The subacute phase is directed at normalizing range of motion, strength, and function in activities of daily living. Progressive mobilization and strengthening are hallmarks of this phase. Neuromuscular training is begun and becomes the central component of rehabilitation. The advanced training phase focuses on preparing the patient for return to sports participation. Perturbation of support surfaces, agility drills, plyometrics, and sport-specific training are central components of this phase. The rehabilitation guidelines discussed may assist clinicians in managing syndesmotic ankle sprains.

  9. Developing a Wearable Ankle Rehabilitation Robotic Device for in-Bed Acute Stroke Rehabilitation.

    PubMed

    Ren, Yupeng; Wu, Yi-Ning; Yang, Chung-Yong; Xu, Tao; Harvey, Richard L; Zhang, Li-Qun

    2017-06-01

    Ankle movement training is important in motor recovery post stroke and early intervention is critical to stroke rehabilitation. However, acute stroke survivors receive motor rehabilitation in only a small fraction of time, partly due to the lack of effective devices and protocols suitable for early in-bed rehabilitation. Considering the first few months post stroke is critical in stroke recovery, there is a strong need to start motor rehabilitation early, mobilize the ankle, and conduct movement therapy. This study seeks to address the need and deliver intensive passive and active movement training in acute stroke using a wearable ankle robotic device. Isometric torque generation mode under real-time feedback is used to guide patients in motor relearning. In the passive stretching mode, the wearable robotic device stretches the ankle throughout its range of motion to the extreme dorsiflexion forcefully and safely. In the active movement training mode, a patient is guided and motivated to actively participate in movement training through game playing. Clinical testing of the wearable robotic device on 10 acute stroke survivors over 12 sessions of feedback-facilitated isometric torque generation, and passive and active movement training indicated that the early in-bed rehabilitation could have facilitated neuroplasticity and helped improve motor control ability.

  10. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.

    PubMed

    Hussain, Shahid; Jamwal, Prashant K; Ghayesh, Mergen H

    2017-12-01

    There is an increasing research interest in exploring use of robotic devices for the physical therapy of patients suffering from stroke and spinal cord injuries. Rehabilitation of patients suffering from ankle joint dysfunctions such as drop foot is vital and therefore has called for the development of newer robotic devices. Several robotic orthoses and parallel ankle robots have been developed during the last two decades to augment the conventional ankle physical therapy of patients. A comprehensive review of these robotic ankle rehabilitation devices is presented in this article. Recent developments in the mechanism design, actuation and control are discussed. The study encompasses robotic devices for treadmill and over-ground training as well as platform-based parallel ankle robots. Control strategies for these robotic devices are deliberated in detail with an emphasis on the assist-as-needed training strategies. Experimental evaluations of the mechanism designs and various control strategies of these robotic ankle rehabilitation devices are also presented.

  11. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.

    PubMed

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-03-31

    In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities-characterized by increases in the over-ground walking speed and endurance-is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient's maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. The improvements of the kinematic and kinetic parameters of the ankle voluntary movement, and their correlation with the functional assessments, support the therapeutic effect of robotic-assisted locomotor training on motor impairment in chronic iSCI.

  12. Complex versus simple ankle movement training in stroke using telerehabilitation: a randomized controlled trial.

    PubMed

    Deng, Huiqiong; Durfee, William K; Nuckley, David J; Rheude, Brandon S; Severson, Amy E; Skluzacek, Katie M; Spindler, Kristen K; Davey, Cynthia S; Carey, James R

    2012-02-01

    Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. This study was a pilot randomized controlled trial. Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. Participants received either computerized complex movement training (track group) or simple movement training (move group). Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. Limitations of this study were that no follow-up test was conducted and that a small sample size was used. The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke.

  13. Long-Term Resolution of Severe Ankle Contractures Using Botulinum Toxin, Serial Casting, Splinting, and Motor Retraining.

    PubMed

    Leung, Joan; Stroud, Katarina

    2018-01-01

    Purpose: Serial casting for ankle contractures is traditionally performed in prone, a position that patients may not easily tolerate. Also, although serial casting is effective in correcting contracture, its effect dissipates quickly. This case report describes a procedure for performing casting for ankle contractures in a supine or sitting position. It also describes a process that enables the effect of serial casting to be maintained long term. Client Description: The client was an adult who had suffered traumatic brain injury and severe bilateral ankle contractures. Intervention: He received botulinum toxin and serial casting for his bilateral ankle contractures, one ankle at 8 months and the other at 13 months after the injury. He then underwent a programme of splinting and motor training. Measures and Outcome: The client gained more than 40° dorsiflexion for both ankles after receiving botulinum toxin injections and serial casting. The improvement in ankle range enabled him to progress to walking practice. Ankle splinting was gradually reduced. On discharge at 25 months post-injury, the ankle joint range was maintained. Implications: The use of botulinum toxin and serial casting, followed by an intensive programme of splinting and motor training, may be an option to consider for effective long-term resolution of severe contractures after acquired brain injury.

  14. Effects of Hip Strengthening on Neuromuscular Control, Hip Strength, and Self-Reported Functional Deficits in Individuals With Chronic Ankle Instability.

    PubMed

    Smith, Brent I; Curtis, Denice; Docherty, Carrie L

    2018-06-12

    Deficits in ankle and hip strength and lower-extremity postural control are associated with chronic ankle instability (CAI). Following strength training, muscle groups demonstrate increased strength. This change is partially credited to improved neuromuscular control, and many studies have investigated ankle protocols for subjects with CAI. The effects of isolating hip musculature in strength training protocols in this population are not well understood. To examine the effects of hip strengthening on clinical and self-reported outcomes in patients with CAI. Prospective randomized controlled clinical trial. Athletic training facility. Twenty-six participants with CAI (12 males and 14 females; age = 20.9 [1.5] y, height = 170.0 [12.7] cm, and mass = 77.5 [17.5] kg) were randomly assigned to training or control groups. Participants completed either 4 weeks of supervised hip strengthening (resistance bands 3 times a week) or no intervention. Participants were assessed on 4 clinical measures (Star Excursion Balance Test in the anterior, posteromedial, and posterolateral directions; Balance Error Scoring System; hip external rotation strength; and hip abduction strength) and a patient-reported measure (the Foot and Ankle Ability Measure activities of daily living and sports subscales) before and after the 4-week training period. The training group displayed significantly improved posttest measures compared with the control group for hip abduction strength (training: 446.3 [77.4] N, control: 314.7 [49.6] N, P < .01); hip external rotation strength (training: 222.1 [48.7] N, control: 169.4 [34.6] N, P < .01); Star Excursion Balance Test reach in the anterior (training: 93.1% [7.4%], control: 90.2% [7.9%], P < .01), posteromedial (training: 96.3% [8.9%], control: 88.0% [8.8%], P < .01), and posterolateral (training: 95.4% [11.1%], control: 86.6% [9.6%], P < .01) directions; Balance Error Scoring System total errors (training: 9.9 [6.3] errors, control: 21.2 [6.3] errors, P < .01); and the Foot and Ankle Ability Measure-sports score (training: 88.0 [12.6], control: 84.8 [10.9], P < .01). Improved clinical and patient-reported outcomes in the training group suggest hip strengthening is beneficial in the management and prevention of recurrent symptoms associated with CAI.

  15. Long-term neuromuscular training and ankle joint position sense.

    PubMed

    Kynsburg, A; Pánics, G; Halasi, T

    2010-06-01

    Preventive effect of proprioceptive training is proven by decreasing injury incidence, but its proprioceptive mechanism is not. Major hypothesis: the training has a positive long-term effect on ankle joint position sense in athletes of a high-risk sport (handball). Ten elite-level female handball-players represented the intervention group (training-group), 10 healthy athletes of other sports formed the control-group. Proprioceptive training was incorporated into the regular training regimen of the training-group. Ankle joint position sense function was measured with the "slope-box" test, first described by Robbins et al. Testing was performed one day before the intervention and 20 months later. Mean absolute estimate errors were processed for statistical analysis. Proprioceptive sensory function improved regarding all four directions with a high significance (p<0.0001; avg. mean estimate error improvement: 1.77 degrees). This was also highly significant (p< or =0.0002) in each single directions, with avg. mean estimate error improvement between 1.59 degrees (posterior) and 2.03 degrees (anterior). Mean absolute estimate errors at follow-up (2.24 degrees +/-0.88 degrees) were significantly lower than in uninjured controls (3.29 degrees +/-1.15 degrees) (p<0.0001). Long-term neuromuscular training has improved ankle joint position sense function in the investigated athletes. This joint position sense improvement can be one of the explanations for injury rate reduction effect of neuromuscular training.

  16. Acute ankle sprain: conservative or surgical approach?

    PubMed Central

    Al-Mohrej, Omar A.; Al-Kenani, Nader S.

    2016-01-01

    Ankle sprains fall into two main categories: acute ankle sprains and chronic ankle instability, which are among the most common recurrent injuries during occupational activities, athletic events, training and army service. Acute ankle sprain is usually managed conservatively and functional rehabilitation failure by conservative treatment leads to development of chronic ankle instability, which most often requires surgical intervention. Enhancing the in-depth knowledge of the ankle anatomy, biomechanics and pathology helps greatly in deciding the management options. Cite this article: Al-Mohrej OA, Al-Kenani NS. Acute ankle sprain: conservative or surgical approach? EFORT Open Rev 2016;1:34-44. DOI: 10.1302/2058-5241.1.000010. PMID:28461926

  17. Gait training reduces ankle joint stiffness and facilitates heel strike in children with Cerebral Palsy.

    PubMed

    Willerslev-Olsen, Maria; Lorentzen, Jakob; Nielsen, Jens Bo

    2014-01-01

    Foot drop and toe walking are frequent concerns in children with cerebral palsy (CP). Increased stiffness of the ankle joint muscles may contribute to these problems. Does four weeks of daily home based treadmill training with incline reduce ankle joint stiffness and facilitate heel strike in children with CP? Seventeen children with CP (4-14 years) were recruited. Muscle stiffness and gait ability were measured twice before and twice after training with an interval of one month. Passive and reflex-mediated stiffness were measured by a dynamometer which applied stretches below and above reflex threshold. Gait kinematics were recorded by 3-D video-analysis during treadmill walking. Foot pressure was measured by force-sensitive foot soles during treadmill and over-ground walking. Children with increased passive stiffness showed a significant reduction in stiffness following training (P = 0.01). Toe lift in the swing phase (P = 0.014) and heel impact (P = 0.003) increased significantly following the training during both treadmill and over-ground walking. Daily intensive gait training may influence the elastic properties of ankle joint muscles and facilitate toe lift and heel strike in children with CP. Intensive gait training may be beneficial in preventing contractures and maintain gait ability in children with CP.

  18. The preventive effect of a soccer-specific ankle brace on acute lateral ankle sprains in girls amateur soccer players: study protocol of a cluster-randomised controlled trial.

    PubMed

    Thijs, Karin; Huisstede, Bionka; Goedhart, Edwin; Backx, Frank

    2017-07-27

    Acute lateral ankle sprains are the single most often diagnosed injury in female soccer players and often result in an inability to play. This highlights the need for effective prevention strategies. Proprioceptive training and/or the use of an external support to decrease inversion of the ankle joint can prevent or reduce the number of acute lateral ankle sprains. The effectiveness of a soccer-specific ankle brace in reducing first-time and recurrent acute lateral ankle sprains has never been investigated in girl soccer players. If effective, ankle braces could be introduced into soccer. Cluster-randomised controlled trial. Girl amateur soccer players (aged 14-18 years) will be allocated to an intervention or control group. The intervention group will be instructed to wear soccer-specific ankle braces on both ankles during soccer training and matches; the control group will continue playing soccer as usual. Primary outcomes are the incidence and severity of acute lateral ankle sprains. Secondary outcomes are the prognostic value of generalised joint hypermobility and functional stability on the risk of acute lateral ankle sprains and compliance with the intervention. The findings from this study may provide evidence to support the use of a soccer-specific ankle brace to prevent lateral ankle sprains during soccer. We hypothesise that this brace will reduce the incidence of ankle sprains among young amateur girl soccer players by 50%. The prevention of such injuries will be beneficial to players, clubs and society. The Netherlands Trial Register (NTR): NTR6045; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Surface electromyography and plantar pressure changes with novel gait training device in participants with chronic ankle instability.

    PubMed

    Feger, Mark A; Hertel, Jay

    2016-08-01

    Rehabilitation is ineffective at restoring normal gait in chronic ankle instability patients. Our purpose was to determine if a novel gait-training device could decrease plantar pressure on the lateral column of the foot in chronic ankle instability patients. Ten chronic ankle instability patients completed 30s trials of baseline and gait-training walking at a self-selected pace while in-shoe plantar pressure and surface electromyography were recorded from their anterior tibialis, peroneus longus, medial gastrocnemius, and gluteus medius. The gait-training device applied a medially-directed force to the lower leg via elastic bands during the entire gait cycle. Plantar pressure measures of the entire foot and 9 specific regions of the foot as well as surface electromyography root mean square areas were compared between the baseline and gait-training conditions using paired t-tests with a priori level of significance of p≤0.05. The gait-training device decreased pressure time integrals and peak pressures in the lateral midfoot (p=0.003 and p=0.003) and lateral forefoot (p=0.023 and p=0.005), and increased pressure time integrals and peak pressures for the total foot (p=0.030 and p=0.017) and hallux (p=0.005 and p=0.002). The center of pressure was shifted medially during the entire stance phase (p<0.003 for all comparisons) due to increased peroneus longus activity prior to (p=0.002) and following initial contact (p=0.002). The gait-training device decreased pressure on the lateral column of the foot and increased peroneus longus muscle activity. Future research should analyze the efficacy of the gait-training device during gait retraining for chronic ankle instability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Proprioception and ankle injuries in soccer.

    PubMed

    Ergen, Emin; Ulkar, Bülent

    2008-01-01

    Because soccer attracts many participants and leads to a substantial number of injuries, especially of the lower extremities, it is important to study possibilities for injury prevention and proper rehabilitation to return safely to activities. Ankle sprains can be prevented by external ankle supports and proprioceptive-coordination training, especially in athletes with previous ankle sprains. Proprioception is a broad concept that includes balance and postural control with visual and vestibular contributions, joint kinesthesia, position sense, and muscle reaction time. Proprioceptive feedback is crucial in the conscious and unconscious awareness of a joint or limb in motion. Enhancement of functional joint stability by proprioceptive (or neuromuscular) training is important both in prevention and rehabilitation of athletic injuries.

  1. Effects of Combined Foot/Ankle Electromyostimulation and Resistance Training on the In-Shoe Plantar Pressure Patterns during Sprint in Young Athletes.

    PubMed

    Fourchet, François; Kuitunen, Sami; Girard, Olivier; Beard, Adam J; Millet, Grégoire P

    2011-01-01

    Several studies have already reported that specific foot/ankle muscle reinforcement strategies induced strength and joint position sense performance enhancement. Nevertheless the effects of such protocols on sprint performance and plantar loading distribution have not been addressed yet. The objective of the study is to investigate the influence of a 5-wk foot/ankle strength training program on plantar loading characteristics during sprinting in adolescent males. Sixteen adolescent male athletes of a national training academy were randomly assigned to either a combined foot/ankle electromyostimulation and resistance training (FAST) or a control (C) group. FAST consisted of foot medial arch and extrinsic ankle muscles reinforcement exercises, whereas C maintained their usual training routine. Before and after training, in-shoe loading patterns were measured during 30-m running sprints using pressure sensitive insoles (right foot) and divided into nine regions for analysis. Although sprint times remained unchanged in both groups from pre- to post- training (3.90 ± 0.32 vs. 3.98 ± 0.46 s in FAST and 3.83 ± 0.42 vs. 3.81 ± 0.44 s in C), changes in force and pressure appeared from heel to forefoot between FAST and C. In FAST, mean pressure and force increased in the lateral heel area from pre- to post- training (67.1 ± 44.1 vs. 82.9 ± 28.6 kPa [p = 0.06]; 25.5 ± 17.8 vs. 34.1 ± 14.3 N [p = 0.05]) and did not change in the medial forefoot (151.0 ± 23.2 vs. 146.1 ± 30.0 kPa; 142.1 ± 29.4 vs. 136.0 ± 33.8; NS). Mean area increased in FAST under the lateral heel from pre- to post- (4.5 ± 1.3 vs. 5.7 ± 1.6 cm(2) [p < 0.05]) and remained unchanged in C (5.5 ± 2.8 vs. 5.0 ± 3.0 cm(2)). FAST program induced significant promising lateral and unwanted posterior transfer of the plantar loads without affecting significantly sprinting performance. Key pointsWe have evaluated the effects of a foot/ankle strength training program on sprint performance and on related plantar loading characteristics in teenage athletes, and this have not been examined previously.Our results showed no significant pre- to post- changes in sprint performance.This study revealed initially a lateral transfer and secondly a posterior transfer of the plantar loads after the foot/ankle strength training program.

  2. Effects of Combined Foot/Ankle Electromyostimulation and Resistance Training on the In-Shoe Plantar Pressure Patterns during Sprint in Young Athletes

    PubMed Central

    Fourchet, François; Kuitunen, Sami; Girard, Olivier; Beard, Adam J.; Millet, Grégoire P.

    2011-01-01

    Several studies have already reported that specific foot/ankle muscle reinforcement strategies induced strength and joint position sense performance enhancement. Nevertheless the effects of such protocols on sprint performance and plantar loading distribution have not been addressed yet. The objective of the study is to investigate the influence of a 5-wk foot/ankle strength training program on plantar loading characteristics during sprinting in adolescent males. Sixteen adolescent male athletes of a national training academy were randomly assigned to either a combined foot/ankle electromyostimulation and resistance training (FAST) or a control (C) group. FAST consisted of foot medial arch and extrinsic ankle muscles reinforcement exercises, whereas C maintained their usual training routine. Before and after training, in-shoe loading patterns were measured during 30-m running sprints using pressure sensitive insoles (right foot) and divided into nine regions for analysis. Although sprint times remained unchanged in both groups from pre- to post- training (3.90 ± 0.32 vs. 3.98 ± 0.46 s in FAST and 3.83 ± 0.42 vs. 3.81 ± 0.44 s in C), changes in force and pressure appeared from heel to forefoot between FAST and C. In FAST, mean pressure and force increased in the lateral heel area from pre- to post- training (67.1 ± 44.1 vs. 82.9 ± 28.6 kPa [p = 0.06]; 25.5 ± 17.8 vs. 34.1 ± 14.3 N [p = 0.05]) and did not change in the medial forefoot (151.0 ± 23.2 vs. 146.1 ± 30.0 kPa; 142.1 ± 29.4 vs. 136.0 ± 33.8; NS). Mean area increased in FAST under the lateral heel from pre- to post- (4.5 ± 1.3 vs. 5.7 ± 1.6 cm2 [p < 0.05]) and remained unchanged in C (5.5 ± 2.8 vs. 5.0 ± 3.0 cm2). FAST program induced significant promising lateral and unwanted posterior transfer of the plantar loads without affecting significantly sprinting performance. Key points We have evaluated the effects of a foot/ankle strength training program on sprint performance and on related plantar loading characteristics in teenage athletes, and this have not been examined previously. Our results showed no significant pre- to post- changes in sprint performance. This study revealed initially a lateral transfer and secondly a posterior transfer of the plantar loads after the foot/ankle strength training program. PMID:24149874

  3. The efficacy of virtual reality assisted versus traditional rehabilitation intervention on individuals with functional ankle instability: a pilot randomized controlled trial.

    PubMed

    Kim, Kijong; Choi, Bongsam; Lim, Wootaek

    2018-01-31

    Virtual reality (VR) training, a virtual environment commonly generated by computer systems, may enhance the therapeutic efficacy of functional rehabilitation programmes. The aim of this study was to investigate the efficacy of a VR assisted intervention (VRAI) versus traditional rehabilitation intervention (TRI) on functional ankle instability (FAI). A single-blind randomized controlled study was conducted with 10 subjects for each group. The VRAI was conducted with the Nintendo Wii Fit Plus, whilst the TRI was conducted with a series of exercises with theraband. The muscle strength change of the two groups and the difference between pre and post interventions for each group were compared. The VRAI group had less improvement in the muscle strength of all ankle motions than did the TRI group (p > .05). The VRAI group had a greater improvement in muscle strength of plantar flexion than other motions, whilst the TRI group had an improvement in muscle strength of all ankle motions (p < .05). The effects of VR training for the condition of FAI were not comparable to conventional training. However, VR training may be added to the conventional training programme as an optional for the condition of FAI. Implications for Rehabilitation Functional ankle instability (FAI) is subjective feelings of ankle instability resulting from proprioceptive and neuromuscular deficits in which individuals may experience "giving way" condition of the ankle. Therapeutic applications of virtual reality (VR) may be comparable to traditional rehabilitation interventions (TRI) in the rehabilitation of individuals with FAI. However, there is no definitive evidence for the issue. Integrating low-cost VR into functional rehabilitation programme can provide insight into an issue of whether it can be replaced with traditional therapeutic approaches. Although, the efficacy of VR application on strengthening muscles is unable to compare to traditional strengthening programmes, it may be considered an optional treatment based on the proprioceptive improvements.

  4. The effects of isolated ankle strengthening and functional balance training on strength, running mechanics, postural control and injury prevention in novice runners: design of a randomized controlled trial.

    PubMed

    Baltich, Jennifer; Emery, Carolyn A; Stefanyshyn, Darren; Nigg, Benno M

    2014-12-04

    Risk factors have been proposed for running injuries including (a) reduced muscular strength, (b) excessive joint movements and (c) excessive joint moments in the frontal and transverse planes. To date, many running injury prevention programs have focused on a "top down" approach to strengthen the hip musculature in the attempt to reduce movements and moments at the hip, knee, and/or ankle joints. However, running mechanics did not change when hip muscle strength increased. It could be speculated that emphasis should be placed on increasing the strength of the ankle joint for a "ground up" approach. Strengthening of the large and small muscles crossing the ankle joint is assumed to change the force distribution for these muscles and to increase the use of smaller muscles. This would be associated with a reduction of joint and insertion forces, which could have a beneficial effect on injury prevention. However, training of the ankle joint as an injury prevention strategy has not been studied. Ankle strengthening techniques include isolated strengthening or movement-related strengthening such as functional balance training. There is little knowledge about the efficacy of such training programs on strength alteration, gait or injury reduction. Novice runners will be randomly assigned to one of three groups: an isolated ankle strengthening group (strength, n = 40), a functional balance training group (balance, n = 40) or an activity-matched control group (control, n = 40). Isokinetic strength will be measured using a Biodex System 3 dynamometer. Running kinematics and kinetics will be assessed using 3D motion analysis and a force platform. Postural control will be assessed by quantifying the magnitude and temporal structure of the center of pressure trace during single leg stance on a force platform. The change pre- and post-training in isokinetic strength, running mechanics, and postural control variables will be compared following the interventions. Injuries rates will be compared between groups over 6 months. Avoiding injury will allow individuals to enjoy the benefits of participating in aerobic activities and reduce the healthcare costs associated with running injuries. Current Controlled Trial NCT01900262.

  5. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury

    PubMed Central

    2014-01-01

    Background In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities—characterized by increases in the over-ground walking speed and endurance—is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Methods Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient’s maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. Results After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. Conclusions The improvements of the kinematic and kinetic parameters of the ankle voluntary movement, and their correlation with the functional assessments, support the therapeutic effect of robotic-assisted locomotor training on motor impairment in chronic iSCI. PMID:24684813

  6. Ankle Sprain Treatment

    MedlinePlus

    ... strengthening exercise"). Resume low-impact aerobic training; maintain general fitness. III Phase III treatment focuses on restoring ankle proprioception (balance and position awareness) as well as agility and ...

  7. Complex Versus Simple Ankle Movement Training in Stroke Using Telerehabilitation: A Randomized Controlled Trial

    PubMed Central

    Deng, Huiqiong; Durfee, William K.; Nuckley, David J.; Rheude, Brandon S.; Severson, Amy E.; Skluzacek, Katie M.; Spindler, Kristen K.; Davey, Cynthia S.

    2012-01-01

    Background Telerehabilitation allows rehabilitative training to continue remotely after discharge from acute care and can include complex tasks known to create rich conditions for neural change. Objectives The purposes of this study were: (1) to explore the feasibility of using telerehabilitation to improve ankle dorsiflexion during the swing phase of gait in people with stroke and (2) to compare complex versus simple movements of the ankle in promoting behavioral change and brain reorganization. Design This study was a pilot randomized controlled trial. Setting Training was done in the participant's home. Testing was done in separate research labs involving functional magnetic resonance imaging (fMRI) and multi-camera gait analysis. Patients Sixteen participants with chronic stroke and impaired ankle dorsiflexion were assigned randomly to receive 4 weeks of telerehabilitation of the paretic ankle. Intervention Participants received either computerized complex movement training (track group) or simple movement training (move group). Measurements Behavioral changes were measured with the 10-m walk test and gait analysis using a motion capture system. Brain reorganization was measured with ankle tracking during fMRI. Results Dorsiflexion during gait was significantly larger in the track group compared with the move group. For fMRI, although the volume, percent volume, and intensity of cortical activation failed to show significant changes, the frequency count of the number of participants showing an increase versus a decrease in these values from pretest to posttest measurements was significantly different between the 2 groups, with the track group decreasing and the move group increasing. Limitations Limitations of this study were that no follow-up test was conducted and that a small sample size was used. Conclusions The results suggest that telerehabilitation, emphasizing complex task training with the paretic limb, is feasible and can be effective in promoting further dorsiflexion in people with chronic stroke. PMID:22095209

  8. Comparative Effects of Different Balance-Training-Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial.

    PubMed

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-02-01

    Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training-progression styles. To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Randomized controlled trial. Research laboratory. A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults.

  9. Managing ankle sprains in primary care: what is best practice? A systematic review of the last 10 years of evidence.

    PubMed

    Seah, Richard; Mani-Babu, Sivanadian

    2011-01-01

    To summarize the best available evidence in the last decade for managing ankle sprains in the community, data were collected using MEDLINE database from January 2000 to December 2009. Terms utilized: 'ankle injury primary care' (102 articles were found), 'ankle sprain primary care' (34 articles), 'ankle guidelines primary care' (25 articles), 'ankle pathways primary care' (2 articles), 'ankle sprain community' (18 articles), 'ankle sprain general practice' (22 articles), 'Cochrane review ankle' (58 articles). Of these, only 33 satisfied the inclusion criteria. The search terms identified many of the same studies. Two independent reviewers reviewed the articles. The study results and generated conclusions were extracted, discussed and finally agreed on. Ankle sprains occur commonly but their management is not always readily agreed. The Ottawa Ankle Rules are ubiquitous in the clinical pathway and can be reliably applied by emergency care physicians, primary care physicians and triage nurses. For mild-to-moderate ankle sprains, functional treatment options (which can consist of elastic bandaging, soft casting, taping or orthoses with associated coordination training) were found to be statistically better than immobilization for multiple outcome measures. For severe ankle sprains, a short period of immobilization in a below-knee cast or pneumatic brace results in a quicker recovery than tubular compression bandage alone. Lace-up supports are a more effective functional treatment than elastic bandaging and result in less persistent swelling in the short term when compared with semi-rigid ankle supports, elastic bandaging and tape. Semi-rigid orthoses and pneumatic braces provide beneficial ankle support and may prevent subsequent sprains during high-risk sporting activity. Supervised rehabilitation training in combination with conventional treatment for acute lateral ankle sprains can be beneficial, although some of the studies reviewed gave conflicting outcomes. Therapeutic hyaluronic acid injections in the ankle are a relatively novel non-surgical treatment but may have a role in expediting return to sport after ankle sprain. There is a role for surgical intervention in severe acute and chronic ankle injuries, but the evidence is limited.

  10. Ankle Sprain Injuries: A 2-Year Prospective Cohort Study in Female Greek Professional Basketball Players

    PubMed Central

    Kofotolis, Nikolaos; Kellis, Eleftherios

    2007-01-01

    Context: Ankle sprains are a common basketball injury. Therefore, examination of risk factors for injury in female professional basketball players is worthwhile. Objective: To examine rates of ankle sprains, associated time missed from participation, and risk factors for injury during 2 consecutive seasons. Design: Prospective cohort study. Setting: Eighteen professional basketball facilities. Patients or Other Participants: We observed 204 players from 18 female professional basketball teams for 2 consecutive seasons during a 2-year period. Main Outcome Measure(s): Using questionnaires, we recorded the incidence of ankle sprains, participation time missed, and mechanisms of injury in games and practice sessions. Potential risk factors, such as age, body mass, height, training experience, and history of ankle sprain, were examined using multivariate logistic regression. Results: Fifty of the 204 participants sustained ankle injuries; injuries included 32 ankle sprains, which translated to an ankle sprain rate of 1.12 per 1000 hours of exposure to injury. The 32 players missed 224.4 training and game sessions and an average of 7.01 sessions per injury. Most injuries occurred in the key area of the basketball court and were the result of contact. Injury rates during games were higher than injury rates during practice sessions. Centers, followed by guards and forwards, had the highest rate of injury. Players who did not wear an external ankle support had an odds ratio of 2.481 for sustaining an ankle sprain. Conclusions: Female professional basketball athletes who did not wear an external ankle support, who played in the key area, or who functioned as centers had a higher risk for ankle sprain than did other players. PMID:18059995

  11. Side-alternating vibration training for balance and ankle muscle strength in untrained women.

    PubMed

    Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia

    2013-01-01

    Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P < .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus longus increased during the sharpened tandem (P = .001) and 1-legged tasks (P = .007). No changes were seen in the control group for any measures. The SAV training could enhance ankle muscle strength and reduce postural sway during static balance performance. The reduction in mediolateral sway could be associated with the greater use of ankle evertors due to their strength improvement.

  12. Football APP based on smart phone with FES in drop foot rehabilitation.

    PubMed

    Ciou, Shih-Hsiang; Hwang, Yuh-Shyan; Chen, Chih-Chen; Luh, Jer-Junn; Chen, Shih-Ching; Chen, Yu-Luen

    2017-01-01

    Long-term, sustained progress is necessary in drop foot rehabilitation. The necessary inconvenient body training movements, the return trips to the hospital and repetitive boring training using functional electrical stimulation (FES) often results in the patient suspending their training. The patient's drop foot rehabilitation will not progress if training is suspended. A fast spread, highly portable drop foot rehabilitation training device based on the smart phone is presented. This device is combined with a self-made football APP and feedback controlled FES. The drop foot patient can easily engage in long term rehabilitation training that is more convenient and interesting. An interactive game is established on the smart phone with the Android system using the originally built-in wireless communications. The ankle angle information is detected by an external portable device as the game input signal. The electrical stimulation command to the external device is supplemented with FES stimulation for inadequate ankle efforts. After six-weeks training using six cases, the results indicated that this training device showed significant performance improvement (p< 0.05) in the patient's ankle dorsiflexion strength, ankle dorsiflexion angle, control timing and Timed Up and Go. Preliminary results show that this training device provides significant positive help to drop foot patients. Moreover, this device is based on existing and universally popular mobile processing, which can be rapidly promoted. The responses of clinical cases also show this system is easy to operate, convenient and entertaining. All of these features can improve the patient's willingness to engage in long term rehabilitation.

  13. An uncommon ankle sprain.

    PubMed

    van Zoest, Wart J F; Janssen, Rob P A; Tseng, Carroll M E S

    2007-11-01

    Ankle sprain is the most frequently occurring acute injury in tennis, accounting for 20-25% of all injuries. In the current paper, we assess the cause of ankle sprain and suggest possibilities to be considered during diagnosis. We assessed a professional tennis player with a partial tear of the long peroneal tendon after an ankle sprain by physical exam, X-ray and MRI. Conservative treatment by means of soft cast and propriocepsis training led to full recovery. Peroneal tendon disorders must be part of the differential diagnosis after ankle sprain in the professional athlete.

  14. Interventions for treating chronic ankle instability.

    PubMed

    de Vries, Jasper S; Krips, Rover; Sierevelt, Inger N; Blankevoort, Leendert; van Dijk, C N

    2011-08-10

    Chronic lateral ankle instability occurs in 10% to 20% of people after an acute ankle sprain. Initial treatment is conservative but if this fails and ligament laxity is present, surgical intervention is considered. To compare different treatments, conservative or surgical, for chronic lateral ankle instability. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, CINAHL and reference lists of articles, all to February 2010. All identified randomised and quasi-randomised controlled trials of interventions for chronic lateral ankle instability were included. Two review authors independently assessed risk of bias and extracted data from each study. Where appropriate, results of comparable studies were pooled. Ten randomised controlled trials were included. Limitations in the design, conduct and reporting of these trials resulted in unclear or high risk of bias assessments relating to allocation concealment, assessor blinding, incomplete and selective outcome reporting. Only limited pooling of the data was possible.Neuromuscular training was the basis of conservative treatment evaluated in four trials. Neuromuscular training compared with no training resulted in better ankle function scores at the end of four weeks training (Ankle Joint Functional Assessment Tool (AJFAT): mean difference (MD) 3.00, 95% CI 0.3 to 5.70; 1 trial, 19 participants; Foot and Ankle Disability Index (FADI) data: MD 8.83, 95% CI 4.46 to 13.20; 2 trials, 56 participants). The fourth trial (19 participants) found no significant difference in the functional outcome after six weeks training programme on a cyclo-ergometer with a bi-directional compared with a traditional uni-directional pedal. Longer-term follow-up data were not available for these four trials.Four studies compared surgical procedures for chronic ankle instability. One trial (40 participants) found more nerve injuries after tenodesis than anatomical reconstruction (risk ratio (RR) 5.50, 95% CI 1.39 to 21.71). One trial (99 participants) comparing dynamic versus static tenodesis excluded 17 patients allocated dynamic tenodesis because their tendons were too thin. The same trial found that dynamic tenodesis resulted in higher numbers of people with unsatisfactory function (RR 8.62, 95% CI 1.97 to 37.77, 82 participants). One trial comparing techniques of lateral ankle ligament reconstruction (60 participants) found that operating time was shorter using the reinsertion technique than the imbrication method (MD -9.00 minutes, 95% CI -13.48 to -4.52). Two trials (70 participants) compared functional mobilisation with immobilisation after surgery. These found early mobilisation led to earlier return to work (MD -2.00 weeks, 95% CI -3.06 to -0.94; 1 trial) and to sports (MD -3.00 weeks, 95% CI -4.49 to -1.51; 1 trial). Neuromuscular training alone appears effective in the short term but whether this advantage would persist on longer-term follow-up is not known. While there is insufficient evidence to support any one surgical intervention over another surgical intervention for chronic ankle instability, it is likely that there are limitations to the use of dynamic tenodesis. After surgical reconstruction, early functional rehabilitation appears to be superior to six weeks immobilisation in restoring early function.

  15. Modular ankle robotics training in early subacute stroke: a randomized controlled pilot study.

    PubMed

    Forrester, Larry W; Roy, Anindo; Krywonis, Amanda; Kehs, Glenn; Krebs, Hermano Igo; Macko, Richard F

    2014-09-01

    BACKGROUND. Modular lower extremity robotics may offer a valuable avenue for restoring neuromotor control after hemiparetic stroke. Prior studies show that visually guided and visually evoked practice with an ankle robot (anklebot) improves paretic ankle motor control that translates into improved overground walking. To assess the feasibility and efficacy of daily anklebot training during early subacute hospitalization poststroke. Thirty-four inpatients from a stroke unit were randomly assigned to anklebot (n = 18) or passive manual stretching (n = 16) treatments. All suffered a first stroke with residual hemiparesis (ankle manual muscle test grade 1/5 to 4/5), and at least trace muscle activation in plantar- or dorsiflexion. Anklebot training employed an "assist-as-needed" approach during >200 volitional targeted paretic ankle movements, with difficulty adjusted to active range of motion and success rate. Stretching included >200 daily mobilizations in these same ranges. All sessions lasted 1 hour and assessments were not blinded. Both groups walked faster at discharge; however, the robot group improved more in percentage change of temporal symmetry (P = .032) and also of step length symmetry (P = .038), with longer nonparetic step lengths in the robot (133%) versus stretching (31%) groups. Paretic ankle control improved in the robot group, with increased peak (P ≤ .001) and mean (P ≤ .01) angular speeds, and increased movement smoothness (P ≤ .01). There were no adverse events. Though limited by small sample size and restricted entry criteria, our findings suggest that modular lower extremity robotics during early subacute hospitalization is well tolerated and improves ankle motor control and gait patterning. © The Author(s) 2014.

  16. The postoperative COFAS end-stage ankle arthritis classification system: interobserver and intraobserver reliability.

    PubMed

    Krause, Fabian G; Di Silvestro, Matthew; Penner, Murray J; Wing, Kevin J; Glazebrook, Mark A; Daniels, Timothy R; Lau, Johnny T C; Younger, Alastair S E

    2012-02-01

    End-stage ankle arthritis is operatively treated with numerous designs of total ankle replacement and different techniques for ankle fusion. For superior comparison of these procedures, outcome research requires a classification system to stratify patients appropriately. A postoperative 4-type classification system was designed by 6 fellowship-trained foot and ankle surgeons. Four surgeons reviewed blinded patient profiles and radiographs on 2 occasions to determine the interobserver and intraobserver reliability of the classification. Excellent interobserver reliability (κ = .89) and intraobserver reproducibility (κ = .87) were demonstrated for the postoperative classification system. In conclusion, the postoperative Canadian Orthopaedic Foot and Ankle Society (COFAS) end-stage ankle arthritis classification system appears to be a valid tool to evaluate the outcome of patients operated for end-stage ankle arthritis.

  17. Lateral ankle instability and revision surgery alternatives in the athlete.

    PubMed

    Schenck, Robert C; Coughlin, Michael J

    2009-06-01

    Ankle instability in the athlete is a common problem that is routinely treated non-operatively, with a 90% success rate. With proprioceptive training, preventive equipment (bracing/taping), and closed kinetic chain strengthening, surgery for ankle instability is uncommon. Nonetheless, some athletes present with recurrent ankle instability that, despite work-up and conservative treatment, requires surgical correction. The use of a primary ligament repair (Brostrom procedure) versus augmented (anatomic) reconstructions is discussed in detail in this article.

  18. Balance rehabilitation: promoting the role of virtual reality in patients with diabetic peripheral neuropathy.

    PubMed

    Grewal, Gurtej S; Sayeed, Rashad; Schwenk, Michael; Bharara, Manish; Menzies, Robert; Talal, Talal K; Armstrong, David G; Najafi, Bijan

    2013-01-01

    Individuals with diabetic peripheral neuropathy frequently experience concomitant impaired proprioception and postural instability. Conventional exercise training has been demonstrated to be effective in improving balance but does not incorporate visual feedback targeting joint perception, which is an integral mechanism that helps compensate for impaired proprioception in diabetic peripheral neuropathy. This prospective cohort study recruited 29 participants (mean ± SD: age, 57 ± 10 years; body mass index [calculated as weight in kilograms divided by height in meters squared], 26.9 ± 3.1). Participants satisfying the inclusion criteria performed predefined ankle exercises through reaching tasks, with visual feedback from the ankle joint projected on a screen. Ankle motion in the mediolateral and anteroposterior directions was captured using wearable sensors attached to the participant's shank. Improvements in postural stability were quantified by measuring center of mass sway area and the reciprocal compensatory index before and after training using validated body-worn sensor technology. Findings revealed a significant reduction in center of mass sway after training (mean, 22%; P = .02). A higher postural stability deficit (high body sway) at baseline was associated with higher training gains in postural balance (reduction in center of mass sway) (r = -0.52, P < .05). In addition, significant improvement was observed in postural coordination between the ankle and hip joints (mean, 10.4%; P = .04). The present research implemented a novel balance rehabilitation strategy based on virtual reality technology. The method included wearable sensors and an interactive user interface for real-time visual feedback based on ankle joint motion, similar to a video gaming environment, for compensating impaired joint proprioception. These findings support that visual feedback generated from the ankle joint coupled with motor learning may be effective in improving postural stability in patients with diabetic peripheral neuropathy.

  19. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES – IMPLICATIONS FOR REHABILITATION STRATEGIES

    PubMed Central

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas; Tang, Lars; Zebis, Mette; Nielsen, Kristian

    2016-01-01

    ABSTRACT Background A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important to characterize different balance exercises based on level of difficulty and sensori-motor training stimulus. Purpose The purpose of this study was to investigate frontal-plane ankle kinematics and associated peroneal muscle activity during single-legged balance on stable surface (floor) and three commonly used balance devices (Airex®, BOSU® Ball and wobble board). Design Descriptive exploratory laboratory study. Methods Nineteen healthy subjects performed single-legged balance with eyes open on an Airex® mat, BOSU® Ball, wobble board, and floor (reference condition). Ankle kinematics were measured using reflective markers and 3-dimensional recordings and expressed as inversion-eversion range of motion variability, peak velocity of inversion and number of inversion-eversion direction changes. Peroneus longus EMG activity was averaged and normalized to maximal activity during maximum voluntary contraction (MVC), and in addition amplitude probability distribution function (APDF) between 90 and 10% was calculated as a measure of muscle activation variability. Results Balancing on BOSU® Ball and wobble board generally resulted in increased ankle kinematic and muscle activity variables, compared to the other surfaces. BOSU® Ball was the most challenging in terms of inversion-eversion variability while wobble board was associated with a higher number of inversion-eversion direction changes. No differences in average muscle activation level were found between these two surfaces, but the BOSU® Ball did show a more variable activation pattern in terms of APDF. Conclusion The results showed large kinematic variability among different balance training devices and these differences are also reflected in muscle activation variability. The two most challenging devices were BOSU® Ball and Wobble board compared to Airex® and floor. This study can serve as guidance for clinicians who wish to implement a gradual progression of ankle rehabilitation and prevention exercises by taking the related ankle kinematics and muscle activity into account. Level of Evidence Level 3 PMID:27274425

  20. An uncommon ankle sprain

    PubMed Central

    van Zoest, Wart J F; Janssen, Rob P A; Tseng, Carroll M E S

    2007-01-01

    Objective Ankle sprain is the most frequently occurring acute injury in tennis, accounting for 20–25% of all injuries. In the current paper, we assess the cause of ankle sprain and suggest possibilities to be considered during diagnosis. Methods We assessed a professional tennis player with a partial tear of the long peroneal tendon after an ankle sprain by physical exam, X‐ray and MRI. Results Conservative treatment by means of soft cast and propriocepsis training led to full recovery. Conclusion Peroneal tendon disorders must be part of the differential diagnosis after ankle sprain in the professional athlete. PMID:17957026

  1. Comparison of Joint Loading in Badminton Lunging between Professional and Amateur Badminton Players

    PubMed Central

    Fu, Lin

    2017-01-01

    The knee and ankle are the two most injured joints associated with the sport of badminton. This study evaluates biomechanical factors between professional and amateur badminton players using an injury mechanism model. The aim of this study was to investigate the kinematic motion and kinetic loading differences of the right knee and ankle while performing a maximal right lunge. Amateur players exhibited greater ankle range of motion (p < 0.05, r = 0.89) and inversion joint moment (p < 0.05, r = 0.54) in the frontal plane as well as greater internal joint rotation moment (p < 0.05, r = 0.28) in the horizontal plane. In contrast, professional badminton players presented a greater knee joint moment in the sagittal (p < 0.05, r = 0.59) and frontal (p < 0.05, r = 0.37) planes, which may be associated with increased knee ligamentous injury risk. To avoid injury, the players need to forcefully extend the knee with internal rotation, strengthen the muscles around the ankle ligament, and maximise joint coordination during training. The injuries recorded and the forces responsible for the injuries seem to have developed during training activity. Training programmes and injury prevention strategies for badminton players should account for these findings to reduce potential injury to the ankle and knee. PMID:28694684

  2. Modular Ankle Robotics Training in Early Sub-Acute Stroke: A Randomized Controlled Pilot Study

    PubMed Central

    Forrester, Larry W.; Roy, Anindo; Krywonis, Amanda; Kehs, Glenn; Krebs, Hermano Igo; Macko, Richard F.

    2014-01-01

    Background Modular lower extremity (LE) robotics may offer a valuable avenue for restoring neuromotor control after hemiparetic stroke. Prior studies show that visually-guided and visually-evoked practice with an ankle robot (anklebot) improves paretic ankle motor control that translates into improved overground walking. Objective Assess the feasibility and efficacy of daily anklebot training during early sub-acute hospitalization post-stroke. Methods Thirty-four inpatients from a stroke unit were randomly assigned to anklebot (N=18) or passive manual stretching (N=16) treatments. All suffered a first stroke with residual hemiparesis (ankle manual muscle test grade 1/5 to 4/5), and at least trace muscle activation in plantar- or dorsiflexion. Anklebot training employed an “assist-as-needed” approach during > 200 volitional targeted paretic ankle movements, with difficulty adjusted to active range of motion and success rate. Stretching included >200 daily mobilizations in these same ranges. All sessions lasted 1 hour and assessments were not blinded. Results Both groups walked faster at discharge, however the robot group improved more in percent change of temporal symmetry (p=0.032) and also of step length symmetry (p=0.038), with longer nonparetic step lengths in the robot (133%) vs. stretching (31%) groups. Paretic ankle control improved in the robot group, with increased peak (p≤ 0.001) and mean (p≤ 0.01) angular speeds, and increased movement smoothness (p≤ 0.01). There were no adverse events. Conclusion Though limited by small sample size and restricted entry criteria, our findings suggest that modular lower extremity robotics during early sub-acute hospitalization is well tolerated and improves ankle motor control and gait patterning. PMID:24515923

  3. Effects of Ankle Braces Upon Agility Course Performance in High School Athletes

    PubMed Central

    Beriau, Mark R.; Cox, William B.; Manning, James

    1994-01-01

    The purpose of this study was to compare the effects of wearing the AircastTM Sports Stirrup, AircastTM Training brace, Swede-OTM brace, and DonJoyTM Ankle Ligament Protector while running an agility course. Eighty-five high school athletes with no history of ankle injury and no experience in wearing any ankle support served as subjects. Each subject participated in four separate testing sessions. During sessions 1 and 4, subjects ran the agility course under the control (unbraced) conditions. Sessions 2 and 3 consisted of randomly wearing the ankle braces while running the agility course. A questionnaire concerning support, comfort, and restriction was completed by each subject after wearing each of the braces. An analysis of variance (ANOVA) with repeated measures revealed that a significant difference existed between the agility times. Tukey's post hoc test indicated that a significant difference existed between each ankle brace and the control 2 agility times as well as a control 1 and control 2 time difference. The control time difference was attributed to a learning effect. An ANOVA with repeated measures of only the four braces revealed that a significant difference existed between the agility times. Tukey's post hoc test showed the only difference was between the DonJoy Ankle Ligament Protector and the Aircast Training brace. We concluded: 1) there is limited practical performance effect upon agility while wearing an ankle brace; and 2) an athlete's perceived comfort, support, and performance restriction are contributing factors that may directly influence the effectiveness of ankle bracing. PMID:16558284

  4. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners.

    PubMed

    Kuhman, Daniel; Melcher, Daniel; Paquette, Max R

    2016-01-01

    The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6 min mile(-1)) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.

  5. Balance and agility training does not always decrease lower limb injury risks: a cluster-randomised controlled trial.

    PubMed

    Goodall, Rodney L; Pope, Rodney P; Coyle, Julia A; Neumayer, Robert

    2013-01-01

    The objective of this study was to examine the effects on lower limb injury rates of adding structured balance and agility exercises to the 80-day basic training programme of army recruits. A blocked (stratified), cluster-randomised controlled trial was employed, with one intervention group (IG) and one control group (CG), in which 732 male and 47 female army recruits from the Australian Army Recruit Training Centre participated through to analysis. The IG performed specified balance and agility exercises in addition to normal physical training. The incidence of lower limb injury during basic training was used to measure effect. Analysis, which adhered to recommendations for this type of trial, used a weighted paired t-test based on the empirical logistic transform of the crude event rates. The intervention had no statistically significant effect on lower limb injury incidence (RR = 1.25, 95% CI 0.97-1.53, 90% CI 1.04-1.47), on knee and ankle injury incidence (RR = 1.08, 95% CI 0.83-1.38), and on knee and ankle ligament injury incidence (RR = 0.98, 95% CI 0.64-1.47). We conclude that the intervention, implemented in this fashion, is possibly harmful, with our best estimate of effect being a 25% increase in lower limb injury incidence rates. This type of structured balance and agility training added to normal military recruit physical training did not significantly reduce lower limb, knee and ankle, or knee and ankle ligament injury rates. Caution needs to be used when adding elements to training programmes with the aim of reducing injury, as fatigue associated with the addition may actually raise injury risk.

  6. Evaluating Postural Control and Ankle Laxity Between Taping and High-Top Cleats in High School Football Players.

    PubMed

    Pizac, Douglas A; Swanik, Charles B; Glutting, Joseph J; Kaminski, Thomas W

    2018-03-01

    Lateral ankle sprains are the most common injuries in high school sports. While ankle taping is a preferred method of external prophylactic support, its restrictive properties decline during exercise. The Under Armour ® Highlight cleat is marketed on the premise that it provides added support without the need for additional ankle taping. To determine if differences in ankle joint laxity and postural control exist between football players wearing the Under Armour ® Highlight cleat (Under Armour Inc, Baltimore, MD) as compared to a low/mid-top cleat with ankle tape. Crossover trial. Athletic training room and football practice field sideline. 32 interscholastic football players (15.8 ± 1.0 y; 178.9 ± 7.4 cm; 87.1 ± 21.4 kg). Ankle laxity was assessed using an instrumented ankle arthrometer (Blue Bay Research Inc, Milton, FL), while postural control testing was performed on the Tekscan MobileMat™ Balanced Error Scoring System (BESS; South Boston, MA). The 2 treatments included Under Armour ® Highlight cleats and a low/mid-top cleat with ankle tape applied to the nondominant ankle only. Measurements were taken before and immediately after practice. The independent variable was treatment (Highlight vs low/mid-top cleat with ankle tape). Dependent variables included ankle arthrometry measures of anterior displacement (mm), inversion/eversion rotation (deg), and the modified BESS error scores. A linear mixed-effects model was used for analysis. The low/mid-top cleat with tape condition had significantly higher inversion range-of-motion (ROM) and inversion/eversion rotation postexercise when compared to the Highlight cleat (P < 0.05). The results of this study provide some evidence that the Under Armour ® Highlight cleat restricts ankle ROM following a training session better than the taped low/mid-top cleat. Further study is warranted to determine if this high-top style of football cleat can reduce the incidence of ankle sprains and how it might compare to spat taping.

  7. Increased reward in ankle robotics training enhances motor control and cortical efficiency in stroke.

    PubMed

    Goodman, Ronald N; Rietschel, Jeremy C; Roy, Anindo; Jung, Brian C; Diaz, Jason; Macko, Richard F; Forrester, Larry W

    2014-01-01

    Robotics is rapidly emerging as a viable approach to enhance motor recovery after disabling stroke. Current principles of cognitive motor learning recognize a positive relationship between reward and motor learning. Yet no prior studies have established explicitly whether reward improves the rate or efficacy of robotics-assisted rehabilitation or produces neurophysiologic adaptations associated with motor learning. We conducted a 3 wk, 9-session clinical pilot with 10 people with chronic hemiparetic stroke, randomly assigned to train with an impedance-controlled ankle robot (anklebot) under either high reward (HR) or low reward conditions. The 1 h training sessions entailed playing a seated video game by moving the paretic ankle to hit moving onscreen targets with the anklebot only providing assistance as needed. Assessments included paretic ankle motor control, learning curves, electroencephalograpy (EEG) coherence and spectral power during unassisted trials, and gait function. While both groups exhibited changes in EEG, the HR group had faster learning curves (p = 0.05), smoother movements (p

  8. Effect of ankle proprioceptive exercise on static and dynamic balance in normal adults.

    PubMed

    Yong, Min-Sik; Lee, Yun-Seob

    2017-02-01

    [Purpose] The present study was conducted to investigate whether ankle proprioceptive exercise affects static and dynamic balance in normal adults. [Subjects and Methods] Twenty-eight normal adults were recruited to measure their static and dynamic balancing before and after the proprioceptive exercise. A subject stood with bare feet on the round supporting platform of the device for measuring balance, and the investigator entered the age and the height of the subjects and set his/her feet on the central point of the monitor screen. Training of ankle proprioceptive sense for the movements of plantar-flexion and dorsiflexion was performed. In the training of joint position sense in plantar-flexion and dorsiflexion, the plantar-flexion and the dorsiflexion were set as 15°, respectively. [Results] The static balancing did not show significant differences in average, while the dynamic balancing showed significant differences. [Conclusion] Ankle proprioceptive exercise can affect dynamic balance.

  9. Influence of Isokinetic Strength Training of Unilateral Ankle on Ipsilateral One-legged Standing Balance of Adults

    PubMed Central

    Son, Sung Min; Kang, Kyung Woo; Lee, Na Kyung; Nam, Seok Hyun; Kwon, Jung Won; Kim, Kyoung

    2013-01-01

    [Purpose] The purpose of the current study was to investigate the changes in one-legged standing balance of the ipsilateral lower limb following unilateral isokinetic strength training. [Subjects and Methods] Thirty healthy adult volunteers were randomly assigned to either a training group or a control group, so that each group included 15 subjects. Subjects in the training group performed unilateral ankle isokinetic exercises of the dominant leg using the Biodex 3 PRO System for a period of four weeks. Ipsilateral one-legged standing balance was evaluated before and after the intervention with three stability indexes of balance using the Biodex System: Anterior-Posterior Stability Index (APSI), Medial-Lateral Stability Index (MLSI), and Overall Stability Index (OSI). [Results] Comparison of pre- and post-test data revealed significant improvements in strength values (dorsiflexion, plantarflexion, eversion, and inversion) and stability indexes (APSI, MLSI, OSI). [Conclusion] These results suggest that ankle strengthening exercise can be considered as a form of exercise that may assist individuals with improvement of balance. PMID:24259783

  10. Prophylactic Ankle Bracing in Military Settings: A Review of the Literature.

    PubMed

    Newman, Thomas M; Gay, Michael R; Buckley, W E

    2017-03-01

    Within athletics and the military, ankle sprains are one of the most common injuries with the potential for long-term functional deficits. Incidence rates for ankle sprains within the military are one of the leading causes of limited duty days, especially during basic combat training, parachute training exercises, and in cadet populations. In 2008, the Department of Defense U.S. Army Center for Health Promotion and Preventative Medicine report recommended that military personnel should wear semirigid ankle braces during parachuting, basketball, soccer, and other similar high-risk activities to reduce ankle sprain injuries. This recommendation was developed using a majority of athletic references with limited data stemming from military works. Of these included military studies, none presented data on ankle braces and their effects on performance, especially in military-specific environments. The purpose of this review was to provide an up-to-date account on the use of ankle braces in military populations and effects on performance measures. A comprehensive online systematic review of the literature was conducted to delineate the current use of ankle braces in the military and how they specifically affect functional performance measures. The scope of this study eliminated military studies that were not prospective in nature or did not incorporate subjects wearing military equipment (i.e., combat boots). It was determined that little progress has been made in validating the use of semirigid ankle braces in military populations other than in instances such as parachuting and only in reducing the number ankle injuries. To date, only one study has looked specifically at the use of ankle braces and its effects on performance measures in a military sample. With the high incidence rate and increased risk for subsequent reinjury, ankle sprains are an economic and force readiness burden to the U.S. Armed Forces. This study was conducted to determine whether additional literature was available for the use of ankle braces on performance measures in the military. It was determined that there is a scarcity of information currently available on the use of ankle braces in military populations, outside of parachuting activities. The Department of Defense recommendation of using semirigid ankle braces may ultimately be beneficial to a multitude of high-risk military activities, but further research must be conducted to determine possible detrimental performance effects. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  11. The effect of additional joint mobilization on neuromuscular performance in individuals with functional ankle instability.

    PubMed

    Shih, Yi-Fen; Yu, Hsiang-Ting; Chen, Wen-Yin; Liao, Kwong-Kum; Lin, Hsiu-Chen; Yang, Yea-Ru

    2018-03-01

    To examine the effects of joint mobilization and exercise training on neuromuscular performance in individuals with functional ankle instability (FAI). A cross-sectional study. Forty five subjects with FAI were randomized into three groups: control (CG, n = 15, 27.9 ± 6.6yr), training (TG, n = 15, 26.9 ± 5.8yr) and mobilization with training group (MTG, n = 15, 26.5 ± 4.8yr). Four weeks of neuromuscular training for TG; neuromuscular training and joint mobilization for MTG. Electromyography of the peroneus longus (PL), tibialis anterior (TA), and soleus (SOL) and the reaching distance of the Y balance test (YBT), dorsiflexion range of motion (DFROM), Cumberland ankle instability tool (CAIT), and global rating scale (GRS). Two-way repeated measures MANOVA were used with the significance level p < .05. MANOVA found significant group by time interactions on posterolateral reaching distance (p = .032), PL activation (p = .006-.03), DFROM (p < .001), CAIT (p < .001) and GRS (p < .001). The post hoc tests indicated significantly improved PL muscle activity and posterolateral reaching distance for MTG compared to TG (p = .004) and CG (p = .006). Joint mobilization resulted in additional benefits on self-reported ankle instability severity, dorsiflexion mobility, and posterolateral balance performance in individuals with FAI, but its effects on general improvement, muscle activation, and other balance tasks remained uncertain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Podiatry Ankle Duplex Scan: Readily Learned and Accurate in Diabetes.

    PubMed

    Normahani, Pasha; Powezka, Katarzyna; Aslam, Mohammed; Standfield, Nigel J; Jaffer, Usman

    2018-03-01

    We aimed to train podiatrists to perform a focused duplex ultrasound scan (DUS) of the tibial vessels at the ankle in diabetic patients; podiatry ankle (PodAnk) duplex scan. Thirteen podiatrists underwent an intensive 3-hour long simulation training session. Participants were then assessed performing bilateral PodAnk duplex scans of 3 diabetic patients with peripheral arterial disease. Participants were assessed using the duplex ultrasound objective structured assessment of technical skills (DUOSATS) tool and an "Imaging Score". A total of 156 vessel assessments were performed. All patients had abnormal waveforms with a loss of triphasic flow. Loss of triphasic flow was accurately detected in 145 (92.9%) vessels; the correct waveform was identified in 139 (89.1%) cases. Participants achieved excellent DUOSATS scores (median 24 [interquartile range: 23-25], max attainable score of 26) as well as "Imaging Scores" (8 [8-8], max attainable score of 8) indicating proficiency in technical skills. The mean time taken for each bilateral ankle assessment was 20.4 minutes (standard deviation ±6.7). We have demonstrated that a focused DUS for the purpose of vascular assessment of the diabetic foot is readily learned using intensive simulation training.

  13. Comparative Effects of Different Balance-Training–Progression Styles on Postural Control and Ankle Force Production: A Randomized Controlled Trial

    PubMed Central

    Cuğ, Mutlu; Duncan, Ashley; Wikstrom, Erik

    2016-01-01

    Context:  Despite the effectiveness of balance training, the exact parameters needed to maximize the benefits of such programs remain unknown. One such factor is how individuals should progress to higher levels of task difficulty within a balance-training program. Yet no investigators have directly compared different balance-training–progression styles. Objective:  To compare an error-based progression (ie, advance when proficient at a task) with a repetition-based progression (ie, advance after a set amount of repetitions) style during a balance-training program in healthy individuals. Design:  Randomized controlled trial. Setting:  Research laboratory. Patients or Other Participants:  A total of 28 (16 women, 12 men) physically healthy young adults (age = 21.57 ± 3.95 years, height = 171.60 ± 11.03 cm, weight = 72.96 ± 16.18 kg, body mass index = 24.53 ± 3.7). Intervention(s):  All participants completed 12 supervised balance-training sessions over 4 weeks. Each session consisted of a combination of dynamic unstable-surface tasks that incorporated a BOSU ball and lasted about 30 minutes. Main Outcome Measure(s):  Static balance from an instrumented force plate, dynamic balance as measured via the Star Excursion Balance Test, and ankle force production in all 4 cardinal planes of motion as measured with a handheld dynamometer before and after the intervention. Results:  Selected static postural-control outcomes, dynamic postural control, and ankle force production in all planes of motion improved (P < .05). However, no differences between the progression styles were observed (P > .05) for any of the outcome measures. Conclusions:  A 4-week balance-training program consisting of dynamic unstable-surface exercises on a BOSU ball improved dynamic postural control and ankle force production in healthy young adults. These results suggest that an error-based balance-training program is comparable with but not superior to a repetition-based balance-training program in improving postural control and ankle force production in healthy young adults. PMID:26878257

  14. Posterior approach for arthroscopic treatment of posterolateral impingement syndrome of the ankle in a top-level field hockey player.

    PubMed

    Lohrer, Heinz; Arentz, Sabine

    2004-04-01

    A case history of a 25-year-old field hockey player, a member of the German National Field Hockey Team, is presented. The patient could not remember any specific ankle injury, but since the World Indoor Championship in February 2003, he experienced significant but diffuse pain around the posterior ankle, especially while loading the forefoot in hockey training and competition. For 2 months, the patient was unable to run. Conservative treatment failed, and surgery was performed. Posterior ankle arthroscopy revealed a frayed posterior intermalleolar ligament and meniscoid-like scar tissue at the posterolateral ankle, indicating a posterolateral soft tissue ankle impingement syndrome. A concomitant inflammation of the posterolateral ankle and subtalar synovium was present. After arthroscopic resection and early functional aftertreatment, the patient returned to full high-level sports ability within 2 months.

  15. Performance of Activity Classification Algorithms in Free-living Older Adults

    PubMed Central

    Sasaki, Jeffer Eidi; Hickey, Amanda; Staudenmayer, John; John, Dinesh; Kent, Jane A.; Freedson, Patty S.

    2015-01-01

    Purpose To compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. Methods Thirty-five older adults (21F and 14M ; 70.8 ± 4.9 y) performed selected activities in the laboratory while wearing three ActiGraph GT3X+ activity monitors (dominant hip, wrist, and ankle). Monitors were initialized to collect raw acceleration data at a sampling rate of 80 Hz. Fifteen of the participants also wore the GT3X+ in free-living settings and were directly observed for 2-3 hours. Time- and frequency- domain features from acceleration signals of each monitor were used to train Random Forest (RF) and Support Vector Machine (SVM) models to classify five activity types: sedentary, standing, household, locomotion, and recreational activities. All algorithms were trained on lab data (RFLab and SVMLab) and free-living data (RFFL and SVMFL) using 20 s signal sampling windows. Classification accuracy rates of both types of algorithms were tested on free-living data using a leave-one-out technique. Results Overall classification accuracy rates for the algorithms developed from lab data were between 49% (wrist) to 55% (ankle) for the SVMLab algorithms, and 49% (wrist) to 54% (ankle) for RFLab algorithms. The classification accuracy rates for SVMFL and RFFL algorithms ranged from 58% (wrist) to 69% (ankle) and from 61% (wrist) to 67% (ankle), respectively. Conclusion Our algorithms developed on free-living accelerometer data were more accurate in classifying activity type in free-living older adults than our algorithms developed on laboratory accelerometer data. Future studies should consider using free-living accelerometer data to train machine-learning algorithms in older adults. PMID:26673129

  16. Performance of Activity Classification Algorithms in Free-Living Older Adults.

    PubMed

    Sasaki, Jeffer Eidi; Hickey, Amanda M; Staudenmayer, John W; John, Dinesh; Kent, Jane A; Freedson, Patty S

    2016-05-01

    The objective of this study is to compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. Thirty-five older adults (21 females and 14 males, 70.8 ± 4.9 yr) performed selected activities in the laboratory while wearing three ActiGraph GT3X+ activity monitors (in the dominant hip, wrist, and ankle; ActiGraph, LLC, Pensacola, FL). Monitors were initialized to collect raw acceleration data at a sampling rate of 80 Hz. Fifteen of the participants also wore GT3X+ in free-living settings and were directly observed for 2-3 h. Time- and frequency-domain features from acceleration signals of each monitor were used to train random forest (RF) and support vector machine (SVM) models to classify five activity types: sedentary, standing, household, locomotion, and recreational activities. All algorithms were trained on laboratory data (RFLab and SVMLab) and free-living data (RFFL and SVMFL) using 20-s signal sampling windows. Classification accuracy rates of both types of algorithms were tested on free-living data using a leave-one-out technique. Overall classification accuracy rates for the algorithms developed from laboratory data were between 49% (wrist) and 55% (ankle) for the SVMLab algorithms and 49% (wrist) to 54% (ankle) for the RFLab algorithms. The classification accuracy rates for SVMFL and RFFL algorithms ranged from 58% (wrist) to 69% (ankle) and from 61% (wrist) to 67% (ankle), respectively. Our algorithms developed on free-living accelerometer data were more accurate in classifying the activity type in free-living older adults than those on our algorithms developed on laboratory accelerometer data. Future studies should consider using free-living accelerometer data to train machine learning algorithms in older adults.

  17. Parachute Ankle Brace Effectiveness Evaluation

    DTIC Science & Technology

    2010-05-01

    increase in the risk of other injuries (2, 7, 11). There were no differences in risk of ankle injury comparing periods when brace use was not...2006. The exclusions based on age and missing data were thought to represent coding errors . (Figure 2.1) 5 Figure 2.1 PAS Extens ion Project...similar to the referent (data not shown). Rate ratios were similar after adjustment for age at start of training, rank, duration of service, ankle

  18. Video game-based neuromuscular electrical stimulation system for calf muscle training: a case study.

    PubMed

    Sayenko, D G; Masani, K; Milosevic, M; Robinson, M F; Vette, A H; McConville, K M V; Popovic, M R

    2011-03-01

    A video game-based training system was designed to integrate neuromuscular electrical stimulation (NMES) and visual feedback as a means to improve strength and endurance of the lower leg muscles, and to increase the range of motion (ROM) of the ankle joints. The system allowed the participants to perform isotonic concentric and isometric contractions in both the plantarflexors and dorsiflexors using NMES. In the proposed system, the contractions were performed against exterior resistance, and the angle of the ankle joints was used as the control input to the video game. To test the practicality of the proposed system, an individual with chronic complete spinal cord injury (SCI) participated in the study. The system provided a progressive overload for the trained muscles, which is a prerequisite for successful muscle training. The participant indicated that he enjoyed the video game-based training and that he would like to continue the treatment. The results show that the training resulted in a significant improvement of the strength and endurance of the paralyzed lower leg muscles, and in an increased ROM of the ankle joints. Video game-based training programs might be effective in motivating participants to train more frequently and adhere to otherwise tedious training protocols. It is expected that such training will not only improve the properties of their muscles but also decrease the severity and frequency of secondary complications that result from SCI. Copyright © 2010 IPEM. All rights reserved.

  19. Lower limb strength in professional soccer players: profile, asymmetry, and training age.

    PubMed

    Fousekis, Konstantinos; Tsepis, Elias; Vagenas, George

    2010-01-01

    Kicking and cutting skills in soccer are clearly unilateral, require asymmetrical motor patterns and lead to the development of asymmetrical adaptations in the musculoskeletal function of the lower limbs. Assuming that these adaptations constitute a chronicity-dependent process, this study examined the effects of professional training age (PTA) on the composite strength profile of the knee and ankle joint in soccer players. One hundred soccer players (n=100) with short (5-7 years), intermediate (8-10 years) and long (>11 years) PTA were tested bilaterally for isokinetic concentric and eccentric strength of the knee and ankle muscles. Knee flexion-extension was tested concentrically at 60°, 180° and 300 °/sec and eccentrically at 60° and 180 °/sec. Ankle dorsal and plantar flexions were tested at 60 °/sec for both the concentric and eccentric mode of action. Bilaterally averaged muscle strength [(R+L)/2] increased significantly from short training age to intermediate and stabilized afterwards. These strength adaptations were mainly observed at the concentric function of knee extensors at 60°/sec (p = 0. 023), knee flexors at 60°/sec (p = 0.042) and 180°/sec (p = 0.036), and ankle plantar flexors at 60o/sec (p = 0.044). A linear trend of increase in isokinetic strength with PTA level was observed for the eccentric strength of knee flexors at 60°/sec (p = 0.02) and 180°/sec (p = 0.03). Directional (R/L) asymmetries decreased with PTA, with this being mainly expressed in the concentric function of knee flexors at 180°/sec (p = 0.04) and at 300 °/sec (p = 0.03). These findings confirm the hypothesis of asymmetry in the strength adaptations that take place at the knee and ankle joint of soccer players mainly along with short and intermediate PTA. Players with a longer PTA seem to adopt a more balanced use of their lower extremities to cope with previously developed musculoskeletal asymmetries and possibly reduce injury risk. This has certain implications regarding proper training and injury prevention in relation to professional experience in soccer. Key pointsMuscle strength increased from the low (5-7 years) to the intermediate professional training age (8-10 years) and stabilized thereafter.Soccer practicing and competition at the professional level induces critical strength adaptations (asymmetries) regarding the function of the knee and ankle musculature.Soccer players with long professional training age showed a tendency for lower isokinetic strength asymmetries than players with intermediate and short professional training age.

  20. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation

    PubMed Central

    Michmizos, Konstantinos P.; Rossi, Stefano; Castelli, Enrico; Cappa, Paolo; Krebs, Hermano Igo

    2015-01-01

    This paper presents the pediAnklebot, an impedance-controlled low-friction, backdriveable robotic device developed at the Massachusetts Institute of Technology that trains the ankle of neurologically impaired children of ages 6-10 years old. The design attempts to overcome the known limitations of the lower extremity robotics and the unknown difficulties of what constitutes an appropriate therapeutic interaction with children. The robot's pilot clinical evaluation is on-going and it incorporates our recent findings on the ankle sensorimotor control in neurologically intact subjects, namely the speed-accuracy tradeoff, the deviation from an ideally smooth ankle trajectory, and the reaction time. We used these concepts to develop the kinematic and kinetic performance metrics that guided the ankle therapy in a similar fashion that we have done for our upper extremity devices. Here we report on the use of the device in at least 9 training sessions for 3 neurologically impaired children. Results demonstrated a statistically significant improvement in the performance metrics assessing explicit and implicit motor learning. Based on these initial results, we are confident that the device will become an effective tool that harnesses plasticity to guide habilitation during childhood. PMID:25769168

  1. Balance Training Versus Balance Training With STARS in Patients With Chronic Ankle Instability: A Randomized Controlled Trial.

    PubMed

    Burcal, Christopher J; Trier, Alejandra Y; Wikstrom, Erik A

    2017-09-01

    Both balance training and selected interventions meant to target sensory structures (STARS) have been shown to be effective at restoring deficits associated with chronic ankle instability (CAI). Clinicians often use multiple treatment modalities in patients with CAI. However, evidence for combined intervention effectiveness in CAI patients remains limited. To determine if augmenting a balance-training protocol with STARS (BTS) results in greater improvements than balance training (BT) alone in those with CAI. Randomized-controlled trial. Research laboratory. 24 CAI participants (age 21.3 ± 2.0 y; height 169.8 ± 12.9 cm; mass 72.5 ± 22.2 kg) were randomized into 2 groups: BT and BTS. Participants completed a 4-week progression-based balance-training protocol consisting of 3 20-min sessions per week. The experimental group also received a 5-min set of STARS treatments consisting of calf stretching, plantar massage, ankle joint mobilizations, and ankle joint traction before each balance-training session. Outcomes included self-assessed disability, Star Excursion Balance Test reach distance, and time-to-boundary calculated from static balance trials. All outcomes were assessed before, and 24-hours and 1-week after protocol completion. Self-assessed disability was also captured 1-month after the intervention. No significant group differences were identified (P > .10). Both groups demonstrated improvements in all outcome categories after the interventions (P < .10), many of which were retained at 1-week posttest (P < .10). Although 90% CIs include zero, effect sizes favor BTS. Similarly, only the BTS group exceeded the minimal detectable change for time-to-boundary outcomes. While statistically no more effective, exceeding minimal detectable change scores and favorable effect sizes suggest that a 4-week progressive BTS program may be more effective at improving self-assessed disability and postural control in CAI patients than balance training in isolation.

  2. Central common drive to antagonistic ankle muscles in relation to short-term cocontraction training in nondancers and professional ballet dancers.

    PubMed

    Geertsen, S S; Kjær, M; Pedersen, K K; Petersen, T H; Perez, M A; Nielsen, J B

    2013-10-01

    Optimization of cocontraction of antagonistic muscles around the ankle joint has been shown to involve plastic changes in spinal and cortical neural circuitries. Such changes may explain the ability of elite ballet dancers to maintain a steady balance during various ballet postures. Here we investigated whether short-term cocontraction training in ballet dancers and nondancers leads to changes in the coupling between antagonistic ankle motor units. Eleven ballet dancers and 10 nondancers were recruited for the study. Prior to training, ballet dancers and nondancers showed an equal amount of coherence in the 15- to 35-Hz frequency band and short-term synchronization between antagonistic tibialis anterior and soleus motor units. The ballet dancers tended to be better at maintaining a stable cocontraction of the antagonistic muscles, but this difference was not significant (P = 0.09). Following 27 min of cocontraction training, the nondancers improved their performance significantly, whereas no significant improvement was observed for the ballet dancers. The nondancers showed a significant increase in 15- to 35-Hz coherence following the training, whereas the ballet dancers did not show a significant change. A group of control subjects (n = 4), who performed cocontraction of the antagonistic muscles for an equal amount of time, but without any requirement to improve their performance, showed no change in coherence. We suggest that improved ability to maintain a stable cocontraction around the ankle joint is accompanied by short-term plastic changes in the neural drive to the involved muscles, but that such changes are not necessary for maintained high-level performance.

