Sample records for ankle extensor muscle

  1. Walking and Running Require Greater Effort from the Ankle than the Knee Extensor Muscles.

    PubMed

    Kulmala, Juha-Pekka; Korhonen, Marko T; Ruggiero, Luca; Kuitunen, Sami; Suominen, Harri; Heinonen, Ari; Mikkola, Aki; Avela, Janne

    2016-11-01

    The knee and ankle extensors as human primary antigravity muscle groups are of utmost importance in a wide range of locomotor activities. Yet, we know surprisingly little about how these muscle groups work, and specifically, how close to their maximal capacities they function across different modes and intensity of locomotion. Therefore, to advance our understanding of locomotor constraints, we determined and compared relative operating efforts of the knee and ankle extensors during walking, running, and sprinting. Using an inverse dynamics biomechanical analysis, the muscle forces of the knee and ankle extensors during walking (1.6 m·s), running (4.1 m·s), and sprinting (9.3 m·s) were quantified and then related to maximum forces of the same muscle groups obtained from a reference hopping test that permitted natural elastic limb behavior. During walking, the relative effort of the ankle extensors was almost two times greater compared with the knee extensors (35% ± 6% vs 19% ± 5%, P < 0.001). Changing walking to running decreased the difference in the relative effort between the extensor muscle groups, but still, the ankle extensors operated at a 25% greater level than the knee extensors (84% ± 12% vs 63% ± 17%, P < 0.05). At top speed sprinting, the ankle extensors reached their maximum operating level, whereas the knee extensors still worked well below their limits, showing a 25% lower relative effort compared with the ankle extensors (96% ± 11% vs 72% ± 19%, P < 0.01). Regardless of the mode of locomotion, humans operate at a much greater relative effort at the ankle than knee extensor muscles. As a consequence, the great demand on ankle extensors may be a key biomechanical factor limiting our locomotor ability and influencing the way we locomote and adapt to accommodate compromised neuromuscular system function.

  2. Lower extremity muscle functions during full squats.

    PubMed

    Robertson, D G E; Wilson, Jean-Marie J; St Pierre, Taunya A

    2008-11-01

    The purpose of this research was to determine the functions of the gluteus maximus, biceps femoris, semitendinosus, rectus femoris, vastus lateralis, soleus, gastrocnemius, and tibialis anterior muscles about their associated joints during full (deep-knee) squats. Muscle function was determined from joint kinematics, inverse dynamics, electromyography, and muscle length changes. The subjects were six experienced, male weight lifters. Analyses revealed that the prime movers during ascent were the monoarticular gluteus maximus and vasti muscles (as exemplified by vastus lateralis) and to a lesser extent the soleus muscles. The biarticular muscles functioned mainly as stabilizers of the ankle, knee, and hip joints by working eccentrically to control descent or transferring energy among the segments during scent. During the ascent phase, the hip extensor moments of force produced the largest powers followed by the ankle plantar flexors and then the knee extensors. The hip and knee extensors provided the initial bursts of power during ascent with the ankle extensors and especially a second burst from the hip extensors adding power during the latter half of the ascent.

  3. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    PubMed

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  4. Relationships between explosive and maximal triple extensor muscle performance and vertical jump height.

    PubMed

    Chang, Eunwook; Norcross, Marc F; Johnson, Sam T; Kitagawa, Taichi; Hoffman, Mark

    2015-02-01

    The purpose of this study was to examine the relationships between maximum vertical jump height and (a) rate of torque development (RTD) calculated during 2 time intervals, 0-50 milliseconds (RTD50) and 0-200 milliseconds (RTD200) after torque onset and (b) peak torque (PT) for each of the triple extensor muscle groups. Thirty recreationally active individuals performed maximal isometric voluntary contractions (MVIC) of the hip, knee and ankle extensors, and a countermovement vertical jump. Rate of torque development was calculated from 0 to 50 (RTD50) and 0 to 200 (RTD200) milliseconds after the onset of joint torque. Peak torque was identified and defined as the maximum torque value during each MVIC trial. Greater vertical jump height was associated with greater knee and ankle extension RTD50, RTD200, and PT (p ≤ 0.05). However, hip extension RTD50, RTD200, and PT were not significantly related to maximal vertical jump height (p > 0.05). The results indicate that 47.6 and 32.5% of the variability in vertical jump height was explained by knee and ankle extensor RTD50, respectively. Knee and ankle extensor RTD50 also seemed to be more closely related to vertical jump performance than RTD200 (knee extensor: 28.1% and ankle extensor: 28.1%) and PT (knee extensor: 31.4% and ankle extensor: 13.7%). Overall, these results suggest that training specifically targeted to improve knee and ankle extension RTD, especially during the early phases of muscle contraction, may be effective for increasing maximal vertical jump performance.

  5. Contributory factors to unsteadiness during walking up and down stairs in patients with diabetic peripheral neuropathy.

    PubMed

    Handsaker, Joseph C; Brown, Steven J; Bowling, Frank L; Cooper, Glen; Maganaris, Constantinos N; Boulton, Andrew J M; Reeves, Neil D

    2014-11-01

    Although patients with diabetic peripheral neuropathy (DPN) are more likely to fall than age-matched controls, the underlying causative factors are not yet fully understood. This study examines the effects of diabetes and neuropathy on strength generation and muscle activation patterns during walking up and down stairs, with implications for fall risk. Sixty-three participants (21 patients with DPN, 21 diabetic controls, and 21 healthy controls) were examined while walking up and down a custom-built staircase. The speed of strength generation at the ankle and knee and muscle activation patterns of the ankle and knee extensor muscles were analyzed. Patients with neuropathy displayed significantly slower ankle and knee strength generation than healthy controls during stair ascent and descent (P < 0.05). During ascent, the ankle and knee extensor muscles were activated significantly later by patients with neuropathy and took longer to reach peak activation (P < 0.05). During descent, neuropathic patients activated the ankle extensors significantly earlier, and the ankle and knee extensors took significantly longer to reach peak activation (P < 0.05). Patients with DPN are slower at generating strength at the ankle and knee than control participants during walking up and down stairs. These changes, which are likely caused by altered activations of the extensor muscles, increase the likelihood of instability and may be important contributory factors for the increased risk of falling. Resistance exercise training may be a potential clinical intervention for improving these aspects and thereby potentially reducing fall risk. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Ipsilateral hip abductor weakness after inversion ankle sprain.

    PubMed

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Hip stability and strength are important for proper gait mechanics and foot position during heel strike. To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Ex post facto design with the uninvolved limb serving as the control. Laboratory. A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains.

  7. Ipsilateral Hip Abductor Weakness After Inversion Ankle Sprain

    PubMed Central

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Context: Hip stability and strength are important for proper gait mechanics and foot position during heel strike. Objective: To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Design: Ex post facto design with the uninvolved limb serving as the control. Setting: Laboratory. Patients or Other Participants: A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. Main Outcome Measure(s): We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Results: Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Conclusions: Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains. PMID:16619098

  8. Hip abductor, trunk extensor and ankle plantar flexor endurance in females with and without patellofemoral pain.

    PubMed

    Van Cant, Joachim; Pitance, Laurent; Feipel, Véronique

    2017-01-01

    Previous studies have reported strength deficit in hip abduction, extension and external rotation in females with patellofemoral pain (PFP) when compared with healthy control; however, there is conflicting evidence for a decrease in hip muscle endurance. Therefore, it seems important to evaluate hip muscle endurance in females with PFP. Moreover, trunk extensor and ankle plantar flexor endurance have not yet been evaluate in females with PFP. To compare hip abductor, trunk extensor and ankle plantar flexor endurance between females with and without PFP. Twenty females with PFP (mean age, 21.1 years) and 76 healthy females (mean age, 20.5 years) were recruited. Subject performed three endurance clinical tests: (1) The hip abductor isometric endurance test, (2) The Sorensen test and (3) The heel rise test. Group differences were assessed using an independent t tests, or Mann-Whitney U tests for non-normally distributed data. Subjects with PFP exhibited significantly lower hip abductor, trunk extensor and ankle plantar flexor endurance than healthy controls. On average, subjects with PFP had deficits of 16% in hip abduction, 14% in trunk extension and 26% in ankle plantar flexion. Females with PFP exhibited diminished hip abductor, trunk extensor and ankle plantar flexor endurance compared to healthy controls.

  9. Muscle force distribution of the lower limbs during walking in diabetic individuals with and without polyneuropathy.

    PubMed

    Gomes, Aline A; Ackermann, Marko; Ferreira, Jean P; Orselli, Maria Isabel V; Sacco, Isabel C N

    2017-11-09

    Muscle force estimation could advance the comprehension of the neuromuscular strategies that diabetic patients adopt to preserve walking ability, which guarantees their independence as they deal with their neural and muscular impairments due to diabetes and neuropathy. In this study, the lower limb's muscle force distribution during gait was estimated and compared in diabetic patients with and without polyneuropathy. Thirty individuals were evaluated in a cross-sectional study, equally divided among controls (CG) and diabetic patients with (DNG) and without (DG) polyneuropathy. The acquired ground reaction forces and kinematic data were used as input variables for a scaled musculoskeletal model in the OpenSim software. The maximum isometric force of the ankle extensors and flexors was reduced in the model of DNG by 30% and 20%, respectively. The muscle force was calculated using static optimization, and peak forces were compared among groups (flexors and extensors of hip, knee, and ankle; ankle evertors; and hip abductors) using MANOVAs, followed by univariate ANOVAs and Newman-Keuls post-hoc tests (p < 0.05). From the middle to late stance phase, DG showed a lower soleus muscle peak force compared to the CG (p=0.024) and the DNG showed lower forces in the gastrocnemius medialis compared to the DG (p=0.037). At the terminal swing phase, the semitendinosus and semimembranosus peak forces showed lower values in the DG compared to the CG and DNG. At the late stance, the DNG showed a higher peak force in the biceps short head, semimembranosus, and semitendinosus compared to the CG and DG. Peak forces of ankle (flexors, extensors, and evertors), knee (flexors and extensors), and hip abductors distinguished DNG from DG, and both of those from CG. Both diabetic groups showed alterations in the force production of the ankle extensors with reductions in the forces of soleus (DG) and gastrocnemius medialis (DNG) seen in both diabetic groups, but only DNG showed an increase in the hamstrings (knee flexor) at push-off. A therapeutic approach focused on preserving the functionality of the knee muscles is a promising strategy, even if the ankle dorsiflexors and plantarflexors are included in the resistance training.

  10. Effects of long term Tai Chi practice and jogging exercise on muscle strength and endurance in older people.

    PubMed

    Xu, D Q; Li, J X; Hong, Y

    2006-01-01

    To investigate the influence of regular Tai Chi (TC) practice and jogging on muscle strength and endurance in the lower extremities of older people. Twenty one long term older TC practitioners were compared with 18 regular older joggers and 22 sedentary counterparts. Maximum concentric strength of knee flexors and extensors was tested at angular velocities of 30 degrees/s and 120 degrees/s. Ankle dorsiflexors and plantar flexors were tested at 30 degrees/s and the dynamic endurance of the knee flexors and extensors was assessed at a speed of 180 degrees/s. The differences in the muscle strength of the knee joint amongst the three experimental groups were significant at the higher velocity. The strengths of knee extensors and flexors in the control group were significantly lower than those in the jogging group and marginally lower than those in the TC group. For the ankle joint, the subjects in both the TC and jogging groups generated more torque in their ankle dorsiflexors. In addition, the muscle endurance of knee extensors was more pronounced in TC practitioners than in controls. Regular older TC practitioners and joggers showed better scores than the sedentary controls on most muscle strength and endurance measures. However, the magnitude of the exercise effects on muscles might depend on the characteristics of different types of exercise.

  11. Short-Term Motor Compensations to Denervation of Feline Soleus and Lateral Gastrocnemius Result in Preservation of Ankle Mechanical Output during Locomotion

    PubMed Central

    Prilutsky, Boris I.; Maas, Huub; Bulgakova, Margarita; Hodson-Tole, Emma F.; Gregor, Robert J.

    2011-01-01

    Denervation of selected ankle extensors in animals results in locomotor changes. These changes have been suggested to permit preservation of global kinematic characteristics of the hindlimb during stance. The peak ankle joint moment is also preserved immediately after denervation of several ankle extensors in the cat, suggesting that the animal's response to peripheral nerve injury may also be aimed at preserving ankle mechanical output. We tested this hypothesis by comparing joint moments and power patterns during walking before and after denervation of soleus and lateral gastrocnemius muscles. Hindlimb kinematics, ground reaction forces and electromyographic activity of selected muscles were recorded during level, downslope (−50%) and upslope (50%) walking before and 1–3 weeks after nerve denervation. Denervation resulted in increased activity of the intact medial gastrocnemius and plantaris muscles, greater ankle dorsiflexion, smaller knee flexion, and the preservation of the peak ankle moment during stance. Surprisingly, ankle positive power generated in the propulsion phase of stance was increased (up to 50%) after denervation in all walking conditions (p < 0.05). The obtained results suggest that the short-term motor compensation to denervation of lateral gastrocnemius and soleus muscles may allow for preservation of mechanical output at the ankle. The additional mechanical energy generated at the ankle during propulsion can result, in part, from increased activity of intact synergists, the use of passive tissues around the ankle and by the tendon action of ankle two-joint muscles and crural fascia. PMID:21411965

  12. A Comparison of Total and Intrinsic Muscle Stiffness Among Flexors and Extensors of the Ankle, Knee and Elbow

    NASA Technical Reports Server (NTRS)

    Lemoine, Sandra M.

    1997-01-01

    This study examined 3 methods that assessed muscle stiffness. Muscle stiffness has been quantified by tissue reactive force (transverse stiffness), vibration, and force (or torque) over displacement. Muscle stiffness also has two components: reflex (due to muscle sensor activity) and intrinsic (tonic firing of motor units, elastic nature of actin and myosin cross bridges, and connective tissue). This study compared three methods of measuring muscle stiffness of agonist-antagonist muscle pairs of the ankle, knee and elbow.

  13. Adaptive response of slow and fast skeletal muscle in the monkey to spaceflight

    NASA Technical Reports Server (NTRS)

    Bodine-Fowler, Sue

    1996-01-01

    Experiments were designed to determine the effects of the absence of weight support on hindlimb muscles of the monkey: an ankle flexor (tibialis anterior, TA), two ankle extensors (medical gastrocnemius, MG and soleus, SOL), and a knee extensor (vastus lateralis, VL). These experiments will be performed as part of the BION mission. The original project proposed to assess the effects of weightlessness in adult Rhesus monkeys which were to be flown on the Space Shuttle as part of SLS-3. Feasibility studies were carried out and a series of experiments were performed at NASA/Ames Research Center to assess the effects of a 21-day restraint period in the ESOP on muscle properties. The results of these studies are summarized.

  14. Muscle mechanical advantage of human walking and running: implications for energy cost.

    PubMed

    Biewener, Andrew A; Farley, Claire T; Roberts, Thomas J; Temaner, Marco

    2004-12-01

    Muscular forces generated during locomotion depend on an animal's speed, gait, and size and underlie the energy demand to power locomotion. Changes in limb posture affect muscle forces by altering the mechanical advantage of the ground reaction force (R) and therefore the effective mechanical advantage (EMA = r/R, where r is the muscle mechanical advantage) for muscle force production. We used inverse dynamics based on force plate and kinematic recordings of humans as they walked and ran at steady speeds to examine how changes in muscle EMA affect muscle force-generating requirements at these gaits. We found a 68% decrease in knee extensor EMA when humans changed gait from a walk to a run compared with an 18% increase in hip extensor EMA and a 23% increase in ankle extensor EMA. Whereas the knee joint was extended (154-176 degrees) during much of the support phase of walking, its flexed position (134-164 degrees) during running resulted in a 5.2-fold increase in quadriceps impulse (time-integrated force during stance) needed to support body weight on the ground. This increase was associated with a 4.9-fold increase in the ground reaction force moment about the knee. In contrast, extensor impulse decreased 37% (P < 0.05) at the hip and did not change at the ankle when subjects switched from a walk to a run. We conclude that the decrease in limb mechanical advantage (mean limb extensor EMA) and increase in knee extensor impulse during running likely contribute to the higher metabolic cost of transport in running than in walking. The low mechanical advantage in running humans may also explain previous observations of a greater metabolic cost of transport for running humans compared with trotting and galloping quadrupeds of similar size.

  15. Muscle strength and fatigue in newly diagnosed patients with myasthenia gravis.

    PubMed

    Vinge, Lotte; Andersen, Henning

    2016-10-01

    Dynamometry is increasingly used as an objective measurement of muscle strength in neurological diseases. No study has applied dynamometry in untreated newly diagnosed patients with myasthenia gravis (MG). Isometric muscle strength at the shoulder, knee, and ankle was determined in 21 MG patients before and after initial anti-myasthenic treatment. Isometric strength was compared with MG evaluation scales. Muscle strength was reduced for knee extensors and shoulder abductors but normal for ankle extensors. Isometric muscle strength did not correlate significantly with manual muscle testing (MG Composite). Dynamometry revealed improved muscle strength of up to 50% (median 17%; range -1.8-49.8) despite no change in the MG Composite score. Dynamometry appears to be a more sensitive method of identifying changes in limb strength than MG evaluation scales. This supports the use of dynamometry in MG patients, especially for evaluation of the effect of anti-myasthenic treatment. Muscle Nerve 54: 709-714, 2016. © 2016 Wiley Periodicals, Inc.

  16. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation.

    PubMed

    Normann, R A; Dowden, B R; Frankel, M A; Wilder, A M; Hiatt, S D; Ledbetter, N M; Warren, D A; Clark, G A

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  17. Coordinated, multi-joint, fatigue-resistant feline stance produced with intrafascicular hind limb nerve stimulation

    NASA Astrophysics Data System (ADS)

    Normann, R. A.; Dowden, B. R.; Frankel, M. A.; Wilder, A. M.; Hiatt, S. D.; Ledbetter, N. M.; Warren, D. A.; Clark, G. A.

    2012-04-01

    The production of graceful skeletal movements requires coordinated activation of multiple muscles that produce torques around multiple joints. The work described herein is focused on one such movement, stance, that requires coordinated activation of extensor muscles acting around the hip, knee and ankle joints. The forces evoked in these muscles by external stimulation all have a complex dependence on muscle length and shortening velocities, and some of these muscles are biarticular. In order to recreate sit-to-stand maneuvers in the anesthetized feline, we excited the hind limb musculature using intrafascicular multielectrode stimulation (IFMS) of the muscular branch of the sciatic nerve, the femoral nerve and the main branch of the sciatic nerve. Stimulation was achieved with either acutely or chronically implanted Utah Slanted Electrode Arrays (USEAs) via subsets of electrodes (1) that activated motor units in the extensor muscles of the hip, knee and ankle joints, (2) that were able to evoke large extension forces and (3) that manifested minimal coactivation of the targeted motor units. Three hind limb force-generation strategies were investigated, including sequential activation of independent motor units to increase force, and interleaved or simultaneous IFMS of three sets of six or more USEA electrodes that excited the hip, knee and ankle extensors. All force-generation strategies evoked stance, but the interleaved IFMS strategy also reduced muscle fatigue produced by repeated sit-to-stand maneuvers compared with fatigue produced by simultaneous activation of different motor neuron pools. These results demonstrate the use of interleaved IFMS as a means to recreate coordinated, fatigue-resistant multi-joint muscle forces in the unilateral hind limb. This muscle activation paradigm could provide a promising neuroprosthetic approach for the restoration of sit-to-stand transitions in individuals who are paralyzed by spinal cord injury, stroke or disease.

  18. Adaptation of skeletal muscle to spaceflight: Cosmos rhesus project. Cosmos 2044 and 2229

    NASA Technical Reports Server (NTRS)

    Bodine-Fowler, Sue

    1994-01-01

    The proposed experiments were designed to determine the effects of the absence of weight support on hindlimb muscles of the monkey: an ankle flexor (tibialis anterior, TA), two ankle extensors (medial gastrocnemius, MG and soleus, SOL), and a knee extensor (vastus lateralis, VL). These effects were assessed by examining the biochemical and morphological properties of muscle fibers obtained from biopsies in young Rhesus monkeys (3-4 Kg). Biopsies taken from ground base experiments were analyzed to determine: (1) the effects of chair restraint at 1 G on muscle properties and (2) the growth rate of flexor and extensor muscles in the Rhesus. In addition, two sets of biopsies were taken from monkeys which were in the flight pool and the four monkeys that flew on the Cosmos 2044 and 2229 biosatellite missions. Based on data collected in rats it is generally assumed that extensors atrophy to a greater extent than flexors in response to spaceflight or hindlimb suspension. Consequently, the finding that fibers in the TA (a fast flexor) of the flight monkeys atrophied, whereas fibers in the Sol (a predominantly slow extensor) and MG (a fast extensor) grew after a 14-day spaceflight (Cosmos 2044) and 12-day spaceflight (Cosmos 2229) was unexpected. In Cosmos 2044, the TA in both flight monkeys had a 21 percent decrease in fiber size, whereas the Sol and MG both had a 79 percent increase in fiber size. In Cosmos 2229, the TA in both flight monkeys showed significant atrophy, whereas the Sol and MG showed slight growth in one monkey (906) and slight atrophy in the other monkey (151).

  19. Effect of muscle relaxation in the foot on simultaneous muscle contraction in the contralateral hand.

    PubMed

    Kato, Kouki; Kanosue, Kazuyuki

    2016-10-28

    We investigated the effects of foot muscle relaxation and contraction on muscle activities in the hand on both ipsilateral and contralateral sides. The subjects sat in an armchair with hands in the pronated position. They were able to freely move their right/left hand and foot. They performed three tasks for both ipsilateral (right hand and right foot) and contralateral limb coordination (left hand and right foot for a total of six tasks). These tasks involved: (1) wrist extension from a flexed (resting) position, (2) wrist extension with simultaneous ankle dorsiflexion from a plantarflexed (resting) position, and (3) wrist extension with simultaneous ankle relaxation from a dorsiflexed position. The subjects performed each task as fast as possible after hearing the start signal. Reaction time for the wrist extensor contraction (i.e. the degree to which it preceded the motor reaction time), as observed in electromyography (EMG), became longer when it was concurrently done with relaxation of the ankle dorsiflexor. Also, the magnitude of EMG activity became smaller, as compared with activity when wrist extensor contraction was done alone or with contraction of the ankle dorsiflexor. These effects were observed not only for the ipsilateral hand, but also for the contralateral hand. Our findings suggest that muscle relaxation in one limb interferes with muscle contraction in both the ipsilateral and contralateral limbs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Net joint moments and muscle activation in barbell squats without and with restricted anterior leg rotation.

    PubMed

    Chiu, Loren Z F; vonGaza, Gabriella L; Jean, Liane M Y

    2017-01-01

    Muscle utilisation in squat exercise depends on technique. The purpose of this study was to compare net joint moments (NJMs) and muscle activation during squats without and with restricted leg dorsiflexion. Experienced men (n = 5) and women (n = 4) performed full squats at 80% one repetition maximum. 3D motion analysis, force platform and (EMG) data were collected. Restricting anterior leg rotation reduced anterior leg (P = 0.001) and posterior thigh (P < 0.001) rotations, resulting in a smaller knee flexion range of motion (P < 0.001). At maximum squat depth, ankle plantar flexor (P < 0.001) and knee extensor (P < 0.001) NJM were higher in unrestricted squats. Hip extensor NJM (P = 0.14) was not different between squat types at maximum squat depth. Vastus lateralis (P > 0.05), vastus medialis (P > 0.05) and rectus femoris (P > 0.05) EMG were not different between squat types. Unrestricted squats have higher ankle plantar flexor and knee extensor NJM than previously reported from jumping and landing. However, ankle plantar flexor and knee extensor NJM are lower in restricted squats than previous studies of jumping and landing. The high NJM in unrestricted squat exercise performed through a full range of motion suggests this squat type would be more effective to stimulate adaptations in the lower extremity musculature than restricted squats.

  1. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis

    PubMed Central

    Kim, Seong-Gil

    2018-01-01

    Background The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. Material/Methods This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. Results In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). Conclusions Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement. PMID:29760375

  2. Effect of Ankle Range of Motion (ROM) and Lower-Extremity Muscle Strength on Static Balance Control Ability in Young Adults: A Regression Analysis.

    PubMed

    Kim, Seong-Gil; Kim, Wan-Soo

    2018-05-15

    BACKGROUND The purpose of this study was to investigate the effect of ankle ROM and lower-extremity muscle strength on static balance control ability in young adults. MATERIAL AND METHODS This study was conducted with 65 young adults, but 10 young adults dropped out during the measurement, so 55 young adults (male: 19, female: 36) completed the study. Postural sway (length and velocity) was measured with eyes open and closed, and ankle ROM (AROM and PROM of dorsiflexion and plantarflexion) and lower-extremity muscle strength (flexor and extensor of hip, knee, and ankle joint) were measured. Pearson correlation coefficient was used to examine the correlation between variables and static balance ability. Simple linear regression analysis and multiple linear regression analysis were used to examine the effect of variables on static balance ability. RESULTS In correlation analysis, plantarflexion ROM (AROM and PROM) and lower-extremity muscle strength (except hip extensor) were significantly correlated with postural sway (p<0.05). In simple correlation analysis, all variables that passed the correlation analysis procedure had significant influence (p<0.05). In multiple linear regression analysis, plantar flexion PROM with eyes open significantly influenced sway length (B=0.681) and sway velocity (B=0.011). CONCLUSIONS Lower-extremity muscle strength and ankle plantarflexion ROM influenced static balance control ability, with ankle plantarflexion PROM showing the greatest influence. Therefore, both contractile structures and non-contractile structures should be of interest when considering static balance control ability improvement.

  3. Gait biomechanics of skipping are substantially different than those of running.

    PubMed

    McDonnell, Jessica; Willson, John D; Zwetsloot, Kevin A; Houmard, Joseph; DeVita, Paul

    2017-11-07

    The inherit injury risk associated with high-impact exercises calls for alternative ways to achieve the benefits of aerobic exercise while minimizing excessive stresses to body tissues. Skipping presents such an alternative, incorporating double support, flight, and single support phases. We used ground reaction forces (GRFs), lower extremity joint torques and powers to compare skipping and running in 20 healthy adults. The two consecutive skipping steps on each limb differed significantly from each other, and from running. Running had the longest step length, the highest peak vertical GRF, peak knee extensor torque, and peak knee negative and positive power and negative and positive work. Skipping had the greater cadence, peak horizontal GRF, peak hip and ankle extensor torques, peak ankle negative power and work, and peak ankle positive power. The second vs first skipping step had the shorter step length, higher cadence, peak horizontal GRF, peak ankle extensor torque, and peak ankle negative power, negative work, and positive power and positive work. The first skipping step utilized predominately net negative joint work (eccentric muscle action) while the second utilized predominately net positive joint work (concentric muscle action). The skipping data further highlight the persistence of net negative work performed at the knee and net positive work performed at the ankle across locomotion gaits. Evidence of step segregation was seen in distribution of the braking and propelling impulses and net work produced across the hip, knee, and ankle joints. Skipping was substantially different than running and was temporally and spatially asymmetrical with successive foot falls partitioned into a dominant function, either braking or propelling whereas running had a single, repeated step in which both braking and propelling actions were performed equally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Characteristics and preliminary observations of the influence of electromyostimulation on the size and function of human skeletal muscle during 30 days of simulated microgravity

    NASA Technical Reports Server (NTRS)

    Duvoisin, Marc R.; Convertino, Victor A.; Buchanan, Paul; Gollnick, Philip A.; Dudley, Gary A.

    1989-01-01

    The effect of transcutaneous electromyostimulation (EMS) on the development of atrophy and the loss of strength in lower limb musculature in humans exposed to microgravity was determined in three subjects who received EMS twice daily in a 3-d on/1-d off cycle on their dominant leg during 30 days of bedrest. The output waveform from the stimulator was sequenced to the knee extensors, knee flexors, ankle extensors, and ankle flexors, and caused three isometric contractions of each muscle group per minute. It was found that, in the dominant leg, EMS acted to attenuate the changes caused by bedrest, such as reductions in the leg volume, muscle compartment size, cross-sectional area of slow- and fast-twitch fibers, strength, and aerobic enzyme activities, and an increase in leg compliance.

  5. Soreness-related changes in three-dimensional running biomechanics following eccentric knee extensor exercise.

    PubMed

    Paquette, Max R; Peel, Shelby A; Schilling, Brian K; Melcher, Dan A; Bloomer, Richard J

    2017-06-01

    Runners often experience delayed onset muscle soreness (DOMS), especially of the knee extensors, following prolonged running. Sagittal knee joint biomechanics are altered in the presence of knee extensor DOMS but it is unclear how muscle soreness affects lower limb biomechanics in other planes of motion. The purpose of this study was to assess the effects of knee extensor DOMS on three-dimensional (3D) lower limb biomechanics during running. Thirty-three healthy men (25.8 ± 6.8 years; 84.1 ± 9.2 kg; 1.77 ± 0.07 m) completed an isolated eccentric knee extensor damaging protocol to elicit DOMS. Biomechanics of over-ground running at a set speed of 3.35 m s -1 ±5% were measured before eccentric exercise (baseline) and, 24 h and 48 h following exercise in the presence of knee extensor DOMS. Knee flexion ROM was reduced at 48 h (P = 0.01; d = 0.26), and peak knee extensor moment was reduced at 24 h (P = 0.001; d = 0.49) and 48 h (P < 0.001; d = 0.68) compared to baseline. Frontal and transverse plane biomechanics were unaffected by the presence of DOMS (P > 0.05). Peak positive ankle and knee joint powers and, peak negative knee joint power were all reduced from baseline to 24 h and 48 h (P < 0.05). These findings suggest that knee extensor DOMS greatly influences sagittal knee joint angular kinetics and, reduces sagittal power production at the ankle joint. However, knee extensor DOMS does not affect frontal and transverse plane lower limb joint biomechanics during running.

  6. Estimation of muscle response using three-dimensional musculoskeletal models before impact situation: a simulation study.

    PubMed

    Bae, Tae Soo; Loan, Peter; Choi, Kuiwon; Hong, Daehie; Mun, Mu Seong

    2010-12-01

    When car crash experiments are performed using cadavers or dummies, the active muscles' reaction on crash situations cannot be observed. The aim of this study is to estimate muscles' response of the major muscle groups using three-dimensional musculoskeletal model by dynamic simulations of low-speed sled-impact. The three-dimensional musculoskeletal models of eight subjects were developed, including 241 degrees of freedom and 86 muscles. The muscle parameters considering limb lengths and the force-generating properties of the muscles were redefined by optimization to fit for each subject. Kinematic data and external forces measured by motion tracking system and dynamometer were then input as boundary conditions. Through a least-squares optimization algorithm, active muscles' responses were calculated during inverse dynamic analysis tracking the motion of each subject. Electromyography for major muscles at elbow, knee, and ankle joints was measured to validate each model. For low-speed sled-impact crash, experiment and simulation with optimized and unoptimized muscle parameters were performed at 9.4 m/h and 10 m/h and muscle activities were compared among them. The muscle activities with optimized parameters were closer to experimental measurements than the results without optimization. In addition, the extensor muscle activities at knee, ankle, and elbow joint were found considerably at impact time, unlike previous studies using cadaver or dummies. This study demonstrated the need to optimize the muscle parameters to predict impact situation correctly in computational studies using musculoskeletal models. And to improve accuracy of analysis for car crash injury using humanlike dummies, muscle reflex function, major extensor muscles' response at elbow, knee, and ankle joints, should be considered.

  7. Relation between functional mobility and dynapenia in institutionalized frail elderly.

    PubMed

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes

    2017-01-01

    To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test.

  8. Time course of functional recovery during the first 3 mo after surgical transection and repair of nerves to the feline soleus and lateral gastrocnemius muscles.

    PubMed

    Gregor, Robert J; Maas, Huub; Bulgakova, Margarita A; Oliver, Alanna; English, Arthur W; Prilutsky, Boris I

    2018-03-01

    Locomotion outcomes after peripheral nerve injury and repair in cats have been described in the literature for the period immediately following the injury (muscle denervation period) and then again for an ensuing period of long-term recovery (at 3 mo and longer) resulting in muscle self-reinnervation. Little is known about the changes in muscle activity and walking mechanics during midrecovery, i.e., the early reinnervation period that takes place between 5 and 10 wk of recovery. Here, we investigated hindlimb mechanics and electromyogram (EMG) activity of ankle extensors in six cats during level and slope walking before and every 2 wk thereafter in a 14-wk period of recovery after the soleus (SO) and lateral gastrocnemius (LG) muscle nerves in one hindlimb were surgically transected and repaired. We found that the continued increase in SO and LG EMG magnitudes and corresponding changes in hindlimb mechanics coincided with the formation of neuromuscular synapses revealed in muscle biopsies. Throughout the recovery period, EMG magnitude of SO and LG during the stance phase and the duration of the stance-related activity were load dependent, similar to those in the intact synergistic medial gastrocnemius and plantaris. These results and the fact that EMG activity of ankle extensors and locomotor mechanics during level and upslope walking recovered 14 wk after nerve transection and repair suggest that loss of the stretch reflex in self-reinnervated muscles may be compensated by the recovered force-dependent feedback in self-reinnervated muscles, by increased central drive, and by increased gain in intermuscular motion-dependent pathways from intact ankle extensors. NEW & NOTEWORTHY This study provides new evidence that the timeline for functional recovery of gait after peripheral nerve injury and repair is consistent with the time required for neuromuscular junctions to form and muscles to reach preoperative tensions. Our findings suggest that a permanent loss of autogenic stretch reflex in self-reinnervated muscles may be compensated by recovered intermuscular force-dependent and oligosynaptic length-dependent feedback and central drive to regain adequate locomotor output capabilities during level and upslope walking.

  9. Effects of 17-day spaceflight on knee extensor muscle function and size

    NASA Technical Reports Server (NTRS)

    Tesch, Per A.; Berg, Hans E.; Bring, Daniel; Evans, Harlan J.; LeBlanc, Adrian D.

    2005-01-01

    It is generally held that space travelers experience muscle dysfunction and atrophy during exposure to microgravity. However, observations are scarce and reports somewhat inconsistent with regard to the time course, specificity and magnitude of such changes. Hence, we examined four male astronauts (group mean approximately 43 years, 86 kg and 183 cm) before and after a 17-day spaceflight (Space Transport System-78). Knee extensor muscle function was measured during maximal bilateral voluntary isometric and iso-inertial concentric, and eccentric actions. Cross-sectional area (CSA) of the knee extensor and flexor, and gluteal muscle groups was assessed by means of magnetic resonance imaging. The decrease in strength (P<0.05) across different muscle actions after spaceflight amounted to 10%. Eight ambulatory men, examined on two occasions 20 days apart, showed unchanged (P>0.05) muscle strength. CSA of the knee extensor and gluteal muscles, each decreased (P<0.05) by 8%. Knee flexor muscle CSA showed no significant (P>0.05) change. The magnitude of these changes concord with earlier results from ground-based studies of similar duration. The results of this study, however, do contrast with the findings of no decrease in maximal voluntary ankle plantar flexor force previously reported in the same crew.

  10. Decreased Muscle Strength Relates to Self-Reported Stooping, Crouching, or Kneeling Difficulty in Older Adults

    PubMed Central

    Goldberg, Allon; Alexander, Neil B.

    2010-01-01

    Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment. PMID:19942678

  11. Relationship between physical function and biomechanical gait patterns in boys with haemophilia.

    PubMed

    Stephensen, D; Taylor, S; Bladen, M; Drechsler, W I

    2016-11-01

    The World Federation of Haemophilia recommends joint and muscle health is evaluated using X-ray and magnetic resonance imaging, together with clinical examination scores. To date, inclusion of performance-based functional activities to monitor children with the condition has received little attention. To evaluate test-retest repeatability of physical function tests and quantify relationships between physical function, lower limb muscle strength and gait patterns in young boys with haemophilia. Timed 6-minute walk, timed up and down stairs, timed single leg stance, muscle strength of the knee extensors, ankle dorsi and plantar flexors, together with joint biomechanics during level walking were collected from 21 boys aged 6-12 years with severe haemophilia. Measures of physical function and recording of muscle strength with a hand-held myometer were repeatable (ICC > 0.78). Distances walked in six minutes, time taken to go up and down a flight of stairs and lower limb muscle strength correlated closely with ankle range of motion, together with peak knee flexion and ankle dorsi and plantarflexion moments during walking (P < 0.05). Alterations in gait patterns of boys with haemophilia appear to be associated with changes in performance of physical function and performance seems to depend on their muscle strength. Timed 6-minute walk test, timed up and down steps test and muscle strength of the knee extensors showed the strongest correlation with biomechanical joint function, and hence might serve as a basis for the clinical monitoring of physical function outcomes in children with haemophilia. © 2016 John Wiley & Sons Ltd.

  12. Relation between functional mobility and dynapenia in institutionalized frail elderly

    PubMed Central

    Soares, Antonio Vinicius; Marcelino, Elessandra; Maia, Késsia Cristina; Borges, Noé Gomes

    2017-01-01

    ABSTRACT Objective To investigate the relation between functional mobility and dynapenia in institutionalized frail elderly. Methods A descriptive, correlational study involving 26 institutionalized elderly men and women, mean age 82.3±6 years. The instruments employed were the Mini Mental State Examination, the Geriatric Depression Scale, the International Physical Activity Questionnaire, the Timed Up and Go test, a handgrip dynamometer and a portable dynamometer for large muscle groups (shoulder, elbow and hip flexors, knee extensors and ankle dorsiflexors). Results Significant negative correlation between functional mobility levels assessed by the Timed Up and Go test and dynapenia was observed in all muscle groups evaluated, particularly in knee extensors (r -0.65). Conclusion A significant negative correlation between muscle strength, particularly knee extensor strength, and functional mobility was found in institutionalized elderly. Data presented indicate that the higher the muscle strength, the shorter the execution time, and this could demonstrate better performance in this functional mobility test. PMID:29091148

  13. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    PubMed

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  14. Self-reinnervated muscles lose autogenic length feedback, but intermuscular feedback can recover functional connectivity

    PubMed Central

    Prilutsky, Boris I.; Gregor, Robert J.; Abelew, Thomas A.; Nichols, T. Richard

    2016-01-01

    In this study, we sought to identify sensory circuitry responsible for motor deficits or compensatory adaptations after peripheral nerve cut and repair. Self-reinnervation of the ankle extensor muscles abolishes the stretch reflex and increases ankle yielding during downslope walking, but it remains unknown whether this finding generalizes to other muscle groups and whether muscles become completely deafferented. In decerebrate cats at least 19 wk after nerve cut and repair, we examined the influence of quadriceps (Q) muscles' self-reinnervation on autogenic length feedback, as well as intermuscular length and force feedback, among the primary extensor muscles in the cat hindlimb. Effects of gastrocnemius and soleus self-reinnervation on intermuscular circuitry were also evaluated. We found that autogenic length feedback was lost after Q self-reinnervation, indicating that loss of the stretch reflex appears to be a generalizable consequence of muscle self-reinnervation. However, intermuscular force and length feedback, evoked from self-reinnervated muscles, was preserved in most of the interactions evaluated with similar relative inhibitory or excitatory magnitudes. These data indicate that intermuscular spinal reflex circuitry has the ability to regain functional connectivity, but the restoration is not absolute. Explanations for the recovery of intermuscular feedback are discussed, based on identified mechanisms responsible for lost autogenic length feedback. Functional implications, due to permanent loss of autogenic length feedback and potential for compensatory adaptations from preserved intermuscular feedback, are discussed. PMID:27306676

  15. Control of paraplegic ankle joint stiffness using FES while standing.

    PubMed

    Hunt, K J; Gollee, H; Jaime, R P

    2001-10-01

    The goal of this work was to investigate the feasibility of ankle stiffness control using functional electrical stimulation (FES) while standing, as relevant to the development of feedback systems for balance control in paraplegia. The work was carried out using apparatus in which the subject stands with all joints above the ankles braced, and where ankle moment is provided via FES of the ankle flexor and extensor muscles. A feedback control strategy for ankle stiffness control is proposed in which the ankle moment is controlled to a reference value equal to the product of the desired stiffness and the measured ankle angle. Two subjects participated in the study: one neurologically-intact person, and one paraplegic person with a complete thoracic spinal cord lesion. The results show that during forward-leaning postures, when the plantarflexor muscles are stimulated, relatively high ankle moments of up to 60 Nm can be generated and accurate moment tracking is achieved. As a consequence, ankle stiffness is close to the desired value. During backward lean, on the other hand, the dorsiflexor muscles are stimulated. These muscles are relatively weak and only modest ankle moments of up to around 15 Nm can be produced. As a result, dorsiflexor stimulation readily saturates giving poor stiffness control. It was further observed that when the desired stiffness is higher more external force has to be applied to perturb the body away from the neutral (upright) position. We conclude that: (i) accurate ankle stiffness control, up to the fundamental strength limits of the muscles, can be achieved with controlled FES; (ii) ankle stiffness control using FES in paraplegia has the potential to ease the task of stabilising upright posture by application of additional upper-body forces.