  3. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.

    PubMed

    Miao, Qing; Zhang, Mingming; Wang, Congzhe; Li, Hongsheng

    2018-01-01

    This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords "ankle ∗ ," and "robot ∗ ," and ("rehabilitat ∗ " or "treat ∗ "). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms.

  4. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.

    PubMed

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-08-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.

  5. Overuse ankle injuries in professional Irish dancers.

    PubMed

    Walls, R J; Brennan, S A; Hodnett, P; O'Byrne, J M; Eustace, S J; Stephens, M M

    2010-03-01

    Overuse ankle injuries have been described in elite athletes and professional ballet dancers however the spectrum of injuries experienced by professional Irish dancers has not been defined. A troupe of actively performing dancers from an Irish-dance show were recruited (eight male, ten female; mean age, 26 years). The prevalence of overuse injuries in the right ankle was determined from magnetic resonance imaging. Foot and ankle self-report questionnaires were also completed (AOFAS and FAOS). Only three ankles were considered radiologically normal. Achilles tendinopathy, usually insertional, was the most frequent observation (n=14) followed by plantar fasciitis (n=7), bone oedema (n=2) and calcaneocuboid joint degeneration (n=2). There were limited correlations between MRI patterns and clinical scores indicating that many conditions are sub-clinical. Dancers with ankle pain had poor low (p=0.004) and high (p=0.013) level function. Overuse ankle injuries are common in Irish dancers. Incorporating eccentric exercises and plantar fascia stretching into a regular training program may benefit this population. Copyright 2009 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  6. Difference in postural control between patients with functional and mechanical ankle instability.

    PubMed

    Chen, Henry; Li, Hong-Yun; Zhang, Jian; Hua, Ying-Hui; Chen, Shi-Yi

    2014-10-01

    Lateral ankle sprain is one of the most common injuries. Since the structural and pathological differences in mechanical ankle instability (MAI) and functional ankle instability (FAI) may not be the same, it may be better to treat these as separate groups. The purpose of this study was to compare the difference in postural sway between MAI and FAI in patients with chronic ankle instability (CAI). Twenty-six patients with CAI and 14 healthy control participants were included in the study. The CAI patients were subdivided into MAI (15 patients) and FAI (11 patients) groups. Patients who were diagnosed with lateral ankle ligaments rupture by magnetic resonance imaging and ultrasonography were assigned to the MAI group. All participants performed single-limb postural sway tests 3 times on each leg with eyes closed and open. The average distances from the mean center of pressure position in the mediolateral and anteroposterior directions were recorded and compared among the 3 groups. The unstable ankles in the MAI group showed significantly greater postural sway in the anterior, posterior, and medial directions compared with those in the control group with eyes closed. With eyes open, significantly greater postural sway was found in the anterior direction. In the FAI group, no difference was found in postural sway compared with those in the control group. The MAI group showed significantly greater postural sway in the anterior direction compared with the FAI group with eyes closed and open. No significant difference in postural sway was found between the unstable and stable ankles in the MAI or FAI groups, with or without vision. Patients with MAI have deficits in postural control, especially in anterior-posterior directions. However, no difference was found in postural sway in patients with FAI compared with healthy people. As MAI patients suffer from deficits in postural control, balance training should be applied in those patients. In addition, special training should also include the contralateral side after a unilateral ankle ligament injured. © The Author(s) 2014.

  7. Ankle pain and peroneal tendon pathology.

    PubMed

    Baumhauer, Judith F; Nawoczenski, Deborah A; DiGiovanni, Benedict F; Flemister, A Samuel

    2004-01-01

    Chronic ankle pain can be due to multiple causes. A thorough review of the patient's history with a physical examination concentrating on anatomic structures surrounding the ankle is imperative. The most common of causes have been presented. The addition of provocative testing and radiographic examinations can aid in elucidating the pathology. After treatment of the injury, attention to training technique, shoe and insert usage as well as individual gait abnormalities are integrated into global patient education to decrease the incidence of injury recurrence.

  8. Army Physical Readiness Training

    DTIC Science & Technology

    2010-03-01

    The lower leg pad is adjusted to contact the lower legs just above the ankle , allowing the lower leg to be fully extended, but not locked. The lower...contacts the lower legs just behind the ankles .  The hips, low back, shoulders, and head are firmly against the seat back.  Maintain a natural arch in...count 1 and inhale on count 2. Precautions: Avoid flexing or extending the trunk. Do not allow the ankles to turn in or out. C hapter 6 6-40 T C 3

  9. The implementation effectiveness of the 'Strengthen your ankle' smartphone application for the prevention of ankle sprains: design of a randomized controlled trial.

    PubMed

    Van Reijen, Miriam; Vriend, Ingrid I; Zuidema, Victor; van Mechelen, Willem; Verhagen, Evert A

    2014-01-07

    Ankle sprains continue to pose a significant burden to the individual athlete, as well as to society as a whole. However, despite ankle sprains being the single most common sports injury and despite an active approach by various Dutch organisations in implementing preventive measures, large-scale community uptake of these preventive measures, and thus actual prevention of ankle sprains, is lagging well behind. In an attempt to bridge this implementation gap, the Dutch Consumer Safety Institute VeiligheidNL developed a freely available interactive App ('Strenghten your ankle' translated in Dutch as: 'Versterk je enkel; available for iOS and Android) that contains - next to general advice on bracing and taping - a proven cost-effective neuromuscular program. The 'Strengthen your ankle' App has not been evaluated against the 'regular' prevention approach in which the neuromuscular program is advocated through written material. The aim of the current project is to evaluate the implementation value of the 'Strengthen your ankle' App as compared to the usual practice of providing injured athletes with written materials. In addition, as a secondary outcome measure, the cost-effectiveness will be assessed against usual practice. The proposed study will be a randomised controlled trial. After stratification for medical caregiver, athletes will be randomised to two study groups. One group will receive a standardized eight-week proprioceptive training program that has proven to be cost-effective to prevent recurrent ankle injuries, consisting of a balance board (machU/ MSG Europe BVBA), and a traditional instructional booklet. The other group will receive the same exercise program and balance board. However, for this group the instructional booklet is exchanged by the interactive 'Strengthen your ankle' App. This trial is the first randomized controlled trial to study the implementation effectiveness of an App for proprioceptive balance board training program in comparison to a traditional printed instruction booklet, with the recurrence of ankle sprains among athletes as study outcome. Results of this study could possibly lead to changes in practical guidelines on the treatment of ankle sprains and in the use of mobile applications for injury prevention. Results will become available in 2014. The Netherlands National Trial Register NTR4027. The NTR is part of the WHO Primary Registries.

  10. Clinical application of a modular ankle robot for stroke rehabilitation.

    PubMed

    Forrester, Larry W; Roy, Anindo; Goodman, Ronald N; Rietschel, Jeremy; Barton, Joseph E; Krebs, Hermano Igo; Macko, Richard F

    2013-01-01

    Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance.

  11. Clinical application of a modular ankle robot for stroke rehabilitation

    PubMed Central

    Forrester, Larry W.; Roy, Anindo; Goodman, Ronald N.; Rietschel, Jeremy; Barton, Joseph E.; Krebs, Hermano Igo; Macko, Richard F.

    2015-01-01

    Background Advances in our understanding of neuroplasticity and motor learning post-stroke are now being leveraged with the use of robotics technology to enhance physical rehabilitation strategies. Major advances have been made with upper extremity robotics, which have been tested for efficacy in multi-site trials across the subacute and chronic phases of stroke. In contrast, use of lower extremity robotics to promote locomotor re-learning has been more recent and presents unique challenges by virtue of the complex multi-segmental mechanics of gait. Objectives Here we review a programmatic effort to develop and apply the concept of joint-specific modular robotics to the paretic ankle as a means to improve underlying impairments in distal motor control that may have a significant impact on gait biomechanics and balance. Methods An impedance controlled ankle robot module (anklebot) is described as a platform to test the idea that a modular approach can be used to modify training and measure the time profile of treatment response. Results Pilot studies using seated visuomotor anklebot training with chronic patients are reviewed, along with results from initial efforts to evaluate the anklebot's utility as a clinical tool for assessing intrinsic ankle stiffness. The review includes a brief discussion of future directions for using the seated anklebot training in the earliest phases of sub-acute therapy, and to incorporate neurophysiological measures of cerebro-cortical activity as a means to reveal underlying mechanistic processes of motor learning and brain plasticity associated with robotic training. Conclusions Finally we conclude with an initial control systems strategy for utilizing the anklebot as a gait training tool that includes integrating an Internal Model-based adaptive controller to both accommodate individual deficit severities and adapt to changes in patient performance. PMID:23949045

  12. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects

    PubMed Central

    Li, Hongsheng

    2018-01-01

    This review aims to compare existing robot-assisted ankle rehabilitation techniques in terms of robot design. Included studies mainly consist of selected papers in two published reviews involving a variety of robot-assisted ankle rehabilitation techniques. A free search was also made in Google Scholar and Scopus by using keywords “ankle∗,” and “robot∗,” and (“rehabilitat∗” or “treat∗”). The search is limited to English-language articles published between January 1980 and September 2016. Results show that existing robot-assisted ankle rehabilitation techniques can be classified into wearable exoskeleton and platform-based devices. Platform-based devices are mostly developed for the treatment of a variety of ankle musculoskeletal and neurological injuries, while wearable ones focus more on ankle-related gait training. In terms of robot design, comparative analysis indicates that an ideal ankle rehabilitation robot should have aligned rotation center as the ankle joint, appropriate workspace, and actuation torque, no matter how many degrees of freedom (DOFs) it has. Single-DOF ankle robots are mostly developed for specific applications, while multi-DOF devices are more suitable for comprehensive ankle rehabilitation exercises. Other factors including posture adjustability and sensing functions should also be considered to promote related clinical applications. An ankle rehabilitation robot with reconfigurability to maximize its functions will be a new research point towards optimal design, especially on parallel mechanisms. PMID:29736230

  13. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.

    PubMed

    Koller, Jeffrey R; Jacobs, Daniel A; Ferris, Daniel P; Remy, C David

    2015-11-04

    Robotic ankle exoskeletons can provide assistance to users and reduce metabolic power during walking. Our research group has investigated the use of proportional myoelectric control for controlling robotic ankle exoskeletons. Previously, these controllers have relied on a constant gain to map user's muscle activity to actuation control signals. A constant gain may act as a constraint on the user, so we designed a controller that dynamically adapts the gain to the user's myoelectric amplitude. We hypothesized that an adaptive gain proportional myoelectric controller would reduce metabolic energy expenditure compared to walking with the ankle exoskeleton unpowered because users could choose their preferred control gain. We tested eight healthy subjects walking with the adaptive gain proportional myoelectric controller with bilateral ankle exoskeletons. The adaptive gain was updated each stride such that on average the user's peak muscle activity was mapped to maximal power output of the exoskeleton. All subjects participated in three identical training sessions where they walked on a treadmill for 50 minutes (30 minutes of which the exoskeleton was powered) at 1.2 ms(-1). We calculated and analyzed metabolic energy consumption, muscle recruitment, inverse kinematics, inverse dynamics, and exoskeleton mechanics. Using our controller, subjects achieved a metabolic reduction similar to that seen in previous work in about a third of the training time. The resulting controller gain was lower than that seen in previous work (β=1.50±0.14 versus a constant β=2). The adapted gain allowed users more total ankle joint power than that of unassisted walking, increasing ankle power in exchange for a decrease in hip power. Our findings indicate that humans prefer to walk with greater ankle mechanical power output than their unassisted gait when provided with an ankle exoskeleton using an adaptive controller. This suggests that robotic assistance from an exoskeleton can allow humans to adopt gait patterns different from their normal choices for locomotion. In our specific experiment, subjects increased ankle power and decreased hip power to walk with a reduction in metabolic cost. Future exoskeleton devices that rely on proportional myolectric control are likely to demonstrate improved performance by including an adaptive gain.

  14. Resistance Training for Muscle Weakness in Multiple Sclerosis: Direct Versus Contralateral Approach in Individuals With Ankle Dorsiflexors' Disparity in Strength.

    PubMed

    Manca, Andrea; Cabboi, Maria Paola; Dragone, Daniele; Ginatempo, Francesca; Ortu, Enzo; De Natale, Edoardo Rosario; Mercante, Beniamina; Mureddu, Giovanni; Bua, Guido; Deriu, Franca

    2017-07-01

    To compare effects of contralateral strength training (CST) and direct strength training of the more affected ankle dorsiflexors on muscle performance and clinical functional outcomes in people with multiple sclerosis (MS) exhibiting interlimb strength asymmetry. Randomized controlled trial. University hospital. Individuals with relapsing-remitting MS (N=30) and mild-to-moderate disability (Expanded Disability Status Scale score ≤6) presenting with ankle dorsiflexors' strength disparity. Participants were randomly assigned to a CST (n=15) or direct strength training (n=15) group performing 6 weeks of maximal intensity strength training of the less or more affected dorsiflexors, respectively. Maximal strength, endurance to fatigue, and mobility outcomes were assessed before, at the intervention end, and at 12-week follow-up. Strength and fatigue parameters were measured after 3 weeks of training (midintervention). In the more affected limb of both groups, pre- to postintervention significant increases in maximal strength (P≤.006) and fatigue endurance (P≤.04) were detected along with consistent retention of these improvements at follow-up (P≤.04). At midintervention, the direct strength training group showed significant improvements (P≤.002), with no further increase at postintervention, despite training continuation. Conversely, the CST group showed nonsignificant strength gains, increasing to significance at postintervention (P≤.003). In both groups, significant pre- to postintervention improvements in mobility outcomes (P≤.03), not retained at follow-up, were observed. After 6 weeks of training, CST proved as effective as direct strength training in enhancing performance of the more affected limb with a different time course, which may have practical implications in management of severely weakened limbs where direct strength training is not initially possible. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  15. Hallux valgus, ankle osteoarthrosis and adult acquired flatfoot deformity: a review of three common foot and ankle pathologies and their treatments

    PubMed Central

    Crevoisier, Xavier; Assal, Mathieu; Stanekova, Katarina

    2016-01-01

    The pathogenesis of hallux valgus deformity is multifactorial. Conservative treatment can alleviate pain but is unable to correct the deformity. Surgical treatment must be adapted to the type and severity of the deformity. Success of surgical treatment ranges from 80% to 95%, and complication rates range from 10% to 30%. Ankle osteoarthrosis most commonly occurs as a consequence of trauma. Ankle arthrodesis and total ankle replacement are the most common surgical treatments of end stage ankle osteoarthrosis. Both types of surgery result in similar clinical improvement at midterm; however, gait analysis has demonstrated the superiority of total ankle replacement over arthrodesis. More recently, conservative surgery (extraarticular alignment osteotomies) around the ankle has gained popularity in treating early- to mid-stage ankle osteoarthrosis. Adult acquired flatfoot deformity is a consequence of posterior tibial tendon dysfunction in 80% of cases. Classification is based upon the function of the tibialis posterior tendon, the reducibility of the deformity, and the condition of the ankle joint. Conservative treatment includes orthotics and eccentric muscle training. Functional surgery is indicated for treatment in the early stages. In case of fixed deformity, corrective and stabilising surgery is performed. Cite this article: Crevoisier X, Assal M, Stanekova K. Hallux valgus, ankle osteoarthrosis and adult acquired flatfoot deformity: a review of three common foot and ankle pathologies and their treatments. EFORT Open Rev 2016;1:58–64. DOI: 10.1302/2058-5241.1.000015. PMID:28461929

  16. A real-time computational model for estimating kinematics of ankle ligaments.

    PubMed

    Zhang, Mingming; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Quan

    2016-01-01

    An accurate assessment of ankle ligament kinematics is crucial in understanding the injury mechanisms and can help to improve the treatment of an injured ankle, especially when used in conjunction with robot-assisted therapy. A number of computational models have been developed and validated for assessing the kinematics of ankle ligaments. However, few of them can do real-time assessment to allow for an input into robotic rehabilitation programs. An ankle computational model was proposed and validated to quantify the kinematics of ankle ligaments as the foot moves in real-time. This model consists of three bone segments with three rotational degrees of freedom (DOFs) and 12 ankle ligaments. This model uses inputs for three position variables that can be measured from sensors in many ankle robotic devices that detect postures within the foot-ankle environment and outputs the kinematics of ankle ligaments. Validation of this model in terms of ligament length and strain was conducted by comparing it with published data on cadaver anatomy and magnetic resonance imaging. The model based on ligament lengths and strains is in concurrence with those from the published studies but is sensitive to ligament attachment positions. This ankle computational model has the potential to be used in robot-assisted therapy for real-time assessment of ligament kinematics. The results provide information regarding the quantification of kinematics associated with ankle ligaments related to the disability level and can be used for optimizing the robotic training trajectory.

  17. Sports Medicine and Arthroscopic Treatment of the Foot and Ankle: What Is New and Current in Singapore.

    PubMed

    Ho, Sean Wei Loong; Thevendran, Gowreeson

    2016-06-01

    Foot and ankle abnormalities are common in Singapore because of the compulsory conscription, the slipper-wearing culture, and the promotion of healthy living through exercise. The rapidly aging population, lack of elite sportsmen, and social and cultural norms pose unique challenges to foot and ankle surgery. Orthopedic surgery in Singapore has progressed because of the good infrastructure and modern practices executed by fellowship-trained surgeons. Evolving local practices are polarized by practice trends emulated from North America and Europe. The small community of foot and ankle surgeons currently practicing in Singapore allows for easier communication, corroborative educational events, and research initiatives. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Physiologic and perceptual responses during treadmill running with ankle weights.

    PubMed

    Bhambhani, Y N; Gomes, P S; Wheeler, G

    1990-03-01

    This study examined the effects of ankle weighting on physiologic and perceptual responses during treadmill running in seven healthy, female recreational runners with a mean maximal aerobic power of 48.4 +/- 4.0 ml/kg/min. Each subject completed four experimental one-mile runs at individually selected treadmill running speeds with 0, 1.6, 3.2 and 4.8 kg weights on their ankles. The subjects selected a speed at which they would run (train) if their objectives were to significantly improve cardiovascular function and induce weight loss. Metabolic and cardiovascular responses were continuously monitored, and ratings of perceived exertion were recorded near the end of the activity. During the unweighted run, the subjects selected a running speed of 6.87 +/- 0.63 mph which resulted in a net energy expenditure of 0.153 kcal/kg/min or 1.34 +/- 0.16 kcal/kg/mile. This corresponded to a training intensity of 76.3% +/- 5.1% of maximum oxygen consumption or 88.1% +/- 9.7% of maximum heart rate. Addition of weight to the ankles caused a significant decrease (p less than .05) in the running speed selected and, therefore, did not result in any significant changes (p greater than .05) in the rate of oxygen consumption, heart rate or ratings of perceived exertion when compared to the unweighted condition. These observations are in contrast to previous studies on ankle weighting which were conducted at fixed treadmill running speeds. However, the use of ankle weights did have a tendency to increase gross and net energy expenditure of running when values were expressed in kcal/mile because of slower self-selected running speeds under these conditions. This increase in energy expenditure could be of physiologic significance if running with ankle weights was performed on a regular basis at a fixed distance.

  19. Posterior ankle impingement syndrome in football players: Case series of 26 elite athletes.

    PubMed

    Kudaş, Savaş; Dönmez, Gürhan; Işık, Çetin; Çelebi, Mesut; Çay, Nurdan; Bozkurt, Murat

    2016-12-01

    To describe a clinical treatment algorithm for posterior ankle impingement (PAI) syndrome in professional football players. A case series of 26 elite professional football players diagnosed and treated for posterior ankle impingement syndrome were included for the study. All of the athletes received conservative treatment with physical therapy modalities initially. If the first line medical treatment and rehabilitation was ineffective to alleviate the symptoms, ultrasound-guided corticosteroid injection was proposed and thereafter the patients underwent posterior ankle arthroscopy if the complaints are still unresolved. The pain scores (AOFAS, VAS), and time to return to play were the main outcome measures. The complaints of 18 (69.2%) players were subsided with non-surgical treatment whereas three of acute cases and five of the chronic cases did not respond to medical treatment and arthroscopic surgery was performed for eight athletes. Eighteen players returned to training for a mean time of 36.3 days (24-42 days) after conservative treatment. The patients who underwent arthroscopic surgery returned to training for a mean time of 49.8 days (42-56 days) after the surgery. All athletes returned to their previous level of competition after treatment without any complications or recurrence in a mean follow-up 36.5 months (19-77 months). Non-surgical treatment modalities were effective in 2/3 of posterior ankle impingement syndrome in elite football players. On the other hand, posterior ankle arthroscopy is safe and effective treatment option for posterior ankle impingement syndrome if the conservative treatment fails. Level IV, Therapeutic study. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  20. A review on the mechanical design elements of ankle rehabilitation robot.

    PubMed

    Khalid, Yusuf M; Gouwanda, Darwin; Parasuraman, Subramanian

    2015-06-01

    Ankle rehabilitation robots are developed to enhance ankle strength, flexibility and proprioception after injury and to promote motor learning and ankle plasticity in patients with drop foot. This article reviews the design elements that have been incorporated into the existing robots, for example, backdrivability, safety measures and type of actuation. It also discusses numerous challenges faced by engineers in designing this robot, including robot stability and its dynamic characteristics, universal evaluation criteria to assess end-user comfort, safety and training performance and the scientific basis on the optimal rehabilitation strategies to improve ankle condition. This article can serve as a reference to design robot with better stability and dynamic characteristics and good safety measures against internal and external events. It can also serve as a guideline for the engineers to report their designs and findings. © IMechE 2015.

  1. Preparatory co-activation of the ankle muscles may prevent ankle inversion injuries

    PubMed Central

    DeMers, Matthew S.; Hicks, Jennifer L.; Delp, Scott L.

    2018-01-01

    Ankle inversion sprains are the most frequent acute musculoskeletal injuries occurring in physical activity. Interventions that retrain muscle coordination have helped rehabilitate injured ankles, but it is unclear which muscle coordination strategies, if any, can prevent ankle sprains. The purpose of this study was to determine whether coordinated activity of the ankle muscles could prevent excessive ankle inversion during a simulated landing on a 30-degree incline. We used a set of musculoskeletal simulations to evaluate the efficacy of two strategies for coordinating the ankle evertor and invertor muscles during simulated landing scenarios: planned co-activation and stretch reflex activation with physiologic latency (60-millisecond delay). A full-body musculoskeletal model of landing was used to generate simulations of a subject dropping onto an inclined surface with each coordination condition. Within each condition, the intensity of evertor and invertor co-activity or stretch reflexes were varied systematically. The simulations revealed that strong preparatory co-activation of the ankle evertors and invertors prior to ground contact prevented ankle inversion from exceeding injury thresholds by rapidly generating eversion moments after initial contact. Conversely, stretch reflexes were too slow to generate eversion moments before the simulations reached the threshold for inversion injury. These results suggest that training interventions to protect the ankle should focus on stiffening the ankle with muscle co-activation prior to landing. The musculoskeletal models, controllers, software, and simulation results are freely available online at http://simtk.org/home/ankle-sprains, enabling others to reproduce the results and explore new injury scenarios and interventions. PMID:28057351

  2. Balance training and center-of-pressure location in participants with chronic ankle instability.

    PubMed

    Mettler, Abby; Chinn, Lisa; Saliba, Susan A; McKeon, Patrick O; Hertel, Jay

    2015-04-01

    Chronic ankle instability (CAI) occurs in some people after a lateral ankle sprain and often results in residual feelings of instability and episodes of the ankle's giving way. Compared with healthy people, patients with CAI demonstrated poor postural control and used a more anteriorly and laterally positioned center of pressure (COP) during a single-limb static-balance task on a force plate. Balance training is an effective means of altering traditional COP measures; however, whether the overall location of the COP distribution under the foot also changes is unknown. To determine if the spatial locations of COP data points in participants with CAI change after a 4-week balance-training program. Randomized controlled trial. Laboratory. Thirty-one persons with self-reported CAI. Participants were randomly assigned to a 4-week balance-training program or no balance training. We collected a total of 500 COP data points while participants balanced using a single limb on a force plate during a 10-second trial. The location of each COP data point relative to the geometric center of the foot was determined, and the frequency count in 4 sections (anteromedial, anterolateral, posteromedial, posterolateral) was analyzed for differences between groups. Overall, COP position in the balance-training group shifted from being more anterior to less anterior in both eyes-open trials (before trial = 319.1 ± 165.4, after trial = 160.5 ± 149.5; P = .006) and eyes-closed trials (before trial = 387.9 ± 123.8, after trial = 189.4 ± 102.9; P < .001). The COP for the group that did not perform balance training remained the same in the eyes-open trials (before trial = 214.1 ± 193.3, after trial = 230.0 ± 176.3; P = .54) and eyes-closed trials (before trial = 326.9 ± 134.3, after trial = 338.2 ± 126.1; P = .69). In participants with CAI, the balance-training program shifted the COP location from anterolateral to posterolateral. The program may have repaired some of the damaged sensorimotor system pathways, resulting in a more optimally functioning and less constrained system.

  3. Different ankle muscle coordination patterns and co-activation during quiet stance between young adults and seniors do not change after a bout of high intensity training.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2015-03-04

    Available evidence suggests that young adults and seniors use different strategies to adjust for increasing body sway during quiet standing. Altered antagonist muscle co-activation and different ankle muscle coordination patterns may account for this finding. Consequently, we aimed at addressing whether aging leads to changes in neuromuscular coordination patterns as well as co-activation during quiet stance. We additionally investigated whether a bout of high intensity interval training additionally alters these patterns. Twenty healthy seniors (age: 70 ± 4 y) and twenty young adults (age: 27 ± 3 y) were enrolled in the present study. In between the testing procedures, four consecutive high-intensity intervals of 4 min duration at a target exercise intensity of 90 to 95% HRmax were completed on a treadmill. The total center of pressure (COP) path length displacement served as standing balance performance outcome. In order to assess ankle muscle coordination patterns, amplitude ratios (AR) were calculated for each muscle (e.g. tibialis anterior (TA) [%] = (TA × 100)/(gastrocnemius medialis (GM) + soleus (SOL) + peroneus longus (PL) + TA). The co-activation was calculated for the SOL and TA muscles computing the co-activation index (CAI = 2 × TA/TA + SOL). Seniors showed an inverted ankle muscle coordination pattern during single limb stance with eyes open (SLEO), compared to young adults (rest: GM, S: 15 ± 8% vs Y: 24 ± 9%; p = 0.03; SOL, S: 27 ± 14% vs Y: 37 ± 18%; p = 0.009; TA, S: 31 ± 13% vs Y: 13 ± 7%; p = 0.003). These patterns did not change after a high-intensity training session. A moderate correlation between amplitude ratios of the TA-contribution and postural sway was observed for seniors during SLEO (r = 0.61). Ankle co-activation was twofold elevated in seniors compared to young adults during SLEO (p < 0.001). These findings were also not affected by high intensity training. Increased ankle co-activation in the anterior-posterior plane and inverted ankle muscle coordination pattern merely occurred during single-leg stance. Seniors with decreased postural control showed higher TA contributions during SLEO. These neuromuscular changes are not affected by acute intermittent high intensity aerobic exercise.

  4. Examination of Interventions to Prevent Common Lower-Limb Injuries in the New Zealand Defense Force

    DTIC Science & Technology

    2009-01-01

    Preventive effects of an on-shoe brace on ankle sprains in infantry. In: The tJnstable Ankle, pp 292-305. Edited by Nyska M, Windsor Mann G, Canada, Human...Projetti M, Aisa G, Rizzo A: Prevention of anterior cruciate ligament injuries in soccer. A prospective controlled study of proprioceptive training. Knee

  5. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    PubMed Central

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  6. Novel Kinetic Strategies Adopted in Asymmetric Split-Belt Treadmill Walking.

    PubMed

    Hinkel-Lipsker, Jacob W; Hahn, Michael E

    2016-01-01

    The hip and ankle strategies that affect learning of a novel gait have not been fully determined, and could be of importance in design of clinical gait interventions. The authors' purpose was to determine the effects of asymmetric split-belt treadmill walking on ankle and hip work during propulsion. Participants were randomized into either a gradual training group or a sudden training group and later returned for a retention test. The gradual training group performed significantly more work at the hip joint of the slow limb during acquisition, and decreased the hip joint work performed during retention. These findings reveal the hip joint on the slow limb during initial swing as a possible site of adaptation to a novel locomotor pattern.

  7. Effects of Achilles tendon vibration, surface and visual conditions on lower leg electromyography in young adults with and without recurrent ankle sprains.

    PubMed

    Lubetzky, Anat V; Price, Robert; McCoy, Sarah W

    2016-07-01

    Functional ankle instability is associated with decreased ankle muscle function. Compliant surfaces and eyes-closed training are commonly used for rehabilitation and prevention of ankle sprains. Brief Achilles tendon vibration is commonly used in the study of postural control. To test the level of activation of tibialis anterior (TIB) and fibularis longus (FIB), bilateral Achilles tendon vibration was applied for the middle 20 s in a series of 60-s trials, when 10 healthy young adults and 10 adults with history of repeated ankle sprains were standing bipedal: on floor, on memory foam, or on a Both Sides Up (BOSU) ball, with eyes open, and on floor and foam with eyes closed. Differences in Integrated surface electromyography (IEMG) of TIB and FIB were significant for both groups pre, during, and post vibration (Friedman Tests, p < 0.001 for all). In both groups, the highest IEMG for TIB was obtained during vibration when standing on foam with eyes closed, whereas the highest IEMG for FIB was obtained during vibration when standing on the BOSU. Bipedal stance on BOSU and brief Achilles tendon vibration may be a useful intervention when a session's goal is to facilitate lower leg muscles activation. Future research should explore training effects as well as the effect of FIB tendon vibration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Whole-Body-Vibration Training and Balance in Recreational Athletes With Chronic Ankle Instability.

    PubMed

    Sierra-Guzmán, Rafael; Jiménez-Diaz, Fernando; Ramírez, Carlos; Esteban, Paula; Abián-Vicén, Javier

    2018-04-01

      Deficits in the propioceptive system of the ankle contribute to chronic ankle instability (CAI). Recently, whole-body-vibration (WBV) training has been introduced as a preventive and rehabilitative tool.   To evaluate how a 6-week WBV training program on an unstable surface affected balance and body composition in recreational athletes with CAI.   Randomized controlled clinical trial.   Research laboratory.   Fifty recreational athletes with self-reported CAI were randomly assigned to a vibration (VIB), nonvibration (NVIB), or control group.   The VIB and NVIB groups performed unilateral balance training on a BOSU 3 times weekly for 6 weeks. The VIB group trained on a vibration platform, and the NVIB group trained on the floor.   We assessed balance using the Biodex Balance System and the Star Excursion Balance Test (SEBT). Body composition was measured by dual-energy x-ray absorptiometry.   After 6 weeks of training, improvements on the Biodex Balance System occurred only on the Overall Stability Index ( P = .01) and Anterior-Posterior Stability Index ( P = .03) in the VIB group. We observed better performance in the medial ( P = .008) and posterolateral ( P = .04) directions and composite score of the SEBT in the VIB group ( P = .01) and in the medial ( P < .001), posteromedial ( P = .002), and posterolateral ( P = .03) directions and composite score of the SEBT in the NVIB group ( P < .001). No changes in body composition were found for any of the groups.   Only the VIB group showed improvements on the Biodex Balance System, whereas the VIB and NVIB groups displayed better performance on the SEBT.

  9. Use of Pool Noodles for The Shoulder and Ankle

    PubMed Central

    2007-01-01

    The purpose of this manuscript is to provide two clinical suggestions that are inexpensive, easy to fabricate, and very user-friendly activities that can be used for most patients and athletes. The first clinical suggestion is a method of restoring stability of the scapular muscles around the shoulder complex. Following a period of disuse, whether from a surgery or an injury, weakness may be present in the shoulder. This suggestion is an easy and inexpensive tool which can be used in restoring stability of the scapula in all planes of movement as well as combinations of these planes. The method can also be used as a progression from gravity assisted to gravity resisted active range of motion. The purpose of the second clinical suggestion is to provide an inexpensive and easy to use method of improving proprioception in the ankle. Ankle sprains are among the most common injuries seen in sports. Proprioceptive activities are used not only in the rehabilitation process following an injury but as a training tool to help prevent ankle injuries. This method can be used in the clinic, in a training facility, or as part of a home exercise program. PMID:21522214

  10. Use of pool noodles for the shoulder and ankle.

    PubMed

    Nelson, Russell

    2007-08-01

    The purpose of this manuscript is to provide two clinical suggestions that are inexpensive, easy to fabricate, and very user-friendly activities that can be used for most patients and athletes. The first clinical suggestion is a method of restoring stability of the scapular muscles around the shoulder complex. Following a period of disuse, whether from a surgery or an injury, weakness may be present in the shoulder. This suggestion is an easy and inexpensive tool which can be used in restoring stability of the scapula in all planes of movement as well as combinations of these planes. The method can also be used as a progression from gravity assisted to gravity resisted active range of motion. The purpose of the second clinical suggestion is to provide an inexpensive and easy to use method of improving proprioception in the ankle. Ankle sprains are among the most common injuries seen in sports. Proprioceptive activities are used not only in the rehabilitation process following an injury but as a training tool to help prevent ankle injuries. This method can be used in the clinic, in a training facility, or as part of a home exercise program.

  11. Management and prevention of acute and chronic lateral ankle instability in athletic patient populations

    PubMed Central

    McCriskin, Brendan J; Cameron, Kenneth L; Orr, Justin D; Waterman, Brian R

    2015-01-01

    Acute and chronic lateral ankle instability are common in high-demand patient populations. If not managed appropriately, patients may experience recurrent instability, chronic pain, osteochondral lesions of the talus, premature osteoarthritis, and other significant long-term disability. Certain populations, including young athletes, military personnel and those involved in frequent running, jumping, and cutting motions, are at increased risk. Proposed risk factors include prior ankle sprain, elevated body weight or body mass index, female gender, neuromuscular deficits, postural imbalance, foot/ankle malalignment, and exposure to at-risk athletic activity. Prompt, accurate diagnosis is crucial, and evidence-based, functional rehabilitation regimens have a proven track record in returning active patients to work and sport. When patients fail to improve with physical therapy and external bracing, multiple surgical techniques have been described with reliable results, including both anatomic and non-anatomic reconstructive methods. Anatomic repair of the lateral ligamentous complex remains the gold standard for recurrent ankle instability, and it effectively restores native ankle anatomy and joint kinematics while preserving physiologic ankle and subtalar motion. Further preventative measures may minimize the risk of ankle instability in athletic cohorts, including prophylactic bracing and combined neuromuscular and proprioceptive training programs. These interventions have demonstrated benefit in patients at heightened risk for lateral ankle sprain and allow active cohorts to return to full activity without adversely affecting athletic performance. PMID:25793157

  12. Management and prevention of acute and chronic lateral ankle instability in athletic patient populations.

    PubMed

    McCriskin, Brendan J; Cameron, Kenneth L; Orr, Justin D; Waterman, Brian R

    2015-03-18

    Acute and chronic lateral ankle instability are common in high-demand patient populations. If not managed appropriately, patients may experience recurrent instability, chronic pain, osteochondral lesions of the talus, premature osteoarthritis, and other significant long-term disability. Certain populations, including young athletes, military personnel and those involved in frequent running, jumping, and cutting motions, are at increased risk. Proposed risk factors include prior ankle sprain, elevated body weight or body mass index, female gender, neuromuscular deficits, postural imbalance, foot/ankle malalignment, and exposure to at-risk athletic activity. Prompt, accurate diagnosis is crucial, and evidence-based, functional rehabilitation regimens have a proven track record in returning active patients to work and sport. When patients fail to improve with physical therapy and external bracing, multiple surgical techniques have been described with reliable results, including both anatomic and non-anatomic reconstructive methods. Anatomic repair of the lateral ligamentous complex remains the gold standard for recurrent ankle instability, and it effectively restores native ankle anatomy and joint kinematics while preserving physiologic ankle and subtalar motion. Further preventative measures may minimize the risk of ankle instability in athletic cohorts, including prophylactic bracing and combined neuromuscular and proprioceptive training programs. These interventions have demonstrated benefit in patients at heightened risk for lateral ankle sprain and allow active cohorts to return to full activity without adversely affecting athletic performance.

  13. Optical Disk Technology.

    ERIC Educational Resources Information Center

    Abbott, George L.; And Others

    1987-01-01

    This special feature focuses on recent developments in optical disk technology. Nine articles discuss current trends, large scale image processing, data structures for optical disks, the use of computer simulators to create optical disks, videodisk use in training, interactive audio video systems, impacts on federal information policy, and…

  14. Whole-body vibration exercise training reduces arterial stiffness in postmenopausal women with prehypertension and hypertension.

    PubMed

    Figueroa, Arturo; Kalfon, Roy; Madzima, Takudzwa A; Wong, Alexei

    2014-02-01

    The purpose of this study was to examine the impact of whole-body vibration (WBV) exercise training on arterial stiffness (pulse wave velocity [PWV]), blood pressure (BP), and leg muscle function in postmenopausal women. Twenty-five postmenopausal women with prehypertension and hypertension (mean [SE]; age, 56 [1] y; systolic BP, 139 [2] mm Hg; body mass index, 34.7 [0.8] kg/m2) were randomized to 12 weeks of WBV exercise training (n = 13) or to the no-exercise control group. Systolic BP, diastolic BP, mean arterial pressure, heart rate, carotid-femoral PWV, brachial-ankle PWV, femoral-ankle PWV (legPWV), leg lean mass, and leg muscle strength were measured before and after 12 weeks. There was a group-by-time interaction (P < 0.05) for arterial stiffness, BP, and strength as brachial-ankle PWV (-1.3 [0.3] m/s, P < 0.01), legPWV (-0.81 [0.22] m/s, P < 0.01), systolic BP (-12 [3] mm Hg, P < 0.01), diastolic BP (-6 [2] mm Hg, P < 0.01), and mean arterial pressure (-9 [3] mm Hg, P < 0.01) decreased and as strength increased (21.0% [2.2%], P < 0.001) after WBV exercise training compared with no change after control. Heart rate decreased (-3 [1] beats/min, P < 0.05) after WBV exercise training, but there was no interaction (P > 0.05). Leg lean mass and carotid-femoral PWV were not significantly (P > 0.05) affected by WBV exercise training or control. Our findings indicate that WBV exercise training improves systemic and leg arterial stiffness, BP, and leg muscle strength in postmenopausal women with prehypertension or hypertension. WBV exercise training may decrease cardiovascular and disability risks in postmenopausal women by reducing legPWV and increasing leg muscle strength.

  15. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: results of a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Foot musculoskeletal deficits are seldom addressed by preventive medicine despite their high prevalence in patients with diabetic polyneuropathy. AIM: To investigate the effects of strengthening, stretching, and functional training on foot rollover process during gait. Methods A two-arm parallel-group randomized controlled trial with a blinded assessor was designed. Fifty-five patients diagnosed with diabetic polyneuropathy, 45 to 65 years-old were recruited. Exercises for foot-ankle and gait training were administered twice a week, for 12 weeks, to 26 patients assigned to the intervention group, while 29 patients assigned to control group received recommended standard medical care: pharmacological treatment for diabetes and foot care instructions. Both groups were assessed after 12 weeks, and the intervention group at follow-up (24 weeks). Primary outcomes involved foot rollover changes during gait, including peak pressure (PP). Secondary outcomes involved time-to-peak pressure (TPP) and pressure–time integral (PTI) in six foot-areas, mean center of pressure (COP) velocity, ankle kinematics and kinetics in the sagittal plane, intrinsic and extrinsic muscle function, and functional tests of foot and ankle. Results Even though the intervention group primary outcome (PP) showed a not statistically significant change under the six foot areas, intention-to-treat comparisons yielded softening of heel strike (delayed heel TPP, p=.03), better eccentric control of forefoot contact (decrease in ankle extensor moment, p<.01; increase in function of ankle dorsiflexion, p<.05), earlier lateral forefoot contact with respect to medial forefoot (TPP anticipation, p<.01), and increased participation of hallux (increased PP and PTI, p=.03) and toes (increase in PTI, medium effect size). A slower COP mean velocity (p=.05), and an increase in overall foot and ankle function (p<.05) were also observed. In most cases, the values returned to baseline after the follow-up (p<.05). Conclusions Intervention discreetly changed foot rollover towards a more physiological process, supported by improved plantar pressure distribution and better functional condition of the foot ankle complex. Continuous monitoring of the foot status and patient education are necessary, and can contribute to preserving the integrity of foot muscles and joints impaired by polyneuropathy. Trial registration ClinicalTrials.gov Identifier: NCT01207284, registered in 20th September 2010. PMID:24767584

  16. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: results of a randomized controlled trial.

    PubMed

    Sartor, Cristina D; Hasue, Renata H; Cacciari, Lícia P; Butugan, Marco K; Watari, Ricky; Pássaro, Anice C; Giacomozzi, Claudia; Sacco, Isabel C N

    2014-04-27

    Foot musculoskeletal deficits are seldom addressed by preventive medicine despite their high prevalence in patients with diabetic polyneuropathy. To investigate the effects of strengthening, stretching, and functional training on foot rollover process during gait. A two-arm parallel-group randomized controlled trial with a blinded assessor was designed. Fifty-five patients diagnosed with diabetic polyneuropathy, 45 to 65 years-old were recruited. Exercises for foot-ankle and gait training were administered twice a week, for 12 weeks, to 26 patients assigned to the intervention group, while 29 patients assigned to control group received recommended standard medical care: pharmacological treatment for diabetes and foot care instructions. Both groups were assessed after 12 weeks, and the intervention group at follow-up (24 weeks). Primary outcomes involved foot rollover changes during gait, including peak pressure (PP). Secondary outcomes involved time-to-peak pressure (TPP) and pressure-time integral (PTI) in six foot-areas, mean center of pressure (COP) velocity, ankle kinematics and kinetics in the sagittal plane, intrinsic and extrinsic muscle function, and functional tests of foot and ankle. Even though the intervention group primary outcome (PP) showed a not statistically significant change under the six foot areas, intention-to-treat comparisons yielded softening of heel strike (delayed heel TPP, p=.03), better eccentric control of forefoot contact (decrease in ankle extensor moment, p<.01; increase in function of ankle dorsiflexion, p<.05), earlier lateral forefoot contact with respect to medial forefoot (TPP anticipation, p<.01), and increased participation of hallux (increased PP and PTI, p=.03) and toes (increase in PTI, medium effect size). A slower COP mean velocity (p=.05), and an increase in overall foot and ankle function (p<.05) were also observed. In most cases, the values returned to baseline after the follow-up (p<.05). Intervention discreetly changed foot rollover towards a more physiological process, supported by improved plantar pressure distribution and better functional condition of the foot ankle complex. Continuous monitoring of the foot status and patient education are necessary, and can contribute to preserving the integrity of foot muscles and joints impaired by polyneuropathy. ClinicalTrials.gov Identifier: NCT01207284, registered in 20th September 2010.

  17. Collegiate Football Players' Ankle Range of Motion and Dynamic Balance in Braced and Self-Adherent-Taped Conditions.

    PubMed

    Willeford, Kristin; Stanek, Justin M; McLoda, Todd A

    2018-01-01

      Ankle sprains are one of the most common injuries in the physically active population. Previous researchers have shown that supporting the ankle with taping or bracing is effective in preventing ankle sprains. However, no authors have compared the effects of self-adherent tape and lace-up ankle braces on ankle range of motion (ROM) and dynamic balance in collegiate football players.   To examine the effectiveness of self-adherent tape and lace-up ankle braces in reducing ankle ROM and improving dynamic balance before and after a typical collegiate football practice.   Crossover study.   Collegiate athletic training room.   Twenty-nine National Collegiate Athletic Association Division I football athletes (age = 19.2 ± 1.14 years, height = 187.52 ± 20.54 cm, mass = 106.44 ± 20.54 kg).   Each participant wore each prophylactic ankle support during a single practice, self-adherent tape on 1 leg and lace-up ankle brace on the other. Range of motion and dynamic balance were assessed 3 times for each leg throughout the testing session (baseline, prepractice, postpractice).   Ankle ROM for inversion, eversion, dorsiflexion, and plantar flexion were measured at baseline, immediately after donning the brace or tape, and immediately after a collegiate practice. The Y-Balance Test was used to assess dynamic balance at these same time points.   Both interventions were effective in reducing ROM in all directions compared with baseline; however, dynamic balance did not differ between the tape and brace conditions.   Both the self-adherent tape and lace-up ankle brace provided equal ROM restriction before and after exercise, with no change in dynamic balance.

  18. Effects of form-focused training on running biomechanics: A pilot randomized trial in untrained individuals

    PubMed Central

    Kumar, Deepak; McDermott, Kelly; Feng, Haojun; Goldman, Veronica; Luke, Anthony; Souza, Richard B; Hecht, Frederick M

    2015-01-01

    Objective To investigate the changes in running biomechanics after training in Form-Focused running using ChiRunning vs. Not-Form focused training and Self-Directed training in untrained individuals. Design Pilot study - Randomized controlled trial. Setting Research Institution with Tertiary Care Medical Center. Participants Seventeen subjects (9 males, 8 females) with pre-hypertension. Methods Twenty-two participants were randomized to three study arms but 17 completed the study. The study arms were: 1) group-based Form-Focused running using ChiRunning (enrolled, n =10; completed, n=7); 2) group-based conventional running (enrolled, n=6; completed, n=4); 3) self-directed training with educational materials (enrolled, n =6; completed, n=6). The training schedule was prescribed for 8 weeks with 4 weeks of follow-up. All subjects completed overground running motion analyses before and after training. Outcomes Ankle, knee, hip joint peak moments and powers; Average vertical loading rate (AVLR), impact peak, cadence, stride length, strike index, and stride reach. Paired T-tests were used to compare differences with-in groups over-time. Results Form-Focused group reduced their Stride Reach (P = .047) after the training but not the other groups. Form-Focused group showed a close to significant reduction in knee adduction moment (P = .051) and a reduction in the peak ankle eversion moment (P = .027). Self-Directed group showed an increase in the running speed, (P =.056) and increases in ankle and knee joint powers and moments. Conclusions There are differences in the changes in running biomechanics between individuals trained in running form that emphazies mid-foot strike, higher cadence, and shorter stride compared to those not trained in the thise technique. These differences may be associated with reduced lower extremity stress in individuals trained in this running form but future studies are needed to confirm these findings in larger samples. PMID:25633634

  19. Running injuries and associated factors in participants of ING Taipei Marathon.

    PubMed

    Chang, Wei-Ling; Shih, Yi-Fen; Chen, Wen-Yin

    2012-08-01

    To investigate the distribution of lower extremity running injuries and their associated factors. Descriptive and exploratory study. 1004 participants of the 2005 ING Taipei International Marathon. We used a self-developed questionnaire to collect data of previous running injuries and applied multivariate logistic regression modeling to examine relationships between these injuries and associated factors. Of the 893 valid questionnaires, 396 (44.4%) reported having previous lower extremity pain related to running. Knee joint pain was the most common problem (32.5%). Hip pain was associated with the racing group, training duration, and medial arch support. Use of knee orthotics (P = 0.002) and ankle braces (P = 0.007) was related to a higher rate of knee and ankle pain. Participants of the full marathon group who practiced on a synthetic track had a higher incidence of ankle pain. A training duration of >60 min was linked to an increased rate of foot pain (P = 0.003). Our data indicated that running injuries were associated with training duration and use of orthotics. Clinicians can use this information in treating or preventing running associated injuries and pain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Contribution of sensory feedback to plantar flexor muscle activation during push-off in adults with cerebral palsy.

    PubMed

    Frisk, Rasmus F; Jensen, Peter; Kirk, Henrik; Bouyer, Laurent J; Lorentzen, Jakob; Nielsen, Jens B

    2017-12-01

    Exaggerated sensory activity has been assumed to contribute to functional impairment following lesion of the central motor pathway. However, recent studies have suggested that sensory contribution to muscle activity during gait is reduced in stroke patients and children with cerebral palsy (CP). We investigated whether this also occurs in CP adults and whether daily treadmill training is accompanied by alterations in sensory contribution to muscle activity. Seventeen adults with CP and 12 uninjured individuals participated. The participants walked on a treadmill while a robotized ankle-foot orthosis applied unload perturbations at the ankle, thereby removing sensory feedback naturally activated during push-off. Reduction of electromyographic (EMG) activity in the soleus muscle caused by unloads was compared and related to kinematics and ankle joint stiffness measurements. Similar measures were obtained after 6 wk of gait training. We found that sensory contribution to soleus EMG activation was reduced in CP adults compared with uninjured adults. The lowest contribution of sensory feedback was found in participants with lowest maximal gait speed. This was related to increased ankle plantar flexor stiffness. Six weeks of gait training did not alter the contribution of sensory feedback. We conclude that exaggerated sensory activity is unlikely to contribute to impaired gait in CP adults, because sensory contribution to muscle activity during gait was reduced compared with in uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait so that a larger part of plantar flexor muscle activity must be generated by descending motor commands. NEW & NOTEWORTHY Findings suggest that adults with cerebral palsy have less contribution of sensory feedback to ongoing soleus muscle activation during push-off than uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait, and/or sensory feedback is less integrated with central motor commands in the activation of spinal motor neurons. Consequently, muscle activation must to a larger extent rely on descending drive, which is already decreased because of the cerebral lesion. Copyright © 2017 the American Physiological Society.

  1. Prophylactic Ankle Braces and the Kinematics and Kinetics of Half-Squat Parachute Landing.

    PubMed

    Wu, Di; Zheng, Chao; Wu, Ji; Hu, Tan; Huang, Rongrong; Wang, Lizhen; Fan, Yubo

    2018-02-01

    The objective of the study was to investigate the effects of dropping heights and prophylactic ankle braces on ankle joint biomechanics during half-squat parachute landing from two different heights. There were 30 male elite paratroopers with formal parachute landing training and more than 2 yr of parachute jumping experience who were recruited for this study. The subjects tested three different ankle brace conditions (no-brace, elastic brace, semirigid brace). Each subject was instructed to jump off a platform from two different heights of 0.4 m and 0.8 m, and land on a force plate in a half-squat posture. The Vicon 3D motion capture system and force plate were used to record and calculate kinematic and kinetic data. Dropping height had a significant effect on peak vertical ground reaction force (vGRF), maximum ankle angular displacement, and time to vGRF. As compared with the no-brace group, use of an elastic ankle brace significantly reduced peak vGRF by 18.57% and both braces significantly reduced the maximal angular displacements of dorsiflexion. The semirigid brace provided greater restriction against maximal angular displacement of inversion. The elastic and semirigid ankle braces both effectively restricted motion stability of the ankle joint in the sagittal plane, and the semirigid ankle brace prevented excessive inversion, although the comfort of this device should be improved overall.Wu D, Zheng C, Wu J, Hu T, Huang R, Wang L, Fan Y. Prophylactic ankle braces and the kinematics and kinetics of half-squat parachute landing. Aerosp Med Hum Perform. 2018; 89(2):141-146.

  2. The physiological cost index of walking with a powered knee-ankle-foot orthosis in subjects with poliomyelitis: A pilot study.

    PubMed

    Arazpour, Mokhtar; Ahmadi Bani, Monireh; Samadian, Mohammad; Mousavi, Mohammad E; Hutchins, Stephen W; Bahramizadeh, Mahmood; Curran, Sarah; Mardani, Mohammad A

    2016-08-01

    A powered knee-ankle-foot orthosis was developed to provide restriction of knee flexion during stance phase and active flexion and extension of the knee during swing phase of gait. The purpose of this study was to determine its effect on the physiological cost index, walking speed and the distance walked in people with poliomyelitis compared to when walking with a knee-ankle-foot orthosis with drop lock knee joints. Quasi experimental study. Seven subjects with poliomyelitis volunteered for the study and undertook gait analysis with both types of knee-ankle-foot orthosis. Walking with the powered knee-ankle-foot orthosis significantly reduced walking speed (p = 0.015) and the distance walked (p = 0.004), and also, it did not improve physiological cost index values (p = 0.009) compared to walking with the locked knee-ankle-foot orthosis. Using a powered knee-ankle-foot orthosis did not significantly improve any of the primary outcome measures during walking for poliomyelitis subjects. This powered knee-ankle-foot orthosis design did not improve the physiological cost index of walking for people with poliomyelitis when compared to walking with a knee-ankle-foot orthosis with drop lock knee joints. This may have been due to the short training period used or the bulky design and additional weight of the powered orthosis. Further research is therefore warranted. © The International Society for Prosthetics and Orthotics 2015.

  3. Effectiveness of robot-assisted therapy on ankle rehabilitation--a systematic review.

    PubMed

    Zhang, Mingming; Davies, T Claire; Xie, Shane

    2013-03-21

    The aim of this study was to provide a systematic review of studies that investigated the effectiveness of robot-assisted therapy on ankle motor and function recovery from musculoskeletal or neurologic ankle injuries. Thirteen electronic databases of articles published from January, 1980 to June, 2012 were searched using keywords 'ankle*', 'robot*', 'rehabilitat*' or 'treat*' and a free search in Google Scholar based on effects of ankle rehabilitation robots was also conducted. References listed in relevant publications were further screened. Eventually, twenty-nine articles were selected for review and they focused on effects of robot-assisted ankle rehabilitation. Twenty-nine studies met the inclusion criteria and a total of 164 patients and 24 healthy subjects participated in these trials. Ankle performance and gait function were the main outcome measures used to assess the therapeutic effects of robot-assisted ankle rehabilitation. The protocols and therapy treatments were varied, which made comparison among different studies difficult or impossible. Few comparative trials were conducted among different devices or control strategies. Moreover, the majority of study designs met levels of evidence that were no higher than American Academy for Cerebral Palsy (CP) and Developmental Medicine (AACPDM) level IV. Only one study used a Randomized Control Trial (RCT) approach with the evidence level being II. All the selected studies showed improvements in terms of ankle performance or gait function after a period of robot-assisted ankle rehabilitation training. The most effective robot-assisted intervention cannot be determined due to the lack of universal evaluation criteria for various devices and control strategies. Future research into the effects of robot-assisted ankle rehabilitation should be carried out based on universal evaluation criteria, which could determine the most effective method of intervention. It is also essential to conduct trials to analyse the differences among different devices or control strategies.

  4. Wii Fit™ exercise therapy for the rehabilitation of ankle sprains: Its effect compared with physical therapy or no functional exercises at all.

    PubMed

    Punt, I M; Ziltener, J-L; Monnin, D; Allet, L

    2016-07-01

    Lateral ankle sprains represent the most common sports-related injuries. The Nintendo Wii Fit™ could be useful in the treatment of ankle sprains. The aim of this study was to compare the effectiveness of exercise training using the Wii Fit™ in ankle sprain patients: (a) with physical therapy; and (b) a control group not receiving any treatment. Ninety lateral ankle sprain patients were randomized to a Wii Fit™, physical therapy, or control group. We assessed the following outcome measures before, and 6 weeks after starting the allocated treatment: Foot and Ankle Ability Measure, pain during rest and walking, delay before return to sport, patient satisfaction, and effectiveness of the allocated treatment. Six weeks after the baseline measures, foot and ankle ability scores had improved in all groups, and pain had decreased during walking (P < 0.050). No between-group differences were detected between Wii Fit™ treatment, and both other groups (P > 0.050). In conclusion, the Wii Fit™ could be used as an exercise therapy to treat ankle sprain patients. However, Wii Fit™ was not more effective than only physical therapy, or no exercise therapy at all. Patients who did not receive treatment showed similar results as people who got any kind of exercise therapy. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Effects of robot-guided passive stretching and active movement training of ankle and mobility impairments in stroke.

    PubMed

    Waldman, Genna; Yang, Chung-Yong; Ren, Yupeng; Liu, Lin; Guo, Xin; Harvey, Richard L; Roth, Elliot J; Zhang, Li-Qun

    2013-01-01

    To investigate the effects of controlled passive stretching and active movement training using a portable rehabilitation robot on stroke survivors with ankle and mobility impairment. Twenty-four patients at least 3 months post stroke were assigned to receive 6 week training using the portable robot in a research laboratory (robot group) or an instructed exercise program at home (control group). All patients underwent clinical and biomechanical evaluations in the laboratory at pre-evaluation, post-evaluation, and 6-week follow-up. Subjects in the robot group improved significantly more than that in the control group in reduction in spasticity measured by modified Ashworth scale, mobility by Stroke Rehabilitation Assessment of Movement (STREAM), the balance by Berg balance score, dorsiflexion passive range of motion, dorsiflexion strength, and load bearing on the affected limb during gait after 6-week training. Both groups improved in the STREAM, dorsiflexion active range of motion and dorsiflexor strength after the training, which were retained in the follow-up evaluation. Robot-assisted passive stretching and active movement training is effective in improving motor function and mobility post stroke.

  6. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002

  7. Manual therapy in the treatment of ankle hemophilic arthropathy. A randomized pilot study.

    PubMed

    Cuesta-Barriuso, Rubén; Gómez-Conesa, Antonia; López-Pina, José-Antonio

    2014-11-01

    Although physiotherapy has demonstrated effectiveness in preventing ankle arthropathy compared to prophylaxis treatment from early ages, there have been no conclusive studies examining physiotherapy intervention once hemophilic arthropathy of the ankle has been established. The aim of this study was to evaluate the effectiveness of two physiotherapy interventions, in patients with hemophilic arthropathy of the ankle that had not been operated on previously. Nine patients with hemophilia (mean age of 35.7 SD 11.9 years) were randomized to a mobilization group (n = 5) and manual therapy group (n = 4). The two physiotherapy interventions were: (1) passive mobilization and stretching; and (2) manual orthopaedic therapy, both with proprioception training. The study lasted for six weeks, with two sessions a week. Ankle mobility and pain perception, lower limb proprioception and quality of life were the outcome measures. Both treatments improved all ankle movements (p < 0.05). The treatment with passive mobilizations also improved the perception of pain and quality of life. Six months later, both groups still had improved articular movement with the exception of plantar flexion and continued to perceive less pain. Both physiotherapy interventions improved the range of movement and lessened pain in patients with ankle arthropathy. No haemarthrosis was recorded during treatment or during the follow-up period.

  8. The identification of risk factors for ankle sprains sustained during netball participation.

    PubMed

    Attenborough, Alison S; Sinclair, Peter J; Sharp, Tristan; Greene, Andrew; Stuelcken, Max; Smith, Richard M; Hiller, Claire E

    2017-01-01

    Ankle sprains account for a large percentage of injuries sustained in netball. The identification of risk factors for ankle sprain is the preliminary action required to inform future prevention strategies. Prospective study. Ninety-four netball players from club and inter-district teams. Preseason data were collected for; vertical jump height, perceived ankle instability, sprain history, arthrometry inversion-eversion angles, star excursion balance test reach distances, the number of foot lifts during unilateral stance and demi-pointe balance test results. Participants were followed for the duration of one netball season and ankle sprains were recorded. Eleven sprains were recorded for eleven players using a time-loss definition of injury. Ankle sprains occurred at an incidence rate of 1.74/1000 h of netball exposure. One risk factor was identified to increase the odds of sustaining an ankle sprain during netball participation - a reach distance in the posterior-medial direction of the star excursion balance test of less than or equal to 77.5% of leg length (OR = 4.04, 95% CI = 1.00-16.35). The identified risk factor can be easily measured and should be considered for preseason injury risk profiling of netball players. Netball players may benefit from training programs aimed at improving single leg balance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Benign joint hypermobility syndrome in soldiers; what is the effect of military training courses on associated joint instabilities?

    PubMed

    Azma, Kamran; Mottaghi, Peyman; Hosseini, Alireza; Abadi, Hossein Hassan; Nouraei, Mohammad Hadi

    2014-07-01

    Hypermobile joints are joints with beyond normal range of motion and may be associated with joint derangements. This study aimed to evaluate the prevalence of benign joint hypermobility syndrome (BJHS) among soldiers and effect of training courses on related joint instabilities. In a prospective cohort study on 721 soldiers of Iran Army in Isfahan in 2013 the prevalence of joint hypermobility was obtained by using Beighton criteria. Soldiers divided in two groups of healthy and suffered based on their scores. The prevalence of ankle sprain, shoulder and temporomandibular joint (TMJ) dislocations identified before beginning service by history-taking and reviewing paraclinical documents. After 3 months of military training, a recent occurrence of mentioned diseases was revaluated in two groups. The collected data were analyzed using SPSS-20 software using Independent-T and Chi-square tests. The frequency of BJHS before military training was 29.4%. After passing military training period, the incidence of ankle sprain was significantly higher in suffered group achieving the minimum Beighton score (BS) of 4 (4.3%, P = 0.03), 5 (5.5%, P = 0.005) and also 6 out of 9 (6.5%, P = 0.01). The incidence of TMJ dislocation was not significantly different based on a minimum score of 4, while it was higher in suffered group when considering the score of 5 (2.1%) and 6 (2.6%) for discrimination of two groups (P = 0.03). There was no significant difference between two groups in case of shoulder dislocation anyway. Military training can increase the incidence of ankle sprains and TMJ dislocations in hypermobility persons with higher BS in comparison with healthy people. Therefore, screening of joint hypermobility may be useful in identifying individuals at increased risk for joint instabilities.

  10. Postural stability and ankle sprain history in athletes compared to uninjured controls.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; Verhagen, Evert A L M; van Dieën, Jaap H

    2014-02-01

    Diminished postural stability is a risk factor for ankle sprain occurrence and ankle sprains result in impaired postural stability. To date, ankle sprain history has not been taken into account as a determinant of postural stability, while it could possibly specify subgroups of interest. Postural stability was compared between 18 field hockey athletes who had recovered from an ankle sprain (mean (SD); 3.6 (1.5) months post-injury), and 16 uninjured controls. Force plate and kinematics parameters were calculated during single-leg standing: mean center of pressure speed, mean absolute horizontal ground reaction force, mean absolute ankle angular velocity, and mean absolute hip angular velocity. Additionally, cluster analysis was applied to the 'injured' participants, and the cluster with diminished postural stability was compared to the other participants with respect to ankle sprain history. MANCOVA showed no significant difference between groups in postural stability (P = 0.68). A self-reported history of an (partial) ankle ligament rupture was typically present in the cluster with diminished postural stability. Subsequently, a 'preceding rupture' was added as a factor in the MANCOVA, which showed a significant association between diminished postural stability and a 'preceding rupture' (P = 0.01), for all four individual parameters (P: 0.001-0.029; Cohen's d: 0.96-2.23). Diminished postural stability is not apparent in all previously injured athletes. However, our analysis suggests that an (mild) ankle sprain with a preceding severe ankle sprain is associated with impaired balance ability. Therefore, sensorimotor training may be emphasized in this particular group and caution is warranted in return to play decisions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The Football Association Medical Research Programme: an audit of injuries in professional football: an analysis of ankle sprains

    PubMed Central

    Woods, C; Hawkins, R; Hulse, M; Hodson, A

    2003-01-01

    Aim: To conduct a detailed analysis of ankle sprains sustained in English professional football over two competitive seasons. Methods: Club medical staff at 91 professional football clubs annotated player injuries. A specific injury audit questionnaire was used together with a weekly form that documented each club's current injury status. Results: Completed injury records for the two competitive seasons were obtained from 87% and 76% of the participating clubs. Ankle ligament sprains accounted for 11% of the total injuries over the two seasons, with over three quarters (77%) of sprains involving the lateral ligament complex. A total of 12 138 days and 2033 matches were missed because of ankle sprains. More sprains were caused by contact mechanisms than non-contact mechanisms (59% v 39%) except in goalkeepers who sustained more non-contact sprains (21% v 79%, p<0.01). Ankle sprains were most often observed during tackles (54%). More ankle sprains were sustained in matches than in training (66% v 33%), with nearly half (48%) observed during the last third of each half of matches. A total of 44% of sprains occurred during the first three months of the season. A high number of players (32%) who sustained ankle sprains were wearing some form of external support. The recurrence rate for ankle sprains was 9% (see methodology for definition of reinjury). Conclusion: Ankle ligament sprains are common in football usually involving the lateral ligament complex. The high rate of occurrence and recurrence indicates that prevention is of paramount importance. PMID:12782548

  12. Six-week transition to minimalist shoes improves running economy and time-trial performance.

    PubMed

    Fuller, Joel T; Thewlis, Dominic; Tsiros, Margarita D; Brown, Nicholas A T; Buckley, Jonathan D

    2017-12-01

    This study investigated if gradually introducing runners to minimalist shoes during training improved running economy and time-trial performance compared to training in conventional shoes. Changes in stride rate, stride length, footfall pattern and ankle plantar-flexor strength were also investigated. Randomised parallel intervention trial. 61 trained runners gradually increased the amount of running performed in either minimalist (n=31) or conventional (n=30) shoes during a six-week standardised training program. 5-km time-trial performance, running economy, ankle plantar-flexor strength, footfall pattern, stride rate and length were assessed in the allocated shoes at baseline and after training. Footfall pattern was determined from the time differential between rearfoot and forefoot (TD R-F ) pressure sensors. The minimalist shoe group improved time-trial performance (effect size (ES): 0.24; 95% confidence interval (CI): 0.01, 0.48; p=0.046) and running economy (ES 0.48; 95%CI: 0.22, 0.74; p<0.001) more than the conventional shoe group. There were no minimalist shoe training effects on ankle plantar-flexor concentric (ES: 0.11; 95%CI: -0.18, 0.41; p=0.45), isometric (ES: 0.23; 95%CI: -0.17, 0.64; p=0.25), or eccentric strength (ES: 0.24; 95%CI: -0.17, 0.65; p=0.24). Minimalist shoes caused large reductions in TD R-F (ES: 1.03; 95%CI: 0.65, 1.40; p<0.001) but only two runners changed to a forefoot footfall. Minimalist shoes had no effect on stride rate (ES: 0.04; 95%CI: -0.08, 0.16; p=0.53) or length (ES: 0.06; 95%CI: -0.06, 0.18; p=0.35). Gradually introducing minimalist shoes over a six-week training block is an effective method for improving running economy and performance in trained runners. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Effects of the bilateral isokinetic strengthening training on functional parameters, gait, and the quality of life in patients with stroke.

    PubMed

    Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe

    2015-01-01

    To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (P<0.025). Furthermore, the quality of life, gait, balance and mobility index values improved significantly in both groups, besides the increase levels were found significantly higher in the isokinetic group (P<0.025, P<0.05). Bilateral isokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality.

  14. Effects of the bilateral isokinetic strengthening training on functional parameters, gait, and the quality of life in patients with stroke

    PubMed Central

    Büyükvural Şen, Sıdıka; Özbudak Demir, Sibel; Ekiz, Timur; Özgirgin, Neşe

    2015-01-01

    Objective: To evaluate the effects of the bilateral isokinetic strengthening training applied to knee and ankle muscles on balance, functional parameters, gait, and the quality of in stroke patients. Methods: Fifty patients (33 M, 17 F) with subacute-chronic stroke and 30 healthy subjects were included. Stroke patients were allocated into isokinetic and control groups. Conventional rehabilitation program was applied to all cases; additionally maximal concentric isokinetic strengthening training was applied to the knee-ankle muscles bilaterally to the isokinetic group 5 days a week for 3 weeks. Biodex System 3 Pro Multijoint System isokinetic dynamometer was used for isokinetic evaluation. The groups were assessed by Functional Independence Measure, Stroke Specific Quality of Life Scale, Timed 10-Meter Walk Test, Six-Minute Walk Test, Stair-Climbing Test, Timed up&go Test, Berg Balance Scale, and Rivermead Mobility Index. Results: Compared with baseline, the isokinetic PT values of the knee and ankle on both sides significantly increased in all cases. PT change values were significantly higher in the isokinetic group than the control group (P<0.025). Furthermore, the quality of life, gait, balance and mobility index values improved significantly in both groups, besides the increase levels were found significantly higher in the isokinetic group (P<0.025, P<0.05). Conclusion: Bilateral isokinetic strengthening training in addition to conventional rehabilitation program after stroke seems to be effective on strengthening muscles on both sides, improving functional parameters, gait, balance and life quality. PMID:26629238

  15. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns.

    PubMed

    Shin, Yoon-Kyum; Chong, Hyun Ju; Kim, Soo Ji; Cho, Sung-Rae

    2015-11-01

    The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function.

  16. Short-term changes in running mechanics and foot strike pattern after introduction to minimalistic footwear.

    PubMed

    Willson, John D; Bjorhus, Jordan S; Williams, D S Blaise; Butler, Robert J; Porcari, John P; Kernozek, Thomas W

    2014-01-01

    Minimalistic footwear has garnered widespread interest in the running community, based largely on the premise that the footwear may reduce certain running-related injury risk factors through adaptations in running mechanics and foot strike pattern. To examine short-term adaptations in running mechanics among runners who typically run in conventional cushioned heel running shoes as they transition to minimalistic footwear. A 2-week, prospective, observational study. A movement science laboratory. Nineteen female runners with a rear foot strike (RFS) pattern who usually train in conventional running shoes. The participants trained for 20 minutes, 3 times per week for 2 weeks by using minimalistic footwear. Three-dimensional lower extremity running mechanics were analyzed before and after this 2-week period. Hip, knee, and ankle joint kinematics at initial contact; step length; stance time; peak ankle joint moment and joint work; impact peak; vertical ground reaction force loading rate; and foot strike pattern preference were evaluated before and after the intervention. The knee flexion angle at initial contact increased 3.8° (P < .01), but the ankle and hip flexion angles at initial contact did not change after training. No changes in ankle joint kinetics or running temporospatial parameters were observed. The majority of participants (71%), before the intervention, demonstrated an RFS pattern while running in minimalistic footwear. The proportion of runners with an RFS pattern did not decrease after 2 weeks (P = .25). Those runners who chose an RFS pattern in minimalistic shoes experienced a vertical loading rate that was 3 times greater than those who chose to run with a non-RFS pattern. Few systematic changes in running mechanics were observed among participants after 2 weeks of training in minimalistic footwear. The majority of the participants continued to use an RFS pattern after training in minimalistic footwear, and these participants experienced higher vertical loading rates. Continued exposure to these greater loading rates may have detrimental effects over time. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. The effect of taping versus semi-rigid bracing on patient outcome and satisfaction in ankle sprains: a prospective, randomized controlled trial.

    PubMed

    Lardenoye, Sacha; Theunissen, Ed; Cleffken, Berry; Brink, Peter Rg; de Bie, Rob A; Poeze, Martijn

    2012-05-28

    Functional treatment is a widely used and generally accepted treatment for ankle sprain. A meta-analysis comparing the different functional treatment options could not make definitive conclusions regarding the effectiveness, and until now, little was known about patient satisfaction in relation to the outcome. Patients with acute ankle sprain received rest, ice, compression and elevation with an compressive bandage at the emergency department. After 5-7 days, 100 patients with grade II and III sprains were randomized into two groups: one group was treated with tape and the other with a semi-rigid ankle brace, both for 4 weeks. Post-injury physical and proprioceptive training was standardized. As primary outcome parameter patient satisfaction and skin complications were evaluated using a predefined questionnaire and numeric rating scale. As secondary outcome parameter the ankle joint function was assessed using the Karlsson scoring scale and range of motion. Patient-reported comfort and satisfaction during treatment with a semi-rigid brace was significantly increased. The rate of skin complication in this group was significantly lower compared to the tape group (14.6% versus 59.1%, P < 0.0001). Functional outcome of the ankle joint was similar between the two treatment groups, as well as reported pain. Treatment of acute ankle sprain with semi-rigid brace leads to significantly higher patient comfort and satisfaction, both with similar good outcome.

  18. Study of aeroball injuries.

    PubMed Central

    Sinha, A; McGlone, R G; Montgomery, K

    1997-01-01

    OBJECTIVE: To present the risks of aeroball, a new sport played by either two or four players on a trampoline court surrounded by specially constructed fabric walls, and to propose ways to increase awareness and reduce the incidence of injury, in particular, ankle injury. METHOD: A study was carried out to document the nature of aeroball related incidents, between 1991 and 1995, at Lancaster University Sports Centre. Lace-up ankle supports were introduced in April 1992, and their effect on the incidence of ankle injury was recorded. RESULTS: The lower limb received most injuries (90%), followed by the upper limb (6%), then the face (3%) and cervical spine (1%). The most common category of injuries was sprains (83%), followed by fractures (8%), contusions (5%), and dislocations (4%). The most common site of injury was the ankle (73%). It is during doubles play that injury is most likely to occur. Since the introduction of ankle supports, there has been a gradual decline in the incidence of ankle injury, 31 in 1991 to nine in 1995. CONCLUSION: Aeroball has become a popular sport, but it is not without risks. Leaflets have been produced to promote the objectives, rules, and safety of the game. Trained full-time staff should be present to explain the nature of the game. The use of prophylactic ankle stabilisers in aeroball is strongly recommended. Images Figure 1 Figure 4 PMID:9298553

  19. Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations.