  16. Reflexes in cat ankle muscles after landing from falls.

    PubMed Central

    Prochazka, A; Schofield, P; Westerman, R A; Ziccone, S P

    1977-01-01

    1. Electrical activity and length of ankle muscles were recorded by telemetry during free fall and landing in cats. 2. After foot contact, there was a delay in onset of stretch of ankle extensors of between 8 and 11 ms. High-speed cinematography showed the delay to be associated with rapid initial dorsiflexion of the toes. 3. Electromyograms (e.m.g.) from lateral gastrocnemius increased in amplitude prior to landing. An early depression of lateral gastrocnemius e.m.g. commenced at 8 ms after foot contact, and was followed by a large peak of activity commencing some 8 ms after the first increase in lateral gastrocnemius length. 4. Local anaesthesia of the plantar cushion did not alter this pattern of response. 5. The early inhibition of lateral gastrocnemius was attributed to the action on lateral gastrocnemius motoneurones of non-cutaneous afferents responding to the initial toe dorsiflexion. Additional autogenetic inhibition may also have contributed. 6. The subsequent peak of e.m.g. was at a latenty consistent with a rapid stretch reflex, and occurred soon enough for the resulting active tension to contribute significantly to the extensor force during body deceleration. PMID:592210

  17. Physical performance measures that predict faller status in community-dwelling older adults.

    PubMed

    Macrae, P G; Lacourse, M; Moldavon, R

    1992-01-01

    Falls are a leading cause of fatal and nonfatal injuries among the elderly. Accurate determination of risk factors associated with falls in older adults is necessary, not only for individual patient management, but also for the development of fall prevention programs. The purpose of this study was to evaluate the effectiveness of clinical measures, such as the one-legged stance test (OLST), sit-to-stand test (STST), manual muscle tests (MMT), and response speed in predicting faller status in community-dwelling older adults (N = 94, age 60-89 years). The variables assessed were single-leg standing (as measured by OLST), STST, and MMT of 12 different muscle groups (hip flexors, hip abductors, hip adductors, knee flexors, knee extensors, ankle dorsiflexors, ankle plantarflexors, shoulder flexors, shoulder abductors, elbow flexors, elbow extensors, and finger flexors), and speed of response (as measured by a visual hand reaction and movement time task). Of the 94 older adults assessed, 28 (29.7%) reported at least one fall within the previous year. The discriminant analysis revealed that there were six variables that significantly discriminated between fallers and nonfallers. These variables included MMT of the ankle dorsiflexors, knee flexors, hip abductors, and knee extensors, as well as time on the OLST and the STST. The results indicate that simple clinical measures of musculoskeletal function can discriminate fallers from nonfallers in community-dwelling older adults. J Orthop Sports Phys Ther 1992;16(3):123-128.

  18. Propulsion phase of the single leg triple hop test in women with patellofemoral pain syndrome: a biomechanical study.

    PubMed

    Bley, Andre Serra; Correa, João Carlos Ferrari; Dos Reis, Amir Curcio; Rabelo, Nayra Deise Dos Anjos; Marchetti, Paulo Henrique; Lucareli, Paulo Roberto Garcia

    2014-01-01

    Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress.

  19. Propulsion Phase of the Single Leg Triple Hop Test in Women with Patellofemoral Pain Syndrome: A Biomechanical Study

    PubMed Central

    Bley, Andre Serra; Correa, João Carlos Ferrari; Reis, Amir Curcio Dos; Rabelo, Nayra Deise Dos Anjos; Marchetti, Paulo Henrique; Lucareli, Paulo Roberto Garcia

    2014-01-01

    Asymmetry in the alignment of the lower limbs during weight-bearing activities is associated with patellofemoral pain syndrome (PFPS), caused by an increase in patellofemoral (PF) joint stress. High neuromuscular demands are placed on the lower limb during the propulsion phase of the single leg triple hop test (SLTHT), which may influence biomechanical behavior. The aim of the present cross-sectional study was to compare kinematic, kinetic and muscle activity in the trunk and lower limb during propulsion in the SLTHT using women with PFPS and pain free controls. The following measurements were made using 20 women with PFPS and 20 controls during propulsion in the SLTHT: kinematics of the trunk, pelvis, hip, and knee; kinetics of the hip, knee and ankle; and muscle activation of the gluteus maximus (GM), gluteus medius (GMed), biceps femoris (BF) and vastus lateralis (VL). Differences between groups were calculated using three separate sets of multivariate analysis of variance for kinematics, kinetics, and electromyographic data. Women with PFPS exhibited ipsilateral trunk lean; greater trunk flexion; greater contralateral pelvic drop; greater hip adduction and internal rotation; greater ankle pronation; greater internal hip abductor and ankle supinator moments; lower internal hip, knee and ankle extensor moments; and greater GM, GMed, BL, and VL muscle activity. The results of the present study are related to abnormal movement patterns in women with PFPS. We speculated that these findings constitute strategies to control a deficient dynamic alignment of the trunk and lower limb and to avoid PF pain. However, the greater BF and VL activity and the extensor pattern found for the hip, knee, and ankle of women with PFPS may contribute to increased PF stress. PMID:24830289

  20. Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat

    PubMed Central

    Enríquez-Denton, M; Nielsen, J; Perreault, M-C; Morita, H; Petersen, N; Hultborn, H

    2000-01-01

    In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. Conditioning stimulation of flexor, but not ankle extensor, nerves evoked a depression of the monosynaptic Ia excitatory postsynaptic potentials (EPSPs) recorded intracellularly in Ia inhibitory interneurones. This depression lasted between 200 and 700 ms and was not accompanied by a depression of the monosynaptic EPSPs evoked by stimulation of descending pathways. These results suggest that flexor, but not ankle extensor, group I afferent fibres can modulate sensory transmission at the synapse between Ia afferent fibres and Ia inhibitory interneurones. Conditioning stimulation of flexor muscle nerves, extensor muscle nerves and cutaneous nerves produced a long-lasting increase in excitability of the terminals of the Ia inhibitory interneurones. The increase in the excitability of the terminals was not secondary to an electrotonic spread of synaptic excitation at the soma. Indeed, concomitant with the excitability increase of the terminals there were signs of synaptic inhibition in the soma. The unitary IPSPs induced in target motoneurones following the spike activity of single Ia inhibitory interneurones were depressed by conditioning stimulation of muscle and cutaneous nerves. Since the conditioning stimulation also evoked compound IPSPs in those motoneurones, a firm conclusion as to whether unitary IPSP depression involved presynaptic inhibitory mechanism of the terminals of the interneurones could not be reached. The possibility that the changes in excitability of the Ia interneuronal terminals reflect the presence of a presynaptic inhibitory mechanism similar to that operating at the terminals of the afferent fibres (presynaptic inhibition) is discussed.1. In cat lumbar motoneurones, disynaptic inhibitory postsynaptic potentials (IPSPs) evoked by stimulation of antagonist motor nerves were depressed for at least 150 ms following conditioning stimulation of flexor (1.7-2 times threshold (T)) and ankle extensor (5T) nerves. The aim of the present study was to investigate the possibility that this depression is caused by presynaptic inhibitory mechanisms acting at the terminals of group I afferent fibres projecting to the Ia inhibitory interneurones and/or the terminals of these interneurones to the target motoneurones. PMID:10922013

  1. Motor strategy patterns study of diabetic neuropathic individuals while walking. A wavelet approach.

    PubMed

    Sacco, I C N; Hamamoto, A N; Onodera, A N; Gomes, A A; Weiderpass, H A; Pachi, C G F; Yamamoto, J F; von Tscharner, V

    2014-07-18

    The aim of this study was to investigate muscle׳s energy patterns and spectral properties of diabetic neuropathic individuals during gait cycle using wavelet approach. Twenty-one diabetic patients diagnosed with peripheral neuropathy, and 21 non-diabetic individuals were assessed during the whole gait cycle. Activation patterns of vastus lateralis, medial gastrocnemius and tibialis anterior were studied by means of bipolar surface EMG. The signal׳s energy and frequency were compared between groups using t-test. The energy was compared in each frequency band (7-542 Hz) using ANOVAs for repeated measures for each group and each muscle. The diabetic individuals displayed lower energies in lower frequency bands for all muscles and higher energies in higher frequency bands for the extensors׳ muscles. They also showed lower total energy of gastrocnemius and a higher total energy of vastus, considering the whole gait cycle. The overall results suggest a change in the neuromuscular strategy of the main extensor muscles of the lower limb of diabetic patients to compensate the ankle extensor deficit to propel the body forward and accomplish the walking task. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Bilateral anterior tarsal tunnel syndrome variant secondary to extensor hallucis brevis muscle hypertrophy in a ballet dancer: a case report.

    PubMed

    Tennant, Joshua N; Rungprai, Chamnanni; Phisitkul, Phinit

    2014-12-01

    We present a case of bilateral anterior tarsal tunnel syndrome secondary EHB hypertrophy in a dancer, with successful treatment with bilateral EHB muscle excisions for decompression. The bilateral presentation of this case with the treatment of EHB muscle excision is the first of its type reported in the literature. Copyright © 2014 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  3. [Rupture of the tendon of the tibialis anterior muscle : Etiology, clinical symptoms and treatment].

    PubMed

    Waizy, H; Bouillon, B; Stukenborg-Colsman, C; Yao, D; Ettinger, S; Claassen, L; Plaass, C; Danniilidis, K; Arbab, D

    2017-12-01

    Ruptures of the tendon of the tibialis anterior muscle tend to occur in the context of degenerative impairments. This mainly affects the distal avascular portion of the tendon. Owing to the good compensation through the extensor hallucis longus and extensor digitorum muscles, diagnosis is often delayed. In addition to the clinical examination, magnetic resonance inaging (MRI) diagnostics are of particular importance, although damage or rupture of the tendon can also be demonstrated sonographically. Therapeutic measures include conservative or operative measures, depending on the clinical symptoms. Conservative stabilization of the ankle can be achieved by avoiding plantar flexion using a peroneal orthosis or an ankle-foot orthosis. Subsequent problems, such as metatarsalgia or overloading of the medial foot edge can be addressed by insoles or a corresponding shoe adjustment. An operative procedure is indicated when there is corresponding suffering due to pressure and functional impairment. The direct end-to-end reconstruction of the tendon is only rarely possible in cases of delayed diagnosis due to the degenerative situation and the retraction of the tendon stumps. Depending on the defect size and the tendon quality, various operative techniques, such as rotationplasty, free transplants or tendon transfer can be used.

  4. What triggers the continuous muscle activity during upright standing?

    PubMed

    Masani, Kei; Sayenko, Dimitry G; Vette, Albert H

    2013-01-01

    The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Lower extremity joint kinetics and energetics during backward running.

    PubMed

    DeVita, P; Stribling, J

    1991-05-01

    The purpose of this study was to measure lower extremity joint moments of force and joint muscle powers used to perform backward running. Ten trials of high speed (100 Hz) sagittal plane film records and ground reaction force data (1000 Hz) describing backward running were obtained from each of five male runners. Fifteen trials of forward running data were obtained from one of these subjects. Inverse dynamics were performed on these data to obtain the joint moments and powers, which were normalized to body mass to make between-subject comparisons. Backward running hip moment and power patterns were similar in magnitude and opposite in direction to forward running curves and produced more positive work in stance. Functional roles of knee and ankle muscles were interchanged between backward and forward running. Knee extensors were the primary source of propulsion in backward running owing to greater moment and power output (peak moment = 3.60 N.m.kg-1; peak power = 12.40 W.kg-1) compared with the ankle (peak moment = 1.92 N.m.kg-1; peak power = 7.05 W.kg-1). The ankle plantarflexors were the primary shock absorbers, producing the greatest negative power (peak = -6.77 W.kg-1) during early stance. Forward running had greater ankle moment and power output for propulsion and greater knee negative power for impact attenuation. The large knee moment in backward running supported previous findings indicating that backward running training leads to increased knee extensor torque capabilities.

  6. Effect of spaceflight on the isotonic contractile properties of single skeletal muscle fibers in the rhesus monkey

    NASA Technical Reports Server (NTRS)

    Fitts, R. H.; Romatowski, J. G.; Blaser, C.; De La Cruz, L.; Gettelman, G. J.; Widrick, J. J.

    2000-01-01

    Experiments from both Cosmos and Space Shuttle missions have shown weightlessness to result in a rapid decline in the mass and force of rat hindlimb extensor muscles. Additionally, despite an increased maximal shortening velocity, peak power was reduced in rat soleus muscle post-flight. In humans, declines in voluntary peak isometric ankle extensor torque ranging from 15-40% have been reported following long- and short-term spaceflight and prolonged bed rest. Complete understanding of the cellular events responsible for the fiber atrophy and the decline in force, as well as the development of effective countermeasures, will require detailed knowledge of how the physiological and biochemical processes of muscle function are altered by spaceflight. The specific purpose of this investigation was to determine the extent to which the isotonic contractile properties of the slow- and fast-twitch fiber types of the soleus and gastrocnemius muscles of rhesus monkeys (Macaca mulatta) were altered by a 14-day spaceflight.

  7. Correlation of the Y-Balance Test with Lower-limb Strength of Adult Women

    PubMed Central

    Lee, Dong-Kyu; Kim, Gyoung-Mo; Ha, Sung-Min; Oh, Jae-Seop

    2014-01-01

    [Purpose] The purpose of this study was to elucidate the relationship between Y-balance test (YBT) distance and the lower-limb strength of adult women. [Subjects] Forty women aged 45 to 80 years volunteered for this study. [Methods] The participants were tested for maximal muscle strength of the lower limbs (hip extensors, hip flexors, hip abductors, knee extensors, knee flexors, and ankle dorsiflexors) and YBT distances in the anterior, posteromedial, and posterolateral directions. Pearson’s correlation coefficient was used to quantify the linear relationships between YBT distances and lower-limb strength. [Results] Hip extensor and knee flexor strength were positively correlated with YBT anterior distance. Hip extensor, hip abductor, and knee flexor strength were positively correlated with the YBT posteromedial distance. Hip extensor and knee flexor strength were positively correlated with YBT posterolateral distance. [Conclusion] There was a weak correlation between lower-limb strength (hip extensors, hip abductors, and knee flexors) and dynamic postural control as measured by the YBT. PMID:24926122

  8. Musculoskeletal injuries in the ultramarathon: the 1990 Westfield Sydney to Melbourne run.

    PubMed Central

    Fallon, K E

    1996-01-01

    OBJECTIVE: To document the injuries sustained by participants in a 1005 km ultramarathon. METHODS: Clinical notes were reviewed on entrants in the 1005 km Sydney to Melbourne ultramarathon. An injury was recorded following self referral by a participant or if the history obtained from the runner or his support crew indicated the likelihood of a significant injury which could have an impact upon performance. RESULTS: 64 injuries were found in 32 runners. The knee (31.3%) and ankle (28.1%) regions were most commonly injured. The most common single diagnosis was retropatellar pain syndrome, and Achilles tendinitis and medial tibial stress syndrome were the next most common injuries. Peritendinitis/tendinitis of the tendons passing under the extensor retinaculum at the ankle, an injury infrequently reported in other sports, was common (19% of all injuries). CONCLUSIONS: The injuries were typically associated with running but 12 (19% of the total) involved the tendons of the muscles of the anterior compartment of the lower leg, and in almost every case the major site of inflammation was at the extensor retinaculum at the anterior aspect of the ankle. This injury appears to be relatively specific to the ultramarathon-"ultramarathoner's ankle". Images p321-a PMID:9015594

  9. Impulsive ankle push-off powers leg swing in human walking.

    PubMed

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Seyfarth, Andre

    2014-04-15

    Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is suggested to power a catapult-like action in late stance of human walking. However, there is a lack of knowledge about the biomechanical process leading to this widely observed high power output of the ankle extensors. In our study, we use kinematic and dynamic data of human walking collected at speeds between 0.5 and 2.5 m s(-1) for a comprehensive analysis of push-off mechanics. We identify two distinct phases, which divide the push-off: first, starting with positive ankle power output, an alleviation phase, where the trailing leg is alleviated from supporting the body mass, and second, a launching phase, where stored energy in the ankle joint is released. Our results show a release of just a small part of the energy stored in the ankle joint during the alleviation phase. A larger impulse for the trailing leg than for the remaining body is observed during the launching phase. Here, the buckling knee joint inhibits transfer of power from the ankle to the remaining body. It appears that swing initiation profits from an impulsive ankle push-off resulting from a catapult without escapement.

  10. Gender differences in lower extremity kinematics, kinetics and energy absorption during landing.

    PubMed

    Decker, Michael J; Torry, Michael R; Wyland, Douglas J; Sterett, William I; Richard Steadman, J

    2003-08-01

    To determine whether gender differences exist in lower extremity joint motions and energy absorption landing strategies between age and skill matched recreational athletes. Mixed factor, repeated measures design. Compared to males, females execute high demand activities in a more erect posture potentially predisposing the anterior cruciate ligament to greater loads and injury. The preferred energy absorption strategy may provide insight for this performance difference. Inverse dynamic solutions estimated lower extremity joint kinematics, kinetics and energetic profiles for twelve males and nine females performing a 60 cm drop landing. Females demonstrated a more erect landing posture and utilized greater hip and ankle joint range of motions and maximum joint angular velocities compared to males. Females also exhibited greater energy absorption and peak powers from the knee extensors and ankle plantar-flexors compared to the males. Examinations of the energy absorption contributions revealed that the knee was the primary shock absorber for both genders, whereas the ankle plantar-flexors muscles was the second largest contributor to energy absorption for the females and the hip extensors muscles for the males. Females may choose to land in a more erect posture to maximize the energy absorption from the joints most proximal to ground contact. Females may be at a greater risk to anterior cruciate ligament injury during landing due to their energy absorption strategy.

  11. Evidence of compensatory joint kinetics during stair ascent and descent in Parkinson's disease.

    PubMed

    Conway, Zachary J; Silburn, Peter A; Blackmore, Tim; Cole, Michael H

    2017-02-01

    Stair ambulation is a challenging activity of daily life that requires larger joint moments than walking. Stabilisation of the body and prevention of lower limb collapse during this task depends upon adequately-sized hip, knee and ankle extensor moments. However, people with Parkinson's disease (PD) often present with strength deficits that may impair their capacity to control the lower limbs and ultimately increase their falls risk. To investigate hip, knee and ankle joint moments during stair ascent and descent and determine the contribution of these joints to the body's support in people with PD. Twelve PD patients and twelve age-matched controls performed stair ascent and descent trials. Data from an instrumented staircase and a three-dimensional motion analysis system were used to derive sagittal hip, knee and ankle moments. Support moment impulses were calculated by summing all extensor moment impulses and the relative contribution of each joint was calculated. Linear mixed model analyses indicated that PD patients walked slower and had a reduced cadence relative to controls. Although support moment impulses were typically not different between groups during stair ascent or descent, a reduced contribution by the ankle joint required an increased knee joint contribution for the PD patients. Despite having poorer knee extensor strength, people with PD rely more heavily on these muscles during stair walking. This adaptation could possibly be driven by the somewhat restricted mobility of this joint, which may provide these individuals with an increased sense of stability during these tasks. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise.

    PubMed

    Farrokhi, Shawn; Pollard, Christine D; Souza, Richard B; Chen, Yu-Jen; Reischl, Stephen; Powers, Christopher M

    2008-07-01

    Experimental laboratory study. To examine how a change in trunk position influences the kinematics, kinetics, and muscle activity of the lead lower extremity during the forward lunge exercise. Altering the position of the trunk during the forward lunge exercise is thought to affect the muscular actions of the lead lower extremity. However, no studies have compared the biomechanical differences between the traditional forward lunge and its variations. Ten healthy adults (5 males, 5 females; mean age +/- SD, 26.7 +/- 3.2 years) participated. Lower extremity kinematics, kinetics, and surface electromyographic (EMG) data were obtained while subjects performed 3 lunge exercises: normal lunge with the trunk erect (NL), lunge with the trunk forward (LTF), and lunge with trunk extension (LTE). A 1-way analysis of variance with repeated measures was used to compare lower extremity kinematics, joint impulse (area under the moment-time curve), and normalized EMG (highest 1-second window of activity for selected lower extremity muscles) among the 3 lunge conditions. During the LTF condition, significant increases were noted in peak hip flexion angle, hip extensor and ankle plantar flexor impulse, as well as gluteus maximus and biceps femoris EMG (P<.015) when compared to the NL condition. During the LTE condition, a significant increase was noted in peak ankle dorsiflexion and a significant decrease was noted in peak hip flexion angle (P<.015) compared to the NL condition. Performing a lunge with the trunk forward increased the hip extensor impulse and the recruitment of the hip extensors. In contrast, performing a forward lunge with the trunk extended did not alter joint impulse or activation of the lower extremity musculature. Therapy, level 5.

  13. Squatting Exercises in Older Adults: Kinematic and Kinetic Comparisons

    PubMed Central

    FLANAGAN, SEAN; SALEM, GEORGE J.; WANG, MAN-YING; SANKER, SERENA E.; GREENDALE, GAIL A.

    2012-01-01

    Purpose Squatting activities may be used, within exercise programs, to preserve physical function in older adults. This study characterized the lower-extremity peak joint angles, peak moments, powers, work, impulse, and muscle recruitment patterns (electromyographic; EMG) associated with two types of squatting activities in elders. Methods Twenty-two healthy, older adults (ages 70–85) performed three trials each of: 1) a squat to a self-selected depth (normal squat; SQ) and 2) a squat onto a chair with a standardized height of 43.8 cm (chair squat; CSQ). Descending and ascending phase joint kinematics and kinetics were obtained using a motion analysis system and inverse dynamics techniques. Results were averaged across the three trials. A 2 × 2 (activity × phase) ANOVA with repeated measures was used to examine the biomechanical differences among the two activities and phases. EMG temporal characteristics were qualitatively examined. Results CSQ generated greater hip flexion angles, peak moments, power, and work, whereas SQ generated greater knee and ankle flexion angles, peak moments, power, and work. SQ generated a greater knee extensor impulse, a greater plantar flexor impulse and a greater total support impulse. The EMG temporal patterns were consistent with the kinetic data. Conclusions The results suggest that, with older adults, CSQ places greater demand on the hip extensors, whereas SQ places greater demand on the knee extensors and ankle plantar flexors. Clinicians may use these discriminate findings to more effectively target specific lower-extremity muscle groups when prescribing exercise for older adults. PMID:12673148

  14. Computational problems in autoregressive moving average (ARMA) models

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Goodarzi, S. M.; Oneill, W. D.; Gottlieb, G. L.

    1981-01-01

    The choice of the sampling interval and the selection of the order of the model in time series analysis are considered. Band limited (up to 15 Hz) random torque perturbations are applied to the human ankle joint. The applied torque input, the angular rotation output, and the electromyographic activity using surface electrodes from the extensor and flexor muscles of the ankle joint are recorded. Autoregressive moving average models are developed. A parameter constraining technique is applied to develop more reliable models. The asymptotic behavior of the system must be taken into account during parameter optimization to develop predictive models.

  15. Muscle-Specific Effective Mechanical Advantage and Joint Impulse in Weightlifting.

    PubMed

    Kipp, Kristof; Harris, Chad

    2017-07-01

    Kipp, K, and Harris, C. Muscle-specific effective mechanical advantage and joint impulse in weightlifting. J Strength Cond Res 31(7): 1905-1910, 2017-Lifting greater loads during weightlifting exercises may theoretically be achieved through increasing the magnitudes of net joint impulses or manipulating the joints' effective mechanical advantage (EMA). The purpose of this study was to investigate muscle-specific EMA and joint impulse as well as impulse-momentum characteristics of the lifter-barbell system across a range of external loads during the execution of the clean. Collegiate-level weightlifters performed submaximal cleans at 65, 75, and 85% of their 1-repetition maximum (1-RM), whereas data from a motion analysis system and a force plate were used to calculate lifter-barbell system impulse and velocity, as well as net extensor impulse generated at the hip, knee, and ankle joints and the EMA of the gluteus maximus, hamstrings, quadriceps, and triceps surae muscles. The results indicated that the lifter-barbell system impulse did not change as load increased, whereas the velocity of the lifter-barbell system decreased with greater load. In addition, the net extensor impulse at all joints increased as load increased. The EMA of all muscles did not, however, change as load increased. The load-dependent effects on the impulse-velocity characteristics of the lifter-barbell system may reflect musculoskeletal force-velocity behaviors, and may further indicate that the weightlifting performance is limited by the magnitude of ground reaction force impulse. In turn, the load-dependent effects observed at the joint level indicated that lifting greater loads were due to greater net extensor impulses generated at the joints of the lower extremity and not greater EMAs of the respective extensor muscles. In combination, these results suggest that lifting greater external loads during the clean is due to the ability to generate large extensor joint impulses, rather than manipulate EMA.

  16. Skeletal muscle responses to unloading in humans

    NASA Technical Reports Server (NTRS)

    Dudley, G.; Tesch, P.; Hather, B.; Adams, G.; Buchanan, P.

    1992-01-01

    This study examined the effects of unloading on skeletal muscle structure. Method: Eight subjects walked on crutches for six weeks with a 110 cm elevated sole on the right shoe. This removed weight bearing by the left lower limb. Magnetic resonance imaging of both lower limbs and biopsies of the left m. vastus laterallis (VL) were used to study muscle structure. Results: Unloading decreased (P less than 0.05) muscle cross-sectional areas (CSA) of the knee extensors 16 percent. The knee flexors showed about 1/2 of this response (-7 percent, P less than 0.05). The three vasti muscles each showed decreases (P less than 0.05) of about 15 percent. M. rectus femoris did not change. Mean fiber CSA in VL decreased (P less than 0.05) 14 percent with type 2 and type 1 fibers showing reductions of 15 and 11 percent respectively. The ankle extensors showed a 20 percent decrease (P less than 0.05) in CSA. The reduction for the 'fast' m. gastrocnemius was 27 percent compared to the 18 percent decrease for the 'slow' soleus. Summary: The results suggest that decreases in muscle CSA are determined by the relative change in impact loading history because atrophy was (1) greater in extensor than flexor muscles, (2) at least as great in fast as compared to slow muscles or fibers, and (3) not dependent on single or multi-joint function. They also suggest that the atrophic responses to unloading reported for lower mammals are quantitatively but not qualitatively similar to those of humans.

  17. Pilates improves lower limbs strength and postural control during quite standing in a child with hemiparetic cerebral palsy: A case report study.

    PubMed

    Dos Santos, Adriana Neves; Serikawa, Simoni Sayuri; Rocha, Nelci Adriana Cicuto Ferreira

    2016-08-01

    To verify the effect of Pilates exercises in a child with cerebral palsy (CP) with mild functional impairment. We evaluated average peak torque of ankle and knee extensors/flexors using a Biodex System, using concentric active-assisted test. We also evaluated amplitude of anterior-posterior and of medial-lateral displacement of the CoP and area of oscillation during quite standing with a BERTEC platform. We applied Pilates exercises for eight weeks. Peak torque/body weight of ankle and knee extensors/flexors of both affected and unaffected limbs increased after Pilates. Also, all kinetic variables decreased after Pilates' intervention. After one-month follow-up, isokinetic variable values were higher while kinetic variable values were lower than baseline values. Pilates may be an important rehabilitation technique for children with CP that present mild deficits in motor structures and high functional level, especially when the aims are to improve muscle strength and postural control during quite standing.

  18. Glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners.

    PubMed

    Tai, Suh-Jun; Liu, Ren-Shyan; Kuo, Ya-Chen; Hsu, Chi-Yang; Chen, Chi-Hsien

    2010-04-30

    The aim of this study was to determine glucose uptake patterns in exercised skeletal muscles of elite male long-distance and short-distance runners. Positron emission tomography (PET) using 18F-fluoro-2-deoxyglucose (FDG) was performed to determine the patterns of glucose uptake in lower limbs of short-distance (SD group, n=8) and long-distance (LD group, n=8) male runners after a modified 20 min Bruce treadmill test. Magnetic resonance imaging (MRI) was used to delineate the muscle groups in lower limbs. Muscle groups from hip, knee, and ankle movers were measured. The total FDG uptake and the standard uptake value (SUV) for each muscle group were compared between the 2 groups. For the SD and LD runners, the 2 major muscle groups utilizing glucose during running were knee extensors and ankle plantarflexors, which accounted for 49.3 +/- 8.1% (25.1 +/- 4.7% and 24.2 +/- 6.0%) of overall lower extremity glucose uptake for SD group, and 51.3 +/- 8.0% (27.2 +/- 2.7% and 24.0 +/- 8.1%) for LD group. No difference in muscle glucose uptake was noted for other muscle groups. For SD runners, the SUVs for the muscle groups varied from 0.49 +/- 0.27 for the ankle plantarflexors, to 0.20 +/- 0.08 for the hip flexor. For the LD runners, the highest and lowest SUVs were 0.43 +/- 0.15 for the ankle dorsiflexors and 0.21 +/- 0.19 for the hip. For SD and LD groups, no difference in muscle SUV was noted for the muscle groups. However, the SUV ratio between the ankle dorsiflexors and plantarflexors in the LD group was significantly greater than that in the SD group. We thus conclude that the major propelling muscle groups account for approximately 50% of lower limb glucose utilization during running. Thus, the other muscle groups involving maintenance of balance, limb deceleration, and shock absorption utilize an equal amount. This result provides a new insight into glucose distribution in skeletal muscle, suggesting that propellers and supporters are both energetically important during running. Furthermore, for each unit muscle volume, movers of ankle are more glucose-demanding than those of hip.

  19. Patellar tendon vibration reduces the increased facilitation from quadriceps to soleus in post-stroke hemiparetic individuals.

    PubMed

    Maupas, Eric; Dyer, Joseph-Omer; Melo, Sibele de Andrade; Forget, Robert

    2017-09-01

    Stimulation of the femoral nerve in healthy people can facilitate soleus H-reflex and electromyography (EMG) activity. In stroke patients, such facilitation of transmission in spinal pathways linking the quadriceps and soleus muscles is enhanced and related to co-activation of knee and ankle extensors while sitting and walking. Soleus H-reflex facilitation can be depressed by vibration of the quadriceps in healthy people, but the effects of such vibration have never been studied on the abnormal soleus facilitation observed in people after stroke. To determine whether vibration of the quadriceps can modify the enhanced heteronymous facilitation of the soleus muscle observed in people with spastic stroke after femoral nerve stimulation and compare post-vibration effects on soleus facilitation in control and stroke individuals. Modulation of voluntary soleus EMG activity induced by femoral nerve stimulation (2×motor threshold) was assessed before, during and after vibration of the patellar tendon in 10 healthy controls and 17 stroke participants. Voluntary soleus EMG activity was facilitated by femoral nerve stimulation in 4/10 (40%) controls and 11/17 (65%) stroke participants. The level of facilitation was greater in the stroke than control group. Vibration significantly reduced early heteronymous facilitation in both groups (50% of pre-vibration values). However, the delay in recovery of soleus facilitation after vibration was shorter for the stroke than control group. The control condition with the vibrator turned off had no effect on the modulation. Patellar tendon vibration can reduce the facilitation between knee and ankle extensors, which suggests effective presynaptic inhibition but decreased post-activation depression in the lower limb of people after chronic hemiparetic stroke. Further studies are warranted to determine whether such vibration could be used to reduce the abnormal extension synergy of knee and ankle extensors in people after hemiparetic stroke. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Isokinetic muscle performance of the hip and ankle muscles in women with fibromyalgia.

    PubMed

    Yetişgin, Alparslan; Tiftik, Tülay; Kara, Murat; Karabay, İlkay; Akkuş, Selami; Ersöz, Murat

    2016-06-01

    To compare isokinetic muscle performances of a proximal (hip) and a distal (ankle) muscle of fibromyalgia syndrome (FMS) patients with those of age- and body mass index (BMI)-matched healthy subjects. Thirty female patients with FMS (mean age: 41.5 ± 6.7 years [range, 27-54]) and 30 age- (mean age: 40.6 ± 6.0 years [range, 27-54]) and BMI-matched female healthy controls were consecutively enrolled. Demographic and clinical characteristics of the subjects were recorded. Isokinetic measurements of hip and ankle flexion and extension at angular velocities of 60°/s and 180°/s, peak torques, flexor-extensor torque ratios, muscle fatigue resistance values and average power were obtained. Mean disease duration of FMS patients was 2.4 ± 1.9 years. Mean weight, height and BMI values were 70.4 ± 12.5 kg, 159.5 ± 6.0 cm and 27.7 ± 4.7 kg/m² (FMS patients) and 69.3 ± 10.1 kg, 161.7 ± 6.2 cm and 26.6 ± 4.3 kg/m² (control subjects), respectively (all P > 0.05). All isokinetic values were statistically decreased in the FMS group when compared with the control group, except for the peak torques at angular velocity of 180°/s on flexion of the hip and extension of the ankle and the total work and average power on extension of the ankle. We did not find any correlation between isokinetic values and disease related parameters of FMS patients. In the light of our results, we may conclude that muscle strength and muscle fatigue seem to decrease in FMS patients' both proximal and distal lower extremity muscles. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  1. Skeletal muscle water T2 as a biomarker of disease status and exercise effects in patients with Duchenne muscular dystrophy.

    PubMed

    Mankodi, Ami; Azzabou, Noura; Bulea, Thomas; Reyngoudt, Harmen; Shimellis, Hirity; Ren, Yupeng; Kim, Eunhee; Fischbeck, Kenneth H; Carlier, Pierre G

    2017-08-01

    The purpose of this study was to examine exercise effects on muscle water T 2 in patients with Duchenne muscular dystrophy (DMD). In 12 DMD subjects and 19 controls, lower leg muscle fat (%) was measured by Dixon and muscle water T 2 and R 2 (1/T 2 ) by the tri-exponential model. Muscle water R 2 was measured again at 3 hours after an ankle dorsiflexion exercise. The muscle fat fraction was higher in DMD participants than in controls (p < .001) except in the tibialis posterior muscle. Muscle water T 2 was measured independent of the degree of fatty degeneration in DMD muscle. At baseline, muscle water T 2 was higher in all but the extensor digitorum longus muscles of DMD participants than controls (p < .001). DMD participants had a lower muscle torque (p < .001) and exerted less power (p < .01) during exercise than controls. Nevertheless, muscle water R 2 decreased (T 2 increased) after exercise from baseline in DMD subjects and controls with greater changes in the target muscles of the exercise than in ankle plantarflexor muscles. Skeletal muscle water T 2 is a sensitive biomarker of the disease status in DMD and of the exercise response in DMD patients and controls. Published by Elsevier B.V.

  2. Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model.

    PubMed

    Ichihara, Kazuhiko; Venkatasubramanian, Ganapriya; Abbas, James J; Jung, Ranu

    2009-01-30

    Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75 Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy.

  3. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.

    PubMed

    Yavuz, Utku Ş; Negro, Francesco; Diedrichs, Robin; Farina, Dario

    2018-05-01

    Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted between ankle flexor and extensor muscles is asymmetric. The functional implication of asymmetric transmission may be associated with the neural strategies of postural control.

  4. Ischemic contracture of the foot and ankle: principles of management and prevention.

    PubMed

    Botte, M J; Santi, M D; Prestianni, C A; Abrams, R A

    1996-03-01

    A variety of clinical presentations can be encountered following compartment syndrome of the leg and foot. Deformity and functional impairment in the foot and ankle secondary to ischemia are determined by: 1) which leg compartments have been affected and to what degree extrinsic flexor or extensor "overpull" is exhibited, 2) degree of nerve injury sustained causing weakness or paralysis of extrinsic or intrinsic foot and ankle muscles, 3) which foot compartments have been affected and to what degree intrinsic "overpull" is exhibited, and 4) degree of sensory nerve injury leading to anesthesia, hypoesthesia, or hyperesthesia of the foot. Nonoperative therapy attempts to obtain or preserve joint mobility, increase strength, and provide corrective bracing and accommodative foot wear. Operative management is undertaken for treatment of residual nerve compression or refractory problematic deformities. Established surgical protocols are performed in a stepwise fashion, and include: 1) release of residual or secondary nerve compression; 2) release of fixed contractures, using infarct excision, myotendinous lengthening, muscle recession, or tenotomy; 3) tendon transfers or arthrodesis to increase function; and 4) osteotomy or amputation for severe, non-salvageable deformities.

  5. Glucocorticoid sensitivity, disuse, and the regulation of muscle mass

    NASA Technical Reports Server (NTRS)

    Almon, R. R.; Dubois, D. C.

    1983-01-01

    A new noninvasive immobilization procedure to be used on rats has been developed to study immobilization-induced muscle hypersensitivity to normal glucocorticoid concentration, subsequent muscle atrophy, and atrophy recovery. The immobilization procedure involves encasing the hind limb in a light-weight plasticlike cast (10 percent the usual plaster weight), completely resistant to animal gnawing. The effects of right-angle immobilization of the ankle on the slow fiber soleus, and the fast fiber extensor digitorum longus, resemble the effects of weightlessness. The increased concentration of glucocorticoid receptor sites in immobilized and denervated muscle is discussed, along with the chronic loss of muscle mass that occurs in practically all dystrophies. It is concluded that lack of mechanical work in a zero gravity environment is a major cause of glucocorticoid hypersensitivity in the body's musculature.

  6. A Biomechanical Investigation of A Single-Limb Squat: Implications for Lower Extremity Rehabilitation Exercise

    PubMed Central

    Richards, Jim; Thewlis, Dominic; Selfe, James; Cunningham, Andrew; Hayes, Colin

    2008-01-01

    Context: Single-limb squats on a decline angle have been suggested as a rehabilitative intervention to target the knee extensors. Investigators, however, have presented very little empirical research in which they have documented the biomechanics of these exercises or have determined the optimum angle of decline used. Objective: To determine the involvement of the gastrocnemius and rectus femoris muscles and the external ankle and knee joint moments at 60° of knee flexion while performing a single-limb squat at different decline angles. Design: Participants acted as their own controls in a repeated-measures design. Patients or Other Participants: We recruited 10 participants who had no pain, injury, or neurologic disorder. Intervention(s): Participants performed single-limb squats at different decline angles. Main Outcome Measure(s): Angle-specific knee and ankle moments were calculated at 60° of knee flexion. Angle-specific electromyography (EMG) activity was calculated at 60° of knee flexion. Integrated EMG also was calculated to determine the level of muscle activity over the entire squat. Results: An increase was seen in the knee moments (P < .05) and integrated EMG in the rectus femoris (P < .001) as the decline angle increased. A decrease was seen in the ankle moments as the decline angle increased (P  =  .001), but EMG activity in the gastrocnemius increased between 16° and 24° (P  =  .018). Conclusions: As the decline angle increased, the knee extensor moment and EMG activity increased. As the decline angle increased, the ankle plantar-flexor moments decreased; however, an increase in the EMG activity was seen with the 24° decline angle compared with the 16° decline angle. This indicates that decline squats at an angle greater than 16° may not reduce passive calf tension, as was suggested previously, and may provide no mechanical advantage for the knee. PMID:18833310

  7. Surface electromyography studies in standing position confirm that ankle strategy remains disturbed even following successful treatment of patients with a history of sciatica

    PubMed Central

    Huber, Juliusz; Lisiński, Przemysław; Ciesielska, Jagoda; Kulczyk, Aleksandra; Lipiec, Joanna; Bandosz, Agata

    2016-01-01

    [Purpose] It is hypothesized that ankle strategy can be changed in patients with a history of sciatica. The aim of this study was to detect residual disturbances following successful treatment. [Subjects and Methods] In patients with a history of sciatica (N=11) and pseudo-sciatica (N=9), differences in muscle activity were recorded with bilateral surface polyelectromyography and stability measurements (center of foot pressure sway and center of spectrum) in normal standing and tandem positions. Results were compared with recordings in healthy people (N=9) to identify abnormalities in electromyographic and postural studies. [Results] Increased amplitude of electromyographic recordings from the gastrocnemius and extensor digiti muscles on the affected side was detected more in patients with a history of sciatica than pseudo-sciatica syndromes in tandem position. Fewer amplitude fluctuations were observed in both positions preferably in patients following sciatica. Changes in center of foot pressure sway and center of spectrum during balance platform studies were detected in normal standing position in this group of patients. No similar abnormalities in electromyographic and postural studies were detected in healthy people. [Conclusion] Sciatica and pseudo-sciatica evoke persistent disturbances in activity of muscles responsible for ankle strategy. Electromyography differentiates the two groups of patients better than postural studies. PMID:27065544

  8. Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury

    PubMed Central

    Chang, Young-Hui; Auyang, Arick G.; Scholz, John P.; Nichols, T. Richard

    2009-01-01

    Summary Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function. PMID:19837893

  9. Zapateado technique as an injury risk in Mexican folkloric and Spanish dance: an analysis of execution, ground reaction force, and muscle strength.