    PubMed

    Alexander, Nathalie; Strutzenberger, Gerda; Ameshofer, Lisa Maria; Schwameder, Hermann

    2017-08-16

    Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0±4.7yrs, 1.80±0.05m, 74.5±8.2kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint's contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Talocrural Dislocation With Associated Weber Type C Fibular Fracture in a Collegiate Football Player: A Case Report

    PubMed Central

    Ricci, R Daniel; Cerullo, James; Blanc, Robert O; McMahon, Patrick J; Buoncritiani, Anthony M; Stone, David A; Fu, Freddie H

    2008-01-01

    Objective: To present the case of a talocrural dislocation with a Weber type C fibular fracture in a National Collegiate Athletic Association Division I football athlete. Background: The athlete, while attempting to make a tackle during a game, collided with an opponent, who in turn stepped on the lateral aspect of the athlete's ankle, resulting in forced ankle eversion and external rotation. On-field evaluation showed a laterally displaced talocrural dislocation. Immediate reduction was performed in the athletic training room to maintain skin integrity. Post-reduction radiographs revealed a Weber type C fibular fracture and increased medial joint clear space. A below-knee, fiberglass splint was applied to stabilize the ankle joint complex. Differential Diagnosis: Subtalar dislocation, Maisonneuve fracture, malleolar fracture, deltoid ligament rupture, syndesmosis disruption. Treatment: The sports medicine staff immediately splinted and transported the athlete to the athletic training room to reduce the dislocation. The athlete then underwent an open reduction and internal fixation procedure to stabilize the injury: 2 syndesmosis screws and a fibular plate were placed to keep the ankle joint in an anatomically reduced position. With the guidance of the athletic training staff, the athlete underwent an accelerated physical rehabilitation protocol in an effort to return to sport as quickly and safely as possible. Uniqueness: Most talocrural dislocations and associated Weber type C fibular fractures are due to motor vehicle accidents or falls. We are the first to describe this injury in a Division I football player and to present a general rehabilitation protocol for a high-level athlete. Conclusions: Sports medicine practitioners must recognize that this injury can occur in the athletic environment. Prompt reduction, early surgical intervention, sufficient resources, and an accelerated rehabilitation protocol all contributed to a successful outcome in the patient. PMID:18523569

  1. Sensory training with vibration-induced kinesthetic illusions improves proprioceptive integration in patients with Parkinson's disease.

    PubMed

    Ribot-Ciscar, Edith; Aimonetti, Jean-Marc; Azulay, Jean-Philippe

    2017-12-15

    The present study investigates whether proprioceptive training, based on kinesthetic illusions, can help in re-educating the processing of muscle proprioceptive input, which is impaired in patients with Parkinson's disease (PD). The processing of proprioceptive input before and after training was evaluated by determining the error in the amplitude of voluntary dorsiflexion ankle movement (20°), induced by applying a vibration on the tendon of the gastrocnemius-soleus muscle (a vibration-induced movement error). The training consisted of the subjects focusing their attention upon a series of illusory movements of the ankle. Eleven PD patients and eleven age-matched control subjects were tested. Before training, vibration reduced dorsiflexion amplitude in controls by 4.3° (P<0.001); conversely, vibration was inefficient in PD's movement amplitude (reduction of 2.1°, P=0.20). After training, vibration significantly reduced the estimated movement amplitude in PD patients by 5.3° (P=0.01). This re-emergence of a vibration-induced error leads us to conclude that proprioceptive training, based on kinesthetic illusions, is a simple means for re-educating the processing of muscle proprioceptive input in PD patients. Such complementary training should be included in rehabilitation programs that presently focus on improving balance and motor performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Redistribution of Mechanical Work at the Knee and Ankle Joints During Fast Running in Minimalist Shoes.

    PubMed

    Fuller, Joel T; Buckley, Jonathan D; Tsiros, Margarita D; Brown, Nicholas A T; Thewlis, Dominic

    2016-10-01

    Minimalist shoes have been suggested as a way to alter running biomechanics to improve running performance and reduce injuries. However, to date, researchers have only considered the effect of minimalist shoes at slow running speeds. To determine if runners change foot-strike pattern and alter the distribution of mechanical work at the knee and ankle joints when running at a fast speed in minimalist shoes compared with conventional running shoes. Crossover study. Research laboratory. Twenty-six trained runners (age = 30.0 ± 7.9 years [age range, 18-40 years], height = 1.79 ± 0.06 m, mass = 75.3 ± 8.2 kg, weekly training distance = 27 ± 15 km) who ran with a habitual rearfoot foot-strike pattern and had no experience running in minimalist shoes. Participants completed overground running trials at 18 km/h in minimalist and conventional shoes. Sagittal-plane kinematics and joint work at the knee and ankle joints were computed using 3-dimensional kinematic and ground reaction force data. Foot-strike pattern was classified as rearfoot, midfoot, or forefoot strike based on strike index and ankle angle at initial contact. We observed no difference in foot-strike classification between shoes (χ 2 1 = 2.29, P = .13). Ankle angle at initial contact was less (2.46° versus 7.43°; t 25 = 3.34, P = .003) and strike index was greater (35.97% versus 29.04%; t 25 = 2.38, P = .03) when running in minimalist shoes compared with conventional shoes. We observed greater negative (52.87 J versus 42.46 J; t 24 = 2.29, P = .03) and positive work (68.91 J versus 59.08 J; t 24 = 2.65, P = .01) at the ankle but less negative (59.01 J versus 67.02 J; t 24 = 2.25, P = .03) and positive work (40.37 J versus 47.09 J; t 24 = 2.11, P = .046) at the knee with minimalist shoes compared with conventional shoes. Running in minimalist shoes at a fast speed caused a redistribution of work from the knee to the ankle joint. This finding suggests that runners changing from conventional to minimalist shoes for short-distance races could be at an increased risk of ankle and calf injuries but a reduced risk of knee injuries.

  3. Effectiveness of robot-assisted therapy on ankle rehabilitation – a systematic review

    PubMed Central

    2013-01-01

    Objective The aim of this study was to provide a systematic review of studies that investigated the effectiveness of robot-assisted therapy on ankle motor and function recovery from musculoskeletal or neurologic ankle injuries. Methods Thirteen electronic databases of articles published from January, 1980 to June, 2012 were searched using keywords ‘ankle*’, ‘robot*’, ‘rehabilitat*’ or ‘treat*’ and a free search in Google Scholar based on effects of ankle rehabilitation robots was also conducted. References listed in relevant publications were further screened. Eventually, twenty-nine articles were selected for review and they focused on effects of robot-assisted ankle rehabilitation. Results Twenty-nine studies met the inclusion criteria and a total of 164 patients and 24 healthy subjects participated in these trials. Ankle performance and gait function were the main outcome measures used to assess the therapeutic effects of robot-assisted ankle rehabilitation. The protocols and therapy treatments were varied, which made comparison among different studies difficult or impossible. Few comparative trials were conducted among different devices or control strategies. Moreover, the majority of study designs met levels of evidence that were no higher than American Academy for Cerebral Palsy (CP) and Developmental Medicine (AACPDM) level IV. Only one study used a Randomized Control Trial (RCT) approach with the evidence level being II. Conclusion All the selected studies showed improvements in terms of ankle performance or gait function after a period of robot-assisted ankle rehabilitation training. The most effective robot-assisted intervention cannot be determined due to the lack of universal evaluation criteria for various devices and control strategies. Future research into the effects of robot-assisted ankle rehabilitation should be carried out based on universal evaluation criteria, which could determine the most effective method of intervention. It is also essential to conduct trials to analyse the differences among different devices or control strategies. PMID:23517734

  4. Profile of injures prevalence in athletes who participated in SESC Triathlon Caiobá-2011

    PubMed Central

    Bertola, Izabela Pichinin; Sartori, Renato Pineda; Corrêa, Daniela Gallon; Zotz, Talita Gianello Gnoato; Gomes, Anna Raquel Silveira

    2014-01-01

    OBJECTIVE: To identify the prevalence of injuries occurred during training and/or competition in triathlon athletes at SESC Triathlon Caiobá-2011. METHODS: One hundred and ninety athletes participated in the study (153 males and 37 females). RESULTS: Athletes reported time of practice between 3 to 6 years (20%), training frequency of 5 days per week (48%), at least one injury during trainings (76%). The prevalence of injuries according to the sports category was: running (79%), cycling (16%) and swimming (5%). The most injured region during training (39%) and competition (46%) was the calf. Female athletes reported 92% of injuries during running training and 35% of those injuries were on ankle and foot. During competition only two athletes reported injuries. Muscle injury was the most prevalent (54%) among male athletes, followed by tendon (19%), ligament (17%) and bone (9%) injuries. Among female athletes prevalent injuries were: 32% muscle, 32% bone, 32% tendon and only 4% ligament injuries. CONCLUSION: Skeletal muscle injuries were the most commom lesions during running training, however, male athletes reported mostly calf injuries, while female had mostly ankle and foot injuries. Level of Evidence III. Study of Non-Consecutive Patients; Without Consistently Applied Reference ''Gold'' Standard. PMID:25246848

  5. EFFECTS OF MOVEABLE PLATFORM TRAINING IN PREVENTING SLIP-INDUCED FALLS IN OLDER ADULTS

    PubMed Central

    Parijat, Prakriti; Lockhart, Thurmon E

    2011-01-01

    Identifying effective interventions is vitalin preventing slip-induced fall accidents in older adults. The purpose of the current study was to evaluate the efficacy of moveable platform training in improving recovery reactions and reducing fall frequency in older adults. Twenty-four older adults were recruited and randomly assigned to two groups (training and control). Both groups underwent three sessions including baseline slip, training, and transfer of training on a slippery surface. Both groups experienced two slips on a slippery surface, one during the baseline and the other (after two weeks) during the transfer of training session. In the training session, the training group underwent twelve simulated slips using a moveable platform while the control group performed normal walking trials. Kinematic, kinetic, and EMG data were collected during all the sessions. Results indicated a reduced incidence of falls in the training group during the transfer of training trial as compared to the control group. The training group was able to transfer proactive and reactive control strategies learned during training to the second slip trial. The proactive adjustments include increased center-of-mass velocity and transitional acceleration after training. Reactive adjustments include reduction in muscle onset and time to peak activations of knee flexors and ankle plantarflexors, reduced ankle and knee coactivation, reduced slip displacement, and reduced time to peak knee flexion, trunk flexion, and hip flexion velocities. In general, the results indicated a beneficial effect of perturbation training in reducing slip severity and recovery kinematics in healthy older adults. PMID:22134467

  6. Treatment and prevention of acute and recurrent ankle sprain: an overview of systematic reviews with meta-analysis.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Delahunt, Eamonn; Holden, Sinead

    2017-01-01

    Ankle sprains are highly prevalent with high risk of recurrence. Consequently, there are a significant number of research reports examining strategies for treating and preventing acute and recurrent sprains (otherwise known as chronic ankle instability (CAI)), with a coinciding proliferation of review articles summarising these reports. To provide a systematic overview of the systematic reviews evaluating treatment strategies for acute ankle sprain and CAI. Overview of intervention systematic reviews. Individuals with acute ankle sprain/CAI. The primary outcomes were injury/reinjury incidence and function. 46 papers were included in this systematic review. The reviews had a mean score of 6.5/11 on the AMSTAR quality assessment tool. There was strong evidence for bracing and moderate evidence for neuromuscular training in preventing recurrence of an ankle sprain. For the combined outcomes of pain, swelling and function after an acute sprain, there was strong evidence for non-steroidal anti-inflammatory drugs and early mobilisation, with moderate evidence supporting exercise and manual therapy techniques. There was conflicting evidence regarding the efficacy of surgery and acupuncture for the treatment of acute ankle sprains. There was insufficient evidence to support the use of ultrasound in the treatment of acute ankle sprains. For the treatment of acute ankle sprain, there is strong evidence for non-steroidal anti-inflammatory drugs and early mobilisation, with moderate evidence supporting exercise and manual therapy techniques, for pain, swelling and function. Exercise therapy and bracing are supported in the prevention of CAI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  7. Hip Strength as a Predictor of Ankle Sprains in Male Soccer Players: A Prospective Study.

    PubMed

    Powers, Christopher M; Ghoddosi, Navid; Straub, Rachel K; Khayambashi, Khalil

    2017-11-01

      Diminished hip-abductor strength has been suggested to increase the risk of noncontact lateral ankle sprains.   To determine prospectively whether baseline hip-abductor strength predicts future noncontact lateral ankle sprains in competitive male soccer players.   Prospective cohort study.   Athletic training facilities and various athletic fields.   Two hundred ten competitive male soccer players.   Before the start of the sport season, isometric hip-abductor strength was measured bilaterally using a handheld dynamometer. Any previous history of ankle sprain, body mass index, age, height, and weight were documented. During the sport season (30 weeks), ankle injury status was recorded by team medical providers. Injured athletes were further classified based on the mechanism of injury. Only data from injured athletes who sustained noncontact lateral ankle sprains were used for analysis. Postseason, logistic regression was used to determine whether baseline hip strength predicted future noncontact lateral ankle sprains. A receiver operating characteristic curve was constructed for hip strength to determine the cutoff value for distinguishing between high-risk and low-risk outcomes.   A total of 25 noncontact lateral ankle sprains were confirmed, for an overall annual incidence of 11.9%. Baseline hip-abductor strength was lower in injured players than in uninjured players ( P = .008). Logistic regression indicated that impaired hip-abductor strength increased the future injury risk (odds ratio = 1.10 [95% confidence interval = 1.02, 1.18], P = .010). The strength cutoff to define high risk was ≤33.8% body weight, as determined by receiver operating characteristic curve analysis. For athletes classified as high risk, the probability of injury increased from 11.9% to 26.7%.   Reduced isometric hip-abductor strength predisposed competitive male soccer players to noncontact lateral ankle sprains.

  8. Mechanisms for Triceps Surae Injury in High Performance Front Row Rugby Union Players: A Kinematic Analysis of Scrummaging Drills

    PubMed Central

    Flavell, Carol A.; Sayers, Mark G. L.; Gordon, Susan J.; Lee, James B.

    2013-01-01

    The front row of a rugby union scrum consists of three players. The loose head prop, hooker and tight head prop. The objective of this study was to determine if known biomechanical risk factors for triceps surae muscle injury are exhibited in the lower limb of front row players during contested scrummaging. Eleven high performance front row rugby union players were landmarked bilaterally at the posterior superior iliac spine (PSIS), greater trochanter, lateral femoral epicondyle, midline of the calcaneus above the plantar aspect of the heel, midline lower leg 5cm and 20cm proximal to the lateral malleolus, at the axis of subtalar joint, lateral malleolus, and head of the fifth metatarsal. Players were video recorded during a series of 2 on 1 live scrummaging drills. Biomechanical three dimensional analysis identified large angular displacements, and increased peak velocities and accelerations at the ankle joint during attacking scrummaging drill techniques when in the stance phase of gait. This places the triceps surae as increased risk of injury and provides valuable information for training staff regarding injury prevention and scrum training practices for front row players. Key points Front rowers exhibited patterns of single leg weight bearing, in a position of greater ankle plantar flexion and knee extension at toe off during scrummaging, which is a risk position for TS injury. Front rowers also exhibited greater acceleration at the ankle, knee, and hip joints, and greater changes in ankle ROM from toe strike to toe off during attacking scrum drills. These reported accelerations and joint displacements may be risk factors for TS injury, as the ankle is accelerating into plantar flexion at final push off and the muscle is shortening from an elongated state. PMID:24149740

  9. Mechanisms for triceps surae injury in high performance front row rugby union players: a kinematic analysis of scrummaging drills.

    PubMed

    Flavell, Carol A; Sayers, Mark G L; Gordon, Susan J; Lee, James B

    2013-01-01

    The front row of a rugby union scrum consists of three players. The loose head prop, hooker and tight head prop. The objective of this study was to determine if known biomechanical risk factors for triceps surae muscle injury are exhibited in the lower limb of front row players during contested scrummaging. Eleven high performance front row rugby union players were landmarked bilaterally at the posterior superior iliac spine (PSIS), greater trochanter, lateral femoral epicondyle, midline of the calcaneus above the plantar aspect of the heel, midline lower leg 5cm and 20cm proximal to the lateral malleolus, at the axis of subtalar joint, lateral malleolus, and head of the fifth metatarsal. Players were video recorded during a series of 2 on 1 live scrummaging drills. Biomechanical three dimensional analysis identified large angular displacements, and increased peak velocities and accelerations at the ankle joint during attacking scrummaging drill techniques when in the stance phase of gait. This places the triceps surae as increased risk of injury and provides valuable information for training staff regarding injury prevention and scrum training practices for front row players. Key pointsFront rowers exhibited patterns of single leg weight bearing, in a position of greater ankle plantar flexion and knee extension at toe off during scrummaging, which is a risk position for TS injury.Front rowers also exhibited greater acceleration at the ankle, knee, and hip joints, and greater changes in ankle ROM from toe strike to toe off during attacking scrum drills.These reported accelerations and joint displacements may be risk factors for TS injury, as the ankle is accelerating into plantar flexion at final push off and the muscle is shortening from an elongated state.

  10. Peroneus quartus and functional ankle instability.

    PubMed

    Lotito, G; Pruvost, J; Collado, H; Coudreuse, J-M; Bensoussan, L; Curvale, G; Viton, J-M; Delarque, A

    2011-07-01

    Physical and rehabilitation medicine physicians commonly see patients with chronic functional ankle instability. The main anatomical structures involved in ankle stability are the peroneus (fibularis) brevis and peroneus longus muscles. Several anatomical muscle-tendon variations have been described in the literature as being sometimes responsible for this instability, the peroneus quartus muscle being the most frequent. The objective of this clinical study is to discuss the implication of the bilateral peroneus quartus muscle in functional ankle instability. This 26-year-old patient was seen in PM&R consultation for recurrent episodes of lateral ankle sprains. The clinical examination found a moderate hyperlaxity on the right side in bilateral ankle varus. We also noted a bilateral weakness of the peroneus muscles. Additional imaging examinations showed a supernumerary bilateral peroneus quartus. The electroneuromyogram of the peroneus muscles was normal. In the literature the incidence of a supernumerary peroneus quartus muscle varies from 0 to 21.7%. Most times this muscle is asymptomatic and is only fortuitously discovered. However some cases of chronic ankle pain or instability have been reported in the literature. It seems relevant to discuss, around the clinical case of this patient, the impact of this muscle on ankle instability especially when faced with lingering weakness of the peroneus brevis and longus muscles in spite of eccentric strength training and in the absence of any neurological impairment. One of the hypotheses, previously described in the literature, would be the overcrowding effect resulting in a true conflict by reducing the available space for the peroneal muscles in the peroneal sheath. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  11. A Prospective Investigation of Injury Incidence and Risk Factors Among Army Recruits in Combat Engineer Training

    DTIC Science & Technology

    2013-03-05

    neuropathy, radiculopathy, shin splints, synovitis, sprains , strains, and musculoskeletal pain (not otherwise specified). Recruits that attrited from...acceptability of the parachute ankle brace. Aviat Space Environ Med 2008, 79:689–694. 24. Craig SC, Lee T: Attention to detail: injuries at altitude among U.S...Army military static line parachutists. Mil Med 2000, 165:268–271. 25. Schmidt MD, Sulski SI, Amoroso PJ: Effectiveness of an external ankle brace in

  12. Hip and ankle range of motion and hip muscle strength in young female ballet dancersand controls

    PubMed Central

    Bennell, K.; Khan, K. M.; Matthews, B.; De Gruyter, M.; Cook, E.; Holzer, K.; Wark, J. D.

    1999-01-01

    OBJECTIVES: To compare the hip and ankle range of motion and hip muscle strength in 8-11 year old novice female ballet dancers and controls. METHODS: Subjects were 77 dancers and 49 controls (mean (SD) age 9.6 (0.8) and 9.6 (0.7) years respectively). Supine right active hip external rotation (ER) and internal rotation (IR) were measured using an inclinometer. A turnout protractor was used to assess standing active turnout range. The measure of ER achieved from below the hip during turnout (non-hip ER) was calculated by subtracting hip ER range from turnout range, and hip ER:IR was derived by dividing ER range by IR range. Range of right weight bearing ankle dorsiflexion was measured in a standing lunge using two methods: the distance from the foot to the wall (in centimetres) and the angle of the shank to the vertical via an inclinometer (in degrees). Right calf muscle range was measured in weight bearing using an inclinometer. A manual muscle tester was used to assess right isometric hip flexor, internal rotator, external rotator, abductor, and adductor strength. RESULTS: Dancers had less ER (p<0.05) and IR (p<0.01) range than controls but greater ER:IR (p<0.01). Although there was no difference in turnout between groups, the dancers had greater non-hip ER. Dancers had greater range of ankle dorsiflexion than controls, measured in both centimetres (p<0.01) and degrees (p<0.05), but similar calf muscle range. After controlling for body weight, controls had stronger hip muscles than dancers except for hip abductor strength which was similar. Regression analyses disclosed a moderate relation between turnout and hip ER (r = 0.40). There were no significant correlations between range of motion and training years and weekly training hours. CONCLUSIONS: Longitudinal follow up will assist in determining whether or not hip and ankle range in young dancers is genetically fixed and unable to be improved with further balletic training. 


 PMID:10522638

  13. Interactive balance training integrating sensor-based visual feedback of movement performance: a pilot study in older adults.

    PubMed

    Schwenk, Michael; Grewal, Gurtej S; Honarvar, Bahareh; Schwenk, Stefanie; Mohler, Jane; Khalsa, Dharma S; Najafi, Bijan

    2014-12-13

    Wearable sensor technology can accurately measure body motion and provide incentive feedback during exercising. The aim of this pilot study was to evaluate the effectiveness and user experience of a balance training program in older adults integrating data from wearable sensors into a human-computer interface designed for interactive training. Senior living community residents (mean age 84.6) with confirmed fall risk were randomized to an intervention (IG, n = 17) or control group (CG, n = 16). The IG underwent 4 weeks (twice a week) of balance training including weight shifting and virtual obstacle crossing tasks with visual/auditory real-time joint movement feedback using wearable sensors. The CG received no intervention. Outcome measures included changes in center of mass (CoM) sway, ankle and hip joint sway measured during eyes open (EO) and eyes closed (EC) balance test at baseline and post-intervention. Ankle-hip postural coordination was quantified by a reciprocal compensatory index (RCI). Physical performance was quantified by the Alternate-Step-Test (AST), Timed-up-and-go (TUG), and gait assessment. User experience was measured by a standardized questionnaire. After the intervention sway of CoM, hip, and ankle were reduced in the IG compared to the CG during both EO and EC condition (p = .007-.042). Improvement was obtained for AST (p = .037), TUG (p = .024), fast gait speed (p = . 010), but not normal gait speed (p = .264). Effect sizes were moderate for all outcomes. RCI did not change significantly. Users expressed a positive training experience including fun, safety, and helpfulness of sensor-feedback. Results of this proof-of-concept study suggest that older adults at risk of falling can benefit from the balance training program. Study findings may help to inform future exercise interventions integrating wearable sensors for guided game-based training in home- and community environments. Future studies should evaluate the added value of the proposed sensor-based training paradigm compared to traditional balance training programs and commercial exergames. http://www.clinicaltrials.govNCT02043834.

  14. Shoe rim and shoe buckle pseudotumor of the ankle in elite and professional figure skaters and snowboarders: MR imaging findings.

    PubMed

    Anderson, S E; Weber, M; Steinbach, L S; Ballmer, F T

    2004-06-01

    To review MR imaging of figure skaters and snowboarders presenting with painful soft-tissue swelling of the lateral supramalleolar region with a clinical provisional diagnosis of soft-tissue tumor. MR imaging was prospectively reviewed by two sub-specialized musculoskeletal radiologists. The findings were correlated with a second clinical review and examination of the shoe wear. The patients were four female athletes undergoing heavy training regimes, ranging in age between 16 and 25 years. Two patients were elite figure skaters, and two were professional snowboarders. Three patients had unilateral masses with pain, and one patient presented with bilateral clinical findings. MR imaging showed subcutaneous, focal soft-tissue masses of the supramalleolar region in five ankles at the same level above the ankle joint. MR imaging prompted a second clinical review and correlation with the shoe wear. The MR imaging findings correlated to the level of the shoe rim or shoe buckle in all patients, confirming the suspected MR imaging diagnosis of an impingement syndrome. All four sportswomen were training excessively, ignoring safety advice regarding training duration, timing of breaks, and shoe wear rotation. Ice skaters and snowboarders may present with persistent and disabling pain. On MR imaging, this corresponds to a focal soft-tissue abnormality, which may be due to subcutaneous fat impingement between the fibula and the shoe rim or shoe buckle. Copyright 2004 ISS

  15. The effect of taping versus semi-rigid bracing on patient outcome and satisfaction in ankle sprains: a prospective, randomized controlled trial

    PubMed Central

    2012-01-01

    Background Functional treatment is a widely used and generally accepted treatment for ankle sprain. A meta-analysis comparing the different functional treatment options could not make definitive conclusions regarding the effectiveness, and until now, little was known about patient satisfaction in relation to the outcome. Methods Patients with acute ankle sprain received rest, ice, compression and elevation with an compressive bandage at the emergency department. After 5-7 days, 100 patients with grade II and III sprains were randomized into two groups: one group was treated with tape and the other with a semi-rigid ankle brace, both for 4 weeks. Post-injury physical and proprioceptive training was standardized. As primary outcome parameter patient satisfaction and skin complications were evaluated using a predefined questionnaire and numeric rating scale. As secondary outcome parameter the ankle joint function was assessed using the Karlsson scoring scale and range of motion. Results Patient-reported comfort and satisfaction during treatment with a semi-rigid brace was significantly increased. The rate of skin complication in this group was significantly lower compared to the tape group (14.6% versus 59.1%, P < 0.0001). Functional outcome of the ankle joint was similar between the two treatment groups, as well as reported pain. Conclusion Treatment of acute ankle sprain with semi-rigid brace leads to significantly higher patient comfort and satisfaction, both with similar good outcome. PMID:22639864

  16. Peroneus longus stretch reflex amplitude increases after ankle brace application

    PubMed Central

    Cordova, M; Ingersoll, C

    2003-01-01

    Background: The use of external ankle support is widespread throughout sports medicine. However, the application of ankle bracing to a healthy ankle over a long period has been scrutinised because of possible neuromuscular adaptations resulting in diminished dynamic support offered by the peroneus longus. Objective: To investigate the immediate and chronic effects of ankle brace application on the amplitude of peroneus longus stretch reflex. Methods: Twenty physically active college students (mean (SD) age 23.6 (1.7) years, height 168.7 (8.4) cm, and mass 69.9 (12.0) kg) who had been free from lower extremity pathology for the 12 months preceding the study served as subjects. None had been involved in a strength training or conditioning programme in the six months preceding the study. A 3 x 3 x 2 (test condition x treatment condition x time) design with repeated measures on the first and third factor was used. The peroneus longus stretch reflex (% of maximum amplitude) during sudden foot inversion was evaluated under three ankle brace conditions (control, lace up, and semi-rigid) before and after eight weeks of ankle brace use. Results: A 3 x 3 x 2 repeated measures analysis of variance showed that peroneus longus stretch reflex amplitude increased immediately after application of a lace up brace (67.1 (4.4)) compared with the semi-rigid (57.9 (4.3)) and control (59.0 (5.2)) conditions (p<0.05). Peroneus longus stretch reflex also increased after eight weeks of use of the semi-rigid brace compared with the lace up and control conditions (p<0.05). Conclusions: Initial application of a lace up style ankle brace and chronic use of a semi-rigid brace facilitates the amplitude of the peroneus longus stretch reflex. It appears that initial and long term ankle brace use does not diminish the magnitude of this stretch reflex in the healthy ankle. PMID:12782553

  17. Effect of Rhythmic Auditory Stimulation on Hemiplegic Gait Patterns

    PubMed Central

    Shin, Yoon-Kyum; Chong, Hyun Ju

    2015-01-01

    Purpose The purpose of our study was to investigate the effect of gait training with rhythmic auditory stimulation (RAS) on both kinematic and temporospatial gait patterns in patients with hemiplegia. Materials and Methods Eighteen hemiplegic patients diagnosed with either cerebral palsy or stroke participated in this study. All participants underwent the 4-week gait training with RAS. The treatment was performed for 30 minutes per each session, three sessions per week. RAS was provided with rhythmic beats using a chord progression on a keyboard. Kinematic and temporospatial data were collected and analyzed using a three-dimensional motion analysis system. Results Gait training with RAS significantly improved both proximal and distal joint kinematic patterns in hip adduction, knee flexion, and ankle plantar flexion, enhancing the gait deviation index (GDI) as well as ameliorating temporal asymmetry of the stance and swing phases in patients with hemiplegia. Stroke patients with previous walking experience demonstrated significant kinematic improvement in knee flexion in mid-swing and ankle dorsiflexion in terminal stance. Among stroke patients, subacute patients showed a significantly increased GDI score compared with chronic patients. In addition, household ambulators showed a significant effect on reducing anterior tilt of the pelvis with an enhanced GDI score, while community ambulators significantly increased knee flexion in mid-swing phase and ankle dorsiflexion in terminal stance phase. Conclusion Gait training with RAS has beneficial effects on both kinematic and temporospatial patterns in patients with hemiplegia, providing not only clinical implications of locomotor rehabilitation with goal-oriented external feedback using RAS but also differential effects according to ambulatory function. PMID:26446657

  18. The association between menarche, intensity of training and passive joint ROM in young pre-professional female dancers: A longitudinal follow-up study.

    PubMed

    Nili, Steinberg; Shay, Tenenbaum; Myriam, Stern; Aviva, Zeev; Itzhak, Siev-Ner

    2018-05-05

    To determine the association between the status of menarche (yes/no), the intensity of training and the potential to improve passive joint range of motion (ROM) over a 12-month period of dance training. Prospective cohort study. Dance studio. Fifty-nine female dancers aged 12.8 ± 0.5. The dancers were asked about their dance intensity and screened for anthropometric parameters and passive joint ROM in Grades 7 and 8. Along the 12 months of dance training, we found significantly increased ankle-foot en-pointe, hip abduction, and hip external rotation (ER); significantly decreased hip internal rotation (IR); and significant increased hip ER:IR ratio. In Grade 7, 26 dancers (44.1%) reached menarche (Yes menarche); in Grade 8 an additional 23 dancers (39.0%) reached menarche (No/Yes menarche); and 10 dancers (16.9%) had not reached menarche (No menarche). MANOVA (mixed models) with repeated measures to compare joint ROM between the three menarche groups (Yes; No/Yes; No), with h/week dance practice as a co-variant, showed that hip ER, ankle-foot en-pointe, and ER:IR were significantly correlated with h/week in all three menarche groups. Most passive joint ROM can be improved over 12 months of dancing around the age onset of menarche. H/week of dance practice is a main factor contributing to improved hip ER, ankle-foot en-pointe and ER/IR ratio. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effects of brain-computer interface-based functional electrical stimulation on balance and gait function in patients with stroke: preliminary results

    PubMed Central

    Chung, EunJung; Park, Sang-In; Jang, Yun-Yung; Lee, Byoung-Hee

    2015-01-01

    [Purpose] The purpose of this study was to determine the effects of brain-computer interface (BCI)-based functional electrical stimulation (FES) on balance and gait function in patients with stroke. [Subjects] Subjects were randomly allocated to a BCI-FES group (n=5) and a FES group (n=5). [Methods] The BCI-FES group received ankle dorsiflexion training with FES according to a BCI-based program for 30 minutes per day for 5 days. The FES group received ankle dorsiflexion training with FES for the same duration. [Results] Following the intervention, the BCI-FES group showed significant differences in Timed Up and Go test value, cadence, and step length on the affected side. The FES group showed no significant differences after the intervention. However, there were no significant differences between the 2 groups after the intervention. [Conclusion] The results of this study suggest that BCI-based FES training is a more effective exercise for balance and gait function than FES training alone in patients with stroke. PMID:25729205

  20. Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: a pilot randomized controlled trial.

    PubMed

    Chung, EunJung; Kim, Jung-Hee; Park, Dae-Sung; Lee, Byoung-Hee

    2015-03-01

    [Purpose] This study sought to determine the effects of brain-computer interface-based functional electrical stimulation (BCI-FES) on brain activation in patients with stroke. [Subjects] The subjects were randomized to in a BCI-FES group (n=5) and a functional electrical stimulation (FES) group (n=5). [Methods] Patients in the BCI-FES group received ankle dorsiflexion training with FES for 30 minutes per day, 5 times under the brain-computer interface-based program. The FES group received ankle dorsiflexion training with FES for the same amount of time. [Results] The BCI-FES group demonstrated significant differences in the frontopolar regions 1 and 2 attention indexes, and frontopolar 1 activation index. The FES group demonstrated no significant differences. There were significant differences in the frontopolar 1 region activation index between the two groups after the interventions. [Conclusion] The results of this study suggest that BCI-FES training may be more effective in stimulating brain activation than only FES training in patients recovering from stroke.

  1. Effects of brain-computer interface-based functional electrical stimulation on balance and gait function in patients with stroke: preliminary results.

    PubMed

    Chung, EunJung; Park, Sang-In; Jang, Yun-Yung; Lee, Byoung-Hee

    2015-02-01

    [Purpose] The purpose of this study was to determine the effects of brain-computer interface (BCI)-based functional electrical stimulation (FES) on balance and gait function in patients with stroke. [Subjects] Subjects were randomly allocated to a BCI-FES group (n=5) and a FES group (n=5). [Methods] The BCI-FES group received ankle dorsiflexion training with FES according to a BCI-based program for 30 minutes per day for 5 days. The FES group received ankle dorsiflexion training with FES for the same duration. [Results] Following the intervention, the BCI-FES group showed significant differences in Timed Up and Go test value, cadence, and step length on the affected side. The FES group showed no significant differences after the intervention. However, there were no significant differences between the 2 groups after the intervention. [Conclusion] The results of this study suggest that BCI-based FES training is a more effective exercise for balance and gait function than FES training alone in patients with stroke.

  2. Home-based tele-assisted robotic rehabilitation of joint impairments in children with cerebral palsy.

    PubMed

    Chen, Kai; Ren, Yupeng; Gaebler-Spira, Deborah; Zhang, Li-Qun

    2014-01-01

    A portable rehabilitation robot incorporating intelligent stretching, robot-guided voluntary movement training with motivating games and tele-rehabilitation was developed to provide convenient and cost-effective rehabilitation to children with cerebral palsy (CP) and extend rehabilitation care beyond hospital. Clinicians interact with the patients remotely for periodic evaluations and updated guidance. The tele-assisted stretching and active movement training was done over 6-week 18 sessions on the impaired ankle of 23 children with CP in their home setting. Treatment effectiveness was evaluated using biomechanical measures and clinical outcome measures. After the tele-assisted home robotic rehabilitation intervention, there were significant increases in the ankle passive and active range of motion, muscle strength, a decrease in spasticity, and increases in balance and selective control assessment of lower-extremity.

  3. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot

    PubMed Central

    Ai, Qingsong; Zhu, Chengxiang; Zuo, Jie; Liu, Quan; Xie, Sheng Q.; Yang, Ming

    2017-01-01

    A rehabilitation robot plays an important role in relieving the therapists’ burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles’ good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM’s nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions. PMID:29283406

  4. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.

    PubMed

    Ai, Qingsong; Zhu, Chengxiang; Zuo, Jie; Meng, Wei; Liu, Quan; Xie, Sheng Q; Yang, Ming

    2017-12-28

    A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions.

  5. Response to Tendon Vibration Questions the Underlying Rationale of Proprioceptive Training.

    PubMed

    Lubetzky, Anat Vilnai; McCoy, Sarah Westcott; Price, Robert; Kartin, Deborah

    2017-02-01

    Proprioceptive training on compliant surfaces is used to rehabilitate and prevent ankle sprains. The ability to improve proprioceptive function via such training has been questioned. Achilles tendon vibration is used in motor-control research as a form of proprioceptive stimulus. Using measures of postural steadiness with nonlinear measures to elucidate control mechanisms, tendon vibration can be applied to investigate the underlying rationale of proprioceptive training. To test whether the effect of vibration on young adults' postural control depended on the support surface. Descriptive laboratory study. Research laboratory. Thirty healthy adults and 10 adults with chronic ankle instability (CAI; age range = 18-40 years). With eyes open, participants stood in bilateral stance on a rigid plate (floor), memory foam, and a Both Sides Up (BOSU) ball covering a force platform. We applied bilateral Achilles tendon vibration for the middle 20 seconds in a series of 60-second trials and analyzed participants' responses from previbration to vibration (pre-vib) and from vibration to postvibration (vib-post). We calculated anterior-posterior excursion of the center of pressure and complexity index derived from the area under multiscale entropy curves. The excursion response to vibration differed by surface, as indicated by a significant interaction of P < .001 for the healthy group at both time points and for the CAI group vib-post. Although both groups demonstrated increased excursion from pre-vib and from vib-post, a decrease was observed on the BOSU. The complexity response to vibration differed by surface for the healthy group (pre-vib, P < .001). The pattern for the CAI group was similar but not significant. Complexity changes vib-post were the same on all surfaces for both groups. Participants reacted less to ankle vibration when standing on the BOSU as compared with the floor, suggesting that proprioceptive training may not be occurring. Different balance-training paradigms to target proprioception, including tendon vibration, should be explored.

  6. Proprioceptive Training and Injury Prevention in a Professional Men's Basketball Team: A Six-Year Prospective Study

    PubMed Central

    Bianchi, Roberto; Rocca, Flavio; Mamo, Carlo

    2016-01-01

    Abstract Riva, D, Bianchi, R, Rocca, F, and Mamo, C. Proprioceptive training and injury prevention in a professional men's basketball team: A six-year prospective study. J Strength Cond Res 30(2): 461–475, 2016—Single limb stance instability is a risk factor for lower extremity injuries. Therefore, the development of proprioception may play an important role in injury prevention. This investigation considered a professional basketball team for 6 years, integrating systematic proprioceptive activity in the training routine. The purpose was to assess the effectiveness of proprioceptive training programs based on quantifiable instability, to reduce ankle sprains, knee sprains, and low back pain through developing refined and long-lasting proprioceptive control. Fifty-five subjects were studied. In the first biennium (2004–2006), the preventive program consisted of classic proprioceptive exercises. In the second biennium (2006–2008), the proprioceptive training became quantifiable and interactive by means of electronic proprioceptive stations. In the third biennium (2008–2010), the intensity and the training volume increased while the session duration became shorter. Analysis of variance was used to analyze the differences in proprioceptive control between groups, years, and bienniums. Injury rates and rate ratios of injury during practices and games were estimated. The results showed a statistically significant reduction in the occurrence of ankle sprains by 81% from the first to the third biennium (p < 0.001). Low back pain showed similar results with a reduction of 77.8% (p < 0.005). The reduction in knee sprains was 64.5% (not significant). Comparing the third biennium with the level of all new entry players, proprioceptive control improved significantly by 72.2% (p < 0.001). These findings indicate that improvements in proprioceptive control in single stance may be a key factor for an effective reduction in ankle sprains, knee sprains, and low back pain. PMID:26203850

  7. Preventing recurrent ankle sprains: Is the use of an App more cost-effective than a printed Booklet? Results of a RCT.

    PubMed

    Van Reijen, M; Vriend, I; van Mechelen, W; Verhagen, E A

    2018-02-01

    Recurrent ankle sprains can be reduced by following a neuromuscular training (NMT) program via a printed Booklet or a mobile application. Regarding the high incidence of ankle sprains, cost-effectiveness regarding implementation can have a large effect on total societal costs. In this economic analysis, we evaluated whether the method of implementing a proven effective NMT program using an App or a Booklet resulted in differences in injury incidence rates leading to costs and hence to differences in cost-effectiveness. In total, 220 athletes with a previous ankle sprain were recruited for this randomized controlled trial with a follow-up of 12 months. Half of the athletes used the freely available "Strengthen your ankle" App and the other half received a printed Booklet. After the 8-week program, athletes were questioned monthly on their recurrent injuries. Primary outcome measures were incidence density of ankle injury and incremental cost-effectiveness ratio (ICER). During follow-up, 31 athletes suffered from a recurrent ankle sprain that led to costs resulting in a hazard ratio of 1.13 (95% CI: 0.56-2.27). The incremental cost-effectiveness ratio of the App group in comparison with the Booklet group was €361.52. The CE plane shows that there was neither a difference in effects nor in costs between both intervention methods. This study showed that the method of implementing the NMT program using an App or a Booklet led to similar cost-effectiveness ratios and the same occurrence of recurrent injuries leading to costs. Both the App and the Booklet can be used to prevent recurrent ankle injuries, showing no differences in (cost-) effectiveness at 12-month follow-up. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Sensor-Based Interactive Balance Training with Visual Joint Movement Feedback for Improving Postural Stability in Diabetics with Peripheral Neuropathy: A Randomized Controlled Trial.

    PubMed

    Grewal, Gurtej Singh; Schwenk, Michael; Lee-Eng, Jacqueline; Parvaneh, Saman; Bharara, Manish; Menzies, Robert A; Talal, Talal K; Armstrong, David G; Najafi, Bijan

    2015-01-01

    Individuals with diabetic peripheral neuropathy (DPN) have deficits in sensory and motor skills leading to inadequate proprioceptive feedback, impaired postural balance and higher fall risk. This study investigated the effect of sensor-based interactive balance training on postural stability and daily physical activity in older adults with diabetes. Thirty-nine older adults with DPN were enrolled (age 63.7 ± 8.2 years, BMI 30.6 ± 6, 54% females) and randomized to either an intervention (IG) or a control (CG) group. The IG received sensor-based interactive exercise training tailored for people with diabetes (twice a week for 4 weeks). The exercises focused on shifting weight and crossing virtual obstacles. Body-worn sensors were implemented to acquire kinematic data and provide real-time joint visual feedback during the training. Outcome measurements included changes in center of mass (CoM) sway, ankle and hip joint sway measured during a balance test while the eyes were open and closed at baseline and after the intervention. Daily physical activities were also measured during a 48-hour period at baseline and at follow-up. Analysis of covariance was performed for the post-training outcome comparison. Compared with the CG, the patients in the IG showed a significantly reduced CoM sway (58.31%; p = 0.009), ankle sway (62.7%; p = 0.008) and hip joint sway (72.4%; p = 0.017) during the balance test with open eyes. The ankle sway was also significantly reduced in the IG group (58.8%; p = 0.037) during measurements while the eyes were closed. The number of steps walked showed a substantial but nonsignificant increase (+27.68%; p = 0.064) in the IG following training. The results of this randomized controlled trial demonstrate that people with DPN can significantly improve their postural balance with diabetes-specific, tailored, sensor-based exercise training. The results promote the use of wearable technology in exercise training; however, future studies comparing this technology with commercially available systems are required to evaluate the benefit of interactive visual joint movement feedback. © 2015 S. Karger AG, Basel.

  9. Effect of isokinetic training on strength, functionality and proprioception in athletes with functional ankle instability.

    PubMed

    Sekir, Ufuk; Yildiz, Yavuz; Hazneci, Bulent; Ors, Fatih; Aydin, Taner

    2007-05-01

    The purpose of this study was to investigate the effects of isokinetic exercise on strength, joint position sense and functionality in recreational athletes with functional ankle instability (FAI). Strength, proprioception and balance of 24 recreational athletes with unilateral FAI were evaluated by using isokinetic muscle strength measurement, ankle joint position sense and one leg standing test. The functional ability was evaluated using five different tests. These were; single limb hopping course (SLHC), one legged and triple legged hop for distance (OLHD-TLHD), and six and cross six meter hop for time (SMHT-CSMHT). Isokinetic peak torque of the ankle invertor and evertor muscles were assessed eccentrically and concentrically at test speeds of 120 degrees /s. Isokinetic exercise protocol was carried out at an angular velocity of 120 degrees /s. The exercise session was repeated three times a week and lasted after 6 weeks. At baseline, concentric invertor strength was found to be significantly lower in the functionally unstable ankles compared to the opposite healthy ankles (p < 0.001). This difference was not present after executing the 6 weeks exercise sessions (p > 0.05). Ankle joint position sense in the injured ankles declined significantly from 2.35 +/- 1.16 to 1.33 +/- 0.62 degrees for 10 degrees of inversion angle (p < 0.001) and from 3.10 +/- 2.16 to 2.19 +/- 0.98 degrees for 20 degrees of inversion angle (p < 0.05) following the isokinetic exercise. One leg standing test score decreased significantly from 15.17 +/- 8.50 to 11.79 +/- 7.81 in the injured ankles (p < 0.001). Following the isokinetic exercise protocol, all of the worsened functional test scores in the injured ankles as compared to the opposite healthy ankles displayed a significant improvement (p < 0.01 for OLHD and CSMHT, p < 0.001 for SLHC, TLHD, and SMHT). These results substantiate the deficits of strength, proprioception, balance and functionality in recreational athletes with FAI. The isokinetic exercise program used in this study had a positive effect on these parameters.

  10. The American Orthopaedic Foot and Ankle Society Ankle-Hindfoot Scale; translation and validation of the Dutch language version for ankle fractures.

    PubMed

    de Boer, A Siebe; Tjioe, Roderik J C; Van der Sijde, Fleur; Meuffels, Duncan E; den Hoed, Pieter T; Van der Vlies, Cornelis H; Tuinebreijer, Wim E; Verhofstad, Michael H J; Van Lieshout, Esther M M

    2017-08-03

    The American Orthopaedic Foot and Ankle Society (AOFAS) Ankle-Hindfoot Scale is among the most commonly used instruments for measuring outcome of treatment in patients who sustained a complex ankle or hindfoot injury. It consists of a patient-reported and a physician-reported part. A validated, Dutch version of this instrument is currently not available. The aim of this study was to translate the instrument into Dutch and to determine the measurement properties of the AOFAS Ankle-Hindfoot Scale Dutch language version (DLV) in patients with a unilateral ankle fracture. Multicentre (two Dutch hospitals), prospective observational study. In total, 142 patients with a unilateral ankle fracture were included. Ten patients were lost to follow-up. Patients completed the subjective (patient-reported) part of the AOFAS Ankle-Hindfoot Scale-DLV. A physician or trained physician-assistant completed the physician-reported part. For comparison and evaluation of the measuring characteristics, the Foot Function Index and the Short Form-36 were completed by the patient. Descriptive statistics (including floor and ceiling effects), reliability (ie, internal consistency), construct validity, reproducibility (ie, test-retest reliability, agreement and smallest detectable change) and responsiveness were determined. The AOFAS-DLV and its subscales showed good internal consistency (Cronbach's α >0.90). Construct validity and longitudinal validity were proven to be adequate (76.5% of predefined hypotheses were confirmed). Floor effects were not present. Ceiling effects were present from 6 months onwards, as expected. Responsiveness was adequate, with a smallest detectable change of 12.0 points. The AOFAS-DLV is a reliable, valid and responsive measurement instrument for evaluating functional outcome in patients with a unilateral ankle fracture. This implies that the questionnaire is suitable to compare different treatment modalities within this population or to compare outcome across hospitals. The Netherlands Trial Register (NTR5613; 05-jan-2016). © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Redistribution of Mechanical Work at the Knee and Ankle Joints During Fast Running in Minimalist Shoes

    PubMed Central

    Fuller, Joel T.; Buckley, Jonathan D.; Tsiros, Margarita D.; Brown, Nicholas A. T.; Thewlis, Dominic

    2016-01-01

    Context: Minimalist shoes have been suggested as a way to alter running biomechanics to improve running performance and reduce injuries. However, to date, researchers have only considered the effect of minimalist shoes at slow running speeds. Objective: To determine if runners change foot-strike pattern and alter the distribution of mechanical work at the knee and ankle joints when running at a fast speed in minimalist shoes compared with conventional running shoes. Design: Crossover study. Setting: Research laboratory. Patients or Other Participants: Twenty-six trained runners (age = 30.0 ± 7.9 years [age range, 18−40 years], height = 1.79 ± 0.06 m, mass = 75.3 ± 8.2 kg, weekly training distance = 27 ± 15 km) who ran with a habitual rearfoot foot-strike pattern and had no experience running in minimalist shoes. Intervention(s): Participants completed overground running trials at 18 km/h in minimalist and conventional shoes. Main Outcome Measure(s): Sagittal-plane kinematics and joint work at the knee and ankle joints were computed using 3-dimensional kinematic and ground reaction force data. Foot-strike pattern was classified as rearfoot, midfoot, or forefoot strike based on strike index and ankle angle at initial contact. Results: We observed no difference in foot-strike classification between shoes (χ21 = 2.29, P = .13). Ankle angle at initial contact was less (2.46° versus 7.43°; t25 = 3.34, P = .003) and strike index was greater (35.97% versus 29.04%; t25 = 2.38, P = .03) when running in minimalist shoes compared with conventional shoes. We observed greater negative (52.87 J versus 42.46 J; t24 = 2.29, P = .03) and positive work (68.91 J versus 59.08 J; t24 = 2.65, P = .01) at the ankle but less negative (59.01 J versus 67.02 J; t24 = 2.25, P = .03) and positive work (40.37 J versus 47.09 J; t24 = 2.11, P = .046) at the knee with minimalist shoes compared with conventional shoes. Conclusions: Running in minimalist shoes at a fast speed caused a redistribution of work from the knee to the ankle joint. This finding suggests that runners changing from conventional to minimalist shoes for short-distance races could be at an increased risk of ankle and calf injuries but a reduced risk of knee injuries. PMID:27834504

  12. The implementation effectiveness of the ‘Strengthen your ankle’ smartphone application for the prevention of ankle sprains: design of a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Ankle sprains continue to pose a significant burden to the individual athlete, as well as to society as a whole. However, despite ankle sprains being the single most common sports injury and despite an active approach by various Dutch organisations in implementing preventive measures, large-scale community uptake of these preventive measures, and thus actual prevention of ankle sprains, is lagging well behind. In an attempt to bridge this implementation gap, the Dutch Consumer Safety Institute VeiligheidNL developed a freely available interactive App (‘Strenghten your ankle’ translated in Dutch as: ‘Versterk je enkel; available for iOS and Android) that contains - next to general advice on bracing and taping - a proven cost-effective neuromuscular program. The ‘Strengthen your ankle’ App has not been evaluated against the ‘regular’ prevention approach in which the neuromuscular program is advocated through written material. The aim of the current project is to evaluate the implementation value of the ‘Strengthen your ankle’ App as compared to the usual practice of providing injured athletes with written materials. In addition, as a secondary outcome measure, the cost-effectiveness will be assessed against usual practice. Methods/Design The proposed study will be a randomised controlled trial. After stratification for medical caregiver, athletes will be randomised to two study groups. One group will receive a standardized eight-week proprioceptive training program that has proven to be cost-effective to prevent recurrent ankle injuries, consisting of a balance board (machU/ MSG Europe BVBA), and a traditional instructional booklet. The other group will receive the same exercise program and balance board. However, for this group the instructional booklet is exchanged by the interactive ‘Strengthen your ankle’ App. Discussion This trial is the first randomized controlled trial to study the implementation effectiveness of an App for proprioceptive balance board training program in comparison to a traditional printed instruction booklet, with the recurrence of ankle sprains among athletes as study outcome. Results of this study could possibly lead to changes in practical guidelines on the treatment of ankle sprains and in the use of mobile applications for injury prevention. Results will become available in 2014. Trial registration The Netherlands National Trial Register NTR4027. The NTR is part of the WHO Primary Registries. PMID:24393146

  13. Robot-Assisted Rehabilitation of Ankle Plantar Flexors Spasticity: A 3-Month Study with Proprioceptive Neuromuscular Facilitation

    PubMed Central

    Zhou, Zhihao; Sun, Yao; Wang, Ninghua; Gao, Fan; Wei, Kunlin; Wang, Qining

    2016-01-01

    In this paper, we aim to investigate the effect of proprioceptive neuromuscular facilitation (PNF)-based rehabilitation for ankle plantar flexors spasticity by using a Robotic Ankle–foot Rehabilitation System (RARS). A modified robot-assisted system was proposed, and seven poststroke patients with hemiplegic spastic ankles participated in a 3-month robotic PNF training. Their impaired sides were used as the experimental group, while their unimpaired sides as the control group. A robotic intervention for the experimental group started from a 2-min passive stretching to warming-up or relaxing the soleus and gastrocnemius muscles and also ended with the same one. Then a PNF training session including 30 trials was activated between them. The rehabilitation trainings were carried out three times a week as an addition to their regular rehabilitation exercise. Passive range of motion, resistance torque, and stiffness were measured in both ankles before and after the interventions. The changes in Achilles tendon length, walking speed, and lower limb function were also evaluated by the same physician or physiotherapist for each participant. Biomechanical measurements before interventions showed significant difference between the experimental group and the control group due to ankle spasticity. For the control group, there was no significant difference in the 3 months with no robotic intervention. But for the experimental group, passive dorsiflexion range of motion increased (p < 0.01), resistance torque under different dorsiflexion angle levels (0°, 10°, and 20°) decreased (p < 0.05, p < 0.001, and p < 0.001, respectively), and quasi-static stiffness under different dorsiflexion angle levels (0°, 10°, and 20°) also decreased (p < 0.01, p < 0.001, and p < 0.001, respectively). Achilles’s tendon length shortened (p < 0.01), while its thickness showed no significant change (p > 0.05). The robotic rehabilitation also improved the muscle strength (p < 0.01) and muscle control performance (p < 0.001). In addition, improvements were observed in clinical and functional measurements, such as Timed Up-and-Go (p < 0.05), normal walking speed (p > 0.05), and fast walking speed (p < 0.05). These results indicated that the PNF-based robotic intervention could significantly alleviate lower limb spasticity and improve the motor function in chronic stroke participant. The robotic system could potentially be used as an effective tool in poststroke rehabilitation training. PMID:27895574

  14. Characteristics and contributing factors related to sports injuries in young volleyball players

    PubMed Central

    2013-01-01

    Background The participation of young in volleyball is becoming increasingly common, and this increased involvement raises concerns about the risk of installation of sports injuries. Therefore, the objectives the study were identify the characteristics of sports injuries in young volleyball players and associate anthropometric and training variables with contributing factors for injuries. Methods A total of 522 volleyball players participating in the High School Olympic Games of the State of São Paulo (Brazil) were interviewed. A reported condition inquiry was used to gather information on injuries, such as anatomic site affected, mechanism and moment of injury, as well as personal and training data. The level of significance was set at 5%. Results A 19% frequency of injuries was found. Higher age, weight, height, body mass index and training duration values were associated with the occurrence of injuries. The most affected anatomic site was the ankle/foot complex (45 injuries, 36.3%). Direct contact and contactless mechanisms were the main causes of injuries (61 injuries; 49.2% and 48 injuries; 38.7%, respectively). Training was the moment in which most injuries occurred (93 injuries; 75%), independently of personal and training characteristics. Conclusion Injuries affected the ankle/foot complex with a greater frequency. Direct contact and contactless mechanisms were the most frequently reported and injuries occurred mainly during training sessions. Personal and training characteristics were contributing factors for the occurrence of injuries. PMID:24124803

  15. Training to Perform Ankle-Brachial Index: Systematic Review and Perspectives to Improve Teaching and Learning.

    PubMed

    Chaudru, S; de Müllenheim, P-Y; Le Faucheur, A; Kaladji, A; Jaquinandi, V; Mahé, G

    2016-02-01

    To conduct a systematic review focusing on the impact of training programs on ankle-brachial index (ABI) performance by medical students, doctors and primary care providers. Lower extremity peripheral artery disease (PAD) is a highly prevalent disease affecting ∼202 million people worldwide. ABI is an essential component of medical education because of its ability to diagnose PAD, and as it is a powerful prognostic marker for overall and cardiovascular related mortality. A systematic search was conducted (up to May 2015) using Medline, Embase, and Web of Science databases. Five studies have addressed the impact of a training program on ABI performance by either medical students, doctors or primary care providers. All were assigned a low GRADE system quality. The components of the training vary greatly either in substance (what was taught) or in form (duration of the training, and type of support which was used). No consistency was found in the outcome measures. According to this systematic review, only few studies, with a low quality rating, have addressed which training program should be performed to provide the best way of teaching how to perform ABI. Future high quality researches are required to define objectively the best training program to facilitate ABI teaching and learning. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  16. Validity of the Foot and Ankle Ability Measure in athletes with chronic ankle instability.

    PubMed

    Carcia, Christopher R; Martin, RobRoy L; Drouin, Joshua M

    2008-01-01

    The Foot and Ankle Ability Measure (FAAM) is a region-specific, non-disease-specific outcome instrument that possesses many of the clinimetric qualities recommended for an outcome instrument. Evidence of validity to support the use of the FAAM is available in individuals with a wide array of ankle and foot disorders. However, additional evidence to support the use of the FAAM for those with chronic ankle instability (CAI) is needed. To provide evidence of construct validity for the FAAM based on hypothesis testing in athletes with CAI. Between-groups comparison. Athletic training room. Thirty National Collegiate Athletic Association Division II athletes (16 men, 14 women) from one university. The FAAM including activities of daily living (ADL) and sports subscales and the global and categorical ratings of function. For both the ADL and sports subscales, FAAM scores were greater in healthy participants (100 +/- 0.0 and 99 +/- 3.5, respectively) than in subjects with CAI (88 +/- 7.7 and 76 +/- 12.7, respectively; P < .001). Similarly, for both ADL and sports subscales, FAAM scores were greater in athletes who indicated that their ankles were normal (98 +/- 6.3 and 96 +/- 6.9, respectively) than in those who classified their ankles as either nearly normal or abnormal (87 +/- 6.6 and 71 +/- 11.1, respectively; P < .001). We found relationships between FAAM scores and self-reported global ratings of function for both ADL and sports subscales. Relationships were stronger when all athletes, rather than just those with CAI, were included in the analyses. The FAAM may be used to detect self-reported functional deficits related to CAI.

  17. Motor Imagery Practice for Enhancing Elevé Performance Among Professional Dancers: A Pilot Study.

    PubMed

    Abraham, Amit; Dunsky, Ayelet; Dickstein, Ruth

    2016-09-01

    Elevé is a core dance movement requiring the greatest ankle plantarflexion (PF) range of motion (ROM). One possible way to enhance elevé performance is by using motor imagery practice (MIP). The aims of this pilot study were to investigate: 1) functional ankle PF maximal angles and ROM while performing elevé among professional dancers, 2) the effect of MIP on enhancing elevé performance, and 3) participants' views on the MIP intervention and its feasibility in a professional dance company setting. Five professional dancers, mean age 31 yrs (SD 1.87), participated in a 2-week MIP intervention. Data on ankle PF maximal angles and ROM were collected pre- and post-intervention using 3-dimensional motion capture while performing repeat (10 repetitions) and static (10 sec) elevé. At baseline, ankle PF maximal angles were 169.20° (SD 2.81°) and 168.36° (2.23°) and ankle PF ROM were 40.21° (3.35°) and 35.94° (3.95°) for the repeat and static tasks, respectively. After the MIP intervention, ankle PF maximal angles were 170.28° (4.26°) and 170.74° (3.77°) and ankle PF ROM were 41.53° (2.33°) and 39.30° (2.30°) for the repeat and static tasks, respectively. Feasibility of MIP was established with 100% compliance and positive views were expressed by participants. The results suggest MIP holds potential as an adjunct training method for enhancing elevé performance among professional dancers.

  18. Relationships between explosive and maximal triple extensor muscle performance and vertical jump height.

    PubMed

    Chang, Eunwook; Norcross, Marc F; Johnson, Sam T; Kitagawa, Taichi; Hoffman, Mark

    2015-02-01

    The purpose of this study was to examine the relationships between maximum vertical jump height and (a) rate of torque development (RTD) calculated during 2 time intervals, 0-50 milliseconds (RTD50) and 0-200 milliseconds (RTD200) after torque onset and (b) peak torque (PT) for each of the triple extensor muscle groups. Thirty recreationally active individuals performed maximal isometric voluntary contractions (MVIC) of the hip, knee and ankle extensors, and a countermovement vertical jump. Rate of torque development was calculated from 0 to 50 (RTD50) and 0 to 200 (RTD200) milliseconds after the onset of joint torque. Peak torque was identified and defined as the maximum torque value during each MVIC trial. Greater vertical jump height was associated with greater knee and ankle extension RTD50, RTD200, and PT (p ≤ 0.05). However, hip extension RTD50, RTD200, and PT were not significantly related to maximal vertical jump height (p > 0.05). The results indicate that 47.6 and 32.5% of the variability in vertical jump height was explained by knee and ankle extensor RTD50, respectively. Knee and ankle extensor RTD50 also seemed to be more closely related to vertical jump performance than RTD200 (knee extensor: 28.1% and ankle extensor: 28.1%) and PT (knee extensor: 31.4% and ankle extensor: 13.7%). Overall, these results suggest that training specifically targeted to improve knee and ankle extension RTD, especially during the early phases of muscle contraction, may be effective for increasing maximal vertical jump performance.

  19. Epidemiology of Podiatric Injuries in U.S. Marine Recruits Undergoing Basic Training

    DTIC Science & Technology

    1992-01-01

    0.56 per 1,000 recruit days), ankle sprains (0.53 per 1,000 recruit days), and Achilles tendinitis (0.39 per 1,000 recruit days). Most injuries...who were Ankle sprain 845.00 125 0.53 physically located at the base and would present Achilles tendinitis 726.71 91 0.39 to the clinic if injured...sprain (0.53 per 1,000 recruit days) and Definitive podiatric injury incidence rates are Achilles tendinitis (0.39 per 1,000 recruit days). necessary as a

  20. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial.

    PubMed

    Baumbach, Sebastian Felix; Fasser, Mariette; Polzer, Hans; Sieb, Michael; Regauer, Markus; Mutschler, Wolf; Schieker, Matthias; Blauth, Michael

    2013-01-14

    Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. 60 patients, aged 18-40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for patients with acute unstable inversion ankle sprains. NCT01702597.

  1. Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial

    PubMed Central

    2013-01-01

    Background Ankle sprains often result in ankle instability, which is most likely caused by damage to passive structures and neuromuscular impairment. Whole body vibration (WBV) is a neuromuscular training method improving those impaired neurologic parameters. The aim of this study is to compare the current gold standard functional treatment to functional treatment plus WBV in patients with acute unilateral unstable inversion ankle sprains. Methods/Design 60 patients, aged 18–40 years, presenting with an isolated, unilateral, acute unstable inversion ankle sprain will be included in this bicentric, biphasic, randomized controlled trial. Samples will be randomized by envelope drawing. All patients will be allowed early mobilization and pain-dependent weight bearing, limited functional immobilization by orthosis, PRICE, NSARDs as well as home and supervised physiotherapy. Supervised physical therapy will take place twice a week, for 30 minutes for a period of 6 weeks, following a standardized intervention protocol. During supervised physical therapy, the intervention group will perform exercises similar to those of the control group, on a side-alternating sinusoidal vibration platform. Two time-dependent primary outcome parameters will be assessed: short-term outcome after six weeks will be postural control quantified by the sway index; mid-term outcome after one year will be assessed by subjective instability, defined by the presence of giving-way attacks. Secondary outcome parameters include: return to pre-injury level of activities, residual pain, recurrence, objective instability, energy/coordination, Foot and Ankle Disability Index and EQ 5D. Discussion This is the first trial investigating the effects of WBV in patients with acute soft tissue injury. Inversion ankle sprains often result in ankle instability, which is most likely due to damage of neurological structures. Due to its unique, frequency dependent, influence on various neuromuscular parameters, WBV is a promising treatment method for patients with acute unstable inversion ankle sprains. Trial registration NCT01702597 PMID:23316791

  2. What Is the Current Role and Factors for Success of the Journal Club in Podiatric Foot and Ankle Surgery Residency Training Programs?

    PubMed

    So, Eric; Hyer, Christopher F; Richardson, Marcus P; Thomas, Randall C

    The journal club (JC) is a traditional part of postgraduate medical education, although little has been written on its current role in podiatric surgical training programs. The goal of the present study was to determine how JCs are conducted and the factors associated with their success. Anonymous electronic surveys were distributed to all podiatric foot and ankle surgical training program directors in the United States with a valid e-mail address. A total of 202 surveys were initially e-mailed to training program directors, with a second and third round sent to those who did not respond. The eventual response rate was 47.5%. The variables associated with success included high faculty attendance, dissemination of articles in advance, and regularly scheduled meetings. Of the residency programs that responded, 39.0% provided some type of handout or supplemental session and 39.8% provided supplemental session or handouts regarding the process of critical review, epidemiology, or biostatistics. A structured review instrument or checklist was used to guide critical appraisal in 21.5% of the JCs, and 11.8% of the programs provided feedback to residents. The JC was perceived by residency directors to be valuable and worthy of maintaining. Residency directors perceived the following factors to be associated with a successful JC: faculty participation, a designated leader, mandatory attendance, dissemination of materials in advance, and regularly scheduled meetings. Areas cited for improvement included implementation of a structured review instrument, delineation of clear goals, and periodic evaluation. We believe these findings could aid residency directors interested in maximizing the educational benefits of their JC. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  3. Home-Based Versus Laboratory-Based Robotic Ankle Training for Children With Cerebral Palsy: A Pilot Randomized Comparative Trial.

    PubMed

    Chen, Kai; Wu, Yi-Ning; Ren, Yupeng; Liu, Lin; Gaebler-Spira, Deborah; Tankard, Kelly; Lee, Julia; Song, Weiqun; Wang, Maobin; Zhang, Li-Qun

    2016-08-01

    To examine the outcomes of home-based robot-guided therapy and compare it to laboratory-based robot-guided therapy for the treatment of impaired ankles in children with cerebral palsy. A randomized comparative trial design comparing a home-based training group and a laboratory-based training group. Home versus laboratory within a research hospital. Children (N=41) with cerebral palsy who were at Gross Motor Function Classification System level I, II, or III were randomly assigned to 2 groups. Children in home-based and laboratory-based groups were 8.7±2.8 (n=23) and 10.7±6.0 (n=18) years old, respectively. Six-week combined passive stretching and active movement intervention of impaired ankle in a laboratory or home environment using a portable rehabilitation robot. Active dorsiflexion range of motion (as the primary outcome), mobility (6-minute walk test and timed Up and Go test), balance (Pediatric Balance Scale), Selective Motor Control Assessment of the Lower Extremity, Modified Ashworth Scale (MAS) for spasticity, passive range of motion (PROM), strength, and joint stiffness. Significant improvements were found for the home-based group in all biomechanical outcome measures except for PROM and all clinical outcome measures except the MAS. The laboratory-based group also showed significant improvements in all the biomechanical outcome measures and all clinical outcome measures except the MAS. There were no significant differences in the outcome measures between the 2 groups. These findings suggest that the translation of repetitive, goal-directed, biofeedback training through motivating games from the laboratory to the home environment is feasible. The benefits of home-based robot-guided therapy were similar to those of laboratory-based robot-guided therapy. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  4. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.

    PubMed

    Bharadwaj, Kartik; Sugar, Thomas G; Koeneman, James B; Koeneman, Edward J

    2005-11-01

    Repetitive task training is an effective form of rehabilitation for people suffering from debilitating injuries of stroke. We present the design and working concept of a robotic gait trainer (RGT), an ankle rehabilitation device for assisting stroke patients during gait. Structurally based on a tripod mechanism, the device is a parallel robot that incorporates two pneumatically powered, double-acting, compliant, spring over muscle actuators as actuation links which move the ankle in dorsiflex ion/plantarflexion and inversion/eversion. A unique feature in the tripod design is that the human anatomy is part of the robot, the first fixed link being the patient's leg. The kinematics and workspace of the tripod device have been analyzed determining its range of motion. Experimental gait data from an able-bodied person wearing the working RGT prototype are presented.

  5. Anatomic structures at risk: curved hindfoot arthrodesis nail--a cadaveric approach.

    PubMed

    Knight, Timothy; Rosenfeld, Peter; Jones, Ioan Tudur; Clark, Callum; Savva, Nick

    2014-01-01

    Retrograde intramedullary nailing of the hindfoot and ankle is an established procedure for salvage of severe foot and ankle deformity, arthritis, tumor, and instability. In the present study, retrograde hindfoot (tibiotalocalcaneal) arthrodesis nailing was performed using a standardized technique on 7 cadaver specimens by trained senior surgeons. The specimens were then dissected to determine the distance of the subcalcaneal structures at risk from the insertion point of the nail. The findings showed that the distance of the lateral neurovascular bundle from the edge of the nail was 6.5 (range 3.5 to 8, 95% confidence interval 5.9 to 7.1) mm. No neurovascular bundle was compromised, and all were within a previously described "safe window." Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Lower limb joint motion during a cross cutting movement differs in individuals with and without chronic ankle instability.

    PubMed

    Koshino, Yuta; Yamanaka, Masanori; Ezawa, Yuya; Ishida, Tomoya; Kobayashi, Takumi; Samukawa, Mina; Saito, Hiroshi; Takeda, Naoki

    2014-11-01

    To compare the kinematics of lower limb joints between individuals with and without chronic ankle instability (CAI) during cross-turn and -cutting movements. Cross-sectional study. Motion analysis laboratory. Twelve subjects with CAI and twelve healthy controls. Hip flexion, adduction, and internal rotation, knee flexion, and ankle dorsiflexion and inversion angles were calculated in the 200 ms before initial ground contact and from initial ground contact to toe-off (stance phase) in a cross-turn movement during gait and a cross-cutting movement from a forward jump, and compared across the two groups. In the cross-cutting movement, the CAI group exhibited greater hip and knee flexion than the control group during the stance phase, and more hip abduction during the period before initial contact and the stance phase. In the cross-turn movement the joint kinematics were similar in the two groups. CAI subjects exhibited an altered pattern of the proximal joint kinematics during a cross-cutting movement. It is important for clinicians to assess the function of the hip and knee as well as the ankle, and to incorporate coordination training for the entire lower limb into rehabilitation after lateral ankle sprains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Effects of a single session of whole body vibration on ankle plantarflexion spasticity and gait performance in patients with chronic stroke: a randomized controlled trial.

    PubMed

    Chan, Kwan-Shan; Liu, Chin-Wei; Chen, Tien-Wen; Weng, Ming-Cheng; Huang, Mao-Hsiung; Chen, Chia-Hsin

    2012-12-01

    To investigate the effects of a single session of whole body vibration training on ankle plantarflexion spasticity and gait performance in chronic stroke patients. Randomized controlled trial. Rehabilitation unit in university hospital. Thirty subjects with chronic stroke were randomized into either a control group (n = 15) or a group receiving a single session of whole body vibration (n = 15). The intervention group was actually treated with whole body vibration while the control group was treated with placebo treatment. The spastic changes were measured clinically and neurophysiologically. Subjective evaluation of ankle spasticity was performed via a visual analogue scale. Gait performances were evaluated by the timed up and go test, 10-meter walk test and cadence. A forceplate was used for measuring foot pressure. The changes between whole body vibration and control groups were significantly different in Modified Ashworth Scale (1.33, 95% confidence interval (CI) = 1.06~1.60). The H (max)/M (max) ratio (0.14, 95% CI = 0.01~0.26) and visual analogue scale (1.87, 95% CI = 1.15~2.58) were significantly decreased. Whole body vibration could significantly improve gait velocity, timed up and go test (6.03, 95% CI = 3.17~8.89) and 10-meter walk test (1.99, 95% CI = 0.11~3.87). The uneven body weight posture on bilateral feet was also improved after vibration. These results suggest that a single session of whole body vibration training can reduce ankle plantarflexion spasticity in chronic stroke patients, thereby potentially increasing ambulatory capacity.