    PubMed

    Echegoyen, Soledad; Aoyama, Takeshi; Rodríguez, Cristina

    2013-06-01

    Zapateado is a repetitive percussive footwork in dance. This percussive movement, and the differences in technique, may be risk factors for injury. A survey on zapateado dance students found a rate of 1.5 injuries/1,000 exposures. Knee injuries are more frequent than in Spanish dancers than folkloric dancers. The aim of this research was to study the relationship between technique and ground reaction force between zapateado on Spanish and Mexican folkloric dancers. Ten female dance students (age 22.4 ± 4 yrs), six Spanish dancers and four Mexican folkloric dancers, were considered. Each student performed zapateado with a flat foot, wearing high-heeled shoes during 5 seconds on a force platform. Videotapes were taken on a lateral plane, and knee and hip angles in each movement phase were measured with Dartfish software. Additionally, knee and ankle flexor and extensor strength was measured with a dynamometer. Ground reaction forces were lower for Spanish dancers than Mexican folkloric dancers. Spanish dancers had less knee flexion when the foot contacted to the ground than did Mexican folkloric dancers. On Spanish dancers, the working leg had more motion in relation to hip and knee angles than was seen in folkloric dancers. The ankle extensors were stronger on folkloric dancers, and there were no differences for the other muscle groups. Knee flexion at foot contact and muscle strength imbalance could be risk factors for injuries. It is suggested that the technique in Spanish dance in Mexico be reviewed, although more studies are required to define more risk factors.

  10. Comparison of the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy young women.

    PubMed

    Shirazi, Zahra Rojhani; Jahromi, Fatemeh Nikhalat

    2013-09-01

    The maintenance of balance is an essential requirement for the performance of daily tasks and sporting activities and muscular fatigue is a factor to impair postural control, so this study was done to compare the effect of selected muscle groups fatigue on postural control during bipedal stance in healthy subjects. Fifteen healthy female students (24.3 ± 2.6 years) completed three testing session with a break period of at least 2 days. During each session, postural control was assessed during two 30-s trials of bipedal stance with eyes close before and after the fatigue protocol. Fatigue protocols were performed by 60% of their unfatigued Maximum Voluntary Contraction of unilateral ankle plantar flexors, bilateral lumbar extensors and bilateral neck extensors. One of the three fatigue protocols was performed on each session. The result showed that fatigue had a significant effect on COP velocity and it increase COP velocity but there was not found any difference in postural sway between muscle groups. Localized muscle fatigue caused deficits in postural control regardless of the location of fatigue. Authors suggest the possibility of the contributions of central mechanisms to postural deficits due to fatigue and it seems that difference was not between muscle groups due to central fatigue.

  11. Crouch gait can be an effective form of forced-use/no constraint exercise for the paretic lower limb in stroke.

    PubMed

    Tesio, Luigi; Rota, Viviana; Malloggi, Chiara; Brugliera, Luigia; Catino, Luigi

    2017-09-01

    In hemiplegic gait the paretic lower limb provides less muscle power and shows a briefer stance compared with the unaffected limb. Yet, a longer stance and a higher power can be obtained from the paretic lower limb if gait speed is increased. This supports the existence of a 'learned non-use' phenomenon, similar to that underlying some asymmetric impairments of the motion of the eyes and of the upper limbs. Crouch gait (CG) (bent-hip bent-knee, about 30° minimum knee flexion) might be an effective form of 'forced-use' treatment of the paretic lower limb. It is not known whether it also stimulates a more symmetric muscle power output. Gait analysis on a force treadmill was carried out in 12 healthy adults and seven hemiplegic patients (1-127 months after stroke, median: 1.6). Speed was imposed at 0.3 m/s. Step length and single and double stance times, sagittal joint rotations, peak positive power, and work in extension of the hip, knee, and ankle (plantar flexion), and surface electromyography (sEMG) area from extensor muscles during the generation of power were measured on either side during both erect and crouch walking. Significance was set at P less than 0.05; corrections for multiplicity were applied. Patients, compared with healthy controls, adopted in both gait modalities and on both sides a shorter step length (61-84%) as well as a shorter stance (76-90%) and swing (63-83%) time. As a rule, they also provided a higher muscular work (median: 137%, range: 77-250%) paralleled by a greater sEMG area (median: 174%, range: 75-185%). In erect gait, the generation of peak extensor power across hip, knee, and ankle joints was in general lower (83-90%) from the paretic limb and higher (98-165%) from the unaffected limb compared with control values. In CG, peak power generation across the three lower limb joints was invariably higher in hemiparetic patients: 107-177% from the paretic limb and 114-231% from the unaffected limb. When gait shifted from erect to crouch, only for hemiplegic patients, at the hip, the paretic/unaffected ratio increased significantly. For peak power, work, sEMG area, and joint rotation, the paretic/unaffected ratio increased from 55 to 85%, 56 to 72%, 68 to 91%, and 67 to 93%, respectively. CG appears to be an effective form of forced-use exercise eliciting more power and work from the paretic lower limb muscles sustained by a greater neural drive. It also seems effective in forcing a more symmetric power and work from the hip extensor muscles, but neither from the knee nor the ankle.

  12. Characteristics and Preliminary Observations of the Influence of Electromyostimulation on the Size and Function of Human Skeletal Muscle During 30 Days of Simulated Microgravity

    NASA Technical Reports Server (NTRS)

    Duvoisin, Marc R.; Convertino, Victor A; Buchanan, Paul; Gollinick, Philip D.; Dudley, Gary A.

    1989-01-01

    During 30 days (d) of bedrest, the practicality of using Elec- troMyoStimulation (EMS) as a deterrent to atrophy and strength loss of lower limb musculature was examined. An EMS system was developed that provided variable but quantifiable levels of EMS, and measured torque. The dominant log of three male subjects was stimulated twice daily in a 3-d on/1-d off cycle during bedrest. The non-dominant leg of each subject acted as a control. A stimulator, using a 0.3 ms monophasic 60 Hz pulse waveform, activated muscle tissue for 4 s. The output waveform from the stimulator was sequenced to the Knee Extensors (KE), Knee Flex- ors (KF), Ankle Extensors (AE), and Ankle Flexors (AF), and caused three isometric contractions of each muscle group per minute. Subject tolerance determined EMS Intensity. Each muscle group received four 5-min bouts of EMS each session with a 10 -min rest between bouts. EMS and torque levels for each muscle action were recorded directly an a computer. Overall average EMS Intensity was 197, 197, 195, and 188 mA for the KE, KF, AF, and AE, respectively. Overall average torque development for these muscle groups was 70, 16, 12, and 27 Nm, respectively. EMS intensity doubled during the study, and average torque increased 2.5 times. Average maximum torque throughout a session reached 54% of maximal voluntary for the KE and 29% for the KF. Reductions in leg volume, muscle compartment size, cross-sectional area of slow and fast-twitch fibers, strength, and aerobic enzyme activities, and increased log compliance were attenuated in the legs which received EMS during bedrest. These results indicate that similar EMS levels induce different torques among different muscle groups and that repeated exposure to EMS increases tolerance and torque development. Longer orien- tation periods, therefore, may enhance its effectiveness. Our preliminary data suggest that the efficacy of EMS as an effective countermeasure for muscle atrophy and strength loss during long duration space travel warrants further investigation.

  13. Lower-extremity biomechanics during forward and lateral stepping activities in older adults

    PubMed Central

    Wang, Man-Ying; Flanagan, Sean; Song, Joo-Eun; Greendale, Gail A.; Salem, George J.

    2012-01-01

    Objective To characterize the lower-extremity biomechanics associated with stepping activities in older adults. Design Repeated-measures comparison of kinematics and kinetics associated with forward step-up and lateral step-up activities. Background Biomechanical analysis may be used to assess the effectiveness of various ‘in-home activities’ in targeting appropriate muscle groups and preserving functional strength and power in elders. Methods Data were analyzed from 21 participants (mean 74.7 yr (standard deviation, 4.4 yr)) who performed the forward and lateral step-up activities while instrumented for biomechanical analysis. Motion analysis equipment, inverse dynamics equations, and repeated measures anovas were used to contrast the maximum joint angles, peak net joint moments, angular impulse, work, and power associated with the activities. Results The lateral step-up resulted in greater maximum knee flexion (P < 0.001) and ankle dorsiflexion angles (P < 0.01). Peak joint moments were similar between exercises. The forward step-up generated greater peak hip power (P < 0.05) and total work (P < 0.001); whereas, the lateral step-up generated greater impulse (P < 0.05), work (P < 0.01), and power (P < 0.05) at the knee and ankle. Conclusions In older adults, the forward step-up places greater demand on the hip extensors, while lateral step-up places greater demand on the knee extensors and ankle plantar flexors. PMID:12620784

  14. The effects of repetitive drop jumps on impact phase joint kinematics and kinetics.

    PubMed

    Weinhandl, Joshua T; Smith, Jeremy D; Dugan, Eric L

    2011-05-01

    The purpose of the study was to investigate the effects of fatigue on lower extremity joint kinematics, and kinetics during repetitive drop jumps. Twelve recreationally active males (n = 6) and females (n = 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 80% of their initial drop jump height. Kinematic and kinetic variables were assessed during the impact phase (100 ms) of all jumps. Fatigued landings were performed with increased knee extension, and ankle plantar flexion at initial contact, as well as increased ankle range of motion during the impact phase. Fatigue also resulted in increased peak ankle power absorption and increased energy absorption at the ankle. This was accompanied by an approximately equal reduction in energy absorption at the knee. While the knee extensors were the muscle group primarily responsible for absorbing the impact, individuals compensated for increased knee extension when fatigued by an increased use of the ankle plantar flexors to help absorb the forces during impact. Thus, as fatigue set in and individuals landed with more extended lower extremities, they adopted a landing strategy that shifted a greater burden to the ankle for absorbing the kinetic energy of the impact.

  15. Effect of Exercise-Induced Enhancement of the Leg-Extensor Muscle-Tendon Unit Capacities on Ambulatory Mechanics and Knee Osteoarthritis Markers in the Elderly

    PubMed Central

    Karamanidis, Kiros; Oberländer, Kai Daniel; Niehoff, Anja; Epro, Gaspar; Brüggemann, Gert-Peter

    2014-01-01

    Objective Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly. Methods Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP) levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry. Results Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention. Conclusions This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly following a 14-week exercise intervention and, therefore, the physiological benefit of improved muscle function for knee cartilage requires further investigation. PMID:24905024

  16. Effect of exercise-induced enhancement of the leg-extensor muscle-tendon unit capacities on ambulatory mechanics and knee osteoarthritis markers in the elderly.

    PubMed

    Karamanidis, Kiros; Oberländer, Kai Daniel; Niehoff, Anja; Epro, Gaspar; Brüggemann, Gert-Peter

    2014-01-01

    Leg-extensor muscle weakness could be a key component in knee joint degeneration in the elderly because it may result in altered muscular control during locomotion influencing the mechanical environment within the joint. This work aimed to examine whether an exercise-induced enhancement of the triceps surae (TS) and quadriceps femoris (QF) muscle-tendon unit (MTU) capacities would affect mechanical and biological markers for knee osteoarthritis in the elderly. Twelve older women completed a 14-week TS and QF MTU exercise intervention, which had already been established as increasing muscle strength and tendon stiffness. Locomotion mechanics and serum cartilage oligomeric matrix protein (COMP) levels were examined during incline walking. MTU mechanical properties were assessed using simultaneously ultrasonography and dynamometry. Post exercise intervention, the elderly had higher TS and QF contractile strength and tendon-aponeurosis stiffness. Regarding the incline gait task, the subjects demonstrated a lower external knee adduction moment and lower knee adduction angular impulse during the stance phase post-intervention. Furthermore, post-intervention compared to pre-intervention, the elderly showed lower external hip adduction moment, but revealed higher plantarflexion pushoff moment. The changes in the external knee adduction moment were significantly correlated with the improvement in ankle pushoff function. Serum COMP concentration increased in response to the 0.5-h incline walking exercise with no differences in the magnitude of increment between pre- and post-intervention. This work emphasizes the important role played by the ankle pushoff function in knee joint mechanical loading during locomotion, and may justify the inclusion of the TS MTU in prevention programs aiming to positively influence specific mechanical markers for knee osteoarthritis in the elderly. However, the study was unable to show that COMP is amenable to change in the elderly following a 14-week exercise intervention and, therefore, the physiological benefit of improved muscle function for knee cartilage requires further investigation.

  17. Changes in muscle cross-sectional area, muscle force, and jump performance during 6 weeks of progressive whole-body vibration combined with progressive, high intensity resistance training

    PubMed Central

    Rosenberger, A.; Beijer, Å.; Johannes, B.; Schoenau, E.; Mester, J.; Rittweger, J.; Zange, J.

    2017-01-01

    Objectives: We hypothesized that progressive whole-body vibration (WBV) superimposed to progressive high intensity resistance training has greater effects on muscle cross-sectional area (CSA), muscle force of leg muscles, and jump performance than progressive high intensity resistance training alone. Methods: Two groups of healthy male subjects performed either 6 weeks of Resistive Vibration Exercise (RVE, squats and heel raises with WBV, n=13) or Resistive Exercise (RE, squats and heel raises without WBV, n=13). Squats under RVE required indispensable weight loading on the forefoot to damp harmful vibrations to the head. Time, intervention, and interaction effects were analyzed. Results: After 6 weeks of training, knee extensor CSA, isometric knee extension force, and counter movement jump height increased equally in both groups (time effect, P<0.001, P≤0.02, and P≤0.03, respectively), whereas only in RVE ankle plantar flexor CSA and isometric ankle plantar flexion force reached significance or a tendency, respectively, (time effect, P=0.015 and P=0.069, respectively; intervention effect also for the latter, P=0.006). Drop jump contact time did significantly more improve in RVE (interaction effect, P=0.042). Conclusions: RVE showed better training effects than RE only in plantar flexor muscles. RVE seems to be suitable in professional sports with a special focus on calf muscles. PMID:28574410

  18. Muscular activity and torque of the foot dorsiflexor muscles during decremental isometric test: A cross-sectional study.

    PubMed

    Ruiz-Muñoz, Maria; González-Sánchez, Manuel; Martín-Martín, Jaime; Cuesta-Vargas, Antonio I

    2017-06-01

    To analyse the torque variation level that could be explained by the muscle activation (EMG) amplitude of the three major foot dorsiflexor muscles (tibialis anterior (TA), extensor digitorum longus (EDL), extensor hallucis longus (EHL)) during isometric foot dorsiflexion at different intensities. In a cross-sectional study, forty-one subjects performed foot dorsiflexion at 100%, 75%, 50% and 25% of maximal voluntary contractions (MVC) with the hip and knee flexed 90° and the ankle in neutral position (90° between leg and foot). Three foot dorsiflexions were performed for each intensity. Outcome variables were: maximum (100% MVC) and relative torque (75%, 50%, 25% MVC), maximum and relative EMG amplitude. A linear regression analysis was calculated for each intensity of the isometric foot dorsiflexion. The degree of torque variation (dependent variable) from the independent variables explain (EMG amplitude of the three major foot dorsiflexor muscles) the increases when the foot dorsiflexion intensity is increased, with values of R 2 that range from 0.194 (during 25% MVC) to 0.753 (during 100% MVC). The reliability of the outcome variables was excellent. The EMG amplitude of the three main foot dorsiflexors exhibited more variance in the dependent variable (torque) when foot dorsiflexion intensity increases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sensitivity of estimated muscle force in forward simulation of normal walking

    PubMed Central

    Xiao, Ming; Higginson, Jill

    2009-01-01

    Generic muscle parameters are often used in muscle-driven simulations of human movement estimate individual muscle forces and function. The results may not be valid since muscle properties vary from subject to subject. This study investigated the effect of using generic parameters in a muscle-driven forward simulation on muscle force estimation. We generated a normal walking simulation in OpenSim and examined the sensitivity of individual muscle to perturbations in muscle parameters, including the number of muscles, maximum isometric force, optimal fiber length and tendon slack length. We found that when changing the number muscles included in the model, only magnitude of the estimated muscle forces was affected. Our results also suggest it is especially important to use accurate values of tendon slack length and optimal fiber length for ankle plantarflexors and knee extensors. Changes in force production one muscle were typically compensated for by changes in force production by muscles in the same functional muscle group, or the antagonistic muscle group. Conclusions regarding muscle function based on simulations with generic musculoskeletal parameters should be interpreted with caution. PMID:20498485

  20. Gender Differences in Isokinetic Strength after 60 and 90 d Bed Rest

    NASA Technical Reports Server (NTRS)

    English, K. L.; Ploutz-Snyder, R. J.; Cromwell, R. L.; Ploutz-Snyder, L. L.

    2010-01-01

    Recent reports suggest that changes in muscle strength following disuse may differ between males and females. PURPOSE: To examine potential gender differences in strength changes following 60 and 90 d of experimental bed rest. METHODS: Isokinetic extensor and flexor strength of the knee (60deg and 180deg/s, concentric only), ankle (30deg/s, concentric and eccentric), and trunk (60deg/s, concentric only) were measured following 60 d (males: n=4, 34.5+/-9.6 y; females: n=4, 35.5+/-8.2 y) and 90 d (males: n=10, 31.4+/-4.8 y; females: n=5, 37.6+/-9.9 y) of 6-degree head-down-tilt bed rest (BR; N=23). Subjects were fed a controlled diet (55%/15%/ 30%, CHO/PRO/FAT) that maintained body weight within 3% of the weight recorded on Day 3 of bed rest. After a familiarization session, testing was conducted 6 d before BR and 2 d after BR completion. Peak torque and total work were calculated for the tests performed. To allow us to combine data from both 60- and 90-d subjects, we used a mixed-model statistical analysis in which time and gender were fixed effects and bed rest duration was a random effect. Log-transformations of strength measures were utilized when necessary in order to meet statistical assumptions. RESULTS: Main effects were seen for both time and gender (p<0.05), showing decreased strength in response to bed rest for both males and females, and males stronger than females for most strength measures. Only one interaction effect was observed: females exhibited a greater loss of trunk extensor peak torque at 60 d versus pre-BR, relative to males (p=0.004). CONCLUSION: Sixty and 90 d of BR induced significant losses in isokinetic muscle strength of the locomotor and postural muscles of the knee, ankle, and trunk. Although males were stronger than females for most of the strength measures that we examined, only changes in trunk extensor peak torque were greater for females than males at day 60 of bed rest

  1. Corticospinal excitability of the ankle extensor muscles is enhanced in ballet dancers.

    PubMed

    Saito, Sakiko; Obata, Hiroki; Endoh, Takashi; Kuno-Mizumura, Mayumi; Nakazawa, Kimitaka

    2014-09-01

    We tested the corticospinal excitability of the soleus muscle in ballet dancers to clarify whether the presumed long-term repetition of the specific plantarflexion results in changes of excitability in this neural pathway. We compared motor evoked potentials of the soleus muscle at rest and during isometric contraction of the plantar flexors in dancers and non-dancers. The amplitudes of motor evoked potentials elicited by transcranial magnetic stimulation during contraction were examined against the background electromyographic activity. A regression line was calculated for each subject. Results showed that the slope of the regression line is significantly greater in the dancer group than in the control group, suggesting that the corticospinal tract of ballet dancers has adapted to long-term repetition of plantarflexion in daily ballet training.

  2. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis.

    PubMed

    Park, Sang-Kyoon; Kobsar, Dylan; Ferber, Reed

    2016-10-01

    The relationship between muscle strength, gait biomechanics, and self-reported physical function and pain for patients with knee osteoarthritis is not well known. The objective of this study was to investigate these relationships in this population. Twenty-four patients with knee osteoarthritis and 24 healthy controls were recruited. Self-reported pain and function, lower-limb maximum isometric force, and frontal plane gait kinematics during treadmill walking were collected on all patients. Between-group differences were assessed for 1) muscle strength and 2) gait biomechanics. Linear regressions were computed within the knee osteoarthritis group to examine the effect of muscle strength on 1) self-reported pain and function, and 2) gait kinematics. Patients with knee osteoarthritis exhibited reduced hip external rotator, knee extensor, and ankle inversion muscle force output compared with healthy controls, as well as increased peak knee adduction angles (effect size=0.770; p=0.013). Hip abductor strength was a significant predictor of function, but not after controlling for covariates. Ankle inversion, hip abduction, and knee flexion strength were significant predictors of peak pelvic drop angle after controlling for covariates (34.4% unique variance explained). Patients with knee osteoarthritis exhibit deficits in muscle strength and while they play an important role in the self-reported function of patients with knee osteoarthritis, the effect of covariates such as sex, age, mass, and height was more important in this relationship. Similar relationships were observed from gait variables, except for peak pelvic drop, where hip, knee, and ankle strength remained important predictors of this variable after controlling for covariates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Side-alternating vibration training for balance and ankle muscle strength in untrained women.

    PubMed

    Spiliopoulou, Styliani I; Amiridis, Ioannis G; Tsigganos, Georgios; Hatzitaki, Vassilia

    2013-01-01

    Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Randomized controlled clinical trial. Laboratory. A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91-16.3g). The control group did not participate in any form of exercise over the 9-week period. We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P < .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus longus increased during the sharpened tandem (P = .001) and 1-legged tasks (P = .007). No changes were seen in the control group for any measures. The SAV training could enhance ankle muscle strength and reduce postural sway during static balance performance. The reduction in mediolateral sway could be associated with the greater use of ankle evertors due to their strength improvement.

  4. Crouch gait can be an effective form of forced-use/no constraint exercise for the paretic lower limb in stroke

    PubMed Central

    Rota, Viviana; Malloggi, Chiara; Brugliera, Luigia; Catino, Luigi

    2017-01-01

    In hemiplegic gait the paretic lower limb provides less muscle power and shows a briefer stance compared with the unaffected limb. Yet, a longer stance and a higher power can be obtained from the paretic lower limb if gait speed is increased. This supports the existence of a ‘learned non-use’ phenomenon, similar to that underlying some asymmetric impairments of the motion of the eyes and of the upper limbs. Crouch gait (CG) (bent-hip bent-knee, about 30° minimum knee flexion) might be an effective form of ‘forced-use’ treatment of the paretic lower limb. It is not known whether it also stimulates a more symmetric muscle power output. Gait analysis on a force treadmill was carried out in 12 healthy adults and seven hemiplegic patients (1–127 months after stroke, median: 1.6). Speed was imposed at 0.3 m/s. Step length and single and double stance times, sagittal joint rotations, peak positive power, and work in extension of the hip, knee, and ankle (plantar flexion), and surface electromyography (sEMG) area from extensor muscles during the generation of power were measured on either side during both erect and crouch walking. Significance was set at P less than 0.05; corrections for multiplicity were applied. Patients, compared with healthy controls, adopted in both gait modalities and on both sides a shorter step length (61–84%) as well as a shorter stance (76–90%) and swing (63–83%) time. As a rule, they also provided a higher muscular work (median: 137%, range: 77–250%) paralleled by a greater sEMG area (median: 174%, range: 75–185%). In erect gait, the generation of peak extensor power across hip, knee, and ankle joints was in general lower (83–90%) from the paretic limb and higher (98–165%) from the unaffected limb compared with control values. In CG, peak power generation across the three lower limb joints was invariably higher in hemiparetic patients: 107–177% from the paretic limb and 114–231% from the unaffected limb. When gait shifted from erect to crouch, only for hemiplegic patients, at the hip, the paretic/unaffected ratio increased significantly. For peak power, work, sEMG area, and joint rotation, the paretic/unaffected ratio increased from 55 to 85%, 56 to 72%, 68 to 91%, and 67 to 93%, respectively. CG appears to be an effective form of forced-use exercise eliciting more power and work from the paretic lower limb muscles sustained by a greater neural drive. It also seems effective in forcing a more symmetric power and work from the hip extensor muscles, but neither from the knee nor the ankle. PMID:28574860

  5. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners.

    PubMed

    Kuhman, Daniel; Melcher, Daniel; Paquette, Max R

    2016-01-01

    The purpose of this study was to investigate the interaction of foot strike and common speeds on sagittal plane ankle and knee joint kinetics in competitive rear foot strike (RFS) runners when running with a RFS pattern and an imposed forefoot strike (FFS) pattern. Sixteen competitive habitual male RFS runners ran at two different speeds (i.e. 8 and 6 min mile(-1)) using their habitual RFS and an imposed FFS pattern. A repeated measures analysis of variance was used to assess a potential interaction between strike pattern and speed for selected ground reaction force (GRF) variables and, sagittal plane ankle and knee kinematic and kinetic variables. No foot strike and speed interaction was observed for any of the kinetic variables. Habitual RFS yielded a greater loading rate of the vertical GRF, peak ankle dorsiflexor moment, peak knee extensor moment, peak knee eccentric extensor power, peak dorsiflexion and sagittal plane knee range of motion compared to imposed FFS. Imposed FFS yielded greater maximum vertical GRF, peak ankle plantarflexor moment, peak ankle eccentric plantarflexor power and sagittal plane ankle ROM compared to habitual RFS. Consistent with previous literature, imposed FFS in habitual RFS reduces eccentric knee extensor and ankle dorsiflexor involvement but produce greater eccentric ankle plantarflexor action compared to RFS. These acute differences between strike patterns were independent of running speeds equivalent to typical easy and hard training runs in competitive male runners. Current findings along with previous literature suggest differences in lower extremity kinetics between habitual RFS and imposed FFS running are consistent among a variety of runner populations.

  6. Relationship between strength qualities and short track speed skating performance in young athletes.

    PubMed

    Felser, S; Behrens, M; Fischer, S; Heise, S; Bäumler, M; Salomon, R; Bruhn, S

    2016-02-01

    This study analyzed the relationships between isometric as well as concentric maximum voluntary contraction (MVC) strength of the leg muscles and the times as well as speeds over different distances in 17 young short track speed skaters. Isometric as well as concentric single-joint MVC strength and multi-joint MVC strength in a stable (without skates) and unstable (with skates) condition were tested. Furthermore, time during maximum skating performances on ice was measured. Results indicate that maximum torques during eversion and dorsal flexion have a significant influence on skating speed. Concentric MVC strength of the knee extensors was higher correlated with times as well as speeds over the different distances than isometric MVC strength. Multi-joint MVC testing revealed that the force loss between measurements without and with skates amounts to 25%, while biceps femoris and soleus showed decreased muscle activity and peroneus longus, tibialis anterior, as well as rectus femoris exhibited increased muscle activity. The results of this study depict evidence that the skating times and speeds are primarily influenced by concentric MVC strength of the leg extensors. To be able to transfer the strength onto ice in an optimal way, it is necessary to stabilize the knee and ankle joints. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. The influence of fat infiltration of back extensor muscles on osteoporotic vertebral fractures.

    PubMed

    So, Kwang-Young; Kim, Dae-Hee; Choi, Dong-Hyuk; Kim, Choong-Young; Kim, Jeong-Seok; Choi, Yong-Soo

    2013-12-01

    Retrospective study. To investigate the influence of fat infiltration at low back extensor muscles on osteoporotic vertebral fracture. In persons with stronger back muscles, the risk of osteoporotic vertebral fractures will likely be lower than in those persons with weaker back muscles. However, the degree of influence of fat infiltration of the back extensor muscle on osteoporotic vertebral fracture remains controversial. Two hundred and thirty-seven patients who had undergone lumbar spine magnetic resonance imaging and bone mineral density (BMD) were enrolled in this study. The amount of low back extensor muscle was determined using the pseudocoloring technique on an axial view of the L3 level. The patients were divided into two groups: osteoporotic vertebral fracture group (group A) and non-fracture group (group B). The amount of low back extensor muscle is compared with BMD, degenerative change of disc, osteophyte grade of facet joint and promontory angle to reveal the association between these factors. A negative correlation is found between age and the amount of low back extensor muscle (p=0.001). The amount of low back extensor muscle in group A and group B was 60.3%±14.5% and 64.2%±9.3% respectively, thus showing a significantly smaller amount of low back extensor muscle in the osteoporotic vertebral fracture group (p=0.015). Fat infiltration of low back extensor muscle was increased in osteoporotic vertebral fracture patients. Therefore, fat infiltration of low back extensor muscle in an elderly person may be a risk factor of osteoporotic vertebral fracture.

  8. Anatomy of the inferior extensor retinaculum and its role in lateral ankle ligament reconstruction: a pictorial essay.

    PubMed

    Dalmau-Pastor, M; Yasui, Y; Calder, J D; Karlsson, J; Kerkhoffs, G M M J; Kennedy, J G

    2016-04-01

    The inferior extensor retinaculum (IER) is an aponeurotic structure, which is in continuation with the anterior part of the sural fascia. The IER has often been used to augment the reconstruction of the lateral ankle ligaments, for instance in the Broström-Gould procedure, with good outcomes reported. However, its anatomy has not been described in detail and only a few studies are available on this structure. The presence of a non-constant oblique supero-lateral band appears to be important. This structure defines whether the augmentation of the lateral ankle ligaments reconstruction is performed using true IER or only the anterior part of the sural fascia. It is concluded that the use of this structure will have an impact on the resulting ankle stability.

  9. Unifying principles in terrestrial locomotion: do hopping Australian marsupials fit in?

    PubMed

    Bennett, M B

    2000-01-01

    Mammalian terrestrial locomotion has many unifying principles. However, the Macropodoidea are a particularly interesting group that exhibit a number of significant deviations from the principles that seem to apply to other mammals. While the properties of materials that comprise the musculoskeletal system of mammals are similar, evidence suggests that tendon properties in macropodoid marsupials may be size or function dependent, in contrast to the situation in placental mammals. Postural differences related to hopping versus running have a dramatic effect on the scaling of the pelvic limb musculoskeletal system. Ratios of muscle fibre to tendon cross-sectional areas for ankle extensors and digital flexors scale with positive allometry in all mammals, but exponents are significantly higher in macropods. Tendon safety factors decline with increasing body mass in mammals, with eutherians at risk of ankle extensor tendon rupture at a body mass of about 150 kg, whereas kangaroos encounter similar problems at a body mass of approximately 35 kg. Tendon strength appears to limit locomotor performance in these animals. Elastic strain energy storage in tendons is mass dependent in all mammals, but exponents are significantly larger in macropodid. Tibial stresses may scale with positive allometry in kangaroos, which result in lower bone safety factors in macropods compared to eutherian mammals.

  10. Analysis of lower limb work-energy patterns in world-class race walkers.

    PubMed

    Hanley, Brian; Bissas, Athanassios

    2017-05-01

    The aim of this study was to analyse lower limb work patterns in world-class race walkers. Seventeen male and female athletes race walked at competitive pace. Ground reaction forces (1000 Hz) and high-speed videos (100 Hz) were recorded and normalised joint moments, work and power, stride length, stride frequency and speed estimated. The hip flexors and extensors were the main generators of energy (24.5 J (±6.9) and 40.3 J (±8.3), respectively), with the ankle plantarflexors (16.3 J (±4.3)) contributing to the energy generated during late stance. The knee generated little energy but performed considerable negative work during swing (-49.1 J (±8.7)); the energy absorbed by the knee extensors was associated with smaller changes in velocity during stance (r = .783, P < .001), as was the energy generated by the hip flexors (r = -.689, P = .002). The knee flexors did most negative work (-38.6 J (±5.8)) and the frequent injuries to the hamstrings are probably due to this considerable negative work. Coaches should note the important contributions of the hip and ankle muscles to energy generation and the need to develop knee flexor strength in reducing the risk of injury.

  11. Method to Reduce Muscle Fatigue During Transcutaneous Neuromuscular Electrical Stimulation in Major Knee and Ankle Muscle Groups.

    PubMed

    Sayenko, Dimitry G; Nguyen, Robert; Hirabayashi, Tomoyo; Popovic, Milos R; Masani, Kei

    2015-09-01

    A critical limitation with transcutaneous neuromuscular electrical stimulation as a rehabilitative approach is the rapid onset of muscle fatigue during repeated contractions. We have developed a method called spatially distributed sequential stimulation (SDSS) to reduce muscle fatigue by distributing the center of electrical field over a wide area within a single stimulation site, using an array of surface electrodes. To extend the previous findings and to prove feasibility of the method by exploring the fatigue-reducing ability of SDSS for lower limb muscle groups in the able-bodied population, as well as in individuals with spinal cord injury (SCI). SDSS was delivered through 4 active electrodes applied to the knee extensors and flexors, plantarflexors, and dorsiflexors, sending a stimulation pulse to each electrode one after another with 90° phase shift between successive electrodes. Isometric ankle torque was measured during fatiguing stimulations using SDSS and conventional single active electrode stimulation lasting 2 minutes. We demonstrated greater fatigue-reducing ability of SDSS compared with the conventional protocol, as revealed by larger values of fatigue index and/or torque peak mean in all muscles except knee flexors of able-bodied individuals, and in all muscles tested in individuals with SCI. Our study has revealed improvements in fatigue tolerance during transcutaneous neuromuscular electrical stimulation using SDSS, a stimulation strategy that alternates activation of subcompartments of muscles. The SDSS protocol can provide greater stimulation times with less decrement in mechanical output compared with the conventional protocol. © The Author(s) 2014.

  12. The Artificial Gravity Bed Rest Pilot Project: Effects on Knee Extensor and Plantar Flexor Muscle Groups

    NASA Technical Reports Server (NTRS)

    Caiozzo, V. J.; Haddad, F.; Lee, S.; Baker, M.; Baldwin, K. M.

    2007-01-01

    The goal of this project was to examine the effects of artificial gravity (2.5 g) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) control (C) group (N=7); and 2) an AG group (N=8), which was exposed to 21 days of bed-rest plus daily 1 hr exposures to AG (2.5 g). This particular experiment was part of an integrated AG Pilot Project sponsored by NASA/Johnson Space Center. The in vivo torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre and post treatment. Also, pre- and post treatment biopsy samples were obtained from both the vastus lateralis and soleus muscles and were used, in part, for a series of analyses on gene expression (mRNA abundance) of key factors implicated in the anabolic versus catabolic state of the muscle. Post/Pre toque-velocity determinations revealed greater decrements in knee extensor performance in the C versus AG group (P less than 0.04). The plantar flexor muscle group of the AG subjects actually demonstrated a net gain in torque-velocity relationship; whereas, in the C group the overall post/pre responses declined (AG vs C; P less than 0.001). Measurements of muscle fiber cross-sectional area (for both muscles) demonstrated a loss of approx. 20% in the C group while no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity (IGF-1, IGF-1 BP4, mechano growth factor, total RNA, and pro-collagen 3a) were higher in the AG group, whereas catabolic markers (myostatin and atrogen) were elevated in the C group. Importantly, these patterns were seen in both muscles. Based on these observations we conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading states. These findings also warrant further studies since it is likely that other robust paradigms of AG that employ various exercise strategies may be more effective in counteracting long duration unloading states as anticipated on the platforms of the Moon and Mars.

  13. The variation of the strength of neck extensor muscles and semispinalis capitis muscle size with head and neck position.

    PubMed

    Rezasoltani, A; Nasiri, R; Faizei, A M; Zaafari, G; Mirshahvelayati, A S; Bakhshidarabad, L

    2013-04-01

    Semispinalis capitis muscle (SECM) is a massive and long cervico-thoracic muscle which functions as a main head and neck extensor muscle. The aim of this study was to detect the effect of head and neck positions on the strength of neck extensor muscles and size of SECM in healthy subjects. Thirty healthy women students voluntarily participated in this study. An ultrasonography apparatus (Hitachi EUB 525) and a system of tension-meter were used to scan the right SECM at the level of third cervical spine and to measure the strength of neck extensor muscles at three head and neck positions. Neck extensor muscles were stronger in neutral than flexion or than extension positions while the size of SECM was larger in extension than neutral or than flexion position. The force generation capacity of the main neck extensor muscle was lower at two head and neck flexion and extension positions than neutral position. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Absolute Reliability and Concurrent Validity of Hand Held Dynamometry and Isokinetic Dynamometry in the Hip, Knee and Ankle Joint: Systematic Review and Meta-analysis

    PubMed Central

    Chamorro, Claudio; Armijo-Olivo, Susan; De la Fuente, Carlos; Fuentes, Javiera; Javier Chirosa, Luis

    2017-01-01

    Abstract The purpose of the study is to establish absolute reliability and concurrent validity between hand-held dynamometers (HHDs) and isokinetic dynamometers (IDs) in lower extremity peak torque assessment. Medline, Embase, CINAHL databases were searched for studies related to psychometric properties in muscle dynamometry. Studies considering standard error of measurement SEM (%) or limit of agreement LOA (%) expressed as percentage of the mean, were considered to establish absolute reliability while studies using intra-class correlation coefficient (ICC) were considered to establish concurrent validity between dynamometers. In total, 17 studies were included in the meta-analysis. The COSMIN checklist classified them between fair and poor. Using HHDs, knee extension LOA (%) was 33.59%, 95% confidence interval (CI) 23.91 to 43.26 and ankle plantar flexion LOA (%) was 48.87%, CI 35.19 to 62.56. Using IDs, hip adduction and extension; knee flexion and extension; and ankle dorsiflexion showed LOA (%) under 15%. Lower hip, knee, and ankle LOA (%) were obtained using an ID compared to HHD. ICC between devices ranged between 0.62, CI (0.37 to 0.87) for ankle dorsiflexion to 0.94, IC (0.91to 0.98) for hip adduction. Very high correlation were found for hip adductors and hip flexors and moderate correlations for knee flexors/extensors and ankle plantar/dorsiflexors. PMID:29071305

  15. The effect of ankle-foot orthosis plantarflexion stiffness on ankle and knee joint kinematics and kinetics during first and second rockers of gait in individuals with stroke

    PubMed Central

    Singer, Madeline L.; Kobayashi, Toshiki; Lincoln, Lucas S.; Orendurff, Michael S.; Foreman, K. Bo

    2014-01-01

    Background Stiffness of an ankle-foot orthosis plays an important role in improving gait in patients with a history of stroke. To address this, the aim of this case series study was to determine the effect of increasing plantarflexion stiffness of an ankle-foot orthosis on the sagittal ankle and knee joint angle and moment during the first and second rockers of gait. Methods Gait data were collected in 5 subjects with stroke at a self-selected walking speed under two plantarflexion stiffness conditions (0.4 Nm/deg and 1.3 Nm/deg) using a stiffness-adjustable experimental ankle-foot orthosis on a Bertec split-belt fully instrumented treadmill in a 3-dimensional motion analysis laboratory. Findings By increasing the plantarflexion stiffness of the ankle-foot orthosis, peak plantarfexion angle of the ankle was reduced and peak dorsiflexion moment was generally increased in the first rocker as hypothesized. Two subjects demonstrated increases in both peak knee flexion angle and peak knee extension moment in the second rocker as hypothesized. The two subjects exhibited minimum contractility during active plantarflexion, while the other three subjects could actively plantarflex their ankle joint. Interpretation It was suggested that those with the decreased ability to actively plantarflex their ankle could not overcome excessive plantarflexion stiffness at initial contact of gait, and as a result exhibited compensation strategies at the knee joint. Providing excessively stiff ankle-foot orthoses might put added stress on the extensor muscles of the knee joint, potentially creating fatigue and future pathologies in some patients with stroke. PMID:25241248

  16. Movement Strategies among Groups of Chronic Ankle Instability, Coper, and Control.

    PubMed

    Son, S Jun; Kim, Hyunsoo; Seeley, Matthew K; Hopkins, J Ty

    2017-08-01

    Comprehensive evaluation of movement strategies during functional movement is a difficult undertaking. Because of this challenge, studied movements have been oversimplified. Furthermore, evaluating movement strategies at only a discrete time point(s) provide limited insight into how movement strategies may change or adapt in chronic ankle instability (CAI) patients. This study aimed to identify abnormal movement strategies in individuals with a history of ankle sprain injury during a sports maneuver compared with healthy controls. Sixty-six participants, consisting of 22 CAI patients, 22 ankle sprain copers, and 22 healthy controls, participated in this study. Functional profiles of lower extremity kinematics, kinetics, and EMG activation from initial contact (0% of stance) to toe-off (100% of stance) were collected and analyzed during a jump landing/cutting task using a functional data analysis approach. Compared with copers, CAI patients displayed landing positions of less plantarflexion, less inversion, more knee flexion, more hip flexion, and less hip abduction during the first 25% of stance. However, restricted dorsiflexion angle was observed in both CAI patients and copers relative to controls during the midlanding to mid-side-cutting phase when the ankle and knee reached its peak range of motion (e.g., dorsiflexion and knee flexion). Reduced EMG activation of tibialis anterior, peroneus longus, medial gastrocnemius, and gluteus medius may be due to altered kinematics that reduce muscular demands on the involved muscles. CAI patients displayed altered movement strategies, perhaps in an attempt to avoid perceived positions of risk. Although sagittal joint positions seemed to increase the external torque on the knee and hip extensors, frontal joint positions appeared to reduce the muscular demands on evertor and hip abductor muscles.

  17. The biomechanical characteristics of wearing FitFlop™ sandals highlight significant alterations in gait pattern: a comparative study.

    PubMed

    James, Darren C; Farmer, Laura J; Sayers, Jason B; Cook, David P; Mileva, Katya N

    2015-05-01

    The net contribution of all muscles that act about a joint can be represented as an internal joint moment profile. This approach may be advantageous when studying footwear-induced perturbations during walking since the contribution of the smaller deeper muscles that cross the ankle joint cannot be evaluated with surface electromyography. Therefore, the present study aimed to advance the understanding of FitFlop™ footwear interaction by investigating lower extremity joint moment, and kinematic and centre of pressure profiles during gait. 28 healthy participants performed 5 walking trials in 3 conditions: a FitFlop™ sandal, a conventional sandal and an athletic trainer. Three-dimensional ankle joint, and sagittal plane knee and hip joint moments, as well as corresponding kinematics and centre of pressure trajectories were evaluated. FitFlop™ differed significantly to both the conventional sandal and athletic trainer in: average anterior position of centre of pressure trajectory (P<0.0001) and peak hip extensor moment (P=0.001) during early stance; average medial position of centre of pressure trajectory during late stance; peak ankle dorsiflexion and corresponding range of motion; peak plantarflexor moment and total negative work performed at the ankle (all P<0.0001). The present findings demonstrate that FitFlop™ footwear significantly alters the gait pattern of wearers. An anterior displacement of the centre of pressure trajectory during early stance is the primary response to the destabilising effect of the mid-sole technology, and this leads to reductions in sagittal plane ankle joint range of motion and corresponding kinetics. Future investigations should consider the clinical implications of these findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Effects of Muscle Strength and Balance Control on Sit-to-Walk and Turn Durations in the Timed Up and Go Test.

    PubMed

    Chen, Tzurei; Chou, Li-Shan

    2017-12-01

    To examine the association of muscle strength and balance control with the amount of time taken to perform sit-to-walk (STW) or turning components of the Timed Up and Go (TUG) test in older adults. Correlations; multiple regression models. General community. Older adults (N=60) age >70 years recruited from the community. Not applicable. Muscle strength, balance control, and TUG test performance time. Muscle strength was quantified by peak joint moments during the isometric maximal voluntary contraction test for bilateral hip abductors, knee extensors, and ankle plantar flexors. Balance control was assessed with the Berg Balance Scale, Fullerton Advanced Balance Scale, and center of mass and ankle inclination angle derived during the TUG test performance. We found that balance control measures were significantly associated with both STW and turning durations even after controlling for muscle strength and other confounders (STW duration: P<.001, turning duration: P=.001). Adding strength to the regression model was found to significantly improve its prediction of STW duration (F change =5.945, P=.018), but not turning duration (F change =1.03, P=.14). Our findings suggest that poor balance control is an important factor that contributes to longer STW and turning durations on the TUG test. Furthermore, strength has a higher association with STW than turning duration. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  19. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  20. Effect of the walking speed to the lower limb joint angular displacements, joint moments and ground reaction forces during walking in water.

    PubMed

    Miyoshi, Tasuku; Shirota, Takashi; Yamamoto, Shin-ichiro; Nakazawa, Kimitaka; Akai, Masami

    2004-06-17

    The purpose of this study was to compare the changes in ground reaction forces (GRF), joint angular displacements (JAD), joint moments (JM) and electromyographic (EMG) activities that occur during walking at various speeds in water and on land. Fifteen healthy adults participated in this study. In the water experiments, the water depth was adjusted so that body weight was reduced by 80%. A video-motion analysis system and waterproof force platform was used to obtain kinematics and kinetics data and to calculate the JMs. Results revealed that (1) the anterior-posterior GRF patterns differed between walking in water and walking on land, whereas the medio-lateral GRF patterns were similar, (2) the JAD patterns of the hip and ankle were similar between water- and land-walking, whereas the range of motion at the knee joint was lower in water than on land, (3) the JMs in all three joints were lower in water than on land throughout the stance phase, and (4) the hip joint extension moment and hip extensor muscle EMG activity were increased as walking speed increase during walking in water. Rehabilitative water-walking exercise could be designed to incorporate large-muscle activities, especially of the lower-limb extensor muscles, through full joint range of motion and minimization of joint moments.

  1. Curvature reduces bending strains in the quokka femur

    PubMed Central

    McCabe, Kyle; Henderson, Keith; Pantinople, Jess; Milne, Nick

    2017-01-01

    This study explores how curvature in the quokka femur may help to reduce bending strain during locomotion. The quokka is a small wallaby, but the curvature of the femur and the muscles active during stance phase are similar to most quadrupedal mammals. Our hypothesis is that the action of hip extensor and ankle plantarflexor muscles during stance phase place cranial bending strains that act to reduce the caudal curvature of the femur. Knee extensors and biarticular muscles that span the femur longitudinally create caudal bending strains in the caudally curved (concave caudal side) bone. These opposing strains can balance each other and result in less strain on the bone. We test this idea by comparing the performance of a normally curved finite element model of the quokka femur to a digitally straightened version of the same bone. The normally curved model is indeed less strained than the straightened version. To further examine the relationship between curvature and the strains in the femoral models, we also tested an extra-curved and a reverse-curved version with the same loads. There appears to be a linear relationship between the curvature and the strains experienced by the models. These results demonstrate that longitudinal curvature in bones may be a manipulable mechanism whereby bone can induce a strain gradient to oppose strains induced by habitual loading. PMID:28348929

  2. Muscle power is an important measure to detect deficits in muscle function in hip osteoarthritis: a cross-sectional study.

    PubMed

    Bieler, Theresa; Magnusson, Stig Peter; Christensen, Helle Elisabeth; Kjaer, Michael; Beyer, Nina

    2017-07-01

    To investigate between-leg differences in hip and thigh muscle strength and leg extensor power in patients with unilateral hip osteoarthritis. Further, to compare between-leg differences in knee extensor strength and leg extensor power between patients and healthy peers. Seventy-two patients (60-87 years) with radiographic and symptomatic hip osteoarthritis not awaiting hip replacement and 35 healthy peers (63-82 years) were included. Hip and thigh muscle strength and leg extensor power were measured in patients and knee extensor strength and leg extensor power in healthy. The symptomatic extremity in patients was significantly (p < 0.05, paired t-test) weaker compared with the non-symptomatic extremity for five hip muscles (8-17%), knee extensors (11%) and leg extensor power (19%). Healthy older adults had asymmetry in knee extensor strength (6%, p < 0.05) comparable to that found in patients, but had no asymmetry in leg extensor power. Patients had generalized weakening of the affected lower extremity and numerically the largest asymmetry was evident for leg extensor power. In contrast, healthy peers had no asymmetry in leg extensor power. These results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with hip osteoarthritis. Implications for Rehabilitation Even in patients with mild symptoms not awaiting hip replacement a generalized muscle weakening of the symptomatic lower extremity seems to be present. Between-leg differences in leg extensor power (force × velocity) appears to be relatively large (19%) in patients with unilateral hip osteoarthritis in contrast to healthy peers who show no asymmetry. Compared to muscle strength the relationship between functional performance and leg extensor power seems to be stronger, and more strongly related to power of the symptomatic lower extremity. Our results indicate that exercise interventions focusing on improving leg extensor power of the symptomatic lower extremity and reducing asymmetry may be beneficial for patients with mild symptoms not awaiting hip replacement.

  3. Effects of Postmortem Freezing on Passive Properties of Rabbit Extensor Digtorum Longus Muscle Tendon Complex

    DTIC Science & Technology

    1993-06-14

    AD-A266 429 INSTITUTE REPORT NO. 483 Effects of Postmortem Freezing on Passive Properties of Rabbit Extensor Digtorum Longus Muscle Tendon Complex D...Extensor Digtorum Longus Muscle Tendon Complex -- Paul H. Leitschuh, Tammy J. Doherty, Dean C. Taylor, Daniel E. Brooks, John B. Ryan This document has...ABSTRACT The tensile properties of the extensor digitorum longus muscle tendon unit (EDL MTU) were studied in 16 white male New Zealand rabbits in both

  4. Impact of Fat Infiltration in Cervical Extensor Muscles on Cervical Lordosis and Neck Pain: A Cross-Sectional Study.

    PubMed

    Kim, Choong-Young; Lee, Sang-Min; Lim, Seong-An; Choi, Yong-Soo

    2018-06-01

    Weakness of cervical extensor muscles causes loss of cervical lordosis, which could also cause neck pain. The aim of this study was to investigate the impact of fat infiltration in cervical extensor muscles on cervical lordosis and neck pain. Fifty-six patients who suffered from neck pain were included in this study. Fat infiltration in cervical extensor muscles was measured at each level of C2-3 and C6-7 using axial magnetic resonance imaging. The visual analogue scale (VAS), 12-Item Short Form Health Survey (SF-12), and Neck Disability Index (NDI) were used for clinical assessment. The mean fat infiltration was 206.3 mm 2 (20.3%) at C2-3 and 240.6 mm 2 (19.5%) at C6-7. Fat infiltration in cervical extensor muscles was associated with high VAS scores at both levels ( p = 0.047 at C2-3; p = 0.009 at C6-7). At C2-3, there was a negative correlation between fat infiltration of the cervical extensor muscles and cervical lordosis (r = -0.216; p = 0.020). At C6-7, fat infiltration in the cervical extensor muscles was closely related to NDI ( p = 0.003) and SF-12 ( p > 0.05). However, there was no significant correlation between cervical lordosis and clinical outcomes (VAS, p = 0.112; NDI, p = 0.087; and SF-12, p > 0.05). These results suggest that fat infiltration in the upper cervical extensor muscles has relevance to the loss of cervical lordosis, whereas fat infiltration in the lower cervical extensor muscles is associated with cervical functional disability.

  5. Load compensating reactions to perturbations at wrist joint in normal man

    NASA Technical Reports Server (NTRS)

    Jaeger, R. J.; Agarwell, G. C.; Gottlieb, G. L.

    1981-01-01

    The electromyographic responses to step torque loads were studied in flexors and extensors at the human wrist. Based on temporal bursting patterns and functional behavior, the response was divided into four temporal components. Two early components, the myotatic (30-60 ms) late myotatic (60-120 ms) appears to be reflex response. The third postmyotatic component (120-200 ms) appear to be a triggered reaction, preceeding the fourth, stabilizing component (200-400 ms). A comparison of response at the wrist with similar data at the ankle provides the basis for a generalized classification of the response in various muscles to torque step perturbations.

  6. The influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination during weightlifting.

    PubMed

    Hu, Boyi; Ning, Xiaopeng

    2015-01-01

    Lumbar muscle fatigue is a potential risk factor for the development of low back pain. In this study, we investigated the influence of lumbar extensor muscle fatigue on lumbar-pelvic coordination patterns during weightlifting. Each of the 15 male subjects performed five repetitions of weightlifting tasks both before and after a lumbar extensor muscle fatiguing protocol. Lumbar muscle electromyography was collected to assess fatigue. Trunk kinematics was recorded to calculate lumbar-pelvic continuous relative phase (CRP) and CRP variability. Results showed that fatigue significantly reduced the average lumbar-pelvic CRP value (from 0.33 to 0.29 rad) during weightlifting. The average CRP variability reduced from 0.17 to 0.15 rad, yet this change ws statistically not significant. Further analyses also discovered elevated spinal loading during weightlifting after the development of lumbar extensor muscle fatigue. Our results suggest that frequently experienced lumbar extensor muscle fatigue should be avoided in an occupational environment. Lumbar extensor muscle fatigue generates more in-phase lumbar-pelvic coordination patterns and elevated spinal loading during lifting. Such increase in spinal loading may indicate higher risk of back injury. Our results suggest that frequently experienced lumbar muscle fatigue should be avoided to reduce the risk of LBP.

  7. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters.

    PubMed

    Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi

    2008-08-01

    Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of the hip extensors, but only when tested at the slower speed of 60 degrees /s.

  8. Histological analysis of the structural composition of ankle ligaments.

    PubMed

    Rein, Susanne; Hagert, Elisabet; Schneiders, Wolfgang; Fieguth, Armin; Zwipp, Hans

    2015-02-01

    Various ankle ligaments have different structural composition. The aim of this study was to analyze the morphological structure of ankle ligaments to further understand their function in ankle stability. One hundred forty ligaments from 10 fresh-frozen cadaver ankle joints were dissected: the calcaneofibular, anterior, and posterior talofibular ligaments; the inferior extensor retinaculum, the talocalcaneal oblique ligament, the canalis tarsi ligament; the deltoid ligament; and the anterior tibiofibular ligament. Hematoxylin-eosin and Elastica van Gieson stains were used for determination of tissue morphology. Three different morphological compositions were identified: dense, mixed, and interlaced compositions. Densely packed ligaments, characterized by parallel bundles of collagen, were primarily seen in the lateral region, the canalis tarsi, and the anterior tibiofibular ligaments. Ligaments with mixed tight and loose parallel bundles of collagenous connective tissue were mainly found in the inferior extensor retinaculum and talocalcaneal oblique ligament. Densely packed and fiber-rich interlacing collagen was primarily seen in the areas of ligament insertion into bone of the deltoid ligament. Ligaments of the lateral region, the canalis tarsi, and the anterior tibiofibular ligaments have tightly packed, parallel collagen bundles and thus can resist high tensile forces. The mixed tight and loose, parallel oriented collagenous connective tissue of the inferior extensor retinaculum and the talocalcaneal oblique ligament support the dynamic positioning of the foot on the ground. The interlacing collagen bundles seen at the insertion of the deltoid ligament suggest that these insertion areas are susceptible to tension in a multitude of directions. The morphology and mechanical properties of ankle ligaments may provide an understanding of their response to the loads to which they are subjected. © The Author(s) 2015.

  9. Analysis of muscle fiber conduction velocity during finger flexion and extension after stroke.

    PubMed

    Conrad, Megan O; Qiu, Dan; Hoffmann, Gilles; Zhou, Ping; Kamper, Derek G

    2017-05-01

    Stroke survivors experience greater strength deficits during finger extension than finger flexion. Prior research indicates relatively little observed weakness is directly attributable to muscle atrophy. Changes in other muscle properties, however, may contribute to strength deficits. This study measured muscle fiber conduction velocity (MFCV) in a finger flexor and extensor muscle to infer changes in muscle fiber-type after stroke. Conduction velocity was measured using a linear EMG surface electrode array for both extensor digitorum communis and flexor digitorum superficialis in 12 stroke survivors with chronic hand hemiparesis and five control subjects. Measurements were made in both hands for all subjects. Stroke survivors had either severe (n = 5) or moderate (n = 7) hand impairment. Absolute MFCV was significantly lower in the paretic hand of severely impaired stroke patients compared to moderately impaired patients and healthy control subjects. The relative MFCV between the two hands, however, was quite similar for flexor muscles across all subjects and for extensor muscles for the neurologically intact control subjects. However, MFCV for finger extensors was smaller in the paretic as compared to the nonparetic hand for both groups of stroke survivors. One explanation for reduced MFCV may be a type-II to type-I muscle fiber, especially in extrinsic extensors. Clinically, therapists may use this information to develop therapeutic exercises targeting loss of type-II fiber in extensor muscles.

  10. Kinematic Mechanisms of How Power Training Improves Healthy Old Adults' Gait Velocity.

    PubMed

    Beijersbergen, Chantal M I; Granacher, Urs; Gäbler, Martijn; Devita, Paul; Hortobágyi, Tibor

    2017-01-01

    Slow gait predicts many adverse clinical outcomes in old adults, but the mechanisms of how power training can minimize the age-related loss of gait velocity is unclear. We examined the effects of 10 wk of lower extremity power training and detraining on healthy old adults' lower extremity muscle power and gait kinematics. As part of the Potsdam Gait Study, participants started with 10 wk of power training followed by 10 wk of detraining (n = 16), and participants started with a 10-wk control period followed by 10 wk of power training (n = 16). We measured gait kinematics (stride characteristic and joint kinematics) and isokinetic power of the ankle plantarflexor (20°·s, 40°·s, and 60°·s) and knee extensor and flexor (60°·s, 120°·s, and 180°·s) muscles at weeks 0, 10, and 20. Power training improved isokinetic muscle power by ~30% (P ≤ 0.001) and fast (5.9%, P < 0.05) but not habitual gait velocity. Ankle plantarflexor velocity measured during gait at fast pace decreased by 7.9% (P < 0.05). The changes isokinetic muscle power and joint kinematics did not correlate with increases in fast gait velocity. The mechanisms that increased fast gait velocity involved higher cadence (r = 0.86, P ≤ 0.001) rather than longer strides (r = 0.49, P = 0.066). Detraining did not reverse the training-induced increases in muscle power and fast gait velocity. Because increases in muscle power and modifications in joint kinematics did not correlate with increases in fast gait velocity, kinematic mechanisms seem to play a minor role in improving healthy old adults' fast gait velocity after power training.

  11. Trunk extensor muscle fatigue influences trunk muscle activities.

    PubMed

    Hoseinpoor, Tahere Seyed; Kahrizi, Sedighe; Mobini, Bahram

    2015-01-01

    Trunk muscles fatigue is one of the risk factors in workplaces and daily activities. Loads would be redistributed among active and passive tissues in a non-optimal manner in fatigue conditions. Therefore, a single tissue might be overloaded with minimal loads and as a result the risk of injury would increase. The goal of this paper was to assess the electromyographic response of trunk extensor and abdominal muscles after trunk extensor muscles fatigue induced by cyclic lifting task. This was an experimental study that twenty healthy women participated. For assessing automatic response of trunk extensor and abdominal muscles before and after the fatigue task, electromyographic activities of 6 muscles: thorasic erector spine (TES), lumbar erector spine (LES), lumbar multifidus (LMF), transverse abdominis/ internal oblique (TrA/IO), rectus abdominis (RA) and external oblique (EO) were recorded in standing position with no load and symmetric axial loads equal to 25% of their body weights. Statistical analysis showed that all the abdominal muscles activity decreased with axial loads after performing fatigue task but trunk extensor activity remained constant. Results of the current study indicated that muscle recruitment strategies changed with muscle fatigue and load bearing, therefore risks of tissue injury may increase in fatigue conditions.

  12. Function and structure of the deep cervical extensor muscles in patients with neck pain.

    PubMed

    Schomacher, Jochen; Falla, Deborah

    2013-10-01

    The deep cervical extensors are anatomically able to control segmental movements of the cervical spine in concert with the deep cervical flexors. Several investigations have confirmed changes in cervical flexor muscle control in patients with neck pain and as a result, effective evidence-based therapeutic exercises have been developed to address such dysfunctions. However, knowledge on how the deep extensor muscles behave in patients with neck pain disorders is scare. Structural changes such as higher concentration of fat within the muscle, variable cross-sectional area and higher proportions of type II fibres have been observed in the deep cervical extensors of patients with neck pain compared to healthy controls. These findings suggest that the behaviour of the deep extensors may be altered in patients with neck pain. Consistent with this hypothesis, a recent series of studies confirm that patients display reduced activation of the deep cervical extensors as well as less defined activation patterns. This article provides an overview of the various different structural and functional changes in the deep neck extensor muscles documented in patients with neck pain. Relevant recommendations for the management of muscle dysfunction in patients with neck pain are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Positive force feedback in human walking

    PubMed Central

    Grey, Michael J; Nielsen, Jens Bo; Mazzaro, Nazarena; Sinkjær, Thomas

    2007-01-01

    The objective of this study was to determine if load receptors contribute to the afferent-mediated enhancement of ankle extensor muscle activity during the late stance phase of the step cycle. Plantar flexion perturbations were presented in late stance while able-bodied human subjects walked on a treadmill that was declined by 4%, inclined by 4% or held level. The plantar flexion perturbation produced a transient, but marked, presumably spinally mediated decrease in soleus EMG that varied directly with the treadmill inclination. Similarly, the magnitude of the control step soleus EMG and Achilles' tendon force also varied directly with the treadmill inclination. In contrast, the ankle angular displacement and velocity were inversely related to the treadmill inclination. These results suggest that Golgi tendon organ feedback, via the group Ib pathway, is reduced when the muscle–tendon complex is unloaded by a rapid plantar flexion perturbation in late stance phase. The changes in the unload response with treadmill inclination suggest that the late stance phase soleus activity may be enhanced by force feedback. PMID:17331984

  14. Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running.

    PubMed

    Teng, Hsiang-Ling; Powers, Christopher M

    2016-07-01

    Diminished hip-muscle performance has been proposed to contribute to various knee injuries. To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Descriptive laboratory study. Musculoskeletal biomechanical laboratory. A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = -0.39, P = .01). All the correlations remained after adjusting for sex. Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee.

  15. Hip-Extensor Strength, Trunk Posture, and Use of the Knee-Extensor Muscles During Running

    PubMed Central

    Teng, Hsiang-Ling; Powers, Christopher M.

    2016-01-01

    Context:  Diminished hip-muscle performance has been proposed to contribute to various knee injuries. Objective:  To determine the association between hip-extensor muscle strength and sagittal-plane trunk posture and the relationships among hip-extensor muscle strength and hip- and knee-extensor work during running. Design:  Descriptive laboratory study. Setting:  Musculoskeletal biomechanical laboratory. Patients or Other Participants:  A total of 40 asymptomatic recreational runners, 20 men (age = 27.1 ± 7.0 years, height = 1.74 ± 0.69 m, mass = 71.1 ± 8.2 kg) and 20 women (age = 26.2 ± 5.8 years, height = 1.65 ± 0.74 m, mass = 60.6 ± 6.6 kg), participated. Main Outcome Measure(s):  Maximum isometric strength of the hip extensors was assessed using a dynamometer. Sagittal-plane trunk posture (calculated relative to the global vertical axis) and hip- and knee-extensor work (sum of energy absorption and generation) during the stance phase of running were quantified while participants ran over ground at a controlled speed of 3.4 m/s. We used Pearson product moment correlations to examine the relationships among hip-extensor strength, mean sagittal-plane trunk-flexion angle, hip-extensor work, and knee-extensor work. Results:  Hip-extensor strength was correlated positively with trunk-flexion angle (r = 0.55, P < .001) and hip-extensor work (r = 0.46, P = .003). It was correlated inversely with knee-extensor work (r = −0.39, P = .01). All the correlations remained after adjusting for sex. Conclusions:  Our findings suggest that runners with hip-extensor weakness used a more upright trunk posture. This strategy led to an overreliance on the knee extensors and may contribute to overuse running injuries at the knee. PMID:27513169

  16. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy

    PubMed Central

    Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok

    2016-01-01

    Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404

  17. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    PubMed

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  18. Age Differences in Dynamic Fatigability and Variability of Arm and Leg Muscles: Associations with Physical Function

    PubMed Central

    Senefeld, Jonathon; Yoon, Tejin; Hunter, Sandra K.

    2016-01-01

    Introduction It is not known whether the age-related increase in fatigability of fast dynamic contractions in lower limb muscles also occurs in upper limb muscles. We compared age-related fatigability and variability of maximal-effort repeated dynamic contractions in the knee extensor and elbow flexor muscles; and determined associations between fatigability, variability of velocity between contractions and functional performance. Methods 35 young (16 males; 21.0±2.6 years) and 32 old (18 males; 71.3±6.2 years) adults performed a dynamic fatiguing task involving 90 maximal-effort, fast, concentric, isotonic contractions (1 contraction/3 s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the elbow flexor and knee extensor muscles on separate days. Old adults also performed tests of balance and walking endurance. Results Old adults had greater fatigue-related reductions in peak velocity compared with young adults for both the elbow flexor and knee extensor muscles (P<0.05) with no sex differences (P>0.05). Old adults had greater variability of peak velocity during the knee extensor, but not during the elbow flexor fatiguing task. The age difference in fatigability was greater for the knee extensor muscles (35.9%) compared with elbow flexor muscles (9.7%, P<0.05). Less fatigability of the knee extensor muscles was associated with greater walking endurance (r=−0.34, P=0.048) and balance (r=−0.41, P=0.014) among old adults. Conclusions An age-related increase in fatigability of a dynamic fatiguing task was greater for the knee extensor compared with the elbow flexor muscles in males and females, and greater fatigability was associated with lesser walking endurance and balance. PMID:27989926

  19. Lower extremity control during turns initiated with and without hip external rotation.

    PubMed

    Zaferiou, Antonia M; Flashner, Henryk; Wilcox, Rand R; McNitt-Gray, Jill L

    2017-02-08

    The pirouette turn is often initiated in neutral and externally rotated hip positions by dancers. This provides an opportunity to investigate how dancers satisfy the same mechanical objectives at the whole-body level when using different leg kinematics. The purpose of this study was to compare lower extremity control strategies during the turn initiation phase of pirouettes performed with and without hip external rotation. Skilled dancers (n=5) performed pirouette turns with and without hip external rotation. Joint kinetics during turn initiation were determined for both legs using ground reaction forces (GRFs) and segment kinematics. Hip muscle activations were monitored using electromyography. Using probability-based statistical methods, variables were compared across turn conditions as a group and within-dancer. Despite differences in GRFs and impulse generation between turn conditions, at least 90% of each GRF was aligned with the respective leg plane. A majority of the net joint moments at the ankle, knee, and hip acted about an axis perpendicular to the leg plane. However, differences in shank alignment relative to the leg plane affected the distribution of the knee net joint moment when represented with respect to the shank versus the thigh. During the initiation of both turns, most participants used ankle plantar flexor moments, knee extensor moments, flexor and abductor moments at the push leg׳s hip, and extensor and abductor moments at the turn leg׳s hip. Representation of joint kinetics using multiple reference systems assisted in understanding control priorities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Adding muscle where you need it: non-uniform hypertrophy patterns in elite sprinters.

    PubMed

    Handsfield, G G; Knaus, K R; Fiorentino, N M; Meyer, C H; Hart, J M; Blemker, S S

    2017-10-01

    Sprint runners achieve much higher gait velocities and accelerations than average humans, due in part to large forces generated by their lower limb muscles. Various factors have been explored in the past to understand sprint biomechanics, but the distribution of muscle volumes in the lower limb has not been investigated in elite sprinters. In this study, we used non-Cartesian MRI to determine muscle sizes in vivo in a group of 15 NCAA Division I sprinters. Normalizing muscle sizes by body size, we compared sprinter muscles to non-sprinter muscles, calculated Z-scores to determine non-uniformly large muscles in sprinters, assessed bilateral symmetry, and assessed gender differences in sprinters' muscles. While limb musculature per height-mass was 22% greater in sprinters than in non-sprinters, individual muscles were not all uniformly larger. Hip- and knee-crossing muscles were significantly larger among sprinters (mean difference: 30%, range: 19-54%) but only one ankle-crossing muscle was significantly larger (tibialis posterior, 28%). Population-wide asymmetry was not significant in the sprint population but individual muscle asymmetries exceeded 15%. Gender differences in normalized muscle sizes were not significant. The results of this study suggest that non-uniform hypertrophy patterns, particularly large hip and knee flexors and extensors, are advantageous for fast sprinting. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Effect of the Fatigue Induced by a 110-km Ultramarathon on Tibial Impact Acceleration and Lower Leg Kinematics

    PubMed Central

    Giandolini, Marlene; Gimenez, Philippe; Temesi, John; Arnal, Pierrick J.; Martin, Vincent; Rupp, Thomas; Morin, Jean-Benoit; Samozino, Pierre; Millet, Guillaume Y.

    2016-01-01

    Ultramarathon runners are exposed to a high number of impact shocks and to severe neuromuscular fatigue. Runners may manage mechanical stress and muscle fatigue by changing their running kinematics. Our purposes were to study (i) the effects of a 110-km mountain ultramarathon (MUM) on tibial shock acceleration and lower limb kinematics, and (ii) whether kinematic changes are modulated according to the severity of neuromuscular fatigue. Twenty-three runners participated in the study. Pre- and post-MUM, neuromuscular tests were performed to assess knee extensor (KE) and plantar flexor (PF) central and peripheral fatigue, and a treadmill running bouts was completed during which step frequency, peak acceleration, median frequency and impact frequency content were measured from tibial acceleration, as well as foot-to-treadmill, tibia-to-treadmill, and ankle flexion angles at initial contact, and ankle range of motion using video analysis. Large neuromuscular fatigue, including peripheral changes and deficits in voluntary activation, was observed in KE and PF. MVC decrements of ~35% for KE and of ~28% for PF were noted. Among biomechanical variables, step frequency increased by ~2.7% and the ankle range of motion decreased by ~4.1% post-MUM. Runners adopting a non rearfoot strike pre-MUM adopted a less plantarflexed foot strike pattern post-MUM while those adopting a rearfoot strike pre-MUM tended to adopt a less dorsiflexed foot strike pattern post-MUM. Positive correlations were observed between percent changes in peripheral PF fatigue and the ankle range of motion. Peripheral PF fatigue was also significantly correlated to both percent changes in step frequency and the ankle angle at contact. This study suggests that in a fatigued state, ultratrail runners use compensatory/protective adjustments leading to a flatter foot landing and this is done in a fatigue dose-dependent manner. This strategy may aim at minimizing the overall load applied to the musculoskeletal system, including impact shock and muscle stretch. PMID:27031830

  2. The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.

    PubMed

    Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L

    2013-09-01

    Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Eighteen men performed the following tasks: unloaded walking, walking with a 32-kg load, fatigued walking with a 32-kg load, and fatigued walking. After the second walking task, muscle fatigue was elicited through a fatiguing protocol consisting of metered step-ups and heel raises with a 16-kg load. Each walking task was performed at 1.67 m x s(-1) for 5 min. Walking movement was tracked by a VICON motion capture system at 120 Hz. Ground reaction forces were collected by a tandem force instrumented treadmill (AMTI) at 2,400 Hz. Lower-extremity joint mechanics were calculated in Visual 3D. There was no interaction between load carriage and fatigue on lower-extremity joint mechanics (p > .05). Both load carriage and fatigue led to pronounced alterations of lower-extremity joint mechanics (p < .05). Load carriage resulted in increases of pelvis anterior tilt, hip and knee flexion at heel contact, and increases of hip, knee, and ankle joint moments and powers during weight acceptance. Muscle fatigue led to decreases of ankle dorsiflexion at heel contact, dorsiflexor moment, and joint power at weight acceptance. In addition, muscle fatigue increased demand for hip extensor moment and power at weight acceptance. Statistically significant changes in lower-extremity joint mechanics during loaded and fatigued walking may expose military personnel to increased risk for overuse injuries.

  3. Effects of training and weight support on muscle activation in Parkinson's disease.

    PubMed

    Rose, Martin H; Løkkegaard, Annemette; Sonne-Holm, Stig; Jensen, Bente R

    2013-12-01

    The aim of this study was to investigate the effect of high-intensity locomotor training on knee extensor and flexor muscle activation and adaptability to increased body-weight (BW) support during walking in patients with Parkinson's disease (PD). Thirteen male patients with idiopathic PD and eight healthy participants were included. The PD patients completed an 8-week training program on a lower-body, positive-pressure treadmill. Knee extensor and flexor muscles activation during steady treadmill walking (3 km/h) were measured before, at the mid-point, and after training. Increasing BW support decreased knee extensor muscle activation (normalization) and increased knee flexor muscle activation (abnormal) in PD patients when compared to healthy participants. Training improved flexor peak muscle activation adaptability to increased (BW) support during walking in PD patients. During walking without BW support shorter knee extensor muscle off-activation time and increased relative peak muscle activation was observed in PD patients and did not improve with 8 weeks of training. In conclusion, patients with PD walked with excessive activation of the knee extensor and flexor muscles when compared to healthy participants. Specialized locomotor training may facilitate adaptive processes related to motor control of walking in PD patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Handgrip strength deficits best explain limitations in performing bimanual activities after stroke.

    PubMed

    Basílio, Marluce Lopes; de Faria-Fortini, Iza; Polese, Janaine Cunha; Scianni, Aline A; Faria, Christina Dcm; Teixeira-Salmela, Luci Fuscaldi

    2016-04-01

    [Purpose] To evaluate the relationships between residual strength deficits (RSD) of the upper limb muscles and the performance in bimanual activities and to determine which muscular group would best explain the performance in bimanual activities of chronic stroke individuals. [Subjects and Methods] Strength measures of handgrip, wrist extensor, elbow flexor/extensor, and shoulder flexor muscles of 107 subjects were obtained and expressed as RSD. The performance in bimanual activities was assessed by the ABILHAND questionnaire. [Results] The correlations between the RSD of handgrip and wrist extensor muscles with the ABILHAND scores were negative and moderate, whereas those with the elbow flexor/extensor and shoulder flexor muscles were negative and low. Regression analysis showed that the RSD of handgrip and wrist extensor muscles explained 38% of the variance in the ABILHAND scores. Handgrip RSD alone explained 33% of the variance. [Conclusion] The RSD of the upper limb muscles were negatively associated with the performance in bimanual activities and the RSD of handgrip muscles were the most relevant variable. It is possible that stroke subjects would benefit from interventions aiming at improving handgrip strength, when the goal is to increase the performance in bimanual activities.

  5. The effects of trunk extensor and abdominal muscle fatigue on postural control and trunk proprioception in young, healthy individuals.

    PubMed

    Larson, Dennis J; Brown, Stephen H M

    2018-02-01

    The purpose of this study was to induce both trunk extensor and abdominal muscle fatigue, on separate occasions, and compare their effects on standing postural control and trunk proprioception, as well as look at the effects of a recovery period on these outcome measures. A total of 20 individuals participated, with 10 (5 males and 5 females) completing either a standing postural control or lumbar axial repositioning protocol. Participants completed their randomly assigned protocol on two occasions, separated by at least 4  days, with either their trunk extensor or abdominal muscles being fatigued on either day. Postural control centre of pressure variables and trunk proprioception errors were compared pre- and post-fatigue. Results showed that both trunk extensor and abdominal muscle fatigue significantly degraded standing postural control immediately post-fatigue, with recovery occurring within 2 min post-fatigue. In general, these degradative effects on postural control appeared to be greater when the trunk extensor muscles were fatigued compared to the abdominal muscles. No statistically significant changes in trunk proprioception were found after either fatigue protocol. The present findings demonstrate our body's ability to quickly adapt and reweight somatosensory information to maintain postural control and trunk proprioception, as well as illustrate the importance of considering the abdominal muscles, along with the trunk extensor muscles, when considering the impact of fatigue on trunk movement and postural control. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Feed artery role in blood flow control to rat hindlimb skeletal muscles.

    PubMed Central

    Williams, D A; Segal, S S

    1993-01-01

    1. Vasomotor tone and reactivity were investigated in feed arteries of the extensor digitorum longus and soleus muscles. Feed arteries are located external to the muscle and give rise to the microcirculation within each muscle. Resting diameter was smaller in feed arteries of the soleus muscle. 2. Feed arteries of both muscles dilated to similar peak values with sodium nitroprusside. 3. Micropressure measurements demonstrated resistance to blood flow in the feed arteries supplying both muscles. Feed arteries supplying soleus muscle demonstrated greater resistance to blood flow compared to feed arteries of extensor digitorum longus muscle. 4. Greater resting tone and larger pressure drop for feed arteries of soleus muscle suggest greater range of flow control compared to feed arteries of extensor digitorum longus muscle. 5. In both muscles, feed artery diameter increased with muscle contraction (functional dilatation) and in response to transient ischaemia (reactive dilatation). The magnitude of these responses varied between muscles. 6. Feed arteries are active sites of blood flow control in extensor digitorum longus and soleus muscles of the rat. These muscles differ in fibre type and recruitment properties. Differences in feed artery reactivity may contribute to differences in blood flow between these muscles observed at rest and during exercise. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8246199

  7. Relationship between leg extensor muscle strength and knee joint loading during gait before and after total knee arthroplasty.

    PubMed

    Vahtrik, Doris; Gapeyeva, Helena; Ereline, Jaan; Pääsuke, Mati

    2014-01-01

    The aim of the present study was to evaluate an isometric maximal voluntary contraction (MVC) force of the leg extensor muscles and its relationship with knee joint loading during gait prior and after total knee arthroplasty (TKA). Custom-made dynamometer was used to assess an isometric MVC force of the leg extensor muscles and 3-D motion analysis system was used to evaluate the knee joint loading during gait in 13 female patients (aged 49-68 years) with knee osteoarthritis. Patients were evaluated one day before, and three and six months following TKA in the operated and non-operated leg. Six months after TKA, MVC force of the leg extensor muscles for the operated leg did not differ significantly as compared to the preoperative level, whereas it remained significantly lower for the non-operated leg and controls. The knee flexion moment and the knee joint power during mid stance of gait was improved six months after TKA, remaining significantly lowered compared with controls. Negative moderate correlation between leg extensor muscles strength and knee joint loading for the operated leg during mid stance was noted three months after TKA. The correlation analysis indicates that due to weak leg extensor muscles, an excessive load is applied to knee joint during mid stance of gait in patients, whereas in healthy subjects stronger knee-surrounding muscles provide stronger knee joint loading during gait. III (correlational study). Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Transfer of extensor carpi radialis brevis as an extensor to extensor motor transfer (EEMT) in ulnar nerve palsy.

    PubMed

    Jamali, Allah Rakha; Bhatti, Anisuddin; Mehboob, Ghulam

    2006-07-01

    To evaluate functional outcome and correction of deformity with extensor carpiradialis brevis motor transfer to replace the intrinsic muscles as an extensor to extensor motor transfer (EEMT). This was a prospective observational study with one group pretest posttest design conducted from 1996 to 2004. Convenience sampling technique was used and the sample size was twenty one. The independent variable was transfer of extensor carpiradialis brevis to replace the intrinsic muscles. The dependent variable was functional outcome and the correction of deformity. The extraneous variables were age, sex interval between injury and transfer as well as local factors related to wound and grafts used. The average follow up was 22.5 months. The mean preoperative unassisted extensor lag was 56.79 +/- 10.39 which improved to 9.6% +/- 5.4 (correction of 83%) at six months after surgery. With open hand assessment 76.19% reported good to excellent results, while 79.89% achieved good to excellent results with closed hand assessment. The mechanism of closing was good to excellent in 89.42% cases, however only 71.42% patients considered their hands good to excellent. Significant problems were seen with use of tendoachilles as a graft. Extensor carpiradialis brevis transfer to replace the intrinsic muscles as an extensor to extensor motor transfer can achieve good functional outcome as well as correction of deformity despite shortcomings in physical rehabilitation.

  9. Analysis of elbow muscle strength parameters in Brazilian jiu-jitsu practitioners.

    PubMed

    Follmer, Bruno; Dellagrana, Rodolfo André; de Lima, Luis Antonio Pereira; Herzog, Walter; Diefenthaeler, Fernando

    2017-12-01

    Upper-body dynamic and isometric maximum strength are essential components for success in Brazilian jiu-jitsu (BJJ). This study was aimed at analysing strength parameters in the elbow flexor and extensor muscles of BJJ practitioners. Participants (n = 28) performed maximum isometric contractions of elbow flexors and extensors to determine peak torque (PT), rate of force development (RFD), and the torque-angle (T-A) relationship at elbow angles of 45°, 60°, 75°, 90°, 105°, and 120°. Additionally, concentric and eccentric PTs were measured at 1.04 rad·s -1 . Student t-test and ANOVA were performed using α = 0.05. Elbow flexors were stronger isometrically (P < 0.001, ES = 1.23) but weaker concentrically (P < 0.05, ES = 0.54) than extensor muscles, possibly because of the extensive grip disputes and pushing of opponents in BJJ. The T-A relationship had an inverted "U"-shape. Torque differences across elbow angles were moderate (ES = 0.62) for the extensor and large (ES = 0.92) for the flexor muscles. Isometric torque was greatest for elbow angles of 105° and 75° and smallest for 45° and 120° for extensor and flexor muscles, respectively. Elbow flexors had a greater RFD than extensors, regardless of elbow angle. The present study provides comprehensive results for elbow muscle strength in BJJ practitioners.

  10. Elbow flexor and extensor muscle weakness in lateral epicondylalgia.

    PubMed

    Coombes, Brooke K; Bisset, Leanne; Vicenzino, Bill

    2012-05-01

    To evaluate whether deficits of elbow flexor and extensor muscle strength exist in lateral epicondylalgia (LE) in comparison with a healthy control population. Cross-sectional study. 150 participants with unilateral LE were compared with 54 healthy control participants. Maximal isometric elbow flexion and extension strength were measured bilaterally using a purpose-built standing frame such that gripping was avoided. The authors found significant side differences in elbow extensor (-6.54 N, 95% CI -11.43 to -1.65, p=0.008, standardised mean difference (SMD) -0.45) and flexor muscle strength (-11.26 N, 95% CI -19.59 to -2.94, p=0.009, SMD -0.46) between LE and control groups. Within the LE group, only elbow extensor muscle strength deficits between sides was significant (affected-unaffected: -2.94 N, 95% CI -5.44 to -0.44). Small significant deficits of elbow extensor and flexor muscle strength exist in the affected arm of unilateral LE in comparison with healthy controls. Notably, comparing elbow strength between the affected and unaffected sides in unilateral epicondylalgia is likely to underestimate these deficits. Trial Registration Australian New Zealand Clinical Trials Register ACTRN12609000051246.

  11. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: results of a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Foot musculoskeletal deficits are seldom addressed by preventive medicine despite their high prevalence in patients with diabetic polyneuropathy. AIM: To investigate the effects of strengthening, stretching, and functional training on foot rollover process during gait. Methods A two-arm parallel-group randomized controlled trial with a blinded assessor was designed. Fifty-five patients diagnosed with diabetic polyneuropathy, 45 to 65 years-old were recruited. Exercises for foot-ankle and gait training were administered twice a week, for 12 weeks, to 26 patients assigned to the intervention group, while 29 patients assigned to control group received recommended standard medical care: pharmacological treatment for diabetes and foot care instructions. Both groups were assessed after 12 weeks, and the intervention group at follow-up (24 weeks). Primary outcomes involved foot rollover changes during gait, including peak pressure (PP). Secondary outcomes involved time-to-peak pressure (TPP) and pressure–time integral (PTI) in six foot-areas, mean center of pressure (COP) velocity, ankle kinematics and kinetics in the sagittal plane, intrinsic and extrinsic muscle function, and functional tests of foot and ankle. Results Even though the intervention group primary outcome (PP) showed a not statistically significant change under the six foot areas, intention-to-treat comparisons yielded softening of heel strike (delayed heel TPP, p=.03), better eccentric control of forefoot contact (decrease in ankle extensor moment, p<.01; increase in function of ankle dorsiflexion, p<.05), earlier lateral forefoot contact with respect to medial forefoot (TPP anticipation, p<.01), and increased participation of hallux (increased PP and PTI, p=.03) and toes (increase in PTI, medium effect size). A slower COP mean velocity (p=.05), and an increase in overall foot and ankle function (p<.05) were also observed. In most cases, the values returned to baseline after the follow-up (p<.05). Conclusions Intervention discreetly changed foot rollover towards a more physiological process, supported by improved plantar pressure distribution and better functional condition of the foot ankle complex. Continuous monitoring of the foot status and patient education are necessary, and can contribute to preserving the integrity of foot muscles and joints impaired by polyneuropathy. Trial registration ClinicalTrials.gov Identifier: NCT01207284, registered in 20th September 2010. PMID:24767584

  12. Effects of strengthening, stretching and functional training on foot function in patients with diabetic neuropathy: results of a randomized controlled trial.