  8. Interprofessional Relationships between Orthopaedic and Podiatric Surgeons in the UK

    PubMed Central

    Isaac, A; Gwilym, SE; Reilly, IN; Kilmartin, TE; Ribbans, WJ

    2008-01-01

    INTRODUCTION The first comprehensive report on the interprofessional relationships between foot and ankle surgeons in the UK is presented. MATERIALS AND METHODS A questionnaire was sent to orthopaedic surgeons with membership of the British Foot and Ankle Surgery Society (BOFAS), orthopaedic surgeons not affiliated to the specialist BOFAS and podiatrists specialising in foot surgery. The questionnaire was returned by 77 (49%) of the BOFAS orthopaedic consultant surgeons, 66 (26%) of non-foot and ankle orthopaedic consultant surgeons and 99 (73%) of the podiatric surgeons. RESULTS While most respondents have experience of surgeons working in the other specialty in close geographical proximity, the majority do not believe that this has adversely affected their referral base. The experience of podiatrists of the outcomes of orthopaedic surgery has been more positive than orthopaedic surgeons of podiatric interventions. Podiatrists are more welcoming of future orthopaedic involvement in future foot and ankle services than in reverse. However, there are a sizeable number of surgeons in both professions who would like to see closer professional liaisons. The study has identified clear divisions between the professions but has highlighted areas where there is a desire from many clinicians to work more harmoniously together, such as in education, training and research. CONCLUSIONS While major concerns exist over issues such as surgery by non-registered medical practitioners and the suitable spectrum of surgery for each profession, many surgeons, in both professions, are willing to provide training for juniors in both specialties and there is a wish to have closer working relationships and common educational and research opportunities than exists at present. PMID:18796189

  9. Exercise-Dependent Modulation of Neurourological Health Following Spinal Cord Injury

    DTIC Science & Technology

    2014-11-01

    Neurobiology, 2Kentucky Spinal Cord Injury Research Center, 3Department of Neurological Surgery, 4Frazier Rehab Institute, University of Louisville...an infusion pump and pressure transducer.24 Behavioral procedures Training paradigm. Training interventions initiated acutely post-SCI may be...proper plantar placement—e.g. complete toe extension, no ankle rotation, and incorporation of forelimb-hindlimb coordination with minimal assistance

  10. Cold water immersion of the ankle decreases neuromuscular response of lower limb after inversion movement.

    PubMed

    Macedo, Christiane S G; Alonso, Carolina S; Liporaci, Rogério F; Vieira, Fernando; Guirro, Rinaldo R J

    2014-01-01

    Cryotherapy has been associated with a significant decrease in nerve conduction velocity and muscle contraction with possible effects on exercise and physical training. To quantify the electromyographic response of the lateral gastrocnemius, tibialis anterior, fibularis longus, rectus femoris and gluteus medius to ankle inversion following cold water immersion. The peak values of the root mean square (RMS) were obtained from 35 healthy and active university subjects after the use of a tilt platform to force the ankle into 30° of inversion before, immediately after, and 10, 20, and 30 minutes after water immersion at 4±2°C, for 20 minutes. The Shapiro-Wilk test, repeated measures analysis, Bonferroni's post-hoc, and linear regression analysis provided the results. Peak RMS was significantly lower at all times after cold water immersion, with residual effect of up to 30 minutes, when compared to pre-immersion for all muscles, except for immediate post-immersion for the gluteus medius. After cold water immersion of the ankle, special care should be taken in activities that require greater neuromuscular control.

  11. Computer-aided discovery of debris disk candidates: A case study using the Wide-Field Infrared Survey Explorer (WISE) catalog

    NASA Astrophysics Data System (ADS)

    Nguyen, T.; Pankratius, V.; Eckman, L.; Seager, S.

    2018-04-01

    Debris disks around stars other than the Sun have received significant attention in studies of exoplanets, specifically exoplanetary system formation. Since debris disks are major sources of infrared emissions, infrared survey data such as the Wide-Field Infrared Survey (WISE) catalog potentially harbors numerous debris disk candidates. However, it is currently challenging to perform disk candidate searches for over 747 million sources in the WISE catalog due to the high probability of false positives caused by interstellar matter, galaxies, and other background artifacts. Crowdsourcing techniques have thus started to harness citizen scientists for debris disk identification since humans can be easily trained to distinguish between desired artifacts and irrelevant noises. With a limited number of citizen scientists, however, increasing data volumes from large surveys will inevitably lead to analysis bottlenecks. To overcome this scalability problem and push the current limits of automated debris disk candidate identification, we present a novel approach that uses citizen science results as a seed to train machine learning based classification. In this paper, we detail a case study with a computer-aided discovery pipeline demonstrating such feasibility based on WISE catalog data and NASA's Disk Detective project. Our approach of debris disk candidates classification was shown to be robust under a wide range of image quality and features. Our hybrid approach of citizen science with algorithmic scalability can facilitate big data processing for future detections as envisioned in future missions such as the Transiting Exoplanet Survey Satellite (TESS) and the Wide-Field Infrared Survey Telescope (WFIRST).

  12. Validity of the Foot and Ankle Ability Measure in Athletes With Chronic Ankle Instability

    PubMed Central

    Carcia, Christopher R; Martin, RobRoy L; Drouin, Joshua M

    2008-01-01

    Context: The Foot and Ankle Ability Measure (FAAM) is a region-specific, non–disease-specific outcome instrument that possesses many of the clinimetric qualities recommended for an outcome instrument. Evidence of validity to support the use of the FAAM is available in individuals with a wide array of ankle and foot disorders. However, additional evidence to support the use of the FAAM for those with chronic ankle instability (CAI) is needed. Objective: To provide evidence of construct validity for the FAAM based on hypothesis testing in athletes with CAI. Design: Between-groups comparison. Setting: Athletic training room. Patients or Other Participants: Thirty National Collegiate Athletic Association Division II athletes (16 men, 14 women) from one university. Main Outcome Measure(s): The FAAM including activities of daily living (ADL) and sports subscales and the global and categorical ratings of function. Results: For both the ADL and sports subscales, FAAM scores were greater in healthy participants (100 ± 0.0 and 99 ± 3.5, respectively) than in subjects with CAI (88 ± 7.7 and 76 ± 12.7, respectively; P < .001). Similarly, for both ADL and sports subscales, FAAM scores were greater in athletes who indicated that their ankles were normal (98 ± 6.3 and 96 ± 6.9, respectively) than in those who classified their ankles as either nearly normal or abnormal (87 ± 6.6 and 71 ± 11.1, respectively; P < .001). We found relationships between FAAM scores and self-reported global ratings of function for both ADL and sports subscales. Relationships were stronger when all athletes, rather than just those with CAI, were included in the analyses. Conclusions: The FAAM may be used to detect self-reported functional deficits related to CAI. PMID:18345343

  13. Contributory factors to unsteadiness during walking up and down stairs in patients with diabetic peripheral neuropathy.

    PubMed

    Handsaker, Joseph C; Brown, Steven J; Bowling, Frank L; Cooper, Glen; Maganaris, Constantinos N; Boulton, Andrew J M; Reeves, Neil D

    2014-11-01

    Although patients with diabetic peripheral neuropathy (DPN) are more likely to fall than age-matched controls, the underlying causative factors are not yet fully understood. This study examines the effects of diabetes and neuropathy on strength generation and muscle activation patterns during walking up and down stairs, with implications for fall risk. Sixty-three participants (21 patients with DPN, 21 diabetic controls, and 21 healthy controls) were examined while walking up and down a custom-built staircase. The speed of strength generation at the ankle and knee and muscle activation patterns of the ankle and knee extensor muscles were analyzed. Patients with neuropathy displayed significantly slower ankle and knee strength generation than healthy controls during stair ascent and descent (P < 0.05). During ascent, the ankle and knee extensor muscles were activated significantly later by patients with neuropathy and took longer to reach peak activation (P < 0.05). During descent, neuropathic patients activated the ankle extensors significantly earlier, and the ankle and knee extensors took significantly longer to reach peak activation (P < 0.05). Patients with DPN are slower at generating strength at the ankle and knee than control participants during walking up and down stairs. These changes, which are likely caused by altered activations of the extensor muscles, increase the likelihood of instability and may be important contributory factors for the increased risk of falling. Resistance exercise training may be a potential clinical intervention for improving these aspects and thereby potentially reducing fall risk. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  14. Evaluating a standardised tool to explore the nature and extent of foot and ankle injuries in amateur and semi-professional footballers

    PubMed Central

    Evans, S.; Walker-Bone, K.; Otter, S.

    2016-01-01

    Introduction Football is a popular sport amongst amateurs as well as professionals. To date, most studies of football injuries have included only professional players and data have been collected in a variety of different ways. There is currently no single validated, standardised tool for the assessment of injures. Therefore, we developed a standardised questionnaire based upon an instrument used in rheumatoid arthritis sufferers and used it in a group of semi-professional and amateur footballers. We quantified the prevalence of foot/ankle injuries and evaluated risk factors for these injuries. Method A trained recorder administered a 33-item questionnaire (recording quantitative and qualitative data) in three football teams, 1 amateur and 2 semi-professional. The questionnaire enquired about demography, football specific information such as footwear and orthoses, and nature & extent of injuries. Results 42/42 eligible footballers completed the questionnaire. 34/42 respondents (81%) reported that they had experienced a total of 273 football-related injuries, 114 of which occurred at the foot or ankle. 70 injuries occurred at the ankle and 44 at the foot and 44% of the footballers had suffered one or more foot/ankle injuries in the past 12 months. Statistically significant relationships were seen between occurrence of lower limb and foot/ankle injuries and age, (p=0.03) weight (p=0.01) height (p=0.01) and shorter duration of warm-up (p). Conclusion The standardised tool performed well with an excellent response rate. Foot and ankle injuries were common in semi-professional and amateur footballers. Amongst this relatively small sample, statistically significant risk factors were identified which may be potential targets for prevention strategies but larger studies will be required. PMID:25605413

  15. Effect of Ankle Positioning During Hamstring Stretches for Improving Straight Leg Hip Flexion Motion.

    PubMed

    Laudner, Kevin G; Benjamin, Peter J; Selkow, Noelle M

    2016-03-01

    To compare the effects of stretching the hamstrings with the ankle in either a plantar-flexed (PF) or dorsiflexed (DF) position for improving straight leg hip flexion range of motion (ROM) over a 4-week period. Randomized, single-blinded, pretest, posttest design. Athletic training facility. Each limb of 34 asymptomatic individuals (15 males, 19 females) was randomly assigned to one of the 3 groups. Twenty-four limbs received hamstring stretches with the ankle in DF, 24 limbs received hamstring stretches with the ankle in PF, and 20 limbs received no stretch (control). Ankle position (PF, DF) during hamstring stretching. We measured pretest and posttest passive straight leg hip flexion ROM with the test ankle in a neutral position. For the intervention groups, the test limb was passively stretched with the ankle held in end range DF or PF for their respective group. Each stretch was held for 30 seconds for a total of 3 applications. Two treatment sessions were completed per week for a total of 4 weeks. The control limbs received no stretching during the 4-week period. We conducted 1-way analyses of covariance to determine significant changes in ROM between groups (P < 0.05). There was no significant difference between treatment groups (P = 0.90), but a significant difference was found for both the PF (P = 0.04) and DF (P = 0.01) groups when compared with the control group. Our findings indicate that both stretching the hamstrings in either PF or DF improve straight leg hip ROM compared with a control group. The results of this study should be considered by clinicians when determining the optimal stretching techniques aimed at increasing hamstring length.

  16. Muscle Coactivation during Stability Exercises in Rhythmic Gymnastics: A Two-Case Study.

    PubMed

    Rutkowska-Kucharska, Alicja; Szpala, Agnieszka; Jaroszczuk, Sebastian; Sobera, Małgorzata

    2018-01-01

    Balance exercises in rhythmic gymnastics are performed on tiptoes, which causes overload of foot joints. This study aimed to evaluate the engagement of muscles stabilizing ankle and knee joints in balance exercises and determine exercises which may lead to ankle and knee joint injuries. It was hypothesized that long-term training has an influence on balance control and efficient use of muscles in their stabilizing function. Two rhythmic gymnasts (8 and 21 years old) performed balances on tiptoes (side split with hand support, ring with hand support) and on a flat foot (back split without hand support exercise). Surface electromyography, ground reaction forces, and kinematic parameters of movement were measured. The measuring systems applied were synchronized with the BTS SMART system. The results show the necessity to limit balance exercises on tiptoes in children because gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) activity significantly exceeds their activity. Ankle joint stabilizing activity of GM and GL muscles in the younger gymnast was more important than in the older one. Performing this exercise, the younger gymnast distributed load on the anterior side of the foot while the older one did so on its posterior. Gymnastics coaches should be advised to exclude ring with hand support exercise from the training of young gymnasts.

  17. Muscle Coactivation during Stability Exercises in Rhythmic Gymnastics: A Two-Case Study

    PubMed Central

    Jaroszczuk, Sebastian

    2018-01-01

    Balance exercises in rhythmic gymnastics are performed on tiptoes, which causes overload of foot joints. This study aimed to evaluate the engagement of muscles stabilizing ankle and knee joints in balance exercises and determine exercises which may lead to ankle and knee joint injuries. It was hypothesized that long-term training has an influence on balance control and efficient use of muscles in their stabilizing function. Two rhythmic gymnasts (8 and 21 years old) performed balances on tiptoes (side split with hand support, ring with hand support) and on a flat foot (back split without hand support exercise). Surface electromyography, ground reaction forces, and kinematic parameters of movement were measured. The measuring systems applied were synchronized with the BTS SMART system. The results show the necessity to limit balance exercises on tiptoes in children because gastrocnemius medialis (GM) and gastrocnemius lateralis (GL) activity significantly exceeds their activity. Ankle joint stabilizing activity of GM and GL muscles in the younger gymnast was more important than in the older one. Performing this exercise, the younger gymnast distributed load on the anterior side of the foot while the older one did so on its posterior. Gymnastics coaches should be advised to exclude ring with hand support exercise from the training of young gymnasts. PMID:29808099

  18. The Cost of Basic Combat Training Injuries in the U.S. Army: Injury-Related Medical Care and Risk Factors

    DTIC Science & Technology

    2017-03-24

    and women was “ pain in joint, lower leg”, accounting for approximately 15% of injury visits. Other common diagnoses were “ pain in limb,” “ pain in...joint, ankle & foot,” “sprain of ankle, unspecified,” “backache, unspecified,” “low back pain ,” “sprains and strains of unspecified site of knee and...leg,” “joint pain , shoulder,” and “ pain in joint, pelvic region and thigh.” For both men and women, older age, white race/ethnicity, lower

  19. Battling fire and ice: remote guidance ultrasound to diagnose injury on the International Space Station and the ice rink.

    PubMed

    Kwon, David; Bouffard, J Antonio; van Holsbeeck, Marnix; Sargsyan, Asot E; Hamilton, Douglas R; Melton, Shannon L; Dulchavsky, Scott A

    2007-03-01

    National Aeronautical and Space and Administration (NASA) researchers have optimized training methods that allow minimally trained, non-physician operators to obtain diagnostic ultrasound (US) images for medical diagnosis including musculoskeletal injury. We hypothesize that these techniques could be expanded to non-expert operators including National Hockey League (NHL) and Olympic athletic trainers to diagnose musculoskeletal injuries in athletes. NHL and Olympic athletic trainers received a brief course on musculoskeletal US. Remote guidance musculoskeletal examinations were conducted by athletic trainers, consisting of hockey groin hernia, knee, ankle, elbow, or shoulder evaluations. US images were transmitted to remote experts for interpretation. Groin, knee, ankle, elbow, or shoulder images were obtained on 32 athletes; all real-time US video stream and still capture images were considered adequate for diagnostic interpretation. This experience suggests that US can be expanded for use in locations without a high level of on-site expertise. A non-physician with minimal training can perform complex, diagnostic-quality examinations when directed by a remote-based expert.

  20. Robotic Lower Limb Exoskeletons Using Proportional Myoelectric Control

    PubMed Central

    Ferris, Daniel P.; Lewis, Cara L.

    2010-01-01

    Robotic lower limb exoskeletons have been built for augmenting human performance, assisting with disabilities, studying human physiology, and re-training motor deficiencies. At the University of Michigan Human Neuromechanics Laboratory, we have built pneumatically-powered lower limb exoskeletons for the last two purposes. Most of our prior research has focused on ankle joint exoskeletons because of the large contribution from plantar flexors to the mechanical work performed during gait. One way we control the exoskeletons is with proportional myoelectric control, effectively increasing the strength of the wearer with a physiological mode of control. Healthy human subjects quickly adapt to walking with the robotic ankle exoskeletons, reducing their overall energy expenditure. Individuals with incomplete spinal cord injury have demonstrated rapid modification of muscle recruitment patterns with practice walking with the ankle exoskeletons. Evidence suggests that proportional myoelectric control may have distinct advantages over other types of control for robotic exoskeletons in basic science and rehabilitation. PMID:19964579

  1. Response to Tendon Vibration Questions the Underlying Rationale of Proprioceptive Training

    PubMed Central

    Lubetzky, Anat Vilnai; McCoy, Sarah Westcott; Price, Robert; Kartin, Deborah

    2017-01-01

    Context: Proprioceptive training on compliant surfaces is used to rehabilitate and prevent ankle sprains. The ability to improve proprioceptive function via such training has been questioned. Achilles tendon vibration is used in motor-control research as a form of proprioceptive stimulus. Using measures of postural steadiness with nonlinear measures to elucidate control mechanisms, tendon vibration can be applied to investigate the underlying rationale of proprioceptive training. Objective: To test whether the effect of vibration on young adults' postural control depended on the support surface. Design: Descriptive laboratory study. Setting: Research laboratory. Patients or Other Participants: Thirty healthy adults and 10 adults with chronic ankle instability (CAI; age range = 18−40 years). Intervention(s): With eyes open, participants stood in bilateral stance on a rigid plate (floor), memory foam, and a Both Sides Up (BOSU) ball covering a force platform. We applied bilateral Achilles tendon vibration for the middle 20 seconds in a series of 60-second trials and analyzed participants' responses from previbration to vibration (pre-vib) and from vibration to postvibration (vib-post). Main Outcome Measure(s): We calculated anterior-posterior excursion of the center of pressure and complexity index derived from the area under multiscale entropy curves. Results: The excursion response to vibration differed by surface, as indicated by a significant interaction of P < .001 for the healthy group at both time points and for the CAI group vib-post. Although both groups demonstrated increased excursion from pre-vib and from vib-post, a decrease was observed on the BOSU. The complexity response to vibration differed by surface for the healthy group (pre-vib, P < .001). The pattern for the CAI group was similar but not significant. Complexity changes vib-post were the same on all surfaces for both groups. Conclusions: Participants reacted less to ankle vibration when standing on the BOSU as compared with the floor, suggesting that proprioceptive training may not be occurring. Different balance-training paradigms to target proprioception, including tendon vibration, should be explored. PMID:28125270

  2. Biomechanical analysis of ankle ligamentous sprain injury cases from televised basketball games: Understanding when, how and why ligament failure occurs.

    PubMed

    Panagiotakis, Emmanouil; Mok, Kam-Ming; Fong, Daniel Tik-Pui; Bull, Anthony M J

    2017-12-01

    Ankle sprains due to landing on an opponent's foot are common in basketball. There is no analysis to date that provides a quantification of this injury mechanism. The aim of this study was to quantify the kinematics of this specific injury mechanism and relate this to lateral ankle ligament biomechanics. Case series. The model-based image-matching technique was used to quantify calcaneo-fibular-talar kinematics during four ankle inversion sprain injury incidents in televised NBA basketball games. The four incidents follow the same injury pattern in which the players of interest step onto an opponent's foot with significant inversion and a diagnosed ankle injury. A geometric analysis was performed to calculate the in vivo ligament strains and strain rates for the anterior talofibular ligament (ATFL) and the calcaneofibular ligament (CFL). Despite the controlled selection of cases, the results show that there are two distinct injury mechanisms: sudden inversion and internal rotation with low levels of plantarflexion; and a similar mechanism without internal rotation. The first of these mechanisms results in high ATFL and CFL strains, whereas the second of these strains the CFL in isolation. The injury mechanism combined with measures of the ligament injury in terms of percentage of strain to failure correlate directly with the severity of the injury quantified by return-to-sport. The opportunity to control excessive internal rotation through proprioceptive training and/or prophylactic footwear or bracing could be utilised to reduce the severity of common ankle injuries in basketball. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. Surface Peroneal Nerve Stimulation in Lower Limb Hemiparesis: Effect on Quantitative Gait Parameters

    PubMed Central

    Sheffler, Lynne R.; Taylor, Paul N.; Bailey, Stephanie Nogan; Gunzler, Douglas D.; Buurke, Jaap H.; IJzerman, Maarten J.; Chae, John

    2015-01-01

    Objective To evaluate possible mechanisms for functional improvement and compare ambulation training with surface peroneal nerve stimulation (PNS) versus usual care (UC) via quantitative gait analysis. Design Randomized controlled clinical trial. Setting Teaching hospital of academic medical center. Participants 110 chronic stroke survivors (> 12-wks post-stroke) with unilateral hemiparesis. Interventions Subjects were randomized to a surface PNS device or UC intervention. Subjects were treated for 12-wks and followed for 6-months post-treatment. Main Outcome Measures Spatiotemporal, kinematic, and kinetic parameters of gait. Results Cadence (F3,153=5.81, p=.012), stride length (F3,179=20.01, p<.001), walking speed (F3,167=18.2, p<.001), anterior posterior ground reaction force (F3,164=6.61, p=.004), peak hip power in pre-swing (F3,156=8.76, p<.001), and peak ankle power at push-off (F3,149=6.38, p=.005) all improved with respect to time. However, peak ankle DF in swing (F3,184=4.99, p=.031) worsened. In general, the greatest change for all parameters occurred during the treatment period. There was no significant treatment group by time interaction effects for any of the spatiotemporal, kinematic, or kinetic parameters. Conclusions Gait training with PNS and usual care was associated with improvements in peak hip power in pre-swing and peak ankle power at push-off, which may have resulted in improved cadence, stride length, and walking speed; however, there were no differences between treatment groups. Both treatment groups also experienced a decrease in peak ankle DF in swing, though the clinical implications of this finding are unclear. PMID:25802966

  4. Transcutaneous electrical nerve stimulation combined with task-related training improves lower limb functions in subjects with chronic stroke.

    PubMed

    Ng, Shamay S M; Hui-Chan, Christina W Y

    2007-11-01

    Previous studies have shown that repeated sensory inputs could enhance brain plasticity and cortical motor output. The purpose of this study was to investigate whether combining electrically induced sensory inputs through transcutaneous electrical nerve stimulation (TENS) with task-related training (TRT) in a home-based program would augment voluntary motor output in chronic stroke survivors better than either treatment alone or no treatment. Eighty-eight patients with stroke were assigned randomly to receive a home-based program of (1) TENS, (2) TENS+TRT, (3) placebo TENS+TRT, or (4) no treatment (control) 5 days a week for 4 weeks. Outcome measurements included Composite Spasticity Scale, peak torques generated during maximum isometric voluntary contraction of ankle dorsiflexors and plantarflexors, and gait velocity recorded at baseline, after 2 and 4 weeks of treatment, and 4 weeks after treatment ended. When compared with TENS, the combined TENS+TRT group showed significantly greater improvement in ankle dorsiflexion torque at follow-up and in ankle plantarflexion torque at week 2 and follow-up (P<0.01). When compared with placebo+TRT, the TENS+TRT group produced earlier and greater reduction of plantarflexor spasticity and improvement in ankle dorsiflexion torque at week 2 (P<0.01). When compared with all 3 groups, the TENS+TRT group showed significantly greater improvement in gait velocity (P<0.01). In patients with chronic stroke, 20 sessions of a combined TENS+TRT home-based program decreased plantarflexor spasticity, improved dorsiflexor and plantarflexor strength, and increased gait velocity significantly more than TENS alone, placebo+TRT, or no treatment. Such improvements can even be maintained 4 weeks after treatment ended.

  5. Locomotive biomechanics in persons with chronic ankle instability and lateral ankle sprain copers.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2016-07-01

    To compare the locomotive biomechanics of participants with chronic ankle instability (CAI) to those of lateral ankle sprain (LAS) copers. Cross-sectional study. Twenty-eight participants with CAI and 42 LAS copers each performed 5 self-selected paced gait trials. 3-D lower extremity temporal kinematic and kinetic data were collected for these participants from 200ms pre- to 200ms post-heel strike (period 1) and from 200ms pre- to 200ms post-toe off (period 2). The CAI group displayed increased hip flexion bilaterally during period 1 compared to LAS copers. During period 2, CAI participants exhibited reduced hip extension bilaterally, increased knee flexion bilaterally and increased ankle inversion on the 'involved' limb. They also displayed a bilateral decrease in the flexor moment pattern at the knee. Considering that all of the features which distinguished CAI participants from LAS copers were also evident in our previously published research (within 2-weeks following acute first-time LAS); these findings establish a potential link between these features and long-term outcome following first-time LAS. Clinicians must be cognizant of the capacity for these movement and motor control impairments to cascade proximally from the injured joint up the kinetic chain and recognise the value that gait re-training may have in rehabilitation planning to prevent CAI. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    PubMed Central

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, P<0.001, P≤0.02, and P≤0.03, respectively), whereas only in RVE ankle plantar flexor CSA and isometric ankle plantar flexion force reached significance or a tendency, respectively, (time effect, P=0.015 and P=0.069, respectively; intervention effect also for the latter, P=0.006). Drop jump contact time did significantly more improve in RVE (interaction effect, P=0.042). Conclusions: RVE showed better training effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  7. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.

    PubMed

    Hansberger, Bethany L; Acocello, Shellie; Slater, Lindsay V; Hart, Joseph M; Ambegaonkar, Jatin P

    2018-04-01

      Anterior cruciate ligament (ACL) injuries often occur during jump landings and can have detrimental short-term and long-term functional effects on quality of life. Despite frequently performing jump landings, dancers have lower incidence rates of ACL injury than other jump-landing athletes. Planned versus unplanned activities and footwear may explain differing ACL-injury rates among dancers and nondancers. Still, few researchers have compared landing biomechanics between dancers and nondancers.   To compare the landing biomechanics of dancers and nondancers during single-legged (SL) drop-vertical jumps.   Cross-sectional study.   Laboratory.   A total of 39 healthy participants, 12 female dancers (age = 20.9 ± 1.8 years, height = 166.4 ± 6.7 cm, mass = 63.2 ± 16.4 kg), 14 female nondancers (age = 20.2 ± 0.9 years, height = 168.9 ± 5.0 cm, mass = 61.6 ± 7.7 kg), and 13 male nondancers (age = 22.2 ± 2.7 years, height = 180.6 ± 9.7 cm, mass = 80.8 ± 13.2 kg).   Participants performed SL-drop-vertical jumps from a 30-cm-high box in a randomized order in 2 activity (planned, unplanned) and 2 footwear (shod, barefoot) conditions while a 3-dimensional system recorded landing biomechanics.   Overall peak sagittal-plane and frontal-plane ankle-, knee-, and hip-joint kinematics (joint angles) were compared across groups using separate multivariate analyses of variance followed by main-effects testing and pairwise-adjusted Bonferroni comparisons as appropriate ( P < .05).   No 3-way interactions existed for sagittal-plane or frontal-plane ankle (Wilks λ = 0.85, P = .11 and Wilks λ = 0.96, P = .55, respectively), knee (Wilks λ = 1.00, P = .93 and Wilks λ = 0.94, P = .36, respectively), or hip (Wilks λ = 0.99, P = .88 and Wilks λ = 0.97, P = .62, respectively) kinematics. We observed no group × footwear interactions for sagittal-plane or frontal-plane ankle (Wilks λ = 0.94, P = .43 and Wilks λ = 0.96, P = .55, respectively), knee (Wilks λ = 0.97, P = .60 and Wilks λ = 0.97, P = .66, respectively), or hip (Wilks λ = 0.99, P = .91 and Wilks λ = 1.00, P = .93, respectively) kinematics, and no group × activity interactions were noted for ankle frontal-plane (Wilks λ = 0.92, P = .29) and sagittal- and frontal-plane knee (Wilks λ = 0.99, P = .81 and Wilks λ = 0.98, P = .77, respectively) and hip (Wilks λ = 0.88, P = .13 and Wilks λ = 0.85, P = .08, respectively) kinematics. A group × activity interaction (Wilks λ = 0.76, P = .02) was present for ankle sagittal-plane kinematics. Main-effects testing revealed different ankle frontal-plane angles across groups ( F 2,28 = 3.78, P = .04), with male nondancers having greater ankle inversion than female nondancers ( P = .05).   Irrespective of activity type or footwear, female nondancers landed with similar hip and knee kinematics but greater peak ankle eversion and less peak ankle dorsiflexion (ie, positions associated with greater ACL injury risk). Ankle kinematics may differ between groups due to different landing strategies and training used by dancers. Dancers' training should be examined to determine if it results in a reduced occurrence of biomechanics related to ACL injury during SL landing.

  8. Chronic Achilles tendinopathy: a prospective randomized study comparing the therapeutic effect of eccentric training, the AirHeel brace, and a combination of both.

    PubMed

    Petersen, Wolf; Welp, Robert; Rosenbaum, Dieter

    2007-10-01

    Previous studies have shown that eccentric training has a positive effect on chronic Achilles tendinopathy. A new strategy for the treatment of chronic Achilles tendinopathy is the AirHeel brace. AirHeel brace treatment improves the clinical outcome of patients with chronic Achilles tendinopathy. The combination of the AirHeel brace and an eccentric training program has a synergistic effect. Randomized controlled clinical trial; Level of evidence, 1. One hundred patients were randomly assigned to 1 of 3 treatment groups: (1) eccentric training, (2) AirHeel brace, and (3) combination of eccentric training and AirHeel brace. Patients were evaluated at 6, 12, and 54 weeks after the beginning of the treatment protocol with ultrasonography, visual analog scale (VAS) for pain, American Orthopaedic Foot and Ankle Society (AOFAS) ankle score, and Short Form-36 (SF-36). The VAS score for pain, AOFAS score, and SF-36 improved significantly in all 3 groups at all 3 follow-up examinations. At the 3 time points (6 weeks, 12 weeks, and 54 weeks) of follow-up, there was no significant difference between all 3 treatment groups. In all 3 groups, there was no significant difference in tendon thickness after treatment. The AirHeel brace is as effective as eccentric training in the treatment of chronic Achilles tendinopathy. There is no synergistic effect when both treatment strategies are combined. The AirHeel brace is an alternative treatment option for chronic Achilles tendinopathy.

  9. Effects of virtual reality programs on balance in functional ankle instability.

    PubMed

    Kim, Ki-Jong; Heo, Myoung

    2015-10-01

    [Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle's static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist.

  10. [Neuromuscular deficits in chronic ankle instability. Frequency and significance - multicenter study].

    PubMed

    Schmidt, R; Becker, H P; Rauhut, F; Tannheimer, M

    2014-08-01

    The peroneal reaction time (PRT) is used in the assessment of neuromuscular deficits in chronic functional ankle instability. Powered by the Editorial Manager and Preprint Manager from Aries Systems Corporation the present study was conducted to determine the PRT in a large collective of patients with chronic ankle instability because it is unclear if this parameter of neuromuscular deficit is prolonged. In this study 186 patients underwent a diagnostic algorithm consisting of anamnesis, clinical examination, X-ray and determination of the PRT on a tilting platform. A prolonged PRT as a manifestation of a neuromuscular deficit could be detected in the majority of the patients (n = 143, 77%). Comparing the affected and healthy legs 77 patients (41%) showed a significant difference in talar shift (p = 0.002) and talar tilt (p = 0.04) in the radiological stress views. Of these 77 patients only 15 (8%) showed radiological evidence of a mechanical problem. As a consequence of recurring ankle sprains a post-traumatic deficit in proprioception has to be expected in most cases. In general a conservative therapy approach should be followed including specific training to improve neuromuscular and proprioceptive deficits.

  11. Interactive Sensor-Based Balance Training in Older Cancer Patients with Chemotherapy-Induced Peripheral Neuropathy: A Randomized Controlled Trial.

    PubMed

    Schwenk, Michael; Grewal, Gurtej S; Holloway, Dustin; Muchna, Amy; Garland, Linda; Najafi, Bijan

    2016-01-01

    Cancer patients with chemotherapy-induced peripheral neuropathy (CIPN) have deficits in sensory and motor skills leading to inappropriate proprioceptive feedback, impaired postural control, and fall risk. Balance training programs specifically developed for CIPN patients are lacking. This pilot study investigated the effect of an interactive motor adaptation balance training program based on wearable sensors for improving balance in older cancer patients with CIPN. Twenty-two patients (age: 70.3 ± 8.7 years) with objectively confirmed CIPN [vibration perception threshold (VPT) >25 V] were randomized to either an intervention (IG) or a control (CG) group. The IG received interactive game-based balance training including repetitive weight shifting and virtual obstacle crossing tasks. Wearable sensors provided real-time visual/auditory feedback from the lower limb trajectory and allowed the perception of motor errors during each motor action. The CG received no exercise intervention and continued their normal activity. Outcome measures were changes in sway of ankle, hip, and center of mass (CoM) in both mediolateral and anteroposterior (AP) directions during 30-second balance tests with increasing task difficulty [i.e. standing in feet-closed position with eyes open (EO) and eyes closed (EC), and in semi-tandem position with EO] at baseline and after the intervention. Additionally, gait performance (speed, variability) and fear of falling [Falls Efficacy Scale-International (FES-I)] were measured. Training was safe despite the participants' impaired health status, great severity of CIPN (VPT 49.6 ± 26.7 V), and great fear of falling (FES-I score 31.37 ± 11.20). After the intervention, sway of hip, ankle, and CoM was significantly reduced in the IG compared to the CG while standing in feet-closed position with EO (p = 0.010-0.022, except AP CoM sway) and in semi-tandem position (p = 0.008-0.035, except ankle sway). No significant effects were found for balance with EC, gait speed, and FES-I score (p > 0.05). This proof-of-concept study demonstrates that older cancer patients with CIPN can significantly improve their postural balance with specifically tailored, sensor-based exercise training. The training approach has potential as a therapy for improving CIPN-related postural control deficits. However, future studies comparing the proposed technology-based training with traditional balance training are required to evaluate the benefit of the interactive joint movement feedback. © 2015 S. Karger AG, Basel.

  12. Stress fractures about the tibia, foot, and ankle.

    PubMed

    Shindle, Michael K; Endo, Yoshimi; Warren, Russell F; Lane, Joseph M; Helfet, David L; Schwartz, Elliott N; Ellis, Scott J

    2012-03-01

    In competitive athletes, stress fractures of the tibia, foot, and ankle are common and lead to considerable delay in return to play. Factors such as bone vascularity, training regimen, and equipment can increase the risk of stress fracture. Management is based on the fracture site. In some athletes, metabolic workup and medication are warranted. High-risk fractures, including those of the anterior tibial diaphysis, navicular, proximal fifth metatarsal, and medial malleolus, present management challenges and may require surgery, especially in high-level athletes who need to return to play quickly. Noninvasive treatment modalities such as pulsed ultrasound and extracorporeal shock wave therapy may have some benefit but require additional research.

  13. Can proprioception really be improved by exercises?

    PubMed

    Ashton-Miller, J A; Wojtys, E M; Huston, L J; Fry-Welch, D

    2001-05-01

    There is little question that ankle disc training can improve ankle muscle motor performance in a unipedal balance task, most likely through improved strength and coordination [62] and possibly endurance. How much of the observed improvement in motor performance is due to improved ankle proprioception remains unknown. We have reviewed a number of theoretical ways in which training might improve proprioception for moderately challenging weight-bearing situations such as balancing on one leg. Although the relevant experiments have yet to be performed to test this hypothesis, any improvement would theoretically help to reduce injuries at these moderate levels of challenge. We question, however, whether these exercises can ever improve the reactive response required to prevent injury under the most challenging time-critical situations. If confirmed, this limitation needs to be acknowledged by authors and practitioners alike. Alternative protective strategies for the most challenging time-critical situations should be sought. We conclude that, despite their widespread acceptance, current exercises aimed at "improving proprioception" have not been demonstrated to achieve that goal. We have outlined theoretical scenarios by which proprioception might be improved, but these are speculative. The relevant experiments remain to be conducted. We argue that even if they were proven to improve proprioception, under the best circumstances such exercises could only prevent injury under slow to intermediate rate provocations to the joint musculoligamentous complex in question.

  14. A comprehensive assessment of the cross-training effect in ankle dorsiflexors of healthy subjects: A randomized controlled study.

    PubMed

    Manca, Andrea; Pisanu, Francesco; Ortu, Enzo; De Natale, Edoardo Rosario; Ginatempo, Francesca; Dragone, Daniele; Tolu, Eusebio; Deriu, Franca

    2015-06-01

    To investigate the cross-training effect, induced on ankle dorsiflexors (AD) by unilateral strength-training of the contralateral muscles, as transfer of peak torque (PT) and muscle work (MW) and their relative contributions to muscle performance. Thirty healthy volunteers were randomly assigned to a training or control group. The trained group sustained a 4-week maximal isokinetic training of the stronger AD at 90 and 45°/s. At both angular velocities, PT, MW and MW/PT ratio were measured from both legs at baseline and after intervention (trained group) or no-intervention (controls). The familiarization/learning-effect was calculated and subtracted by PT and MW measures to obtain their net changes. Net PT increased in both legs (untrained: +27.5% at 90°/s and +17.9% at 45°/s; trained: +15% at 90°/s and +16.3% at 45°/s). Similarly, net MW increased in both the untrained (90°/s: +29.6%; 45°/s: +37%) and trained (90°/s: +23.4%; 45°/s: +18.3%) legs. PT and MW gains were larger in the untrained than trained AD (p<0.0005), with MW improving more than PT at 45°/s (p=0.04). The MW/PT ratio increased bilaterally only in the trained group (p<0.05), depending on the angular velocity. The cross-training effect occurred in AD muscles in terms of both PT and MW, with MW adding valuable information to PT-analysis in describing muscle performance. Moreover, the MW/PT ratio allowed estimating the contributions of these parameters to muscle capability and may represent a novel index in isokinetic testing. The greater improvements in the untrained than trained limb raises interesting clinical implications in asymmetric conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    PubMed

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.

  16. Effect of Transcutaneous Electrical Nerve Stimulation on Plantar Flexor Muscle Spasticity and Walking Speed in Stroke Patients.

    PubMed

    Laddha, Darshan; Ganesh, G Shankar; Pattnaik, Monalisa; Mohanty, Patitapaban; Mishra, Chittaranjan

    2016-12-01

    Spasticity is a major disabling symptom in patients post stroke. Although studies have demonstrated that transcutaneous electrical nerve stimulation (TENS) can reduce spasticity, the duration of single session TENS is a subject of debate. The purpose of this study was to determine the sustainability of the effects of TENS applied over common peroneal nerve in the reduction of ankle plantar-flexor spasticity and improving gait speed in patients post stroke. Thirty patients (11 women and 19 men) (mean age of 46.46 years) were randomly assigned to group 1 (task oriented exercises), group 2 (TENS for 30 min and task oriented exercises) and group 3 (TENS for 60 min and task oriented exercises) for a period of five sessions per week for 6 weeks. All patients were assessed for ankle plantar-flexor spasticity, passive ankle dorsi-flexion range of motion, clonus and timed up and go test at the time of recruitment to study, at 3 and 6 weeks of therapeutic intervention. The overall results of the study suggest that there was a decrease in ankle plantar flexor spasticity, ankle clonus and timed up and go score in all the groups. A greater reduction of spasticity was seen in TENS groups (groups 2 and 3) when compared to control. No significant improvement was found in timed up and go test (TUG) scores between groups. Both 30 min and 60 min of application of TENS are effective in reducing spasticity of ankle plantar flexors, improving walking ability and increase the effectiveness of task related training. Based on the effect size, we would recommend a longer duration application for the reduction of spasticity. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Treatment of common deficits associated with chronic ankle instability.

    PubMed

    Holmes, Alison; Delahunt, Eamonn

    2009-01-01

    Lateral ankle sprains are amongst the most common injuries incurred by athletes, with the high rate of reoccurrence after initial injury becoming of great concern. Chronic ankle instability (CAI) refers to the development of repetitive ankle sprains and persistent residual symptoms post-injury. Some of the initial symptoms that occur in acute sprains may persist for at least 6 months post-injury in the absence of recurrent sprains, despite the athlete having returned to full functional activity. CAI is generally thought to be caused by mechanical instability (MI) or functional instability (FI), or both. Although previously discussed as separate entities, recent research has demonstrated that deficits associated with both MI and FI may co-exist to result in CAI. For clinicians, the main deficits associated with CAI include deficits in proprioception, neuromuscular control, strength and postural control. Based on the literature reviewed, it does seem that subjects with CAI have a deficit in frontal plane ankle joint positional sense. Subjects with CAI do not appear to exhibit any increased latency in the peroneal muscles in response to an external perturbation. Preliminary data suggest that feed-forward neuromuscular control may be more important than feed-back neuromuscular control and interventions are now required to address deficits in feed-forward neuromuscular control. Balance training protocols have consistently been shown to improve postural stability in subjects with CAI. Subjects with CAI do not experience decreased peroneus longus strength, but instead may experience strength deficits in the ankle joint invertor muscles. These findings are of great clinical significance in terms of understanding the mechanisms and deficits associated with CAI. An appreciation of these is vital to allow clinicians to develop effective prevention and treatment programmes in relation to CAI.

  18. Military personnel with self-reported ankle injuries do not demonstrate deficits in dynamic postural stability or landing kinematics.

    PubMed

    Bansbach, Heather M; Lovalekar, Mita T; Abt, John P; Rafferty, Deirdre; Yount, Darcie; Sell, Timothy C

    2017-08-01

    The odds of sustaining non-contact musculoskeletal injuries are higher in Special Operations Forces operators than in infantry soldiers. The ankle is one of the most commonly injured joints, and once injured can put individuals at risk for reinjury. The purpose of this study was to determine if any differences in postural stability and landing kinematics exist between operators with a self-reported ankle injury in the past one year and uninjured controls. A total of 55 Special Operations Forces operators were included in this analysis. Comparisons were made between operators with a self-reported ankle injury within one-year of their test date (n=11) and healthy matched controls (n=44). Comparisons were also made between injured and uninjured limbs within the injured group. Dynamic postural stability and landing kinematics at the ankle, knee, and hip were assessed during a single-leg jump-landing task. Comparisons were made between groups with independent t-tests and within the injured group between limbs using paired t-tests. There were no significant differences in dynamic postural stability index or landing kinematics between the injured and uninjured groups. Anterior-posterior stability index was significantly higher on the uninjured limb compared to the injured limb within the injured group (P=0.02). Single ankle injuries sustained by operators may not lead to deficits in dynamic postural stability. Dynamic postural stability index and landing kinematics within one year after injury were either not affected by the injuries reported, or injured operators were trained back to baseline measures through rehabilitation and daily activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Kinematic Mechanisms of How Power Training Improves Healthy Old Adults' Gait Velocity.

    PubMed

    Beijersbergen, Chantal M I; Granacher, Urs; Gäbler, Martijn; Devita, Paul; Hortobágyi, Tibor

    2017-01-01

    Slow gait predicts many adverse clinical outcomes in old adults, but the mechanisms of how power training can minimize the age-related loss of gait velocity is unclear. We examined the effects of 10 wk of lower extremity power training and detraining on healthy old adults' lower extremity muscle power and gait kinematics. As part of the Potsdam Gait Study, participants started with 10 wk of power training followed by 10 wk of detraining (n = 16), and participants started with a 10-wk control period followed by 10 wk of power training (n = 16). We measured gait kinematics (stride characteristic and joint kinematics) and isokinetic power of the ankle plantarflexor (20°·s, 40°·s, and 60°·s) and knee extensor and flexor (60°·s, 120°·s, and 180°·s) muscles at weeks 0, 10, and 20. Power training improved isokinetic muscle power by ~30% (P ≤ 0.001) and fast (5.9%, P < 0.05) but not habitual gait velocity. Ankle plantarflexor velocity measured during gait at fast pace decreased by 7.9% (P < 0.05). The changes isokinetic muscle power and joint kinematics did not correlate with increases in fast gait velocity. The mechanisms that increased fast gait velocity involved higher cadence (r = 0.86, P ≤ 0.001) rather than longer strides (r = 0.49, P = 0.066). Detraining did not reverse the training-induced increases in muscle power and fast gait velocity. Because increases in muscle power and modifications in joint kinematics did not correlate with increases in fast gait velocity, kinematic mechanisms seem to play a minor role in improving healthy old adults' fast gait velocity after power training.

  20. Efficacy of ankle control balance training on postural balance and gait ability in community-dwelling older adults: a single-blinded, randomized clinical trial.

    PubMed

    Lee, Kyeongjin; Lee, Yong Woo

    2017-09-01

    [Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults.

  1. Efficacy of ankle control balance training on postural balance and gait ability in community-dwelling older adults: a single-blinded, randomized clinical trial

    PubMed Central

    Lee, Kyeongjin; Lee, Yong Woo

    2017-01-01

    [Purpose] This study was conducted to investigate the effects of ankle control balance training (ACBT) on postural balance and gait ability in community-dwelling older adults. [Subjects and Methods] Fifty-four subjects were randomly divided into two groups, with 27 subjects in the ACBT group and 27 subjects in the control group. Subjects in the ACBT group received ACBT for 60 minutes, twice per week for 4 weeks, and all subjects had undergone fall prevention education for 60 minutes, once per week for 4 weeks. The main outcome measures, including the Berg balance scale; the functional reach test and one leg stance test for postural balance; and the timed up-and-go test and 10-meter walking test for gait ability, were assessed at baseline and after 4 weeks of training. [Results] The postural balance and gait ability in the ACBT group improved significantly compared to those in the control group, except BBS. [Conclusion] The results of this study showed improved postural balance and gait abilities after ACBT and that ACBT is a feasible method for improving postural balance and gait ability in community-dwelling older adults. PMID:28931994

  2. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System.

    PubMed

    Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama

    2017-01-01

    Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one's center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one's individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one's overall performance in balance-related tasks belonging to different difficulty levels.

  3. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    NASA Astrophysics Data System (ADS)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. The loan program also includes Meteorite Disks containing six meteorites that will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks through Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program is set up to bridge to new education programs that will carry NASA exploration to more people. Getting Space Rocks out to the public and connecting the public to the current space exploration missions is the focus the NASA disk loan program.

  4. Chronic Plantarflexor Stretching During Ankle Immobilization Helps Preserve Calf Girth, Plantarflexion Peak Torque, and Ankle Dorsiflexion Motion.

    PubMed

    Wilson, Samantha; Christensen, Bryan; Gange, Kara; Todden, Christopher; Hatterman-Valenti, Harlene; Albrecht, Jay M

    2017-09-27

    Chronic plantarflexor (PF) stretching during ankle immobilization helps preserve calf girth, plantarflexion peak torque, and ankle dorsiflexion (DF) motion. Immobilization can lead to decreases in muscle peak torque, muscle size, and joint ROM. Recurrent static stretching during a period of immobilization may reduce the extent of these losses. To investigate the effects of chronic static stretching on PF peak torque, calf girth, and DF range of motion (ROM) after two weeks of ankle immobilization. Randomized controlled clinical trial. Athletic training facility. Thirty-six healthy college-aged (19.81±2.48) females. Subjects were randomly assigned to one of three groups: control group, immobilized group (IM), and immobilized plus stretching group (IM+S). Each group participated in a familiarization period, a pre-test, and, two weeks later, a post-test. The IM group and IM+S group wore the Aircast FP Walker for two weeks on the left leg. During this time, the IM+S group participated in a stretching program, which consisted of two 10-minute stretching procedures each day for the 14 days. One-way ANOVA was used to determine differences in the change of ankle girth, PF peak torque, and DF ROM between groups with an α level of < 0.05. A significant difference was noted between groups in girth (F 2,31 =5.64, P=0.009), DF ROM (F 2,31 =26.13, P<0.0001), and PF peak torque (F 2,31 =7.74, P=0.002). Post-hoc testing also showed a significance difference between change in calf girth of the control group compared to the IM group (P=0.007) and a significant difference in change of peak torque in the IM+S group and the IM group (P=0.001). Also, a significant difference was shown in DF ROM between the control group and IM+S group (P=0.006), the control group and the IM group (P<0.0001), and the IM+S group and the IM group (P<0.0001). Chronic static stretching during two weeks of immobilization may decrease the loss of calf girth, ankle PF peak torque, and ankle DF ROM.

  5. Gait characteristics of individuals with multiple sclerosis before and after a 6-month aerobic training program.

    PubMed

    Rodgers, M M; Mulcare, J A; King, D L; Mathews, T; Gupta, S C; Glaser, R M

    1999-07-01

    Individuals who have multiple sclerosis (MS) typically experience problems with physical activities such as walking, resulting from the combined effects of skeletal muscle weakness, sensory disturbances, spasticity, gait ataxia, and reduction in aerobic capacity. The aim of this study was to determine whether a 6-mo exercise program designed for aerobic conditioning might also affect gait abnormalities in individuals with MS. Subjects included 18 individuals with MS who presented a range of disability. Passive range of motion (PROM) in the lower limbs was measured and gait analyzed before and after exercise conditioning. Three-dimensional kinematics, ground reaction forces (GRF), and electromyographic information were acquired as subjects walked at self-selected velocities. Hip PROM increased following conditioning. Mean walking velocity, cadence, and posterior shear GRF (push-off force) decreased. During walking, maximum ankle dorsiflexion decreased and ankle plantarflexion increased. Total knee flexion/extension range during the walking cycle decreased slightly as did maximum hip extension. Results suggest this 6-mo training program had minimal effect on gait abnormalities.

  6. The effects of body weight unloading on kinetics and muscle activity of overweight males during Overground walking.

    PubMed

    Fischer, Arielle G; Wolf, Alon

    2018-02-01

    Excess body weight has become a major worldwide health and social epidemic. Training with body weight unloading, is a common method for gait corrections for various neuromuscular impairments. In the present study we assessed the effects of body weight unloading on knee and ankle kinetics and muscle activation of overweight subjects walking overground under various levels of body weight unloading. Ten overweight subjects (25 ≤ BMI < 29.9 kg/m 2 ) walked overground under a control and three (0%, 15%, 30%) body weight unloading experimental conditions. Gait parameters assessed under these conditions included knee and ankle flexion moments and the Electromygraphic activity of the Tibialis Anterior, Lateral Gastrocnemius and Vastus Lateralis. Increasing body weight unloading levels from 0% to 30% was found to significantly reduce the peak knee flexion and ankle plantarflexion moments. Also observed was a significant reduction in muscle activity of the Tibialis Anterior, Lateral Gastrocnemius and Vastus Lateralis under the three body-weight unloading conditions. Our results demonstrate that a reduction of up to 30% overweight subjects' body weight during gait is conducive to a reduction in the knee and ankle flexion moments and in the balancing net quadriceps moment and ankle flexors moment. The newly devised body weight unloading device is therefore an effective method for reducing joint loads allowing overweight people who require controlled weight bearing scenarios to retrain their gait while engaging in sustained walking exercise. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Intensive strength and balance training with the Kinect console (Xbox 360) in a patient with CMT1A.

    PubMed

    Pagliano, Emanuela; Foscan, Maria; Marchi, Alessia; Corlatti, Alice; Aprile, Giorgia; Riva, Daria

    2017-08-01

    Effective drugs for type 1A Charcot-Marie-Tooth (CMT1A) disease are not available. Various forms of moderate exercise are beneficial, but few data are available on the effectiveness of exercise in CMT1A children. To investigate the feasibility and effectiveness of exercises to improve ankle strength and limb function in a child with CMT1A. Outpatient clinic. Nine-year-old boy with CMT1A. The rehabilitation program consisted of ankle exercises and Kinect videogame-directed physical activities (using an Xbox 360 console/movement sensor) that aimed to improve balance and limb strength. The program was given 3 times a week for 5 weeks. The child was assessed at baseline, after 5 weeks, and 3 and 6 months after. By the end of follow-up, child balance and endurance had improved, but ankle strength did not. The encouraging results for balance and endurance justify further studies on videogame-directed activities in CMT1A children/adolescents.

  8. Acute effects of whole body vibration on balance in persons with and without chronic ankle instability.

    PubMed

    Rendos, Nicole K; Jun, Hyung-Pil; Pickett, Nancy M; Lew Feirman, Karen; Harriell, Kysha; Lee, Sae Yong; Signorile, Joseph F

    2017-01-01

    Chronic ankle instability (CAI) is a common condition following ankle injury that is associated with compromised balance. Whole body vibration training (WBVT) programmes are linked with improved balance and function in athletic and non-athletic populations and may improve balance in CAI. Twelve healthy and seven CAI participants completed two randomly assigned interventions. Two Power Plate® platforms were attached back to back using a Theraband®. Participants stood on the active plate and inactive plate for WBVT and sham interventions, respectively. Each intervention included vibration of the active plate. Centre of pressure (COP) and the star excursion balance test (SEBT) were measured before and at 3, 15 and 30 min following the interventions. Significant improvements were found in the anterior direction of the SEBT following both interventions in CAI and varying patterns of improvement were observed for COP measurements in all participants. Therefore, WBVT does not appear to acutely improve balance in CAI.

  9. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    NASA Technical Reports Server (NTRS)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and orange glass from a pyroclastic deposit. Each Meteorite Disk contains two ordinary chondrites, one carbonaceous chondrite, one iron, one stony iron, and one achondrite. These samples will help educators share the early history of the solar system with students and the public. Educators may borrow either lunar or meteorite disks and the accompanying education materials through the Johnson Space Center Curatorial Office. In trainings provided by the NASA Aerospace Education Services Program specialists, educators certified to borrow the disk learn about education resources, the proper use of the samples, and the special security for care and shipping of the disks. The Lunar and Meteorite Sample Education Disk Program will take NASA exploration to more people. Getting Space Rocks out to the public and inspiring the public about new space exploration is the focus of the NASA disk loan program.

  10. Russian-US collaboration on implementation of the active well coincidence counter (AWCC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mozhajev, V.; Pshakin, G.; Stewart, J.

    The feasibility of using a standard AWCC at the Obninsk IPPE has been demonstrated through active measurements of single UO{sub 2} (36% enriched) disks and through passive measurements of plutonium metal disks used for simulating reactor cores. The role of the measurements is to verify passport values assigned to the disks by the facility, and thereby facilitate the mass accountability procedures developed for the very large inventory of fuel disks at the facility. The AWCC is a very flexible instrument for verification measurements of the large variety of nuclear material items at the Obninsk IPPE and other Russian facilities. Futuremore » work at the IPPE will include calibration and verification measurements for other materials, both in individual disks and in multi-disk storage tubes; it will also include training in the use of the AWCC.« less

  11. Training activities and injuries in English youth academy and schools rugby union.

    PubMed

    Palmer-Green, Deborah S; Stokes, Keith A; Fuller, Colin W; England, Michael; Kemp, Simon P T; Trewartha, Grant

    2015-02-01

    All rugby training activities carry an injury risk, but in the training environment these injury risks should be more controllable than during matches. To (1) describe the incidence, severity, anatomic location, and type of youth rugby training injuries; (2) determine the injury events and type of training activities associated with injuries; and (3) compare 2 levels of play (professional academy vs school) within English youth rugby union. Cohort study; Level of evidence, 2. A 2-season (2006-2007 and 2007-2008) study recorded exposure to training activities and time-loss injuries in male youth rugby union players (age range, 16-18 years) from 12 English Premiership academies (250 player-seasons) and 7 schools (222 player-seasons). Players from the Premiership academies, associated with the top-level professional clubs in England, represented the elite level of youth rugby; the school players were from established rugby-playing schools but were overall considered at a lower level of play. There was a trend for training injury incidence to be lower for the academy group (1.4/1000 player-hours; 95% CI, 1.0-1.7) compared with the school group (2.1/1000 player-hours; 95% CI, 1.4-2.9) (P = .06). Injuries to the ankle/heel and thigh were most common in academy players and injuries to the lumbar spine and ankle/heel region most common in school players. The training activities responsible for injury differed between the 2 groups: technical skills (scrummaging) for school players and contact skills (defense and ruck/maul drills) for academy players. For injury risk management in youth rugby, coaches of school players should focus on the development of the correct technique during practice of technical skills such as scrummaging, weight training, and skills training, and coaches of academy players should consider the extent to which contact drills are necessary during training. © 2014 The Author(s).

  12. Windsurfing Injuries: Added Awareness for Diagnosis, Treatment, and Prevention.

    ERIC Educational Resources Information Center

    Rosenbaum, Daryl A.; Dietz, Thomas E.

    2002-01-01

    With proper training and safety precautions, windsurfing is relatively safe, but its unique equipment and unpredictable environmental conditions can produce serious injuries. Clinicians may see fall-related ankle injuries, tarsometatarsal injuries, or anterior shoulder dislocations; chronic low-back pain from torso stress; skin lacerations; and…

  13. Sports injuries in the pediatric and adolescent foot and ankle: common overuse and acute presentations.

    PubMed

    Pontell, David; Hallivis, Robert; Dollard, Mark D

    2006-01-01

    Care of the youth athlete requires knowledge of developmental anatomy and specific injury patterns, which are acute or chronic in nature. We may expect that the incidence of overuse and acute foot and ankle injuries in this population is likely to increase in proportion to the number and intensity of competitive youth teams with demanding training schedules. We, as physicians, must exercise our best judgment in regard to recognizing these patterns early and instituting appropriate treatments. Return to play decisions should be based on objective criteria when available and always keeping the best interest of the athlete's future health in the forefront of our minds.

  14. The effects of load on system and lower-body joint kinetics during jump squats.

    PubMed

    Moir, Gavin L; Gollie, Jared M; Davis, Shala E; Guers, John J; Witmer, Chad A

    2012-11-01

    To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.

  15. [Ligamentous injuries to the ankle joint].

    PubMed

    Rammelt, S; Schneiders, W; Grass, R; Rein, S; Zwipp, H

    2011-10-01

    Injuries to the lateral ankle ligaments are the most common sports injuries. Determination of their severity and exclusion of relevant accompanying injuries requires a subtle clinical and a focussed radiological assessment. Treatment is non-operative and functional in the majority of cases. Consequent application of orthoses limiting supination and proprioceptive training are essential to avoid chronic instability. With recurrent ankle sprains one has to distinguish between functional and mechanical instability. The latter can be treated successfully with anatomic reconstruction and ligamentoplasty in more than 80 % of cases. Extraanatomic tenodeses should be reserved for cases of combined ankle and subtalar instability. Isolated injuries to the medial collateral ligaments are rare. Therefore, osseous injuries or underlying deformities have to be excluded. Isolated deltoid ligament ruptures may be treated non-operatively. Unstable injuries to the distal tibiofibular syndesmosis resulting in a manifest or latent diastasis are treated with open reduction and fixation with two tibiofibular set screws. Anatomic reduction of the distal fibula into the tibial groove is of utmost prognostic relevance and therefore should be reliably proved with either intraoperative 3D fluoroscopy or postoperative CT scanning. For chronic syndesmotic instability an anatomic ligamentoplasty using half the peroneus longus tendon is recommended. © Georg Thieme Verlag KG Stuttgart · New York.

  16. A Sit-to-Stand Training Robot and Its Performance Evaluation: Dynamic Analysis in Lower Limb Rehabilitation Activities

    NASA Astrophysics Data System (ADS)

    Cao, Enguo; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko

    In many countries in which the phenomenon of population aging is being experienced, motor function recovery activities have aroused much interest. In this paper, a sit-to-stand rehabilitation robot utilizing a double-rope system was developed, and the performance of the robot was evaluated by analyzing the dynamic parameters of human lower limbs. For the robot control program, an impedance control method with a training game was developed to increase the effectiveness and frequency of rehabilitation activities, and a calculation method was developed for evaluating the joint moments of hip, knee, and ankle. Test experiments were designed, and four subjects were requested to stand up from a chair with assistance from the rehabilitation robot. In the experiments, body segment rotational angles, trunk movement trajectories, rope tensile forces, ground reaction forces (GRF) and centers of pressure (COP) were measured by sensors, and the moments of ankle, knee and hip joint were real-time calculated using the sensor-measured data. The experiment results showed that the sit-to-stand rehabilitation robot with impedance control method could maintain the comfortable training postures of users, decrease the moments of limb joints, and enhance training effectiveness. Furthermore, the game control method could encourage collaboration between the brain and limbs, and allow for an increase in the frequency and intensity of rehabilitation activities.

  17. Two chronic motor training paradigms differentially influe nce acute instrume ntal learning in spinally transected rats

    PubMed Central

    Bigbee, Allison J.; Crown, Eric D.; Ferguson, Adam R.; Roy, Roland R.; Tillakaratne, Niranjala J.K.; Grau, James W.; Edgerton, V. Reggie

    2008-01-01

    The effect of two chronic motor training paradigms on the ability of the lumbar spinal cord to perform an acute instrumental learning task was examined in neonatally (postnatal day 5; P5) spinal cord transected (i.e., spinal) rats. At ∼P30, rats began either unipedal hindlimb stand training (Stand-Tr; 20-25 min/day, 5 days/wk), or bipedal hindlimb step training (Step-Tr; 20 min/day; 5 days/wk) for 7 wks. Non-trained spinal rats (Non-Tr) served as controls. After 7 wks all groups were tested on the flexor-biased instrumental learning paradigm. We hypothesized that 1) Step-Tr rats would exhibit an increased capacity to learn the flexor-biased task relative to Non-Tr subjects, as locomotion involves repetitive training of the tibialis anterior (TA), the ankle flexor whose activation is important for successful instrumental learning, and 2) Stand-Tr rats would exhibit a deficit in acute motor learning, as unipedal training activates the ipsilateral ankle extensors, but not flexors. Results showed no differences in acute learning potential between Non-Tr and Step-Tr rats, while the Stand-Tr group showed a reduced capacity to learn the acute task. Further investigation of the Stand-Tr group showed that, while both the ipsilateral and contralateral hindlimbs were significantly impaired in their acute learning potential, the contralateral, untrained hindlimbs exhibited significantly greater learning deficits. These results suggest that different types of chronic peripheral input may have a significant impact on the ability to learn a novel motor task, and demonstrate the potential for experience-dependent plasticity in the spinal cord in the absence of supraspinal connectivity. PMID:17434606

  18. Can FES-rowing mediate bone mineral density in SCI: a pilot study.

    PubMed

    Gibbons, R S; McCarthy, I D; Gall, A; Stock, C G; Shippen, J; Andrews, B J

    2014-11-01

    A single case study. To compare proximal tibia trabecular bone mineral density (BMD) of a participant with complete spinal cord injury (SCI), long-termed functional electrical stimulation-rowing (FES-R) trained, with previously reported SCI and non-SCI group norms. To estimate lower limb joint contact forces (JCFs) in the FES-R trained participant. UK University and orthopaedic hospital research centre. Bilateral proximal tibial trabecular BMD of the FES-R trained participant was measured using peripheral quantitative computerised tomography, and the data were compared with SCI and non-SCI groups. An instrumented four-channel FES-R system was used to measure the lower limb JCFs in the FES-R trained participant. Structurally, proximal tibial trabecular BMD was higher in the FES-R trained participant compared with the SCI group, but was less than the non-SCI group. Furthermore, left (184.7 mg cm(-3)) and right (160.7 mg cm(-3)) BMD were well above the threshold associated with non-traumatic fracture. The knee JCFs were above the threshold known to mediate BMD in SCI, but below threshold at the hip and ankle. As pathological fractures predominate in the distal femur and proximal tibia in chronic SCI patients, the fact that the FES-R trained participant's knee JCFs were above those known to partially prevent bone loss, suggests that FES-R training may provide therapeutic benefit. Although the elevated bilateral proximal tibial BMD of the FES-R participant provides circumstantial evidence of osteogenesis, this single case precludes any statement on the clinical significance. Further investigations are required involving larger numbers and additional channels of FES to increase loading at the hip and ankle.

  19. Security training with interactive laser-video-disk technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, D.

    1988-01-01

    DOE, through its contractor EG and G Energy Measurements, Inc., has developed a state-of-the-art interactive-video system for use at the Department of Energy's Central Training Academy. Called the Security Training and Evaluation Shooting System (STRESS), the computer-driven decision shooting system employs the latest is laservideo-disk technology. STRESS is designed to provide realistic and stressful training for security inspectors employed by the DOE and its contractors. The system uses wide-screen video projection, sophisticated scenario-branching technology, and customized video scenarios especially designed for the DOE. Firing a weapon that has been modified to shoot ''laser bullets,'' and wearing a special vest thatmore » detects ''hits'': the security inspector encounters adversaries on the wide screen who can shoot or be shot by the inspector in scenarios that demand fast decisions. Based on those decisions, the computer provides instantaneous branching to different scenes, giving the inspector confrontational training with the realism and variability of real life.« less

  20. Epidemiology of Injuries Associated With Physical Training Among Young Men in the Army

    DTIC Science & Technology

    1993-01-01

    ratio (AOR), which was generated from "back- Achilles tendonitis. and patellofemoral syndrome. stepping" multiple logistic regression output (BMDP...categories of physical 6.3% ankle sprains, 5.9% overuse knee injuries, such activity and components of physical fitness and to as patellofemoral

  1. Injury risk factors in parachuting and acceptability of the parachute ankle brace.

    PubMed

    Knapik, Joseph J; Spiess, Anita; Swedler, David; Grier, Tyson; Darakjy, Salima; Amoroso, Paul; Jones, Bruce H

    2008-07-01

    This investigation examined risk factors for injuries during military parachute training and solicited attitudes and opinions regarding a parachute ankle brace (PAB) that has been shown to protect against ankle injuries. Male Army airborne students (N = 1677) completed a questionnaire after they had successfully executed 4 of the 5 jumps necessary for qualification as a military paratrooper. The questionnaire asked about injuries during parachute descents, demographics, lifestyle characteristics, physical characteristics, physical fitness, airborne recycling (i.e., repeating airborne training because of failure to qualify on a previous attempt), PAB wear, problems with aircraft exits, and injuries in the year before airborne school. A final section of the questionnaire solicited open-ended comments about the PAB. Increased risk of a parachute-related injury occurred among students who had longer time in service, were older, taller, heavier, performed fewer push-ups, ran slower, were airborne recycles, did not wear the PAB, had an aircraft exit problem, and/or reported an injury in the year prior to jump school. Among students who wore the brace, most negative comments about the PAB had to do with design, comfort, and difficulties during parachute landing falls. This study supported some previously identified injury risk factors (older age, greater body weight, and not using a PAB) and identified a number of new risk factors. To address PAB design and comfort issues, a strap is being added over the dorsum of the foot to better hold the PAB in place.

  2. Running in a minimalist and lightweight shoe is not the same as running barefoot: a biomechanical study.

    PubMed

    Bonacci, Jason; Saunders, Philo U; Hicks, Amy; Rantalainen, Timo; Vicenzino, Bill Guglielmo T; Spratford, Wayne

    2013-04-01

    The purpose of this study was to determine the changes in running mechanics that occur when highly trained runners run barefoot and in a minimalist shoe, and specifically if running in a minimalist shoe replicates barefoot running. Ground reaction force data and kinematics were collected from 22 highly trained runners during overground running while barefoot and in three shod conditions (minimalist shoe, racing flat and the athlete's regular shoe). Three-dimensional net joint moments and subsequent net powers and work were computed using Newton-Euler inverse dynamics. Joint kinematic and kinetic variables were statistically compared between barefoot and shod conditions using a multivariate analysis of variance for repeated measures and standardised mean differences calculated. There were significant differences between barefoot and shod conditions for kinematic and kinetic variables at the knee and ankle, with no differences between shod conditions. Barefoot running demonstrated less knee flexion during midstance, an 11% decrease in the peak internal knee extension and abduction moments and a 24% decrease in negative work done at the knee compared with shod conditions. The ankle demonstrated less dorsiflexion at initial contact, a 14% increase in peak power generation and a 19% increase in the positive work done during barefoot running compared with shod conditions. Barefoot running was different to all shod conditions. Barefoot running changes the amount of work done at the knee and ankle joints and this may have therapeutic and performance implications for runners.

  3. Forging Long Shafts On Disks

    NASA Technical Reports Server (NTRS)

    Tilghman, Chris; Askey, William; Hopkins, Steven

    1989-01-01

    Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.

  4. Agreement and correlation between the straight leg raise and slump tests in subjects with leg pain.

    PubMed

    Walsh, Jeremy; Hall, Toby

    2009-01-01

    The straight leg raise (SLR) and slump tests have traditionally been used to identify nerve root compression arising from disk herniation. However, they may be more appropriate as tests of lumbosacral neural tissue mechanosensitivity. The aim of this study was to determine agreement and correlation between the SLR and slump tests in a population presenting with back and leg pain. This was an observational, cross-sectional study design. Forty-five subjects with unilateral leg pain were recruited from an outpatient Back Pain Screening Clinic at a large teaching hospital in Ireland. The SLR and slump tests were performed on each side. In the event of symptom reproduction, the ankle was dorsiflexed. Reproduction of presenting symptoms, which were intensified by ankle dorsiflexion, was interpreted as a positive test. An inclinometer was used to measure range of motion (ROM). There was substantial agreement between SLR and slump test interpretation (kappa = 0.69) with good correlation in ROM between the 2 tests (r = 0.64) on the symptomatic side. In subjects who had positive results, ROM for both tests was significantly reduced compared to ROM on the contralateral side and ROM in subjects who had negative results. When the SLR and slump tests are interpreted as positive in the event of reproduction of presenting leg pain that are intensified by ankle dorsiflexion, these tests show substantial agreement and good correlation in the leg pain population. When interpreted in this way, these tests may be appropriate tests of neural tissue mechanosensitivity, but further criteria must be met before a definitive conclusion in relation to neural tissue mechanosensitivity may be drawn.

  5. Changes in biomechanics and muscle activation in injured ballet dancers during a jump-land task with turnout (Sissonne Fermée).

    PubMed

    Lee, Hsing-Hsan; Lin, Chia-Wei; Wu, Hong-Wen; Wu, Tzu-Chuan; Lin, Cheng-Feng

    2012-01-01

    Large impact loading with abnormal muscle activity and motion patterns may contribute to lower extremity injuries in ballet dancers. Yet, few studies investigated the influence of injury on the ballet movement. The purpose of this study was to find the neuromuscular and biomechanical characteristics in dancers with and without ankle injury during a jump-landing Sissonne Fermée task. Twenty-two ballet dancers were recruited and divided into the injured group (n = 11) and the uninjured group (n = 11). They performed a ballet movement called "Sissonne Fermée" with reflective markers and electrodes attached to their lower extremities. Ground reaction force, joint kinematics, and muscle activity were measured. The injured dancers had greater peak ankle eversion but smaller hindfoot-to-tibial eversion angles. Also, the injured dancers had greater activity of the hamstring of the dominant leg and tibialis anterior of the non-dominant leg during the pre-landing phase. The injured dancers had greater tibialis anterior activity of the dominant leg but less muscle activity in the medial gastrocnemius of the non-dominant leg during the post-landing phase. The injured dancers had a greater co-contraction index in the non-dominant ankle and a lower loading rate. The higher co-contraction indices showed that the injured dancers required more muscle effort to control ankle stability. Furthermore, the injured dancers used a "load avoidance strategy" to protect themselves from re-injury. Neuromuscular control training of the ankle joint for ballet dancers to prevent injury is necessary.

  6. Lower Extremity Overuse Conditions Affecting Figure Skaters During Daily Training

    PubMed Central

    Campanelli, Valentina; Piscitelli, Francesco; Verardi, Luciano; Maillard, Pauline; Sbarbati, Andrea

    2015-01-01

    Background Most ice figure skaters train and compete with ongoing issues in the lower extremities, which are often overlooked by the skaters and considered injuries only when they prevent the athletes from skating. Although not severe, these conditions impair the quality of daily training and compromise the skaters’ state of mind and performances. Purpose (1) To determine the point prevalence of the ongoing lower extremity overuse conditions in a population of ice figure skaters of all ages and levels and (2) to identify the risk factors contributing to the development of the most common ongoing conditions. Study Design Cross-sectional study; Level of evidence, 3. Methods A total of 95 skaters of all ages and skating levels were evaluated in a single examination in the middle of the competitive season. Data collection consisted of a questionnaire, clinical examination, and measurement of the skaters’ characteristics and the equipment used. Results Retrocalcaneal bursitis was the most common problem, affecting at least 1 foot in 34% of the skaters evaluated, followed by posterior heel skin calluses and superficial calcaneal bursitis, which affected 29% and 28% of skaters, respectively. The prevalence of the majority of these conditions was 10% to 32% higher in elite skaters than in nonelite skaters. Higher boot–foot length difference was associated with greater risk of superficial calcaneal bursitis in the landing foot of elite skaters, while higher body weight and greater in-skate ankle flexibility were associated with the development of retrocalcaneal bursitis in nonelite skaters. Only 30 skaters (32%) wore the appropriate boot size, while 57 skaters (51%) could not dorsiflex their ankles properly while wearing skates. Conclusion The heel represents a major area of concern for the high prevalence of calcaneal bursitis and calluses in proximity of the Achilles tendon, suggesting that improvements on the boot heel cup design should take priority. The association of bursitis with higher in-skate ankle flexibility suggests that these conditions may be the results of a process developing when the ankle is bending within the boot. Also, since wearing oversized boots is a major risk factor for the development of subcutaneous bursitis and skin abrasions, boot retailers should be better educated to sell the appropriate boot size to the skaters. PMID:26674524

  7. Determining a young dancer's readiness for dancing on pointe.

    PubMed

    Shah, Selina

    2009-01-01

    Ballet is one of the most popular youth activities in the United States. Many ballet students eventually train to dance "en pointe," the French words for "on pointe," or "on the tips of their toes." No research exists to define criteria for determining when a young dancer can transition from dancing in ballet slippers to dancing in pointe shoes. However, dancers can be evaluated for this progression based on a number of factors, including adequate foot and ankle plantarflexion, technique, training, proprioception, alignment, and strength.