    PubMed

    Sartor, Cristina D; Hasue, Renata H; Cacciari, Lícia P; Butugan, Marco K; Watari, Ricky; Pássaro, Anice C; Giacomozzi, Claudia; Sacco, Isabel C N

    2014-04-27

    Foot musculoskeletal deficits are seldom addressed by preventive medicine despite their high prevalence in patients with diabetic polyneuropathy. To investigate the effects of strengthening, stretching, and functional training on foot rollover process during gait. A two-arm parallel-group randomized controlled trial with a blinded assessor was designed. Fifty-five patients diagnosed with diabetic polyneuropathy, 45 to 65 years-old were recruited. Exercises for foot-ankle and gait training were administered twice a week, for 12 weeks, to 26 patients assigned to the intervention group, while 29 patients assigned to control group received recommended standard medical care: pharmacological treatment for diabetes and foot care instructions. Both groups were assessed after 12 weeks, and the intervention group at follow-up (24 weeks). Primary outcomes involved foot rollover changes during gait, including peak pressure (PP). Secondary outcomes involved time-to-peak pressure (TPP) and pressure-time integral (PTI) in six foot-areas, mean center of pressure (COP) velocity, ankle kinematics and kinetics in the sagittal plane, intrinsic and extrinsic muscle function, and functional tests of foot and ankle. Even though the intervention group primary outcome (PP) showed a not statistically significant change under the six foot areas, intention-to-treat comparisons yielded softening of heel strike (delayed heel TPP, p=.03), better eccentric control of forefoot contact (decrease in ankle extensor moment, p<.01; increase in function of ankle dorsiflexion, p<.05), earlier lateral forefoot contact with respect to medial forefoot (TPP anticipation, p<.01), and increased participation of hallux (increased PP and PTI, p=.03) and toes (increase in PTI, medium effect size). A slower COP mean velocity (p=.05), and an increase in overall foot and ankle function (p<.05) were also observed. In most cases, the values returned to baseline after the follow-up (p<.05). Intervention discreetly changed foot rollover towards a more physiological process, supported by improved plantar pressure distribution and better functional condition of the foot ankle complex. Continuous monitoring of the foot status and patient education are necessary, and can contribute to preserving the integrity of foot muscles and joints impaired by polyneuropathy. ClinicalTrials.gov Identifier: NCT01207284, registered in 20th September 2010.

  13. Muscle torque and its relation to technique, tactics, sports level and age group in judo contestants.

    PubMed

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-03-29

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman's r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821).

  14. Muscle Torque and its Relation to Technique, Tactics, Sports Level and Age Group in Judo Contestants

    PubMed Central

    Lech, Grzegorz; Chwała, Wiesław; Ambroży, Tadeusz; Sterkowicz, Stanisław

    2015-01-01

    The aim of this study was to perform a comparative analysis of maximal muscle torques at individual stages of development of athletes and to determine the relationship between muscle torques, fighting methods and the level of sports performance. The activity of 25 judo contestants during judo combats and the effectiveness of actions were evaluated. Maximum muscle torques in flexors/extensors of the body trunk, shoulder, elbow, hip and knee joints were measured. The level of significance was set at p≤0.05; for multiple comparisons the Mann-Whitney U test, p≤0.016, was used. Intergroup differences in relative torques in five muscle groups studied (elbow extensors, shoulder flexors, knee flexors, knee extensors, hip flexors) were not significant. In cadets, relative maximum muscle torques in hip extensors correlated with the activity index (Spearman’s r=0.756). In juniors, maximum relative torques in elbow flexors and knee flexors correlated with the activity index (r=0.73 and r=0.76, respectively). The effectiveness of actions correlated with relative maximum torque in elbow extensors (r=0.67). In seniors, the relative maximum muscle torque in shoulder flexors correlated with the activity index during the second part of the combat (r=0.821). PMID:25964820

  15. Muscular hypertrophy and atrophy in normal rats provoked by the administration of normal and denervated muscle extracts.

    PubMed

    Agüera, Eduardo; Castilla, Salvador; Luque, Evelio; Jimena, Ignacio; Leiva-Cepas, Fernando; Ruz-Caracuel, Ignacio; Peña, José

    2016-12-01

    This study was conducted to determine the effects of extracts obtained from both normal and denervated muscles on different muscle types. Wistar rats were used and were divided into a control group and four experimental groups. Each experimental group was treated intraperitoneally during 10 consecutive days with a different extract. These extracts were obtained from normal soleus muscle, denervated soleus, normal extensor digitorum longus, and denervated extensor digitorum longus. Following treatment, the soleus and extensor digitorum longus muscles were obtained for study under optic and transmission electron microscope; morphometric parameters and myogenic responses were also analyzed. The results demonstrated that the treatment with normal soleus muscle and denervated soleus muscle extracts provoked hypertrophy and increased myogenic activity. In contrast, treatment with extracts from the normal and denervated EDL had a different effect depending on the muscle analyzed. In the soleus muscle it provoked hypertrophy of type I fibers and increased myogenic activity, while in the extensor digitorum longus atrophy of the type II fibers was observed without changes in myogenic activity. This suggests that the muscular responses of atrophy and hypertrophy may depend on different factors related to the muscle type which could be related to innervation.

  16. Is the Sørensen test valid to assess muscle fatigue of the trunk extensor muscles?

    PubMed

    Demoulin, Christophe; Boyer, Mathieu; Duchateau, Jacques; Grosdent, Stéphanie; Jidovtseff, Boris; Crielaard, Jean-Michel; Vanderthommen, Marc

    2016-01-01

    Very few studies have quantified the degree of fatigue characterized by the decline in the maximal voluntary contraction (MVC) force of the trunk extensors induced by the widely used Sørensen test. Measure the degree of fatigue of the trunk extensor muscles induced by the Sørensen test. Eighty young healthy subjects were randomly divided into a control group (CG) and an experimental group (EG), each including 50% of the two genders. The EG performed an isometric MVC of the trunk extensors (pre-fatigue test) followed by the Sørensen test, the latter being immediately followed by another MVC (post-fatigue test). The CG performed only the pre- and post-fatigue tests without any exertion in between. The comparison of the pre- and post-fatigue tests revealed a significant (P< 0.05) decrease in MVC force normalized by body mass (-13%) in the EG, whereas a small increase occurred in the CG (+2.7%, P= 0.001). This study shows that the Sørensen test performed until failure in a young healthy population results in a reduced ability of the trunk extensor muscles to generate maximal force, and indicates that this test is valid for the assessment of fatigue in trunk extensor muscles.

  17. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  18. Lower limb strength in professional soccer players: profile, asymmetry, and training age.

    PubMed

    Fousekis, Konstantinos; Tsepis, Elias; Vagenas, George

    2010-01-01

    Kicking and cutting skills in soccer are clearly unilateral, require asymmetrical motor patterns and lead to the development of asymmetrical adaptations in the musculoskeletal function of the lower limbs. Assuming that these adaptations constitute a chronicity-dependent process, this study examined the effects of professional training age (PTA) on the composite strength profile of the knee and ankle joint in soccer players. One hundred soccer players (n=100) with short (5-7 years), intermediate (8-10 years) and long (>11 years) PTA were tested bilaterally for isokinetic concentric and eccentric strength of the knee and ankle muscles. Knee flexion-extension was tested concentrically at 60°, 180° and 300 °/sec and eccentrically at 60° and 180 °/sec. Ankle dorsal and plantar flexions were tested at 60 °/sec for both the concentric and eccentric mode of action. Bilaterally averaged muscle strength [(R+L)/2] increased significantly from short training age to intermediate and stabilized afterwards. These strength adaptations were mainly observed at the concentric function of knee extensors at 60°/sec (p = 0. 023), knee flexors at 60°/sec (p = 0.042) and 180°/sec (p = 0.036), and ankle plantar flexors at 60o/sec (p = 0.044). A linear trend of increase in isokinetic strength with PTA level was observed for the eccentric strength of knee flexors at 60°/sec (p = 0.02) and 180°/sec (p = 0.03). Directional (R/L) asymmetries decreased with PTA, with this being mainly expressed in the concentric function of knee flexors at 180°/sec (p = 0.04) and at 300 °/sec (p = 0.03). These findings confirm the hypothesis of asymmetry in the strength adaptations that take place at the knee and ankle joint of soccer players mainly along with short and intermediate PTA. Players with a longer PTA seem to adopt a more balanced use of their lower extremities to cope with previously developed musculoskeletal asymmetries and possibly reduce injury risk. This has certain implications regarding proper training and injury prevention in relation to professional experience in soccer. Key pointsMuscle strength increased from the low (5-7 years) to the intermediate professional training age (8-10 years) and stabilized thereafter.Soccer practicing and competition at the professional level induces critical strength adaptations (asymmetries) regarding the function of the knee and ankle musculature.Soccer players with long professional training age showed a tendency for lower isokinetic strength asymmetries than players with intermediate and short professional training age.

  19. Comparison of joint kinetics during free weight and flywheel resistance exercise.

    PubMed

    Chiu, Loren Z F; Salem, George J

    2006-08-01

    The most common modality for resistance exercise is free weight resistance. Alternative methods of providing external resistance have been investigated, in particular for use in microgravity environments such as space flight. One alternative modality is flywheel inertial resistance, which generates resistance as a function of the mass, distribution of mass, and angular acceleration of the flywheel. The purpose of this investigation was to characterize net joint kinetics of multijoint exercises performed with a flywheel inertial resistance device in comparison to free weights. Eleven trained men and women performed the front squat, lunge, and push press on separate days with free weight or flywheel resistance, while instrumented for biomechanical analysis. Front squats performed with flywheel resistance required greater contribution of the hip and ankle, and less contribution of the knee, compared to free weight. Push presses performed with flywheel resistance had similar impulse requirements at the knee compared to free weight, but greater impulse requirement at the hip and ankle. As used in this investigation, flywheel inertial resistance increases the demand on the hip extensors and ankle plantarflexors and decreases the mechanical demand on the knee extensors for lower extremity exercises such as the front squat and lunge. Exercises involving dynamic lower and upper extremity actions, such as the push press, may benefit from flywheel inertial resistance, due to the increased mechanical demand on the knee extensors.

  20. Activation amplitude and temporal synchrony among back extensor and abdominal muscles during a controlled transfer task: comparison of men and women.

    PubMed

    Hubley-Kozey, Cheryl L; Butler, Heather L; Kozey, John W

    2012-08-01

    Muscle synergies are important for spinal stability, but few studies examine temporal responses of spinal muscles to dynamic perturbations. This study examined activation amplitudes and temporal synergies among compartments of the back extensor and among abdominal wall muscles in response to dynamic bidirectional moments of force. We further examined whether responses were different between men and women. 19 women and 18 men performed a controlled transfer task. Surface electromyograms from bilateral sites over 6 back extensor compartments and 6 abdominal wall muscle sites were analyzed using principal component analysis. Key features were extracted from the measured electromyographic waveforms capturing amplitude and temporal variations among muscle sites. Three features explained 97% of the variance. Scores for each feature were computed for each measured waveform and analysis of variance found significant (p<.05) muscle main effects and a sex by muscle interaction. For the back extensors, post hoc analysis revealed that upper and more medial sites were recruited to higher amplitudes, medial sites responded to flexion moments, and the more lateral sites responded to lateral flexion moments. Women had more differences among muscle sites than men for the lateral flexion moment feature. For the abdominal wall muscles the oblique muscles responded with synergies related to fiber orientation, with women having higher amplitudes and more responsiveness to the lateral flexion moment than men. Synergies between the abdominal and back extensor sites as the moment demands change are discussed. These findings illustrate differential activation among erector spinae compartments and abdominal wall muscle sites supporting a highly organized pattern of response to bidirectional external moments with asynchronies more apparent in women. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis.

    PubMed

    Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A

    2017-01-01

    Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats.

    PubMed

    Kongsgaard, M; Aagaard, P; Roikjaer, S; Olsen, D; Jensen, M; Langberg, H; Magnusson, S P

    2006-08-01

    Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared to standard horizontal eccentric squats. This study aimed to compare electromyography activity, patellar tendon strain and joint angle kinematics during standard and decline eccentric squats. Thirteen subjects performed unilateral eccentric squats on flat-and a 25 degrees decline surface. During the squats, electromyography activity was obtained in eight representative muscles. Also, ankle, knee and hip joint goniometry was obtained. Additionally, patellar tendon strain was measured in vivo using ultrasonography as subjects maintained a unilateral isometric 90 degrees knee angle squat position on either flat or 25 degrees decline surface. Patellar tendon strain was significantly greater (P<0.05) during the squat position on the decline surface compared to the standard surface. The stop angles of the ankle and hip joints were significantly smaller during the decline compared to the standard squats (P<0.001, P<0.05). Normalized mean electromyography amplitudes of the knee extensor muscles were significantly greater during the decline compared to the standard squats (P<0.05). Hamstring and calf muscle mean electromyography did not differ, respectively, between standard and decline squats. The use of a 25 degrees decline board increases the load and the strain of the patellar tendon during unilateral eccentric squats. This finding likely explains previous reports of superior clinical efficacy of decline eccentric squats in the rehabilitative management of patellar tendinopathy.

  3. [Pattern of paralysis and reconstructive operations after traumatic brachial plexus lesions].

    PubMed

    Rühmann, O; Schmolke, S; Carls, J; Wirth, C J

    2002-12-01

    The aim of this study was to evaluate persistent patterns of paralysis after traumatic brachial plexus lesions. As a result, consecutive reconstructive operations according to our differential therapy concept are presented. Between 04/1994 and 12/2000 in 104 patients with brachial plexus palsy, the grade of muscle power of the affected upper extremities was evaluated prospectively. The neuromuscular patterns of defect showed, in most cases, insufficient muscle power grades of 0-2 for the deltoid muscle (90%), supraspinatus muscle (82%), infraspinatus muscle (93%), elbow flexors (67% to 77%), hand and finger extensors (69% to 71%), and the abductor and extensors of the thumb (67% to 70%). In corresponding frequency, the following operations were performed between 04/1994 and 06/2002: shoulder arthrodesis (n 26), trapezius transfer (n 80), rotation osteotomy of humerus (n 10), triceps to biceps transposition (n 11), transposition of forearm flexors or extensors/Steindler operation (n 12), latissimus transfer (n 7), pectoralis transfer (n 1), teres major transfer (n 1), transposition of forearm flexors to the tendons of extensor digitorum (n 19) and of the extensor pollicis longus (n 9), and wrist arthrodesis (n 5). On malfunction of muscles following brachial plexus lesions, taking into account the individual neuromuscular defect, passive joint function, and bony deformities, different procedures such as muscle transposition, arthrodesis, and corrective osteotomy can be performed to improve function of the upper extremity.

  4. Compensatory strategies during walking in response to excessive muscle co-contraction at the ankle joint.

    PubMed

    Wang, Ruoli; Gutierrez-Farewik, Elena M

    2014-03-01

    Excessive co-contraction causes inefficient or abnormal movement in several neuromuscular pathologies. How synergistic muscles spanning the ankle, knee and hip adapt to co-contraction of ankle muscles is not well understood. This study aimed to identify the compensation strategies required to retain normal walking with excessive antagonistic ankle muscle co-contraction. Muscle-actuated simulations of normal walking were performed to quantify compensatory mechanisms of ankle and knee muscles during stance in the presence of normal, medium and high levels of co-contraction of antagonistic pairs gastrocnemius+tibialis anterior and soleus+tibialis anterior. The study showed that if co-contraction increases, the synergistic ankle muscles can compensate; with gastrocmemius+tibialis anterior co-contraction, the soleus will increase its contribution to ankle plantarflexion acceleration. At the knee, however, almost all muscles spanning the knee and hip are involved in compensation. We also found that ankle and knee muscles alone can provide sufficient compensation at the ankle joint, but hip muscles must be involved to generate sufficient knee moment. Our findings imply that subjects with a rather high level of dorsiflexor+plantarflexor co-contraction can still perform normal walking. This also suggests that capacity of other lower limb muscles to compensate is important to retain normal walking in co-contracted persons. The compensatory mechanisms can be useful in clinical interpretation of motion analyses, when secondary muscle co-contraction or other deficits may present simultaneously in subjects with motion disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The Effect of Lateral Ankle Ligament Repair in Muscle Reaction Time in Patients with Mechanical Ankle Instability.

    PubMed

    Li, H-Y; Zheng, J-J; Zhang, J; Hua, Y-H; Chen, S-Y

    2015-11-01

    Studies have shown that functional ankle instability can result in prolonged muscle reaction time. However, the deficit in muscle reaction time in patients with mechanical ankle instability (MAI) and the effect of lateral ankle ligament repair on muscle reaction time are unclear. The purpose of this study was to identify the deficit in muscle reaction time, and to evaluate the role of lateral ligament repair in improving muscle reaction time in MAI patients. Sixteen MAI patients diagnosed with lateral ankle ligament tears by ultrasonography and magnetic resonance imaging underwent arthroscopic debridement and open lateral ankle ligament repair with a modified Broström procedure. One day before the operation, reaction times of the tibialis anterior and peroneus longus muscles were recorded following sudden inversion perturbation while walking on a custom walkway, and anterior drawer test (ADT) and American Orthopaedic Foot and Ankle Society (AOFAS) scale score were evaluated. Six months postoperatively, muscle reaction time, ADT and AOFAS scale score were reevaluated, and muscle reaction times in 15 healthy controls were also recorded. Preoperatively, the affected ankles in the MAI group had significantly delayed tibialis anterior and peroneus longus muscles reaction times compared with controls. Six months after the operation, median AOFAS scale scores were significantly greater than preoperatively, and ADT was negative in the MAI group. However, the affected ankles in the MAI group showed no difference in muscle reaction time compared with preoperative values. MAI patients had prolonged muscle reaction time. The modified Broström procedure produced satisfactory clinical outcomes in MAI patients, but did not shorten reaction times of the tibialis anterior and peroneus longus muscles. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Neuromuscular Impairments Contributing to Persistently Poor and Declining Lower-Extremity Mobility Among Older Adults: New Findings Informing Geriatric Rehabilitation.

    PubMed

    Ward, Rachel E; Beauchamp, Marla K; Latham, Nancy K; Leveille, Suzanne G; Percac-Lima, Sanja; Kurlinski, Laura; Ni, Pengsheng; Goldstein, Richard; Jette, Alan M; Bean, Jonathan F

    2016-08-01

    To identify neuromuscular impairments most predictive of unfavorable mobility outcomes in late life. Longitudinal cohort study. Research clinic. Community-dwelling primary care patients aged ≥65 years (N=391) with self-reported mobility modifications, randomly selected from a research registry. Not applicable. Categories of decline in and persistently poor mobility across baseline, 1 and 2 years of follow-up in the Lower-Extremity Function scales of the Late-Life Function and Disability Instrument. The following categories of impairment were assessed as potential predictors of mobility change: strength (leg strength), speed of movement (leg velocity, reaction time, rapid leg coordination), range of motion (ROM) (knee flexion/knee extension/ankle ROM), asymmetry (asymmetry of leg strength and knee flexion/extension ROM measures), and trunk stability (trunk extensor endurance, kyphosis). The largest effect sizes were found for baseline weaker leg strength (odds ratio [95% confidence interval]: 3.45 [1.72-6.95]), trunk extensor endurance (2.98 [1.56-5.70]), and slower leg velocity (2.35 [1.21-4.58]) predicting a greater likelihood of persistently poor function over 2 years. Baseline weaker leg strength, trunk extensor endurance, and restricted knee flexion motion also predicted a greater likelihood of decline in function (1.72 [1.10-2.70], 1.83 [1.13-2.95], and 2.03 [1.24-3.35], respectively). Older adults exhibiting poor mobility may be prime candidates for rehabilitation focused on improving these impairments. These findings lay the groundwork for developing interventions aimed at optimizing rehabilitative care and disability prevention, and highlight the importance of both well-recognized (leg strength) and novel impairments (leg velocity, trunk extensor muscle endurance). Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Effects of dexamethasone treatment on insulin-stimulated rates of glycolysis and glycogen synthesis in isolated incubated skeletal muscles of the rat.

    PubMed Central

    Leighton, B; Challiss, R A; Lozeman, F J; Newsholme, E A

    1987-01-01

    1. Rats were treated with dexamethasone for 4 days before measurement of the rates of lactate formation [which is an index of hexose transport; see Challiss, Lozeman, Leighton & Newsholme (1986) Biochem. J. 233, 377-381] and glycogen synthesis in response to various concentrations of insulin in isolated incubated soleus and extensor digitorum longus muscle preparations. 2. The concentration of insulin required to stimulate these processes half-maximally in soleus and extensor digitorum longus muscles isolated from control rats was about 100 muunits/ml. 3. Dexamethasone increases the concentration of insulin required to stimulate glycolysis half-maximally in soleus and extensor digitorum longus preparations to 250 and 300 muunits/ml respectively. The respective insulin concentrations necessary to stimulate glycogen synthesis half-maximally were about 430 and 370 muunits/ml for soleus and extensor digitorum longus muscle preparations isolated from steroid-treated rats. 5. Dexamethasone treatment did not change the amount of insulin bound to soleus muscle. PMID:3318810

  8. The Effects of a Motorized Aquatic Treadmill Exercise Program on Muscle Strength, Cardiorespiratory Fitness, and clinical function in Subacute Stroke Patients -- a Randomized Controlled Pilot Trial.

    PubMed

    Lee, So Young; Han, Eun Young; Kim, Bo Ryun; Im, Sang Hee

    2018-03-12

    The aim of this study was to assess the effects of a motorized aquatic treadmill exercise program improve the isometric strength of the knee muscles, cardiorespiratory fitness, arterial stiffness, motor function, balance, functional outcomes and quality of life in subacute stroke patients. Thirty-two patients were randomly assigned to 4-week training sessions of either aquatic therapy(n=19) or land-based aerobic exercise(n=18). Isometric strength was measured using an isokinetic dynamometer. Cardiopulmonary fitness was evaluated using a symptom-limited exercise tolerance test and by measuring brachial ankle pulse wave velocity. Moreover, motor function(Fugl-Meyer Assessment[FMA] and FMA-lower limb[FMA-LL]), balance(Berg Balance Scale[BBS]), Activities of daily living(Korean version of the Modified Barthel Index [K-MBI]), and Quality of life(EQ-5D index) were examined. There were no inter-group differences between demographic and clinical characteristics at baseline(p>0.05). The results shows significant improvements in peak oxygen consumption (p=0.02), maximal isometric strength of the bilateral knee extensors (p<0.01) and paretic knee flexors (p=0.01), FMA (p=0.03), FMA-LL (p=0.01), BBS (p=0.01), K-MBI (p<0.01), and EQ-5D index (p=0.04) after treatment in the aquatic therapy group. However, only significant improvements in maximal isometric strength in the knee extensors (p=0.03) and flexors (p=0.04) were found within the aquatic therapy group and control group. Water-based aerobic exercise performed on a motorized aquatic treadmill had beneficial effect on isometric muscle strength in the lower limb.

  9. Electromiography comparison of distal and proximal lower limb muscle activity patterns during external perturbation in subjects with and without functional ankle instability.

    PubMed

    Kazemi, Khadijeh; Arab, Amir Massoud; Abdollahi, Iraj; López-López, Daniel; Calvo-Lobo, César

    2017-10-01

    Ankle sprain is one of the most common injuries among athletes and the general population. Most ankle injuries commonly affect the lateral ligament complex. Changes in postural sway and hip abductor muscle strength may be generated after inversion ankle sprain. Therefore, the consequences of ankle injury may affect proximal structures of the lower limb. The aim is to describe and compare the activity patterns of distal and proximal lower limb muscles following external perturbation in individuals with and without functional ankle instability. The sample consisted of 16 women with functional ankle instability and 18 healthy women were recruited to participate in this research. The external perturbation via body jacket using surface electromyography, amplitude and onset of muscle activity of gluteus maximums, gluteus medius, tibialis anterior, and peroneus longus was recorded and analyzed during external perturbation. There were differences between the onset of muscles activity due to perturbation direction in the two groups (healthy and functional ankle instability). In the healthy group, there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during front perturbation with eyes open and closed. In the functional ankle instability group; there were statistically significant differences in amplitude of proximal muscle activity with distal muscle activity during perturbation of the front and back with eyes open. There were statistically significant differences in the onset of muscle activity and amplitude of muscle activity, with-in and between groups (P<0.05). Therefore, in the presence of functional ankle instability, activation patterns of the lower limb proximal muscles may be altered. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy.

    PubMed

    Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Ramírez Barragán, Ana; Lerma Lara, Sergio

    2017-11-01

    Tissue related ankle hyper-resistance has been reported to contribute to equinus gait in children with spastic cerebral palsy. Hence, ankle plantarflexor stretching programs have been developed in order to restore passive ankle dorsiflexion. Despite high quality evidence on the limited effects of stretching on passive joint mobility, further muscle-tendon adaptations have been reported which may impact gait performance. As such, children with spastic cerebral palsy subject to long-term manual static stretching achieved dorsiflexion gains through the reduction of muscle and fascicle strain whilst preserving tendon strain, and prolonged use of ankle-foot orthoses achieved similar dorsiflexion gains through increased tendon strain whilst preserving muscle and fascicle strain. The latter concurred with normalization of early stance plantarflexor moment yet reductions in push-off plantarflexor moment given the increase in tendon compliance. Therefore, similar limited gains in passive ankle joint mobility in response to stretching may be achieved either by preserving/restoring optimal muscle-tendon function, or at the expense of muscle-tendon function and thus contributing gait impairments. The largest increase in ankle passive joint mobility in children with SCP has been obtained through prolonged plantarflexor stretching through ankle casting combined with botulinum neurotoxin type A. However, to our knowledge, there are no published studies on muscle-tendinous adaptations to ankle casting combined with botulinum toxin type A and its effect on ankle joint gait kinetics. Therefore, we hypothesized that ankle casting elicits muscle-tendon adaptations which concur with altered ankle joint kinetics during the stance phase of gait in children with SCP. More information is needed about the relationships between muscle structure and function, and the effect of specific interventions designed to alter muscle properties and associated functional outcomes in children with spastic cerebral palsy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effect of muscle tone on ankle kinetics during gait with ankle-foot orthoses in persons with stroke.

    PubMed

    Mizuno, Shiho; Sonoda, Shigeru; Takeda, Kotaro; Maeshima, Shinichiro

    2017-12-01

    Background Individuals exhibiting hemiplegia and increased ankle plantar flexors muscle tone following stroke are frequently prescribed an ankle-foot orthosis (AFO) to regain functional ambulation. The effect of muscle tone on ankle kinetics when walking with an AFO remains unknown. Objectives To investigate the effect of plantar flexion (PF) muscle tone on ankle plantar flexion torque during walking with an ankle-foot orthosis Methods The study included 80 participants with first-ever stroke whose manual muscle testing (MMT) of ankle DF 0-4, and 10 healthy subjects. Participants were instructed to walk on a treadmill, at a comfortable speed, wearing an instrumented AFO. Minimum PF torque during the last half of swing was extracted as an outcome measure. Resistive PF torques during passive slow and fast stretches were measured with a custom-built device, with torques at 10° DF (T10°-slow and T10°-fast) extracted as defining parameters for stiffness and muscle tone, respectively. Results Correlations between both T10°-slow and T10°-fast variables with minimum PF torque were fair among ankle DF MMT 0-3 groups (r = 0.71 -0.74, p < 0.01), with no correlation observed among the MMT 4 group and healthy subjects. Conclusions Effects of muscle tone on ankle kinetics during swing phase, with an AFO, were observed in persons with severe ankle DF paresis. Quantitative evaluation of ankle kinetics during gait with an AFO in addition to evaluation of muscle tone at rest is contributory to objective assessment of a muscle tone, not subjective rating scale at rest, or visual inspection of walking.

  12. A Randomized Comparison of the Biomechanical Effect of Two Commercially Available Rocker Bottom Shoes to a Conventional Athletic Shoe During Walking in Healthy Individuals.

    PubMed

    Talaty, Mukul; Patel, Sona; Esquenazi, Alberto

    2016-01-01

    Rocker bottom shoes have recently gained considerable popularity, likely in part because of the many purported benefits, including reducing joint loading and toning muscles. Scientific inquiry about these benefits has not kept pace with the increased usage of this shoe type. A fundamental premise of rocker bottom shoes is that they transform hard, flat, level surfaces into more uneven ones. Published studies have described a variety of such shoes-all having a somewhat rounded bottom and a cut heel region or a cut forefoot region, or both (double rocker). Despite the fundamentally similar shoe geometries, the reported effects of rocker bottom shoes on gait biomechanics have varied considerably. Ten healthy subjects agreed to participate in the present study and were given appropriately sized Masai Barefoot Technology (St. Louis, MO), Skechers(™) (Manhattan Beach, CA), and New Balance (Boston, MA) conventional walking shoes. After a 12-day accommodation period, the subjects walked wearing each shoe while 3-dimensional motion and force data were collected in the gait laboratory. The key findings included (1) increased trunk flexion, decreased ankle plantarflexion range, and reduced plantarflexion moment in the early stance; (2) increased ankle dorsiflexion and knee flexor moment in the midstance; (3) decreased peak ankle plantarflexion in the late stance; and (4) decreased ankle plantarflexion and decreased hip flexor and knee extensor moments in the pre-swing and into swing phase. The walking speed was unconstrained and was maintained across all shoe types. A biomechanical explanation is suggested for the observed changes. Suggestions for cautions are provided for using rocker bottom shoes in patients with neuromuscular insufficiency. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Validity and test–retest reliability of a novel simple back extensor muscle strength test

    PubMed Central

    Harding, Amy T; Weeks, Benjamin Kurt; Horan, Sean A; Little, Andrew; Watson, Steven L; Beck, Belinda Ruth

    2017-01-01

    Objectives: To develop and determine convergent validity and reliability of a simple and inexpensive clinical test to quantify back extensor muscle strength. Methods: Two testing sessions were conducted, 7 days apart. Each session involved three trials of standing maximal isometric back extensor muscle strength using both the novel test and isokinetic dynamometry. Lumbar spine bone mineral density was examined by dual-energy X-ray absorptiometry. Validation was examined with Pearson correlations (r). Test–retest reliability was examined with intraclass correlation coefficients and limits of agreement. Pearson correlations and intraclass correlation coefficients are presented with corresponding 95% confidence intervals. Linear regression was used to examine the ability of peak back extensor muscle strength to predict indices of lumbar spine bone mineral density and strength. Results: A total of 52 healthy adults (26 men, 26 women) aged 46.4 ± 20.4 years were recruited from the community. A strong positive relationship was observed between peak back extensor strength from hand-held and isokinetic dynamometry (r = 0.824, p < 0.001). For the novel back extensor strength test, short- and long-term reliability was excellent (intraclass correlation coefficient = 0.983 (95% confidence interval, 0.971–0.990), p < 0.001 and intraclass correlation coefficient = 0.901 (95% confidence interval, 0.833–0.943), p < 0.001, respectively). Limits of agreement for short-term repeated back extensor strength measures with the novel back extensor strength protocol were −6.63 to 7.70 kg, with a mean bias of +0.71 kg. Back extensor strength predicted 11% of variance in lumbar spine bone mineral density (p < 0.05) and 9% of lumbar spine index of bone structural strength (p < 0.05). Conclusion: Our novel hand-held dynamometer method to determine back extensor muscle strength is quick, relatively inexpensive, and reliable; demonstrates initial convergent validity in a healthy population; and is associated with bone mass at a clinically important site. PMID:28255442

  14. The influence of Task-Related Training combined with Transcutaneous Electrical Nerve Stimulation on paretic upper limb muscle activation in patients with chronic stroke.

    PubMed

    Jung, Kyoungsim; Jung, Jinhwa; In, Taesung; Kim, Taehoon; Cho, Hwi-Young

    2017-01-01

    This study investigated the efficacy of Task-Related Training (TRT) Combined with Transcutaneous Electrical Nerve Stimulation (TENS) on the improvement of upper limb muscle activation in chronic stroke survivors with mild or moderate paresis. A single-blind, randomized clinical trial was conducted with 46stroke survivors with chronic paresis. They were randomly allocated two groups: the TRT+TENS group (n = 23) and the TRT+ placebo TENS (TRT+PLBO) group (n = 23). The TRT+TENS group received 30 minutes of high-frequency TENS on wrist and elbow extensors, while the TRT+PLBO group received placebo TENS that was not real ES. Both groups did 30 minutes of TRT after TENS application. Intervention was given five days a week for four weeks. The primary outcomes of upper limb muscle activation were measured by integrated EMG (IEMG), a digital manual muscle tester for muscle strength, active range of motion (AROM) and Fugl-Meyer Assessment of the upper extremity (FMA-UE). The measurements were performed before and after the 4 weeks intervention period. Both groups demonstrated significant improvements of outcomes in IEMG, AROM, muscle strength and FMA-UE during intervention period. When compared with the TRT+PLBO group, the TRT+TENS group showed significantly greater improvement in muscle activation (wrist extensors, P = 0.045; elbow extensors, P = 0.004), muscle strength (wrist extensors, P = 0.044; elbow extensors, P = 0.012), AROM (wrist extension, P = 0.042; elbow extensors, P = 0.040) and FMA-UE (total, P < 0.001; shoulder/elbow/forearm, P = 0.001; wrist, P = 0.002; coordination, P = 0.008) at the end of intervention. Our findings indicate that TRT Combined with TENS can improve paretic muscle activity in upper limb paresis, highlighting the benefits of somatosensory stimulation from TENS.

  15. Changes in crossed spinal reflexes after peripheral nerve injury and repair.

    PubMed

    Valero-Cabré, Antoni; Navarro, Xavier

    2002-04-01

    We investigated the changes induced in crossed extensor reflex responses after peripheral nerve injury and repair in the rat. Adults rats were submitted to non repaired sciatic nerve crush (CRH, n = 9), section repaired by either aligned epineurial suture (CS, n = 11) or silicone tube (SIL4, n = 13), and 8 mm resection repaired by tubulization (SIL8, n = 12). To assess reinnervation, the sciatic nerve was stimulated proximal to the injury site, and the evoked compound muscle action potential (M and H waves) from tibialis anterior and plantar muscles and nerve action potential (CNAP) from the tibial nerve and the 4th digital nerve were recorded at monthly intervals for 3 mo postoperation. Nociceptive reinnervation to the hindpaw was also assessed by plantar algesimetry. Crossed extensor reflexes were evoked by stimulation of the tibial nerve at the ankle and recorded from the contralateral tibialis anterior muscle. Reinnervation of the hindpaw increased progressively with time during the 3 mo after lesion. The degree of muscle and sensory target reinnervation was dependent on the severity of the injury and the nerve gap created. The crossed extensor reflex consisted of three bursts of activity (C1, C2, and C3) of gradually longer latency, lower amplitude, and higher threshold in control rats. During follow-up after sciatic nerve injury, all animals in the operated groups showed recovery of components C1 and C2 and of the reflex H wave, whereas component C3 was detected in a significantly lower proportion of animals in groups with tube repair. The maximal amplitude of components C1 and C2 recovered to values higher than preoperative values, reaching final levels between 150 and 245% at the end of the follow-up in groups CRH, CS, and SIL4. When reflex amplitude was normalized by the CNAP amplitude of the regenerated tibial nerve, components C1 (300-400%) and C2 (150-350%) showed highly increased responses, while C3 was similar to baseline levels. In conclusion, reflexes mediated by myelinated sensory afferents showed, after nerve injuries, a higher degree of facilitation than those mediated by unmyelinated fibers. These changes tended to decline toward baseline values with progressive reinnervation but still remained significant 3 mo after injury.

  16. Impaired control of weight bearing ankle inversion in subjects with chronic ankle instability.

    PubMed

    Terrier, R; Rose-Dulcina, K; Toschi, B; Forestier, N

    2014-04-01

    Previous studies have proposed that evertor muscle weakness represents an important factor affecting chronic ankle instability. For research purposes, ankle evertor strength is assessed by means of isokinetic evaluations. However, this methodology is constraining for daily clinical use. The present study proposes to assess ankle evertor muscle weakness using a new procedure, one that is easily accessible for rehabilitation specialists. To do so, we compared weight bearing ankle inversion control between patients suffering from chronic ankle instability and healthy subjects. 12 healthy subjects and 11 patients suffering from chronic ankle instability conducted repetitions of one leg weight bearing ankle inversion on a specific ankle destabilization device equipped with a gyroscope. Ankle inversion control was performed by means of an eccentric recruitment of evertor muscles. Instructions were to perform, as slow as possible, the ankle inversion while resisting against full body weight applied on the tested ankle. Data clearly showed higher angular inversion velocity peaks in patients suffering from chronic ankle instability. This illustrates an impaired control of weight bearing ankle inversion and, by extension, an eccentric weakness of evertor muscles. The present study supports the hypothesis of a link between the decrease of ankle joint stability and evertor muscle weakness. Moreover, it appears that the new parameter is of use in a clinical setting. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  18. Reduced servo-control of fatigued human finger extensor and flexor muscles.

    PubMed Central

    Hagbarth, K E; Bongiovanni, L G; Nordin, M

    1995-01-01

    1. In healthy human subjects holding the index finger semi-extended at the metacarpophalangeal joint against a moderate load, electromyographic (EMG) activity was recorded from the finger extensor and flexor muscles during different stages of muscle fatigue. The aim was to study the effect of muscle fatigue on the level of background EMG activity and on the reflex responses to torque pulses causing sudden extensor unloadings. Paired comparisons were made between the averaged EMG and finger deflection responses under two conditions: (1) at a stage of fatigue (following a sustained co-contraction) when great effort was required to maintain the finger position, and (2) under non-fatigue conditions while the subject tried to produce similar background EMG levels to those in the corresponding fatigue trials. 2. Both the unloading reflex in the extensor and the concurrent stretch reflex in the flexor were significantly less pronounced and had a longer latency in the fatigue trials. Consequently, the finger deflections had a larger amplitude and were arrested later in the fatigue trials. 3. It is concluded that--with avoidance of 'automatic gain compensation', i.e. reflex modifications attributable to differences in background EMG levels--the servo-like action of the unloading and stretch reflexes is reduced in fatigued finger extensor and flexor muscles. PMID:7562624

  19. Anatomical association between wrist extensor musculature and topographical pain sensitivity maps of the elbow area.

    PubMed

    Prados-Frutos, Juan Carlos; Ruiz-Ruiz, Beatriz; De-la-Llave-Rincón, Ana Isabel; Arendt-Nielsen, Lars; Madeleine, Pascal; Fernández-de-Las-Peñas, César

    2012-06-01

    High-density topographical sensitivity maps have been developed to visualize nonuniformity deep tissue pain sensitivity in, for example, lateral epicondylitis (LE). The aim of this cadaveric study was to determine the anatomical association between the topographical sensitivity maps over the elbow area and wrist extensor musculature. A topographical pressure sensitivity map consisting of 12 points forming a 3 × 4 matrix: 4 points in the superior part, 4 points in the middle, and 4 points in the lower part around the lateral epicondyle was marker on a 50-year embalmed cadaver. Color marker pins were inserted into each point. Pins were removed during the process of dissection, but the small holes created by their removal assured accurate relocation. Progressive dissection revealed that points 1 to 4 (superior line) were placed over the musculotendinous junction and belly of the extensor carpi radialis brevis (ECRB) muscle, points 6 to 8 (middle line) were placed over the musculotendinous junction and belly of the extensor digitorum communis muscle, and points 9 to 12 (inferior line) were located over the musculotendinous junction and belly of the extensor carpi ulnaris muscle. It was also observed that the superficial branch of the radial nerve runs between the belly of the ECRB and extensor digitorum communis muscles. This study confirmed that anatomical location previously assumed supporting the important wrist extensor muscles, particularly the ECRB, in patients with LE as depicted by pressure pain sensitivity maps. This study also suggests a potential role of the superficial branch of the radial nerve in LE. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  20. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans].

    PubMed

    Khorievin, V I; Horkovenko, A V; Vereshchaka, I V

    2013-01-01

    Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.