  8. Influences of Fascicle Length During Isometric Training on Improvement of Muscle Strength.

    PubMed

    Tanaka, Hiroki; Ikezoe, Tome; Umehara, Jun; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Nishishita, Satoru; Fujita, Kosuke; Araki, Kojiro; Ichihashi, Noriaki

    2016-11-01

    Tanaka, H, Ikezoe, T, Umehara, J, Nakamura, M, Umegaki, H, Kobayashi, T, Nishishita, S, Fujita, K, Araki, K, and Ichihashi, N. Influences of fascicle length during isometric training on improvement of muscle strength. J Strength Cond Res 30(11): 3249-3255, 2016-This study investigated whether low-intensity isometric training would elicit a greater improvement in maximum voluntary contraction (MVC) at the same fascicle length, rather than the joint angle, adopted during training. Sixteen healthy women (21.8 ± 1.5 years) were randomly divided into an intervention group and a control group. Before (Pre) and after (Post) training, isometric plantarflexion MVCs were measured every 10° through the range of ankle joint position from 20° dorsiflexion to 30° plantarflexion (i.e., 6 ankle angles). Medial gastrocnemius fascicle length was also measured at each position, using B-mode ultrasound under 3 conditions of muscle activation: at rest, 30%MVC at respective angles, and MVC. Plantarflexion resistance training at an angle of 20° plantarflexion was performed 3 days a week for 4 weeks at 30%MVC using 3 sets of twenty 3-second isometric contractions. Maximum voluntary contraction in the intervention group increased at 0 and 10° plantarflexion (0°; Pre: 81.2 ± 26.5 N·m, Post: 105.0 ± 21.6 N·m, 10°; Pre: 63.0 ± 23.6 N·m, Post: 81.3 ± 20.3 N·m), which was not the angle used in training (20°). However, the fascicle length adopted in training at 20° plantarflexion and 30%MVC was similar to the value at 0 or 10° plantarflexion at MVC. Low-intensity isometric training at a shortened muscle length may be effective for improving MVC at a lengthened muscle length because of specificity of the fascicle length than the joint angle.

  9. Influence of visual and auditory biofeedback on partial body weight support treadmill training of individuals with chronic hemiparesis: a randomized controlled clinical trial.

    PubMed

    Brasileiro, A; Gama, G; Trigueiro, L; Ribeiro, T; Silva, E; Galvão, É; Lindquist, A

    2015-02-01

    Stroke is an important causal factor of deficiency and functional dependence worldwide. To determine the immediate effects of visual and auditory biofeedback, combined with partial body weight supported (PBWS) treadmill training on the gait of individuals with chronic hemiparesis. Randomized controlled trial. Outpatient rehabilitation hospital. Thirty subjects with chronic hemiparesis and ability to walk with some help. Participants were randomized to a control group that underwent only PBWS treadmill training; or experimental I group with visual biofeedback from the display monitor, in the form of symbolic feet as the subject took a step; or experimental group II with auditory biofeedback associated display, using a metronome at 115% of the individual's preferred cadence. They trained for 20 minutes and were evaluated before and after training. Spatio-temporal and angular gait variables were obtained by kinematics from the Qualisys Motion Analysis system. Increases in speed and stride length were observed for all groups over time (speed: F=25.63; P<0.001; stride length: F=27.18; P<0.001), as well as changes in hip and ankle range of motion - ROM (hip ROM: F=14.43; P=0.001; ankle ROM: F=4.76; P=0.038), with no time*groups interaction. Other spatio-temporal and angular parameters remain unchanged. Visual biofeedback and auditory biofeedback had no influence on PBWS treadmill training of individuals with chronic hemiparesis, in short term. Additional studies are needed to determine whether, in long term, the biofeedback will promote additional benefit to the PBWS treadmill training. The findings of this study indicate that visual and auditory biofeedback does not bring immediate benefits on PBWS treadmill training of individuals with chronic hemiparesis. This suggest that, for additional benefits are achieved with biofeedback, effects should be investigated after long-term training, which may determine if some kind of biofeedback is superior to another to improve the hemiparetic gait.

  10. Virtual Reality-Based Center of Mass-Assisted Personalized Balance Training System

    PubMed Central

    Kumar, Deepesh; González, Alejandro; Das, Abhijit; Dutta, Anirban; Fraisse, Philippe; Hayashibe, Mitsuhiro; Lahiri, Uttama

    2018-01-01

    Poststroke hemiplegic patients often show altered weight distribution with balance disorders, increasing their risk of fall. Conventional balance training, though powerful, suffers from scarcity of trained therapists, frequent visits to clinics to get therapy, one-on-one therapy sessions, and monotony of repetitive exercise tasks. Thus, technology-assisted balance rehabilitation can be an alternative solution. Here, we chose virtual reality as a technology-based platform to develop motivating balance tasks. This platform was augmented with off-the-shelf available sensors such as Nintendo Wii balance board and Kinect to estimate one’s center of mass (CoM). The virtual reality-based CoM-assisted balance tasks (Virtual CoMBaT) was designed to be adaptive to one’s individualized weight-shifting capability quantified through CoM displacement. Participants were asked to interact with Virtual CoMBaT that offered tasks of varying challenge levels while adhering to ankle strategy for weight shifting. To facilitate the patients to use ankle strategy during weight-shifting, we designed a heel lift detection module. A usability study was carried out with 12 hemiplegic patients. Results indicate the potential of our system to contribute to improving one’s overall performance in balance-related tasks belonging to different difficulty levels. PMID:29359128

  11. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    PubMed Central

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases. PMID:19493356

  12. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    PubMed

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during locomotion. Our data suggest that, for short duration exposure, a feedforward modification in torque output occurs during mid-stance but not during push-off. These findings are important for the design of novel rehabilitation methods, as they suggest that the ability to use resistive force fields for training may depend on targeted gait phases.

  13. Changes in hip and ankle range of motion and hip muscle strength in 8–11 year old novice female ballet dancers and controls: a 12 month follow up study

    PubMed Central

    Bennell, K; Khan, K; Matthews, B; Singleton, C

    2001-01-01

    Objectives—To evaluate in a 12 month longitudinal study changes in hip and ankle range of motion and hip muscle strength in young female novice ballet dancers. Methods—Fifty three of the original 77 (69%) female dancers aged 8–11 years and 40 of the original 49 (82%) controls returned for follow up measurements one year later. Supine right active hip external (ER) and internal (IR) rotation were measured using an inclinometer. A turnout protractor was used to assess standing active turnout range. Range of right weight bearing ankle dorsiflexion and calf muscle length were measured in a standing lunge position using an inclinometer. A manual muscle tester was used to assess right hip flexor, IR, ER, abductor and adductor strength. Results—The mean (SD) 12 month change in hip ER did not differ between dancers (11.7 (11.3)°) and controls (8.1 (17.6)°). Dancers gained 12.5 (13.5)° hip IR which was significantly greater than controls (0.5 (13.9)°). Greater IR change was associated with improved IR strength (r = 0.34, p<0.001). Dancers increased total turnout (12.0 (16.7)°) significantly more than controls (2.2 (20.0)°). There was no significant change in ankle dorsiflexion range in either group. Dancers and controls increased in all measures of hip muscle strength (p<0.001) and dancers achieved significantly greater gains in three out of five muscle groups (all, p<0.05). Conclusions—Total hip range of motion increased in both ballet students and controls at this young age. However, ankle dorsiflexion did not, which is probably due to this movement being blocked by bony apposition, rather than soft tissue stretch. This has implications for ballet teachers, as it has long been accepted that this movement could be improved with training. Dancers had greater increases in hip strength after 12 months compared with controls in muscles specific for ballet, suggesting that hip strength can be trained at this young age. Whether these gains are permanent requires further study. Key Words: dance; ballet; range of motion; muscle strength PMID:11157464

  14. Effect of six weeks of dura disc and mini-trampoline balance training on postural sway in athletes with functional ankle instability.

    PubMed

    Kidgell, Dawson J; Horvath, Deanna M; Jackson, Brendan M; Seymour, Philip J

    2007-05-01

    Lateral ankle sprain (LAS) is one of the most common injuries incurred during sporting activities, and effective rehabilitation programs for this condition are challenging to develop. The purpose of this research was to compare the effect of 6 weeks of balance training on either a mini-trampoline or a dura disc on postural sway and to determine if the mini-trampoline or the dura disc is more effective in improving postural sway. Twenty subjects (11 men, 9 women) with a mean age of 25.4 +/- 4.2 years were randomly allocated into a control group, a dura disc training (DT) group, or a mini-trampoline (MT) group. Subjects completed 6 weeks of balance training. Postural sway was measured by subjects performing a single limb stance on a force plate. The disbursement of the center of pressure was obtained from the force plate in the medial-lateral and the anterior-posterior sway path and was subsequently used for pretest and posttest analysis. After the 6-week training intervention, there was a significant (p < 0.05) difference in postural sway between pre- and posttesting for both the MT (pretest = 56.8 +/- 20.5 mm, posttest = 33.3 +/- 8.5 mm) and DT (pretest = 41.3 +/- 2.6 mm, posttest = 27.2 +/- 4.8 mm) groups. There was no significant (p > 0.05) difference detected for improvements between the MT and DT groups. These results indicate that not only is the mini-trampoline an effective tool for improving balance after LAS, but it is equally as effective as the dura disc.

  15. Lower extremity kinematics during walking and elliptical training in individuals with and without traumatic brain injury.

    PubMed

    Buster, Thad; Burnfield, Judith; Taylor, Adam P; Stergiou, Nicholas

    2013-12-01

    Elliptical training may be an option for practicing walking-like activity for individuals with traumatic brain injuries (TBI). Understanding similarities and differences between participants with TBI and neurologically healthy individuals during elliptical trainer use and walking may help guide clinical applications incorporating elliptical trainers. Ten participants with TBI and a comparison group of 10 neurologically healthy participants underwent 2 familiarization sessions and 1 data collection session. Kinematic data were collected as participants walked on a treadmill or on an elliptical trainer. Gait-related measures, including coefficient of multiple correlations (a measure of similarity between ensemble joint movement profiles; coefficient of multiple correlations [CMCs]), critical event joint angles, variability of peak critical event joint angles (standard deviations [SDs]) of peak critical event joint angles, and maximum Lyapunov exponents (a measure of the organization of the variability [LyEs]) were compared between groups and conditions. Coefficient of multiple correlations values comparing the similarity in ensemble motion profiles between the TBI and comparison participants exceeded 0.85 for the hip, knee, and ankle joints. The only critical event joint angle that differed significantly between participants with TBI and comparison participants was the ankle during terminal stance. Variability was higher for the TBI group (6 of 11 comparisons significant) compared with comparison participants. Hip and knee joint movement patterns of both participants with TBI and comparison participants on the elliptical trainer were similar to walking (CMCs ≥ 0.87). Variability was higher during elliptical trainer usage compared with walking (5 of 11 comparisons significant). Hip LyEs were higher during treadmill walking. Ankle LyEs were greater during elliptical trainer usage. Movement patterns of participants with TBI were similar to, but more variable than, those of comparison participants while using both the treadmill and the elliptical trainer. If incorporation of complex movements similar to walking is a goal of rehabilitation, elliptical training is a reasonable alternative to treadmill-based training.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A65) for more insights from the authors.

  16. Energy absorption as a predictor of leg impedance in highly trained females.

    PubMed

    Kulas, Anthony S; Schmitz, Randy J; Schultz, Sandra J; Watson, Mary Allen; Perrin, David H

    2006-08-01

    Although leg spring stiffness represents active muscular recruitment of the lower extremity during dynamic tasks such as hopping and running, the joint-specific characteristics comprising the damping portion of this measure, leg impedance, are uncertain. The purpose of this investigation was to assess the relationship between leg impedance and energy absorption at the ankle, knee, and hip during early (impact) and late (stabilization) phases of landing. Twenty highly trained female dancers (age = 20.3 +/- 1.4 years, height = 163.7 +/- 6.0 cm, mass = 62.1 +/- 8.1 kg) were instrumented for biomechanical analysis. Subjects performed three sets of double-leg landings from under preferred, stiff, and soft landing conditions. A stepwise linear regression analysis revealed that ankle and knee energy absorption at impact, and knee and hip energy absorption during the stabilization phases of landing explained 75.5% of the variance in leg impedance. The primary predictor of leg impedance was knee energy absorption during the stabilization phase, independently accounting for 55% of the variance. Future validation studies applying this regression model to other groups of individuals are warranted.

  17. Relationship between viscosity of the ankle joint complex and functional ankle instability for inversion ankle sprain patients.

    PubMed

    Lin, Che-Yu; Kang, Jiunn-Horng; Wang, Chung-Li; Shau, Yio-Wha

    2015-03-01

    Measurement of viscosity of the ankle joint complex is a novel method to assess mechanical ankle instability. In order to further investigate the clinical significance of the method, this study intended to investigate the relationship between ankle viscosity and severity of functional ankle instability. Cross-sectional study. 15 participants with unilateral inversion ankle sprain and 15 controls were recruited. Their ankles were further classified into stable and unstable ankles. Ankle viscosity was measured by an instrumental anterior drawer test. Severity of functional ankle instability was measured by the Cumberland Ankle Instability Tool. Unstable ankles were compared with stable ankles. Injured ankles were compared with uninjured ankles of both groups. The spearman's rank correlation coefficient was applied to determine the relationship between ankle viscosity and severity of functional ankle instability in unstable ankles. There was a moderate relationship between ankle viscosity and severity of functional ankle instability (r=-0.64, p<0.0001). Unstable ankles exhibited significantly lower viscosity (p<0.005) and more severe functional ankle instability (p<0.0001) than stable ankles. Injured ankles exhibited significantly lower viscosity and more severe functional ankle instability than uninjured ankles (p<0.0001). There was a moderate relationship between ankle viscosity and severity of functional ankle instability. This finding suggested that, severity of functional ankle instability may be partially attributed to mechanical insufficiencies such as the degenerative changes in ankle viscosity following the inversion ankle sprain. In clinical application, measurement of ankle viscosity could be a useful tool to evaluate severity of chronic ankle instability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Rugby injuries.

    PubMed

    McIntosh, Andrew S

    2005-01-01

    The purpose of this chapter is to review critically the existing studies on the epidemiology of pediatric rugby injuries and discuss suggestions for injury prevention and further research. Data were sourced from the sports medicine and science literature mainly since 1990, and from a prospective injury surveillance project in rugby undertaken by the University of New South Wales (UNSW) in Sydney during 2002. Literature searches were performed using Medline and SportsDiscus. Reported injury rates were between 7 and 18 injuries per 1,000 hours played, with the rate of injuries resulting in loss of playing or training time measured at 6.5-10.6 per 1,000 hours played. Injury rates increased with age and level of qualification. Head injury and concussion accounted for 10-40% of all injuries. In the UNSW study, concussion accounted for 25% of injuries resulting in loss of playing or training time in the under 13 year age group. Upper and lower extremity injuries were equally apportioned, with musculoskeletal injuries being the main type of injury. Fractures were observed in the upper extremity and ankle, and joint/ligament injuries affected the shoulder, knee and ankle. The tackle was associated with around 50% of all injuries. The scrum produced fewer injuries, but is historically associated with spinal cord injury. Rugby is a contact sport with injury risks related to physical contact, primarily in the tackle. Most injuries affect the musculoskeletal system, with the exception of concussion. Spinal cord injury is rare, but catastrophic. Research is required to understand better injury risks and to reduce the incidence of shoulder, knee and ankle joint injuries, concussion and spinal injury.

  19. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    PubMed

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  20. The effect of different decline angles on the biomechanics of double limb squats and the implications to clinical and training practice.

    PubMed

    Richards, Jim; Selfe, James; Sinclair, Jonathan; May, Karen; Thomas, Gavin

    2016-09-01

    Bilateral decline squatting has been well documented as a rehabilitation exercise, however, little information exists on the optimum angle of decline. The aim of this study was to determine the ankle and knee angle, moments, the patellofemoral joint load, patellar tendon load and associated muscle activity while performing a double limb squat at different decline angles and the implications to rehabilitation. Eighteen healthy subjects performed double limb squats at 6 angles of declination: 0, 5, 10, 15, 20 and 25 degrees. The range of motion of the knee and ankle joints, external moments, the patellofemoral/patellar tendon load and integrated EMG of gastrocnemius, tibialis anterior, rectus femoris and biceps femoris were evaluated. As the decline angle increased up to 20 degrees, the range of motion possible at the ankle and knee increased. The joint moments showed a decrease at the ankle up to 15 degrees and an increase at the knee up to 25 degrees, indicating a progressive reduction in loading around the ankle with a corresponding increase of the load in the patellar tendon and patellofemoral joint. These trends were supported by a decrease in tibialis anterior activity and an increase in the rectus femoris activity up to 15 degrees declination. However, gastrocnemius and biceps femoris activity increased as the decline angle increased above 15 degrees. The action of gastrocnemius and biceps femoris stabilises the knee against an anterior displacement of the femur on the tibia. These findings would suggest that there is little benefit in using a decline angle greater than 15-20 degrees unless the purpose is to offer an additional stability challenge to the knee joint.

  1. The effect of different decline angles on the biomechanics of double limb squats and the implications to clinical and training practice

    PubMed Central

    Richards, Jim; Selfe, James; Sinclair, Jonathan; May, Karen; Thomas, Gavin

    2016-01-01

    Abstract Bilateral decline squatting has been well documented as a rehabilitation exercise, however, little information exists on the optimum angle of decline. The aim of this study was to determine the ankle and knee angle, moments, the patellofemoral joint load, patellar tendon load and associated muscle activity while performing a double limb squat at different decline angles and the implications to rehabilitation. Eighteen healthy subjects performed double limb squats at 6 angles of declination: 0, 5, 10, 15, 20 and 25 degrees. The range of motion of the knee and ankle joints, external moments, the patellofemoral/patellar tendon load and integrated EMG of gastrocnemius, tibialis anterior, rectus femoris and biceps femoris were evaluated. As the decline angle increased up to 20 degrees, the range of motion possible at the ankle and knee increased. The joint moments showed a decrease at the ankle up to 15 degrees and an increase at the knee up to 25 degrees, indicating a progressive reduction in loading around the ankle with a corresponding increase of the load in the patellar tendon and patellofemoral joint. These trends were supported by a decrease in tibialis anterior activity and an increase in the rectus femoris activity up to 15 degrees declination. However, gastrocnemius and biceps femoris activity increased as the decline angle increased above 15 degrees. The action of gastrocnemius and biceps femoris stabilises the knee against an anterior displacement of the femur on the tibia. These findings would suggest that there is little benefit in using a decline angle greater than 15-20 degrees unless the purpose is to offer an additional stability challenge to the knee joint. PMID:28149400

  2. Functional performance testing in participants with functional ankle instability and in a healthy control group.

    PubMed

    Buchanan, Amanda S; Docherty, Carrie L; Schrader, John

    2008-01-01

    Functional ankle instability (FAI) affects a large part of the population. Inconsistent findings have been reported regarding the existence of functional performance deficits in individuals with FAI. To examine functional performance in participants with FAI compared with participants in a control group during 2 hopping tests. Case-control study. Athletic training research laboratory. There were 40 college-aged individuals who participated in our study: 20 with FAI and 20 without FAI. We defined FAI as history of an ankle sprain and residual episodes of "giving way." Participants completed 2 functional performance tests (FPTs): the single-limb hopping and the single-limb hurdle tests. Time to complete each test was recorded. Following each FPT, participants were asked if their ankles felt unstable during the test. We found no difference between participants in the FAI and control groups for the hopping or hurdle tests (P > .05). When asked if their ankles felt unstable during the FPTs, approximately half of the participants in the FAI group and none of the participants in the control group reported a feeling of instability. Subsequently, a secondary analysis of variance was calculated with participants grouped into 3 categories: control participants, FAI participants reporting instability symptoms during FPT (FAI-S), and FAI participants not reporting instability symptoms during FPT (FAI-NS). Results revealed a difference among the 3 groups for the single-limb hopping test (P < .01). Post hoc analysis revealed a difference between the FAI-S participants and both the control and the FAI-NS participants. No difference was identified for the single-limb hurdle test (P = .41). The FAI-S participants had performance deficits during the single-limb hopping test. Therefore, clinicians could use this simple hopping test as an additional method to determine the presence of FAI.

  3. Multidisciplinary approach to improve the quality of below-knee plaster casting.

    PubMed

    Williams, John Teudar; Kedrzycki, Marta; Shenava, Yathish

    2018-01-01

    In our trauma unit, we noted a high rate of incorrectly applied below-knee casts for ankle fractures, in some cases requiring reapplication. This caused significant discomfort and inconvenience for patients and additional burden on plaster-room services. Our aim was to improve the quality of plaster casts and reduce the proportion that needed to be reapplied. Our criteria for plaster cast quality were based on the British Orthopaedic Association Casting Standards (2015) and included neutral (plantargrade) ankle position, adequacy of fracture reduction and rate of cast reapplication. Baseline data collection was performed over a 2-month period by two independent reviewers. After distributing findings and presenting to relevant departments, practical casting sessions with orthopaedic technicians were arranged for the multidisciplinary team responsible for casting. This was later supplemented by new casting guidelines in clinical areas and available online. Postintervention data collection was performed over two separate cycles to assess the effect and permanence of intervention. Data from the preintervention period (n=29) showed median ankle position was 32° plantarflexion (PF), with nine (31%) inadequate reductions and six (20%) backslabs reapplied. Following Plan-Do-Study-Act (PDSA) 1, ankle position was significantly improved (median 25° PF), there were fewer inadequate reductions (12%; 2/17) and a lower rate of reapplication (0%; 0/17). After PDSA 2 (n=16), median ankle position was 21° PF, there was one (6%) inadequate reduction and two (12%) reapplications of casts. Following implementation of plaster training sessions for accident and emergency and junior orthopaedic staff, in addition to publishing guidance and new protocol, there has been a sustained improvement in the quality of below-knee backslabs and fewer cast reapplications. These findings justify continuation and expansion of the current programme to include other commonly applied plaster casts.

  4. Teaching Teachers to Search Electronically.

    ERIC Educational Resources Information Center

    Smith, Nancy H. G.

    1992-01-01

    Describes an inservice teacher training program developed to teach secondary school teachers how to search CD-ROMs, laser disks, and automated catalogs. Training sessions held during faculty meetings are described, computer activities are explained, a sample worksheet for searching an electronic encyclopedia is included, and sources for CD-ROMs…

  5. Jointly Constructing Semantic Waves: Implications for Teacher Training

    ERIC Educational Resources Information Center

    Macnaught, Lucy; Maton, Karl; Martin, J. R.; Matruglio, Erika

    2013-01-01

    This paper addresses how teachers can be trained to enable cumulative knowledge-building. It focuses on the final intervention stage of the "Disciplinarity, Knowledge and Schooling" ("DISKS") project at the University of Sydney. In this special issue, Maton identifies "semantic waves" as a crucial characteristic of…

  6. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  7. Effectiveness of a 6-month home-based training program in Prader-Willi patients.

    PubMed

    Vismara, Luca; Cimolin, Veronica; Grugni, Graziano; Galli, Manuela; Parisio, Cinzia; Sibilia, Olivia; Capodaglio, Paolo

    2010-01-01

    In addition to hypotonia and relative sarcopenia, patients with Prader-Willi syndrome (PWS) show reduced spontaneous physical activity and gait disorders. Scant evidence exists that daily muscle training increases their lean mass and physical activity levels. Whether adequate long-term physical training is feasible and effective in improving muscle function and gait in PWS is still unknown. Eleven adult PWS patients (mean age: 33.8±4.3 years; mean BMI: 43.3±5.9 kg/m(2)) admitted to our hospital were enrolled in this study. During their hospital stay they attended a 2-week rehabilitation program which included supervised exercise sessions. At discharge, Group 1 (6 patients) continued the same exercises at home for 6 months, while Group 2 (5 patients) did not continue home-based training. They were assessed at admission (PRE), at 2 weeks (POST1) and at 6 months (POST2). The assessment consisted of a clinical examination, 3D gait analysis and muscle strength measurement with an isokinetic dynamometer. After 2 weeks of supervised training (POST1), no significant changes in spatial-temporal gait parameters were observed, although significant improvements in ankle dorsal flexion during stance and swing and knee flexor strength were evidenced by 3D gait analysis and dynamometry in all patients. Following 6 months of home training (POST2), Group 1 had showed significant improvements in cadence and reduced knee hyperextension in mid-stance. Ankle plantar and dorsal flexors isokinetic strength had improved significantly at 120° s(-1), whereas Group 2 showed no changes in their spatial-temporal and kinematic parameters. The present study reinforces the idea that even in participants with PWS who present with a distinctive psychological profile, long-term group interventions are feasible and effective in improving their overall physical functioning. Providing an effective and simple home-based training program represents a continuum of the rehabilitation process outside the hospital, which is a crucial issue in chronic conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Lower limb injuries in New Zealand Defence Force personnel: descriptive epidemiology.

    PubMed

    Davidson, Peter L; Chalmers, David J; Wilson, Barry D; McBride, David

    2008-04-01

    To describe the epidemiology of lower limb injuries in the New Zealand Defence Force (NZDF). Data from all NZDF lower limb injury claims from an 11-month period were examined for type, site, and circumstances of injury. Both injury codes and narratives were analysed, allowing each injury event to be classified according to mechanism of injury, object involvement, and activity at the time of injury, as well as type and site. The commonest lower limb musculoskeletal injuries were ankle sprains or strains (35%) and knee sprains or strains (16%). Most commonly, injuries were due to acute over-exertion (37%), involved no other person (50%), and occurred while running (28%) or playing team sports (25%). The injury rate for recruits was more than five times that of trained personnel. Potential interventions should target ankle sprains primarily, but also knee sprains and fractures. Fractures, while accounting for only 6% of lower limb injuries, should be a priority because of their high medical and time-lost costs. Interventions must also take into account the high incidence of injuries involving individuals alone and sustained during recruit training. The study also demonstrated that analysis of military injury narratives provides valuable extra information on injury causation and the circumstances of injury, and allows more accurate characterisation of the injury process. This study will provide the basis for development of an injury prevention strategy for lower limb training injuries in the NZDF.

  9. Lower extremity joint kinetics and energetics during backward running.

    PubMed

    DeVita, P; Stribling, J

    1991-05-01

    The purpose of this study was to measure lower extremity joint moments of force and joint muscle powers used to perform backward running. Ten trials of high speed (100 Hz) sagittal plane film records and ground reaction force data (1000 Hz) describing backward running were obtained from each of five male runners. Fifteen trials of forward running data were obtained from one of these subjects. Inverse dynamics were performed on these data to obtain the joint moments and powers, which were normalized to body mass to make between-subject comparisons. Backward running hip moment and power patterns were similar in magnitude and opposite in direction to forward running curves and produced more positive work in stance. Functional roles of knee and ankle muscles were interchanged between backward and forward running. Knee extensors were the primary source of propulsion in backward running owing to greater moment and power output (peak moment = 3.60 N.m.kg-1; peak power = 12.40 W.kg-1) compared with the ankle (peak moment = 1.92 N.m.kg-1; peak power = 7.05 W.kg-1). The ankle plantarflexors were the primary shock absorbers, producing the greatest negative power (peak = -6.77 W.kg-1) during early stance. Forward running had greater ankle moment and power output for propulsion and greater knee negative power for impact attenuation. The large knee moment in backward running supported previous findings indicating that backward running training leads to increased knee extensor torque capabilities.

  10. Analysis of Modification Mechanism of Gait with Rhythmic Cueing Training Paradigm

    NASA Astrophysics Data System (ADS)

    Muto, Takeshi; Kanai, Tetsuya; Sakuta, Hiroshi; Miyake, Yoshihiro

    In this research, we applied the gait training method which takes in the rhythmic auditory stimulation as a pace maker to the assistance of gait motion, and analyzed the dynamical stability of the period and trajectory of the lower limbs' motions. As the result, it was clarified that, in the training style which presents a constant rhythm, trajectory of ankles was modified as the stable state which has the historical property, but the period of footsteps was not modified but susceptible to the external environment. This result suggests that the hierarchical modification mechanism of motor schema of gait is realized by the connection between the immediate and historical modification system.

  11. A chemical application method with underwater dissection to improve anatomic identification of cadaveric foot and ankle structures in podiatric education.

    PubMed

    Dilandro, Anthony C; Chappell, Todd M; Panchani, Prakash N; Kozlowski, Piotr B; Tubbs, R Shane; Khan, Khurram H; D'Antoni, Anthony V

    2013-01-01

    Many cadaver-based anatomy courses and surgical workshops use prosections to help podiatry students and residents learn clinically relevant anatomy. The quality of these prosections is variable and dependent upon the methods used to prepare them. These methods have not been adequately described in the literature, and few studies describe the use of chemicals to prepare prosections of the cadaveric foot and ankle. Recognizing the need for better teaching prosections in podiatric education, we developed a chemical application method with underwater dissection to better preserve anatomic structures of the cadaveric foot and ankle. We used inexpensive chemicals before, during, and after each step, which ultimately resulted in high-quality prosections that improved identification of anatomic structures relevant to the practice of podiatric medicine. Careful preservation of clinically important nerves, vessels, muscles, ligaments, and joints was achieved with these prosections. Although this method required additional preparation time, the resultant prosections have been repeatedly used for several years to facilitate learning among podiatry students and residents, and they have held up well. This method can be used by educators to teach podiatry students throughout their medical training and even into residency.

  12. Effects of virtual reality programs on balance in functional ankle instability

    PubMed Central

    Kim, Ki-Jong; Heo, Myoung

    2015-01-01

    [Purpose] The aim of present study was to identify the impact that recent virtual reality training programs used in a variety of fields have had on the ankle’s static and dynamic senses of balance among subjects with functional ankle instability. [Subjects and Methods] This study randomly divided research subjects into two groups, a strengthening exercise group (Group I) and a balance exercise group (Group II), with each group consisting of 10 people. A virtual reality program was performed three times a week for four weeks. Exercises from the Nintendo Wii Fit Plus program were applied to each group for twenty minutes along with ten minutes of warming up and wrap-up exercises. [Results] Group II showed a significant decrease of post-intervention static and dynamic balance overall in the anterior-posterior, and mediolateral directions, compared with the pre-intervention test results. In comparison of post-intervention static and dynamic balance between Group I and Group II, a significant decrease was observed overall. [Conclusion] Virtual reality programs improved the static balance and dynamic balance of subjects with functional ankle instability. Virtual reality programs can be used more safely and efficiently if they are implemented under appropriate monitoring by a physiotherapist. PMID:26644652

  13. Changes in Muscle Activation Following Ankle Strength Training in Children with Spastic Cerebral Palsy: An Electromyography Feasibility Case Report

    ERIC Educational Resources Information Center

    Olsen, Jamie E.; Ross, Sandy A.; Foreman, Matthew H.; Engsberg, Jack R.

    2013-01-01

    Children with cerebral palsy (CP) are likely to experience decreased participation in activities and less competence in activities of daily living. Studies of children with spastic CP have shown that strengthening programs produce positive results in strength, gait, and functional outcomes (measured by the Gross Motor Function Measure). No…

  14. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.

    PubMed

    Kao, Pei-Chun; Lewis, Cara L; Ferris, Daniel P

    2010-07-26

    To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by approximately 35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton.

  15. A comparison of injuries in elite male and female football players: A five-season prospective study.

    PubMed

    Larruskain, J; Lekue, J A; Diaz, N; Odriozola, A; Gil, S M

    2018-01-01

    The aim was to compare the epidemiology of injuries between elite male and female football players from the same club. Injuries and individual exposure time in a male team and a female team, both playing in the Spanish first division, were prospectively recorded by the club's medical staff for five seasons (2010-2015) following the FIFA consensus statement. Total, training, and match exposure hours per player-season were 20% higher for men compared to women (P<.01). Total, training, and match injury incidence were 30%-40% higher in men (P≤.04) mainly due to a 4.82 (95% confidence interval [CI] 2.30-10.08) times higher incidence of contusions, as there were no differences in the incidence of muscle and joint/ligament injuries (P≥.44). The total number of absence days was 21% larger in women owing to a 5.36 (95% CI 1.11-25.79) times higher incidence of severe knee and ankle ligament injuries. Hamstring strains and pubalgia cases were 1.93 (95% CI 1.16-3.20) and 11.10 (95% CI 1.48-83.44) times more frequent in men, respectively; whereas quadriceps strains, anterior cruciate ligament ruptures, and ankle syndesmosis injuries were 2.25 (95% CI 1.22-4.17), 4.59 (95% CI 0.93-22.76), and 5.36 (95% CI 1.11-25.79) times more common in women, respectively. In conclusion, prevention strategies should be tailored to the needs of male and female football players, with men more predisposed to hamstring strains and hip/groin injuries, and women to quadriceps strains and severe knee and ankle ligament injuries. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    PubMed

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  17. Gender differences in musculoskeletal injury rates: a function of symptom reporting?

    PubMed

    Almeida, S A; Trone, D W; Leone, D M; Shaffer, R A; Patheal, S L; Long, K

    1999-12-01

    This study determined gender differences in voluntary reporting of lower extremity musculoskeletal injuries among U.S, Marine Corps (USMC) recruits, and it examined the association between these differences and the higher injury rates typically found among women trainees. Subjects were 176 male and 241 female enlisted USMC recruits who were followed prospectively through 11 wk (men) and 12 wk (women) of boot camp training. Reported injuries were measured by medical record reviews. Unreported injuries were determined by a questionnaire and a medical examination administered at the completion of training. Among female recruits the most commonly reported injuries were patellofemoral syndrome (10.0% of subjects), ankle sprain (9.1%), and iliotibial band syndrome (5.8%); the most common unreported injuries were patellofemoral syndrome (2.1%), metatarsalgia (1.7%), and unspecified knee pain (1.7%). Among male recruits iliotibial band syndrome (4.0% of subjects), ankle sprain (2.8%), and Achilles tendinitis/bursitis (2.8%) were the most frequently reported injuries; shin splints (4.6%), iliotibial band syndrome (4.0%), and ankle sprain (2.8%) were the most common unreported diagnoses. Female recruits were more likely to have a reported injury than male recruits (44.0% vs 25.6%, relative risk (RR) = 1.72, 95% confidence interval (CI) 1.29-2.30), but they were less likely to have an unreported injury (11.6% vs 23.9%, RR = 0.49, 95% CI 0.31-0.75). When both reported and unreported injuries were measured, total injury rates were high for both sexes (53.5% women, 45.5% men, RR = 1.18, 95% CI 0.96-1.44), but the difference between the rates was not statistically significant. Our results indicate that the higher injury rates often found in female military trainees may be explained by gender differences in symptom reporting.

  18. Shoe and Field Surface Risk Factors for Acute Lower Extremity Injuries Among Female Youth Soccer Players.

    PubMed

    OʼKane, John W; Gray, Kristen E; Levy, Marni R; Neradilek, Moni; Tencer, Allan F; Polissar, Nayak L; Schiff, Melissa A

    2016-05-01

    To describe acute lower extremity injuries and evaluate extrinsic risk factors in female youth soccer. Nested case-control study. Youth soccer clubs in Seattle, WA. Female soccer players (n = 351) ages 11 to 15 years randomly selected from 4 soccer clubs from which 83% of their players were enrolled with complete follow-up for 92% of players. Injured players were interviewed regarding injury, field surface, shoe type, and position. Uninjured controls, matched on game or practice session, were also interviewed. The association between risk factors and acute lower extremity injury using logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI). One hundred seventy-three acute lower extremity injuries occurred involving primarily the ankle (39.3%), knee (24.9%), and thigh (11.0%). Over half (52.9%) recovered within 1 week, whereas 30.2% lasted beyond 2 weeks. During practices, those injured were approximately 3-fold (OR, 2.83; 95% CI, 1.49-5.31) more likely to play on grass than artificial turf and 2.4-fold (95% CI, 1.03-5.96) more likely to wear cleats on grass than other shoe and surface combinations. During games, injured players were 89% (95% CI, 1.03-4.17) more likely to play defender compared with forward. Half of the acute lower extremity injuries affected the ankle or knee. Grass surface and wearing cleats on grass increased training injuries. The majority, 64%, of female youth soccer players' acute injuries involve the ankle and knee and injury prevention strategies in this age group should target these areas. When considering playing surfaces for training, communities and soccer organizations should consider the third-generation artificial turf a safe alternative to grass.

  19. The Use of Cuff Weights for Aquatic Gait Training in People Post-Stroke with Hemiparesis.

    PubMed

    Nishiyori, Ryota; Lai, Byron; Lee, Do Kyeong; Vrongistinos, Konstantinos; Jung, Taeyou

    2016-03-01

    This study aimed to examine how spatiotemporal and kinematic gait variables are influenced by the application of a cuff weight during aquatic walking in people post-stroke. The secondary purpose was to compare the differences in gait responses between the placements of cuff weights on the proximal (knee weight) and distal end (ankle weight) of the shank. Twenty-one participants post-stroke with hemiparesis aged 66.3 ± 11.3 years participated in a cross-sectional comparative study. Participants completed two aquatic walking trials at their self-selected maximum walking speed across an 8-m walkway under each of the three conditions: 1) walking with a knee weight; 2) walking with an ankle weight; and 3) walking with no weight. Cuff weights were worn on the paretic leg of each participant. Gait speed, cadence, step width and joint kinematics of the hip, knee and ankle joints were recorded by a customized three-dimensional underwater motion analysis system. Mean aquatic walking speeds significantly increased with the use of cuff weights when compared to walking with no weight. Changes in gait variables were found in the non-paretic leg with the addition of weight, while no significant changes were found in the paretic leg. The results suggest that the use of additional weight can be helpful if the goal of gait training is to improve walking speed of people post-stroke during pool floor walking. However, it is interesting to note that changes in gait variables were not found in the paretic limb where favourable responses were expected to occur. Copyright © 2014 John Wiley & Sons, Ltd.

  20. Effects of a 4-Week Biomechanical Ankle Platform System Protocol on Balance in High School Athletes With Chronic Ankle Instability.

    PubMed

    Cain, Mary Spencer; Garceau, Stacy Watt; Linens, Shelley W

    2017-01-01

    Chronic ankle instability (CAI) describes the residual symptoms present after repetitive ankle sprains. Current rehabilitation programs in the high school population focus on a multistation approach or general lower-extremity injury-prevention program. Specific rehabilitation techniques for CAI have not been established. To determine the effectiveness of a 4-wk biomechanical ankle platform system (BAPS) board protocol on the balance of high school athletes with CAI. Randomized control trial. Athletic training facility. Twenty-two high school athletes with "giving way" and a history of ankle sprains (ie, CAI) were randomized into a rehabilitation (REH) (166.23 ± 0.93 cm, 67.0 ± 9.47 kg, 16.45 ± 0.93 y) or control (CON) (173.86 ± 8.88 cm, 84.51 ± 21.28 kg, 16.55 ± 1.29 y) group. After baseline measures, the REH group completed a progressive BAPS rehabilitation program (3 times/wk for 4 wk), whereas the CON group had no intervention. Each session consisted of 5 trials of clockwise/counterclockwise rotations changing direction every 10 s during each 40-s trial. After 4 wk, baseline measurements were repeated. Dependent measures included longest time (time-in-balance test), average number of errors (foot lift test), average reach distance (cm) normalized to leg length for each reach direction (Star Excursion Balance Test [SEBT]), and fastest time (side hop test [SHT]). Significant group-by-time interactions were found for TIB (F 1,20 = 9.89, P = .005), FLT (F 1,20 = 41.18, P < .001), SEBT-anteromedial (F 1,20 = 5.34, P = .032), SEBT-medial (F 1,20 = 7.51, P = .013), SEBT-posteromedial (F 1,20 = 12.84, P = .002), and SHT (F 1,20 = 7.50, P = .013). Post hoc testing showed that the REH group improved performance on all measures at posttest, whereas the CON group did not. A 4-wk BAPS rehabilitation protocol improved balance in high school athletes suffering from CAI. These results can allow clinicians to rehabilitate in a focused manner by using 1 rehabilitation tool that allows benefits to be accomplished in a shorter time.

  1. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy.

    PubMed

    Gomes, Aline A; Ackermann, Marko; Ferreira, Jean P; Orselli, Maria Isabel V; Sacco, Isabel C N

    2017-11-09

    Muscle force estimation could advance the comprehension of the neuromuscular strategies that diabetic patients adopt to preserve walking ability, which guarantees their independence as they deal with their neural and muscular impairments due to diabetes and neuropathy. In this study, the lower limb's muscle force distribution during gait was estimated and compared in diabetic patients with and without polyneuropathy. Thirty individuals were evaluated in a cross-sectional study, equally divided among controls (CG) and diabetic patients with (DNG) and without (DG) polyneuropathy. The acquired ground reaction forces and kinematic data were used as input variables for a scaled musculoskeletal model in the OpenSim software. The maximum isometric force of the ankle extensors and flexors was reduced in the model of DNG by 30% and 20%, respectively. The muscle force was calculated using static optimization, and peak forces were compared among groups (flexors and extensors of hip, knee, and ankle; ankle evertors; and hip abductors) using MANOVAs, followed by univariate ANOVAs and Newman-Keuls post-hoc tests (p < 0.05). From the middle to late stance phase, DG showed a lower soleus muscle peak force compared to the CG (p=0.024) and the DNG showed lower forces in the gastrocnemius medialis compared to the DG (p=0.037). At the terminal swing phase, the semitendinosus and semimembranosus peak forces showed lower values in the DG compared to the CG and DNG. At the late stance, the DNG showed a higher peak force in the biceps short head, semimembranosus, and semitendinosus compared to the CG and DG. Peak forces of ankle (flexors, extensors, and evertors), knee (flexors and extensors), and hip abductors distinguished DNG from DG, and both of those from CG. Both diabetic groups showed alterations in the force production of the ankle extensors with reductions in the forces of soleus (DG) and gastrocnemius medialis (DNG) seen in both diabetic groups, but only DNG showed an increase in the hamstrings (knee flexor) at push-off. A therapeutic approach focused on preserving the functionality of the knee muscles is a promising strategy, even if the ankle dorsiflexors and plantarflexors are included in the resistance training.

  2. The effect of directional inertias added to pelvis and ankle on gait

    PubMed Central

    2013-01-01

    Background Gait training robots should display a minimum added inertia in order to allow normal walking. The effect of inertias in specific directions is yet unknown. We set up two experiments to assess the effect of inertia in anteroposterior (AP) direction to the ankle and AP and mediolateral (ML) direction to the pelvis. Methods We developed an experimental setup to apply inertia in forward backward and or sideways directions. In two experiments nine healthy subjects walked on a treadmill at 1.5 km/h and 4.5 km/h with no load and with AP loads of 0.3, 1.55 and 3.5 kg to the left ankle in the first experiment and combinations of AP and ML loads on the pelvis (AP loads 0.7, 4.3 and 10.2 kg; ML loads 0.6, 2.3 and 5.3 kg). We recorded metabolic rate, EMG of major leg muscles, gait parameters and kinematics. Results & discussion Adding 1.55 kg or more inertia to the ankle in AP direction increases the pelvis acceleration and decreases the foot acceleration in AP direction both at speeds of 4.5 km/h. Adding 3.5 kg of inertia to the ankle also increases the swing time as well as AP motions of the pelvis and head-arms-trunk (HAT) segment. Muscle activity remains largely unchanged. Adding 10.2 kg of inertia to the pelvis in AP direction causes a significant decrease of the pelvis and HAT segment motions, particularly at high speeds. Also the sagittal back flexion increases. Lower values of AP inertia and ML inertias up to 5.3 kg had negligible effect. In general the found effects are larger at high speeds. Conclusions We found that inertia up to 2 kg at the ankle or 6 kg added to the pelvis induced significant changes, but since these changes were all within the normal inter subject variability we considered these changes as negligible for application as rehabilitation robotics and assistive devices. PMID:23597391

  3. Relationship between agility and lower limb muscle strength, targeting university badminton players.

    PubMed

    Sonoda, Takuya; Tashiro, Yuto; Suzuki, Yusuke; Kajiwara, Yu; Zeidan, Hala; Yokota, Yuki; Kawagoe, Mirei; Nakayama, Yasuaki; Bito, Tsubasa; Shimoura, Kanako; Tatsumi, Masataka; Nakai, Kengo; Nishida, Yuichi; Yoshimi, Soyoka; Aoyama, Tomoki

    2018-02-01

    [Purpose] Targeting university badminton players, this study investigated the relationship between agility, which is associated with performance in badminton, and lower limb muscle strength, and examined which muscles influence agility. [Subjects and Methods] A total of 23 male university badminton players were evaluated for side-shuffle test scores and lower limb strength. The relationships between agility, lower limb strength, and duration of experience playing badminton were evaluated using a correlation analysis. Moreover, the relationship between agility and lower limb strength was evaluated by partial correlation analysis, adjusting for the effects of experience of each badminton player. [Results] The agility score correlated with hip extension and ankle plantar flexion strength, with adjustment for badminton experience. [Conclusion] This study suggests that hip extension training and improvement in ankle plantar flexion strength may improve agility.

  4. Joint stability characteristics of the ankle complex in female athletes with histories of lateral ankle sprain, part II: clinical experience using arthrometric measurement.

    PubMed

    Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W

    2014-01-01

    This is part II of a 2-part series discussing stability characteristics of the ankle complex. In part I, we used a cadaver model to examine the effects of sectioning the lateral ankle ligaments on anterior and inversion motion and stiffness of the ankle complex. In part II, we wanted to build on and apply these findings to the clinical assessment of ankle-complex motion and stiffness in a group of athletes with a history of unilateral ankle sprain. To examine ankle-complex motion and stiffness in a group of athletes with reported history of lateral ankle sprain. Cross-sectional study. University research laboratory. Twenty-five female college athletes (age = 19.4 ± 1.4 years, height = 170.2 ± 7.4 cm, mass = 67.3 ± 10.0 kg) with histories of unilateral ankle sprain. All ankles underwent loading with an ankle arthrometer. Ankles were tested bilaterally. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Anterior displacement of the ankle complex did not differ between the uninjured and sprained ankles (P = .37), whereas ankle-complex rotation was greater for the sprained ankles (P = .03). The sprained ankles had less anterior and inversion end-range stiffness than the uninjured ankles (P < .01). Changes in ankle-complex laxity and end-range stiffness were detected in ankles with histories of sprain. These results indicate the presence of altered mechanical characteristics in the soft tissues of the sprained ankles.

  5. Comparing the effect of group-based and compact disk-based training on midwives' knowledge and attitude toward domestic violence in women of reproductive age.

    PubMed

    Vakily, Masoomeh; Noroozi, Mahnaz; Yamani, Nikoo

    2017-01-01

    Training the health personnel about domestic violence would cause them to investigate and evaluate this issue more than before. Considering the new educational approaches for transferring knowledge, the goal of this research was to compare the effect of group-based and compact disk (CD)-based training on midwives' knowledge and attitude toward domestic violence. In this clinical experiment, seventy midwives working at health centers and hospitals of Isfahan were randomly allocated into two classes of group-based and CD-based trainings and were trained in the fields of recognition, prevention, and management of domestic violence. Data were collected by questionnaires which were completed by the midwives for evaluation of their knowledge and attitude. The mean score of midwives' knowledge and attitude toward domestic violence had a meaningful increase after the training (16.1, 46.9) compared to the score of before the training (12.1, 39.1) in both of the classes (group-based training: 17.7, 45.4) (CD-based training: 11.7, 38.6). No meaningful difference was observed between the two groups regarding midwives' attitude toward domestic violence after the intervention; however, regarding their knowledge level, the difference was statistically meaningful ( P = 0.001), and this knowledge increase was more in the CD-based training group. In spite of the effectiveness of both of the training methods in promoting midwives' knowledge and attitude about domestic violence, training with CD was more effective in increasing their knowledge; as a result, considering the benefits of CD-based training such as cost-effectiveness and possibility of use at any time, it is advised to be used in training programs for the health personnel.

  6. Comparing the effect of group-based and compact disk-based training on midwives’ knowledge and attitude toward domestic violence in women of reproductive age

    PubMed Central

    Vakily, Masoomeh; Noroozi, Mahnaz; Yamani, Nikoo

    2017-01-01

    BACKGROUND: Training the health personnel about domestic violence would cause them to investigate and evaluate this issue more than before. Considering the new educational approaches for transferring knowledge, the goal of this research was to compare the effect of group-based and compact disk (CD)-based training on midwives’ knowledge and attitude toward domestic violence. METHODS: In this clinical experiment, seventy midwives working at health centers and hospitals of Isfahan were randomly allocated into two classes of group-based and CD-based trainings and were trained in the fields of recognition, prevention, and management of domestic violence. Data were collected by questionnaires which were completed by the midwives for evaluation of their knowledge and attitude. RESULTS: The mean score of midwives’ knowledge and attitude toward domestic violence had a meaningful increase after the training (16.1, 46.9) compared to the score of before the training (12.1, 39.1) in both of the classes (group-based training: 17.7, 45.4) (CD-based training: 11.7, 38.6). No meaningful difference was observed between the two groups regarding midwives’ attitude toward domestic violence after the intervention; however, regarding their knowledge level, the difference was statistically meaningful (P = 0.001), and this knowledge increase was more in the CD-based training group. CONCLUSIONS: In spite of the effectiveness of both of the training methods in promoting midwives’ knowledge and attitude about domestic violence, training with CD was more effective in increasing their knowledge; as a result, considering the benefits of CD-based training such as cost-effectiveness and possibility of use at any time, it is advised to be used in training programs for the health personnel. PMID:28852660

  7. Effect of Contralateral Strength Training on Muscle Weakness in People With Multiple Sclerosis: Proof-of-Concept Case Series.

    PubMed

    Manca, Andrea; Cabboi, Maria Paola; Ortu, Enzo; Ginatempo, Francesca; Dragone, Daniele; Zarbo, Ignazio Roberto; de Natale, Edoardo Rosario; Mureddu, Giovanni; Bua, Guido; Deriu, Franca

    2016-06-01

    The contralateral strength training (CST) effect is a transfer of muscle performance to the untrained limb following training of the contralateral side. The aim of this study was to explore, in individuals with multiple sclerosis (MS) presenting marked lower limb strength asymmetry, the effectiveness of CST on management of muscle weakness of the more-affected limb following training of the less-affected limb. A single-subject research design was used. Eight individuals with MS underwent 16 to 18 high-intensity training sessions of the less-affected ankle dorsiflexor muscles. The primary outcome measure of this single-system case series was maximal strength expressed as peak moment and maximal work. Secondary outcome measures were: Six-Minute-Walk Test, Timed "Up & Go" Test, 10-Meter Timed Walk Test, and Multiple Sclerosis Quality of Life-54 questionnaire. After the 6-week intervention, the contralateral more affected (untrained) limb showed a 22% to 24% increase in maximal strength. From pretest-posttest measurements, participants also performed significantly better on the clinical and functional secondary outcome measures. At the 12-week follow-up, the strength levels of the weaker untrained limb remained significantly superior to baseline levels in the majority (5 out of 8) of the outcome parameters. Considering the design used, the absence of a control group, and the sample size, these findings should be cautiously generalized and will need confirmation in a properly planned randomized controlled trial. The present proof-of-concept study shows, for the first time, the occurrence of the CST effect on muscle performance of ankle dorsiflexor muscles in people with MS. These preliminary findings reveal new potential implications for CST as a promising rehabilitation approach to those conditions where unilateral muscle weakness does not allow or makes difficult performing conventional strength training of the weaker limb. © 2016 American Physical Therapy Association.

  8. Science packages

    NASA Astrophysics Data System (ADS)

    1997-01-01

    Primary science teachers in Scotland have a new updating method at their disposal with the launch of a package of CDi (Compact Discs Interactive) materials developed by the BBC and the Scottish Office. These were a response to the claim that many primary teachers felt they had been inadequately trained in science and lacked the confidence to teach it properly. Consequently they felt the need for more in-service training to equip them with the personal understanding required. The pack contains five disks and a printed user's guide divided up as follows: disk 1 Investigations; disk 2 Developing understanding; disks 3,4,5 Primary Science staff development videos. It was produced by the Scottish Interactive Technology Centre (Moray House Institute) and is available from BBC Education at £149.99 including VAT. Free Internet distribution of science education materials has also begun as part of the Global Schoolhouse (GSH) scheme. The US National Science Teachers' Association (NSTA) and Microsoft Corporation are making available field-tested comprehensive curriculum material including 'Micro-units' on more than 80 topics in biology, chemistry, earth and space science and physics. The latter are the work of the Scope, Sequence and Coordination of High School Science project, which can be found at http://www.gsh.org/NSTA_SSandC/. More information on NSTA can be obtained from its Web site at http://www.nsta.org.

  9. Analysis of the Effects of Normal Walking on Ankle Joint Contact Characteristics After Acute Inversion Ankle Sprain.

    PubMed

    Bae, Ji Yong; Park, Kyung Soon; Seon, Jong Keun; Jeon, Insu

    2015-12-01

    To show the causal relationship between normal walking after various lateral ankle ligament (LAL) injuries caused by acute inversion ankle sprains and alterations in ankle joint contact characteristics, finite element simulations of normal walking were carried out using an intact ankle joint model and LAL injury models. A walking experiment using a volunteer with a normal ankle joint was performed to obtain the boundary conditions for the simulations and to support the appropriateness of the simulation results. Contact pressure and strain on the talus articular cartilage and anteroposterior and mediolateral translations of the talus were calculated. Ankles with ruptured anterior talofibular ligaments (ATFLs) had a higher likelihood of experiencing increased ankle joint contact pressures, strains and translations than ATFL-deficient ankles. In particular, ankles with ruptured ATFL + calcaneofibular ligaments and all ruptured ankles had a similar likelihood as the ATFL-ruptured ankles. The push off stance phase was the most likely situation for increased ankle joint contact pressures, strains and translations in LAL-injured ankles.

  10. Pain syndromes in competitive elite level female artistic gymnasts. Role of specific preventive-compensative activity.

    PubMed

    Marini, Mirca; Mirca, Marini; Sgambati, Eleonora; Eleonora, Sgambati; Barni, Edy; Edy, Barni; Piazza, Marina; Marina, Piazza; Monaci, Marco; Marco, Monaci

    2008-01-01

    The pain is a serious problem in advanced level female artistic gymnasts because it decreases the performance. The pain is due to the high numbers of hours spent in training sessions and may be associated to injuries that have relatively high incidence and severity in these athletes. We investigated the role of a preventive-compensative physical activity program, implemented in the warm-up and the cool-down session of standard training, in the prevention and reduction of the pain syndromes, evaluated in elite level young female artistic gymnasts. Thirty elite level female athletes, 10-14 years old, participated in this study and were followed for 12 weeks during the competition preparation period. Fifteen athletes were trained with preventive-compensative motory program implemented in the ordinary training (intervention group) and fifteen (control group) followed the standard training. All athletes completed a self-administered questionnaire regarding the pain intensity on the basis of a Visual Analogue Scale pre- and post- intervention. The experimental protocol consisted of three steps: the treatment of the shortened muscle chains according to Active Posture Reeducation method, the propriocettive-coordinative training with wobble board and the mobilization and stretching of back using fitball. Before intervention, the pain in practicing this sport was reported by 83% of all the athletes. The most common primary pain sites were the ankle and low back; the pain anatomical location was correlated to the training. After intervention, low back pain assessment showed a decrease of pain identified as mild (from 56% to 44%) or moderate (from 33% to 22%) and a disappearance of severe pain (from 11% to 0%). Ankle pain decreased and/or disappeared: the mild pain from 33% to 27%, moderate from 27% to 13% and severe from 13% to 0%. The pain analysis did not show different results in the control group. Our results indicated that the performed preventive-compensative training is of value, in a short time perspective, in preventing and reducing the pain syndromes in these athletes.

  11. Joint Stability Characteristics of the Ankle Complex in Female Athletes With Histories of Lateral Ankle Sprain, Part II: Clinical Experience Using Arthrometric Measurement

    PubMed Central

    Kovaleski, John E.; Heitman, Robert J.; Gurchiek, Larry R.; Hollis, J. M.; Liu, Wei; IV, Albert W. Pearsall

    2014-01-01

    Context: This is part II of a 2-part series discussing stability characteristics of the ankle complex. In part I, we used a cadaver model to examine the effects of sectioning the lateral ankle ligaments on anterior and inversion motion and stiffness of the ankle complex. In part II, we wanted to build on and apply these findings to the clinical assessment of ankle-complex motion and stiffness in a group of athletes with a history of unilateral ankle sprain. Objective: To examine ankle-complex motion and stiffness in a group of athletes with reported history of lateral ankle sprain. Design: Cross-sectional study. Setting: University research laboratory. Patients or Other Participants: Twenty-five female college athletes (age = 19.4 ± 1.4 years, height = 170.2 ± 7.4 cm, mass = 67.3 ± 10.0 kg) with histories of unilateral ankle sprain. Intervention(s): All ankles underwent loading with an ankle arthrometer. Ankles were tested bilaterally. Main Outcome Measure(s): The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Results: Anterior displacement of the ankle complex did not differ between the uninjured and sprained ankles (P = .37), whereas ankle-complex rotation was greater for the sprained ankles (P = .03). The sprained ankles had less anterior and inversion end-range stiffness than the uninjured ankles (P < .01). Conclusions: Changes in ankle-complex laxity and end-range stiffness were detected in ankles with histories of sprain. These results indicate the presence of altered mechanical characteristics in the soft tissues of the sprained ankles. PMID:24568223

  12. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing

    PubMed Central

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies should primarily focus on a simplification of the sensor setup, as well as a fusion with global navigation satellite systems (i.e., the estimation of the absolute joint and CoM positions). PMID:29163196

  13. An Inertial Sensor-Based Method for Estimating the Athlete's Relative Joint Center Positions and Center of Mass Kinematics in Alpine Ski Racing.

    PubMed

    Fasel, Benedikt; Spörri, Jörg; Schütz, Pascal; Lorenzetti, Silvio; Aminian, Kamiar

    2017-01-01

    For the purpose of gaining a deeper understanding of the relationship between external training load and health in competitive alpine skiing, an accurate and precise estimation of the athlete's kinematics is an essential methodological prerequisite. This study proposes an inertial sensor-based method to estimate the athlete's relative joint center positions and center of mass (CoM) kinematics in alpine skiing. Eleven inertial sensors were fixed to the lower and upper limbs, trunk, and head. The relative positions of the ankle, knee, hip, shoulder, elbow, and wrist joint centers, as well as the athlete's CoM kinematics were validated against a marker-based optoelectronic motion capture system during indoor carpet skiing. For all joints centers analyzed, position accuracy (mean error) was below 110 mm and precision (error standard deviation) was below 30 mm. CoM position accuracy and precision were 25.7 and 6.7 mm, respectively. Both the accuracy and precision of the system to estimate the distance between the ankle of the outside leg and CoM (measure quantifying the skier's overall vertical motion) were found to be below 11 mm. Some poorer accuracy and precision values (below 77 mm) were observed for the athlete's fore-aft position (i.e., the projection of the outer ankle-CoM vector onto the line corresponding to the projection of ski's longitudinal axis on the snow surface). In addition, the system was found to be sensitive enough to distinguish between different types of turns (wide/narrow). Thus, the method proposed in this paper may also provide a useful, pervasive way to monitor and control adverse external loading patterns that occur during regular on-snow training. Moreover, as demonstrated earlier, such an approach might have a certain potential to quantify competition time, movement repetitions and/or the accelerations acting on the different segments of the human body. However, prior to getting feasible for applications in daily training, future studies should primarily focus on a simplification of the sensor setup, as well as a fusion with global navigation satellite systems (i.e., the estimation of the absolute joint and CoM positions).

  14. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain.

    PubMed

    Ju, Sung-Bum; Park, Gi Duck

    2017-02-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function.

  15. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain

    PubMed Central

    Ju, Sung-Bum; Park, Gi Duck

    2017-01-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function. PMID:28265157

  16. Mirror therapy combined with functional electrical stimulation for rehabilitation of stroke survivors' ankle dorsiflexion.

    PubMed

    Salhab, Ghadir; Sarraj, Ahmad Rifaii; Saleh, Soha

    2016-08-01

    This study investigates the effect of combining both mirror therapy with Electrical Stimulation (ES) on improvement of the function of lower extremity compared to conventional therapy. 18 stroke survivors (sub acute stage) were recruited, 9 of them were randomly assigned to receive conventional treatment and another 9 started the mirror therapy combined with ES treatment. Duration of each session in both interventions was 50 minutes, done 4 times per week over two weeks. After 2 weeks, subjects took one week rest before switching they type of treatment; those started with conventional therapy continued with mirror therapy combined with ES, and vice versa. The duration of this phase was 2 weeks with same schedule as the 1st one. Ankle dorsi-flexion range of motion, lower extremity sensory-motor function, and walking duration were measured at baseline, after 1st 2 weeks, and immediately after the last two weeks, and 4 weeks after end of training (retention test). Repeated Measures ANCOVA was done to compare outcome measures scores in both groups and between all testing days, and paired T-test was used measure the difference between groups. Significant increase in all outcome measures was found after the (MT+ES) training, which is higher than conventional therapy training (p<;0.0001). In conclusion, the results suggest that combination of mirror therapy and ES is more effective than conventional therapy in improving lower limb motor function after stroke.

  17. Efficacy of a hybrid assistive limb in post-stroke hemiplegic patients: a preliminary report

    PubMed Central

    2011-01-01

    Background Robotic devices are expected to be widely used in various applications including support for the independent mobility of the elderly with muscle weakness and people with impaired motor function as well as support for nursing care that involves heavy laborious work. We evaluated the effects of a hybrid assistive limb robot suit on the gait of stroke patients undergoing rehabilitation. Methods The study group comprised 16 stroke patients with severe hemiplegia. All patients underwent gait training. Four patients required assistance, and 12 needed supervision while walking. The stride length, walking speed and physiological cost index on wearing the hybrid assistive limb suit and a knee-ankle-foot orthosis were compared. Results The hybrid assistive limb suit increased the stride length and walking speed in 4 of 16 patients. The patients whose walking speed decreased on wearing the hybrid assistive limb suit either had not received sufficient gait training or had an established gait pattern with a knee-ankle-foot orthosis using a quad cane. The physiological cost index increased after wearing the hybrid assistive limb suit in 12 patients, but removal of the suit led to a decrease in the physiological cost index values to equivalent levels prior to the use of the suit. Conclusions Although the hybrid assistive limb suit is not useful for all hemiplegic patients, it may increase the walking speed and affect the walking ability. Further investigation would clarify its indication for the possibility of gait training. PMID:21943320

  18. The Effect of Fatigue-Induced Changes in Eggbeater-Kick Kinematics on Performance and Risk of Injury.

    PubMed

    Oliveira, Nuno; Saunders, David H; Sanders, Ross H

    2016-01-01

    To investigate the effects of fatigue on the vertical force and kinematics of the lower limbs during maximal water polo eggbeater kicking. Twelve male water polo players maintained as high a position as possible while performing the eggbeater kick with the upper limbs raised out of the water until they were unable to keep the top of the sternum (manubrium) above water. Data comprising 27 complete eggbeater-kick cycles were extracted corresponding to 9 cycles of the initial nonfatigued (0%), 50% time point (50%), and final fatigued (100%) periods of the trial. Vertical force, foot speed, and hip-, knee-, and ankle-joint angles were calculated. Mean vertical force (0%, 212.2 N; 50%, 184.5 N; 100%, 164.3 N) progressively decreased with time. Speed of the feet (0.4 m/s), hip abduction (2.9°), and flexion (3.6°) decreased with fatigue, while hip internal rotation (3.6°) and ankle inversion (4°) increased with fatigue. Average angular velocity decreased for all joint motions. Eggbeater-kick performance decreases with fatigue. Inability to maintain foot speeds and hip and ankle actions with progressing fatigue diminishes the ability of the player to produce vertical force during the cycle. Increased internal rotation of the hip when fatigued and the large eversion/abduction of the ankle during the cycle may be predisposing factors for the prevalence of patellofemoral pain syndrome observed among eggbeater-kick performers. Appropriate training interventions that can limit the effects of fatigue on performance and injury risk should be considered.

  19. Anatomy of the ankle ligaments: a pictorial essay.

    PubMed

    Golanó, Pau; Vega, Jordi; de Leeuw, Peter A J; Malagelada, Francesc; Manzanares, M Cristina; Götzens, Víctor; van Dijk, C Niek

    2016-04-01

    Understanding the anatomy of the ankle ligaments is important for correct diagnosis and treatment. Ankle ligament injury is the most frequent cause of acute ankle pain. Chronic ankle pain often finds its cause in laxity of one of the ankle ligaments. In this pictorial essay, the ligaments around the ankle are grouped, depending on their anatomic orientation, and each of the ankle ligaments is discussed in detail.

  20. Syndesmotic ankle sprain.

    PubMed

    Childs, Sharon G

    2012-01-01

    Ankle sprain injuries are the most common type of joint sprain. The prevalence of ankle joint sprains accounts for 21% of joint injuries in the body. Although somewhat rare, high-ankle or syndesmotic ankle sprains occur in up to 15% of ankle trauma. This article will present the pathomechanics of the high-ankle or syndesmotic sprain.

  1. Can Chronic Ankle Instability be Prevented? Rethinking Management of Lateral Ankle Sprains.

    ERIC Educational Resources Information Center

    Denegar, Craig R.; Miller, Sayers J., III

    2002-01-01

    Investigates whether chronic ankle instability can be prevented, discussing: the relationship between mechanical and functional instability; normal ankle mechanics, sequelae to lateral ankle sprains, and abnormal ankle mechanics; and tissue healing, joint dysfunction, and acute lateral ankle sprain management. The paper describes a treatment model…

  2. Develop a wearable ankle robot for in-bed acute stroke rehabilitation.

    PubMed

    Ren, Yupeng; Xu, Tao; Wang, Liang; Yang, Chung Yong; Guo, Xin; Harvey, Richard L; Zhang, Li-Qun

    2011-01-01

    Movement training is important in motor recovery post stroke and early intervention is critical to stroke rehabilitation. However, acute stroke survivors are actively trained with activities helpful for recovery of mobility in only 13% of the time in the acute phase. Considering the first few months post stroke is critical in stroke recovery (neuroplasticity), there is a strong need for movement therapy and manipulate/mobilize the joints. There is a lack of in-bed robotic rehabilitation in acute stroke. This study seeks to meet the clinic need and deliver intensive passive and active movement therapy using a wearable robot to enhance motor function in acute stroke. Passively, the wearable robot stretches the joint to its extreme positions safely and forcefully. Actively, movement training is conducted and game playing is used to guide and motivate the patient in movement training.

  3. Contribution of ankle-foot orthosis moment in regulating ankle and knee motions during gait in individuals post-stroke.

    PubMed

    Kobayashi, Toshiki; Orendurff, Michael S; Singer, Madeline L; Gao, Fan; Foreman, K Bo

    2017-06-01

    Ankle-foot orthosis moment resisting plantarflexion has systematic effects on ankle and knee joint motion in individuals post-stroke. However, it is not known how much ankle-foot orthosis moment is generated to regulate their motion. The aim of this study was to quantify the contribution of an articulated ankle-foot orthosis moment to regulate ankle and knee joint motion during gait in individuals post-stroke. Gait data were collected from 10 individuals post-stroke using a Bertec split-belt instrumented treadmill and a Vicon 3-dimensional motion analysis system. Each participant wore an articulated ankle-foot orthosis whose moment resisting plantarflexion was adjustable at four levels. Ankle-foot orthosis moment while walking was calculated under the four levels based on angle-moment relationship of the ankle-foot orthosis around the ankle joint measured by bench testing. The ankle-foot orthosis moment and the joint angular position (ankle and knee) relationship in a gait cycle was plotted to quantify the ankle-foot orthosis moment needed to regulate the joint motion. Ankle and knee joint motion were regulated according to the amount of ankle-foot orthosis moment during gait. The ankle-foot orthosis maintained the ankle angular position in dorsiflexion and knee angular position in flexion throughout a gait cycle when it generated moment from -0.029 (0.011) to -0.062 (0.019) Nm/kg (moment resisting plantarflexion was defined as negative). Quantifying the contribution of ankle-foot orthosis moment needed to regulate lower limb joints within a specific range of motion could provide valuable criteria to design an ankle-foot orthosis for individuals post-stroke. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Influence of Passive Joint Stiffness on Proprioceptive Acuity in Individuals With Functional Instability of the Ankle.

    PubMed

    Marinho, Hellen Veloso Rocha; Amaral, Giovanna Mendes; de Souza Moreira, Bruno; Araújo, Vanessa Lara; Souza, Thales Rezende; Ocarino, Juliana Melo; da Fonseca, Sérgio Teixeira

    2017-12-01

    Study Design Controlled laboratory study, cross-sectional. Background Deficits in ankle proprioceptive acuity have been reported in persons with functional instability of the ankle. Passive stiffness has been proposed as a possible mechanism underlying proprioceptive acuity. Objective To compare proprioceptive acuity and passive ankle stiffness in persons with and without functional ankle instability, and to assess the influence of passive joint stiffness on proprioceptive acuity in persons with functional ankle instability. Methods A sample of 18 subjects with and 18 without complaints of functional ankle instability following lateral ankle sprain participated. An isokinetic dynamometer was used to compare motion perception threshold, passive position sense, and passive ankle stiffness between groups. To evaluate the influence of passive stiffness on proprioceptive acuity, individuals in the lateral functional ankle instability group were divided into 2 subgroups: "high" and "low" passive ankle stiffness. Results The functional ankle instability group exhibited increased motion perception threshold when compared with the corresponding limb of the control group. Between-group differences were not found for passive position sense and passive ankle stiffness. Those in the functional ankle instability group with higher passive ankle stiffness had smaller motion perception thresholds than those with lower passive ankle stiffness. Conclusion Unlike motion perception threshold, passive position sense is not affected by the presence of functional ankle instability. Passive ankle stiffness appears to influence proprioceptive acuity in persons with functional ankle instability. J Orthop Sports Phys Ther 2017;47(12):899-905. Epub 7 Oct 2017. doi:10.2519/jospt.2017.7030.

  5. The gait and balance of patients with diabetes can be improved: a randomised controlled trial.

    PubMed

    Allet, L; Armand, S; de Bie, R A; Golay, A; Monnin, D; Aminian, K; Staal, J B; de Bruin, E D

    2010-03-01

    Gait characteristics and balance are altered in diabetic patients. Little is known about possible treatment strategies. This study evaluates the effect of a specific training programme on gait and balance of diabetic patients. This was a randomised controlled trial (n=71) with an intervention (n=35) and control group (n=36). The intervention consisted of physiotherapeutic group training including gait and balance exercises with function-orientated strengthening (twice weekly over 12 weeks). Controls received no treatment. Individuals were allocated to the groups in a central office. Gait, balance, fear of falls, muscle strength and joint mobility were measured at baseline, after intervention and at 6-month follow-up. The trial is closed to recruitment and follow-up. After training, the intervention group increased habitual walking speed by 0.149 m/s (p<0.001) compared with the control group. Patients in the intervention group also significantly improved their balance (time to walk over a beam, balance index recorded on Biodex balance system), their performance-oriented mobility, their degree of concern about falling, their hip and ankle plantar flexor strength, and their hip flexion mobility compared with the control group. After 6 months, all these variables remained significant except for the Biodex sway index and ankle plantar flexor strength. Two patients developed pain in their Achilles tendon: the progression for two related exercises was slowed down. Specific training can improve gait speed, balance, muscle strength and joint mobility in diabetic patients. Further studies are needed to explore the influence of these improvements on the number of reported falls, patients' physical activity levels and quality of life. ClinicalTrials.gov NCT00637546 This work was supported by the Swiss National Foundation (SNF): PBSKP-123446/1/

  6. Ankle sprain (image)

    MedlinePlus

    An ankle sprain is a common injury to the ankle. The most common way the ankle is injured is when ... swelling, inflammation, and bruising around the ankle. An ankle sprain injury may take a few weeks to many ...

  7. Influence of ankle joint plantarflexion and dorsiflexion on lateral ankle sprain: A computational study.

    PubMed

    Purevsuren, Tserenchimed; Kim, Kyungsoo; Batbaatar, Myagmarbayar; Lee, SuKyoung; Kim, Yoon Hyuk

    2018-05-01

    Understanding the mechanism of injury involved in lateral ankle sprain is essential to prevent injury, to establish surgical repair and reconstruction, and to plan reliable rehabilitation protocols. Most studies for lateral ankle sprain posit that ankle inversion, internal rotation, and plantarflexion are involved in the mechanism of injury. However, recent studies indicated that ankle dorsiflexion also plays an important role in the lateral ankle sprain mechanism. In this study, the contributions of ankle plantarflexion and dorsiflexion on the ankle joint were evaluated under complex combinations of internal and inversion moments. A multibody ankle joint model including 24 ligaments was developed and validated against two experimental cadaveric studies. The effects of ankle plantarflexion (up to 60°) and dorsiflexion (up to 30°) on the lateral ankle sprain mechanism under ankle inversion moment coupled with internal rotational moment were investigated using the validated model. Lateral ankle sprain injuries can occur during ankle dorsiflexion, in which the calcaneofibular ligament and anterior talofibular ligament tears may occur associated with excessive inversion and internal rotational moment, respectively. Various combinations of inversion and internal moment may lead to anterior talofibular ligament injuries at early ankle plantarflexion, while the inversion moment acts as a primary factor to tear the anterior talofibular ligament in early plantarflexion. It is better to consider inversion and internal rotation as primary factors of the lateral ankle sprain mechanism, while plantarflexion or dorsiflexion can be secondary factor. This information will help to clarify the lateral ankle sprain mechanism of injury.