  1. Eccentric activation and muscle damage: biomechanical and physiological considerations during downhill running.

    PubMed Central

    Eston, R G; Mickleborough, J; Baltzopoulos, V

    1995-01-01

    An eccentric muscle activation is the controlled lengthening of the muscle under tension. Functionally, most leg muscles work eccentrically for some part of a normal gait cycle, to support the weight of the body against gravity and to absorb shock. During downhill running the role of eccentric work of the 'anti-gravity' muscles--knee extensors, muscles of the anterior and posterior tibial compartments and hip extensors--is accentuated. The purpose of this paper is to review the relationship between eccentric muscle activation and muscle damage, particularly as it relates to running, and specifically, downhill running. PMID:7551767

  2. Energetics and biomechanics of locomotion by red kangaroos (Macropus rufus).

    PubMed

    Kram, R; Dawson, T J

    1998-05-01

    As red kangaroos hop faster over level ground, their rate of oxygen consumption (indicating metabolic energy consumption) remains nearly the same. This phenomenon has been attributed to exceptional elastic energy storage and recovery via long compliant tendons in the legs. Alternatively, red kangaroos may have exceptionally efficient muscles. To estimate efficiency, we measured the metabolic cost of uphill hopping, where muscle fibers must perform mechanical work against gravity. We found that uphill hopping was much more expensive than level hopping. The maximal rate of oxygen consumption measured (3 ml O2 kg-1 s-1) exceeds all but a few vertebrate species. However, efficiency values were normal, approximately 30%. At faster level hopping speeds the effective mechanical advantage of the extensor muscles of the ankle joint remained the same. Thus, kangaroos generate the same muscular force at all speeds but do so more rapidly at faster hopping speeds. This contradicts a recent hypothesis for what sets the cost of locomotion. The cost of transport (J kg-1 m-1) decreases at faster hopping speeds, yet red kangaroos prefer to use relatively slow speeds that avoid high levels of tendon stress.

  3. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study.

    PubMed

    Del-Ama, Antonio J; Gil-Agudo, Angel; Pons, José L; Moreno, Juan C

    2014-01-01

    Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance.

  4. Hybrid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study

    PubMed Central

    del-Ama, Antonio J.; Gil-Agudo, Ángel; Pons, José L.; Moreno, Juan C.

    2014-01-01

    Locomotor training has proved to provide beneficial effect in terms of mobility in incomplete paraplegic patients. Neuroprosthetic technology can contribute to increase the efficacy of a training paradigm in the promotion of a locomotor pattern. Robotic exoskeletons can be used to manage the unavoidable loss of performance of artificially driven muscles. Hybrid exoskeletons blend complementary robotic and neuro-prosthetic technologies. The aim of this pilot study was to determine the effects of hybrid gait training in three case studies with persons with incomplete spinal cord injury (iSCI) in terms of locomotion performance during assisted gait, patient-robot adaptations, impact on ambulation and assessment of lower limb muscle strength and spasticity. Participants with iSCI received interventions with a hybrid bilateral exoskeleton for 4 days. Assessment of gait function revealed that patients improved the 6 min and 10 m walking tests after the intervention, and further improvements were observed 1 week after the intervention. Muscle examination revealed improvements in knee and hip sagittal muscle balance scores and decreased score in ankle extensor balance. It is concluded that improvements in biomechanical function of the knee joint after the tested overground hybrid gait trainer are coherent with improvements in gait performance. PMID:24860478

  5. Congenital hypertrophy of multiple intrinsic muscles of the foot.

    PubMed

    Shiraishi, Tomohiro; Park, Susam; Niu, Atushi; Hasegawa, Hiromi

    2014-12-01

    Congenital hypertrophy of a single intrinsic muscle of the foot is rare, and as far as we know, only six cases have been reported. We describe a case of congenital anomaly that showed hypertrophy of multiple intrinsic muscles of the foot; the affected muscles were all the intrinsic muscles of the foot except the extensor digitorum brevis or extensor hallucis. Other tissues such as adipose tissue, nervous tissue, or osseous tissue showed no abnormalities. To reduce the volume of the foot we removed parts of the enlarged muscles.

  6. Activation of plantar flexor muscles is constrained by multiple muscle synergies rather than joint torques

    PubMed Central

    Suzuki, Takahito; Kinugasa, Ryuta; Fukashiro, Senshi

    2017-01-01

    Behavioral evidence has suggested that a small number of muscle synergies may be responsible for activating a variety of muscles. Nevertheless, such dimensionality reduction may also be explained using the perspective of alternative hypotheses, such as predictions based on linear combinations of joint torques multiplied by corresponding coefficients. To compare the explanatory capacity of these hypotheses for describing muscle activation, we enrolled 12 male volunteers who performed isometric plantar flexor contractions at 10–100% of maximum effort. During each plantar flexor contraction, the knee extensor muscles were isometrically contracted at 0%, 50%, or 100% of maximum effort. Electromyographic activity was recorded from the vastus lateralis, medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus muscles and quantified using the average rectified value (ARV). At lower plantar flexion torque, regression analysis identified a clear linear relationship between the MG and soleus ARVs and between the MG and LG ARVs, suggesting the presence of muscle synergy (r2 > 0.65). The contraction of the knee extensor muscles induced a significant change in the slope of this relationship for both pairs of muscles (MG × soleus, P = 0.002; MG × LG, P = 0.006). Similarly, the slope of the linear relationship between the plantar flexion torque and the ARV of the MG or soleus changed significantly with knee extensor contraction (P = 0.031 and P = 0.041, respectively). These results suggest that muscle synergies characterized by non-mechanical constraints are selectively recruited according to whether contraction of the knee extensor muscles is performed simultaneously, which is relatively consistent with the muscle synergy hypothesis. PMID:29107958

  7. Activity patterns of extrinsic finger flexors and extensors during movements of instructed and non-instructed fingers.

    PubMed

    van Beek, Nathalie; Stegeman, Dick F; van den Noort, Josien C; H E J Veeger, DirkJan; Maas, Huub

    2018-02-01

    The fingers of the human hand cannot be controlled fully independently. This phenomenon may have a neurological as well as a mechanical basis. Despite previous studies, the neuromechanics of finger movements are not fully understood. The aims of this study were (1) to assess the activation and coactivation patterns of finger specific flexor and extensor muscle regions during instructed single finger flexion and (2) to determine the relationship between enslaved finger movements and respective finger muscle activation. In 9 healthy subjects (age 22-29), muscle activation was assessed during single finger flexion using a 90 surface electromyography electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). We found (1) no significant differences in muscle activation timing between fingers, (2) considerable muscle activity in flexor and extensor regions associated with the non-instructed fingers and (3) no correlation between the muscle activations and corresponding movement of non-instructed fingers. A clear disparity was found between the movement pattern of the non-instructed fingers and the activity pattern of the corresponding muscle regions. This suggests that mechanical factors, such as intertendinous and myofascial connections, may also affect finger movement independency and need to be taken into consideration when studying finger movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris).

    PubMed

    Williams, S B; Wilson, A M; Rhodes, L; Andrews, J; Payne, R C

    2008-10-01

    We provide quantitative anatomical data on the muscle-tendon architecture and geometry of the pelvic limb of an elite sprint athlete, the racing greyhound. Specifically, muscle masses, muscle lengths, fascicle lengths, pennation angles and muscle moment arms were measured. Maximum isometric force and power of muscles, the maximum muscle torque at joints and tendon stress and strain were estimated. We compare data with that published for a generalized breed of canid, and other cursorial mammals such as the horse and hare. The pelvic limb of the racing greyhound had a relatively large volume of hip extensor muscle, which is likely to be required for power production. Per unit body mass, some pelvic limb muscles were relatively larger than those in less specialized canines, and many hip extensor muscles had longer fascicle lengths. It was estimated that substantial extensor moments could be created about the tarsus and hip of the greyhound allowing high power output and potential for rapid acceleration. The racing greyhound hence possesses substantial specializations for enhanced sprint performance.

  9. Persistence of long term isokinetic strength deficits in subjects with lateral ankle sprain as measured with a protocol including maximal preloading.

    PubMed

    Perron, Marc; Moffet, Hélène; Nadeau, Sylvie; Hébert, Luc J; Belzile, Sylvain

    2014-12-01

    The assessment of muscle function is a cornerstone in the management of subjects who have sustained a lateral ankle sprain. The ankle range of motion being relatively small, the use of preloading allows to measure maximal strength throughout the whole amplitude and therefore to better characterize ankle muscles weaknesses. This study aimed to assess muscle strength of the injured and uninjured ankles in subjects with a lateral ankle sprain, to document the timeline of strength recovery, and to determine the influence of sprain grade on strength loss. Maximal torque of the periarticular muscles of the ankle in a concentric mode using a protocol with maximal preloading was tested in 32 male soldiers at 8 weeks and 6 months post-injury. The evertor muscles of the injured ankles were weaker than the uninjured ones at 8 weeks and 6 months post-injury (P<0.0001, effect size=0.31-0.42). Muscle weaknesses also persisted in the plantarflexors of the injured ankles at 8 weeks (P=0.0014, effect size=0.52-0.58) while at 6 months, only the subjects with a grade II sprain displayed such weaknesses (P<0.0001, effect size 0.27-0.31). The strength of the invertor and dorsiflexor muscles did not differ between sides. The use of an isokinetic protocol with preloading demonstrates significant but small strength deficits in the evertor and plantarflexor muscles. These impairments may contribute to the high incidence of recurrence of lateral ankle sprain in very active individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. The effect of an intensive exercise programme on leg function in chronic stroke patients: a pilot study with one-year follow-up.

    PubMed

    Stock, Roland; Mork, Paul Jarle

    2009-09-01

    To investigate the effect of two weeks of intensive exercise on leg function in chronic stroke patients and to evaluate the feasibility of an intensive exercise programme in a group setting. Pilot study with one-group pre-test post-test design with two pre-tests and one-year follow-up. Inpatient rehabilitation hospital. Twelve hemiparetic patients completed the intervention. Ten patients participated at one-year follow-up. Six hours of daily intensive exercise for two weeks with focus on weight-shifting towards the affected side and increased use of the affected extremity during functional activities. An insole with nubs in the shoe of the non-paretic limb was used to reinforce weight-shift toward the affected side. Timed Up and Go, Four Square Step Test, gait velocity, gait symmetry and muscle strength in knee and ankle muscles. Maximal gait velocity (P = 0.002) and performance time (seconds) on Timed Up and Go (mean, SD; 12.2, 3.8 vs. 9.4, 3.2) and Four Square Step Test improved from pre- to post-test (P = 0.005). Improvements remained significant at follow-up. Preferred gait velocity and gait symmetry remained unchanged. Knee extensor (P<50.009) and flexor (P<50.001) strength increased bilaterally from pre- to post-test but only knee flexor strength remained significant at follow-up. Ankle dorsi flexor (P = 0.02) and plantar flexor (P<0.001) strength increased on paretic side only (not tested at follow-up). Intensive exercise for lower extremity is feasible in a group setting and was effective in improving ambulatory function, maximal gait velocity and muscle strength in chronic stroke patients. Most improvements persisted at the one-year follow-up.

  11. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.

    PubMed

    Prilutsky, B I; Gregor, R J

    2001-07-01

    There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of the preferred transition speed. The movements of subjects were videotaped, and surface electromyographic activity was recorded from seven major leg muscles. Resultant moments at the leg joints during the swing phase were calculated. During the swing phase of locomotion at preferred running speeds (115, 130, 145%), swing-related activation of the ankle, knee and hip flexors and peaks of flexion moments were typically lower (P<0.05) during running than during walking. At preferred walking speeds (55, 70, 85%), support-related activation of the ankle and knee extensors was typically lower during stance of walking than during stance of running (P<0.05). These results support the hypothesis that the preferred walk-run transition might be triggered by the increased sense of effort due to the exaggerated swing-related activation of the tibialis anterior, rectus femoris and hamstrings; this increased activation is necessary to meet the higher joint moment demands to move the swing leg during fast walking. The preferred run-walk transition might be similarly triggered by the sense of effort due to the higher support-related activation of the soleus, gastrocnemius and vastii that must generate higher forces during slow running than during walking at the same speed.

  12. Preparatory co-activation of the ankle muscles may prevent ankle inversion injuries

    PubMed Central

    DeMers, Matthew S.; Hicks, Jennifer L.; Delp, Scott L.

    2018-01-01

    Ankle inversion sprains are the most frequent acute musculoskeletal injuries occurring in physical activity. Interventions that retrain muscle coordination have helped rehabilitate injured ankles, but it is unclear which muscle coordination strategies, if any, can prevent ankle sprains. The purpose of this study was to determine whether coordinated activity of the ankle muscles could prevent excessive ankle inversion during a simulated landing on a 30-degree incline. We used a set of musculoskeletal simulations to evaluate the efficacy of two strategies for coordinating the ankle evertor and invertor muscles during simulated landing scenarios: planned co-activation and stretch reflex activation with physiologic latency (60-millisecond delay). A full-body musculoskeletal model of landing was used to generate simulations of a subject dropping onto an inclined surface with each coordination condition. Within each condition, the intensity of evertor and invertor co-activity or stretch reflexes were varied systematically. The simulations revealed that strong preparatory co-activation of the ankle evertors and invertors prior to ground contact prevented ankle inversion from exceeding injury thresholds by rapidly generating eversion moments after initial contact. Conversely, stretch reflexes were too slow to generate eversion moments before the simulations reached the threshold for inversion injury. These results suggest that training interventions to protect the ankle should focus on stiffening the ankle with muscle co-activation prior to landing. The musculoskeletal models, controllers, software, and simulation results are freely available online at http://simtk.org/home/ankle-sprains, enabling others to reproduce the results and explore new injury scenarios and interventions. PMID:28057351

  13. Peroneus quartus and functional ankle instability.

    PubMed

    Lotito, G; Pruvost, J; Collado, H; Coudreuse, J-M; Bensoussan, L; Curvale, G; Viton, J-M; Delarque, A

    2011-07-01

    Physical and rehabilitation medicine physicians commonly see patients with chronic functional ankle instability. The main anatomical structures involved in ankle stability are the peroneus (fibularis) brevis and peroneus longus muscles. Several anatomical muscle-tendon variations have been described in the literature as being sometimes responsible for this instability, the peroneus quartus muscle being the most frequent. The objective of this clinical study is to discuss the implication of the bilateral peroneus quartus muscle in functional ankle instability. This 26-year-old patient was seen in PM&R consultation for recurrent episodes of lateral ankle sprains. The clinical examination found a moderate hyperlaxity on the right side in bilateral ankle varus. We also noted a bilateral weakness of the peroneus muscles. Additional imaging examinations showed a supernumerary bilateral peroneus quartus. The electroneuromyogram of the peroneus muscles was normal. In the literature the incidence of a supernumerary peroneus quartus muscle varies from 0 to 21.7%. Most times this muscle is asymptomatic and is only fortuitously discovered. However some cases of chronic ankle pain or instability have been reported in the literature. It seems relevant to discuss, around the clinical case of this patient, the impact of this muscle on ankle instability especially when faced with lingering weakness of the peroneus brevis and longus muscles in spite of eccentric strength training and in the absence of any neurological impairment. One of the hypotheses, previously described in the literature, would be the overcrowding effect resulting in a true conflict by reducing the available space for the peroneal muscles in the peroneal sheath. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  14. Experiment K-7-33: Functional Neuromuscular Adaptation to Spaceflight

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; Bodine-Fowler, S.; Hodgson, J. A.; Roy, R. R.; Kozlovskaya, I. B.

    1994-01-01

    The following data were collected from two Rhesus monkeys (782 and 2483) that were flown aboard a 14-day biosatellite mission (COSMOS 2044). The proposed study was designed to determine the effects of the absence of weight support on flexor and extensor muscles of the hindlimb. These effects were assessed morphologically and biochemically from muscle biopsies taken from a slow extensor, the soleus; a fast extensor, the medial gastrocnemius; and a fast flexor, the tibialis anterior. A second objective of this study was to determine the relative importance of activity (as determined by intramuscular electromyography, and force (as determined by joint torque) on the adaptation of muscle.

  15. Effects of repeated ankle stretching on calf muscle-tendon and ankle biomechanical properties in stroke survivors

    PubMed Central

    Gao, Fan; Ren, Yupeng; Roth, Elliot J.; Harvey, Richard; Zhang, Li-Qun

    2011-01-01

    Background The objective of this study was to investigate changes in active and passive biomechanical properties of the calf muscle-tendon unit induced by controlled ankle stretching in stroke survivors. Methods Ten stroke survivors with ankle spasticity/contracture and ten healthy control subjects received intervention of 60-min ankle stretching. Joint biomechanical properties including resistance torque, stiffness and index of hysteresis were evaluated pre- and post-intervention. Achilles tendon length was measured using ultrasonography. The force output of the triceps surae muscles was characterized via the torque-angle relationship, by stimulating the calf muscles at a controlled intensity across different ankle positions. Findings Compared to healthy controls, the ankle position corresponding to the peak torque of the stroke survivors was shifted towards plantar flexion (P<0.001). Stroke survivors showed significantly higher resistance torques and joint stiffness (P<0.05), and these higher resistances were reduced significantly after the stretching intervention, especially in dorsiflexion (P = 0.013). Stretching significantly improved the force output of the impaired calf muscles in stroke survivors under matched stimulations (P<0.05). Ankle range of motion was also increased by stretching (P<0.001). Interpretation At the joint level, repeated stretching loosened the ankle joint with increased passive joint range of motion and decreased joint stiffness. At the muscle-tendon level, repeated stretching improved calf muscle force output, which might be associated with decreased muscle fascicle stiffness, increased fascicle length and shortening of the Achilles tendon. The study provided evidence of improvement in muscle tendon properties through stretching intervention. PMID:21211873

  16. Humeral external rotation handling by using the Bobath concept approach affects trunk extensor muscles electromyography in children with cerebral palsy.

    PubMed

    Grazziotin Dos Santos, C; Pagnussat, Aline S; Simon, A S; Py, Rodrigo; Pinho, Alexandre Severo do; Wagner, Mário B

    2014-10-20

    This study aimed to investigate the electromyographic activity of cervical and trunk extensors muscles in children with cerebral palsy during two handlings according to the Bobath concept. A crossover trial involving 40 spastic diplegic children was conducted. Electromyography (EMG) was used to measure muscular activity at sitting position (SP), during shoulder internal rotation (IR) and shoulder external rotation (ER) handlings, which were performed using the elbow joint as key point of control. Muscle recordings were performed at the fourth cervical (C4) and at the tenth thoracic (T10) vertebral levels. The Gross Motor Function Classification System (GMFCS) was used to assess whether muscle activity would vary according to different levels of severity. Humeral ER handling induced an increase on EMG signal of trunk extensor muscles at the C4 (P=0.007) and T10 (P<0.001) vertebral levels. No significant effects were observed between SP and humeral IR handling at C4 level; However at T10 region, humeral IR handling induced an increase of EMG signal (P=0.019). Humeral ER resulted in an increase of EMG signal at both levels, suggesting increase of extensor muscle activation. Furthermore, the humeral ER handling caused different responses on EMG signal at T10 vertebra level, according to the GMFCS classification (P=0.017). In summary, an increase of EMG signal was observed during ER handling in both evaluated levels, suggesting an increase of muscle activation. These results indicate that humeral ER handling can be used for diplegic CP children rehabilitation to facilitate cervical and trunk extensor muscles activity in a GMFCS level-dependent manner. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Measurement of fatigue in knee flexor and extensor muscles.

    PubMed

    Kawabata, Y; Senda, M; Oka, T; Yagata, Y; Takahara, Y; Nagashima, H; Inoue, H

    2000-04-01

    In order to examine fatigue of the knee flexor and extensor muscles and to investigate the characteristics of muscular fatigue in different sports, a Cybex machine was used to measure muscle fatigue and recovery during isokinetic knee flexion and extension. Eighteen baseball players, 12 soccer players and 13 marathon runners were studied. Each subject was tested in the sitting position and made to perform 50 consecutive right knee bends and stretches at maximum strength. This was done 3 times with an interval of 10 min between each series. The peak torque to body weight ratio and the fatigue rate were determined in each case. In all subjects, the peak torque to body weight ratio was higher for extensors than flexors. Over the 3 trials, the fatigue rate of extensors showed little change, while that of flexors had a tendency to increase. In each subject, knee extensors showed a high fatigue rate but a quick recovery, while knee flexors showed a low fatigue rate but a slow recovery. As the marathon runners had the smallest fatigue rates for both flexors and extensors, we concluded that marathon runners had more stamina than baseball players and soccer players.

  18. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    PubMed

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  19. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    PubMed

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocity<0), indicating absorption of mechanical energy, was associated with MTU lengthening, and positive power (generation of mechanical energy) was found during MTU shortening. This was also found for the general fascicle velocity pattern in SO. In contrast, substantial differences between ankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Life-long calorie restriction in Fischer 344 rats attenuates age-related loss in skeletal muscle-specific force and reduces extracellular space.

    PubMed

    Payne, Anthony M; Dodd, Stephen L; Leeuwenburgh, Christiaan

    2003-12-01

    The decline in muscle function is associated with an age-related decrease in muscle mass and an age-related decline in strength. However, decreased strength is not solely due to decreased muscle mass. The age-related decline in muscle-specific force (force/muscle cross-sectional area), a measure of intrinsic muscle function, also contributes to age-related strength decline, and the mechanisms by which this occurs are only partially known. Moreover, changes in the extracellular space could have a profound effect on skeletal muscle function. Life-long calorie restriction in rodents has shown to be a powerful anti-aging intervention. In this study, we examine whether calorie restriction is able to attenuate the loss of muscle function and elevations in extracellular space associated with aging. We hypothesize that calorie restriction attenuates the age-associated decline in specific force and increases in extracellular space. Measurements of in vitro contractile properties of the extensor digitorum longus (type II) and soleus (type I) muscles from 12-mo and 26- to 28-mo-old ad libitum-fed, as well as 27- to 28-mo-old life-long calorie-restricted male Fischer 344 rats, were performed. We found that calorie restriction attenuated the age-associated decline in muscle mass-to-body mass ratio (mg/g) and strength-to-body mass ratio (N/kg) in the extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle (P > 0.05). Importantly, muscle-specific force (N/cm2) in the extensor digitorum longus, but not in the soleus muscle, of the old calorie-restricted rats was equal to that of the young 12-mo-old animals. Moreover, the age-associated increase in extracellular space was reduced in the fast-twitch extensor digitorum longus muscle (P < 0.05) but not in the soleus muscle with calorie restriction. We also found a significant correlation between the extracellular space and the muscle-specific force in the extensor digitorum longus (r = -0.58; P < 0.05) but not in the soleus muscle (r = -0.38; P > 0.05). Hence, this study shows a loss of muscle function with age and suggests that long-term calorie restriction is an effective intervention against the loss of muscle function with age.

  1. Intrarater reliability of hand held dynamometry in measuring lower extremity isometric strength using a portable stabilization device.

    PubMed

    Jackson, Steven M; Cheng, M Samuel; Smith, A Russell; Kolber, Morey J

    2017-02-01

    Hand held dynamometry (HHD) is a more objective way to quantify muscle force production (MP) compared to traditional manual muscle testing. HHD reliability can be negatively impacted by both the strength of the tester and the subject particularly in the lower extremities due to larger muscle groups. The primary aim of this investigation was to assess intrarater reliability of HHD with use of a portable stabilization device for lower extremity MP in an athletic population. Isometric lower extremity strength was measured for bilateral lower extremities including hip abductors, external rotators, adductors, knee extensors, and ankle plantar flexors was measured in a sample of healthy recreational runners (8 male, 7 females, = 30 limbs) training for a marathon. These measurements were assessed using an intrasession intrarater reliability design. Intraclass correlation coefficients (ICC) were calculated using 3,1 model based on the single rater design. The standard error of measurement (SEM) for each muscle group was also calculated. ICC were excellent ranging from ICC (3,1) = 0.93-0.98 with standard error of measurements ranging from 0.58 to 17.2 N. This study establishes the use of a HHD with a portable stabilization device as demonstrating good reliability within testers for measuring lower extremity muscle performance in an active healthy population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Influences of the extensor portion of the gluteus maximus muscle on pelvic tilt before and after the performance of a fatigue protocol.

    PubMed

    Alvim, Felipe C; Peixoto, Jennifer G; Vicente, Eduardo J D; Chagas, Paula S C; Fonseca, Diogo S

    2010-01-01

    There is a lack of data in the literature for determining the influences of the extensor portion of the gluteus maximus muscle on pelvic tilting and, thus, on lumbar stability. To assess the influences of the extensor portion of the gluteus maximus muscle on pelvic tilt. Ten healthy young subjects were recruited, with a body mass index (BMI) below 24.9 kg/m(2) and leg length discrepancy below 1 cm. The BMI, pelvic perimeter and lower-limb lengths were assessed and, subsequently, the degrees of hemi-pelvic tilt and asymmetry between them were analyzed using lateral view photographs of the subjects in a standing position, using SAPO (Software for Postural Assessment). Next, fatigue was induced in the extensor portion of the gluteus maximus muscle on the dominant side, and after that the hemi-pelvic tilt and the asymmetry between the hemi-pelvises were reassessed. The Pearson r and Student t tests were conducted at the significance level of alpha=0.05. There were no significant correlations between the confounding variables and asymmetry of the hemi-pelvic angles. There were significant changes in the hemi-pelvic angle of the dominant side (t=3.760; p=0.004). Fatigue in the extensor portion of the gluteus maximus muscle can generate increases in the tilt angle of the ipsilateral pelvis.

  3. Functional anatomy and muscle moment arms of the pelvic limb of an elite sprinting athlete: the racing greyhound (Canis familiaris)

    PubMed Central

    Williams, S B; Wilson, A M; Rhodes, L; Andrews, J; Payne, R C

    2008-01-01

    We provide quantitative anatomical data on the muscle–tendon architecture and geometry of the pelvic limb of an elite sprint athlete, the racing greyhound. Specifically, muscle masses, muscle lengths, fascicle lengths, pennation angles and muscle moment arms were measured. Maximum isometric force and power of muscles, the maximum muscle torque at joints and tendon stress and strain were estimated. We compare data with that published for a generalized breed of canid, and other cursorial mammals such as the horse and hare. The pelvic limb of the racing greyhound had a relatively large volume of hip extensor muscle, which is likely to be required for power production. Per unit body mass, some pelvic limb muscles were relatively larger than those in less specialized canines, and many hip extensor muscles had longer fascicle lengths. It was estimated that substantial extensor moments could be created about the tarsus and hip of the greyhound allowing high power output and potential for rapid acceleration. The racing greyhound hence possesses substantial specializations for enhanced sprint performance. PMID:18657259

  4. Volume and fat infiltration of spino-pelvic musculature in adults with spinal deformity

    PubMed Central

    Moal, Bertrand; Bronsard, Nicolas; Raya, José G; Vital, Jean Marc; Schwab, Frank; Skalli, Wafa; Lafage, Virginie

    2015-01-01

    AIM: To investigate fat infiltration and volume of spino-pelvic muscles in adults spinal deformity (ASD) with magnetic resonance imaging (MRI) and 3D reconstructions. METHODS: Nineteen female ASD patients (mean age 60 ± 13) were included prospectively and consecutively and had T1-weighted Turbo Spin Echo sequence MRIs with Dixon method from the proximal tibia up to T12 vertebra. The Dixon method permitted to evaluate the proportion of fat inside each muscle (fat-water ratio). In order to investigate the accuracy of the Dixon method for estimating fat vs water, the same MRI acquisition was performed on phantoms of four vials composed of different proportion of fat vs water. With Muscl’X software, 3D reconstructions of 17 muscles or group of muscles were obtained identifying the muscle’s contour on a limited number of axial images [Deformation of parametric specific objects (DPSO) Method]. Musclar volume (Vmuscle), infiltrated fat volume (Vfat) and percentage of fat infiltration [Pfat, calculated as follow: Pfat = 100 × (Vfat/Vmuscle)] were characterized by extensor or flexor function respectively for the spine, hip and knee and theirs relationship with demographic data were investigated. RESULTS: Phantom acquisition demonstrated a non linear relation between Dixon fat-water ratio and the real fat-water ratio. In order to correct the Dixon fat-water ratio, the non linear relation was approximated with a polynomial function of degree three using the phantom acquisition. On average, Pfat was 13.3% ± 5.3%. Muscles from the spinal extensor group had a Pfat significantly greater than the other muscles groups, and the largest variability (Pfat = 31.9% ± 13.8%, P < 0.001). Muscles from the hip extensor group ranked 2nd in terms of Pfat (14% ± 8%), and were significantly greater than those of the knee extensor (P = 0.030). Muscles from the knee extensor group demonstrated the least Pfat (12% ± 8%). They were also the only group with a significant correlation between Vmuscle and Pfat (r = -0.741, P < 0.001), however this correlation was lacking in the other groups. No correlation was found between the Vmuscle total and age or body mass index. Except for the spine flexors, Pfat was correlated with age. Vmuscle and Vfat distributions demonstrated that muscular degeneration impacted the spinal extensors most. CONCLUSION: Mechanisms of fat infiltration are not similar among the muscle groups. Degeneration impacted the spinal and hip extensors most, key muscles of the sagittal alignment. PMID:26495250

  5. Comparative anatomy of the cheek muscles within the Centromochlinae subfamily (Ostariophysi, Siluriformes, Auchenipteridae).

    PubMed

    Sarmento-Soares, Luisa Maria; Porto, Marcovan

    2006-02-01

    Glanidium melanopterum Miranda Ribeiro, a typical representative of the subfamily Centromochlinae (Siluriformes: Auchenipteridae), is herein described myologically and compared to other representative species within the group, Glanidium ribeiroi, G. leopardum, Tatia neivai, T. intermedia, T. creutzbergi, Centromochlus heckelii, and C. existimatus. The structure of seven pairs of striated cephalic muscles was compared anatomically: adductor mandibulae, levator arcus palatini, dilatator operculi, adductor arcus palatini, extensor tentaculi, retractor tentaculi, and levator operculi. We observed broad adductor mandibulae muscles in both Glanidium and Tatia, catfishes with depressed heads and smaller eyes. Similarities between muscles were observed: the presence of a large aponeurotic insertion for the levator arcus palatini muscle; an adductor arcus palatini muscle whose origin spread over the orbitosphenoid, pterosphenoid, and parasphenoid; and the extensor tentaculi muscle broadly attached to the autopalatine. There is no retractor tentaculi muscle in either the Glanidium or Tatia species. On the other hand, in Centromochlus, with forms having large eyes and the tallest head, the adductor mandibulae muscles are slim; there is a thin aponeurotic or muscular insertion for the levator arcus palatini muscle; the adductor arcus palatini muscle originates from a single osseous process, forming a keel on the parasphenoid; the extensor tentaculi muscle is loosely attached to the autopalatine, permitting exclusive rotating and sliding movements between this bone and the maxillary. The retractor tentaculi muscle is connected to the maxilla through a single tendon, so that both extensor and retractor tentaculi muscles contribute to a wide array of movements of the maxillary barbels. A discussion on the differences in autopalatine-maxillary movements among the analyzed groups is given. (c) 2005 Wiley-Liss, Inc.

  6. Fatigue-related firing of muscle nociceptors reduces voluntary activation of ipsilateral but not contralateral lower limb muscles.

    PubMed

    Kennedy, David S; Fitzpatrick, Siobhan C; Gandevia, Simon C; Taylor, Janet L

    2015-02-15

    During fatiguing upper limb exercise, maintained firing of group III/IV muscle afferents can limit voluntary drive to muscles within the same limb. It is not known if this effect occurs in the lower limb. We investigated the effects of group III/IV muscle afferent firing from fatigued ipsilateral and contralateral extensor muscles and ipsilateral flexor muscles of the knee on voluntary activation of the knee extensors. In three experiments, we examined voluntary activation of the knee extensors by measuring changes in superimposed twitches evoked by femoral nerve stimulation. Subjects attended on 2 days for each experiment. On one day a sphygmomanometer cuff occluded blood flow of the fatigued muscles to maintain firing of group III/IV muscle afferents. After a 2-min extensor contraction (experiment 1; n = 9), mean voluntary activation was lower with than without maintained ischemia (47 ± 19% vs. 87 ± 8%, respectively; P < 0.001). After a 2-min knee flexor maximal voluntary contraction (MVC) (experiment 2; n = 8), mean voluntary activation was also lower with than without ischemia (59 ± 21% vs. 79 ± 9%; P < 0.01). After the contralateral (left) MVC (experiment 3; n = 8), mean voluntary activation of the right leg was similar with or without ischemia (92 ± 6% vs. 93 ± 4%; P = 0.65). After fatiguing exercise, activity in group III/IV muscle afferents reduces voluntary activation of the fatigued muscle and nonfatigued antagonist muscles in the same leg. However, group III/IV muscle afferents from the fatigued left leg had no effect on the unfatigued right leg. This suggests that any "crossover" of central fatigue in the lower limbs is not mediated by group III/IV muscle afferents. Copyright © 2015 the American Physiological Society.

  7. Association with isokinetic ankle strength measurements and normal clinical muscle testing in sciatica patients.

    PubMed

    Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R

    2013-01-01

    Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.

  8. Muscle Reaction Time During a Simulated Lateral Ankle Sprain After Wet-Ice Application or Cold-Water Immersion.

    PubMed

    Thain, Peter K; Bleakley, Christopher M; Mitchell, Andrew C S

    2015-07-01

    Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Randomized controlled clinical trial. University of Hertfordshire human performance laboratory. A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions.

  9. Body Composition, Neuromuscular Performance, and Mobility: Comparison Between Regularly Exercising and Inactive Older Women.

    PubMed

    Rava, Anni; Pihlak, Anu; Ereline, Jaan; Gapeyeva, Helena; Kums, Tatjana; Purge, Priit; Jürimäe, Jaak; Pääsuke, Mati

    2017-01-01

    The purpose of this study was to evaluate the differences in body composition, neuromuscular performance, and mobility in healthy, regularly exercising and inactive older women, and examine the relationship between skeletal muscle indices and mobility. Overall, 32 healthy older women participated. They were divided into groups according to their physical activity history as regularly exercising (n = 22) and inactive (n = 10) women. Body composition, hand grip strength, leg extensor muscle strength, rapid force development, power output, and mobility indices were assessed. Regularly exercising women had lower fat mass and higher values for leg extensor muscle strength and muscle quality, and also for mobility. Leg extensor muscle strength and power output during vertical jumping and appendicular lean mass per unit of body mass were associated with mobility in healthy older women. It was concluded that long-term regular exercising may have beneficial effects on body composition and physical function in older women.

  10. Postural steadiness and ankle force variability in peripheral neuropathy

    PubMed Central

    Paxton, Roger J.; Feldman-Kothe, Caitlin; Trabert, Megan K.; Hitchcock, Leah N.; Reiser, Raoul F.; Tracy, Brian L.

    2015-01-01

    Introduction The purpose was to determine the effect of peripheral neuropathy (PN) on motor output variability for ankle muscles of older adults, and the relation between ankle motor variability and postural stability in PN patients. Methods Older adults with (O-PN) and without PN (O), and young adults (Y) underwent assessment of standing postural stability and ankle muscle force steadiness. Results O-PN displayed impaired ankle muscle force control and postural stability compared with O and Y groups. For O-PN, the amplitude of plantarflexor force fluctuations was moderately correlated with postural stability under no-vision conditions (r = 0.54, P = 0.01). Discussion The correlation of variations in ankle force with postural stability in PN suggests a contribution of ankle muscle dyscontrol to the postural instability that impacts physical function for older adults with PN. PMID:26284897

  11. Understanding movement control in infants through the analysis of limb intersegmental dynamics.

    PubMed

    Schneider, K; Zernicke, R F; Ulrich, B D; Jensen, J L; Thelen, E

    1990-12-01

    One important component in the understanding of the control of limb movements is the way in which the central nervous system accounts for joint forces and torques that may be generated not only by muscle actions but by gravity and by passive reactions related to the movements of limb segments. In this study, we asked how the neuromotor system of young infants controls a range of active and passive forces to produce a stereotypic, nonintentional movement. We specifically analyzed limb intersegmental dynamics in spontaneous, cyclic leg movements (kicking) of varying intensity in supine 3-month-old human infants. Using inverse dynamics, we calculated the contributions of active (muscular) and passive (motion-dependent and gravitational) torque components at the hip, knee, and ankle joints from three-dimensional limb kinematics. To calculate joint torques, accurate estimates were needed of the limb's anthropometric parameters, which we determined using a model of the human body. Our analysis of limb intersegmental dynamics explicitly quantified the complex interplay of active and passive forces producing the simple, involuntary kicking movements commonly seen in 3-month-old infants. our results revealed that in nonvigorous kicks, hip joint reversal was the result of an extensor torque due to gravity, opposed by the combined flexor effect of the muscle torque and the total motion-dependent torque. The total motion-dependent torque increased as a hip flexor torque in more vigorous kicks; an extensor muscle torque was necessary to counteract the flexor influences of the total motion-dependent torque and, in the case of large ranges of motion, a flexor gravity torque as well. Thus, with changing passive torque influences due to motions of the linked segments, the muscle torques were adjusted to produce a net torque to reverse the kicking motion. As a consequence, despite considerable heterogeneity in the intensity, range of motion, coordination, and movement context of each kick, smooth trajectories resulted from the muscle torque, counteracting and complementing not only gravity but also the motion-dependent torques generated by movement of the linked segments.

  12. Work-Related Pain in Extrinsic Finger Extensor Musculature of Instrumentalists Is Associated with Intracellular pH Compartmentation during Exercise

    PubMed Central

    Moreno-Torres, Angel; Rosset-Llobet, Jaume; Pujol, Jesus; Fàbregas, Sílvia; Gonzalez-de-Suso, Jose-Manuel

    2010-01-01

    Background Although non-specific pain in the upper limb muscles of workers engaged in mild repetitive tasks is a common occupational health problem, much is unknown about the associated structural and biochemical changes. In this study, we compared the muscle energy metabolism of the extrinsic finger extensor musculature in instrumentalists suffering from work-related pain with that of healthy control instrumentalists using non-invasive phosphorus magnetic resonance spectroscopy (31P-MRS). We hypothesize that the affected muscles will show alterations related with an impaired energy metabolism. Methodology/Principal Findings We studied 19 volunteer instrumentalists (11 subjects with work-related pain affecting the extrinsic finger extensor musculature and 8 healthy controls). We used 31P-MRS to find deviations from the expected metabolic response to exercise in phosphocreatine (PCr), inorganic phosphate (Pi), Pi/PCr ratio and intracellular pH kinetics. We observed a reduced finger extensor exercise tolerance in instrumentalists with myalgia, an intracellular pH compartmentation in the form of neutral and acid compartments, as detected by Pi peak splitting in 31P-MRS spectra, predominantly in myalgic muscles, and a strong association of this pattern with the condition. Conclusions/Significance Work-related pain in the finger extrinsic extensor muscles is associated with intracellular pH compartmentation during exercise, non-invasively detectable by 31P-MRS and consistent with the simultaneous energy production by oxidative metabolism and glycolysis. We speculate that a deficit in energy production by oxidative pathways may exist in the affected muscles. Two possible explanations for this would be the partial and/or local reduction of blood supply and the reduction of the muscle oxidative capacity itself. PMID:20161738

  13. Ankle muscle coactivation and its relationship with ankle joint kinematics and kinetics during gait in hemiplegic patients after stroke.

    PubMed

    Kitatani, Ryosuke; Ohata, Koji; Sato, Shuhei; Watanabe, Aki; Hashiguchi, Yu; Yamakami, Natsuki; Sakuma, Kaoru; Yamada, Shigehito

    2016-06-01

    Increased ankle muscle coactivation during gait is a compensation strategy for enhancing postural stability in patients after stroke. However, no previous studies have demonstrated that increased ankle muscle coactivation influenced ankle joint movements during gait in patients after stroke. To investigate the relationship between ankle muscle coactivation and ankle joint movements in hemiplegic patients after stroke. Seventeen patients after stroke participated. The coactivation index (CoI) at the ankle joint was calculated separately for the first and second double support (DS1 and DS2, respectively) and single support (SS) phases on the paretic and non-paretic sides during gait using surface electromyography. Simultaneously, three-dimensional motion analysis was performed to measure the peak values of the ankle joint angle, moment, and power in the sagittal plane. Ground reaction forces (GRFs) of the anterior and posterior components and centers of pressure (COPs) trajectory ranges and velocities were also measured. The CoI during the SS phase on the paretic side was negatively related to ankle dorsiflexion angle, ankle plantarflexion moment, ankle joint power generation, and COP velocity on the paretic side. Furthermore, the CoI during the DS2 phase on both sides was negatively related to anterior GRF amplitude on each side. Increased ankle muscle coactivation is related to decreased ankle joint movement during the SS phase on the paretic side to enhance joint stiffness and compensate for stance limb instability, which may be useful for patients who have paretic instability during the stance phase after stroke.

  14. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.

    PubMed

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-08-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.

  15. Effect of unilateral knee extensor fatigue on force and balance of the contralateral limb.

    PubMed

    Arora, Shruti; Budden, Shawn; Byrne, Jeannette M; Behm, David G

    2015-10-01

    Fatigue in one limb can decrease force production in the homologous muscle as well as other muscles of the non-fatigued limb affecting balance. The objective of the study was to examine the effect of unilateral knee extensor fatigue on the non-fatigued limb's standing balance, muscle force and activation. Sixteen healthy male subjects performed pre-fatigue balance trials, warm-up exercises, maximum voluntary isometric contractions, a knee extensors fatigue protocol, and post-fatigue balance trials. The fatigue protocol consisted of sets of 15 consecutive isometric contractions of 16 s each with 4 s recovery between repetitions, which were performed at 30% peak force for the dominant knee extensor muscles. Additional sets of contractions continued until a 50% decrease in MVIC knee extensor force was observed. Pre- and post-fatigue balance assessment consisted of transition from double to single leg standing and also single leg standing trials, which were performed bilaterally and in randomized order. The peak force and F100 were significantly decreased by 44.8% (ES = 2.54) and 39.9% (ES = 0.59), respectively, for the fatigued limb post-fatigue. There were no significant changes in the non-fatigued limb's muscle force, activation, muscle onset timing or postural stability parameters. While the lack of change in non-fatigued limb force production is in agreement with some of the previous literature in this area, the lack of effect on postural measures directly contradicts earlier work. It is hypothesized that discrepancies in the duration and the intensity of the fatigue protocol may have accounted for this discrepancy.

  16. Prevalence of the accessory deep peroneal nerve: A cadaveric study and meta-analysis.

    PubMed

    Tomaszewski, Krzysztof A; Roy, Joyeeta; Vikse, Jens; Pękala, Przemysław A; Kopacz, Paweł; Henry, Brandon Michael

    2016-05-01

    The accessory deep peroneal nerve (ADPN) is a common anatomical variant arising from the superficial peroneal nerve (SPN) and, when present, is often responsible for partial or complete innervation of the extensor digitorum brevis muscle (EDBM). The nerve lies posterior to the peroneus brevis muscle, traveling posterior to the lateral malleolus to terminate in the ankle by giving off sensory branches to the ankle and joints. Although the EDBM is usually supplied by the deep peroneal nerve (DPN), in the presence of an ADPN, electrodiagnostic procedures may be complicated. Due to the lack of detailed anatomical knowledge on the topography of the ADPN, its presence posterior to the lateral malleolus can be iatrogenically injured during surgical procedures on the ankle using a lateral approach. Therefore, this meta-analysis aimed to provide a comprehensive, evidence-based assessment of the anatomical characteristics of the ADPN, supplemented with data from our own cadaveric dissection. A comprehensive search of all major electronic databases, including Pubmed, Embase, Scopus, Web of Science, ScienceDirect, SciELO, and BIOSIS was performed. All articles with data on prevalence, symmetry and innervation of the EDBM by the ADPN were included. The anatomical data was then extracted and pooled into a meta-analysis using MetaXL 2.0. In addition, we dissected 21 cadavers (n=42 lower limbs) bilaterally to find the ADPN. A total of 19 studies (n=6070 lower limbs) were included in the meta-analysis. The pooled prevalence of the ADPN was 18.8% (95%CI:14.2-24.0) with a 39.3% prevalence rate for cadaveric studies. The ADPN was present more commonly unilaterally (67.0%) and when it was present, provided branches to the EDBM in 79.5% of cases. In our cadaveric study, the ADPN was identified in 5 of the 42 lower limbs dissected (11.9%); on the right side in 3 lower limbs and on the left side in 2 lower limbs. The ADPN is a clinically important nerve and has been inculpated in unexplained cases of chronic ankle pain and EDBM atrophy. The variability in detection of the ADPN using electrophysiological techniques can lead to misdiagnoses of peroneal nerve lesions and increase the risk for iatrogenic injury to the ADPN, especially in laterally approaching ankle procedures and sural nerve biopsies. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Motor-neuron pool excitability of the lower leg muscles after acute lateral ankle sprain.

    PubMed

    Klykken, Lindsey W; Pietrosimone, Brian G; Kim, Kyung-Min; Ingersoll, Christopher D; Hertel, Jay

    2011-01-01

    Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Case-control study. Laboratory. Ten individuals with acute ankle sprains (6 females, 4 males; age= 19.2 ± 3.8 years, height= 169.4 ± 8.5 cm, mass= 66.3 ± 11.6 kg) and 10 healthy individuals(6 females,4 males; age= 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass= 66.3 ± 10.2 kg) participated. The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (H(max)) and maximal muscle response (M(max)) and was then normalized using the H(max):M(max) ratio. The soleus MNPE in the ankle-sprain group was higher in the injured limb (H(max):M(max) = 0.63; 95% confidence interval [Cl],0.46, 0.80) than the uninjured limb (H(max):M(max) = 0.47; 95%Cl, 0.08, 0.93)(t(6) = 3.62,P =.01).In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (H(max):M(max) =0.06; 95% Cl, 0.01, 0.10) than in the uninjured ankle (H(max):M(max) =0.22; 95%Cl, 0.09, 0.35),but this finding was not different (t(9) =-2.01, P =.07). No differences were detected between injured (0.22; 95% Cl, 0.14, 0.29) and uninjured (0.25; 95%Cl, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t(9) =-0.739, P =.48). We found no side-to-side differences in any muscle among the healthy group. Facilitated MNPE was present in the involved soleus muscle of patients with acute ankle sprains, but no differences were found in the fibularis longus or tibialis anterior muscles.

  18. Motor unit recruitment patterns 2: the influence of myoelectric intensity and muscle fascicle strain rate.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    To effectively meet the force requirements of a given movement an appropriate number and combination of motor units must be recruited between and within muscles. Orderly recruitment of motor units has been shown to occur in a wide range of skeletal muscles, however, alternative strategies do occur. Faster motor units are better suited to developing force rapidly, and produce higher mechanical power with greater efficiency at faster shortening strain rates than slower motor units. As the frequency content of the myoelectric signal is related to the fibre type of the active motor units, we hypothesised that, in addition to an association between myoelectric frequency and intensity, there would be a significant association between muscle fascicle shortening strain rate and myoelectric frequency content. Myoelectric and sonomicrometric data were collected from the three ankle extensor muscles of the rat hind limb during walking and running. Myoelectric signals were analysed using wavelet transformation and principal component analysis to give a measure of the signal frequency content. Sonomicrometric signals were analysed to give measures of muscle fascicle strain and strain rate. The relationship between myoelectric frequency and both intensity and muscle fascicle strain rate was found to change across the time course of a stride, with differences also occurring in the strength of the associations between and within muscles. In addition to the orderly recruitment of motor units, a mechanical strategy of motor unit recruitment was therefore identified. Motor unit recruitment is therefore a multifactorial phenomenon, which is more complex than typically thought.

  19. Long-latency reflexes of elbow and shoulder muscles suggest reciprocal excitation of flexors, reciprocal excitation of extensors, and reciprocal inhibition between flexors and extensors

    PubMed Central

    Meriggi, Jenna; Parikh, Nidhi; Saad, Kenneth

    2016-01-01

    Postural corrections of the upper limb are required in tasks ranging from handling an umbrella in the changing wind to securing a wriggling baby. One complication in this process is the mechanical interaction between the different segments of the arm where torque applied at one joint induces motion at multiple joints. Previous studies have shown the long-latency reflexes of shoulder muscles (50–100 ms after a limb perturbation) account for these mechanical interactions by integrating information about motion of both the shoulder and elbow. It is less clear whether long-latency reflexes of elbow muscles exhibit a similar capability and what is the relation between the responses of shoulder and elbow muscles. The present study utilized joint-based loads tailored to the subjects' arm dynamics to induce well-controlled displacements of their shoulder and elbow. Our results demonstrate that the long-latency reflexes of shoulder and elbow muscles integrate motion from both joints: the shoulder and elbow flexors respond to extension at both joints, whereas the shoulder and elbow extensors respond to flexion at both joints. This general pattern accounts for the inherent flexion-extension coupling of the two joints arising from the arm's intersegmental dynamics and is consistent with spindle-based reciprocal excitation of shoulder and elbow flexors, reciprocal excitation of shoulder and elbow extensors, and across-joint inhibition between the flexors and extensors. PMID:26864766

  20. Balance and ankle muscle strength predict spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy.

    PubMed

    Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T

    2015-01-01

    The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  1. Activity of thoracic and lumbar epaxial extensors during postural responses in the cat

    NASA Technical Reports Server (NTRS)

    Macpherson, J. M.; Fung, J.; Peterson, B. W. (Principal Investigator)

    1998-01-01

    This study examined the role of trunk extensor muscles in the thoracic and lumbar regions during postural adjustments in the freely standing cat. The epaxial extensor muscles participate in the rapid postural responses evoked by horizontal translation of the support surface. The muscles segregate into two regional groups separated by a short transition zone, according to the spatial pattern of the electromyographic (EMG) responses. The upper thoracic muscles (T5-9) respond best to posteriorly directed translations, whereas the lumbar muscles (T13 to L7) respond best to anterior translations. The transition group muscles (T10-12) respond to almost all translations. Muscles group according to vertebral level rather than muscle species. The upper thoracic muscles change little in their response with changes in stance distance (fore-hindpaw separation) and may act to stabilize the intervertebral angles of the thoracic curvature. Activity in the lumbar muscles increases along with upward rotation of the pelvis (iliac crest) as stance distance decreases. Lumbar muscles appear to stabilize the pelvis with respect to the lumbar vertebrae (L7-sacral joint). The transition zone muscles display a change in spatial tuning with stance distance, responding to many directions of translation at short distances and focusing to respond best to contralateral translations at the long stance distance.

  2. Multivariable Dynamic Ankle Mechanical Impedance With Active Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Multivariable dynamic ankle mechanical impedance in two coupled degrees-of-freedom (DOFs) was quantified when muscles were active. Measurements were performed at five different target activation levels of tibialis anterior and soleus, from 10% to 30% of maximum voluntary contraction (MVC) with increments of 5% MVC. Interestingly, several ankle behaviors characterized in our previous study of the relaxed ankle were observed with muscles active: ankle mechanical impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness; stiffness was greater in the sagittal plane than in the frontal plane at all activation conditions for all subjects; and the coupling between dorsiflexion–plantarflexion and inversion–eversion was small—the two DOF measurements were well explained by a strictly diagonal impedance matrix. In general, ankle stiffness increased linearly with muscle activation in all directions in the 2-D space formed by the sagittal and frontal planes, but more in the sagittal than in the frontal plane, resulting in an accentuated “peanut shape.” This characterization of young healthy subjects’ ankle mechanical impedance with active muscles will serve as a baseline to investigate pathophysiological ankle behaviors of biomechanically and/or neurologically impaired patients. PMID:25203497

  3. Cervical Musculoskeletal Impairments and Temporomandibular Disorders

    PubMed Central

    Magee, David

    2012-01-01

    ABSTRACT Objectives The study of cervical muscles and their significance in the development and perpetuation of Temporomandibular Disorders has not been elucidated. Thus this project was designed to investigate the association between cervical musculoskeletal impairments and Temporomandibular Disorders. Material and Methods A sample of 154 subjects participated in this study. All subjects underwent a series of physical tests and electromyographic assessment (i.e. head and neck posture, maximal cervical muscle strength, cervical flexor and extensor muscles endurance, and cervical flexor muscle performance) to determine cervical musculoskeletal impairments. Results A strong relationship between neck disability and jaw disability was found (r = 0.82). Craniocervical posture was statistically different between patients with myogenous Temporomandibular Disorders (TMD) and healthy subjects. However, the difference was too small (3.3º) to be considered clinically relevant. Maximal cervical flexor muscle strength was not statistically or clinically different between patients with TMD and healthy subjects. No statistically significant differences were found in electromyographic activity of the sternocleidomastoid or the anterior scalene muscles in patients with TMD when compared to healthy subjects while executing the craniocervical flexion test (P = 0.07). However, clinically important effect sizes (0.42 - 0.82) were found. Subjects with TMD presented with reduced cervical flexor as well as extensor muscle endurance while performing the flexor and extensor muscle endurance tests when compared to healthy individuals. Conclusions Subjects with Temporomandibular Disorders presented with impairments of the cervical flexors and extensors muscles. These results could help guide clinicians in the assessment and prescription of more effective interventions for individuals with Temporomandibular Disorders. PMID:24422022

  4. Clinically-evident tophi are associated with reduced muscle force in the foot and ankle in people with gout: a cross-sectional study.

    PubMed

    Stewart, Sarah; Dalbeth, Nicola; Otter, Simon; Gow, Peter; Kumar, Sunil; Rome, Keith

    2017-01-01

    The foot and ankle represent a common site for tophi in people with gout, yet it is unclear whether the presence of tophi is related to impaired muscle function. This study aimed to determine the association between foot and ankle tophi and muscle force in people with gout. Participants with gout were stratified into two groups based on the presence of clinically-evident tophi affecting the foot or ankle on physical examination. Isometric muscle force for plantarflexion, dorsiflexion, inversion and eversion was measured using static dynamometry. Mixed-models regression was used to determine the difference in muscle force between the two groups while adjusting for age, disease duration and foot pain. This model was also used to determine the difference in muscle force between presence and absence of tophi at specific locations within the foot and ankle. In addition, Pearson's correlations were used to determine the association between total foot tophus count and muscle force. Fifty-seven participants were included (22 with foot or ankle tophi and 35 without foot or ankle tophi). Foot and ankle tophi were most often seen at the Achilles tendon. After adjusting for age, disease duration and foot pain, participants with tophi had significantly reduced muscle force during plantarflexion ( P  < 0.001), dorsiflexion ( P  = 0.003), inversion ( P  = 0.003) and eversion ( P  = 0.001) when compared to participants without tophi. Those with Achilles tophi had significantly reduced force during plantarflexion ( P  < 0.001), inversion ( P  = 0.008) and eversion ( P  = 0.001). No significant differences in muscle force were observed between the presence and absence of tophi at other foot or ankle locations. There were also no significant correlations between total foot tophus count and muscle force (all P  > 0.05). In people with gout, clinically-evident foot or ankle tophi are associated with muscle force deficits during foot plantarflexion, dorsiflexion, inversion and eversion, which persist despite adjusting for age, disease duration and foot pain. Tophi at the Achilles tendon, which associate with force deficits, may contribute to reduced muscular activation and consequent disuse muscle atrophy.

  5. Foot and ankle muscle strength in people with gout: A two-arm cross-sectional study.

    PubMed

    Stewart, Sarah; Mawston, Grant; Davidtz, Lisa; Dalbeth, Nicola; Vandal, Alain C; Carroll, Matthew; Morpeth, Trish; Otter, Simon; Rome, Keith

    2016-02-01

    Foot and ankle structures are the most commonly affected in people with gout. However, the effect of gout on foot and ankle muscle strength is not well understood. The primary aim of this study was to determine whether differences exist in foot and ankle muscle strength for plantarflexion, dorsiflexion, inversion and eversion between people with gout and age- and sex-matched controls. The secondary aim was to determine whether foot and ankle muscle strength was correlated with foot pain and disability. Peak isokinetic concentric muscle torque was measured for ankle plantarflexion, dorsiflexion, eversion and inversion in 20 participants with gout and 20 matched controls at two testing velocities (30°/s and 120°/s) using a Biodex dynamometer. Foot pain and disability was measured using the Manchester Foot Pain and Disability Index (MFPDI). Participants with gout demonstrated reduced muscle strength at both the 30°/s and 120°/s testing velocities for plantarflexion, inversion and eversion (P<0.05). People with gout also displayed a reduced plantarflexion-to-dorsiflexion strength ratio at both 30°/s and 120°/s (P<0.05). Foot pain and disability was higher in people with gout (P<0.0001) and MFPDI scores were inversely correlated with plantarflexion and inversion muscle strength at the 30°/s testing velocity, and plantarflexion, inversion and eversion muscle strength at the 120°/s testing velocity (all P<0.05). People with gout have reduced foot and ankle muscle strength and experience greater foot pain and disability compared to controls. Foot and ankle strength reductions are strongly associated with increased foot pain and disability in people with gout. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Three-Dimensional Ankle Moments and Nonlinear Summation of Rat Triceps Surae Muscles

    PubMed Central

    Tijs, Chris; van Dieën, Jaap H.; Baan, Guus C.; Maas, Huub

    2014-01-01

    The Achilles tendon and epimuscular connective tissues mechanically link the triceps surae muscles. These pathways may cause joint moments exerted by each muscle individually not to sum linearly, both in magnitude and direction. The aims were (i) to assess effects of sagittal plane ankle angle (varied between 150° and 70°) on isometric ankle moments, in both magnitude and direction, exerted by active rat triceps surae muscles, (ii) to assess ankle moment summation between those muscles for a range of ankle angles and (iii) to assess effects of sagittal plane ankle angle and muscle activation on Achilles tendon length. At each ankle angle, soleus (SO) and gastrocnemius (GA) muscles were first excited separately to assess ankle-angle moment characteristics and subsequently both muscles were excited simultaneously to investigate moment summation. The magnitude of ankle moment exerted by SO and GA, the SO direction in the transverse and sagittal planes, and the GA direction in the transverse plane were significantly affected by ankle angle. SO moment direction in the frontal and sagittal planes were significantly different from that of GA. Nonlinear magnitude summation varied between 0.6±2.9% and −3.6±2.9%, while the nonlinear direction summation varied between 0.3±0.4° and −0.4±0.7° in the transverse plane, between 0.5±0.4° and 0.1±0.4° in the frontal plane, and between 3.0±7.9° and 0.3±2.3° in the sagittal plane. Changes in tendon length caused by SO contraction were significantly lower than those during contraction of GA and GA+SO simultaneously. Thus, moments exerted by GA and SO sum nonlinearly both in the magnitude and direction. The limited degree of nonlinear summation may be explained by different mechanisms acting in opposite directions. PMID:25360524

  7. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.

  8. A Behavioral Mechanism of How Increases in Leg Strength Improve Old Adults’ Gait Speed

    PubMed Central

    Uematsu, Azusa; Tsuchiya, Kazushi; Kadono, Norio; Kobayashi, Hirofumi; Kaetsu, Takamasa; Hortobágyi, Tibor; Suzuki, Shuji

    2014-01-01

    We examined a behavioral mechanism of how increases in leg strength improve healthy old adults’ gait speed. Leg press strength training improved maximal leg press load 40% (p = 0.001) and isometric strength in 5 group of leg muscles 32% (p = 0.001) in a randomly allocated intervention group of healthy old adults (age 74, n = 15) but not in no-exercise control group (age 74, n = 8). Gait speed increased similarly in the training (9.9%) and control (8.6%) groups (time main effect, p = 0.001). However, in the training group only, in line with the concept of biomechanical plasticity of aging gait, hip extensors and ankle plantarflexors became the only significant predictors of self-selected and maximal gait speed. The study provides the first behavioral evidence regarding a mechanism of how increases in leg strength improve healthy old adults’ gait speed. PMID:25310220

  9. Measurement of maximal isometric torque and muscle quality of the knee extensors and flexors in healthy 50- to 70-year-old women.

    PubMed

    Francis, Peter; Toomey, Clodagh; Mc Cormack, William; Lyons, Mark; Jakeman, Philip

    2017-07-01

    Muscle quality is defined as strength per unit muscle mass. The aim of this study was to measure the maximal voluntary isometric torque of the knee extensor and flexor muscle groups in healthy older women and to develop an index of muscle quality based on the combined knee extensor and flexor torque per unit lean tissue mass (LTM) of the upper leg. One hundred and thirty-six healthy 50- to 70-year-old women completed an initial measurement of isometric peak torque of the knee extensors and flexors (Con-Trex MJ; CMV AG, Dubendorf, Switzerland) that was repeated 7 days later. Subsequently, 131 women returned for whole- and regional-body composition analysis (iDXA ™ ; GE Healthcare, Chalfont St Giles, Buckinghamshire, UK). Isometric peak torque demonstrated excellent within-assessment reliability for both the knee extensors and flexors (ICC range: 0·991-1·000). Test-retest reliability was lower (ICC range: 0·777-0·828) with an observed mean increase of 5% in peak torque [6·2 (17·2) N m] on the second day of assessment (P<0·001). The relative mean decrease in combined isometric peak torque (-12·2%; P = 0·001) was double that of the relative, non-significant, median difference in upper leg LTM (-5·3%; P = 0·102) between those in the 5th and 6th decade. The majority of difference in peak isometric torque came from the knee extensors (15·1 N m, P<0·001 versus 2·4 N m, P = 0·234). Isometric peak torque normalized for upper leg LTM (muscle quality) was 8% lower between decades (P = 0·029). These findings suggest strength per unit tissue may provide a better indication of age-related differences in muscle quality prior to change in LTM. © 2016 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  10. Interactive effects of growth hormone and exercise on muscle mass in suspended rats

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, Roland R.; Edgerton, V. Reggie; Grossman, Elena J.; Mukku, Venkat R.; Jiang, Bian; Pierotti, David J.; Rudolph, Ingrid

    1994-01-01

    Measures to attenuate muscle atrophy in rats in response to simulated microgravity (hindlimb suspension (HS)) have been only partially successful. In the present study, hypophysectomized rats were in HS for 7 days, and the effects of recombinant human growth hormone (GH), exercise (Ex), or GH+Ex on the weights, protein concentrations, and fiber cross-sectional areas (CSAs) of hindlimb muscles were determined. The weights of four extensor muscles, i.e., the soleus (Sol), medial (MG) and lateral (LG) gastrocnemius, and plantaris (Plt), and one adductor, i.e., the adductor longus (AL), were decreased by 10-22% after HS. Fiber CSAs were decreased by 34% in the Sol and by 1 17% in the MG after HS. In contrast, two flexors, i.e., the tibialis anterior (TA) and extensor digitorum longus (EDL), did not atrophy. In HS rats, GH treatment alone maintained the weights of the fast extensors (MG, LG, Plt) and flexors (TA, EDL) at or above those of control rats. This effect was not observed in the slow extensor (Sol) or AL. Exercise had no significant effect on the weight of any muscle in HS rats. A combination of GH and Ex treatments yielded a significant increase in the weights of the fast extensors and in the CSA of both fast and slow fibers of the MG and significantly increased Sol weight and CSA of the slow fibers of the Sol. The AL was not responsive to either GH or Ex treatments. Protein concentrations of the Sol and MG were higher only in the Sol of Ex and GH+Ex rats. These results suggest that while GH treatment or intermittent high intensity exercise alone have a minimal effect in maintaining the mass of unloaded muscle, there is a strong interactive effect of these two treatments.

  11. Muscle Reaction Time During a Simulated Lateral Ankle Sprain After Wet-Ice Application or Cold-Water Immersion

    PubMed Central

    Thain, Peter K.; Bleakley, Christopher M.; Mitchell, Andrew C. S.

    2015-01-01

    Context Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. Objective To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Design Randomized controlled clinical trial. Setting University of Hertfordshire human performance laboratory. Patients or Other Participants A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Intervention(s) Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Main Outcome Measure(s) Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. Results We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Conclusions Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions. PMID:26067429

  12. Biomechanical analysis of knee and trunk in badminton players with and without knee pain during backhand diagonal lunges.

    PubMed

    Lin, Cheng-Feng; Hua, Shiang-Hua; Huang, Ming-Tung; Lee, Hsing-Hsan; Liao, Jen-Chieh

    2015-01-01

    The contribution of core neuromuscular control to the dynamic stability of badminton players with and without knee pain during backhand lunges has not been investigated. Accordingly, this study compared the kinematics of the lower extremity, the trunk movement, the muscle activation and the balance performance of knee-injured and knee-uninjured badminton players when performing backhand stroke diagonal lunges. Seventeen participants with chronic knee pain (injured group) and 17 healthy participants (control group) randomly performed two diagonal backhand lunges in the forward and backward directions, respectively. This study showed that the injured group had lower frontal and horizontal motions of the knee joint, a smaller hip-shoulder separation angle and a reduced trunk tilt angle. In addition, the injured group exhibited a greater left paraspinal muscle activity, while the control group demonstrated a greater activation of the vastus lateralis, vastus medialis and medial gastrocnemius muscle groups. Finally, the injured group showed a smaller distance between centre of mass (COM) and centre of pressure, and a lower peak COM velocity when performing the backhand backward lunge tasks. In conclusion, the injured group used reduced knee and trunk motions to complete the backhand lunge tasks. Furthermore, the paraspinal muscles contributed to the lunge performance of the individuals with knee pain, whereas the knee extensors and ankle plantar flexor played a greater role for those without knee pain.

  13. Test-retest reliability of sudden ankle inversion measurements in subjects with healthy ankle joints.

    PubMed

    Eechaute, Christophe; Vaes, Peter; Duquet, William; Van Gheluwe, Bart

    2007-01-01

    Sudden ankle inversion tests have been used to investigate whether the onset of peroneal muscle activity is delayed in patients with chronically unstable ankle joints. Before interpreting test results of latency times in patients with chronic ankle instability and healthy subjects, the reliability of these measures must be first demonstrated. To investigate the test-retest reliability of variables measured during a sudden ankle inversion movement in standing subjects with healthy ankle joints. Validation study. Research laboratory. 15 subjects with healthy ankle joints (30 ankles). Subjects stood on an ankle inversion platform with both feet tightly fixed to independently moveable trapdoors. An unexpected sudden ankle inversion of 50 degrees was imposed. We measured latency and motor response times and electromechanical delay of the peroneus longus muscle, along with the time and angular position of the first and second decelerating moments, the mean and maximum inversion speed, and the total inversion time. Correlation coefficients and standard error of measurements were calculated. Intraclass correlation coefficients ranged from 0.17 for the electromechanical delay of the peroneus longus muscle (standard error of measurement = 2.7 milliseconds) to 0.89 for the maximum inversion speed (standard error of measurement = 34.8 milliseconds). The reliability of the latency and motor response times of the peroneus longus muscle, the time of the first and second decelerating moments, and the mean and maximum inversion speed was acceptable in subjects with healthy ankle joints and supports the investigation of the reliability of these measures in subjects with chronic ankle instability. The lower reliability of the electromechanical delay of the peroneus longus muscle and the angular positions of both decelerating moments calls the use of these variables into question.

  14. The Relationship between Vitamin D and Muscle Size and Strength in Patients on Hemodialysis

    PubMed Central

    Gordon, Patricia L.; Sakkas, Giorgos K.; Doyle, Julie W.; Shubert, Tiffany; Johansen, Kirsten L.

    2007-01-01

    OBJECTIVE Vitamin D has various actions in skeletal muscle. The purpose of this study was to compare lower limb muscle size and strength in hemodialysis (HD) patients being treated with 1,25-dihydroxyvitamin D (calcitriol) or a 1,25-dihydroxyvitamin D analog (paricalcitol) to HD patients who were receiving none. DESIGN This was a retrospective cross-sectional study. SETTING Outpatient hemodialysis centers. PATIENTS HD patients receiving calcitriol or paricalcitol (active vitamin D) for control of secondary hyperparathyroidism (VitD, n = 49) were compared to HD patients who were not (n = 30). MAIN OUTCOME MEASURES Cross-sectional areas (CSA) of thigh and tibialis anterior muscles by magnetic resonance imaging (MRI), and three measures of strength; three-repetition maximum (3RM) for knee extension (isotonic), peak torque of knee extensors (isokinetic), and maximal voluntary contraction (MVC) of the ankle dorsiflexor muscles (isometric). RESULTS There were no differences in age, weight, dialysis vintage, or intact parathyroid hormone levels between the groups, although serum albumin was higher in the VitD group (p <0.05). Patients in the VitD group had larger thigh muscle CSA (p < 0.05) and were stronger across all strength measures (p< 0.05) after controlling for age and gender (ANCOVA). When all analyses were subsequently adjusted for serum albumin concentration, only the difference in 3RM knee extension strength lost significance. There were no significant differences in any measurements between patients who received calcitriol or paricalcitol. CONCLUSION Treatment with active vitamin D was associated with greater muscle size and strength in this cohort of HD patients. PMID:17971312

  15. Sex comparisons of non-local muscle fatigue in human elbow flexors and knee extensors

    PubMed Central

    Ye, Xin; Beck, Travis W.; Wages, Nathan P.; Carr, Joshua C.

    2018-01-01

    Objectives: To examine non-local muscle fatigue (NLMF) in both contralateral homologous and non-related heterogonous muscles for both sexes. Methods: Ten men and nine women participated in this study. After the familiarization visit, subjects completed four separate randomly sequenced experimental visits, during which the fatiguing interventions (six sets of 30-second maximal isometric contractions) were performed on either their right elbow flexors or knee extensors. Before (Pre-) and after (Post-) the fatiguing interventions, the isometric strength and the corresponding surface electromyographic (EMG) amplitude were measured for the non-exercised left elbow flexors or knee extensors. Results: For the non-exercised elbow flexors, the isometric strength decreased for both sexes (sex combined mean±SE: Pre vs. Post=339.67±18.02 N vs. 314.41±16.37 N; p<0.001). For the non-exercised knee extensors, there is a time ´ sex interaction (p=0.025), showing a decreased isometric knee extension strength for men (Pre vs. Post =845.02±66.26 N vs. 817.39±67.64 N; p=0.019), but not for women. Conclusions: The presence of NMLF can be affected by factors such as sex and muscle being tested. Women are less likely to demonstrate NLMF in lower body muscle groups. PMID:29504584

  16. The potential of toe flexor muscles to enhance performance.

    PubMed

    Goldmann, Jan-Peter; Sanno, Maximilian; Willwacher, Steffen; Heinrich, Kai; Brüggemann, Gert-Peter

    2013-01-01

    The metatarsal phalangeal joint (MPJ) and its crossing toe flexor muscles (TFM) represent the link between the large energy generating leg extensor muscles and the ground. The purpose of this study was to examine the functional adaptability of TFM to increased mechanical stimuli and the effects on walking, running and jumping performance. Fifteen men performed a heavy resistance TFM strength training with 90% of the maximal voluntary isometric contraction (MVIC) for 7 weeks (560 contractions) for the left and right foot. Maximal MPJ and ankle plantar flexion moments during MVICs were measured in dynamometers before and after the intervention. Motion analyses (inverse dynamics) were performed during barefoot walking, running, and vertical and horizontal jumping. Athletic performance was determined by measuring jump height and distance. Left (0.21 to 0.38 Nm · kg(-1); P < 0.001) and right (0.24 to 0.40 Nm · kg(-1); P < 0.001) MPJ plantar flexion moments in the dynamometer, external MPJ dorsiflexion moments (0.69 to 0.75 Nm · kg(-1); P = 0.012) and jump distance (2.25 to 2.31 m; P = 0.006) in horizontal jumping increased significantly. TFM responded highly to increased loading within a few weeks. The increased force potential made a contribution to an athlete's performance enhancement.

  17. Hind limb scaling of kangaroos and wallabies (superfamily Macropodoidea): implications for hopping performance, safety factor and elastic savings

    PubMed Central

    McGowan, C P; Skinner, J; Biewener, A A

    2008-01-01

    The aim of this study was to examine hind limb scaling of the musculoskeletal system in the Macropodoidea, the superfamily containing wallabies and kangaroos, to re-examine the effect of size on the locomotor mechanics and physiology of marsupial hopping. Morphometric musculoskeletal analyses were conducted of 15 species and skeletal specimens of 21 species spanning a size range from 0.8 to 80 kg that included representatives of 12 of the 16 extant genera of macropodoids. We found that unlike other groups, macropodoids are able to match force demands associated with increasing body size primarily through a combination of positive allometry in muscle area and muscle moment arms. Isometric scaling of primary hind limb bones suggests, however, that larger species experience relatively greater bone stresses. Muscle to tendon area ratios of the ankle extensors scale with strong positive allometry, indicating that peak tendon stresses also increase with increasing body size but to a lesser degree than previously reported. Consistent with previous morphological and experimental studies, large macropodoids are therefore better suited for elastic strain energy recovery but operate at lower safety factors, which likely poses an upper limit to body size. Scaling patterns for extant macropodoids suggest that extinct giant kangaroos (∼250 kg) were likely limited in locomotor capacity. PMID:18086129

  18. Age-Related Locomotion Characteristics in Association with Balance Function in Young, Middle-Aged, and Older Adults.

    PubMed

    Lee, Hwang-Jae; Chang, Won Hyuk; Hwang, Sun Hee; Choi, Byung-Ok; Ryu, Gyu-Ha; Kim, Yun-Hee

    2017-04-01

    The purpose of this study was to examine age-related gait characteristics and their associations with balance function in older adults. A total of 51 adult volunteers participated. All subjects underwent locomotion analysis using a 3D motion analysis and 12-channel dynamic electromyography system. Dynamic balance function was assessed by the Berg Balance Scale. Older adults showed a higher level of muscle activation than young adults, and there were significant positive correlations between increased age and activation of the trunk and thigh muscles in the stance and swing phase of the gait cycle. In particular, back extensor muscle activity was mostly correlated with the dynamic balance in older adults. Thus, back extensor muscle activity in walking may provide a clue for higher falling risk in older adults. This study demonstrates that the back extensor muscles play very important roles with potential for rehabilitation training to improve balance and gait in older adults.

  19. Motor-Neuron Pool Excitability of the Lower Leg Muscles After Acute Lateral Ankle Sprain

    PubMed Central

    Klykken, Lindsey W.; Pietrosimone, Brian G.; Kim, Kyung-Min; Ingersoll, Christopher D.; Hertel, Jay

    2011-01-01

    Context: Neuromuscular deficits in leg muscles that are associated with arthrogenic muscle inhibition have been reported in people with chronic ankle instability, yet whether these neuromuscular alterations are present in individuals with acute sprains is unknown. Objective: To compare the effect of acute lateral ankle sprain on the motor-neuron pool excitability (MNPE) of injured leg muscles with that of uninjured contralateral leg muscles and the leg muscles of healthy controls. Design: Case-control study. Setting: Laboratory. Patients or Other Participants: Ten individuals with acute ankle sprains (6 females, 4 males; age = 19.2 ± 3.8 years, height = 169.4 ± 8.5 cm, mass = 66.3 ±11.6 kg) and 10 healthy individuals (6 females, 4 males; age = 20.6 ± 4.0 years, height = 169.9 ± 10.6 cm, mass = 66.3 ± 10.2 kg) participated. Intervention(s): The independent variables were group (acute ankle sprain, healthy) and limb (injured, uninjured). Separate dependent t tests were used to determine differences in MNPE between legs. Main Outcome Measure(s): The MNPE of the soleus, fibularis longus, and tibialis anterior was measured by the maximal Hoffmann reflex (Hmax) and maximal muscle response (Mmax) and was then normalized using the Hmax:Mmax ratio. Results: The soleus MNPE in the ankle-sprain group was higher in the injured limb (Hmax:Mmax = 0.63; 95% confidence interval [CI], 0.46, 0.80) than in the uninjured limb (Hmax:Mmax = 0.47; 95% CI, 0.08, 0.93) (t6 = 3.62, P = .01). In the acute ankle-sprain group, tibialis anterior MNPE tended to be lower in the injured ankle (Hmax:Mmax = 0.06; 95% CI, 0.01, 0.10) than in the uninjured ankle (Hmax:Mmax = 0.22; 95% CI, 0.09, 0.35), but this finding was not different (t9 = −2.01, P = .07). No differences were detected between injured (0.22; 95% CI, 0.14, 0.29) and uninjured (0.25; 95% CI, 0.12, 0.38) ankles for the fibularis longus in the ankle-sprain group (t9 = −0.739, P = .48). We found no side-to-side differences in any muscle among the healthy group. Conclusions: Facilitated MNPE was present in the involved soleus muscle of patients with acute ankle sprains, but no differences were found in the fibularis longus or tibialis anterior muscles. PMID:21669095

  20. The effect of repetitive ankle perturbations on muscle reaction time and muscle activity.

    PubMed

    Thain, Peter Kevin; Hughes, Gerwyn Trefor Gareth; Mitchell, Andrew Charles Stephen

    2016-10-01

    The use of a tilt platform to simulate a lateral ankle sprain and record muscle reaction time is a well-established procedure. However, a potential caveat is that repetitive ankle perturbation may cause a natural attenuation of the reflex latency and amplitude. This is an important area to investigate as many researchers examine the effect of an intervention on muscle reaction time. Muscle reaction time, peak and average amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain (combined inversion and plantar flexion movement) were calculated in twenty-two physically active participants. The 40 perturbations were divided into 4 even groups of 10 dominant limb perturbations. Within-participants repeated measures analysis of variance (ANOVA) tests were conducted to assess the effect of habituation over time for each variable. There was a significant reduction in the peroneus longus average amplitude between the aggregated first and last 10 consecutive ankle perturbations (F2.15,45.09=3.90, P=0.03, ɳp(2)=0.16). Authors should implement no more than a maximum of 30 consecutive ankle perturbations (inclusive of practice perturbations) in future protocols simulating a lateral ankle sprain in an effort to avoid significant attenuation of muscle activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Transposition of branches of radial nerve innervating supinator to posterior interosseous nerve for functional reconstruction of finger and thumb extension in 4 patients with middle and lower trunk root avulsion injuries of brachial plexus.

    PubMed

    Wu, Xia; Cong, Xiao-Bing; Huang, Qi-Shun; Ai, Fang-Xin; Liu, Yu-Tian; Lu, Xiao-Cheng; Li, Jin; Weng, Yu-Xiong; Chen, Zhen-Bing

    2017-12-01

    This study aimed to investigate the reconstruction of the thumb and finger extension function in patients with middle and lower trunk root avulsion injuries of the brachial plexus. From April 2010 to January 2015, we enrolled in this study 4 patients diagnosed with middle and lower trunk root avulsion injuries of the brachial plexus via imaging tests, electrophysiological examinations, and clinical confirmation. Muscular branches of the radial nerve, which innervate the supinator in the forearm, were transposed to the posterior interosseous nerve to reconstruct the thumb and finger extension function. Electrophysiological findings and muscle strength of the extensor pollicis longus and extensor digitorum communis, as well as the distance between the thumb tip and index finger tip, were monitored. All patients were followed up for 24 to 30 months, with an average of 27.5 months. Motor unit potentials (MUP) of the extensor digitorum communis appeared at an average of 3.8 months, while MUP of the extensor pollicis longus appeared at an average of 7 months. Compound muscle action potential (CMAP) appeared at an average of 9 months in the extensor digitorum communis, and 12 months in the extensor pollicis longus. Furthermore, the muscle strength of the extensor pollicis longus and extensor digitorum communis both reached grade III at 21 months. Lastly, the average distance between the thumb tip and index finger tip was 8.8 cm at 21 months. In conclusion, for patients with middle and lower trunk injuries of the brachial plexus, transposition of the muscular branches of the radial nerve innervating the supinator to the posterior interosseous nerve for the reconstruction of thumb and finger extension function is practicable and feasible.

  2. Effects of Two Football Stud Types on Knee and Ankle Kinetics of Single-Leg Land-Cut and 180° Cut Movements on Infilled Synthetic Turf.

    PubMed

    Bennett, Hunter J; Brock, Elizabeth; Brosnan, James T; Sorochan, John C; Zhang, Songning

    2015-10-01

    Higher ACL injury rates have been recorded in cleats with higher torsional resistance in American football, which warrants better understanding of shoe/stud-dependent joint kinetics. The purpose of this study was to determine differences in knee and ankle kinetics during single-leg land cuts and 180° cuts on synthetic infilled turf while wearing 3 types of shoes. Fourteen recreational football players performed single-leg land cuts and 180° cuts in nonstudded running shoes (RS) and in football shoes with natural (NTS) and synthetic turf studs (STS). Knee and ankle kinetic variables were analyzed with a 3 × 2 (shoe × movement) repeated-measures ANOVA (P < .05). A significant shoe-by-movement interaction was found in loading response peak knee adduction moments, with NTS producing smaller moments compared with both STS and RS only in 180° cuts. Reduced peak negative plantar flexor powers were also found in NTS compared with STS. The single-leg land cut produced greater loading response and push-off peak knee extensor moments, as well as peak negative and positive extensor and plantar flexor powers, but smaller loading peak knee adduction moments and push-off peak ankle eversion moments than 180° cuts. Overall, the STS and 180° cuts resulted in greater frontal plane knee loading and should be monitored for possible increased ACL injury risks.

  3. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    PubMed

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Fatigue and recovery from dynamic contractions in men and women differ for arm and leg muscles.

    PubMed

    Senefeld, Jonathon; Yoon, Tejin; Bement, Marie Hoeger; Hunter, Sandra K

    2013-09-01

    Whether there is a gender difference in fatigue and recovery from maximal velocity fatiguing contractions and across muscles is not understood. Sixteen men and 19 women performed 90 isotonic contractions at maximal voluntary shortening velocity (maximal velocity concentric contractions, MVCC) with the elbow flexor and knee extensor muscles (separate days) at a load equivalent to 20% maximal voluntary isometric contraction (MVIC). Power (from MVCCs) decreased similarly for men and women for both muscles (P > 0.05). Men and women had similar declines in MVIC of elbow flexors, but men had greater reductions in knee extensor MVIC force and MVIC electromyogram activity than women (P < 0.05). The decline in MVIC and power was greater, and force recovery was slower for the elbow flexors compared with knee extensors. The gender difference in muscle fatigue often observed during isometric tasks was diminished during fast dynamic contractions for upper and lower limb muscles. Copyright © Published 2013 by Wiley Periodicals, Inc. This article is a US Government wmusork and, as such, is in the public domain in the United States of America.

  5. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed

    Evans, P D; Siegler, M V

    1982-03-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion.