  8. Comparing the effects of mechanical perturbation training with a compliant surface and manual perturbation training on joints kinematics after ACL-rupture.

    PubMed

    Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn

    2018-05-23

    Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (p<0.004), with manual group significantly increased knee flexion angle at IC and PKF (p<0.03). Main effects of group were found for hip flexion angle at IC (Manual:34.34+3.51°, Mechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p < 0.0001), and knee adduction angle at PKE (Manual:-2.00+2.23°, Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee health needs to be determined. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Anatomy of the ankle ligaments: a pictorial essay

    PubMed Central

    Vega, Jordi; de Leeuw, Peter A. J.; Malagelada, Francesc; Manzanares, M. Cristina; Götzens, Víctor; van Dijk, C. Niek

    2010-01-01

    Understanding the anatomy of the ankle ligaments is important for correct diagnosis and treatment. Ankle ligament injury is the most frequent cause of acute ankle pain. Chronic ankle pain often finds its cause in laxity of one of the ankle ligaments. In this pictorial essay, the ligaments around the ankle are grouped, depending on their anatomic orientation, and each of the ankle ligaments is discussed in detail. PMID:20309522

  10. A systematic review on the treatment of acute ankle sprain: brace versus other functional treatment types.

    PubMed

    Kemler, Ellen; van de Port, Ingrid; Backx, Frank; van Dijk, C Niek

    2011-03-01

    Ankle injuries, especially ankle sprains, are a common problem in sports and medical care. Ankle sprains result in pain and absenteeism from work and/or sports participation, and can lead to physical restrictions such as ankle instability. Nowadays, treatment of ankle injury basically consists of taping the ankle. The purpose of this review is to evaluate the effectiveness of ankle braces as a treatment for acute ankle sprains compared with other types of functional treatments such as ankle tape and elastic bandages. A computerized literature search was conducted using PubMed, EMBASE, CINAHL and the Cochrane Clinical Trial Register. This review includes randomized controlled trials in English, German and Dutch, published between 1990 and April 2009 that compared ankle braces as a treatment for lateral ankle sprains with other functional treatments. The inclusion criteria for this systematic review were (i) individuals (sports participants as well as non-sports participants) with an acute injury of the ankle (acute ankle sprains); (ii) use of an ankle brace as primary treatment for acute ankle sprains; (iii) control interventions including any other type of functional treatment (e.g. Tubigrip™, elastic wrap or ankle tape); and (iv) one of the following reported outcome measures: re-injuries, symptoms (pain, swelling, instability), functional outcomes and/or time to resumption of sports, daily activities and/or work. Eight studies met all inclusion criteria. Differences in outcome measures, intervention types and patient characteristics precluded pooling of the results, so best evidence syntheses were conducted. A few individual studies reported positive outcomes after treatment with an ankle brace compared with other functional methods, but our best evidence syntheses only demonstrated a better treatment result in terms of functional outcome. Other studies have suggested that ankle brace treatment is a more cost-effective method, so the use of braces after acute ankle sprains should be considered. Further research should focus on economic evaluation and on different types of ankle brace, to examine the strengths and weaknesses of ankle braces for the treatment of acute ankle sprains. © 2011 Adis Data Information BV. All rights reserved.

  11. Chronic ankle instability: Current perspectives

    PubMed Central

    Al-Mohrej, Omar A.; Al-Kenani, Nader S.

    2016-01-01

    Ankle sprain is reported to be among the most common recurrent injuries. About 20% of acute ankle sprain patients develop chronic ankle instability. The failure of functional rehabilitation after acute ankle sprain leads to the development of chronic ankle instability. Differentiation between functional and anatomical ankle instability is very essential to guide the proper treatment. Stability testing by varus stress test and anterior drawer test should be carried out. Subtalar instability is an important pathology that is commonly by passed during the assessment of chronic ankle instability. Unlike acute ankle sprain, chronic ankle instability might require surgical intervention. The surgical and conservative management options can be very much developed by in-depth knowledge of the ankle anatomy, biomechanics, and pathology. Anatomical repair, augmentation by tendon, or both are the basic methods of surgical intervention. Arthroscopy is becoming more popular in the management of chronic ankle instability. PMID:27843798

  12. Sagittal Plane Hip, Knee, and Ankle Biomechanics and the Risk of Anterior Cruciate Ligament Injury: A Prospective Study

    PubMed Central

    Leppänen, Mari; Pasanen, Kati; Krosshaug, Tron; Kannus, Pekka; Vasankari, Tommi; Kujala, Urho M.; Bahr, Roald; Perttunen, Jarmo; Parkkari, Jari

    2017-01-01

    Background: Stiff landings with less knee flexion and high vertical ground-reaction forces have been shown to be associated with an increased risk of anterior cruciate ligament (ACL) injury. The literature on the association between other sagittal plane measures and the risk of ACL injuries with a prospective study design is lacking. Purpose: To investigate the relationship between selected sagittal plane hip, knee, and ankle biomechanics and the risk of ACL injury in young female team-sport athletes. Study Design: Case-control study; Level of evidence, 3. Methods: A total of 171 female basketball and floorball athletes (age range, 12-21 years) participated in a vertical drop jump test using 3-dimensional motion analysis. All new ACL injuries, as well as match and training exposure data, were recorded for 1 to 3 years. Biomechanical variables, including hip and ankle flexion at initial contact (IC), hip and ankle ranges of motion (ROMs), and peak external knee and hip flexion moments, were selected for analysis. Cox regression models were used to calculate hazard ratios (HRs) with 95% CIs. The combined sensitivity and specificity of significant test variables were assessed using a receiver operating characteristic (ROC) curve analysis. Results: A total of 15 noncontact ACL injuries were recorded during follow-up (0.2 injuries/1000 player-hours). Of the variables investigated, landing with less hip flexion ROM (HR for each 10° increase in hip ROM, 0.61 [95% CI, 0.38-0.99]; P < .05) and a greater knee flexion moment (HR for each 10-N·m increase in knee moment, 1.21 [95% CI, 1.04-1.40]; P = .01) was significantly associated with an increased risk of ACL injury. Hip flexion at IC, ankle flexion at IC, ankle flexion ROM, and peak external hip flexion moment were not significantly associated with the risk of ACL injury. ROC curve analysis for significant variables showed an area under the curve of 0.6, indicating a poor combined sensitivity and specificity of the test. Conclusion: Landing with less hip flexion ROM and a greater peak external knee flexion moment was associated with an increased risk of ACL injury in young female team-sport players. Studies with larger populations are needed to confirm these findings and to determine the role of ankle flexion ROM as a risk factor for ACL injury. Increasing knee and hip flexion ROMs to produce soft landings might reduce knee loading and risk of ACL injury in young female athletes. PMID:29318174

  13. The effect of combined mechanism ankle support on postural control of patients with chronic ankle instability.

    PubMed

    Hadadi, Mohammad; Ebrahimi, Ismaeil; Mousavi, Mohammad Ebrahim; Aminian, Gholamreza; Esteki, Ali; Rahgozar, Mehdi

    2017-02-01

    Chronic ankle instability is associated with neuromechanical changes and poor postural stability. Despite variety of mechanisms of foot and ankle orthoses, almost none apply comprehensive mechanisms to improve postural control in all subgroups of chronic ankle instability patients. The purpose of this study was to investigate the effect of an ankle support implementing combined mechanisms to improve postural control in chronic ankle instability patients. Cross-sectional study. An ankle support with combined mechanism was designed based on most effective action mechanisms of foot and ankle orthoses. The effect of this orthosis on postural control was evaluated in 20 participants with chronic ankle instability and 20 matched healthy participants. The single-limb stance balance test was measured in both groups with and without the new orthosis using a force platform. The results showed that application of combined mechanism ankle support significantly improved all postural sway parameters in chronic ankle instability patients. There were no differences in means of investigated parameters with and without the orthosis in the healthy group. No statistically significant differences were found in postural sway between chronic ankle instability patients and healthy participants after applying the combined mechanism ankle support. The combined mechanism ankle support is effective in improving static postural control of chronic ankle instability patients to close to the postural sway of healthy individual. the orthosis had no adverse effects on balance performance of healthy individuals. Clinical relevance Application of the combined mechanism ankle support for patients with chronic ankle instability is effective in improving static balance. This may be helpful in reduction of recurrence of ankle sprain although further research about dynamic conditions is needed.

  14. Chronic musculoskeletal ankle disorders in Sri Lanka.

    PubMed

    Weerasekara, Ishanka; Hiller, Claire E

    2017-05-25

    Musculoskeletal disorders of the lower extremities are commonly affected by chronicity and disability. One of the most commonly affected areas is the ankle. Epidemiological information is limited for chronic musculoskeletal ankle disorders in the general community, particularly in the developing world. This study aimed to determine the prevalence and impact of chronic musculoskeletal ankle disorders in the Sri Lankan community. A cross-sectional stratified random sample of people (n = 1000) aged 18 to 85 years in Sri Lanka was undertaken by questionnaire in the general community setting. Of those questionnaires, 827 participants provided data. Point prevalence for no history of ankle injury or ankle disorders, history of ankle injuries without chronic ankle disorders, and chronic ankle disorders were obtained. Point prevalence of chronic musculoskeletal disorders and causes for chronicity was evaluated. There were 448 (54.2%) participants with no ankle disorders, 164 (19.8%) with a history of ankle injury but no chronic disorders, and 215 (26.0%) with chronic ankle disorders. The major component of chronic ankle disorders was musculoskeletal disorders (n = 113, 13.7% of the total sample), most of which were due to ankle injury (n = 80, 9.7% of the total). Sprains were responsible for 17.7% of the total ankle injuries. Arthritis was the other main cause for chronicity of ankle disorders with 4% of total participants (n = 33). Almost 14% of the Sri Lankan community was affected by chronic musculoskeletal ankle disorders. The majority were due to a previous ankle injury, and arthritis. Most people had to limit or change their physical activity because of the chronic ankle disorder. A very low utility of physiotherapy services was observed.

  15. Ankle sprain - aftercare

    MedlinePlus

    Lateral ankle sprain - aftercare; Medial ankle sprain - aftercare; Medial ankle injury - aftercare; Ankle syndesmosis sprain - aftercare; Syndesmosis injury - aftercare; ATFL injury - aftercare; CFL injury - ...

  16. Joint stiffness and running economy during imposed forefoot strike before and after a long run in rearfoot strike runners.

    PubMed

    Melcher, Daniel A; Paquette, Max R; Schilling, Brian K; Bloomer, Richard J

    2017-12-01

    Research has focused on the effects of acute strike pattern modifications on lower extremity joint stiffness and running economy (RE). Strike pattern modifications on running biomechanics have mostly been studied while runners complete short running bouts. This study examined the effects of an imposed forefoot strike (FFS) on RE and ankle and knee joint stiffness before and after a long run in habitual rearfoot strike (RFS) runners. Joint kinetics and RE were collected before and after a long run. Sagittal joint kinetics were computed from kinematic and ground reaction force data that were collected during over-ground running trials in 13 male runners. RE was measured during treadmill running. Knee flexion range of motion, knee extensor moment and ankle joint stiffness were lower while plantarflexor moment and knee joint stiffness were greater during imposed FFS compared with RFS. The long run did not influence the difference in ankle and knee joint stiffness between strike patterns. Runners were more economical during RFS than imposed FFS and RE was not influenced by the long run. These findings suggest that using a FFS pattern towards the end of a long run may not be mechanically or metabolically beneficial for well-trained male RFS runners.

  17. Subtalar instability. Etiology, diagnosis, and management.

    PubMed

    Keefe, Daniel T; Haddad, Steven L

    2002-09-01

    Subtalar instability is an evolving disorder that seems to cause a portion of chronic hindfoot instability. It can be seen as an isolated problem, or more commonly, in combination with ankle instability. There seems to be many injury mechanisms, most of which seem to involve supination of the hindfoot, and all seem to attenuate the lateral ligaments of the ankle and subtalar joints. As the condition progresses, and additional sprains occur as a result of the alteration in subtalar joint mechanics, the remaining ligaments become attenuated. There are many methods described to diagnose subtalar instability, but no conclusive test has been devised. Thus, the diagnosis must be inferred from an accurate history, physical examination, conferring radiographic studies, and failure of nonoperative management (often, for ankle instability). As with other hindfoot injuries, many patients improve with conservative measures. These measures are early (ice and immobilization) and late (bracing and proprioceptive training). When patients do not improve or cannot tolerate bracing, recent studies have shown there is a role for ligamentous reconstruction. Most procedures attempt to recreate the lateral ligament structures, including the calcaneofibular, the cervical, and the interosseous talocalcaneal ligaments, which seem to have the best stabilizing effect on the hindfoot. With the advent of newer procedures and more aggressive surgical management, there may be a role for early anatomic repair and rehabilitation.

  18. Novel application of lower body positive-pressure in the rehabilitation of an individual with multiple lower extremity fractures.

    PubMed

    Takacs, Judit; Leiter, Jeff R S; Peeler, Jason D

    2011-06-01

    Lower extremity fractures, if not treated appropriately, can increase the risk of morbidity. Partial weight-bearing after surgical repair is recommended; however, current methods of partial weight-bearing may cause excessive loads through the lower extremity. A new rehabilitation tool that uses lower body positive-pressure is described, that may allow partial weight-bearing while preventing excessive loads, thereby improving functional outcomes. A patient with multiple lower extremity fractures underwent a 6-month rehabilitation programme using bodyweight support technology 3 times per week, post-surgery. The patient experienced a reduction in pain and an improvement in ankle range of motion (p=0.002), walking speed (p>0.05) and physical function (p=0.004), as assessed by the Foot and Ankle Module of the American Academy of Orthopaedic Surgeons Lower Limb Outcomes Assessment Instrument. Training did not appear to affect fracture healing, as was evident on radiograph. The effect of lower body positive-pressure on effusion, which has not previously been reported in the literature, was also investigated. No significant difference in effusion of the foot and ankle when using lower body positive-pressure was found. Initial results suggest that this new technology may be a useful rehabilitation tool that allows partial weight-bearing during the treatment of lower extremity injuries.

  19. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles.

    PubMed

    Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q

    2017-01-01

    Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient's active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant's assessment. The robot reduces its assistance output when participants contribute more and vice versa , thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy.

  20. Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles

    PubMed Central

    Liu, Quan; Liu, Aiming; Meng, Wei; Ai, Qingsong; Xie, Sheng Q.

    2017-01-01

    Traditional compliance control of a rehabilitation robot is implemented in task space by using impedance or admittance control algorithms. The soft robot actuated by pneumatic muscle actuators (PMAs) is becoming prominent for patients as it enables the compliance being adjusted in each active link, which, however, has not been reported in the literature. This paper proposes a new compliance control method of a soft ankle rehabilitation robot that is driven by four PMAs configured in parallel to enable three degrees of freedom movement of the ankle joint. A new hierarchical compliance control structure, including a low-level compliance adjustment controller in joint space and a high-level admittance controller in task space, is designed. An adaptive compliance control paradigm is further developed by taking into account patient’s active contribution and movement ability during a previous period of time, in order to provide robot assistance only when it is necessarily required. Experiments on healthy and impaired human subjects were conducted to verify the adaptive hierarchical compliance control scheme. The results show that the robot hierarchical compliance can be online adjusted according to the participant’s assessment. The robot reduces its assistance output when participants contribute more and vice versa, thus providing a potentially feasible solution to the patient-in-loop cooperative training strategy. PMID:29255412

  1. [Motor skills and safety of patients with bi- or trimalleolar ankle injury : Comparison with healthy, active, age-matched control subjects].

    PubMed

    Loudovici-Krug, Dana; Benkenstein, Monique; Derlien, Steffen; Best, Norman

    2018-06-01

    Do patients with bi- or trimalleolar ankle injury show differences in motor skills and safety in comparison with healthy, active, age-matched control subjects? Prospective controlled cross-sectional study. Inclusion of 17 patients with bi- or trimalleolar ankle injury (mean 1.5 years postsurgery) and 23 healthy, active subjects of comparable age (fitness studio). Measurement instruments: motor test procedures and questionnaires. Comparison of patients and control subjects by routine daily motor function: patients < controls with the "timed 'Up & Go' test" (TUG, p = 0.011), the chair rising test and a coordination test using a gymnastic hoop (CRT and GR p > 0.05), fear of falling: patients > controls (p = 0.003) and physical activity: patients < controls (p = 0.032). There were no significant motor deficits in activities of daily life between the patients and controls, only tendencies; however, the patients showed definite limitations with an increased fear of falling and a reduced physical activity compared with the healthy control group. The resulting differences should be positively influenced by appropriate enhancement of training or participation in sports courses. The aim is to achieve a similar quality of life by a perception of safety and trust in one's own motor skills.

  2. Impaired control of weight bearing ankle inversion in subjects with chronic ankle instability.

    PubMed

    Terrier, R; Rose-Dulcina, K; Toschi, B; Forestier, N

    2014-04-01

    Previous studies have proposed that evertor muscle weakness represents an important factor affecting chronic ankle instability. For research purposes, ankle evertor strength is assessed by means of isokinetic evaluations. However, this methodology is constraining for daily clinical use. The present study proposes to assess ankle evertor muscle weakness using a new procedure, one that is easily accessible for rehabilitation specialists. To do so, we compared weight bearing ankle inversion control between patients suffering from chronic ankle instability and healthy subjects. 12 healthy subjects and 11 patients suffering from chronic ankle instability conducted repetitions of one leg weight bearing ankle inversion on a specific ankle destabilization device equipped with a gyroscope. Ankle inversion control was performed by means of an eccentric recruitment of evertor muscles. Instructions were to perform, as slow as possible, the ankle inversion while resisting against full body weight applied on the tested ankle. Data clearly showed higher angular inversion velocity peaks in patients suffering from chronic ankle instability. This illustrates an impaired control of weight bearing ankle inversion and, by extension, an eccentric weakness of evertor muscles. The present study supports the hypothesis of a link between the decrease of ankle joint stability and evertor muscle weakness. Moreover, it appears that the new parameter is of use in a clinical setting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Trends in Ankle Arthroscopy and Its Use in the Management of Pathologic Conditions of the Lateral Ankle in the United States: A National Database Study.

    PubMed

    Werner, Brian C; Burrus, M Tyrrell; Park, Joseph S; Perumal, Venkat; Gwathmey, F Winston

    2015-07-01

    This study aimed to investigate current trends in ankle arthroscopy across time, sex, age, and region of the United States as well as the use of ankle arthroscopy in the management of lateral ankle instability. Patients who underwent ankle arthroscopy and those who underwent ankle arthroscopy and lateral ankle ligament repair or peroneal retinacular repair from 2007 through 2011 were identified using the PearlDiver national database. These searches yielded volumes of unique patients, sex and age distribution, and regional volumes of patients. Χ-square linear-by-linear association analysis was used for comparisons, with P < .05 considered significant. We identified 15,366 ankle arthroscopy procedures in the database from 2007 to 2011. Over the 5-year study period, there was a significant increase in the overall number of ankle arthroscopies being performed, from 2,814 in 2007 to 3,314 in 2011 (P < .0001). Female patients had ankle arthroscopy more frequently than did male patients (P = .027). The majority of patients who had ankle arthroscopy were between the ages of 30 and 49 years. The use of ankle arthroscopy during lateral ligament repair procedures increased from 37.2% in 2007 to 43.7% in 2011 (P < .0001). The incidence of combined ankle arthroscopy and peroneal tendon retinacular repair increased 50%, from 2.8/100 ankle arthroscopies in 2007 to 4.2/100 ankle arthroscopies in 2011 (P < .0001). The incidence of ankle arthroscopy increased significantly from 2007 to 2011, outpacing shoulder, knee, and elbow arthroscopy. Ankle arthroscopy was performed more frequently in female patients and most commonly in patients younger than 50 years. The use of ankle arthroscopy in the surgical management of lateral ankle instability also increased significantly. The incidence of concomitant ankle arthroscopy and lateral ligament repair increased significantly, as did the incidence of concomitant ankle arthroscopy and repair of peroneal tendon subluxation. Level IV, therapeutic case series. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  4. Ankle taping can reduce external ankle joint moments during drop landings on a tilted surface.

    PubMed

    Sato, Nahoko; Nunome, Hiroyuki; Hopper, Luke S; Ikegami, Yasuo

    2017-09-20

    Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse.

  5. Impact of Foot Type on Cost of Lower Extremity Injury

    DTIC Science & Technology

    2013-01-25

    were at higher risk for injury. Additionally, researchers have found relationships between chronic heel pain and osteoarthritis of the knee and hip...Cost of Injury, in Physical Training and Sports Injury Prevention Guidelines . 2010, U.S. Army Public Health Command (Provisional). 11. Injury...study. BMC Musculoskelet Disord, 2007. 8: p. 41. 48. Reilly, K., et al., The role of foot and ankle assessment of patients with lower limb osteoarthritis

  6. Novel and Conservative Approaches Towards Effective Management of Plantar Fasciitis

    PubMed Central

    Ahmad, Awaiz; Kiani, Immad; Ghani, Usman; Wadhera, Vikram; Tom, Todd N

    2016-01-01

    We assessed the effectiveness of the different treatments for plantar fasciitis (PF) based on the changes in functional outcomes. A systematic literature search was carried out and studies from 2010 to 2016 were included in this review. The databases from Google Scholar, PubMed and Cochrane were used for the various treatment modalities of plantar fasciitis. The objectives measured included visual analog scale (VAS), Roles and Maudsley scale, foot function index (FFI), plantar fascia thickness and American Orthopedic Foot and Ankle Society (AOFAS) ankle-hind foot scale as the tools to predict the improvement in symptoms of pain and discomfort. Eight randomized controlled trails that met the selection criteria were included in this review. Extracorporeal shock wave lithotripsy (ESWL) with botulinum toxin type A, corticosteroid injections, autologous whole blood and plasma treatment, novel treatments like cryopreserved human amniotic membrane, effect of placebo, platelet rich plasma injections and corticosteroid injections, physiotherapy and high strength training were analyzed. All the treatment modalities applied did lead to the reduction in pain scores, but for long term management autologous condition plasma and platelet rich plasma are the preferred treatment options. Impact of physiotherapy and high strength training is equivalent to corticosteroid injections and hence is suited for patients avoiding invasive forms of treatment.  PMID:28083457

  7. Novel and Conservative Approaches Towards Effective Management of Plantar Fasciitis.

    PubMed

    Assad, Salman; Ahmad, Awaiz; Kiani, Immad; Ghani, Usman; Wadhera, Vikram; Tom, Todd N

    2016-12-05

    We assessed the effectiveness of the different treatments for plantar fasciitis (PF) based on the changes in functional outcomes. A systematic literature search was carried out and studies from 2010 to 2016 were included in this review. The databases from Google Scholar, PubMed and Cochrane were used for the various treatment modalities of plantar fasciitis. The objectives measured included visual analog scale (VAS), Roles and Maudsley scale, foot function index (FFI), plantar fascia thickness and American Orthopedic Foot and Ankle Society (AOFAS) ankle-hind foot scale as the tools to predict the improvement in symptoms of pain and discomfort. Eight randomized controlled trails that met the selection criteria were included in this review. Extracorporeal shock wave lithotripsy (ESWL) with botulinum toxin type A, corticosteroid injections, autologous whole blood and plasma treatment, novel treatments like cryopreserved human amniotic membrane, effect of placebo, platelet rich plasma injections and corticosteroid injections, physiotherapy and high strength training were analyzed. All the treatment modalities applied did lead to the reduction in pain scores, but for long term management autologous condition plasma and platelet rich plasma are the preferred treatment options. Impact of physiotherapy and high strength training is equivalent to corticosteroid injections and hence is suited for patients avoiding invasive forms of treatment.

  8. Individual Responses to a Barefoot Running Program: Insight Into Risk of Injury.

    PubMed

    Tam, Nicholas; Tucker, Ross; Astephen Wilson, Janie L

    2016-03-01

    Barefoot running is of popular interest because of its alleged benefits for runners, including reduced injury risk and increased economy of running. There is a dearth in understanding whether all runners can gain the proposed benefits of barefoot running and how barefoot running may affect long-term injury risk. The purpose of this study was to determine whether runners can achieve the proposed favorable kinematic changes and reduction in loading rate after a progressive training program that included barefoot running. It was hypothesized that not all individuals would experience a decrease in initial loading rate facilitated by increased ankle plantar flexion after a progressive barefoot running program; it was further hypothesized that relationships exist between changes in initial loading rate and sagittal ankle angle. Descriptive laboratory study. A total of 26 habitually shod runners completed an 8-week, progressively introduced barefoot running program. Pre- and postintervention barefoot and shod kinematics, electromyography, and ground-reaction force data of the lower limb were collected. Ankle and knee kinematics and kinetics, initial loading rates, spatiotemporal variables, muscle activity during preactivation, and ground contact were assessed in both conditions before and after the intervention. Individual responses were analyzed by separating runners into nonresponders, negative responders, and positive responders based on no change, increase, and decrease in barefoot initial loading rate, respectively. No biomechanical changes were found in the group after the intervention. However, condition differences did persist during both preactivation and ground contact. The positive-responder group had greater plantar flexion, increased biceps femoris and gluteus medius preactivation, and decreased rectus femoris muscle activity between testing periods. The negative responders landed in greater barefoot dorsiflexion after the intervention, and the nonresponders did not change. An overall change in ankle flexion angle was associated with a change in initial loading rate (r(2) = 0.345, P = .002) in the barefoot but not shod condition. Eight weeks of progressive barefoot running did not change overall group biomechanics, but subgroups of responders (25% of the entire group) were identified who had specific changes that reduced the initial loading rate. It appears that changes in initial loading rate are explained by changes in ankle flexion angle at initial ground contact. Uninstructed barefoot running training does not reduce initial loading rate in all runners transitioning from shod to barefoot conditions. Some factors have been identified that may assist sports medicine professionals in the evaluation and management of runners at risk of injury. Conscious instruction to runners may be required for them to acquire habitual barefoot running characteristics and to reduce risk of injury. © 2016 The Author(s).

  9. Quantitative evaluation of the viscoelastic properties of the ankle joint complex in patients suffering from ankle sprain by the anterior drawer test.

    PubMed

    Lin, Che-Yu; Shau, Yio-Wha; Wang, Chung-Li; Chai, Huei-Ming; Kang, Jiunn-Horng

    2013-06-01

    Biological tissues such as ligaments exhibit viscoelastic behaviours. Injury to the ligament may induce changes of these viscoelastic properties, and these changes could serve as biomarkers to detect the injury. In the present study, a novel instrument was developed to non-invasive quantify the viscoelastic properties of the ankle in vivo by the anterior drawer test. The purpose of the study was to investigate the reliability of the instrument and to compare the viscoelastic properties of the ankle between patients suffering from ankle sprain and controls. Eight patients and eight controls participated in the present study. The reliability test was performed on three randomly chosen subjects. In patient and control test, both ankles of each subject were tested to evaluate the viscoelastic properties of the ankle. The viscosity index was defined for quantitatively evaluating the viscosity of the ankle. Greater viscosity index was associated with lower viscosity. Injured and uninjured ankles of patient and both ankles of controls were compared. The instrument exhibited excellent test-retest reliability (r > 0.9). Injured ankles exhibited significantly less viscosity than uninjured ankles, since injured ankles of patients had significantly higher viscosity index (8,148 ± 5,266) compared with uninjured ankles of patients (948 ± 617; p = 0.008) and controls (1,326 ± 613; p < 0.001). The study revealed that the viscoelastic properties of the ankle can serve as sensitive and useful clinical biomarkers to differentiate between injured and uninjured ankles. The method may provide a clinical examination for objectively evaluating lateral ankle ligament injuries.

  10. Clinical tests of ankle plantarflexor strength do not predict ankle power generation during walking.

    PubMed

    Kahn, Michelle; Williams, Gavin

    2015-02-01

    The aim of this study was to investigate the relationship between a clinical test of ankle plantarflexor strength and ankle power generation (APG) at push-off during walking. This is a prospective cross-sectional study of 102 patients with traumatic brain injury. Handheld dynamometry was used to measure ankle plantarflexor strength. Three-dimensional gait analysis was performed to quantify ankle power generation at push-off during walking. Ankle plantarflexor strength was only moderately correlated with ankle power generation at push-off (r = 0.43, P < 0.001; 95% confidence interval, 0.26-0.58). There was also a moderate correlation between ankle plantarflexor strength and self-selected walking velocity (r = 0.32, P = 0.002; 95% confidence interval, 0.13-0.48). Handheld dynamometry measures of ankle plantarflexor strength are only moderately correlated with ankle power generation during walking. This clinical test of ankle plantarflexor strength is a poor predictor of calf muscle function during gait in people with traumatic brain injury.

  11. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    NASA Astrophysics Data System (ADS)

    Muzamil, Akhmad; Haries Firmansyah, Achmad

    2017-05-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information.

  12. Incidence and Cost of Ankle Sprains in United States Emergency Departments

    PubMed Central

    Shah, Shweta; Thomas, Abbey C.; Noone, Joshua M.; Blanchette, Christopher M.; Wikstrom, Erik A.

    2016-01-01

    Background: Ankle sprains represent a common injury in emergency departments, but little is known about common complications, procedures, and charges associated with ankle sprains in emergency departments. Hypothesis: There will be a higher incidence of ankle sprains among younger populations (≤25 years old) and in female patients. Complications and procedures will differ between ankle sprain types. Lateral ankle sprains will have lower health care charges relative to medial and high ankle sprains. Study Design: Descriptive epidemiological study. Level of Evidence: Level 3. Methods: A cross-sectional study of the 2010 Nationwide Emergency Department Sample was conducted. Outcomes such as charges, complications, and procedures were compared using propensity score matching between lateral and medial as well as lateral and high ankle sprains. Results: The sample contained 225,114 ankle sprains. Female patients sustained more lateral ankle sprains (57%). After propensity score adjustment, lateral sprains incurred greater charges than medial ankle sprains (median [interquartile range], $1008 [$702-$1408] vs $914 [$741-$1108]; P < 0.01). Among complications, pain in the limb (1.92% vs 0.52%, P = 0.03), sprain of the foot (2.96% vs 0.70%, P < 0.01), and abrasion of the hip/leg (1.57% vs 0.35%, P = 0.03) were more common in lateral than medial ankle sprain events. Among procedures, medial ankle sprains were more likely to include diagnostic radiology (97.91% vs 83.62%, P < 0.01) and less likely to include medications than lateral ankle sprains (0.87% vs 2.79%, P < 0.01). Hospitalizations were more common following high ankle sprains than lateral ankle sprains (24 [6.06%] vs 1 [0.25%], P < 0.01). Conclusion: Ankle sprain emergency department visits account for significant health care charges in the United States. Age- and sex-related differences persist among the types of ankle sprains. Clinical Relevance: The health care charges associated with ankle sprains indicate the need for additional preventive measures. There are age- and sex-related differences in the prevalence of ankle sprains that suggest these demographics may be risk factors for ankle sprains. PMID:27474161

  13. Balance Training Does Not Alter Reliance on Visual Information during Static Stance in Those with Chronic Ankle Instability: A Systematic Review with Meta-Analysis.

    PubMed

    Song, Kyeongtak; Rhodes, Evan; Wikstrom, Erik A

    2018-04-01

    Visual, vestibular, and somatosensory systems contribute to postural control. Chronic ankle instability (CAI) patients have been observed to have a reduced ability to dynamically shift their reliance among sources of sensory information and rely more heavily on visual information during a single-limb stance relative to uninjured controls. Balance training is proven to improve postural control but there is a lack of evidence regarding the ability of balance training programs to alter the reliance on visual information in CAI patients. Our objective was to determine if balance training alters the reliance on visual information during static stance in CAI patients. The PubMed, CINAHL, and SPORTDiscus databases were searched from their earliest available date to October 2017 using a combination of keywords. Study inclusion criteria consisted of (1) using participants with CAI; (2) use of a balance training intervention; and (3) calculation of an objective measure of static postural control during single-limb stance with eyes open and eyes closed. Sample sizes, means, and standard deviations of single-leg balance measures for eyes-open and eyes-closed testing conditions before and after balance training were extracted from the included studies. Eyes-open to eyes-closed effect sizes [Hedges' g and 95% confidence intervals (CI)] before and after balance training were calculated, and between-study variability for heterogeneity and potential risks of publication bias were examined. Six studies were identified. The overall eyes-open to eyes-closed effect size difference between pre- and post-intervention assessments was not significant (Hedges' g effect size = 0.151, 95% CI = - 0.151 to 0.453, p = 0.26). This result indicates that the utilization of visual information in individuals with CAI during the single-leg balance is not altered after balance training. Low heterogeneity (Q(5) = 2.96, p = 0.71, I 2  = 0%) of the included studies and no publication bias were found. On the basis of our systematic review with meta-analysis, it appears that traditional balance training protocols do not alter the reliance on visual information used by CAI patients during a single-leg stance.

  14. Comparison of custom-moulded ankle orthosis with hinged joints and off-the-shelf ankle braces in preventing ankle sprain in lateral cutting movements.

    PubMed

    Lee, Winson C C; Kobayashi, Toshiki; Choy, Barton T S; Leung, Aaron K L

    2012-06-01

    A custom moulded ankle orthosis with hinged joints potentially offers a better control over the subtalar joint and the ankle joint during lateral cutting movements, due to total contact design and increase in material strength. To test the above hypothesis by comparing it to three other available orthoses. Repeated measures. Eight subjects with a history of ankle sprains (Grade 2), and 11 subjects without such history performed lateral cutting movements in four test conditions: 1) non-orthotic, 2) custom-moulded ankle orthosis with hinges, 3) Sport-Stirrup, and 4) elastic ankle sleeve with plastic support. A VICON motion analysis system was used to study the motions at the ankle and subtalar joints. The custom-moulded ankle orthosis significantly lowered the inversion angle at initial contact (p = 0.006) and the peak inversion angle (p = 0.000) during lateral cutting movements in comparison to non-orthotic condition, while the other two orthoses did not. The three orthoses did not affect the plantarflexion motions, which had been suggested by previous studies to be important in shock wave attenuation. The custom-moulded ankle orthosis with hinges could better control inversion and thus expected to better prevent ankle sprain in lateral cutting movements. Custom-moulded ankle orthoses are not commonly used in preventing ankle sprains. This study raises the awareness of the use of custom-moulded ankle orthoses which are expected to better prevent ankle sprains.

  15. Pseudoaneurysm of the Anterior Tibial Artery following Ankle Arthroscopy in a Soccer Player.

    PubMed

    Tonogai, Ichiro; Matsuura, Tetsuya; Iwame, Toshiyuki; Wada, Keizo; Takasago, Tomoya; Goto, Tomohiro; Hamada, Daisuke; Kawatani, Yohei; Fujimoto, Eiki; Kitagawa, Tetsuya; Takao, Shyoichiro; Iwamoto, Seiji; Yamanaka, Moriaki; Harada, Masafumi; Sairyo, Koichi

    2017-01-01

    Ankle arthroscopy carries a lower risk of vascular complications when standard anterolateral and anteromedial portals are used. However, the thickness of the fat pad at the anterior ankle affords little protection for the thin-walled anterior tibial artery, rendering it susceptible to indirect damage during procedures performed on the anterior ankle joint. To our knowledge, only 11 cases of pseudoaneurysm involving the anterior tibial artery after ankle arthroscopy have been described in the literature. Here we reported a rare case of a 19-year-old soccer player who presented with pseudoaneurysm of the anterior tibial artery following ankle arthroscopy using an ankle distraction method and underwent anastomosis for the anterior tibial artery injury. Excessive distraction of the ankle puts the neurovascular structures at greater risk for iatrogenic injury of the anterior tibial artery during ankle arthroscopy. Surgeons should look carefully for postoperative ankle swelling and pain after ankle arthroscopy.

  16. Pseudoaneurysm of the Anterior Tibial Artery following Ankle Arthroscopy in a Soccer Player

    PubMed Central

    Iwame, Toshiyuki; Hamada, Daisuke; Fujimoto, Eiki; Kitagawa, Tetsuya; Takao, Shyoichiro; Iwamoto, Seiji; Yamanaka, Moriaki; Harada, Masafumi

    2017-01-01

    Ankle arthroscopy carries a lower risk of vascular complications when standard anterolateral and anteromedial portals are used. However, the thickness of the fat pad at the anterior ankle affords little protection for the thin-walled anterior tibial artery, rendering it susceptible to indirect damage during procedures performed on the anterior ankle joint. To our knowledge, only 11 cases of pseudoaneurysm involving the anterior tibial artery after ankle arthroscopy have been described in the literature. Here we reported a rare case of a 19-year-old soccer player who presented with pseudoaneurysm of the anterior tibial artery following ankle arthroscopy using an ankle distraction method and underwent anastomosis for the anterior tibial artery injury. Excessive distraction of the ankle puts the neurovascular structures at greater risk for iatrogenic injury of the anterior tibial artery during ankle arthroscopy. Surgeons should look carefully for postoperative ankle swelling and pain after ankle arthroscopy. PMID:28607785

  17. Cosmic Ray Acceleration from Multiple Galactic Wind Shocks

    NASA Astrophysics Data System (ADS)

    Cotter, Cory; Bustard, Chad; Zweibel, Ellen

    2018-01-01

    Cosmic rays still have an unknown origin. Many mechanisms have been suggested for their acceleration including quasars, pulsars, magnetars, supernovae, supernova remnants, and galactic termination shocks. The source of acceleration may be a mixture of these and a different mixture in different energy regimes. Using numerical simulations, we investigate multiple shocks in galactic winds as potential cosmic rays sources. By having shocks closer to the parent galaxy, more particles may diffuse back to the disk instead of being blown out in the wind, as found in Bustard, Zweibel, and Cotter (2017, ApJ) and also Merten, Bustard, Zweibel, and Tjus (to be submitted to ApJ). Specifically, this flux of cosmic rays could contribute to the unexplained "shin" region between the well-known "knee" and "ankle" of the cosmic ray spectrum. We would like to acknowledge support from the National Science Foundation (NSF) Graduate Research Fellowship Program under grant No. DGE-125625 and NSF grant No. AST-1616037.

  18. Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.

    PubMed

    Jamwal, Prashant K; Hussain, Shahid; Tsoi, Yun Ho; Ghayesh, Mergen H; Xie, Sheng Quan

    2017-05-01

    A musculoskeletal model for the ankle complex is vital in order to enhance the understanding of neuro-mechanical control of ankle motions, diagnose ankle disorders and assess subsequent treatments. Motions at the human ankle and foot, however, are complex due to simultaneous movements at the two joints namely, the ankle joint and the subtalar joint. The musculoskeletal elements at the ankle complex, such as ligaments, muscles and tendons, have intricate arrangements and exhibit transient and nonlinear behaviour. This paper develops a musculoskeletal model of the ankle complex considering the biaxial ankle structure. The model provides estimates of overall mechanical characteristics (motion and moments) of ankle complex through consideration of forces applied along ligaments and muscle-tendon units. The dynamics of the ankle complex and its surrounding ligaments and muscle-tendon units is modelled and formulated into a state space model to facilitate simulations. A graphical user interface is also developed during this research in order to include the visual anatomical information by converting it to quantitative information on coordinates. Validation of the ankle model was carried out by comparing its outputs with those published in literature as well as with experimental data obtained from an existing parallel ankle rehabilitation robot. Qualitative agreement was observed between the model and measured data for both, the passive and active ankle motions during trials in terms of displacements and moments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Immediate-term effects of use of an ankle-foot orthosis with an oil damper on the gait of stroke patients when walking without the device.

    PubMed

    Yamamoto, Sumiko; Ibayashi, Setsuro; Fuchi, Masako; Yasui, Tadashi

    2015-04-01

    An ankle-foot orthosis using an oil damper is designed to enable natural movement of the ankle joint. Wearing an ankle-foot orthosis using an oil damper has been demonstrated to assist the first rocker in stroke patients, but its effect on their gait when not wearing it is unclear. To determine the effect of use of ankle-foot orthosis using an oil damper on the gait of stroke patients with hemiparesis when not wearing the ankle-foot orthosis. Crossover study. The gait of eight stroke patients in the chronic phase when not wearing an ankle-foot orthosis was measured, using a three-dimensional motion analysis system, before using the ankle-foot orthosis using an oil damper and then without and with using the ankle-foot orthosis using an oil damper after 3 weeks of use. Differences in gait were compared between the three measurement conditions. Use of ankle-foot orthosis using an oil damper significantly decreased preswing time and significantly increased the positive ankle joint power in stance when not wearing the ankle-foot orthosis using an oil damper. These changes indicate the promising therapeutic effects of ankle-foot orthosis using an oil damper use and suggest the ankle-foot orthosis using an oil damper's potential as a therapeutic device. After 3 weeks of use of an ankle-foot orthosis using an oil damper, which assists the first rocker, the gait of stroke patients in the chronic phase when not wearing the ankle-foot orthosis using an oil damper was improved. Preswing time was significantly decreased and positive ankle joint power was significantly increased. The ankle-foot orthosis using an oil damper, which assists the first rocker function with natural movement of the ankle joint during gait, has the potential to improve the gait of stroke patients after immediate-term use. © The International Society for Prosthetics and Orthotics 2014.

  20. Chronic ankle instability and common fibular nerve injury.

    PubMed

    Benchortane, Michaël; Collado, Hervé; Coudreuse, Jean-Marie; Desnuelle, Claude; Viton, Jean-Michel; Delarque, Alain

    2011-03-01

    The lateral collateral ligaments of the ankle are often damaged in ankle inversion injuries. Ankle inversion may also cause injury to other structures located around the ankle or further away, such as the common fibular nerve. Few descriptions exist of common fibular nerve injury associated with ankle sprains and chronic ankle instability. We describe the case of a patient who sustained common fibular nerve injury during each of two ankle sprain recurrences involving the lateral collateral ligaments. Our objectives are to illustrate the links between common fibular nerve and lateral collateral ligament injuries and to emphasize the importance of the neurological evaluation in patients seen for ankle sprains or chronic ankle instability. Copyright © 2010 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  1. Effect of External Ankle Support on Ankle and Knee Biomechanics During the Cutting Maneuver in Basketball Players.

    PubMed

    Klem, Nardia-Rose; Wild, Catherine Y; Williams, Sian A; Ng, Leo

    2017-03-01

    Despite the high prevalence of lower extremity injuries in female basketball players as well as a high proportion of athletes who wear ankle braces, there is a paucity of research pertaining to the effects of ankle bracing on ankle and knee biomechanics during basketball-specific tasks. To compare the effects of a lace-up brace (ASO), a hinged brace (Active T2), and no ankle bracing (control) on ankle and knee joint kinematics and joint reaction forces in female basketball athletes during a cutting maneuver. Controlled laboratory study. Twenty healthy, semi-elite female basketball players performed a cutting task under both ankle brace conditions (lace-up ankle brace and hinged ankle brace) and a no-brace condition. The 3-dimensional kinematics of the ankle and knee during the cutting maneuver were measured with an 18-camera motion analysis system (250 Hz), and ground-reaction force data were collected by use of a multichannel force plate (2000 Hz) to quantify ankle and knee joint reaction forces. Conditions were randomized using a block randomization method. Compared with the control condition, the hinged ankle brace significantly restricted peak ankle inversion (mean difference, 1.7°; P = .023). No significant difference was found between the lace-up brace and the control condition ( P = .865). Compared with the lace-up brace, the hinged brace significantly reduced ankle and knee joint compressive forces at the time of peak ankle dorsiflexion (mean difference, 1.5 N/kg [ P = .018] and 1.4 N/kg [ P = .013], respectively). Additionally, the hinged ankle brace significantly reduced knee anterior shear forces compared with the lace-up brace both during the deceleration phase and at peak ankle dorsiflexion (mean difference, 0.8 N/kg [ P = .018] and 0.9 N/kg [ P = .011], respectively). The hinged ankle brace significantly reduced ankle inversion compared with the no-brace condition and reduced ankle and knee joint forces compared with the lace-up brace in a female basketball population during a cutting task. Compared with the lace-up brace, the hinged brace may be a better choice of prophylactic ankle support for female basketball players from a biomechanical perspective. However, both braces increased knee internal rotation and knee abduction angles, which may be problematic for a population that already has a high prevalence of knee injuries.

  2. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running.

    PubMed

    Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

    2017-07-01

    In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Descriptive laboratory study. In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries.

  3. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running

    PubMed Central

    Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

    2017-01-01

    Background: In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. Purpose: To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Study Design: Descriptive laboratory study. Methods: In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). Results: For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. Conclusion: FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Clinical Relevance: Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries. PMID:28812039

  4. Clinical assessment of acute lateral ankle sprain injuries (ROAST): 2019 consensus statement and recommendations of the International Ankle Consortium.

    PubMed

    Delahunt, Eamonn; Bleakley, Chris M; Bossard, Daniela S; Caulfield, Brian M; Docherty, Carrie L; Doherty, Cailbhe; Fourchet, François; Fong, Daniel T; Hertel, Jay; Hiller, Claire E; Kaminski, Thomas W; McKeon, Patrick O; Refshauge, Kathryn M; Remus, Alexandria; Verhagen, Evert; Vicenzino, Bill T; Wikstrom, Erik A; Gribble, Phillip A

    2018-06-09

    Lateral ankle sprain injury is the most common musculoskeletal injury incurred by individuals who participate in sports and recreational physical activities. Following initial injury, a high proportion of individuals develop long-term injury-associated symptoms and chronic ankle instability. The development of chronic ankle instability is consequent on the interaction of mechanical and sensorimotor insufficiencies/impairments that manifest following acute lateral ankle sprain injury. To reduce the propensity for developing chronic ankle instability, clinical assessments should evaluate whether patients in the acute phase following lateral ankle sprain injury exhibit any mechanical and/or sensorimotor impairments. This modified Delphi study was undertaken under the auspices of the executive committee of the International Ankle Consortium. The primary aim was to develop recommendations, based on expert (n=14) consensus, for structured clinical assessment of acute lateral ankle sprain injuries. After two modified Delphi rounds, consensus was achieved on the clinical assessment of acute lateral ankle sprain injuries. Consensus was reached on a minimum standard clinical diagnostic assessment. Key components of this clinical diagnostic assessment include: establishing the mechanism of injury, as well as the assessment of ankle joint bones and ligaments. Through consensus, the expert panel also developed the International Ankle Consortium Rehabilitation-Oriented ASsessmenT (ROAST). The International Ankle Consortium ROAST will help clinicians identify mechanical and/or sensorimotor impairments that are associated with chronic ankle instability. This consensus statement from the International Ankle Consortium aims to be a key resource for clinicians who regularly assess individuals with acute lateral ankle sprain injuries. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  5. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    PubMed

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Altered Knee and Ankle Kinematics During Squatting in Those With Limited Weight-Bearing–Lunge Ankle-Dorsiflexion Range of Motion

    PubMed Central

    Dill, Karli E.; Begalle, Rebecca L.; Frank, Barnett S.; Zinder, Steven M.; Padua, Darin A.

    2014-01-01

    Context: Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. Objective: To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Main Outcome Measure(s): Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. Results: We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Conclusions: Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during the single-legged squat. Assessment of ankle DF-ROM using the WBL provided important insight into compensatory movement patterns during squatting, whereas nonweight-bearing passive ankle DF-ROM did not. Improving ankle DF-ROM during the WBL may be an important intervention for altering high-risk movement patterns commonly associated with noncontact anterior cruciate ligament injury. PMID:25144599

  7. Altered knee and ankle kinematics during squatting in those with limited weight-bearing-lunge ankle-dorsiflexion range of motion.

    PubMed

    Dill, Karli E; Begalle, Rebecca L; Frank, Barnett S; Zinder, Steven M; Padua, Darin A

    2014-01-01

    Ankle-dorsiflexion (DF) range of motion (ROM) may influence movement variables that are known to affect anterior cruciate ligament loading, such as knee valgus and knee flexion. To our knowledge, researchers have not studied individuals with limited or normal ankle DF-ROM to investigate the relationship between those factors and the lower extremity movement patterns associated with anterior cruciate ligament injury. To determine, using 2 different measurement techniques, whether knee- and ankle-joint kinematics differ between participants with limited and normal ankle DF-ROM. Cross-sectional study. Sports medicine research laboratory. Forty physically active adults (20 with limited ankle DF-ROM, 20 with normal ankle DF-ROM). Ankle DF-ROM was assessed using 2 techniques: (1) nonweight-bearing ankle DF-ROM with the knee straight, and (2) weight-bearing lunge (WBL). Knee flexion, knee valgus-varus, knee internal-external rotation, and ankle DF displacements were assessed during the overhead-squat, single-legged squat, and jump-landing tasks. Separate 1-way analyses of variance were performed to determine whether differences in knee- and ankle-joint kinematics existed between the normal and limited groups for each assessment. We observed no differences between the normal and limited groups when classifying groups based on nonweight-bearing passive-ankle DF-ROM. However, individuals with greater ankle DF-ROM during the WBL displayed greater knee-flexion and ankle-DF displacement and peak knee flexion during the overhead-squat and single-legged squat tasks. In addition, those individuals also demonstrated greater knee-varus displacement during the single-legged squat. Greater ankle DF-ROM assessed during the WBL was associated with greater knee-flexion and ankle-DF displacement during both squatting tasks as well as greater knee-varus displacement during the single-legged squat. Assessment of ankle DF-ROM using the WBL provided important insight into compensatory movement patterns during squatting, whereas nonweight-bearing passive ankle DF-ROM did not. Improving ankle DF-ROM during the WBL may be an important intervention for altering high-risk movement patterns commonly associated with noncontact anterior cruciate ligament injury.

  8. All-inside, anatomical lateral ankle stabilization for revision and complex primary lateral ankle stabilization: a technique guide.

    PubMed

    Prissel, Mark A; Roukis, Thomas S

    2014-12-01

    Lateral ankle instability is a common mechanical problem that often requires surgical management when conservative efforts fail. Historically, myriad open surgical approaches have been proposed. Recently, consideration for arthroscopic management of lateral ankle instability has become popular, with promising results. Unfortunately, recurrent inversion ankle injury following lateral ankle stabilization can occur and require revision surgery. To date, arthroscopic management for revision lateral ankle stabilization has not been described. We present a novel arthroscopic technique combining an arthroscopic lateral ankle stabilization kit with a suture anchor ligament augmentation system for revision as well as complex primary lateral ankle stabilization. © 2014 The Author(s).

  9. Musculoskeletal management of a patient with a history of chronic ankle sprains: identifying rupture of peroneal brevis and peroneal longus with diagnostic ultrasonography.

    PubMed

    Bruin, Dick B; von Piekartz, Harry

    2014-09-01

    The purpose of this case report is to describe the use of mobilization and eccentric exercise training for a patient with ankle pain and a history of chronic ankle sprains and discuss the course of diagnostic decision making when the patient did not respond to care. A 48-year-old police officer who had sustained multiple ankle sprains throughout his life presented with pain and restriction in his ability to walk, run, and work. The Global Rating of Change Scale score was - 6, the Numeric Pain Rating Scale score was 7/10, and the Lower Extremity Functional Scale score was - 33. Palpation of the peroneus longus and brevis muscles and inversion with overpressure reproduced the chief concern (Numeric Pain Rating Scale 7/10). The patient was initially diagnosed with chronic peroneal tendinopathy. Treatment included lateral translation mobilization of the talocrural joint combined with eccentric exercise using an elastic band for the peroneal muscles. The patient reported improvement in pain and function during the course of intervention but not as rapidly as expected. Therefore, follow-up ultrasonographic imaging and radiography were performed. These studies revealed partial rupture of the peroneal brevis muscle and total rupture of the peroneal longus muscle. A patient with long-term concerns of the foot complex with a diagnosis of peroneal tendinopathy showed slight improvement with eccentric exercises combined with manual therapy of the talocrural joint. After a course of treatment but minimal response, a diagnosis of tendon rupture was confirmed with diagnostic ultrasonography. Clinicians should be aware that when injuries do not improve with care, tendon rupture should be considered.

  10. A lower-extremities kinematic comparison of deep-water running styles and treadmill running.

    PubMed

    Killgore, Garry L; Wilcox, Anthony R; Caster, Brian L; Wood, Terry M

    2006-11-01

    The purpose of this investigation was to identify a deep-water running (DWR) style that most closely approximates terrestrial running, particularly relative to the lower extremities. Twenty intercollegiate distance runners (women, N = 12; men, N = 8) were videotaped from the right sagittal view while running on a treadmill (TR) and in deep water at 55-60% of their TR VO(2)max using 2 DWR styles: cross-country (CC) and high-knee (HK). Variables of interest were horizontal (X) and vertical (Y) displacement of the knee and ankle, stride rate (SR), VO(2), heart rate (HR), and rating of perceived exertion (RPE). Multivariate omnibus tests revealed statistically significant differences for RPE (p < 0.001). The post hoc pairwise comparisons revealed significant differences between TR and both DWR styles (p < 0.001). The kinematic variables multivariate omnibus tests were found to be statistically significant (p < 0.001 to p < 0.019). The post hoc pairwise comparisons revealed significant differences in SR (p < 0.001) between TR (1.25 +/- 0.08 Hz) and both DWR styles and also between the CC (0.81 +/- 0.08 Hz) and HK (1.14 +/- 0.10 Hz) styles of DWR. The CC style of DWR was found to be similar to TR with respect to linear ankle displacement, whereas the HK style was significantly different from TR in all comparisons made for ankle and knee displacement. The CC style of DWR is recommended as an adjunct to distance running training if the goal is to mimic the specificity of the ankle linear horizontal displacement of land-based running, but the SR will be slower at a comparable percentage of VO(2)max.

  11. Greater ankle strength, anaerobic and aerobic capacity, and agility predict Ground Combat Military Occupational School graduation in female Marines.

    PubMed

    Allison, Katelyn Fleishman; Keenan, Karen A; Wohleber, Meleesa F; Perlsweig, Katherine A; Pletcher, Erin R; Lovalekar, Mita; Beals, Kim; Coleman, Lawrence C; Nindl, Bradley C

    2017-11-01

    Women can serve in all military occupational specialties (MOS); however, musculoskeletal and physiological characteristics that predict successful completion of ground combat MOS schools by female Marines are unknown. To determine which demographic, musculoskeletal, and physiological characteristics predict graduation from infantry and vehicle ground combat MOS schools in female Marines. Prospective cohort study. Prior to MOS school, the following were assessed in 62 female Marines (22.0±3.0yrs, 163.9±5.8cm, 63.4±7.2kg): isokinetic shoulder, trunk, and knee and isometric ankle strength; body composition; anaerobic power (AP)/capacity (AC); maximal oxygen uptake (VO 2 max); and field-based fitness tests (broad jump, medicine ball throw, pro-agility). Both absolute and normalized (%body mass: %BM) values were utilized for strength, AP, AC, and VO 2 max. Select tests from each Marine's most recent Physical Fitness Test (PFT: abdominal crunches, 3-mile run time) and Combat Fitness Test (CFT: Maneuver Under Fire, Movement to Contact) were recorded. Participants were classified as graduated (N=46) or did not graduate (N=16). Simple logistic regression was performed to determine predictors of MOS school graduation. Statistical significance was set a priori at α=0.05. Absolute and normalized ankle inversion and eversion strength, normalized anaerobic capacity, absolute and normalized VO 2 max, right pro-agility, and PFT 3-mile run time significantly predicted MOS school graduation (p<0.05). Greater ankle strength, better agility, and greater anaerobic and aerobic capacity are important for successful completion of ground combat MOS school in female Marines. Prior to entering ground combat MOS school, it is recommended that female Marines should train to optimize these mobility-centric characteristics. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  12. [Tibiotalocalcaneal arthrodesis using a distally introduced femur nail (DFN)].

    PubMed

    Grass, René

    2005-10-01

    Simultaneous arthrodesis of ankle and subtalar joints and, at the same sitting, correction of axial malalignment of hindfoot, treatment of bony defects and of sequelae of circulatory disturbances after multiple previous interventions. Internal stabilization with a short distal femur nail. Restitution of a pain-free weight bearing. Failure of arthrodesis of ankle and subtalar joint causing pain in patients with severely altered bone structures particularly at the level of the talar dome. Malalignment of hind- and/or forefoot after previous arthrodesis of ankle and subtalar joint. Failure of conservative therapy in both above-enumerated conditions. Poor skin or soft-tissue conditions. Reflex sympathetic dystrophy. Acute osteitis/osteomyelitis. Posterolateral approach. Resection of the articular cartilage and the areas of sclerosis of the ankle and of the posterior facet of the subtalar joint. Interposition of bone grafts harvested from the iliac crest. Correction of malalignment of hind- and forefoot. Locked nailing with a short distal femur nail. Fitting of a flexible custom-made arthrodesis boot; weight bearing in boot not exceeding half of body weight until the 8th week. Gait training. After 12 weeks wearing of normal shoes. Radiographs after 6 and 12 weeks. Between February 1, 2002 and September 1, 2003 this technique was performed on 18 feet in 17 patients (three women, 14 men, average age 53 years [38.9-73.7 years]). Average duration of follow-up: 1.2 years (0.6-2.1 years). The goal of surgery was reached in all patients. Subjective assessment: 14 times good, three times satisfactory. Four complications: one loss of nail purchase, one dislocation of locking screw, one breakage of locking bolt, one prolonged bone healing.

  13. Wireless, accelerometry-triggered functional electrical stimulation of the peroneal nerve in spastic paresis: A randomized, controlled pilot study.

    PubMed

    Ghédira, Mouna; Albertsen, Inke Marie; Mardale, Valentina; Gracies, Jean-Michel; Bayle, Nicolas; Hutin, Émilie

    2017-01-01

    In hemiparesis, Wireless, Accelerometry-Triggered Functional Electrical Stimulation (WAFES) of the common peroneal nerve may hold intrinsic rehabilitative properties. The present pilot study analyzes WAFES against conventional therapy. Twenty adults with chronic hemiparesis (time since lesion 7(6) years; median (interquartile range)) were randomized into 2 10-week rehabilitation programs: a 45-minute (min) daily walk using WAFES (n = 10) and conventional physical therapy (CPT), 3 × 45 min per week (n = 10). The outcomes were 3D sagittal speed measurements, step length, cadence, maximal amplitude and velocity of hip, knee, and ankle during gait at free and fast speed without WAFES and clinical assessments of plantar flexor angles of shortening, spasticity, and weakness, before (D1) and after the program (W10). Kinematic and spasticity improvements occurred in the WAFES group only: (i) ankle dorsiflexion velocity (D1 versus W10, free speed, WAFES, +4(5)°/sec, p = 0.002; CPT, -3(8)°/sec, p = 0.007; fast, WAFES, +8(6)°/sec, p = 0.03; CPT, -1(4)°/sec, NS); (ii) maximal passive ankle dorsiflexion (WAFES,+26(85)%; CPT,+0(27)%; group-visit, p = 0.007) and knee flexion (WAFES, +13(17)%; CPT, -1(11)%; group-visit, p = 0.006) at fast speed only; (iii) 15% plantar flexor spasticity grade reduction with WAFES. Over 10 weeks, gait training using WAFES improved ankle and knee kinematics and reduced plantar flexor spasticity compared with CPT. Studies with longer WAFES use should explore functional effects.

  14. Clinical examination and magnetic resonance imaging in the assessment of ankle sprains treated with an orthosis.

    PubMed

    De Simoni, C; Wetz, H H; Zanetti, M; Hodler, J; Jacob, H; Zollinger, H

    1996-03-01

    This is a prospective clinical study of treatment of ankle sprains with an ankle brace that permits ankle dorsiflexion and plantarflexion of 20 degrees, but limits inversion and eversion for 6 weeks. The ankle brace is followed by physiotherapy for another 6 weeks. Thirty patients were evaluated with clinical examination and magnetic resonance (MR) imaging before treatment and after 12 weeks of treatment. MR imaging revealed acute tears in the anterior talofibular ligament in all 30 ankles (100%) and tears in the calcaneofibular ligament in 25 of 30 ankles (83%). At 12 weeks after injury, MR evidence of healing was present for the anterior talofibular ligament in 22 of 30 ankles (73%) and for the calcaneofibular ligament in 23 of 25 ankles (92%). Postural sway analysis after therapy was used to quantify functional stability of the ankle. There was no correlation with MR findings, but there was a correlation with the subjective impression of functional instability. Twenty-eight of 30 patients (93%) had a functionally stable ankle after 12 weeks of treatment. MR findings after ankle sprain could not predict clinical outcome.

  15. What Is a Foot and Ankle Surgeon?

    MedlinePlus

    ... Foot & Ankle Surgeon? A A A | Print | Share What is a Foot & Ankle Surgeon? Foot and ankle ... of conditions that affect people of every age. What education has a foot and ankle surgeon received? ...

  16. A review of football injuries on third and fourth generation artificial turfs compared with natural turf.

    PubMed

    Williams, Sean; Hume, Patria A; Kara, Stephen

    2011-11-01

    Football codes (rugby union, soccer, American football) train and play matches on natural and artificial turfs. A review of injuries on different turfs was needed to inform practitioners and sporting bodies on turf-related injury mechanisms and risk factors. Therefore, the aim of this review was to compare the incidence, nature and mechanisms of injuries sustained on newer generation artificial turfs and natural turfs. Electronic databases were searched using the keywords 'artificial turf', 'natural turf', 'grass' and 'inj*'. Delimitation of 120 articles sourced to those addressing injuries in football codes and those using third and fourth generation artificial turfs or natural turfs resulted in 11 experimental papers. These 11 papers provided 20 cohorts that could be assessed using magnitude-based inferences for injury incidence rate ratio calculations pertaining to differences between surfaces. Analysis showed that 16 of the 20 cohorts showed trivial effects for overall incidence rate ratios between surfaces. There was increased risk of ankle injury playing on artificial turf in eight cohorts, with incidence rate ratios from 0.7 to 5.2. Evidence concerning risk of knee injuries on the two surfaces was inconsistent, with incidence rate ratios from 0.4 to 2.8. Two cohorts showed beneficial inferences over the 90% likelihood value for effects of artificial surface on muscle injuries for soccer players; however, there were also two harmful, four unclear and five trivial inferences across the three football codes. Inferences relating to injury severity were inconsistent, with the exception that artificial turf was very likely to have harmful effects for minor injuries in rugby union training and severe injuries in young female soccer players. No clear differences between surfaces were evident in relation to training versus match injuries. Potential mechanisms for differing injury patterns on artificial turf compared with natural turf include increased peak torque and rotational stiffness properties of shoe-surface interfaces, decreased impact attenuation properties of surfaces, differing foot loading patterns and detrimental physiological responses. Changing between surfaces may be a precursor for injury in soccer. In conclusion, studies have provided strong evidence for comparable rates of injury between new generation artificial turfs and natural turfs. An exception is the likely increased risk of ankle injury on third and fourth generation artificial turfs. Therefore, ankle injury prevention strategies must be a priority for athletes who play on artificial turf regularly. Clarification of effects of artificial surfaces on muscle and knee injuries are required given inconsistencies in incidence rate ratios depending on the football code, athlete, gender or match versus training.

  17. Control of acceleration during sudden ankle supination in people with unstable ankles.

    PubMed

    Vaes, P; Van Gheluwe, B; Duquet, W

    2001-12-01

    Comparative study of differences in functional control during ankle supination in the standing position in matched stable and unstable ankles (ex post facto design). To document acceleration and deceleration during ankle supination in the standing position and to determine differences in control of supination perturbation between stable and unstable ankles. Repetitive ankle sprain can be explained by mechanical instability only in a minority of cases. Exercise therapy for ankle instability is based on clinical experience. Joint stability has not yet been measured in dynamic situations that are similar to the situations leading to a traumatic sprain. The process of motor control during accelerating ankle supination has not been adequately addressed in the literature. Patients with complaints of ankle instability (16 unstable ankles) and nonimpaired controls (18 stable ankles) were examined (N = 17 subjects, 10 women and 7 men). The average age was 23.7 +/- 5.0 years (range, 20-41 y). Control of supination speed was studied during 50 degrees of ankle supination in the standing position using accelerometry (total supination time and deceleration times) and electromyography (latency time). Timing of motor response was estimated by measuring electromechanical delay. The presence of an early, sudden, and presumably passive slowdown of ankle supination in the standing position was observed. Peroneal muscle motor response was detected before the end of the supination. Unstable ankles showed significantly shorter total supination time (109.3 ms versus 124.1 ms) and significantly longer latency time (58.9 ms versus 47.7 ms). Functional control in unstable ankles is less efficient in decelerating the ankle during the supination test procedures used in our study. Our conclusions are based on significantly faster total supination and significantly slower electromyogram response in unstable ankles. The results support the hypothesis that both decelerating the total supination movement during balance disturbance and enhancing the speed of evertor activation through exercise can be specific therapy goals.

  18. Management of End-Stage Ankle Arthritis: Cost-Utility Analysis Using Direct and Indirect Costs.

    PubMed

    Nwachukwu, Benedict U; McLawhorn, Alexander S; Simon, Matthew S; Hamid, Kamran S; Demetracopoulos, Constantine A; Deland, Jonathan T; Ellis, Scott J

    2015-07-15

    Total ankle replacement and ankle fusion are costly but clinically effective treatments for ankle arthritis. Prior cost-effectiveness analyses for the management of ankle arthritis have been limited by a lack of consideration of indirect costs and nonoperative management. The purpose of this study was to compare the cost-effectiveness of operative and nonoperative treatments for ankle arthritis with inclusion of direct and indirect costs in the analysis. Markov model analysis was conducted from a health-systems perspective with use of direct costs and from a societal perspective with use of direct and indirect costs. Costs were derived from the 2012 Nationwide Inpatient Sample (NIS) and expressed in 2013 U.S. dollars; effectiveness was expressed in quality-adjusted life years (QALYs). Model transition probabilities were derived from the available literature. The principal outcome measure was the incremental cost-effectiveness ratio (ICER). In the direct-cost analysis for the base case, total ankle replacement was associated with an ICER of $14,500/QALY compared with nonoperative management. When indirect costs were included, total ankle replacement was both more effective and resulted in $5900 and $800 in lifetime cost savings compared with the lifetime costs following nonoperative management and ankle fusion, respectively. At a $100,000/QALY threshold, surgical management of ankle arthritis was preferred for patients younger than ninety-six years and total ankle replacement was increasingly more cost-effective in younger patients. Total ankle replacement, ankle fusion, and nonoperative management were the preferred strategy in 83%, 12%, and 5% of the analyses, respectively; however, our model was sensitive to patient age, the direct costs of total ankle replacement, the failure rate of total ankle replacement, and the probability of arthritis after ankle fusion. Compared with nonoperative treatment for the management of end-stage ankle arthritis, total ankle replacement is preferred over ankle fusion; total ankle replacement is cost-saving when indirect costs are considered and demonstrates increasing cost-effectiveness in younger patients. As indications for and utilization of total ankle replacement increase, continued research is needed to define appropriate subgroups of patients who would likely derive the greatest clinical benefit from that procedure. Economic and decision analysis Level II. See Instructions for Authors for a complete description of levels of evidence. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  19. Results of an Internet survey determining the most frequently used ankle scores by AOFAS members.

    PubMed

    Lau, Johnny T C; Mahomed, Nizar M; Schon, Lew C

    2005-06-01

    With technological advances in ankle arthroplasty, there has been parallel development in the outcome instruments used to assess the results of surgery. The literature recommends the use of valid, reliable, and responsive ankle scores, but the ankle scores commonly used in clinical practice remain undefined. An internet survey of members of the American Orthopaedic Foot and Ankle Society (AOFAS) was conducted to determine which three ankle scores they perceived as most commonly used in the literature, which ones they believe are validated, which ones they prefer, and which they use in practice. According to respondents, the three most commonly used scores were the AOFAS Ankle score, the Foot Function Index (FFI), and the Musculoskeletal Outcomes Data Evaluation and Management System (MODEMS). The respondents believed that the AOFAS Ankle score, FFI, and MODEMS were validated. The FFI and MODEMS are validated, but the AOFAS ankle score is not validated. Most respondents preferred using the AOFAS Ankle score. The use of the empirical AOFAS Ankle score continues among AOFAS members.

  20. Acute and chronic lateral ankle instability in the athlete.

    PubMed

    Chan, Keith W; Ding, Bryan C; Mroczek, Kenneth J

    2011-01-01

    Ankle sprain injuries are the most common injury sustained during sporting activities. Three-quarters of ankle injuries involve the lateral ligamentous complex, comprised of the anterior talofibular ligament (ATFL), the calcaneofibular ligament (CFL), and the posterior talofibular ligament (PTFL). The most common mechanism of injury in lateral ankle sprains occurs with forced plantar flexion and inversion of the ankle as the body's center of gravity rolls over the ankle. The ATFL followed by the CFL are the most commonly injured ligaments. Eighty percent of acute ankle sprains make a full recovery with conservative management, while 20% of acute ankle sprains develop mechanical or functional instability, resulting in chronic ankle instability. Treatment of acute ankle sprains generally can be successfully managed with a short period of immobilization that is followed by functional rehabilitation. Patients with chronic ankle instability who fail functional rehabilitation are best treated with a Brostrom-Gould anatomic repair or, in those patients with poor tissue quality or undergoing revision surgery, an anatomic reconstruction.

  1. Weight-training injuries. Common injuries and preventative methods.

    PubMed

    Mazur, L J; Yetman, R J; Risser, W L

    1993-07-01

    The use of weights is an increasingly popular conditioning technique, competitive sport and recreational activity among children, adolescents and young adults. Weight-training can cause significant musculoskeletal injuries such as fractures, dislocations, spondylolysis, spondylolisthesis, intervertebral disk herniation, and meniscal injuries of the knee. Although injuries can occur during the use of weight machines, most apparently happen during the aggressive use of free weights. Prepubescent and older athletes who are well trained and supervised appear to have low injury rates in strength training programmes. Good coaching and proper weightlifting techniques and other injury prevention methods are likely to minimise the number of musculoskeletal problems caused by weight-training.

  2. A new animal model for modulating myosin isoform expression by altered mechanical activity

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Ma, E.; McCue, S. A.; Smith, E.; Herrick, R. E.; Baldwin, K. M.

    1992-01-01

    The purpose of this study was to develop a new rodent model that is capable of delineating the importance of mechanical loading on myosin heavy chain (MHC) isoform expression of the plantar and dorsi flexor muscles of the ankle. The essential components of this system include 1) stimulating electrodes that are chronically implanted into a muscle, allowing for the control of the activation pattern of the target muscle(s); 2) a training apparatus that translates the moment of the ankle into a linear force; and 3) a computer-controlled Cambridge 310 ergometer. The isovelocity profile of the ergometer ensured that the medial gastrocnemius (MG) produced forces that were > 90% of maximal isometric force (Po), and the eccentric contractions of the tibialis anterior (TA) were typically 120% of Po. Both the concentric and eccentric training programs produced statistically significant increases in the muscle mass of the MG (approximately 15%) and TA (approximately 7%) as well as a decrease in myofibrillar adenosinetriphosphatase activity. Both the white and red regions of the MG and TA exhibited significant increases in the relative content of the type IIa MHC and concomitant decreases in type IIb MHC expression. Although the red regions of the MG and red TA contained approximately 10% type I MHC, the training programs did not affect this isoform. It appears that when a fast-twitch muscle is stimulated at a high frequency (100 Hz) and required to contract either concentrically or eccentrically under high loading conditions, the expression of the type IIa MHC isoform will be upregulated, whereas that of the type IIb MHC will be concomitantly downregulated.

  3. Factors Influencing Obstacle Crossing Performance in Patients with Parkinson's Disease

    PubMed Central

    Liao, Ying-Yi; Yang, Yea-Ru; Wu, Yih-Ru; Wang, Ray-Yau

    2014-01-01

    Background Tripping over obstacles is the major cause of falls in community-dwelling patients with Parkinson's disease (PD). Understanding the factors associated with the obstacle crossing behavior may help to develop possible training programs for crossing performance. This study aimed to identify the relationships and important factors determining obstacle crossing performance in patients with PD. Methods Forty-two idiopathic patients with PD (Hoehn and Yahr stages I to III) participated in this study. Obstacle crossing performance was recorded by the Liberty system, a three-dimensional motion capture device. Maximal isometric strength of the lower extremity was measured by a handheld dynamometer. Dynamic balance and sensory integration ability were assessed using the Balance Master system. Movement velocity (MV), maximal excursion (ME), and directional control (DC) were obtained during the limits of stability test to quantify dynamic balance. The sum of sensory organization test (SOT) scores was used to quantify sensory organization ability. Results Both crossing stride length and stride velocity correlated significantly with lower extremity muscle strength, dynamic balance control (forward and sideward), and sum of SOT scores. From the regression model, forward DC and ankle dorsiflexor strength were identified as two major determinants for crossing performance (R2 = .37 to.41 for the crossing stride length, R2 = .43 to.44 for the crossing stride velocity). Conclusions Lower extremity muscle strength, dynamic balance control and sensory integration ability significantly influence obstacle crossing performance. We suggest an emphasis on muscle strengthening exercises (especially ankle dorsiflexors), balance training (especially forward DC), and sensory integration training to improve obstacle crossing performance in patients with PD. PMID:24454723

  4. A computerized dynamic posturography (CDP) program to reduce fall risk in a community dwelling older adult with chronic stroke: a case report.

    PubMed

    Hakim, Renée M; Davies, Lauren; Jaworski, Kate; Tufano, Nina; Unterstein, Allison

    2012-04-01

    A systematic review by Barclay-Goddard et al (2004) reported that force platform feedback improved stance symmetry but not sway, clinical balance outcomes, or measures of independence in adults with stroke. However, the role of computerized dynamic posturography (CDP) systems was not explored. The purpose of this case report was to describe a CDP training program to improve balance and reduce fall risk in a patient with a diagnosis of chronic stroke. A 61-year-old patient 8 years poststroke participated in 1 hour of CDP training, three times a week over a period of 6 weeks. Examination was conducted before and after intervention using the Sensory Organization Test (SOT), Limits of Stability (LOS) test, and Weight Bearing/Squat Symmetry test on a CDP system, and clinical testing with the Berg Balance Scale (BBS), Timed Up and Go (TUG), Activities-specific Balance Confidence (ABC) scale, 30-second Chair Stand (CS), and range of motion of the ankle joints. The patient improved in sensory integration abilities on the SOT for conditions 4, 5, and 6, and maximum excursion abilities improved by a range of 23-103% on the LOS test. Scores on the BBS increased from 37/56 to 47/56, which indicated reduced fall risk and her ABC score improved from 50% to 70%. Ankle ROM improved bilaterally by 6 to 8 degrees. This CDP training program showed promise as a systematic, objective method to reduce fall risk with improved overground performance of balance tasks in an individual with chronic stroke.

  5. Post-Traumatic Osteoarthritis of the Ankle: A Distinct Clinical Entity Requiring New Research Approaches

    PubMed Central

    Delco, Michelle L.; Kennedy, John G.; Bonassar, Lawrence J.; Fortier, Lisa A.

    2017-01-01

    The diagnosis of ankle osteoarthritis (OA) is increasing as a result of advancements in non-invasive imaging modalities such as magnetic resonance imaging, improved arthroscopic surgical technology and heightened awareness among clinicians. Unlike OA of the knee, primary or age-related ankle OA is rare, with the majority of ankle OA classified as post-traumatic (PTOA). Ankle trauma, more specifically ankle sprain, is the single most common athletic injury, and no effective therapies are available to prevent or slow progression of PTOA. Despite the high incidence of ankle trauma and OA, ankle-related OA research is sparse, with the majority of clinical and basic studies pertaining to the knee joint. Fundamental differences exist between joints including their structure and molecular composition, response to trauma, susceptibility to OA, clinical manifestations of disease, and response to treatment. Considerable evidence suggests that research findings from knee should not be extrapolated to the ankle, however few ankle-specific preclinical models of PTOA are currently available. The objective of this article is to review the current state of ankle OA investigation, highlighting important differences between the ankle and knee that may limit the extent to which research findings from knee models are applicable to the ankle joint. Considerations for the development of new ankle-specific, clinically relevant animal models are discussed. PMID:27764893

  6. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    PubMed Central

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  7. Close Contact Casting vs Surgery for Initial Treatment of Unstable Ankle Fractures in Older Adults: A Randomized Clinical Trial.

    PubMed

    Willett, Keith; Keene, David J; Mistry, Dipesh; Nam, Julian; Tutton, Elizabeth; Handley, Robert; Morgan, Lesley; Roberts, Emma; Briggs, Andrew; Lall, Ranjit; Chesser, Timothy J S; Pallister, Ian; Lamb, Sarah E

    2016-10-11

    Ankle fractures cause substantial morbidity in older persons. Surgical fixation is the contemporary intervention but is associated with infection and other healing complications. To determine whether initial fracture treatment with close contact casting, a molded below-knee cast with minimal padding, offers outcome equivalent to that with immediate surgery, with fewer complications and less health resource use. This was a pragmatic, equivalence, randomized clinical trial with blinded outcome assessors. A pilot study commenced in May 2004, followed by multicenter recruitment from July 2010 to November 2013; follow-up was completed May 2014. Recruitment was from 24 UK major trauma centers and general hospitals. Participants were 620 adults older than 60 years with acute, overtly unstable ankle fracture. Exclusions were serious limb or concomitant disease or substantial cognitive impairment. Participants were randomly assigned to surgery (n = 309) or casting (n = 311). Casts were applied in the operating room under general or spinal anesthesia by a trained surgeon. The primary 6-month, per-protocol outcome was the Olerud-Molander Ankle Score at 6 months (OMAS; range, 0-100; higher scores indicate better outcomes and fewer symptoms), equivalence prespecified as ±6 points. Secondary outcomes were quality of life, pain, ankle motion, mobility, complications, health resource use, and patient satisfaction. Among 620 adults (mean age, 71 years; 460 [74%] women) who were randomized, 593 (96%) completed the study. Nearly all participants (579/620; 93%) received allocated treatment; 52 of 275 (19%) who initially received casting later converted to surgery, which was allowable in the casting treatment pathway to manage early loss of fracture reduction. At 6 months, casting resulted in ankle function equivalent to that with surgery (OMAS score, 66.0 [95% CI, 63.6-68.5] for surgery vs 64.5 [95% CI, 61.8-67.2] for casting; mean difference, -0.6 [95% CI, -3.9 to 2.6]; P for equivalence = .001). Infection and wound breakdown were more common with surgery (29/298 [10%] vs 4/275 [1%]; odds ratio [OR], 7.3 [95% CI, 2.6-20.2]), as were additional operating room procedures (18/298 [6%] for surgery and 3/275 [1%] for casting; OR, 5.8 [95% CI, 1.8-18.7]). Radiologic malunion was more common in the casting group (38/249 [15%] vs 8/274 [3%] for surgery; OR, 6.0 [95% CI, 2.8-12.9]). Casting required less operating room time compared with surgery (mean difference [minutes/participant], -54 [95% CI, -58 to -50]). There were no significant differences in other secondary outcomes: quality of life, pain, ankle motion, mobility, and patient satisfaction. Among older adults with unstable ankle fracture, the use of close contact casting compared with surgery resulted in similar functional outcomes at 6 months. Close contact casting may be an appropriate treatment for such patients. isrctn.com Identifier: ISRCTN04180738.

  8. Anterior ankle arthroscopy, distraction or dorsiflexion?

    PubMed

    de Leeuw, Peter A J; Golanó, Pau; Clavero, Joan A; van Dijk, C Niek

    2010-05-01

    Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly limited by the overlying anatomy which includes the neurovascular bundle. We hypothesize that in ankle dorsiflexion the anterior neurovascular bundle will move away anteriorly from the ankle joint, whereas in ankle distraction the anterior neurovascular bundle is pulled tight towards the joint, thereby decreasing the safe anterior working area. Six fresh frozen ankle specimens, amputated above the knee, were scanned with computed tomography. Prior to scanning the anterior tibial artery was injected with contrast fluid and subsequently each ankle was scanned both in ankle dorsiflexion and in distraction. A special device was developed to reproducibly obtain ankle dorsiflexion and distraction in the computed tomography scanner. The distance between the anterior border of the inferior tibial articular facet and the posterior border of the anterior tibial artery was measured. The median distance from the anterior border of the inferior tibial articular facet to the posterior border of the anterior tibial artery in ankle dorsiflexion and distraction was 0.9 cm (range 0.7-1.5) and 0.7 cm (range 0.5-0.8), respectively. The distance in ankle dorsiflexion significantly exceeded the distance in ankle distraction (P = 0.03). The current study shows a significantly increased distance between the anterior distal tibia and the overlying anterior neurovascular bundle with the ankle in a slightly dorsiflexed position as compared to the distracted ankle position. We thereby conclude that the distracted ankle position puts the neurovascular structures more at risk for iatrogenic damage when performing anterior ankle arthroscopy.

  9. Anterior ankle arthroscopy, distraction or dorsiflexion?

    PubMed Central

    Golanó, Pau; Clavero, Joan A.; van Dijk, C. Niek

    2010-01-01

    Anterior ankle arthroscopy can basically be performed by two different methods; the dorsiflexion- or distraction method. The objective of this study was to determine the size of the anterior working area for both the dorsiflexion and distraction method. The anterior working area is anteriorly limited by the overlying anatomy which includes the neurovascular bundle. We hypothesize that in ankle dorsiflexion the anterior neurovascular bundle will move away anteriorly from the ankle joint, whereas in ankle distraction the anterior neurovascular bundle is pulled tight towards the joint, thereby decreasing the safe anterior working area. Six fresh frozen ankle specimens, amputated above the knee, were scanned with computed tomography. Prior to scanning the anterior tibial artery was injected with contrast fluid and subsequently each ankle was scanned both in ankle dorsiflexion and in distraction. A special device was developed to reproducibly obtain ankle dorsiflexion and distraction in the computed tomography scanner. The distance between the anterior border of the inferior tibial articular facet and the posterior border of the anterior tibial artery was measured. The median distance from the anterior border of the inferior tibial articular facet to the posterior border of the anterior tibial artery in ankle dorsiflexion and distraction was 0.9 cm (range 0.7–1.5) and 0.7 cm (range 0.5–0.8), respectively. The distance in ankle dorsiflexion significantly exceeded the distance in ankle distraction (P = 0.03). The current study shows a significantly increased distance between the anterior distal tibia and the overlying anterior neurovascular bundle with the ankle in a slightly dorsiflexed position as compared to the distracted ankle position. We thereby conclude that the distracted ankle position puts the neurovascular structures more at risk for iatrogenic damage when performing anterior ankle arthroscopy. PMID:20217392

  10. Total ankle replacement systems available in the United States.

    PubMed

    Coetzee, J Chris; Deorio, James K

    2010-01-01

    Ankle replacement continues to be a viable option for treating patients with ankle arthritis. Over the past 10 years, there has been a significant increase in the number of ankle replacement systems available for use. Current controversy centers on whether fixed- or mobile-bearing devices are most advantageous. Most total ankle systems used outside the United States are mobile-bearing devices, whereas ankle replacement systems used in the United States are all essentially fixed-bearing devices. Not all ankles with degenerative changes are amenable to replacement surgery, and several exclusion criteria are well documented. Ankle replacement is especially complicated because of the ankle's proximity to the foot and the important role that the balance and alignment of the foot play in the success of the ankle replacement. Foot deformities should be treated before or at the time of ankle replacement surgery. Ignoring foot deformities can lead to failure of the ankle replacement. It is also of paramount importance to consider the stability of the ankle ligaments. An unstable ankle with a varus or valgus deformity of more than 20 degrees is probably not amenable to ankle replacement. There are currently no reliable options to predictably reconstruct the lateral or medial ligaments in these severe deformities. It is important to be aware of the ankle replacement systems currently available in the United States and understand the key features of each design. Devices approved by the US Food and Drug Administration, a device that is awaiting approval, and a device that is being evaluated by the Food and Drug Administration in a prospective randomized clinical trial are discussed, along with an objective comparison of fixed- and mobile-bearing devices.

  11. Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking

    PubMed Central

    Bai, Xuefei; Ewins, David; Crocombe, Andrew D.

    2017-01-01

    Improved walking comfort has been linked with better bio-mimicking of the prosthetic ankle. This study investigated if a hydraulic ankle/foot can provide enough motion in both the sagittal and frontal planes during level and camber walking and if the hydraulic ankle/foot better mimics the biological ankle moment pattern compared with a fixed ankle/foot device. Five active male unilateral trans-femoral amputees performed level ground walking at normal and fast speeds and 2.5° camber walking in both directions using their own prostheses fitted with an “Echelon” hydraulic ankle/foot and an “Esprit” fixed ankle/foot. Ankle angles and the Trend Symmetry Index of the ankle moments were compared between prostheses and walking conditions. Significant differences between prostheses were found in the stance plantarflexion and dorsiflexion peaks with a greater range of motion being reached with the Echelon foot. The Echelon foot also showed significantly improved bio-mimicry of the ankle resistance moment in all walking conditions, either compared with the intact side of the same subject or with the “normal” mean curve from non-amputees. During camber walking, both types of ankle/foot devices showed similar changes in the frontal plane ankle angles. Results from a questionnaire showed the subjects were more satisfied with Echelon foot. PMID:28704428

  12. Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking.

    PubMed

    Bai, Xuefei; Ewins, David; Crocombe, Andrew D; Xu, Wei

    2017-01-01

    Improved walking comfort has been linked with better bio-mimicking of the prosthetic ankle. This study investigated if a hydraulic ankle/foot can provide enough motion in both the sagittal and frontal planes during level and camber walking and if the hydraulic ankle/foot better mimics the biological ankle moment pattern compared with a fixed ankle/foot device. Five active male unilateral trans-femoral amputees performed level ground walking at normal and fast speeds and 2.5° camber walking in both directions using their own prostheses fitted with an "Echelon" hydraulic ankle/foot and an "Esprit" fixed ankle/foot. Ankle angles and the Trend Symmetry Index of the ankle moments were compared between prostheses and walking conditions. Significant differences between prostheses were found in the stance plantarflexion and dorsiflexion peaks with a greater range of motion being reached with the Echelon foot. The Echelon foot also showed significantly improved bio-mimicry of the ankle resistance moment in all walking conditions, either compared with the intact side of the same subject or with the "normal" mean curve from non-amputees. During camber walking, both types of ankle/foot devices showed similar changes in the frontal plane ankle angles. Results from a questionnaire showed the subjects were more satisfied with Echelon foot.

  13. The Effects of the Air Cast Sports Stirrup on Postural Sway in Normal Males

    DTIC Science & Technology

    1993-01-01

    Pittsburgh Pittsburgh, PAI Paula Sammarone, MA, ATC Date Rangos School of Health Sciences I Director, Athletic Training Duquesne University I Pittsburgh, PA I...sprain occurs, tearing of the ligaments also occur, which results in de- afferentization of the articular nerves (20). 1 Several treatment modalities...intermediate ranges. Articular nerve fibers have lower tensile strength than collagen fibers (21). Since most inversion injuries of the ankle result in some

  14. Ankle instability effects on joint position sense when stepping across the active movement extent discrimination apparatus.

    PubMed

    Witchalls, Jeremy; Waddington, Gordon; Blanch, Peter; Adams, Roger

    2012-01-01

    Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Descriptive laboratory study. University clinical laboratory. Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Difference in scores between groups with stable and unstable ankles and between test repeats. Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus.

  15. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude

    PubMed Central

    2010-01-01

    Background To improve design of robotic lower limb exoskeletons for gait rehabilitation, it is critical to identify neural mechanisms that govern locomotor adaptation to robotic assistance. Previously, we demonstrated soleus muscle recruitment decreased by ~35% when walking with a pneumatically-powered ankle exoskeleton providing plantar flexor torque under soleus proportional myoelectric control. Since a substantial portion of soleus activation during walking results from the stretch reflex, increased reflex inhibition is one potential mechanism for reducing soleus recruitment when walking with exoskeleton assistance. This is clinically relevant because many neurologically impaired populations have hyperactive stretch reflexes and training to reduce the reflexes could lead to substantial improvements in their motor ability. The purpose of this study was to quantify soleus Hoffmann (H-) reflex responses during powered versus unpowered walking. Methods We tested soleus H-reflex responses in neurologically intact subjects (n=8) that had trained walking with the soleus controlled robotic ankle exoskeleton. Soleus H-reflex was tested at the mid and late stance while subjects walked with the exoskeleton on the treadmill at 1.25 m/s, first without power (first unpowered), then with power (powered), and finally without power again (second unpowered). We also collected joint kinematics and electromyography. Results When the robotic plantar flexor torque was provided, subjects walked with lower soleus electromyographic (EMG) activation (27-48%) and had concomitant reductions in H-reflex amplitude (12-24%) compared to the first unpowered condition. The H-reflex amplitude in proportion to the background soleus EMG during powered walking was not significantly different from the two unpowered conditions. Conclusion These findings suggest that the nervous system does not inhibit the soleus H-reflex in response to short-term adaption to exoskeleton assistance. Future studies should determine if the findings also apply to long-term adaption to the exoskeleton. PMID:20659331

  16. Prevalence of chronic ankle instability in high school and division I athletes.

    PubMed

    Tanen, Leah; Docherty, Carrie L; Van Der Pol, Barbara; Simon, Janet; Schrader, John

    2014-02-01

    The purpose of this study was to determine the prevalence of chronic ankle instability among high school and collegiate athletes. Descriptive epidemiological survey. Athletes from four high schools and a division I university were contacted to participate. For collegiate athletes, a questionnaire packet was distributed during preparticipation physicals. For high school athletes, parental consent was obtained and then questionnaires were distributed during preparticipation physicals, parent meetings, or individual team meetings. All athletes completed the Cumberland Ankle Instability Tool for both their left and right ankles. Subjects also provided general demographic data and completed the Ankle Instability Instrument regarding history of lateral ankle sprains and giving way. Athletes were identified as having chronic ankle instability if they scored less than 24 on the Cumberland Ankle Instability Tool. Of the 512 athletes who completed and returned surveys, 23.4% were identified as having chronic ankle instability. High school athletes were more likely to have chronic ankle instability than their collegiate counterparts (P < .001). Chronic ankle instability was more prevalent among women than among men in both high school (P = .01) and collegiate settings (P = .01). Findings of this study revealed differences in the distribution of chronic ankle instability that warrant further study.

  17. Musculoskeletal ultrasonography delineates ankle symptoms in rheumatoid arthritis.

    PubMed

    Toyota, Yukihiro; Tamura, Maasa; Kirino, Yohei; Sugiyama, Yumiko; Tsuchida, Naomi; Kunishita, Yosuke; Kishimoto, Daiga; Kamiyama, Reikou; Miura, Yasushi; Minegishi, Kaoru; Yoshimi, Ryusuke; Ueda, Atsuhisa; Nakajima, Hideaki

    2017-05-01

    To clarify the use of musculoskeletal ultrasonography (US) of ankle joints in rheumatoid arthritis (RA). Consecutive RA patients with or without ankle symptoms participated in the study. The US, clinical examination (CE), and patients' visual analog scale for pain (pVAS) for ankles were assessed. Prevalence of tibiotalar joint synovitis and tenosynovitis were assessed by grayscale (GS) and power Doppler (PD) US using a semi-quantitative grading (0-3). The positive US and CE findings were defined as GS score ≥2 and/or PD score ≥1, and joint swelling and/or tenderness, respectively. Multivariate analysis with the generalized linear mixed model was performed by assigning ankle pVAS as a dependent variable. Among a total of 120 ankles from 60 RA patients, positive ankle US findings were found in 21 (35.0%) patients. The concordance rate of CE and US was moderate (kappa 0.57). Of the 88 CE negative ankles, US detected positive findings in 9 (10.2%) joints. Multivariate analysis revealed that ankle US, clinical disease activity index, and foot Health Assessment Questionnaire, but not CE, was independently associated with ankle pVAS. US examination is useful to illustrate RA ankle involvement, especially for patients who complain ankle pain but lack CE findings.

  18. Isolated syndesmosis ankle injury.

    PubMed

    Valkering, Kars P; Vergroesen, Diederik A; Nolte, Peter A

    2012-12-01

    Isolated syndesmosis injuries often go unrecognized and are diagnosed as lateral ankle sprains; however, they are more disabling than lateral ankle sprains. The reported incidence of isolated syndesmosis injuries in acute ankle sprains ranges between 1% and 16%. When ankle disability lasts for more than 2 months after an ankle sprain, the incidence increases to 23.6%. Diagnostic workup may include stress radiographs, magnetic resonance imaging, or diagnostic arthroscopy. A simple stress test radiograph may reveal an unstable grade III syndesmosis sprain that may go unrecognized on plain anteroposterior and mortise or lateral radiographs of the ankle. The duration of symptoms in isolated syndesmosis injury is longer and more severe, often leading to chronic symptoms or ankle instability requiring operative stabilization.This article describes the clinical presentation, injury classification, and operative stabilization techniques of isolated syndesmosis injuries. The authors performed their preferred operative stabilization technique for isolated syndesmosis injury-arthroscopic debridement of the ankle with syndesmotic stabilization with a syndesmotic screw-in 4 patients. All patients were evaluated 1 year postoperatively with subjective and objective assessment scales. Three of 4 patients showed good improvement of general subjective ankle symptoms and subjective ankle instability rating and a high Sports Ankle Rating System score after 1 year. Copyright 2012, SLACK Incorporated.

  19. Population prevalence and distribution of ankle pain and symptomatic radiographic ankle osteoarthritis in community dwelling older adults: A systematic review and cross-sectional study

    PubMed Central

    Murray, Charlotte; Rathod, Trishna; Bowen, Catherine J.; Menz, Hylton B.; Roddy, Edward

    2018-01-01

    Objectives To identify by systematic review published prevalence estimates of radiographic ankle osteoarthritis (OA) and to subsequently estimate the prevalence of ankle pain and symptomatic, radiographic ankle OA within community-dwelling older adults from North Staffordshire, UK. Methods Electronic databases were searched using terms for ankle, osteoarthritis and radiography. Data regarding population, radiographic methods, definitions and prevalence estimates of ankle OA were extracted from papers meeting predetermined selection criteria. Adults aged ≥50 years and registered with four general practices in North Staffordshire were mailed a health questionnaire. Ankle pain in the previous month was determined using a foot and ankle pain manikin. Respondents reporting pain in or around the foot in the last 12 months were invited to attend a research clinic where weight-bearing, antero-posterior and lateral ankle radiographs were obtained and scored for OA using a standardised atlas. Prevalence estimates for ankle pain and symptomatic, radiographic ankle OA were calculated using multiple imputation and weighted logistic regression, and stratified by age, gender and socioeconomic status. Results Eighteen studies were included in the systematic review. The methods of radiographic classification of ankle OA were poorly reported and showed heterogeneity. No true general population prevalence estimates of radiographic ankle OA were found, estimates in select sporting and medical community-dwelling populations ranged from 0.0–97.1%. 5109 participants responded to the health survey questionnaire (adjusted response 56%). Radiographs were obtained in 557 participants. The prevalence of ankle pain was 11.7% (10.8,12.6) and symptomatic, radiographic ankle OA grade≥2 was 3.4% (2.3, 4.5) (grade≥1: 8.8% (7.9,9.8); grade = 3: 1.9% (1.0,2.7). Prevalence was higher in females, younger adults (50–64 years) and those with routine/manual occupations. Conclusion No general population prevalence estimates of radiographic ankle OA were identified in the published literature. Our prevalence study found that ankle pain was common in community-dwelling older adults, whereas moderate to severe symptomatic, radiographic ankle OA occurred less frequently. Further investigations of the prevalence of ankle OA using more sensitive imaging modalities are warranted. PMID:29708977

  20. [The application of contralateral acupuncture for rehabilitation after acute closed achilles tendon rupture].

    PubMed

    Zhang, Dawei; Ye, Xiangming; Zhang, Xiaofeng; Zhang, Wenjie

    2017-03-12

    To observe the differences of affected-side ankle plantar flexors function and clinical efficacy between contralateral acupuncture combined with rehabilitation training and rehabilitation training alone for patients with acute closed achilles tendon rupture. Seventy-four patients with acute closed achilles tendon rupture were randomly assigned to an observation group and a control group, 37 cases in each group. Patients in the both groups were treated with routine rehabilitation training after the operation for 12 weeks; besides, patients in the observation group were treated with contralateral acupuncture at Zusanli (ST 36), Yanglingquan (GB 34), Chengshan (BL 57), Taixi (KI 3) before rehabilitation training in the first 6 weeks. The treatment were given once a day, 5 times as 1 course with 2 d at the interval. The Biodex System 4 multi-joint dynamometers system was applied to test and compare affected-side plantar flexion peak torque (PFPT), peak torque/body weight (PT/BW) and total work (TW) after 6 weeks, 8 weeks and 12 weeks. The efficacy evaluation was conducted after 6 weeks and 12 weeks, and the follow-up visit was conducted 12 weeks after end of treatment. The PFPT, PT/BW, TW in the observation group were significantly superior to those in the control group after 8 weeks and 12 weeks of treatment (all P <0.05); compared with those after 6 weeks, the PFPT, PT/BW, TW were significantly increased after 8 weeks of treatment (all P <0.05); compared with those after 6 weeks and 8 weeks, the PFPT, PT/BW, TW were significantly increased after 12 weeks of treatment (all P <0.05). After 12 weeks of treatment and at follow-up visit, the clinical excellent and effective rates in the observation group were higher than those in the control group[89.2% (33/37) vs 70.3% (26/37), 94.6% (35/37) vs 75.7% (28/37), both P <0.05]. During the postoperative rehabilitation of acute closed achilles tendon rupture, the contralateral acupuncture combined with rehabilitation training could improve ankle plantar flexors function and clinical efficacy better than rehabilitation training only.

  1. Range of Motion of the Ankle According to Pushing Force, Gender and Knee Position.

    PubMed

    Cho, Kang Hee; Jeon, Yumi; Lee, Hyunkeun

    2016-04-01

    To investigate the difference of range of motion (ROM) of ankle according to pushing force, gender and knee position. One hundred and twenty-eight healthy adults (55 men, 73 women) between the ages of 20 and 51, were included in the study. One examiner measured the passive range of motion (PROM) of ankle by Dualer IQ Inclinometers and Commander Muscle Testing. ROM of ankle dorsiflexion (DF) and plantarflexion (PF) according to change of pushing force and knee position were measured at prone position. There was significant correlation between ROM and pushing force, the more pushing force leads the more ROM at ankle DF and ankle PF. Knee flexion of 90° position showed low PF angle and high ankle DF angle, as compared to the at neutral position of knee joint. ROM of ankle DF for female was greater than for male, with no significant difference. ROM of ankle PF for female was greater than male regardless of the pushing force. To our knowledge, this is the first study to assess the relationship between pushing force and ROM of ankle joint. There was significant correlation between ROM of ankle and pushing force. ROM of ankle PF for female estimated greater than male regardless of the pushing force and the number of measurement. The ROM of the ankle is measured differently according to the knee joint position. Pushing force, gender and knee joint position are required to be considered when measuring the ROM of ankle joint.

  2. Differences in kinematic control of ankle joint motions in people with chronic ankle instability.

    PubMed

    Kipp, Kristof; Palmieri-Smith, Riann M

    2013-06-01

    People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Footwear and ankle stability in the basketball player.

    PubMed

    Petrov, O; Blocher, K; Bradbury, R L; Saxena, A; Toy, M L

    1988-04-01

    Ankle stability in basketball players is affected by footwear. Athletic shoe manufacturers have introduced specialized lacing systems and high-top performance shoes to improve ankle stability. These performance shoes not only aid in preventing ankle injuries, but also protect injured ankles.

  4. Ankle Plantarflexor Spasticity Does Not Restrict the Recovery of Ankle Plantarflexor Strength or Ankle Power Generation for Push-Off During Walking Following Traumatic Brain Injury.

    PubMed

    Williams, Gavin; Banky, Megan; Olver, John

    2016-01-01

    The main aim of this project was to determine the impact of plantarflexor spasticity on muscle performance for ambulant people with traumatic brain injury (TBI). A large metropolitan rehabilitation hospital. Seventy-two ambulant people with TBI who were attending physiotherapy for mobility limitations. Twenty-four participants returned for a 6-month follow-up reassessment. Cross-sectional cohort study. Self-selected walking speed, Tardieu scale, ankle plantarflexor strength, and ankle power generation (APG). Participants with ankle plantarflexor spasticity had significantly lower self-selected walking speed; however, there was no significant difference in ankle plantarflexor strength or APG. Participants with ankle plantarflexor spasticity were not restricted in the recovery of self-selected walking speed, ankle plantarflexor strength, or APG, indicating equivalent ability to improve their mobility over time despite the presence of spasticity. Following TBI, people with ankle plantarflexor spasticity have significantly greater mobility limitations than those without spasticity, yet retain the capacity for recovery of self-selected walking speed, ankle plantarflexor strength, and APG.

  5. Design and development of a novel viscoelastic ankle-foot prosthesis based on the human ankle biomechanics.

    PubMed

    Safaeepour, Zahra; Esteki, Ali; Tabatabai Ghomshe, Farhad; Mousavai, Mohammad E

    2014-10-01

    In the present study, a new approach was applied to design and develop a viscoelastic ankle-foot prosthesis. The aim was to replicate the intact ankle moment-angle loop in the normal walking speed. The moment-angle loop of intact ankle was divided into four parts, and the appropriate models including two viscoelastic units of spring-damper mechanism were considered to replicate the passive ankle dynamics. The developed prototype was then tested on a healthy subject with the amputee gait simulator. The result showed that prosthetic ankle moment-angle loop was similar to that of intact ankle with the distinct four periods. The findings suggest that the prototype successfully provided the human ankle passive dynamics. Therefore, the viscoelastic units could imitate the four periods of a normal gait. The novel viscoelastic foot prosthesis could provide natural ankle dynamics in a gait cycle. Applying simple but biomechanical approach is suggested in conception of new designs for prosthetic ankle-foot mechanisms. © The International Society for Prosthetics and Orthotics 2014.

  6. Evidence-based treatment for ankle injuries: a clinical perspective

    PubMed Central

    Lin, Chung-Wei Christine; Hiller, Claire E; de Bie, Rob A

    2010-01-01

    The most common ankle injuries are ankle sprain and ankle fracture. This review discusses treatments for ankle sprain (including the management of the acute sprain and chronic instability) and ankle fracture, using evidence from recent systematic reviews and randomized controlled trials. After ankle sprain, there is evidence for the use of functional support and non-steroidal anti-inflammatory drugs. There is weak evidence suggesting that the use of manual therapy may lead to positive short-term effects. Electro-physical agents do not appear to enhance outcomes and are not recommended. Exercise may reduce the occurrence of recurrent ankle sprains and may be effective in managing chronic ankle instability. After surgical fixation for ankle fracture, an early introduction of activity, administered via early weight-bearing or exercise during the immobilization period, may lead to better outcomes. However, the use of a brace or orthosis to enable exercise during the immobilization period may also lead to a higher rate of adverse events, suggesting that this treatment regimen needs to be applied judiciously. After the immobilization period, the focus of treatment for ankle fracture should be on a progressive exercise program. PMID:21655420

  7. Computer Based Training: Field Deployable Trainer and Shared Virtual Reality

    NASA Technical Reports Server (NTRS)

    Mullen, Terence J.

    1997-01-01

    Astronaut training has traditionally been conducted at specific sites with specialized facilities. Because of its size and nature the training equipment is generally not portable. Efforts are now under way to develop training tools that can be taken to remote locations, including into orbit. Two of these efforts are the Field Deployable Trainer and Shared Virtual Reality projects. Field Deployable Trainer NASA has used the recent shuttle mission by astronaut Shannon Lucid to the Russian space station, Mir, as an opportunity to develop and test a prototype of an on-orbit computer training system. A laptop computer with a customized user interface, a set of specially prepared CD's, and video tapes were taken to the Mir by Ms. Lucid. Based upon the feedback following the launch of the Lucid flight, our team prepared materials for the next Mir visitor. Astronaut John Blaha will fly on NASA/MIR Long Duration Mission 3, set to launch in mid September. He will take with him a customized hard disk drive and a package of compact disks containing training videos, references and maps. The FDT team continues to explore and develop new and innovative ways to conduct offsite astronaut training using personal computers. Shared Virtual Reality Training NASA's Space Flight Training Division has been investigating the use of virtual reality environments for astronaut training. Recent efforts have focused on activities requiring interaction by two or more people, called shared VR. Dr. Bowen Loftin, from the University of Houston, directs a virtual reality laboratory that conducts much of the NASA sponsored research. I worked on a project involving the development of a virtual environment that can be used to train astronauts and others to operate a science unit called a Biological Technology Facility (BTF). Facilities like this will be used to house and control microgravity experiments on the space station. It is hoped that astronauts and instructors will ultimately be able to share common virtual environments and, using telephone links, conduct interactive training from separate locations.

  8. Clinical evaluation of a new noninvasive ankle arthrometer.

    PubMed

    Nauck, Tanja; Lohrer, Heinz; Gollhofer, Albert

    2010-06-01

    A nonradiographic arthrometer was developed to objectively quantify anterior talar drawer instability in stable and unstable ankles. Diagnostic validity of this device was previously demonstrated in a cadaver study. The aim of the present study was to validate the ankle arthrometer in an in vivo setting. Twenty-three subjects participated in the study. An orthopedic surgeon first performed a manual anterior talar drawer test to classify the subjects' ankles as stable or unstable. The subjects were then evaluated using the ankle arthrometer, and filled out a validated self-reported questionnaire (German version of the Foot and Ankle Ability Measure [FAAM-G]). Ankle stiffness was calculated from the low linear region (40-60 N) of the load deformation curves obtained from the ankle arthrometer. Reliability testing of these stiffness values was done based on load deformation curves, with 150 and 200 N maximum anterior drawer loads applied in the ankle arthrometer. Using the manual anterior drawer test, 16 ankles were classified as stable and 7 were classified as unstable. Arthrometer stiffness analysis differentiated stable from unstable ankles (P = 0.00 and P = 0.01, respectively). Test-retest demonstrated an accurate reliability (intraclass correlation coefficient = 0.80). A significant correlation was found between both FAAM-G subscales and the arthrometer stiffness values (r = 0.43 and 0.54; P = 0.04 and 0.01). Discussion Subjects with and without mechanical ankle instability could be differentiated by ankle arthrometer stiffness analysis and the FAAM-G questionnaire results. This nonradiographic device may be relevant for screening athletes at risk for ankle injuries, for clinical follow-up studies, and implementing preventive strategies. Validity and reliability of the new ankle arthrometer is demonstrated in a small cohort in an in vivo setting.

  9. Systematic review of postural control and lateral ankle instability, part I: can deficits be detected with instrumented testing.

    PubMed

    McKeon, Patrick O; Hertel, Jay

    2008-01-01

    To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability.

  10. Ankle joint distraction arthroplasty for severe ankle arthritis.

    PubMed

    Xu, Yang; Zhu, Yuan; Xu, Xiang-Yang

    2017-02-28

    Ankle distraction arthroplasty is one option for the treatment of severe ankle arthritis in young patients. The outcomes and factors predicting success in distraction arthroplasty are poorly understood. From January 2011 to May 2015, 16 patients who had undergone ankle distraction arthroplasty for ankle arthritis were operated, including six males and ten females. All patients were available for analysis. The main outcome measurements included joint space on weight bearing radiographs, AOFAS-AH scores (American Orthopaedic Foot & Ankle Society ankle-hindfoot score), VAS scores and SF-36 scores. All 16 patients were followed for a mean follow-up of 40.9 ± 14.7 months (range, 17-67 months). Fourteen of the 16 patients still had their native ankle joints. One patient had undergone ankle arthrodesis 1 year after the operation and one patient had converted to spontaneous ankle fusion at the 3 years follow-up postoperative. The VAS score improved from 5.9 ± 0.8 to 3.7 ± 2.2 (p = 0.0028). The mean AOFAS-AH score improved from 41.9 ± 7.2 preoperatively to 68.1 ± 20.0 postoperatively (p = 0.001). The mean SF-36 score improved from 43.1 ± 7.6 preoperatively to 62.7 ± 18.8 postoperatively (p = 0.002). A weight-bearing ankle space larger than 3 mm at 1 year following distraction is a positive predictive factor. In this study, the treatment of ankle motion distraction for end stage ankle arthritis showed benefit in 9/16 (56.25%) patients at 41 months. It is a promising method for young patients with severe ankle arthritis.

  11. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    PubMed

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p < 0.05). The results demonstrate that the novel ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Ankle Instability Effects on Joint Position Sense When Stepping Across the Active Movement Extent Discrimination Apparatus

    PubMed Central

    Witchalls, Jeremy; Waddington, Gordon; Blanch, Peter; Adams, Roger

    2012-01-01

    Context Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. Objective To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Design Descriptive laboratory study. Setting University clinical laboratory. Patients or Other Participants Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Intervention(s) Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Main Outcome Measure(s) Difference in scores between groups with stable and unstable ankles and between test repeats. Results Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). Conclusions The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus. PMID:23182010

  13. [Chronic ankle instability in sports -- a review for sports physicians].

    PubMed

    Valderrabano, V; Leumann, A; Pagenstert, G; Frigg, A; Ebneter, L; Hintermann, B

    2006-12-01

    Chronic ankle instability represents a typical sports injury which can mostly be seen in basketball, soccer, orienteering and other high risk sports. 20 to 40 % of the acute ankle sprains develop into chronic ankle instability. From a sports orthopaedic point of view, chronic ankle instability can be subdivided into a lateral, medial or a combination of both so called rotational ankle instability. From a pathophysiological point of view, chronic ankle instability can be either mechanical with a structural ligament lesion or functional with loss of the neuromuscular control. For the sports physician, the chronic ankle instability is a difficult entity as the diagnosis is usually complex and the therapy usually surgical. This review on chronic ankle instability addresses pathomechanism, diagnostics, indications for conservative and surgical treatments, and possible long-term sequelae, as ligamentous osteoarthritis.

  14. A novel cryotherapy compression wrap in the management of acute ankle sprains: potential use for special operators on the battlefield.

    PubMed

    Boland, Mark; Mulligan, Ivan; Payette, Justin; Serres, Jennifer; O'Hara, Reginald; Maupin, Genny

    2012-01-01

    Musculoskeletal injuries related to training and operational missions frequently affect military personnel. A common treatment for these injuries is the PRICE (protection, rest, ice, compression, and elevation) method, which is time consuming and impractical in the field. Therefore, the primary objective of this study was to determine the effectiveness of the cryotherapy wrap compared to a traditional treatment in the management of acute ankle sprains. A randomized controlled clinical trial was conducted in a university research laboratory with 13 subjects (9 males and 4 females) with the following physical characteristics: age (yr) 20.6 ? 2.2, height (cm) 177.0 ? 14.3, weight (kg) 76.6 ? 20.6, and body mass index (kg/m2) 24.1 ? 3.7. Participants were instructed to perform PRICE with a traditional ice pack and compression wrap (control group) or with an Arctic Ease? cryotherapy wrap (test group) for 48 hours following enrollment in the study. The Numeric Pain Scale, Foot and Ankle Ability Measure, and ankle/foot volumetric measurement were performed at initial presentation and 24-hour, 48-hour, and 7-day follow-up intervals. While the comparison of the Numeric Pain Scale scores, Foot and Ankle Ability Measure scores, and volumetric changes between groups revealed no statistically significant differences (p > 0.01), there was an 86% compliance rate for subjects in the cryotherapy wrap group compared to a 17% compliance rate of subjects in the control group. The cryotherapy wraps performed comparably to ice therapy and therefore may be especially applicable to military personnel required to operate in austere and hostile environments where traditional therapies are unrealistic. Although this pilot study did not demonstrate that the cryotherapy wraps produce statistically superior results, trends emerged in the data suggesting that subject compliance rate may be improved by using an alternative form of cryotherapy compression, which could lead to better management of pain, edema, and functional recovery. Future research should include a larger sample size to verify this claim. 2012.

  15. An overview of the education and training component of RICIS

    NASA Technical Reports Server (NTRS)

    Freedman, Glenn B.

    1987-01-01

    Research in education and training according to RICIS (Research Institute for Computing and Information Systems) program focuses on means to disseminate knowledge, skills, and technological advances rapidly, accurately, and effectively. A range of areas for study include: artificial intelligence, hypermedia and full-text retrieval strategies, use of mass storage and retrieval options such as CD-ROM and laser disks, and interactive video and interactive media presentations.

  16. Development of a Big Data Application Architecture for Navy Manpower, Personnel, Training, and Education

    DTIC Science & Technology

    2016-03-01

    science IT information technology JBOD just a bunch of disks JDBC java database connectivity xviii JPME Joint Professional Military Education JSO...Joint Service Officer JVM java virtual machine MPP massively parallel processing MPTE Manpower, Personnel, Training, and Education NAVMAC Navy...27 external database, whether it is MySQL , Oracle, DB2, or SQL Server (Teller, 2015). Connectors optimize the data transfer by obtaining metadata

  17. Is Soleus Muscle-Tendon-Unit Behavior Related to Ground-Force Application During the Sprint Start?

    PubMed

    Schrödter, Erik; Brüggemann, Gert-Peter; Willwacher, Steffen

    2017-04-01

    To describe the stretch-shortening behavior of ankle plantar-flexing muscle-tendon units (MTUs) during the push-off in a sprint start. Fifty-four male (100-m personal best: 9.58-12.07 s) and 34 female (100-m personal best: 11.05-14.00 s) sprinters were analyzed using an instrumented starting block and 2-dimensional high-speed video imaging. Analysis was performed separately for front and rear legs, while accounting for block obliquities and performance levels. The results showed clear signs of a dorsiflexion in the upper ankle joint (front block 15.8° ± 7.4°, 95% CI 13.2-18.2°; rear block 8.0° ± 5.7°, 95% CI 6.4-9.7°) preceding plantar flexion. When observed in their natural block settings, the athletes' block obliquity did not significantly affect push-off characteristics. It seems that the stretch-shortening-cycle-like motion of the soleus MTU has an enhancing influence on push-off force generation. This study provides the first systematic observation of ankle-joint stretch-shortening behavior for sprinters of a wide range of performance levels. The findings highlight the importance of reactive-type training for the improvement of starting performance. Nonetheless, future studies need to resolve the independent contributions of tendinous and muscle-fascicle structures to overall MTU performance.

  18. Six-Minute Walk Test Performance in Persons With Multiple Sclerosis While Using Passive or Powered Ankle-Foot Orthoses.

    PubMed

    Boes, Morgan K; Bollaert, Rachel E; Kesler, Richard M; Learmonth, Yvonne C; Islam, Mazharul; Petrucci, Matthew N; Motl, Robert W; Hsiao-Wecksler, Elizabeth T

    2018-03-01

    To determine whether a powered ankle-foot orthosis (AFO) that provides dorsiflexor and plantar flexor assistance at the ankle can improve walking endurance of persons with multiple sclerosis (MS). Short-term intervention. University research laboratory. Participants (N=16) with a neurologist-confirmed diagnosis of MS and daily use of a prescribed custom unilateral passive AFO. Three 6-minute walk tests (6MWTs), 1 per footwear condition: shoes (no AFO), prescribed passive AFO, and portable powered AFO (PPAFO). Assistive devices were worn on the impaired limb. Distance walked and metabolic cost of transport were recorded during each 6MWT and compared between footwear conditions. Each participant completed all three 6MWTs within the experimental design. PPAFO use resulted in a shorter 6MWT distance than did a passive AFO or shoe use. No differences were observed in metabolic cost of transport between footwear conditions. The current embodiment of this PPAFO did not improve endurance walking performance during the 6MWT in a sample of participants with gait impairment due to MS. Further research is required to determine whether expanded training or modified design of this powered orthosis can be effective in improving endurance walking performance in persons with gait impairment due to MS. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Ankle plantarflexion strength in rearfoot and forefoot runners: a novel clusteranalytic approach.

    PubMed

    Liebl, Dominik; Willwacher, Steffen; Hamill, Joseph; Brüggemann, Gert-Peter

    2014-06-01

    The purpose of the present study was to test for differences in ankle plantarflexion strengths of habitually rearfoot and forefoot runners. In order to approach this issue, we revisit the problem of classifying different footfall patterns in human runners. A dataset of 119 subjects running shod and barefoot (speed 3.5m/s) was analyzed. The footfall patterns were clustered by a novel statistical approach, which is motivated by advances in the statistical literature on functional data analysis. We explain the novel statistical approach in detail and compare it to the classically used strike index of Cavanagh and Lafortune (1980). The two groups found by the new cluster approach are well interpretable as a forefoot and a rearfoot footfall groups. The subsequent comparison study of the clustered subjects reveals that runners with a forefoot footfall pattern are capable of producing significantly higher joint moments in a maximum voluntary contraction (MVC) of their ankle plantarflexor muscles tendon units; difference in means: 0.28Nm/kg. This effect remains significant after controlling for an additional gender effect and for differences in training levels. Our analysis confirms the hypothesis that forefoot runners have a higher mean MVC plantarflexion strength than rearfoot runners. Furthermore, we demonstrate that our proposed stochastic cluster analysis provides a robust and useful framework for clustering foot strikes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Accuracy and Measurement Error of the Medial Clear Space of the Ankle.

    PubMed

    Metitiri, Ogheneochuko; Ghorbanhoseini, Mohammad; Zurakowski, David; Hochman, Mary G; Nazarian, Ara; Kwon, John Y

    2017-04-01

    Measurement of the medial clear space (MCS) is commonly used to assess deltoid ligament competency and mortise stability when managing ankle fractures. Lacking knowledge of the true anatomic width measured, previous studies have been unable to measure accuracy of measurement. The purpose of this study was to determine MCS measurement error and accuracy and any influencing factors. Using 3 normal transtibial ankle cadaver specimens, deltoid and syndesmotic ligaments were transected and the mortise widened and affixed at a width of 6 mm (specimen 1) and 4 mm (specimen 2). The mortise was left intact in specimen 3. Radiographs were obtained of each cadaver at varying degrees of rotation. Radiographs were randomized, and providers measured the MCS using a standardized technique. Lack of accuracy as well as lack of precision in measurement of the medial clear space compared to a known anatomic value was present for all 3 specimens tested. There were no significant differences in mean delta with regard to level of training for specimens 1 and 2; however, with specimen 3, staff physicians showed increased measurement accuracy compared with trainees. Accuracy and precision of MCS measurements are poor. Provider experience did not appear to influence accuracy and precision of measurements for the displaced mortise. This high degree of measurement error and lack of precision should be considered when deciding treatment options based on MCS measurements.

  1. Comparison of energy efficiency between Wearable Power-Assist Locomotor (WPAL) and two types of knee-ankle-foot orthoses with a medial single hip joint (MSH-KAFO).

    PubMed

    Yatsuya, Kanan; Hirano, Satoshi; Saitoh, Eiichi; Tanabe, Shigeo; Tanaka, Hirotaka; Eguchi, Masayuki; Katoh, Masaki; Shimizu, Yasuhiro; Uno, Akito; Kagaya, Hitoshi

    2018-01-01

    To compare the energy efficiency of Wearable Power-Assist Locomotor (WPAL) with conventional knee-ankle-foot orthoses (MSH-KAFO) such as Hip and Ankle Linked Orthosis (HALO) or Primewalk. Cross over case-series. Chubu Rosai Hospital, Aichi, Japan, which is affiliated with the Japan Organization of Occupational Health and Safety. Six patients were trained with MSH-KAFO (either HALO or Primewalk) and WPAL. They underwent 6-minute walk tests with each orthosis. Energy efficiency was estimated using physiological cost index (PCI) as well as heart rate (HR) and modified Borg score. Trial energy efficiency with MSH-KAFO was compared with WPAL to assess if differences in PCI became greater between MSH-KAFO and WPAL as time goes on during the 6-minute walk. Spearman correlation coefficient of time (range: 0.5-6.0 minutes) with the difference was calculated. The same statistical procedures were repeated for HR and modified Borg score. Greater energy efficiency, representing a lower gait demand, was observed in trials with WPAL compared with MSH-KAFO (Spearman correlation coefficients for PCI, HR and modified Borg were 0.93, 0.90 and 0.97, respectively, all P < 0.0001). WPAL is a practical and energy efficient type of robotics that may be used by patients with paraplegia.

  2. Comparison of joint kinetics during free weight and flywheel resistance exercise.

    PubMed

    Chiu, Loren Z F; Salem, George J

    2006-08-01

    The most common modality for resistance exercise is free weight resistance. Alternative methods of providing external resistance have been investigated, in particular for use in microgravity environments such as space flight. One alternative modality is flywheel inertial resistance, which generates resistance as a function of the mass, distribution of mass, and angular acceleration of the flywheel. The purpose of this investigation was to characterize net joint kinetics of multijoint exercises performed with a flywheel inertial resistance device in comparison to free weights. Eleven trained men and women performed the front squat, lunge, and push press on separate days with free weight or flywheel resistance, while instrumented for biomechanical analysis. Front squats performed with flywheel resistance required greater contribution of the hip and ankle, and less contribution of the knee, compared to free weight. Push presses performed with flywheel resistance had similar impulse requirements at the knee compared to free weight, but greater impulse requirement at the hip and ankle. As used in this investigation, flywheel inertial resistance increases the demand on the hip extensors and ankle plantarflexors and decreases the mechanical demand on the knee extensors for lower extremity exercises such as the front squat and lunge. Exercises involving dynamic lower and upper extremity actions, such as the push press, may benefit from flywheel inertial resistance, due to the increased mechanical demand on the knee extensors.

  3. Habitual Minimalist Shod Running Biomechanics and the Acute Response to Running Barefoot.

    PubMed

    Tam, Nicholas; Darragh, Ian A J; Divekar, Nikhil V; Lamberts, Robert P

    2017-09-01

    The aim of the study was to determine whether habitual minimalist shoe runners present with purported favorable running biomechanithat reduce running injury risk such as initial loading rate. Eighteen minimalist and 16 traditionally cushioned shod runners were assessed when running both in their preferred training shoe and barefoot. Ankle and knee joint kinetics and kinematics, initial rate of loading, and footstrike angle were measured. Sagittal ankle and knee joint stiffness were also calculated. Results of a two-factor ANOVA presented no group difference in initial rate of loading when participants were running either shod or barefoot; however, initial loading rate increased for both groups when running barefoot (p=0.008). Differences in footstrike angle were observed between groups when running shod, but not when barefoot (minimalist:8.71±8.99 vs. traditional: 17.32±11.48 degrees, p=0.002). Lower ankle joint stiffness was found in both groups when running barefoot (p=0.025). These findings illustrate that risk factors for injury potentially differ between the two groups. Shoe construction differences do change mechanical demands, however, once habituated to the demands of a given shoe condition, certain acute favorable or unfavorable responses may be moderated. The purported benefits of minimalist running shoes in mimicking habitual barefoot running is questioned, and risk of injury may not be attenuated. © Georg Thieme Verlag KG Stuttgart · New York.

  4. A Comprehensive and Cost-Effective Computer Infrastructure for K-12 Schools

    NASA Technical Reports Server (NTRS)

    Warren, G. P.; Seaton, J. M.

    1996-01-01

    Since 1993, NASA Langley Research Center has been developing and implementing a low-cost Internet connection model, including system architecture, training, and support, to provide Internet access for an entire network of computers. This infrastructure allows local area networks which exceed 50 machines per school to independently access the complete functionality of the Internet by connecting to a central site, using state-of-the-art commercial modem technology, through a single standard telephone line. By locating high-cost resources at this central site and sharing these resources and their costs among the school districts throughout a region, a practical, efficient, and affordable infrastructure for providing scale-able Internet connectivity has been developed. As the demand for faster Internet access grows, the model has a simple expansion path that eliminates the need to replace major system components and re-train personnel. Observations of optical Internet usage within an environment, particularly school classrooms, have shown that after an initial period of 'surfing,' the Internet traffic becomes repetitive. By automatically storing requested Internet information on a high-capacity networked disk drive at the local site (network based disk caching), then updating this information only when it changes, well over 80 percent of the Internet traffic that leaves a location can be eliminated by retrieving the information from the local disk cache.

  5. Delayed latency of peroneal reflex to sudden inversion with ankle taping or bracing.

    PubMed

    Shima, N; Maeda, A; Hirohashi, K

    2005-01-01

    The purpose of the present study was to examine the effects of ankle taping and bracing based on the peroneal reflex in the hypermobile and normal ankle joints with and without history of ankle injury. Thirty-six ankle joints of 18 collegiate American football athletes with and without previous history of injury were studied. The angle of talar tilt (TT) was measured by stress radiograph for classifying normal (TT5 degrees ) ankles. They were tested with taping, bracing, and without any supports as a control. The latency of peroneus longus muscle was measured by a sudden inversion of 25 degrees using surface EMG signals. The results of the present study show no significant three-way Group (hypermobile or normal ankles) by History (previously injured or uninjured ankles) by Condition (control, taping, or bracing) interaction, while Condition main effect was significant (p<0.05). There were significant differences between control (80.8 ms) and taping (83.8 ms, p<0.01), between control and bracing (83.0 ms, p<0.05), but not between taping and bracing (p>0.05). In conclusion, ankle taping and bracing delayed the peroneal reflex latency not only for hypermobile ankles and/or injured ankle joints but also for intact ankle joints.

  6. Combined Ankle-Foot Energetics are Conserved When Distal Foot Energy Absorption is Minimized.

    PubMed

    Arch, Elisa S; Fylstra, Bretta L

    2016-12-01

    The large, late-stance energy generated by the ankle is believed to be critical during gait. However, the distal foot absorbs/dissipates a considerable amount of energy during the same phase. Thus, the energy generated by the combined ankle-foot system is more modest, which raises questions regarding the necessity of such a large ankle power and the interplay between foot and ankle energetics. This study aimed to evaluate our conservation of energy hypothesis, which predicted if distal foot energy absorption/dissipation was reduced, then less energy would be generated at the ankle and thus the same combined ankle-foot energetics would be achieved. Motion analysis data were collected as healthy subjects walked under 2 conditions (Shoes, Footplate). In the Footplate condition, the shoe was replaced with a customized, rigid footplate with a rocker profile. In support of the hypothesis, there was significantly less positive ankle and less negative distal foot work with footplate use, resulting in very similar combined ankle-foot work between conditions. These findings suggest that there is an interplay between the energy generated by the ankle and absorbed by the foot. This interplay should be considered when designing orthotic and prosthetic ankle-foot systems and rehabilitation programs for individuals with weakened ankle muscles.

  7. Gender differences in sport injury risk and types of inju-ries: a retrospective twelve-month study on cross-country skiers, swimmers, long-distance runners and soccer players.

    PubMed

    Ristolainen, Leena; Heinonen, Ari; Waller, Benjamin; Kujala, Urho M; Kettunen, Jyrki A

    2009-01-01

    This twelve months survey compared injury risk and injury types by genders (312 females, 262 males) in 15- to 35-year-old cross-country skiers, swimmers, long- distance runners and soccer players. More male than female athletes reported at least one acute injury (44% vs. 35%, p < 0.05), and more male than female runners reported at least one overuse injury (69% vs. 51%, p < 0.05). When the incidence of acute and overuse injuries both separately and combined was calculated per 1000 training hours, per 1000 competition hours and all exposure hours combined we found no gender differences in either of these comparisons. After adjustment for sport event males were at increased risk for posterior thigh overuse injuries compared to females (relative risk (RR) 5.8, 95% confidence interval (CI) 1.3 to 26.4, p < 0.05) while females were at increased risk for overuse injuries in the ankle compared to males (RR 3.1, 95% CI 1.0 to 9.3, p < 0.05). After adjustment for exposure time (injuries/1000 exposure hours) significance of the difference between the sexes in overuse injury to the ankle persisted (female 0.11 vs. male 0.02 injuries/1000 exposure hours, p < 0.05). Six athletes had an anterior cruciate ligament (ACL) injury, of whom four were female soccer players. After combining all reported acute and overuse ankle and knee injuries, the proportion of athletes with such injury was higher in the female compared to male soccer players (75% and 54% respectively; p < 0.05), but no difference was found in such injuries when calculated per 1000 exposure hours. In conclusion, we found some gender differences in sport-related injuries, but most of these differences seemed to be explained at least in part by differences in the amount of training. Key pointsOnly a few sport injury studies have compared in-jury rates between the sexesOverall gender-related risk for acute and overuse injuries in top-level athletes between the sexes was smallSome gender differences in the specific anatomical locations of injuries as well as in specific injuries in sports were foundSome of these differences seem to be explained by the differences in the amount of training.

  8. Range of Motion of the Ankle According to Pushing Force, Gender and Knee Position

    PubMed Central

    Cho, Kang Hee; Lee, Hyunkeun

    2016-01-01

    Objective To investigate the difference of range of motion (ROM) of ankle according to pushing force, gender and knee position. Methods One hundred and twenty-eight healthy adults (55 men, 73 women) between the ages of 20 and 51, were included in the study. One examiner measured the passive range of motion (PROM) of ankle by Dualer IQ Inclinometers and Commander Muscle Testing. ROM of ankle dorsiflexion (DF) and plantarflexion (PF) according to change of pushing force and knee position were measured at prone position. Results There was significant correlation between ROM and pushing force, the more pushing force leads the more ROM at ankle DF and ankle PF. Knee flexion of 90° position showed low PF angle and high ankle DF angle, as compared to the at neutral position of knee joint. ROM of ankle DF for female was greater than for male, with no significant difference. ROM of ankle PF for female was greater than male regardless of the pushing force. Conclusion To our knowledge, this is the first study to assess the relationship between pushing force and ROM of ankle joint. There was significant correlation between ROM of ankle and pushing force. ROM of ankle PF for female estimated greater than male regardless of the pushing force and the number of measurement. The ROM of the ankle is measured differently according to the knee joint position. Pushing force, gender and knee joint position are required to be considered when measuring the ROM of ankle joint. PMID:27152277

  9. Multi-segment foot landing kinematics in subjects with chronic ankle instability.

    PubMed

    De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark A; Palmans, Tanneke; Roosen, Philip

    2015-07-01

    Chronic ankle instability has been associated with altered joint kinematics at the ankle, knee and hip. However, no studies have investigated possible kinematic deviations at more distal segments of the foot. The purpose of this study was to evaluate if subjects with ankle instability and copers show altered foot and ankle kinematics and altered kinetics during a landing task when compared to controls. Ninety-six subjects (38 subjects with chronic ankle instability, 28 copers and 30 controls) performed a vertical drop and side jump task. Foot kinematics were obtained using the Ghent Foot Model and a single-segment foot model. Group differences were evaluated using statistical parametric mapping and analysis of variance. Subjects with ankle instability had a more inverted midfoot position in relation to the rearfoot when compared to controls during the side jump. They also had a greater midfoot inversion/eversion range of motion than copers during the vertical drop. Copers exhibited less plantar flexion/dorsiflexion range of motion in the lateral and medial forefoot. Furthermore, the ankle instability and coper group exhibited less ankle plantar flexion at touchdown. Additionally, the ankle instability group demonstrated a decreased plantar flexion/dorsiflexion range of motion at the ankle compared to the control group. Analysis of ground reaction forces showed a higher vertical peak and loading rate during the vertical drop in subjects with ankle instability. Subjects with chronic ankle instability displayed an altered, stiffer kinematic landing strategy and related alterations in landing kinetics, which might predispose them for episodes of giving way and actual ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ankle muscle coactivation and its relationship with ankle joint kinematics and kinetics during gait in hemiplegic patients after stroke.

    PubMed

    Kitatani, Ryosuke; Ohata, Koji; Sato, Shuhei; Watanabe, Aki; Hashiguchi, Yu; Yamakami, Natsuki; Sakuma, Kaoru; Yamada, Shigehito

    2016-06-01

    Increased ankle muscle coactivation during gait is a compensation strategy for enhancing postural stability in patients after stroke. However, no previous studies have demonstrated that increased ankle muscle coactivation influenced ankle joint movements during gait in patients after stroke. To investigate the relationship between ankle muscle coactivation and ankle joint movements in hemiplegic patients after stroke. Seventeen patients after stroke participated. The coactivation index (CoI) at the ankle joint was calculated separately for the first and second double support (DS1 and DS2, respectively) and single support (SS) phases on the paretic and non-paretic sides during gait using surface electromyography. Simultaneously, three-dimensional motion analysis was performed to measure the peak values of the ankle joint angle, moment, and power in the sagittal plane. Ground reaction forces (GRFs) of the anterior and posterior components and centers of pressure (COPs) trajectory ranges and velocities were also measured. The CoI during the SS phase on the paretic side was negatively related to ankle dorsiflexion angle, ankle plantarflexion moment, ankle joint power generation, and COP velocity on the paretic side. Furthermore, the CoI during the DS2 phase on both sides was negatively related to anterior GRF amplitude on each side. Increased ankle muscle coactivation is related to decreased ankle joint movement during the SS phase on the paretic side to enhance joint stiffness and compensate for stance limb instability, which may be useful for patients who have paretic instability during the stance phase after stroke.

  11. Intrinsic risk factors of noncontact ankle sprains in soccer: a prospective study on 100 professional players.

    PubMed

    Fousekis, Konstantinos; Tsepis, Elias; Vagenas, George

    2012-08-01

    Ankle sprain is an extremely common injury in soccer players. Despite extensive research, the intrinsic cause of this injury under noncontact conditions remains unclear. To identify intrinsic risk factors for noncontact ankle sprains in professional soccer players. Cohort study; Level of evidence, 2 One hundred professional soccer players were assessed in the preseason for potential risk factors of noncontact ankle sprains. The assessment included (A) ankle joint asymmetries (right-left) in isokinetic muscle strength, flexibility, proprioception, and stability; (B) somatometric asymmetries; (C) previous injuries; and (D) lateral dominance traits. Noncontact ankle sprains were prospectively recorded and diagnosed for a full competition period (10 months). Seventeen of the players sustained at least 1 noncontact ankle sprain. Logistic regression revealed that players with (A) eccentric isokinetic ankle flexion strength asymmetries (odds ratio [OR] = 8.88; 95% confidence interval [CI], 1.95-40.36, P = .005), (B) increased body mass index (OR = 8.16; 95% CI, 1.42-46.63, P = .018), and (C) increased body weight (OR = 5.72; 95% CI, 1.37-23.95, P = .017 ) each had a significantly higher risk of a noncontact ankle sprain. A trend for younger players (OR = 0.28; 95% CI, 0.061-1.24, P = .092) and for players with ankle laxity asymmetries (OR = 3.38; 95% CI, 0.82-14.00, P = .093) to be at greater risk for ankle sprain was also apparent to the limit of statistical significance (.05 < P < .10). Functional strength asymmetries of the ankle flexors and increased body mass index and body weight raise the propensity for ankle sprains in professional soccer players. Age and asymmetries in ankle laxity are potential factors worth revisiting, as there was an indication for younger players and players with ankle instability to be at higher risk for ankle injury. Proper preseason evaluation may improve prevention strategies for this type of injury in soccer.

  12. Cost-effectiveness analysis of total ankle arthroplasty.

    PubMed

    SooHoo, Nelson F; Kominski, Gerald

    2004-11-01

    There is renewed interest in total ankle arthroplasty as an alternative to ankle fusion in the treatment of end-stage ankle arthritis. Despite a lack of long-term data on the clinical outcomes associated with these implants, the use of ankle arthroplasty is expanding. The purpose of this cost-effectiveness analysis was to evaluate whether the currently available literature justifies the emerging use of total ankle arthroplasty. This study also identifies thresholds for the durability and function of ankle prostheses that, if met, would support more widespread dissemination of this new technology. A decision model was created for the treatment of ankle arthritis. The literature was reviewed to identify possible outcomes and their probabilities following ankle fusion and ankle arthroplasty. Each outcome was weighted for quality of life with use of a utility factor, and effectiveness was expressed in units of quality-adjusted life years. Gross costs were estimated from Medicare charge and reimbursement data for the relevant codes. The effect of the uncertainty of estimates of costs and effectiveness was assessed with sensitivity analysis. The reference case of our model assumed a ten-year duration of survival of the prosthesis, resulting in an incremental cost-effectiveness ratio for ankle arthroplasty of $18,419 per quality-adjusted life year gained. This reflects a gain of 0.52 quality-adjusted life years at a cost of $9578 when ankle arthroplasty is chosen over fusion. This ratio compares favorably with the cost-effectiveness of other medical and surgical interventions. Sensitivity analysis determined that the cost per quality-adjusted life year gained with ankle arthroplasty rises above $50,000 if the prosthesis is assumed to fail before seven years. Treatment options with ratios above $50,000 per quality-adjusted life year are commonly considered to have limited cost-effectiveness. This threshold is also crossed when the theoretical functional advantages of ankle arthroplasty are eliminated in sensitivity analysis. The currently available literature has not yet shown that total ankle arthroplasty predictably results in levels of durability and function that make it cost-effective at this time. However, the reference case of this analysis does demonstrate that total ankle arthroplasty has the potential to be a cost-effective alternative to ankle fusion. This reference case assumes that the theoretical functional advantages of ankle arthroplasty over ankle fusion will be borne out in future clinical studies. Performance of total ankle replacement will be better justified if these thresholds are met in published long-term clinical trials.

  13. Slow walking model for children with multiple disabilities via an application of humanoid robot

    NASA Astrophysics Data System (ADS)

    Wang, ZeFeng; Peyrodie, Laurent; Cao, Hua; Agnani, Olivier; Watelain, Eric; Wang, HaoPing

    2016-02-01

    Walk training research with children having multiple disabilities is presented. Orthosis aid in walking for children with multiple disabilities such as Cerebral Palsy continues to be a clinical and technological challenge. In order to reduce pain and improve treatment strategies, an intermediate structure - humanoid robot NAO - is proposed as an assay platform to study walking training models, to be transferred to future special exoskeletons for children. A suitable and stable walking model is proposed for walk training. It would be simulated and tested on NAO. This comparative study of zero moment point (ZMP) supports polygons and energy consumption validates the model as more stable than the conventional NAO. Accordingly direction variation of the center of mass and the slopes of linear regression knee/ankle angles, the Slow Walk model faithfully emulates the gait pattern of children.

  14. Osteoligamentous injuries of the medial ankle joint.

    PubMed

    Lötscher, P; Lang, T H; Zwicky, L; Hintermann, B; Knupp, M

    2015-12-01

    Injuries of the ankle joint have a high incidence in daily life and sports, thus, playing an important socioeconomic role. Therefore, proper diagnosis and adequate treatment are mandatory. While most of the ligament injuries around the ankle joint are treated conservatively, great controversy exists on how to treat deltoid ligament injuries in ankle fractures. Missed injuries and inadequate treatment of the medial ankle lead to inferior outcome with instability, progressive deformity, and ankle joint osteoarthritis.

  15. Ankle instability.

    PubMed

    Ferran, Nicholas A; Oliva, Francesco; Maffulli, Nicola

    2009-06-01

    Acute ankle sprains are common, and if inadequately treated may result in chronic instability. Lateral ankle injuries are most common, with deltoid injuries rare and associated with ankle fractures/dislocation. Medial ankle instability is rare. Functional management of acute lateral ankle sprains is the treatment of choice, with acute ligament repair reserved for athletes. Chronic lateral ankle instability is initially managed conservatively, however, failure of rehabilitation is an indication for surgical management. Nonanatomic tenodesis reconstructions have poor long-term results, sacrifice peroneal tendons, and disrupt normal ankle and hindfoot biomechanics. Anatomic repair of the anterior talofibular and calcaneofibular ligaments is recommended when the quality of the ruptured ligaments permits. Anatomic reconstruction with autograft or allograft should be performed when ligaments are attenuated. The role of arthroscopic reconstruction is evolving. Ankle arthroscopy should be performed at the time of repair or reconstruction and should address any other intra-articular causes of pain.

  16. Ankle Arthroscopic Reconstruction of Lateral Ligaments (Ankle Anti-ROLL)

    PubMed Central

    Takao, Masato; Glazebrook, Mark; Stone, James; Guillo, Stéphane

    2015-01-01

    Ankle instability is a condition that often requires surgery to stabilize the ankle joint that will improve pain and function if nonoperative treatments fail. Ankle stabilization surgery may be performed as a repair in which the native existing anterior talofibular ligament or calcaneofibular ligament (or both) is imbricated or reattached. Alternatively, when native ankle ligaments are insufficient for repair, a reconstruction of the ligaments may be performed in which an autologous or allograft tendon is used to reconstruct the anterior talofibular ligament or calcaneofibular ligament (or both). Currently, ankle stabilization surgery is most commonly performed through an open incision, but arthroscopic ankle stabilization using repair techniques has been described and is being used more often. We present our technique for anatomic ankle arthroscopic reconstruction of the lateral ligaments (anti-ROLL) performed in an all–inside-out manner that is likely safe for patients and minimally invasive. PMID:26900560

  17. The association between physical characteristics of the ankle joint and the mobility performance in elderly people with type 2 diabetes mellitus.

    PubMed

    Ng, Thomas Ka-Wai; Lo, Sing-Kai; Cheing, Gladys Lai-Ying

    2014-01-01

    Previous studies showed that older adults with diabetes have a worse mobility performance as compared with those without diabetes. Studies also demonstrated that older adults with diabetes have weakened ankle muscle strength, reduced joint range in ankle dorsiflexion and worsened ankle joint proprioception as compared with control population. The purpose of the present study was to examine the relationship between the physical characteristics of the ankle joint and the mobility performance in older adults with type 2 diabetes. Older adults with type 2 diabetes (n=85) were recruited, and Timed Up and Go test (TUG) for mobility assessment was performed. Active ankle joint repositioning test was used for assessing the ankle joint proprioception sense; peak torque of ankle dorsiflexors and plantar flexors were tested by using a Cybex Norm dynamometer, and weight-bearing lunge test (WBLT) was used for assessing the stiffness of ankle dorsiflexion. Our results showed that age, body mass index (BMI), normalized peak torque of plantar flexors and dorsiflexors, active ankle joint repositioning test errors and the WBLT distance were significantly correlated with the TUG (all p<0.001). These ankle characteristics, together with the demographic data of the subjects, contributed 59.9% of the variance in the TUG by multiple regression analysis. Body mass, ankle plantar flexors strength and ankle joint proprioception are important factors contributing to the physical mobility of the older adults with type 2 diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Joint stability characteristics of the ankle complex after lateral ligamentous injury, part I: a laboratory comparison using arthrometric measurement.

    PubMed

    Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W

    2014-01-01

    The mechanical property of stiffness may be important to investigating how lateral ankle ligament injury affects the behavior of the viscoelastic properties of the ankle complex. A better understanding of injury effects on tissue elastic characteristics in relation to joint laxity could be obtained from cadaveric study. To biomechanically determine the laxity and stiffness characteristics of the cadaver ankle complex before and after simulated injury to the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) during anterior drawer and inversion loading. Cross-sectional study. University research laboratory. Seven fresh-frozen cadaver ankle specimens. All ankles underwent loading before and after simulated lateral ankle injury using an ankle arthrometer. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Isolated ATFL and combined ATFL and CFL sectioning resulted in increased anterior displacement but not end-range stiffness when compared with the intact ankle. With inversion loading, combined ATFL and CFL sectioning resulted in increased range of motion and decreased end-range stiffness when compared with the intact and ATFL-sectioned ankles. The absence of change in anterior end-range stiffness between the intact and ligament-deficient ankles indicated bony and other soft tissues functioned to maintain stiffness after pathologic joint displacement, whereas inversion loading of the CFL-deficient ankle after pathologic joint displacement indicated the ankle complex was less stiff when supported only by the secondary joint structures.

  19. Effect of ankle braces on lower extremity joint energetics in single-leg landings.

    PubMed

    Gardner, Jacob K; McCaw, Steven T; Laudner, Kevin G; Smith, Peter J; Stafford, Lindsay N

    2012-06-01

    Ankle sprains are one of the most common injuries in competitive and recreational athletics. Studies have shown that the use of prophylactic ankle braces effectively reduces the frequency of ankle sprains in athletes. However, although it is generally accepted that the ankle braces are effective at reducing frontal plane motion, some researchers report that the design of the brace may also reduce ankle sagittal plane motion. The purpose of this study was to quantify lower extremity joint contributions to energy absorption during single-legged drop landings in three ankle brace conditions (no brace, boot brace, and hinged brace). Eleven physically active females experienced in landing and free of lower extremity injury (age = 22.3 ± 1.7 yr, height = 1.66 ± 0.04 m, mass = 58.43 ± 5.83 kg) performed 10 single-leg drop landings in three conditions (one unbraced, two braced) from a 0.33-m height. Measurements taken were hip, knee, and ankle joint impulse; hip, knee, ankle, and total work; and hip, knee, and ankle joint relative work. Total energy absorption remained consistent across the braced conditions (P = 0.057). Wearing the boot brace reduced relative ankle work (P = 0.04, Cohen d = 0.43) but did not change relative knee (P = 0.08, Cohen d = 0.32) or hip (P = 0.14, Cohen d = 0.20) work compared with the no-brace condition. In an ankle-braced condition, ankle, knee, and hip energetics may be altered depending on the design of the brace.

  20. Smart Rehabilitation Devices: Part I – Force Tracking Control

    PubMed Central

    Dong, Shufang; Lu, Ke-Qian; Sun, J. Q.; Rudolph, Katherine

    2008-01-01

    Resistance exercise has been widely reported to have positive rehabilitation effects for patients with neuromuscular and orthopaedic conditions. This article presents prototypes of smart variable resistance exercise devices using magneto-rheological fluid dampers. An intelligent supervisory control for regulating the resistive force or torque of the device is developed, and is validated both numerically and experimentally. The device provides both isometric and isokinetic strength training for the human joints including knee, elbow, hip, and ankle. PMID:18504509

  1. Effects of a randomized controlled recurrent fall prevention program on risk factors for falls in frail elderly living at home in rural communities.

    PubMed

    Jeon, Mi Yang; Jeong, HyeonCheol; Petrofsky, Jerrold; Lee, Haneul; Yim, JongEun

    2014-11-14

    Falling can lead to severe health issues in the elderly and importantly contributes to morbidity, death, immobility, hospitalization, and early entry to long-term care facilities. The aim of this study was to devise a recurrent fall prevention program for elderly women in rural areas. This study adopted an assessor-blinded, randomized, controlled trial methodology. Subjects were enrolled in a 12-week recurrent fall prevention program, which comprised strength training, balance training, and patient education. Muscle strength and endurance of the ankles and the lower extremities, static balance, dynamic balance, depression, compliance with preventive behavior related to falls, fear of falling, and fall self-efficacy at baseline and immediately after the program were assessed. Sixty-two subjects (mean age 69.2±4.3 years old) completed the program--31 subjects in the experimental group and 31 subjects in the control group. When the results of the program in the 2 groups were compared, significant differences were found in ankle heel rise test, lower extremity heel rise test, dynamic balance, depression, compliance with fall preventative behavior, fear of falling, and fall self-efficacy (p<0.05), but no significant difference was found in static balance. This study shows that the fall prevention program described effectively improves muscle strength and endurance, balance, and psychological aspects in elderly women with a fall history.

  2. Factors Associated with Enhanced Gross Motor Progress in Children with Cerebral Palsy: A Register-Based Study.

    PubMed

    Størvold, Gunfrid V; Jahnsen, Reidun B; Evensen, Kari Anne I; Romild, Ulla K; Bratberg, Grete H

    2018-05-01

    To examine associations between interventions and child characteristics; and enhanced gross motor progress in children with cerebral palsy (CP). Prospective cohort study based on 2048 assessments of 442 children (256 boys, 186 girls) aged 2-12 years registered in the Cerebral Palsy Follow-up Program and the Cerebral Palsy Register of Norway. Gross motor progress estimates were based on repeated measures of reference percentiles for the Gross Motor Function Measure (GMFM-66) in a linear mixed model. Mean follow-up time: 2.9 years. Intensive training was the only intervention factor associated with enhanced gross motor progress (mean 3.3 percentiles, 95% CI: 1.0, 5.5 per period of ≥3 sessions per week and/or participation in an intensive program). Gross motor function was on average 24.2 percentiles (95% CI: 15.2, 33.2) lower in children with intellectual disability compared with others. Except for eating problems (-10.5 percentiles 95% CI: -18.5, -2.4) and ankle contractures by age (-1.9 percentiles 95% CI: -3.6, -0.2) no other factors examined were associated with long-term gross motor progress. Intensive training was associated with enhanced gross motor progress over an average of 2.9 years in children with CP. Intellectual disability was a strong negative prognostic factor. Preventing ankle contractures appears important for gross motor progress.

  3. Running biomechanics in a long-term monitored recreational athlete with a history of Achilles tendon rupture.

    PubMed

    Jandacka, Daniel; Zahradnik, David; Foldyna, Karel; Hamill, Joseph

    2013-01-28

    This study represented a unique opportunity to understand changes in the human motion biomechanics during basic locomotion within a time interval of 4 years, when the monitored individual regained his original aerobic fitness, running performance and body mass index as prior to the injury. The participant visited the laboratory a month prior to the injury and during 4 years after the surgery. The surgery, subsequent rehabilitation and a 4-year running training programme in the studied recreational athlete did not completely eliminate the consequences of the Achilles tendon rupture. The function muscle deficit is namely manifested by a lower net plantar flexion moment and a lower net-generated ankle joint power during the take-off in the stance phase. The greater dorsal flexion in the affected ankle joint at the first contact with the ground and consequently higher peaks of ground reaction forces during running are consequences of the longer Achilles tendon in the affected lower extremity and weakened calf muscles.

  4. Foot kinematics and loading of professional athletes in American football-specific tasks.

    PubMed

    Riley, Patrick O; Kent, Richard W; Dierks, Tracy A; Lievers, W Brent; Frimenko, Rebecca E; Crandall, Jeff R

    2013-09-01

    The purpose of this study was to describe stance foot and ankle kinematics and the associated ground reaction forces at the upper end of human performance in professional football players during commonly performed football-specific tasks. Nine participants were recruited from the spring training squad of a professional football team. In a motion analysis laboratory setting, participants performed three activities used at the NFL Scouting Combine to assess player speed and agility: the 3-cone drill, the shuttle run, and the standing high jump. The talocrural and first metatarsophalangial joint dorsiflexion, subtalar joint inversion, and the ground reaction forces were determined for the load bearing portions of each activity. We documented load-bearing foot and ankle kinematics of elite football players performing competition-simulating activities, and confirmed our hypothesis that the talocrural, subtalar, and metatarsophalangeal joint ranges of motion for the activities studied approached or exceeded reported physiological limits. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Calcaneocuboid joint instability: a novel operative technique for anatomic reconstruction.

    PubMed

    Lohrer, Heinz; Arentz, Sabine

    2004-05-01

    A case history of a 13-year-old female national top-level gymnast, suffering from calcaneocuboid joint instability, is presented. The procedure was done as an anatomic repair by capsular reefing, which was augmented using a local periosteal flap. Initially, the athlete twisted her ankle. Clinical investigation revealed no sign of a lateral ankle ligament injury, but following this initial examination, recurrent giving-way of the foot occurred. She additionally felt significant but diffuse pain on the lateral side of the foot during loading in training and competition. For 2 months she was unable to run and conservative treatment failed. Diagnosis of a calcaneocuboid instability was established 4 months after the initial lesion by clinical and x-ray stress examination of the calcaneocuboid joint. Open surgery was successfully performed. Early functional posttreatment was done and the patient returned to full high-level gymnastics ability 16 weeks after surgery. Two years later, a similar injury occurred to the opposite calcaneocuboid joint and the same operative procedure again led to full sports ability.

  6. Event related desynchronization-modulated functional electrical stimulation system for stroke rehabilitation: a feasibility study.

    PubMed

    Takahashi, Mitsuru; Takeda, Kotaro; Otaka, Yohei; Osu, Rieko; Hanakawa, Takashi; Gouko, Manabu; Ito, Koji

    2012-08-16

    We developed an electroencephalogram-based brain computer interface system to modulate functional electrical stimulation (FES) to the affected tibialis anterior muscle in a stroke patient. The intensity of FES current increased in a stepwise manner when the event-related desynchronization (ERD) reflecting motor intent was continuously detected from the primary cortical motor area. We tested the feasibility of the ERD-modulated FES system in comparison with FES without ERD modulation. The stroke patient who presented with severe hemiparesis attempted to perform dorsiflexion of the paralyzed ankle during which FES was applied either with or without ERD modulation. After 20 minutes of training, the range of movement at the ankle joint and the electromyography amplitude of the affected tibialis anterior muscle were significantly increased following the ERD-modulated FES compared with the FES alone. The proposed rehabilitation technique using ERD-modulated FES for stroke patients was feasible. The system holds potentials to improve the limb function and to benefit stroke patients.

  7. Retrospective comparison of the Low Risk Ankle Rules and the Ottawa Ankle Rules in a pediatric population.

    PubMed

    Ellenbogen, Amy L; Rice, Amy L; Vyas, Pranav

    2017-09-01

    A recent multicenter prospective Canadian study presented prospective evidence supporting the Low Risk Ankle Rules (LRAR) as a means of reducing the number of ankle radiographs ordered for children presenting with an ankle injury while maintaining nearly 100% sensitivity. This is in contrast to a previous prospective study which showed that this rule yielded only 87% sensitivity. It is important to further investigate the LRAR and compare them with the already validated Ottawa Ankle Rules (OAR) to potentially curb healthcare costs and decrease unnecessary radiation exposure without compromising diagnostic accuracy. We conducted a retrospective chart review of 980 qualifying patients ages 12months to 18years presenting with ankle injury to a commonly staffed 310 bed children's hospital and auxiliary site pediatric emergency department. There were 28 high-risk fractures identified. The Ottawa Ankle Rules had a sensitivity of 100% (95% CI 87.7-100), specificity of 33.1% (95% CI 30.1-36.2), and would have reduced the number of ankle radiographs ordered by 32.1%. The Low Risk Ankle Rules had a sensitivity of 85.7% (95% CI 85.7-96), specificity of 64.9% (95% CI 61.8-68), and would have reduced the number of ankle radiographs ordered by 63.1%. The latter rule missed 4 high-risk fractures. The Low Risk Ankle Rules may not be sensitive enough for use in Pediatric Emergency Departments, while the Ottawa Ankle Rules again demonstrated 100% sensitivity. Further research on ways to implement the Ottawa Ankle Rules and maximize its ability to decrease wait times, healthcare costs, and improve patient satisfaction are needed. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The effect of ankle foot orthosis stiffness on the energy cost of walking: a simulation study.

    PubMed

    Bregman, D J J; van der Krogt, M M; de Groot, V; Harlaar, J; Wisse, M; Collins, S H

    2011-11-01

    In stroke and multiple sclerosis patients, gait is frequently hampered by a reduced ability to push-off with the ankle caused by weakness of the plantar-flexor muscles. To enhance ankle push-off and to decrease the high energy cost of walking, spring-like carbon-composite Ankle Foot Orthoses are frequently prescribed. However, it is unknown what Ankle Foot Orthoses stiffness should be used to obtain the most efficient gait. The aim of this simulation study was to gain insights into the effect of variation in Ankle Foot Orthosis stiffness on the amount of energy stored in the Ankle Foot Orthosis and the energy cost of walking. We developed a two-dimensional forward-dynamic walking model with a passive spring at the ankle representing the Ankle Foot Orthosis and two constant torques at the hip for propulsion. We varied Ankle Foot Orthosis stiffness while keeping speed and step length constant. We found an optimal stiffness, at which the energy delivered at the hip joint was minimal. Energy cost decreased with increasing energy storage in the ankle foot orthosis, but the most efficient gait did not occur with maximal energy storage. With maximum storage, push-off occurred too late to reduce the impact of the contralateral leg with the floor. Maximum return prior to foot strike was also suboptimal, as push-off occurred too early and its effects were subsequently counteracted by gravity. The optimal Ankle Foot Orthosis stiffness resulted in significant push-off timed just prior to foot strike and led to greater ankle plantar-flexion velocity just before contralateral foot strike. Our results suggest that patient energy cost might be reduced by the proper choice of Ankle Foot Orthosis stiffness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Dynamic balance deficits in individuals with chronic ankle instability compared to ankle sprain copers 1 year after a first-time lateral ankle sprain injury.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2016-04-01

    To quantify the dynamic balance deficits that characterise a group with chronic ankle instability compared to lateral ankle sprain copers and non-injured controls using kinematic and kinetic outcomes. Forty-two participants with chronic ankle instability and twenty-eight lateral ankle sprain copers were initially recruited within 2 weeks of sustaining a first-time, acute lateral ankle sprain and required to attend our laboratory 1 year later to complete the current study protocol. An additional group of non-injured individuals were also recruited to act as a control group. All participants completed the anterior, posterior-lateral and posterior-medial reach directions of the star excursion balance test. Sagittal plane kinematics of the lower extremity and associated fractal dimension of the centre of pressure path were also acquired. Participants with chronic ankle instability displayed poorer performance in the anterior, posterior-medial and posterior-lateral reach directions compared with controls bilaterally, and in the posterior-lateral direction compared with lateral ankle sprain copers on their 'involved' limb only. These performance deficits in the posterior-lateral and posterior-medial directions were associated with reduced flexion and dorsiflexion displacements at the hip, knee and ankle at the point of maximum reach, and coincided with reduced complexity of the centre of pressure path. In comparison with lateral ankle sprain copers and controls, participants with chronic ankle instability were characterised by dynamic balance deficits as measured using the SEBT. This was attested to reduced sagittal plane motions at the hip, knee and ankle joints, and reduced capacity of the stance limb to avail of its supporting base. III.

  10. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.

    PubMed

    Arch, Elisa S; Stanhope, Steven J; Higginson, Jill S

    2016-10-01

    Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. Dual case study. The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis characteristics. © The International Society for Prosthetics and Orthotics 2015.

  11. A three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses.

    PubMed

    Fatone, Stefania; Johnson, William Brett; Tucker, Kerice

    2016-04-01

    Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.

  12. Efficacy of an ankle brace with a subtalar locking system in inversion control in dynamic movements.

    PubMed

    Zhang, Songning; Wortley, Michael; Chen, Qingjian; Freedman, Julia

    2009-12-01

    Controlled laboratory study. To examine effectiveness of an ankle brace with a subtalar locking system in restricting ankle inversion during passive and dynamic movements. Semirigid ankle braces are considered more effective in restricting ankle inversion than other types of brace, but a semirigid brace with a subtalar locking system may be even more effective. Nineteen healthy subjects with no history of major lower extremity injuries were included in the study. Participants performed 5 trials of an ankle inversion drop test and a lateral-cutting movement without wearing a brace and while wearing either the Element (with the subtalar locking system), a Functional ankle brace, or an ASO ankle brace. A 2-way repeated-measures analysis of variance (ANOVA) was used to assess brace differences (P?.05). All 3 braces significantly reduced total passive ankle frontal plane range of motion (ROM), with the Element ankle brace being the most effective. For the inversion drop the results showed significant reductions in peak ankle inversion angle and inversion ROM for all 3 braces compared to the no brace condition; and the peak inversion velocity was also reduced for the Element brace and the Functional brace. In the lateral-cutting movement, a small but significant reduction of the peak inversion angle in early foot contact and the peak eversion velocity at push-off were seen when wearing the Element and the Functional ankle braces compared to the no brace condition. Peak vertical ground reaction force was reduced for the Element brace compared to the ASO brace and the no brace conditions. These results suggest that the tested ankle braces, especially the Element brace, provided effective restriction of ankle inversion during both passive and dynamic movements.

  13. Immediate Effects of Ankle Balance Taping with Kinesiology Tape for Amateur Soccer Players with Lateral Ankle Sprain: A Randomized Cross-Over Design

    PubMed Central

    Kim, Myoung Kwon; Shin, Young Jun

    2017-01-01

    Background The objective of this study was to investigate the immediate effect on gait function when ankle balance taping is applied to amateur soccer players with lateral ankle sprain. Material/Methods A cross-over randomized design was used. Twenty-two soccer players with an ankle sprain underwent 3 interventions in a random order. Subjects were randomly assigned to ankle balance taping, placebo taping, and no taping groups. The assessment was performed using the GAITRite portable walkway system, which records the location and timing of each footfall during ambulation. Results Significant differences were found in the velocity, step length, stride length, and H-H base support among the 3 different taping methods (p<0.05). The ankle balance taping group showed significantly greater velocity, step length, and stride length in comparison to the placebo and no taping group. The ankle balance taping group showed a statistically significant decrease (p<0.05) in the H-H base support compared to the placebo and no taping groups, and the placebo group showed significantly greater velocity in comparison to the no taping group (p<0.05). Conclusions We conclude that ankle balance taping that uses kinesiology tape instantly increased the walking ability of amateur soccer players with lateral ankle sprain. Therefore, ankle balance taping is a useful alternative to prevent and treat ankle sprain of soccer players. PMID:29158472

  14. Lower extremity joint coupling variability during gait in young adults with and without chronic ankle instability.

    PubMed

    Lilley, Thomas; Herb, Christopher C; Hart, Joseph; Hertel, Jay

    2018-06-01

    Chronic ankle instability (CAI) is a condition resulting from a lateral ankle sprain. Shank-rearfoot joint-coupling variability differences have been found in CAI patients; however, joint-coupling variability (VCV) of the ankle and proximal joints has not been explored. Our purpose was to analyse VCV in adults with and without CAI during gait. Four joint-coupling pairs were analysed: knee sagittal-ankle sagittal, knee sagittal-ankle frontal, hip frontal-ankle sagittal and hip frontal-ankle frontal. Twenty-seven adults participated (CAI:n = 13, Control:n = 14). Lower extremity kinematics were collected during walking (4.83 km/h) and jogging (9.66 km/h). Vector-coding was used to assess the stride-to-stride variability of four coupling pairs. During walking, CAI patients exhibited higher VCV than healthy controls for knee sagittal-ankle frontal in latter parts of stance thru mid-swing. When jogging, CAI patients demonstrated lower VCV with specific differences occurring across various intervals of gait. The increased knee sagittal-ankle frontal VCV in CAI patients during walking may indicate an adaptation to deal with the previously identified decrease in variability in transverse plane shank and frontal plane rearfoot coupling during walking; while the decreased ankle-knee and ankle-hip VCV identified in CAI patients during jogging may represent a more rigid, less adaptable sensorimotor system ambulating at a faster speed.

  15. Ankle joint function during walking in tophaceous gout: A biomechanical gait analysis study.

    PubMed

    Carroll, Matthew; Boocock, Mark; Dalbeth, Nicola; Stewart, Sarah; Frampton, Christopher; Rome, Keith

    2018-04-17

    The foot and ankle are frequently affected in tophaceous gout, yet kinematic and kinetic changes in this region during gait are unknown. The aim of the study was to evaluate ankle biomechanical characteristics in people with tophaceous gout using three-dimensional gait analysis. Twenty-four participants with tophaceous gout were compared with 24 age-and sex-matched control participants. A 9-camera motion analysis system and two floor-mounted force plates were used to calculate kinematic and kinetic parameters. Peak ankle joint angular velocity was significantly decreased in participants with gout (P < 0.01). No differences were found for ankle ROM in either the sagittal (P = 0.43) or frontal planes (P = 0.08). No differences were observed between groups for peak ankle joint power (P = 0.41), peak ankle joint force (P = 0.25), peak ankle joint moment (P = 0.16), timing for peak ankle joint force (P = 0.81), or timing for peak ankle joint moment (P = 0.16). Three dimensional gait analysis demonstrated that ankle joint function does not change in people with gout. People with gout demonstrated a reduced peak ankle joint angular velocity which may reflect gait-limiting factors and adaptations from the high levels of foot pain, impairment and disability experienced by this population. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  17. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  18. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  19. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  20. The effect of uncontrolled moment and short-term, repeated passive stretching on maximum ankle joint dorsiflexion angle.

    PubMed

    Gatt, Alfred; Chockalingam, Nachiappan

    2012-06-01

    Trials investigating ankle joint measurement normally apply a known moment. Maximum ankle angle is affected by foot posture and stretching characteristics of the calf muscles. To investigate whether consistent maximum ankle angles could be achieved without applying a constant moment to all subjects, and whether short, repetitive stretching of the calf muscle tendon unit would produce a difference in the maximum ankle angle. Passive dorsiflexion in 14 healthy participants was captured using an optoelectronic motion analysis system, with the foot placed in 3 postures. The maximum ankle angles for both the neutral and supinated positions did not differ significantly. In general, the majority of subjects (92.8%) showed no increase in the maximum ankle dorsiflexion angle following repetitive brief passive stretching. Only one subject exhibited a significant increase in maximum ankle angle at the neutral position. Since the range of motion of the ankle joint is clearly determined by other physical factors, the maximum ankle dorsiflexion angle can be assessed at both neutral and supinated positions without moment being controlled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Effects of foot orthoses on patients with chronic ankle instability.

    PubMed

    Richie, Douglas H

    2007-01-01

    Chronic instability of the ankle can be the result of mechanical and functional deficits. An acute ankle sprain can cause mechanical and functional instability, which may or may not respond to standard rehabilitation programs. Chronic instability results when there is persistent joint laxity of the ankle or when one or more components of neuromuscular control of the ankle are compromised. A loss of balance or postural control seems to be the most consistent finding among athletes with chronic instability of the ankle. Recent research in patients with acute and chronic ankle instability has revealed positive effects of foot orthoses on postural control. This article reviews the current research relevant to the use of foot orthoses in patients with chronic ankle instability and clarifies the suggested benefits and the shortcomings of these investigations.

  2. Systematic Review of Postural Control and Lateral Ankle Instability, Part I: Can Deficits Be Detected With Instrumented Testing

    PubMed Central

    McKeon, Patrick O; Hertel, Jay

    2008-01-01

    Objective: To answer the following clinical questions: (1) Is poor postural control associated with increased risk of a lateral ankle sprain? (2) Is postural control adversely affected after acute lateral ankle sprain? (3) Is postural control adversely affected in those with chronic ankle instability? Data Sources: PubMed and CINAHL entries from 1966 through October 2006 were searched using the terms ankle sprain, ankle instability, balance, chronic ankle instability, functional ankle instability, postural control, and postural sway. Study Selection: Only studies assessing postural control measures in participants on a stable force plate performing the modified Romberg test were included. To be included, a study had to address at least 1 of the 3 clinical questions stated above and provide adequate results for calculation of effect sizes or odds ratios where applicable. Data Extraction: We calculated odds ratios with 95% confidence intervals for studies assessing postural control as a risk factor for lateral ankle sprains. Effect sizes were estimated with the Cohen d and associated 95% confidence intervals for comparisons of postural control performance between healthy and injured groups, or healthy and injured limbs, respectively. Data Synthesis: Poor postural control is most likely associated with an increased risk of sustaining an acute ankle sprain. Postural control is impaired after acute lateral ankle sprain, with deficits identified in both the injured and uninjured sides compared with controls. Although chronic ankle instability has been purported to be associated with altered postural control, these impairments have not been detected consistently with the use of traditional instrumented measures. Conclusions: Instrumented postural control testing on stable force plates is better at identifying deficits that are associated with an increased risk of ankle sprain and that occur after acute ankle sprains than at detecting deficits related to chronic ankle instability. PMID:18523566

  3. The Effect of Modified Brostrom-Gould Repair for Lateral Ankle Instability on In Vivo Tibiotalar Kinematics

    PubMed Central

    Wainright, William B; Spritzer, Charles E.; Lee, Jun Young; Easley, Mark E.; DeOrio, James K.; Nunley, James A.; DeFrate, Louis E.

    2012-01-01

    Background Lateral ankle instability leads to an increased risk of tibiotalar joint osteoarthritis. Previous studies have found abnormal tibiotalar joint motions with lateral ankle instability that may contribute to this increased incidence of osteoarthritis, including increased anterior translation and internal rotation of the talus under weight-bearing loading. Surgical repairs for lateral ankle instability have shown good clinical results, but the effects of repair on in vivo ankle motion are not well understood. Hypothesis The modified Broström-Gould lateral ligament reconstruction decreases anterior translation and internal rotation of the talus under in vivo weight-bearing loading conditions. Study Design Controlled laboratory study. Methods Seven patients underwent modified Brostöm-Gould repair for unilateral lateral ankle instability. Ankle joint kinematics as a function of increasing body weight were studied with magnetic resonance imaging and biplanar fluoroscopy. Tibiotalar kinematics were measured in unstable ankles preoperatively and postoperatively at a mean follow-up of 12 months, as well as in the uninjured contralateral ankles of the same individuals. Results Surgical repair resulted in statistically significant decreases in anterior translation of the talus (0.9±0.3mm, p=0.018) at 100% bodyweight and internal rotation of the talus at 75% (2.6±0.8°, p=0.019) and 100% (2.7±0.8°, p=0.013) bodyweight compared to ankle kinematics measured before repair. No statistically significant differences were detected between repaired ankles and contralateral normal ankles. Conclusion The modified Broström-Gould repair improved the abnormal joint motion observed in patients with lateral ankle instability, decreasing anterior translation and internal rotation of the talus. Clinical Relevance Altered kinematics may contribute to the tibiotalar joint degeneration that occurs with chronic lateral ankle instability. The findings of the current study support the efficacy of this repair in improving the abnormal ankle motion observed in these patients. PMID:22886690

  4. Operative Fixation Options for Elective and Diabetic Ankle Arthrodesis.

    PubMed

    Ramanujam, Crystal L; Stapleton, John J; Zgonis, Thomas

    2017-07-01

    Ankle arthrodesis remains one of the most definitive treatment options for end-stage arthritis, paralysis, posttraumatic and postinfectious conditions, failed total ankle arthroplasty, and severe deformities. The general aims of ankle arthrodesis are to decrease pain and instability, correct the accompanying deformity, and create a stable plantigrade foot. Several surgical approaches have been reported for ankle arthrodesis with internal fixation options. External fixation has also evolved for ankle arthrodesis in certain clinical scenarios. This article provides a comprehensive analysis of midterm to long-term outcomes for ankle arthrodesis using internal and/or external fixation each for elective and diabetic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Ball and Socket Ankle: Mechanism and Computational Evidence of Concept.

    PubMed

    Jastifer, James R; Gustafson, Peter A; Labomascus, Aaron; Snoap, Tyler

    The ball and socket ankle joint is a morphologically abnormal joint characterized by rounding of the articular surface of the talus. Other than anecdotal observation, little evidence has been presented to describe the development of this deformity. The purpose of the present study was to review ankle and subtalar joint mechanics and to kinematically examine the functional combination of these joints as a mechanism of the ball and socket ankle deformity. We reviewed functional representations of the ankle joint, subtalar joint, and ball and socket ankle deformity. A computational study of joint kinematics was then performed using a 3-dimensional model derived from a computed tomography scan of a ball and socket deformity. The joint kinematics were captured by creating a "virtual map" of the combined kinematics of the ankle and subtalar joints in the respective models. The ball and socket ankle deformity produces functionally similar kinematics to a combination of the ankle and subtalar joints. The findings of the present study support the notion that a possible cause of the ball and socket deformity is bony adaptation that compensates for a functional deficit of the ankle and subtalar joints. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  6. The Impact of Chiropractic Manipulative Therapy on Chronic Recurrent Lateral Ankle Sprain Syndrome in Two Young Athletes

    PubMed Central

    Gillman, Scott F.

    2004-01-01

    Abstract Objective To describe two cases of abrupt resolution of chronic, recurrent, inversion sprain to ankles in young recreational athletes. Clinical Features A 13-year-old, female, avid recreational soccer player with ankles that would spontaneously invert during various inconsistent points in the weight bearing gait cycle, sometimes with acute pain or sprain to the ankle. No intervention was attempted prior to her entry to the chiropractic office. A 17-year-old male avid skate- boarder and snowboarder whose left ankle routinely “gave out” into inversion upon mundane weight bearing activity, usually with pain and with dependence on wearing an ankle support when skateboarding to lessen ankle pain. The patient had used an ankle support prior to seeking chiropractic care. Intervention and Outcome High velocity, low amplitude chiropractic manipulative therapy applied to the spine, pelvis and extremity joints was the primary intervention in both cases, with particular focus on the ankle. Other procedures used included taping and orthotics, but not before the manipulation effect was noted. Conclusion High velocity, low amplitude chiropractic manipulative therapy to the spine, pelvis, and extremities, particularly at the ankle, should be considered when managing young recreational athletes with functional chronic, recurrent, ankle inversion sprains. PMID:19674638

  7. Supination external rotation ankle fractures: A simpler pattern with better outcomes

    PubMed Central

    Tejwani, Nirmal C; Park, Ji Hae; Egol, Kenneth A

    2015-01-01

    Background: Rotational injuries are the most common and usually classified as per the Lauge Hansen classification; with the most common subgroup being the supination external rotation (SER) mechanism. Isolated fractures of the distal fibula (SE2) without associated ligamentous injury are usually treated with a splint or brace and the patient may be allowed to weight bear as tolerated. This study reports the functional outcomes following a stable, low energy, rotational ankle fracture supination external rotation (SER2) when compared to unstable SER4 fractures treated operatively. Materials and Methods: 64 patients who were diagnosed and treated nonoperatively for a stable SER2 ankle fracture were followed prospectively. In the comparison group, 93 operatively treated fibular fractures were extracted from a prospectively collected database and evaluated comparison. Baseline characteristics obtained by trained interviewers at the time of injury included: Patient demographics, short form-36, short musculoskeletal functional assessment (SMFA) and American Orthopedic Foot and Ankle Society (AOFAS) questionnaires. Patients were followed at 3, 6 and 12 months postsurgery. Additional information obtained at each followup point included any complications or evidence on fracture healing. Data were analyzed by the Student's t-test and theFisher's Exact Test to compare demographic and functional outcomes between the two cohorts. P < 0.05 was considered to be significant. Results: The average of patients’ age in the stable fracture cohort was 43 versus 45 in the SER4 group. Nearly 64% of the patient population was female when compared with 37% in the operative group. In the SER2 by 6 months all patients had returned to baseline functional status. There were 18 delayed unions (all healed by 6 months). Based on the functional outcome scores all patients had returned to preoperative level. In comparison, SE4 patients had less functional recovery at 3 and 6 months (P < 0.05) based on the SMFA scores and at 3, 6 and 12 months based on the AOFAS (P < 0.001) scores. There was no difference in pain levels between the two groups at all time points. There were three nonunions in the SE4 group and six delayed unions. Conclusions: An SER2 ankle fracture is a relatively benign injury with functional limitations resolving by 3 months while the need for surgical fixation in SER ankle fractures appears to affect lower extremity function to a greater degree for a longer time period. Patients should be counseled as to these expected outcomes. PMID:26015612

  8. The Epidemiology of High Ankle Sprains in National Collegiate Athletic Association Sports.

    PubMed

    Mauntel, Timothy C; Wikstrom, Erik A; Roos, Karen G; Djoko, Aristarque; Dompier, Thomas P; Kerr, Zachary Y

    2017-07-01

    Ankle sprains are among the most common injuries experienced by collegiate athletes. The type of ankle sprain is rarely differentiated in epidemiological studies. This differentiation is necessary, as each ankle sprain type has a unique injury mechanism and recovery period. High ankle sprains commonly result in long recovery periods. Thus, a further examination of the epidemiology of high ankle sprains is warranted. To describe the epidemiology of high ankle sprains in National Collegiate Athletic Association (NCAA) sports during the 2009/2010-2014/2015 academic years. Descriptive epidemiology study. NCAA Injury Surveillance Program high ankle sprain data and athlete-exposures (AEs) from 25 sports were evaluated. Certified athletic trainers recorded sport-related injury, event, and AE data during team-sanctioned events. High ankle sprain injury rates per 10,000 AEs were calculated. Percentage distributions were calculated for the amount of time lost from sport and percentage of recurrent injuries. Injury rate ratios (RRs) and 95% CIs compared injury rates by event type, participation restriction time, and sex. 95% CIs not containing 1.00 were considered statistically significant. The overall high ankle sprain injury rate was 1.00 per 10,000 AEs. Overall, 56.7% of high ankle sprain injuries occurred during competitions, and 9.8% of high ankle sprain injuries were recurrent. Men's football (2.42/10,000 AEs), wrestling (2.11/10,000 AEs), and ice hockey (1.19/10,000 AEs) had the highest high ankle sprain injury rates. In sex-comparable sports, men had higher injury rates (RR, 1.77; 95% CI, 1.28-2.44). Player contact was the most common injury mechanism (60.4%), and 69.0% of injuries resulted in ≥1 day of participation restriction, with 47.1% resulting in ≥7 days of participation restriction and 15.8% resulting in >21 days of participation restriction. High ankle sprains resulted in significant participation restriction time from sport participation. The majority of high ankle sprain injuries resulted from player contact and were observed in contact/collision sports. The large proportion of high ankle sprains resulting from player contact, specifically in male contact sports, is worthy of further investigation. The enhanced understanding of the epidemiology of high ankle sprains provided in our study will aid clinicians in developing targeted injury prevention strategies to mitigate the negative consequences of these injuries.

  9. Ankle Sprains. A Round Table.

    ERIC Educational Resources Information Center

    Physician and Sportsmedicine, 1986

    1986-01-01

    Types of ankle sprains, surgical versus nonsurgical treatment, tape versus brace for support, rehabilitation, exercise, and prevention of ankle sprains are discussed by a panel of experts. An acute ankle taping technique is illustrated. (MT)

  10. Position versus force control: using the 2-DOF robotic ankle trainer to assess ankle's motor control.

    PubMed

    Farjadian, Amir B; Nabian, Mohsen; Hartman, Amber; Corsino, Johnathan; Mavroidis, Constantinos; Holden, Maureen K

    2014-01-01

    An estimated of 2,000,000 acute ankle sprains occur annually in the United States. Furthermore, ankle disabilities are caused by neurological impairments such as traumatic brain injury, cerebral palsy and stroke. The virtually interfaced robotic ankle and balance trainer (vi-RABT) was introduced as a cost-effective platform-based rehabilitation robot to improve overall ankle/balance strength, mobility and control. The system is equipped with 2 degrees of freedom (2-DOF) controlled actuation along with complete means of angle and torque measurement mechanisms. Vi-RABT was used to assess ankle strength, flexibility and motor control in healthy human subjects, while playing interactive virtual reality games on the screen. The results suggest that in the task with 2-DOF, subjects have better control over ankle's position vs. force.

  11. Effectiveness of functional ankle taping for judo athletes: a comparison between judo bandaging and taping.

    PubMed Central

    Yamamoto, T; Kigawa, A; Xu, T

    1993-01-01

    This study was conducted to compare the effectiveness of the traditional method of ankle bandaging and the new method of ankle taping for judo athletes in Japan, and to introduce a functionally effective taping method for judo players. Four university judo athletes with ankle instability were selected to undertake radiography of the ankles before and after exercise, with bandaging at one time and taping at the other. Talar tilt (TT) angles were measured in order to compare the ankle-supporting effects. The results showed that the old ankle bandaging method had no role in eliminating the talar tilt during judo practice. In contrast, the new taping method was more effective in eliminating the talar tilt and supporting the involved ankles both mechanically and functionally. Images Figure 1 Figure 2 Figure 3 PMID:8358580

  12. Reliability and smallest real difference of the ankle lunge test post ankle fracture.

    PubMed

    Simondson, David; Brock, Kim; Cotton, Susan

    2012-02-01

    This study aimed to determine the reliability and the smallest real difference of the Ankle Lunge test in an ankle fracture patient population. In the post immobilisation stage of ankle fracture, ankle dorsiflexion is an important measure of progress and outcome. The Ankle Lunge test measures weight bearing dorsiflexion, resulting in negative scores (knee to wall distance) and positive scores (toe to wall distance), for which the latter has proven reliability in normal subjects only. A consecutive sample of ankle fracture patients with permission to commence weight bearing, were recruited to the study. Three measurements of the Ankle Lunge Test were performed each by two raters, one senior and one junior physiotherapist. These occurred prior to therapy sessions in the second week after plaster removal. A standardised testing station was utilised and allowed for both knee to wall distance and toe to wall distance measurement. Data was collected from 10 individuals with ankle fracture, with an average age of 36 years (SD 14.8). Seventy seven percent of observations were negative. Intra and inter-rater reliability yielded intra class correlations at or above 0.97, p < .001. There was a significant systematic bias towards improved scores during repeated measurement for one rater (p = .01). The smallest real difference was calculated as 13.8mm. The Ankle Lunge test is a practical and reliable tool for measuring weightbearing dorsiflexion post ankle fracture. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Spring-like Ankle Foot Orthoses reduce the energy cost of walking by taking over ankle work.

    PubMed

    Bregman, D J J; Harlaar, J; Meskers, C G M; de Groot, V

    2012-01-01

    In patients with central neurological disorders, gait is often limited by a reduced ability to push off with the ankle. To overcome this reduced ankle push-off, energy-storing, spring-like carbon-composite Ankle Foot Orthoses (AFO) can be prescribed. It is expected that the energy returned by the AFO in late stance will support ankle push-off, and reduce the energy cost of walking. In 10 patients with multiple sclerosis and stroke the energy cost of walking, 3D kinematics, joint power, and joint work were measured during gait, with and without the AFO. The mechanical characteristics of the AFO were measured separately, and used to calculate the contribution of the AFO to the ankle kinetics. We found a significant decrease of 9.8% in energy cost of walking when walking with the AFO. With the AFO, the range of motion of the ankle was reduced by 12.3°, and the net work around the ankle was reduced by 29%. The total net work in the affected leg remained unchanged. The AFO accounted for 60% of the positive ankle work, which reduced the total amount of work performed by the leg by 11.1% when walking with the AFO. The decrease in energy cost when walking with a spring-like energy-storing AFO in central neurological patients is not induced by an augmented net ankle push-off, but by the AFO partially taking over ankle work. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Ankle-Dorsiflexion Range of Motion After Ankle Self-Stretching Using a Strap

    PubMed Central

    Jeon, In-cheol; Kwon, Oh-yun; Yi, Chung-Hwi; Cynn, Heon-Seock; Hwang, Ui-jae

    2015-01-01

    Context  A variety of ankle self-stretching exercises have been recommended to improve ankle-dorsiflexion range of motion (DFROM) in individuals with limited ankle dorsiflexion. A strap can be applied to stabilize the talus and facilitate anterior glide of the distal tibia at the talocrural joint during ankle self-stretching exercises. Novel ankle self-stretching using a strap (SSS) may be a useful method of improving ankle DFROM. Objective  To compare the effects of 2 ankle-stretching techniques (static stretching versus SSS) on ankle DFROM. Design  Randomized controlled clinical trial. Setting  University research laboratory. Patients or Other Participants  Thirty-two participants with limited active dorsiflexion (<20°) while sitting (14 women and 18 men) were recruited. Main Outcome Measure(s)  The participants performed 2 ankle self-stretching techniques (static stretching and SSS) for 3 weeks. Active DFROM (ADFROM), passive DFROM (PDFROM), and the lunge angle were measured. An independent t test was used to compare the improvements in these values before and after the 2 stretching interventions. The level of statistical significance was set at α = .05. Results  Active DFROM and PDFROM were greater in both stretching groups after the 3-week interventions. However, ADFROM, PDFROM, and the lunge angle were greater in the SSS group than in the static-stretching group (P < .05). Conclusions  Ankle SSS is recommended to improve ADFROM, PDFROM, and the lunge angle in individuals with limited DFROM. PMID:26633750

  15. Range of motion and ankle injury history association with sex in pediatric and adolescent athletes.

    PubMed

    Sugimoto, Dai; McCartney, Ronald E; Parisien, Robert L; Dashe, Jesse; Borg, Dennis R; Meehan, William P

    2018-02-01

    Ankle sprain is one of the most common musculoskeletal injuries among young athletes, and there remains a gap in the literature regarding susceptibility to such injuries among physically active youth. The primary purpose of this study was to determine the associations between sex, a history of ankle sprain, and ankle range of motion (ROM) in pediatric and adolescent athletes. Athletes under the age of 18 years old who presented to a sports injury prevention center underwent ankle ROM measurements including plantarflexion (PF), inversion (IV), and eversion (EV). A two-way analysis of covariance (ANCOVA) was performed to examine effect of sex and a history of ankle sprain on ROMs. Also, a binary logistic regression was performed to investigate variables that are associated with a history of ankle injury. Among 452 pediatric and adolescent athletes [268 females (13.6 ± 2.3 years old) and 184 males (13.3 ± 2.5 years old)], 128 reported a history of previous ankle sprain. Females demonstrated significantly increased ROMs (PF and IV bilaterally, and right EV) compared to males while there was no effect of a history of ankle sprain on ROMs. Female sex was independently associated with a history of ankle sprain. There was a strong effect of female sex on ROMs rather than a history of ankle injury history. Additionally, pediatric and adolescent females have greater odds of a history of ankle sprain when compared to their male counterparts.

  16. The improvement of postural control in patients with mechanical ankle instability after lateral ankle ligaments reconstruction.

    PubMed

    Li, Hong-Yun; Zheng, Jie-Jiao; Zhang, Jian; Cai, Ye-Hua; Hua, Ying-Hui; Chen, Shi-Yi

    2016-04-01

    Lateral ankle sprain is the most common injury. A previous study demonstrated that patients with mechanical ankle instability suffered deficits in postural control, indicating that structural damage of the lateral ankle ligaments may produce a balance deficit. The purpose of this study was to confirm that lateral ligaments reconstruction could improve postural control in patients with mechanical ankle instability. A total of 15 patients were included in the study. Each patient had a history of an ankle sprain with persistent symptoms of ankle instability and a positive anterior drawer test and had been treated nonoperatively for at least 3 months. All patients were diagnosed with lateral ankle ligaments tear by ultrasonography and magnetic resonance imaging. They underwent arthroscopic debridement and open lateral ankle ligaments reconstruction with a modified Broström procedure. One day before and 6 months after the operation, all of the participants underwent single-limb postural sway tests. The anterior drawer test and the American Orthopedic Foot and Ankle Society scale score were used to evaluate the clinical results in these patients. At 6 months after the operation, with the patients' eyes closed, there was significantly decreased postural sway in the anteroposterior direction, the circumferential area, and the total path length on the operated ankles compared with those measurements before the operation. With eyes open, however, no difference was found in postural sway before and after the operation. Postural control was improved by reconstructing the lateral ligaments. IV.

  17. Trainer variability during step training after spinal cord injury: Implications for robotic gait-training device design.

    PubMed

    Galvez, Jose A; Budovitch, Amy; Harkema, Susan J; Reinkensmeyer, David J

    2011-01-01

    Robotic devices are being developed to automate repetitive aspects of walking retraining after neurological injuries, in part because they might improve the consistency and quality of training. However, it is unclear how inconsistent manual training actually is or whether stepping quality depends strongly on the trainers' manual skill. The objective of this study was to quantify trainer variability of manual skill during step training using body-weight support on a treadmill and assess factors of trainer skill. We attached a sensorized orthosis to one leg of each patient with spinal cord injury and measured the shank kinematics and forces exerted by different trainers during six training sessions. An expert trainer rated the trainers' skill level based on videotape recordings. Between-trainer force variability was substantial, about two times greater than within-trainer variability. Trainer skill rating correlated strongly with two gait features: better knee extension during stance and fewer episodes of toe dragging. Better knee extension correlated directly with larger knee horizontal assistance force, but better toe clearance did not correlate with larger ankle push-up force; rather, it correlated with better knee and hip extension. These results are useful to inform robotic gait-training design.

  18. Lateral ankle injury. Literature review and report of two cases.

    PubMed

    Pollard, Henry; Sim, Patrick; McHardy, Andrew

    2002-07-01

    Injury to the ankle joint is the most common peripheral joint injury. The sports that most commonly produce high ankle injury rates in their participating athletes include: basketball, netball, and the various codes of football. To provide an up to date understanding of manual therapy relevant to lateral ligament injury of the ankle. A discussion of the types of ligament injury and common complicating factors that present with lateral ankle pain is presented along with a review of relevant anatomy, assessment and treatment. Also included is a discussion of the efficacy of manual therapy in the treatment of ankle sprain. A detailed knowledge of the anatomy of the ankle as well as the early recognition of factors that may delay the rate of healing are important considerations when developing a management plan for inversion sprains of the ankle. This area appears to be under-researched however it was found that movement therapy and its various forms appear to be the most efficient and most effective method of treating uncomplicated ankle injury. Future investigations should involve a study to determine the effect chiropractic treatment (manipulation) may have on the injured ankle.

  19. Evaluating the contribution of a neural component of ankle joint resistive torque in patients with stroke using a manual device.

    PubMed

    Kobayashi, Toshiki; Leung, Aaron K L; Akazawa, Yasushi; Hutchins, Stephen W

    2011-01-01

    To investigate the methodology using a manual ankle joint resistive torque measurement device to evaluate the contribution of the neural component of ankle joint resistive torque in patients with stroke. Within-subject comparison to compare the ankle joint resistive torque between fast and slow stretching conditions. Ten patients with stroke participated in this study. The incremental ratio of ankle joint resistive torque at the ankle angular position of 5degrees dorsiflexion under the fast stretching condition in comparison to the slow one was calculated in each patient. A significant increase (p<0.01) in the ankle joint resistive torque was demonstrated under the fast stretching condition in comparison to the slow one in all patients and the mean ankle joint resistive torque was 4.6 (SD=1.7) Nm under the slow stretching condition, while it was 8.4 (SD=4.1) Nm under the fast stretching condition at the ankle angular position of 5 degrees dorsiflexion. The incremental ratio ranged from 9.4-139.3% among the patients. The results of this study demonstrated the potential advantage of the device to evaluate the contribution of the neural component of ankle joint resistive torque.

  20. Ankle and Midfoot Power During Walking and Stair Ascent in Healthy Adults.

    PubMed

    DiLiberto, Frank E; Nawoczenski, Deborah A; Houck, Jeff

    2018-02-27

    Ankle power dominates forward propulsion of gait, but midfoot power generation is also important for successful push off. However, it is unclear if midfoot power generation increases or stays the same in response to propulsive activities that induce larger external loads and require greater ankle power. The purpose of this study was to examine ankle and midfoot power in healthy adults during progressively more demanding functional tasks. Multi-segment foot motion (tibia, calcaneus, forefoot) and ground reaction forces were recorded as participants (N=12) walked, ascended a standard step, and ascended a high step. Ankle and midfoot positive peak power and total power, and the proportion of midfoot to ankle total power were calculated. One-way repeated measures ANOVAs were conducted to evaluate differences across tasks. Main effects were found for ankle and midfoot peak and total powers (all p < .001), but not for the proportion of midfoot to ankle total power (p = .331). Ankle and midfoot power significantly increased across each task. Midfoot power increased in proportion to ankle power and in congruence to the external load of a task. Study findings may serve to inform multi-segment foot modeling applications and internal mechanistic theories of normal and pathological foot function.

  1. Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot.

    PubMed

    Mooney, Luke M; Lai, Cara H; Rouse, Elliott J

    2014-01-01

    By design, commonly worn energy storage and release (ESR) prosthetic feet cannot provide biologically realistic ankle joint torque and angle profiles during walking. Additionally, their anthropomorphic, cantilever architecture causes their mechanical stiffness to decrease throughout the stance phase of walking, opposing the known trend of the biological ankle. In this study, the design of a quasi-passive pneumatic ankle-foot prosthesis is detailed that is able to replicate the biological ankle's torque and angle profiles during walking. The prosthetic ankle is comprised of a pneumatic piston, bending spring and solenoid valve. The mechanical properties of the pneumatic ankle prosthesis are characterized using a materials testing machine and the properties are compared to those from a common, passive ESR prosthetic foot. The characterization spanned a range of ankle equilibrium pressures and testing locations beneath the foot, analogous to the location of center of pressure within the stance phase of walking. The pneumatic ankle prosthesis was shown to provide biologically appropriate trends and magnitudes of torque, angle and stiffness behavior, when compared to the passive ESR prosthetic foot. Future work will focus on the development of a control system for the quasi-passive device and clinical testing of the pneumatic ankle to demonstrate efficacy.

  2. General principles in motion vision: color blindness of object motion depends on pattern velocity in honeybee and goldfish.

    PubMed

    Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa

    2011-07-01

    Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.

  3. Securing Sensitive Flight and Engine Simulation Data Using Smart Card Technology

    NASA Technical Reports Server (NTRS)

    Blaser, Tammy M.

    2003-01-01

    NASA Glenn Research Center has developed a smart card prototype capable of encrypting and decrypting disk files required to run a distributed aerospace propulsion simulation. Triple Data Encryption Standard (3DES) encryption is used to secure the sensitive intellectual property on disk pre, during, and post simulation execution. The prototype operates as a secure system and maintains its authorized state by safely storing and permanently retaining the encryption keys only on the smart card. The prototype is capable of authenticating a single smart card user and includes pre simulation and post simulation tools for analysis and training purposes. The prototype's design is highly generic and can be used to protect any sensitive disk files with growth capability to urn multiple simulations. The NASA computer engineer developed the prototype on an interoperable programming environment to enable porting to other Numerical Propulsion System Simulation (NPSS) capable operating system environments.

  4. Pain Management: A Practical Approach to Nursing Education.

    ERIC Educational Resources Information Center

    Wacker, Margaret S.; Pawasauskas, Joyce

    2002-01-01

    Nine brief onsite educational sessions of 10-20 minutes each trained nurses in pain management techniques. Participants recognized the value of brief presentations, but wanted more time to learn the material. The content was made available on disk for further study. (SK)

  5. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke

    PubMed Central

    Kobayashi, Toshiki; Singer, Madeline L.; Orendurff, Michael S.; Gao, Fan; Daly, Wayne K.; Foreman, K. Bo

    2015-01-01

    Background The adjustment of plantarflexion resistive moment of an articulated ankle-foot orthosis is considered important in patients post stroke, but the evidence is still limited. Therefore, the aim of this study was to investigate the effect of changing the plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments in patients post stroke. Methods Gait analysis was performed on 10 subjects post stroke under four different plantarflexion resistive moment conditions using a newly designed articulated ankle-foot orthosis. Data were recorded using a Bertec split-belt instrumented treadmill in a 3-dimensional motion analysis laboratory. Findings The ankle and knee sagittal joint angles and moments were significantly affected by the amount of plantarflexion resistive moment of the ankle-foot orthosis. Increasing the plantarflexion resistive moment of the ankle-foot orthosis induced significant decreases both in the peak ankle plantarflexion angle (P<0.01) and the peak knee extension angle (P<0.05). Also, the increase induced significant increases in the internal dorsiflexion moment of the ankle joint (P<0.01) and significantly decreased the internal flexion moment of the knee joint (P<0.01). Interpretation These results suggest an important link between the kinematic/kinetic parameters of the lower-limb joints and the plantarflexion resistive moment of an articulated ankle-foot orthosis. A future study should be performed to clarify their relationship further so that the practitioners may be able to use these parameters as objective data to determine an optimal plantarflexion resistive moment of an articulated ankle-foot orthosis for improved orthotic care in individual patients. PMID:26149007

  6. Intermediate-Term Follow-up After Ankle Distraction for Treatment of End-Stage Osteoarthritis

    PubMed Central

    Nguyen, Mai P.; Pedersen, Douglas R.; Gao, Yubo; Saltzman, Charles L.; Amendola, Annunziato

    2015-01-01

    Background: Treatment of end-stage ankle osteoarthritis remains challenging, especially in young patients. Initial reports have shown early benefits of joint distraction for the treatment of ankle osteoarthritis. We report the five to ten-year results of a previously described patient cohort following ankle distraction surgery. Methods: All thirty-six patients who had undergone ankle distraction surgery between December 2002 and October 2006 were contacted. Patients were evaluated by a clinical investigator and completed the Ankle Osteoarthritis Scale (AOS) and Short Form-36 (SF-36) surveys. Radiographs as well as computed tomography and magnetic resonance imaging scans of the ankles were obtained at the follow-up visits. Results: Twenty-nine patients (81%) were followed for a minimum of five years (mean and standard deviation, 8.3 ± 2.2 years). Sixteen (55%) of the twenty-nine patients still had the native ankle joint whereas thirteen patients (45%) had undergone either ankle arthrodesis or total ankle arthroplasty. Positive predictors of ankle survival included a better AOS score at two years (hazard ratio [HR] = 0.048, 95% confidence interval [CI] = 0.0028 to 0.84, p = 0.04), older age at surgery (HR = 0.91, 95% CI = 0.83 to 0.99, p = 0.04), and fixed distraction (HR = 0.094, 95% CI = 0.017 to 0.525, p < 0.01). Radiographs and advanced imaging revealed progression of ankle osteoarthritis at the time of final follow-up. Conclusions: Ankle function following joint distraction declines over time. Patients should be well informed of the commitment that they must make during the treatment period as well as the long-term results after surgery. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:25834084

  7. Joint mobilization acutely improves landing kinematics in chronic ankle instability.

    PubMed

    Delahunt, Eamonn; Cusack, Kim; Wilson, Laura; Doherty, Cailbhe

    2013-03-01

    The objective of this study is to examine the acute effect of ankle joint mobilizations akin to those performed in everyday clinical practice on sagittal plane ankle joint kinematics during a single-leg drop landing in participants with chronic ankle instability (CAI). Fifteen participants with self-reported CAI (defined as <24 on the Cumberland Ankle Instability Tool) performed three single-leg drop landings under two different conditions: 1) premobilization and, 2) immediately, postmobilization. The mobilizations performed included Mulligan talocrural joint dorsiflexion mobilization with movement, Mulligan inferior tibiofibular joint mobilization, and Maitland anteroposterior talocrural joint mobilization. Three CODA cx1 units (Charnwood Dynamics Ltd., Leicestershire, UK) were used to provide information on ankle joint sagittal plane angular displacement. The dependent variable under investigation was the angle of ankle joint plantarflexion at the point of initial contact during the drop landing. There was a statistically significant acute decrease in the angle of ankle joint plantarflexion from premobilization (34.89° ± 4.18°) to postmobilization (31.90° ± 5.89°), t(14) = 2.62, P < 0.05 (two-tailed). The mean decrease in the angle of ankle joint plantarflexion as a result of the ankle joint mobilization was 2.98° with a 95% confidence interval ranging from 0.54 to 5.43. The eta squared statistic (0.32) indicated a large effect size. These results indicate that mobilization acted to acutely reduce the angle of ankle joint plantarflexion at initial contact during a single-leg drop landing. Mobilization applied to participants with CAI has a mechanical effect on the ankle joint, thus facilitating a more favorable positioning of the ankle joint when landing from a jump.

  8. Cross-cultural adaptation, reliability, and validity of the Persian version of the Cumberland Ankle Instability Tool.

    PubMed

    Hadadi, Mohammad; Ebrahimi Takamjani, Ismail; Ebrahim Mosavi, Mohammad; Aminian, Gholamreza; Fardipour, Shima; Abbasi, Faeze

    2017-08-01

    The purpose of the present study was to translate and to cross-culturally adapt the Cumberland Ankle Instability Tool (CAIT) into Persian language and to evaluate its psychometric properties. The International Quality of Life Assessment process was pursued to translate CAIT into Persian. Two groups of Persian-speaking individuals, 105 participants with a history of ankle sprain and 30 participants with no history of ankle sprain, were asked to fill out Persian version of CAIT (CAIT-P), Foot and Ankle Ability Measure (FAAM), and Visual Analog Scale (VAS). Data obtained from the first administration of CAIT were used to evaluate floor and ceiling effects, internal consistency, dimensionality, and criterion validity. To determine the test-retest reliability, 45 individuals re-filled CAIT 5-7 days after the first session. Cronbach's alpha was over the cutoff point of 0.70 for both ankles and in both groups. The intra-class correlation coefficient was high for right (0.95) and left (0.91) ankles. There was a strong correlation between each item and the total score of the CAIT-P. Although the CAIT-P had strong correlation with VAS, its correlation with both subscales of FAAM was moderate. The CAIT-P has good validity and reliability and it can be used by clinicians and researchers for identification and investigation of functional ankle instability. Implications for Rehabilitation Chronic ankle instability is one of the most common consequences of acute ankle sprain. Cumberland Ankle Instability Tool is an acceptable measure to determine functional ankle instability and its severity. The Persian version of Cumberland Ankle Instability Tool is a valid and reliable tool for clinical and research purpose in Persian-speaking individuals.

  9. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.

    PubMed

    Kobayashi, Toshiki; Singer, Madeline L; Orendurff, Michael S; Gao, Fan; Daly, Wayne K; Foreman, K Bo

    2015-10-01

    The adjustment of plantarflexion resistive moment of an articulated ankle-foot orthosis is considered important in patients post stroke, but the evidence is still limited. Therefore, the aim of this study was to investigate the effect of changing the plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments in patients post stroke. Gait analysis was performed on 10 subjects post stroke under four different plantarflexion resistive moment conditions using a newly designed articulated ankle-foot orthosis. Data were recorded using a Bertec split-belt instrumented treadmill in a 3-dimensional motion analysis laboratory. The ankle and knee sagittal joint angles and moments were significantly affected by the amount of plantarflexion resistive moment of the ankle-foot orthosis. Increasing the plantarflexion resistive moment of the ankle-foot orthosis induced significant decreases both in the peak ankle plantarflexion angle (P<0.01) and the peak knee extension angle (P<0.05). Also, the increase induced significant increases in the internal dorsiflexion moment of the ankle joint (P<0.01) and significantly decreased the internal flexion moment of the knee joint (P<0.01). These results suggest an important link between the kinematic/kinetic parameters of the lower-limb joints and the plantarflexion resistive moment of an articulated ankle-foot orthosis. A future study should be performed to clarify their relationship further so that the practitioners may be able to use these parameters as objective data to determine an optimal plantarflexion resistive moment of an articulated ankle-foot orthosis for improved orthotic care in individual patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ottawa Ankle Rules and Subjective Surgeon Perception to Evaluate Radiograph Necessity Following Foot and Ankle Sprain

    PubMed Central

    Pires, RES; Pereira, AA; Abreu-e-Silva, GM; Labronici, PJ; Figueiredo, LB; Godoy-Santos, AL; Kfuri, M

    2014-01-01

    Background: Foot and ankle injuries are frequent in emergency departments. Although only a few patients with foot and ankle sprain present fractures and the fracture patterns are almost always simple, lack of fracture diagnosis can lead to poor functional outcomes. Aim: The present study aims to evaluate the reliability of the Ottawa ankle rules and the orthopedic surgeon subjective perception to assess foot and ankle fractures after sprains. Subjects and Methods: A cross-sectional study was conducted from July 2012 to December 2012. Ethical approval was granted. Two hundred seventy-four adult patients admitted to the emergency department with foot and/or ankle sprain were evaluated by an orthopedic surgeon who completed a questionnaire prior to radiographic assessment. The Ottawa ankle rules and subjective perception of foot and/or ankle fractures were evaluated on the questionnaire. Results: Thirteen percent (36/274) patients presented fracture. Orthopedic surgeon subjective analysis showed 55.6% sensitivity, 90.1% specificity, 46.5% positive predictive value and 92.9% negative predictive value. The general orthopedic surgeon opinion accuracy was 85.4%. The Ottawa ankle rules presented 97.2% sensitivity, 7.8% specificity, 13.9% positive predictive value, 95% negative predictive value and 19.9% accuracy respectively. Weight-bearing inability was the Ottawa ankle rule item that presented the highest reliability, 69.4% sensitivity, 61.6% specificity, 63.1% accuracy, 21.9% positive predictive value and 93% negative predictive value respectively. Conclusion: The Ottawa ankle rules showed high reliability for deciding when to take radiographs in foot and/or ankle sprains. Weight-bearing inability was the most important isolated item to predict fracture presence. Orthopedic surgeon subjective analysis to predict fracture possibility showed a high specificity rate, representing a confident method to exclude unnecessary radiographic exams. PMID:24971221

  11. Control of paraplegic ankle joint stiffness using FES while standing.

    PubMed

    Hunt, K J; Gollee, H; Jaime, R P

    2001-10-01

    The goal of this work was to investigate the feasibility of ankle stiffness control using functional electrical stimulation (FES) while standing, as relevant to the development of feedback systems for balance control in paraplegia. The work was carried out using apparatus in which the subject stands with all joints above the ankles braced, and where ankle moment is provided via FES of the ankle flexor and extensor muscles. A feedback control strategy for ankle stiffness control is proposed in which the ankle moment is controlled to a reference value equal to the product of the desired stiffness and the measured ankle angle. Two subjects participated in the study: one neurologically-intact person, and one paraplegic person with a complete thoracic spinal cord lesion. The results show that during forward-leaning postures, when the plantarflexor muscles are stimulated, relatively high ankle moments of up to 60 Nm can be generated and accurate moment tracking is achieved. As a consequence, ankle stiffness is close to the desired value. During backward lean, on the other hand, the dorsiflexor muscles are stimulated. These muscles are relatively weak and only modest ankle moments of up to around 15 Nm can be produced. As a result, dorsiflexor stimulation readily saturates giving poor stiffness control. It was further observed that when the desired stiffness is higher more external force has to be applied to perturb the body away from the neutral (upright) position. We conclude that: (i) accurate ankle stiffness control, up to the fundamental strength limits of the muscles, can be achieved with controlled FES; (ii) ankle stiffness control using FES in paraplegia has the potential to ease the task of stabilising upright posture by application of additional upper-body forces.

  12. Intermediate-term follow-up after ankle distraction for treatment of end-stage osteoarthritis.

    PubMed

    Nguyen, Mai P; Pedersen, Douglas R; Gao, Yubo; Saltzman, Charles L; Amendola, Annunziato

    2015-04-01

    Treatment of end-stage ankle osteoarthritis remains challenging, especially in young patients. Initial reports have shown early benefits of joint distraction for the treatment of ankle osteoarthritis. We report the five to ten-year results of a previously described patient cohort following ankle distraction surgery. All thirty-six patients who had undergone ankle distraction surgery between December 2002 and October 2006 were contacted. Patients were evaluated by a clinical investigator and completed the Ankle Osteoarthritis Scale (AOS) and Short Form-36 (SF-36) surveys. Radiographs as well as computed tomography and magnetic resonance imaging scans of the ankles were obtained at the follow-up visits. Twenty-nine patients (81%) were followed for a minimum of five years (mean and standard deviation, 8.3 ± 2.2 years). Sixteen (55%) of the twenty-nine patients still had the native ankle joint whereas thirteen patients (45%) had undergone either ankle arthrodesis or total ankle arthroplasty. Positive predictors of ankle survival included a better AOS score at two years (hazard ratio [HR] = 0.048, 95% confidence interval [CI] = 0.0028 to 0.84, p = 0.04), older age at surgery (HR = 0.91, 95% CI = 0.83 to 0.99, p = 0.04), and fixed distraction (HR = 0.094, 95% CI = 0.017 to 0.525, p < 0.01). Radiographs and advanced imaging revealed progression of ankle osteoarthritis at the time of final follow-up. Ankle function following joint distraction declines over time. Patients should be well informed of the commitment that they must make during the treatment period as well as the long-term results after surgery. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  13. Test-retest reliability of sudden ankle inversion measurements in subjects with healthy ankle joints.

    PubMed

    Eechaute, Christophe; Vaes, Peter; Duquet, William; Van Gheluwe, Bart

    2007-01-01

    Sudden ankle inversion tests have been used to investigate whether the onset of peroneal muscle activity is delayed in patients with chronically unstable ankle joints. Before interpreting test results of latency times in patients with chronic ankle instability and healthy subjects, the reliability of these measures must be first demonstrated. To investigate the test-retest reliability of variables measured during a sudden ankle inversion movement in standing subjects with healthy ankle joints. Validation study. Research laboratory. 15 subjects with healthy ankle joints (30 ankles). Subjects stood on an ankle inversion platform with both feet tightly fixed to independently moveable trapdoors. An unexpected sudden ankle inversion of 50 degrees was imposed. We measured latency and motor response times and electromechanical delay of the peroneus longus muscle, along with the time and angular position of the first and second decelerating moments, the mean and maximum inversion speed, and the total inversion time. Correlation coefficients and standard error of measurements were calculated. Intraclass correlation coefficients ranged from 0.17 for the electromechanical delay of the peroneus longus muscle (standard error of measurement = 2.7 milliseconds) to 0.89 for the maximum inversion speed (standard error of measurement = 34.8 milliseconds). The reliability of the latency and motor response times of the peroneus longus muscle, the time of the first and second decelerating moments, and the mean and maximum inversion speed was acceptable in subjects with healthy ankle joints and supports the investigation of the reliability of these measures in subjects with chronic ankle instability. The lower reliability of the electromechanical delay of the peroneus longus muscle and the angular positions of both decelerating moments calls the use of these variables into question.

  14. Developing a framework for ankle function: a delphi study.

    PubMed

    Snyder, Kelli R; Evans, Todd A; Neibert, Peter J

    2014-01-01

    Addressing clinical outcomes is paramount to providing effective health care, yet there is no consensus regarding the appropriate outcomes to address after ankle injuries. Compounding the problem is the repetitive nature of lateral ankle sprains, referred to as functional (FAI) or chronic (CAI) ankle instability. Although they are commonly used terms in practice and research, FAI and CAI are inconsistently defined and assessed. To establish definitions of a healthy/normal/noninjured ankle, FAI, and CAI, as well as their characteristics and assessment techniques. Delphi study. Telephone interviews and electronic surveys. Sixteen experts representing the fields of ankle function and treatment, ankle research, and outcomes assessment and research were selected as panelists. A telephone interview produced feedback regarding the definition of, functional characteristics of, and assessment techniques for a healthy/normal/noninjured ankle, an unhealthy/acutely injured ankle, and FAI/CAI. Those data were compiled, reduced, and returned through electronic surveys and were either included by reaching consensus (80% agreement) or excluded. The definitions of a healthy/normal/noninjured ankle and FAI reached consensus. Experts did not agree on a definition of CAI. Eleven functional characteristics of a healthy/normal/noninjured ankle, 32 functional characteristics of an unhealthy/acutely injured ankle, and 13 characteristics of FAI were agreed upon. Although a consensus was reached regarding the definitions and functional characteristics of a healthy/normal/noninjured ankle and FAI, the experts could only agree on 1 characteristic to include in the FAI definition. Several experts did, however, provide additional comments that reinforced the differences in the interpretation of those concepts. Although the experts could not agree on the definition of CAI, its characteristics, or the preferred use of the terms FAI and CAI, our findings provide progress toward establishing consistency in those concepts.

  15. Early functional outcome of a modified Brostrom-Gould surgery using bioabsorbable suture anchor for chronic lateral ankle instability.

    PubMed

    Shahrulazua, A; Ariff Sukimin, M S; Tengku Muzaffar, T M; Yusof, M I

    2010-03-01

    The purpose of this study was to evaluate the early functional outcome following the use of a bioabsorbable suture anchor to simplify the repair of injured lateral ankle structures as a variation of an established technique known as the Brostrom-Gould procedure. This was a prospective study of 30 ankles with chronic lateral instability that underwent a modified Brostrom-Gould surgery using a bioabsorbable suture anchor, performed by a single surgeon. A total of 29 patients, aged 15 to 52 (mean is 33) years, were enrolled in the study. The follow-up period ranged from three to six (mean is four) months. The function of the patients' ankles was scored using the Kaikkonen Functional Scale, both preoperatively and postoperatively. Preoperatively, all ankles had poor scores (less than 50). Postoperatively, 28 ankles showed excellent scores and two ankles showed good scores, while none obtained a fair or poor score. The difference in the overall means between the postoperative and preoperative scores was statistically significant (p-value is 0.001). Post surgery, 24 ankles had no symptoms, while six had only mild ankle tightness with extreme inversion movement at the last review. All patients were able to walk normally, and 29 ankles regained their normal running capability. There was marked improvement in the ability to descend stairs, to rise on heels and toes, to perform a single-limb stance, and in range of motions of the ankle dorsiflexion as well as in ankle laxity. The modified Brostrom-Gould procedure using a bioabsorbable suture anchor allowed for early ankle rehabilitation and offered a reproducible and excellent early functional outcome with minimal complications.

  16. A Model for Predicting Cognitive and Emotional Health from Structural and Functional Neurocircuitry Following Traumatic Brain Injury

    DTIC Science & Technology

    2015-10-01

    of flowers or the smell of a fresh sea breeze or freshly baked bread. ................................ Strongly Disagree Disagree Agree Strongly...Score I. Four-Wheeled Ship BUS Bike Train 2. Dining Items SPOON Pan Bowl Can Opener 3. Clothing Jump Rope Ball SHOES Crayons 4. Fruits BANANA Bean...Love-Hate 14. TV-Newspaper 15. Smooth-Rough 16. Shoulder-Ankle 17. Sit-Run 18. Child-Adult 19. Steam-Cloud • 20 . .’, Bird~ Flower 21. 1 22 .. J

  17. Triathlon: running injuries.

    PubMed

    Spiker, Andrea M; Dixit, Sameer; Cosgarea, Andrew J

    2012-12-01

    The running portion of the triathlon represents the final leg of the competition and, by some reports, the most important part in determining a triathlete's overall success. Although most triathletes spend most of their training time on cycling, running injuries are the most common injuries encountered. Common causes of running injuries include overuse, lack of rest, and activities that aggravate biomechanical predisposers of specific injuries. We discuss the running-associated injuries in the hip, knee, lower leg, ankle, and foot of the triathlete, and the causes, presentation, evaluation, and treatment of each.

  18. Active ankle motion may result in changes to the talofibular interval in individuals with chronic ankle instability and ankle sprain copers: a preliminary study.

    PubMed

    Croy, Theodore; Cosby, Nicole L; Hertel, Jay

    2013-08-01

    Alterations in talocrural joint arthrokinematics related to repositioning of the talus or fibula following ankle sprain have been reported in radiological and clinical studies. It is unclear if these changes can result from normal active ankle motion. The study objective was to determine if active movement created changes in the sagittal plane talofibular interval in ankles with a history of lateral ankle sprain and instability. Three subject groups [control (n = 17), ankle sprain copers (n = 20), and chronic ankle instability (n = 20)] underwent ultrasound imaging of the anterolateral ankle gutter to identify the lateral malleolus and talus over three trials. Between trials, subjects actively plantar and dorsiflexed the ankle three times. The sagittal plane talofibular interval was assessed by measuring the anteroposterior distance (mm) between the lateral malleolus and talus from an ultrasound image. Between group and trial differences were analyzed with repeated measures analysis of variance and post-hoc t-tests. Fifty-seven subjects participated. A significant group-by-trial interaction was observed (F4,108 = 3.5; P = 0.009). The talofibular interval was increased in both copers [2.4±3.6 mm; 95% confidence interval (CI): 0.73-4.1; P = 0.007] and chronic ankle instability (4.1±4.6 mm; 95% CI: 1.9-6.2; P = 0.001) at trial 3 while no changes were observed in control ankle talar position (0.06±2.8mm; 95% CI: -1.5-1.4; P = 0.93). The talofibular interval increased only in subjects with a history of lateral ankle sprain with large clinical effect sizes observed. These findings suggest that an alteration in the position of the talus or fibula occurred with non-weight bearing sagittal plane motion. These findings may have diagnostic and therapeutic implications for manual therapists.

  19. The Prevalence of Selected Intrinsic Risk Factors for Ankle Sprain Among Elite Football and Basketball Players

    PubMed Central

    Halabchi, Farzin; Angoorani, Hooman; Mirshahi, Maryam; Pourgharib Shahi, Mohammad Hosein; Mansournia, Mohammad Ali

    2016-01-01

    Background Lateral ankle sprains (LAS) are among the most common sports- related injuries and the reinjury rate is very high. Objectives This study aimed to evaluate the prevalence of some intrinsic risk factors among professional football and basketball players with or without history of acute or recurrent ankle sprain. Patients and Methods One hundred and six professional football and basketball players who were referred for pre-participation examinations were recruited in this study. Prepared checklist was completed for each participant. Athletes were asked for any history of previous ankle sprain and the severity (based of self-description of signs and symptoms by the athlete), level and number of injuries in the last two years. All players were assessed for measures of foot posture index- 6, foot length and width, Beighton generalized joint laxity score, anterior drawer and talar tilt tests, star excursion and single leg balance tests and goniometric assessment of ankle plantarflexion, ankle dorsiflexion and first metatarsophalangeal dorsiflexion. Results Forty eight basketball players (45.3%) and 58 football players (54.7%) with mean (SD) age of 19.8 (4.5) years participated. About 58.5% and 14.2% of athletes had a history of ankle sprain and recurrent sprain in at least one extremity, respectively. Sprains were more prevalent in basketball players and in dominant leg. There was no significant difference in assessed risk factors between athletes with and without history of ankle sprain, except for positive single leg balance test which was more prevalent in athletes with history of ankle sprain and also for positive talar tilt test and decreased ankle plantarflexion range of motion in acute and recurrent injury of left ankle. Conclusions Some intrinsic risk factors including lateral ankle ligaments laxity, balance and ankle plantarflexion seem to be related to acute or recurrent LAS in athletes. Further research is needed to reveal the role of different arthrokinematics following lateral ankle sprain. PMID:27826402

  20. The cost-effectiveness of semi-rigid ankle brace to facilitate return to work following first-time acute ankle sprains.

    PubMed

    Fatoye, Francis; Haigh, Carol

    2016-05-01

    To examine the cost-effectiveness of semi-rigid ankle brace to facilitate return to work following first-time acute ankle sprains. Economic evaluation based on cost-utility analysis. Ankle sprains are a source of morbidity and absenteeism from work, accounting for 15-20% of all sports injuries. Semi-rigid ankle brace and taping are functional treatment interventions used by Musculoskeletal Physiotherapists and Nurses to facilitate return to work following acute ankle sprains. A decision model analysis, based on cost-utility analysis from the perspective of National Health Service was used. The primary outcomes measure was incremental cost-effectiveness ratio, based on quality-adjusted life years. Costs and quality of life data were derived from published literature, while model clinical probabilities were sourced from Musculoskeletal Physiotherapists. The cost and quality adjusted life years gained using semi-rigid ankle brace was £184 and 0.72 respectively. However, the cost and quality adjusted life years gained following taping was £155 and 0.61 respectively. The incremental cost-effectiveness ratio for the semi-rigid brace was £263 per quality adjusted life year. Probabilistic sensitivity analysis showed that ankle brace provided the highest net-benefit, hence the preferred option. Taping is a cheaper intervention compared with ankle brace to facilitate return to work following first-time ankle sprains. However, the incremental cost-effectiveness ratio observed for ankle brace was less than the National Institute for Health and Care Excellence threshold and the intervention had a higher net-benefit, suggesting that it is a cost-effective intervention. Decision-makers may be willing to pay £263 for an additional gain in quality adjusted life year. The findings of this economic evaluation provide justification for the use of semi-rigid ankle brace by Musculoskeletal Physiotherapists and Nurses to facilitate return to work in individuals with first-time ankle sprains. © 2016 John Wiley & Sons Ltd.

Top