  6. Octopamine mediated relaxation of maintained and catch tension in locust skeletal muscle.

    PubMed Central

    Evans, P D; Siegler, M V

    1982-01-01

    1. The modulatory actions of an identified octopaminergic neurone (DUMETi) that projects to the extensor-tibiae muscle of the locust hind leg depend upon the frequency of stimulation of the slow motoneurone (SETi) to this muscle. 2. At low frequencies of SETi stimulation (1Hz and below) the predominant modulatory effects are increases in the amplitude and relaxation rate of twitch tension. At higher frequencies, where twitches summate but tetanus is incomplete (up to 20 Hz), the reduction of maintained tension becomes considerably more important. 3. Both octopamine application and DUMETi stimulation reduce the amount of catch tension displayed by the extensor muscle when SETi is fired in a variety of different stimulus patterns. The extensor-tibiae muscle is itself 'pattern sensitive' since is shows a 'positive spacing effect' when SETi is stimulated at an average frequency of 1 Hz. 4. It is suggested that a primary function of DUMETi is to change the response of the muscle from one that favours maintenance of posture to one that favours rapid changes in joint position or force, such as might occur during locomotion. PMID:6808122

  7. Wrist muscle activity of khatrah approach in Mameluke technique using traditional bow archery

    NASA Astrophysics Data System (ADS)

    Ariffin, Muhammad Shahimi; Rambely, Azmin Sham; Ariff, Noratiqah Mohd

    2018-04-01

    An investigation of khatrah technique in archery was carried out. An electromyography (EMG) experiment was conducted towards six wrist muscles which are flexor carpi radialis, extensor carpi ulnaris and extensor digitorum communis for both arms. The maximum voluntary contraction (MVC) and activity data were recorded. The bow arm produced a higher muscle force compared to draw arm muscles during release phase. However, the muscle forces produced by bow arm had a consistency in term of pattern throughout the phases. In conclusion, the forces generated by the professional archer produced a force benchmark at the wrist joint to alleviate the risk of injury.

  8. Isokinetic Evaluation of the Hip Flexor and Extensor Muscles: A Systematic Review.

    PubMed

    Zapparoli, Fabricio Yuri; Riberto, Marcelo

    2017-11-01

    Isokinetic dynamometry testing is a safe and reliable method accepted as the "gold standard" in the evaluation of muscle strength in the open kinetic chain. Isokinetic hip examinations face problems in the standardization of the position of the equipment axis, in the individual being examined, and in the adjustment of the lever arm and in stabilization strategies for the patients during the tests. Identification of the methodologic procedures with best reproducibility is also needed. To review the literature to evaluate the parameters used for the isokinetic evaluation of the hip flexor and extensor muscles and its reproducibility. This is a systematic literature review of the Cochrane, LILACS, PEDro, PubMed, and SciELO databases. The inclusion criteria were articles on the evaluation of hip flexor and/or extensor muscular strength with an isokinetic dynamometer and articles that analyzed the ICC or Pearson's reproducibility. The information extracted was positioning of the patient; positioning of the dynamometer axis; positioning of the lever arm; angular speed; sample size, pathology; type of contraction; and ICC and Pearson's results. 204 articles were found, from which 14 were selected that evaluated hip flexor and extensor muscles, involving 550 individuals who were submitted to an isokinetic hip evaluation. Five articles obtained the best result in reproducibility and had their methodology analyzed. To obtain better reproducibility of the isokinetic evaluation of the hip flexor and extensor muscles, the following recommendations must be followed: the individual must be positioned in the supine position and the dynamometer axis must be aligned with the greater trochanter of the femur. The positioning of the lever arm must be in the most distal region of the thigh possible. The angular speed used to analyze torque peak and muscle work was 60°/s, and to evaluate the muscle power it was 180°/s, with concentric and eccentric contractions being analyzed.

  9. The influences of sex and posture on joint energetics during drop landings.

    PubMed

    Norcross, M F; Shultz, S J; Weinhold, P S; Lewek, M D; Padua, D A; Blackburn, J T

    2015-04-01

    Previous observations suggest that females utilize a more erect initial landing posture than males with sex differences in landing posture possibly related to sex-specific energy absorption (EA) strategies. However, sex-specific EA strategies have only been observed when accompanied by sex differences in initial landing posture. This study (a) investigated the potential existence of sex-specific EA strategies; and (b) determined the influences of sex and initial landing posture on the biomechanical determinants of EA. The landing biomechanics of 80 subjects were recorded during drop landings in Preferred, Flexed, and Erect conditions. No sex differences in joint EA were identified after controlling for initial landing posture. Males and females exhibited greater ankle EA during Erect vs Flexed landings with this increase driven by 12% greater ankle velocity, but no change in ankle extensor moment. No differences in hip and knee EA were observed between conditions. However, to achieve similar knee EA, subjects used 7% greater mean knee extensor moment but 9% less knee angular velocity during Flexed landings. The results suggest that sex-specific EA strategies do not exist, and that the magnitude of knee joint EA can be maintained by modulating the relative contributions of joint moment and angular velocity to EA. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy.

    PubMed

    Carberry, Steven; Brinkmeier, Heinrich; Zhang, Yaxin; Winkler, Claudia K; Ohlendieck, Kay

    2013-09-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20-25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein expression patterns in the muscle subtypes from mdx mice may be due to dissimilar downstream events, including differences in muscle structure or compensatory mechanisms that counteract pathophysiological processes. The interosseus muscle from mdx mice possibly represents a naturally protected phenotype.

  11. Comparative proteomic profiling of soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscles from the mdx mouse model of Duchenne muscular dystrophy

    PubMed Central

    CARBERRY, STEVEN; BRINKMEIER, HEINRICH; ZHANG, YAXIN; WINKLER, CLAUDIA K.; OHLENDIECK, KAY

    2013-01-01

    Duchenne muscular dystrophy is due to genetic abnormalities in the dystrophin gene and represents one of the most frequent genetic childhood diseases. In the X-linked muscular dystrophy (mdx) mouse model of dystrophinopathy, different subtypes of skeletal muscles are affected to a varying degree albeit the same single base substitution within exon 23 of the dystrophin gene. Thus, to determine potential muscle subtype-specific differences in secondary alterations due to a deficiency in dystrophin, in this study, we carried out a comparative histological and proteomic survey of mdx muscles. We intentionally included the skeletal muscles that are often used for studying the pathomechanism of muscular dystrophy. Histological examinations revealed a significantly higher degree of central nucleation in the soleus and extensor digitorum longus muscles compared with the flexor digitorum brevis and interosseus muscles. Muscular hypertrophy of 20–25% was likewise only observed in the soleus and extensor digitorum longus muscles from mdx mice, but not in the flexor digitorum brevis and interosseus muscles. For proteomic analysis, muscle protein extracts were separated by fluorescence two-dimensional (2D) gel electrophoresis. Proteins with a significant change in their expression were identified by mass spectrometry. Proteomic profiling established an altered abundance of 24, 17, 19 and 5 protein species in the dystrophin-deficient soleus, extensor digitorum longus, flexor digitorum brevis and interosseus muscle, respectively. The key proteomic findings were verified by immunoblot analysis. The identified proteins are involved in the contraction-relaxation cycle, metabolite transport, muscle metabolism and the cellular stress response. Thus, histological and proteomic profiling of muscle subtypes from mdx mice indicated that distinct skeletal muscles are differentially affected by the loss of the membrane cytoskeletal protein, dystrophin. Varying degrees of perturbed protein expression patterns in the muscle subtypes from mdx mice may be due to dissimilar downstream events, including differences in muscle structure or compensatory mechanisms that counteract pathophysiological processes. The interosseus muscle from mdx mice possibly represents a naturally protected phenotype. PMID:23828267

  12. The effects of Kinesio Taping on the trajectory of the forelimb and the muscle activity of the Musculus brachiocephalicus and the Musculus extensor carpi radialis in horses

    PubMed Central

    Zellner, Antonia; Bockstahler, Barbara; Peham, Christian

    2017-01-01

    Background information The present study aimed to investigate the effects of Kinesio Taping on the trajectory of the forelimb and the muscle activity of the M. brachiocephalicus and the M. extensor carpi radialis in horses. 19 horses and ponies of different breeds (body weight: 496±117 kg), gender (8 mares, 10 geldings and 3 stallions) and ages (14.9±6.9 years old) were analysed without Kinesio Tape (“no tape”), with Kinesio Tape (muscle facilitation application on both muscles of both sides, “with tape”) and immediately after Kinesio Taping (“post tape”) through kinematic motion analysis and surface electromyography on a treadmill at the walk (speed: 1.5±0.1 m/s) and trot (speed: 3.1±0.3 m/s). Results The results of the surface electromyography (maximum muscle activity at the walk and trot) and the kinematic motion analysis (maximum stride length and maximum height of the forelimbs flight arc at the walk and trot) showed that there were no significant differences between "no tape", "with tape" and "post tape". Conclusion To sum up, Kinesio Taping on the M. brachiocephalicus and the M. extensor carpi radialis does not affect (in a positive or negative manner) the trajectory of the forelimb or the muscle activity of the M. brachiocephalicus and the M. extensor carpi radialis in horses. PMID:29166657

  13. Analysis of isokinetic muscle function and postural control in individuals with intermittent claudication

    PubMed Central

    Lanzarin, Morgan; Parizoto, Patricia; Santos, Gilmar M.

    2016-01-01

    BACKGROUND: Intermittent claudication (IC) is a debilitating condition that mostly affects elderly people. IC is manifested by a decrease in ambulatory function. Individuals with IC present with motor and sensory nerve dysfunction in the lower extremities, which may lead to deficits in balance. OBJECTIVE: This study aimed to measure postural control and isokinetic muscle function in individuals with intermittent claudication. METHOD: The study included 32 participants of both genders, 16 IC participants (mean age: 64 years, SD=6) and 16 healthy controls (mean age: 67 years, SD=5), which were allocated into two groups: intermittent claudication group (ICG) and control group (CG). Postural control was assessed using the displacement and velocity of the center of pressure (COP) during the sensory organization test (SOT) and the motor control test (MCT). Muscle function of the flexor and extensor muscles of the knee and ankle was measured by an isokinetic dynamometer. Independent t tests were used to calculate the between-group differences. RESULTS: The ICG presented greater displacement (p =0.027) and speed (p =0.033) of the COP in the anteroposterior direction (COPap) during the MCT, as well as longer latency (p =0.004). There were no between-group differences during the SOT. The ICG showed decreased muscle strength and power in the plantar flexors compared to the CG. CONCLUSION: Subjects with IC have lower values of strength and muscle power of plantiflexores, as well as changes in postural control in dynamic conditions. These individuals may be more vulnerable to falls than healthy subjects. PMID:26786077

  14. Changes in passive tension of muscle in humans and animals after eccentric exercise

    PubMed Central

    Whitehead, N P; Weerakkody, N S; Gregory, J E; Morgan, D L; Proske, U

    2001-01-01

    This is a report of experiments on ankle extensor muscles of human subjects and a parallel series on the medial gastrocnemius of the anaesthetised cat, investigating the origin of the rise in passive tension after a period of eccentric exercise. Subjects exercised their triceps surae of one leg eccentrically by walking backwards on an inclined, forward-moving treadmill. Concentric exercise required walking forwards on a backwards-moving treadmill. For all subjects the other leg acted as a control. Immediately after both eccentric and concentric exercise there was a significant drop in peak active torque, but only after eccentric exercise was this accompanied by a shift in optimum angle for torque generation and a rise in passive torque. In the eccentrically exercised group some swelling and soreness developed but not until 24 h post-exercise. In the animal experiments the contracting muscle was stretched by 6 mm at 50 mm s−1 over a length range symmetrical about the optimum length for tension generation. Measurements of passive tension were made before and after the eccentric contractions, using small stretches to a range of muscle lengths, or with large stretches covering the full physiological range. After 150 eccentric contractions, passive tension was significantly elevated over most of the range of lengths. Measurements of work absorption during stretch-release cycles showed significant increases after the contractions. It is suggested that the rise in passive tension in both human and animal muscles after eccentric contractions is the result of development of injury contractures in damaged muscle fibres. PMID:11389215

  15. Differences in muscle activity during hand-dexterity tasks between women with arthritis and a healthy reference group.

    PubMed

    Brorsson, Sofia; Nilsdotter, Anna; Thorstensson, Carina; Bremander, Ann

    2014-05-15

    Impaired hand function is common in patients with arthritis and it affects performance of daily activities; thus, hand exercises are recommended. There is little information on the extent to which the disease affects activation of the flexor and extensor muscles during these hand-dexterity tasks. The purpose of this study was to compare muscle activation during such tasks in subjects with arthritis and in a healthy reference group. Muscle activation was measured in m. extensor digitorium communis (EDC) and in m. flexor carpi radialis (FCR) with surface electromyography (EMG) in women with rheumatoid arthritis (RA, n = 20), hand osteoarthritis (HOA, n = 16) and in a healthy reference group (n = 20) during the performance of four daily activity tasks and four hand exercises. Maximal voluntary isometric contraction (MVIC) was measured to enable intermuscular comparisons, and muscle activation is presented as %MVIC. The arthritis group used a higher %MVIC than the reference group in both FCR and EDC when cutting with a pair of scissors, pulling up a zipper and-for the EDC-also when writing with a pen and using a key (p < 0.02). The exercise "rolling dough with flat hands" required the lowest %MVIC and may be less effective in improving muscle strength. Women with arthritis tend to use higher levels of muscle activation in daily tasks than healthy women, and wrist extensors and flexors appear to be equally affected. It is important that hand training programs reflect real-life situations and focus also on extensor strength.

  16. Effects of the forearm support band on wrist extensor muscle fatigue.

    PubMed

    Knebel, P T; Avery, D W; Gebhardt, T L; Koppenhaver, S L; Allison, S C; Bryan, J M; Kelly, A

    1999-11-01

    A crossover experimental design with repeated measures. To determine whether the forearm support band alters wrist extensor muscle fatigue. Fatigue of the wrist extensor muscles is thought to be a contributing factor in the development of lateral epicondylitis. The forearm support band is purported to reduce or prevent symptoms of lateral epicondylitis but the mechanism of action is unknown. Fifty unimpaired subjects (36 men, 14 women; mean age = 29 +/- 6 years) were tested with and without a forearm support band before and after a fatiguing bout of exercise. Peak wrist extension isometric force, peak isometric grip force, and median power spectral frequency for wrist extensor electromyographic activity were measured before and after exercise and with and without the forearm support band. A 2 x 2 repeated measures multivariate analysis of variance was used to analyze the data, followed by univariate analysis of variance and Tukey's multiple comparison tests. Peak wrist extension isometric force, peak grip isometric force, and median power spectral frequency were all reduced after exercise. However, there was a significant reduction in peak grip isometric force and peak wrist extension isometric force values for the with-forearm support band condition (grip force 28%, wrist extension force 26%) compared to the without-forearm support band condition (grip force 18%, wrist extension force 15%). Wearing the forearm support band increased the rate of fatigue in unimpaired individuals. Our findings do not support the premise that wearing the forearm support band reduces muscle fatigue in the wrist extensors.

  17. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion.

    PubMed

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-12-01

    Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles.

  18. Acute effects of static and dynamic stretching on leg flexor and extensor isokinetic strength in elite women athletes.

    PubMed

    Sekir, U; Arabaci, R; Akova, B; Kadagan, S M

    2010-04-01

    The aim of this study was to explore the effects of static and dynamic stretching of the leg flexors and extensors on concentric and eccentric peak torque (PT) and electromyography (EMG) amplitude of the leg extensors and flexors in women athletes. Ten elite women athletes completed the following intervention protocol in a randomized order on separate days: (a) non-stretching (control), (b) static stretching, and (c) dynamic stretching. Stretched muscles were the quadriceps and hamstring muscles. Before and after the stretching or control intervention, concentric and eccentric isokinetic PT and EMG activity of the leg extensors and flexors were measured at 60 and 180 degrees/s. Concentric and eccentric quadriceps and hamstring muscle strength at both test speeds displayed a significant decrease following static stretching (P<0.01-0.001). In contrast, a significant increase was observed after dynamic stretching for these strength parameters (P<0.05-0.001). Parallel to this, normalized EMG amplitude parameters exhibited significant decreases following static (P<0.05-0.001) and significant increases following dynamic stretching (P<0.05-0.001) during quadriceps and hamstring muscle actions at both concentric and eccentric testing modes. Our findings suggest that dynamic stretching, as opposed to static or no stretching, may be an effective technique for enhancing muscle performance during the pre-competition warm-up routine in elite women athletes.

  19. Relationship between functional electrical stimulation duty cycle and fatigue in wrist extensor muscles of patients with hemiparesis.

    PubMed

    Packman-Braun, R

    1988-01-01

    The purpose of this study was to investigate, in a sample of patients with hemiparesis secondary to cerebrovascular accident, the relationship between the ratio of stimulus on time to off time and muscle fatigue using a commercial electrical stimulation unit. An experimental model was used to test the hypothesis that the smaller the stimulus off time relative to stimulus on time, the greater will be the muscle fatigue over time. The wrist extensor muscles of 18 patients with hemiparesis were stimulated electrically, and isometric force output was recorded continuously using an adapted strain gauge-recorder apparatus. For each testing session, peak on time of the electrical stimulus was set at 5 seconds, and off time was set at 5, 15, or 25 seconds. Six randomly assigned treatment groups participated in three separate treatment sessions in a different order at 48-hour intervals. Treatment sessions were continued either until wrist extensor muscle force output decreased to 50% of its initial value or for a maximum of 30 minutes. Data analysis revealed that significant differences in muscle tension developed among all duty cycles (p less than .01). Duty-cycle ratios of 1:1, 1:3, and 1:5 were shown to be progressively less fatiguing. Within the limits of this investigation, the 1:5 duty-cycle ratio was determined to be the best suited for initial use in programs of prolonged stimulation to the wrist extensor muscles of patients with hemiparesis. The hypothesis was accepted that the smaller the stimulus off time (rest interval) with respect to the stimulus on time, the greater will be the muscle fatigue over time.

  20. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    PubMed Central

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT

    2016-01-01

    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194

  1. Comparison of isokinetic muscle strength and muscle power by types of warm-up.

    PubMed

    Sim, Young-Je; Byun, Yong-Hyun; Yoo, Jaehyun

    2015-05-01

    [Purpose] The purpose of this study was to clarify the influence of static stretching at warm-up on the isokinetic muscle torque (at 60°/sec) and muscle power (at 180°/sec) of the flexor muscle and extensor muscle of the knee joint. [Subjects and Methods] The subjects of this study were 10 healthy students with no medically specific findings. The warm-up group and warm-up with stretching group performed their respective warm-up prior to the isokinetic muscle torque evaluation of the knee joint. One-way ANOVA was performed by randomized block design for each variable. [Results] The results were as follows: First, the flexor peak torque and extensor peak torque of the knee joint tended to decrease at 60°/sec in the warm-up with stretching group compared with the control group and warm-up group, but without statistical significance. Second, extensor power at 180°/sec was also not statistically significant. However, it was found that flexor power increased significantly in the warm-up with stretching group at 180°/sec compared with the control group and warm-up group in which stretching was not performed. [Conclusion] Therefore, it is considered that in healthy adults, warm-up including two sets of stretching for 20 seconds per muscle group does not decrease muscle strength and muscle power.

  2. Neck Flexor and Extensor Muscle Endurance in Subclinical Neck Pain: Intrarater Reliability, Standard Error of Measurement, Minimal Detectable Change, and Comparison With Asymptomatic Participants in a University Student Population.

    PubMed

    Lourenço, Ana S; Lameiras, Carina; Silva, Anabela G

    2016-01-01

    The aims of this study were to assess intrarater reliability and to calculate the standard error of measurement (SEM) and minimal detectable change (MDC) for deep neck flexor and neck extensor muscle endurance tests, and compare the results between individuals with and without subclinical neck pain. Participants were students of the University of Aveiro reporting subclinical neck pain and asymptomatic participants matched for sex and age to the neck pain group. Data on endurance capacity of the deep neck flexors and neck extensors were collected by a blinded assessor using the deep neck flexor endurance test and the extensor endurance test, respectively. Intraclass correlation coefficients (ICCs), SEM, and MDC were calculated for measurements taken within a session by the same assessor. Differences between groups for endurance capacity were investigated using a Mann-Whitney U test. The deep neck flexor endurance test (ICC = 0.71; SEM = 6.91 seconds; MDC = 19.15 seconds) and neck extensor endurance test (ICC = 0.73; SEM = 9.84 minutes; MDC = 2.34 minutes) are reliable. No significant differences were found between participants with and without neck pain for both tests of muscle endurance (P > .05). The endurance capacity of the deep neck flexors and neck extensors can be reliably measured in participants with subclinical neck pain. However, the wide SEM and MDC might limit the sensitivity of these tests. Copyright © 2016. Published by Elsevier Inc.

  3. Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination

    PubMed Central

    Hagen, Marco; Lescher, Stephanie; Gerhardt, Andreas; Lahner, Matthias; Felber, Stephan; Hennig, Ewald M.

    2015-01-01

    Background The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods. Methods Twenty-two healthy male recreationally active sports students performed ten weeks of single-set high resistance strength training with 3 training sessions per week. The subjects conducted subtalar pronator/supinator muscle training (ST) with the right leg by using a custom-made apparatus; the left foot muscles were exercised with machine-based talocrural plantar and dorsiflexor training (TT). Muscle strength (MVIC), muscle volume and foot biomechanics (rearfoot motion, ground reaction forces, muscle reaction times) during a sudden ankle supination were recorded before and after the intervention. Results Compared to TT, ST resulted in significantly higher pronator (14% vs. 8%, P<0.01) and supinator MVIC (25% vs. 12%, P<0.01). During sudden foot inversions, both ST and TT resulted in reduced supination velocity (-12%; P<0.01). The muscle reaction onset time was faster after the training in peroneus longus (PL) (P<0.01). Muscle volume of PL (P<0.01) and TA (P<0.01) increased significantly after both ST and TT. Conclusion After both ST and TT, the ankle joint complex is mechanically more stabilised against sudden supinations due to the muscle volume increase of PL and TA. As the reduced supination velocities indicate, the strength training effects are already present during free-fall. According to a sudden ankle supination in standing position, both machine-based dorsiflexor and pronator strength training is recommended for enhancing the mechanical stability of the ankle. PMID:26110847

  4. Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.

    PubMed

    Jamwal, Prashant K; Hussain, Shahid; Tsoi, Yun Ho; Ghayesh, Mergen H; Xie, Sheng Quan

    2017-05-01

    A musculoskeletal model for the ankle complex is vital in order to enhance the understanding of neuro-mechanical control of ankle motions, diagnose ankle disorders and assess subsequent treatments. Motions at the human ankle and foot, however, are complex due to simultaneous movements at the two joints namely, the ankle joint and the subtalar joint. The musculoskeletal elements at the ankle complex, such as ligaments, muscles and tendons, have intricate arrangements and exhibit transient and nonlinear behaviour. This paper develops a musculoskeletal model of the ankle complex considering the biaxial ankle structure. The model provides estimates of overall mechanical characteristics (motion and moments) of ankle complex through consideration of forces applied along ligaments and muscle-tendon units. The dynamics of the ankle complex and its surrounding ligaments and muscle-tendon units is modelled and formulated into a state space model to facilitate simulations. A graphical user interface is also developed during this research in order to include the visual anatomical information by converting it to quantitative information on coordinates. Validation of the ankle model was carried out by comparing its outputs with those published in literature as well as with experimental data obtained from an existing parallel ankle rehabilitation robot. Qualitative agreement was observed between the model and measured data for both, the passive and active ankle motions during trials in terms of displacements and moments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling

    PubMed Central

    2010-01-01

    Background When humans perform rhythmic upper and lower limb locomotor-like movements, there is an excitatory effect of upper limb exertion on lower limb muscle recruitment. To investigate potential neural mechanisms for this behavioral observation, we developed computer simulations modeling interlimb neural pathways among central pattern generators. We hypothesized that enhancement of muscle recruitment from interlimb spinal mechanisms was not sufficient to explain muscle enhancement levels observed in experimental data. Methods We used Matsuoka oscillators for the central pattern generators (CPG) and determined parameters that enhanced amplitudes of rhythmic steady state bursts. Potential mechanisms for output enhancement were excitatory and inhibitory sensory feedback gains, excitatory and inhibitory interlimb coupling gains, and coupling geometry. We first simulated the simplest case, a single CPG, and then expanded the model to have two CPGs and lastly four CPGs. In the two and four CPG models, the lower limb CPGs did not receive supraspinal input such that the only mechanisms available for enhancing output were interlimb coupling gains and sensory feedback gains. Results In a two-CPG model with inhibitory sensory feedback gains, only excitatory gains of ipsilateral flexor-extensor/extensor-flexor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 26%. In a two-CPG model with excitatory sensory feedback gains, excitatory gains of contralateral flexor-flexor/extensor-extensor coupling produced reciprocal upper-lower limb bursts and enhanced output up to 100%. However, within a given excitatory sensory feedback gain, enhancement due to excitatory interlimb gains could only reach levels up to 20%. Interconnecting four CPGs to have ipsilateral flexor-extensor/extensor-flexor coupling, contralateral flexor-flexor/extensor-extensor coupling, and bilateral flexor-extensor/extensor-flexor coupling could enhance motor output up to 32%. Enhancement observed in experimental data exceeded 32%. Enhancement within this symmetrical four-CPG neural architecture was more sensitive to relatively small interlimb coupling gains. Excitatory sensory feedback gains could produce greater output amplitudes, but larger gains were required for entrainment compared to inhibitory sensory feedback gains. Conclusions Based on these simulations, symmetrical interlimb coupling can account for much, but not all of the excitatory neural coupling between upper and lower limbs during rhythmic locomotor-like movements. PMID:21143960

  6. The Fate of the Iliopsoas Muscle in Long-term Follow-up After Open Reduction With a Medial Approach in Developmental Dysplasia of the Hip. Part 2: Isokinetic Muscle Strength Evaluation.

    PubMed

    Yilmaz, Serdar; Aksahin, Ertugrul; Ersoz, Murat; Bicimoglu, Ali

    2017-09-01

    The impact on long-term weakness of hip flexion of complete iliopsoas tenotomy during open reduction of developmental hip dysplasia with a medial approach has not yet been fully clarified. The purpose of this study was to investigate the isokinetic muscle strength (IMS) of hip flexor and extensor muscles in these patients and also to analyze the effect of spontaneous reattachment of the iliopsoas muscle on IMS measurements. The study included 20 patients. Earlier magnetic resonance imaging examination of all the patients revealed spontaneous reattachment of the iliopsoas in 18 (90%) patients. IMS measurements were performed at 60 and 150 degrees/s. The peak torque, total work (TW), average power (AP), work fatigue, and agonist to antagonist muscle ratio of the operated and nonoperated hips were recorded separately for flexors and extensors. The effect of iliopsoas reattachment on IMS was also evaluated. The mean follow-up period was 16.65±2.16 (13 to 20) years. Total work (P=0.013) and average power (P=0.009) of the flexor muscles and work fatigue of the extensor muscles (P=0.030) of the operated hip were significantly decreased when compared with the nonoperated hips at 150 degrees/s. There was no significant difference between the flexor muscles of the operated and nonoperated hips (P<0.05) at 60 degrees/s and extensor muscles (P<0.05) at 150 degrees/s. In addition, patients without reattachment had lower IMS in the operated hips. Flexor muscle strength was decreased in the operated hip against low resistance in long-term follow-up after iliopsoas tenotomy. This may reflect that hip muscle strength was decreased after prolonged activities such as sports. However, in forceful activities flexor muscle strength was retained due to iliopsoas reattachment. On the basis of this study we thought that spontaneous reattachment of the iliopsoas tendon substantially preserves muscle strength. Nonetheless possible efforts should be made to surgically reattach the psoas tendon to preserve strength of the muscle. Therapeutic level IV.

  7. Mobile input device type, texting style and screen size influence upper extremity and trapezius muscle activity, and cervical posture while texting.

    PubMed

    Kietrys, David M; Gerg, Michael J; Dropkin, Jonathan; Gold, Judith E

    2015-09-01

    This study aimed to determine the effects of input device type, texting style, and screen size on upper extremity and trapezius muscle activity and cervical posture during a short texting task in college students. Users of a physical keypad produced greater thumb, finger flexor, and wrist extensor muscle activity than when texting with a touch screen device of similar dimensions. Texting on either device produced greater wrist extensor muscle activity when texting with 1 hand/thumb compared with both hands/thumbs. As touch screen size increased, more participants held the device on their lap, and chose to use both thumbs less. There was also a trend for greater finger flexor, wrist extensor, and trapezius muscle activity as touch screen size increased, and for greater cervical flexion, although mean differences for cervical flexion were small. Future research can help inform whether the ergonomic stressors observed during texting are associated with musculoskeletal disorder risk. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  8. Inter-individual similarities and variations in muscle forces acting on the ankle joint during gait.

    PubMed

    Błażkiewicz, Michalina; Wiszomirska, Ida; Kaczmarczyk, Katarzyna; Naemi, Roozbeh; Wit, Andrzej

    2017-10-01

    Muscle forces acting over the ankle joint play an important role in the forward progression of the body during gait. Yet despite the importance of ankle muscle forces, direct in-vivo measurements are neither possible nor practical. This makes musculoskeletal simulation useful as an indirect technique to quantify the muscle forces at work during locomotion. The purpose of this study was to: 1) identify the maximum peaks of individual ankle muscle forces during gait; 2) investigate the order over which the muscles are sorted based on their maximum peak force. Three-dimensional kinematics and ground reaction forces were measured during the gait of 10 healthy subjects, and the data so obtained were input into the musculoskeletal model distributed with the OpenSim software. In all 10 individuals we observed that the soleus muscle generated the greatest strength both in dynamic (1856.1N) and isometric (3549N) conditions, followed by the gastrocnemius in dynamic conditions (1232.5N). For all other muscles, however, the sequence looks different across subjects, so the k-means clustering method was used to obtain one main order over which the muscles' peak-forces are sorted. The results indicate a common theme, with some variations in the maximum peaks of ankle muscle force across subjects. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hip Strength as an Intrinsic Risk Factor for Lateral Ankle Sprains in Youth Soccer Players: A 3-Season Prospective Study.

    PubMed

    De Ridder, Roel; Witvrouw, Erik; Dolphens, Mieke; Roosen, Philip; Van Ginckel, Ans

    2017-02-01

    Numerous epidemiological studies have emphasized the burden of lateral ankle sprains in youth soccer players. However, no prospective study has identified intrinsic physical and modifiable risk factors for these injuries in this particular population. Although injury prevention programs in soccer incorporate proximal hip and core stability exercises, it is striking that the relationship between impaired proximal hip function and ankle sprains has not yet been prospectively investigated in youth soccer players. This prospective study aimed to examine whether hip muscle strength is a risk factor for sustaining a lateral ankle sprain in youth soccer players. We hypothesized that decreased hip muscle strength would predispose youth soccer players to an increased risk of lateral ankle sprains. Case-control study; Level of evidence, 3. This study included a total of 133 male youth soccer players (age divisions U11-U17) for analysis. At the beginning of the season, anthropometric characteristics were collected and hip muscle strength was assessed using a handheld dynamometer. Injury registration was performed by the team medical staff during 3 consecutive seasons. A principal-component, multivariate Cox regression analysis was performed to identify potential risk factors for sustaining a lateral ankle sprain. Twelve participants (18% of all reported injuries) sustained a lateral ankle sprain (0.36 per 1000 athletic-exposure hours). After adjustment for body size dependencies and other hip muscle forces, an increase in hip muscle extension force was associated with a significant decrease in the hazard of the injury (hazard ratio, 0.3; 95% confidence interval, 0.1-0.9; P = .028). No other study variable could be identified as a risk factor for lateral ankle sprains. Reduced hip extension muscle strength is an independent risk factor for lateral ankle sprains in male youth soccer players. Other hip muscle strength outcomes were not identified as risk factors. Replication in larger samples with more injured cases is warranted to further ascertain the importance of this risk factor.

  10. Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis.

    PubMed

    Carroll, Matthew; Joyce, William; Brenton-Rule, Angela; Dalbeth, Nicola; Rome, Keith

    2013-03-22

    The foot and ankle are frequently affected in patients with rheumatoid arthritis (RA). One of the negative consequences of RA on the physical function of patients is a decrease in muscle strength. However, little is known about foot and muscle strength in this population. The aim of the study was to evaluate significant differences in foot and ankle muscle strength between patients with established RA against age and sex-matched controls using hand-held dynamometry. The maximal muscle strength of ankle plantarflexion, dorsiflexion, eversion and inversion was assessed in 14 patients with RA, mean (SD) disease duration of 22 (14.1) years, and 20 age and sex-matched control participants using hand-held dynamometry. Significant differences were observed in muscle strength between the two groups in plantarflexion (p = 0.00), eversion (p = 0.04) and inversion (p = 0.01). No significant difference was found in dorsiflexion (p > 0.05). The patients with RA displayed a significantly lower plantarflexion-dorsiflexion ratio than the control participants (p = 0.03). The results from this study showed that the RA patients displayed a significant decrease in ankle dorsiflexion, eversion and inversion when compared to the non-RA control group suggesting that foot and ankle muscle strength may be affected by the pathological processes in RA. This study is a preliminary step for the measurement of muscle impairments within the RA population.

  11. Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis

    PubMed Central

    2013-01-01

    Background The foot and ankle are frequently affected in patients with rheumatoid arthritis (RA). One of the negative consequences of RA on the physical function of patients is a decrease in muscle strength. However, little is known about foot and muscle strength in this population. The aim of the study was to evaluate significant differences in foot and ankle muscle strength between patients with established RA against age and sex-matched controls using hand-held dynamometry. Methods The maximal muscle strength of ankle plantarflexion, dorsiflexion, eversion and inversion was assessed in 14 patients with RA, mean (SD) disease duration of 22 (14.1) years, and 20 age and sex-matched control participants using hand-held dynamometry. Results Significant differences were observed in muscle strength between the two groups in plantarflexion (p = 0.00), eversion (p = 0.04) and inversion (p = 0.01). No significant difference was found in dorsiflexion (p > 0.05). The patients with RA displayed a significantly lower plantarflexion-dorsiflexion ratio than the control participants (p = 0.03). Conclusions The results from this study showed that the RA patients displayed a significant decrease in ankle dorsiflexion, eversion and inversion when compared to the non-RA control group suggesting that foot and ankle muscle strength may be affected by the pathological processes in RA. This study is a preliminary step for the measurement of muscle impairments within the RA population. PMID:23522448

  12. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    PubMed

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  13. Sway‐dependent changes in standing ankle stiffness caused by muscle thixotropy

    PubMed Central

    Sakanaka, Tania E.; Lakie, Martin

    2016-01-01

    Key points The passive stiffness of the calf muscles contributes to standing balance, although the properties of muscle tissue are highly labile.We investigated the effect of sway history upon intrinsic ankle stiffness and demonstrated reductions in stiffness of up to 43% during conditions of increased baseline sway.This sway dependence was most apparent when using low amplitude stiffness‐measuring perturbations, and the short‐range stiffness component was smaller during periods of high sway.These characteristics are consistent with the thixotropic properties of the calf muscles causing the observed changes in ankle stiffness.Periods of increased sway impair the passive stabilization of standing, demanding more active neural control of balance. Abstract Quiet standing is achieved through a combination of active and passive mechanisms, consisting of neural control and intrinsic mechanical stiffness of the ankle joint, respectively. The mechanical stiffness is partly determined by the calf muscles. However, the viscoelastic properties of muscle are highly labile, exhibiting a strong dependence on movement history. By measuring the effect of sway history upon ankle stiffness, the present study determines whether this lability has consequences for the passive stabilization of human standing. Ten subjects stood quietly on a rotating platform whose axis was collinear with the ankle joint. Ankle sway was increased by slowly tilting this platform in a random fashion, or decreased by fixing the body to a board. Ankle stiffness was measured by using the same platform to simultaneously apply small, brief perturbations (<0.6 deg; 140 ms) at the same time as the resulting torque response was recorded. The results show that increasing sway reduces ankle stiffness by up to 43% compared to the body‐fixed condition. Normal quiet stance was associated with intermediate values. The effect was most apparent when using smaller perturbation amplitudes to measure stiffness (0.1 vs. 0.6 deg). Furthermore, torque responses exhibited a biphasic pattern, consisting of an initial steep rise followed by a shallower increase. This transition occurred earlier during increased levels of ankle sway. These results are consistent with a movement‐dependent change in passive ankle stiffness caused by thixotropic properties of the calf muscle. The consequence is to place increased reliance upon active neural control during times when increased sway renders ankle stiffness low. PMID:26607292

  14. Analysis of Muscle Force-Velocity Parameter Changes in Elderly Women Resulting from Physical Activity--In Continuous Examinations

    ERIC Educational Resources Information Center

    Skrzek, Anna; Stefanska, Malgorzata

    2012-01-01

    The aim of the paper was to evaluate changes in muscle force-velocity parameters (F-v) in elderly women subjected to physical exercise. The examinations encompassed 20 women, aged 62-71, who were students at the University of the Third Age in Wroclaw. The evaluation of flexors and extensors of the knee joint, as well as flexors and extensors of…

  15. Elbow flexor fatigue modulates central excitability of the knee extensors.

    PubMed

    Aboodarda, Saied Jalal; Copithorne, David B; Power, Kevin E; Drinkwater, Eric; Behm, David G

    2015-09-01

    The present study investigated the effects of exercise-induced elbow flexor fatigue on voluntary force output, electromyographic (EMG) activity and motoneurone excitability of the nonexercised knee extensor muscles. Eleven participants attended 3 testing sessions: (i) control, (ii) unilateral fatiguing elbow flexion and (iii) bilateral fatiguing elbow flexion (BiFlex). The nonfatigued knee extensor muscles were assessed with thoracic motor evoked potentials (TMEPs), maximal compound muscle action potential (Mmax), knee extensor maximal voluntary contractions (MVCs), and normalized EMG activity before and at 30 s, 3 min, and 5 min postexercise. BiFlex showed significantly lower (Δ = -18%, p = 0.03) vastus lateralis (VL) normalized EMG activity compared with the control session whereas knee extension MVC force did not show any statistical difference between the 3 conditions (p = 0.12). The TMEP·Mmax(-1) ratio measured at the VL showed a significantly higher value (Δ = +46%, p = 0.003) following BiFlex compared with the control condition at 30 s postexercise. The results suggest that the lower VL normalized EMG following BiFlex might have been due to a reduction in supraspinal motor output because spinal motoneuronal responses demonstrated substantially higher value (30 s postexercise) and peripheral excitability (compound muscle action potential) showed no change following BiFelex than control condition.

  16. Neuromuscular plasticity in the locust after permanent removal of an excitatory motoneuron of the extensor tibiae muscle.

    PubMed

    Büschges, A; Djokaj, S; Bässler, D; Bässler, U; Rathmayer, W

    2000-01-01

    The capacity of the larval insect nervous system to compensate for the permanent loss of one of the two excitatory motoneurons innervating a leg muscle was investigated in the locust (Locusta migratoria). In the fourth instar, the fast extensor tibiae (FETi) motoneuron in the mesothoracic ganglion was permanently removed by photoinactivation with a helium-cadmium laser. Subsequently, the animals were allowed to develop into adulthood. When experimental animals were tested as adults after final ecdysis, fast-contracting fibers in the most proximal region of the corresponding extensor muscle, which are normally predominantly innervated by FETi only, uniformly responded to activity of the slow extensor tibiae (SETi) neuron. In adult operated animals, single pulses to SETi elicited large junctional responses in the fibers which resulted in twitch contractions of these fibers similar to the responses to FETi activity in control animals. The total number of muscle fibers, their properties as histochemically determined contractional types (fast and slow), and their distribution were not affected by photoinactivation of FETi. Possible mechanisms enabling the larval neuromuscular system to compensate for the loss of FETi through functionally similar innervation by a different motoneuron, i.e. SETi, are discussed. Copyright 2000 John Wiley & Sons, Inc.

  17. Correlation between Mechanical Properties of the Ankle Muscles and Postural Sway during the Menstrual Cycle.

    PubMed

    Yim, JongEun; Petrofsky, Jerrold; Lee, Haneul

    2018-03-01

    Ankle and foot injuries are common among athletes and physically active individuals. The most common residual disability, ankle sprain, is characterized by instability along with postural sway. If the supporting structures around a joint become lax, posture stability and balance are also affected. Previous studies have examined muscle stiffness and elasticity and postural sway separately; however, the relationship between these factors is yet unknown. It is well known that the levels of sex hormones, especially estrogen, change in women over the phase of the menstrual cycle. Therefore, this study examined the relationship between the mechanical properties of tissue and balance activity using a non-invasive digital palpation device to determine if they undergo any changes over the menstrual cycle in young women. Sixteen young women with regular menstrual cycles completed the study. Tone, stiffness, and elasticity of the ankle muscles (lateral gastrocnemius, peroneus longus, and tibialis anterior) were measured using a non-invasive digital palpation device. Postural sway was recorded while the participants performed balance tasks during ovulation and menstruation. Significantly greater posture sway characteristics and ankle muscle elasticity were found during ovulation than during menstruation; lower tone and stiffness of the ankle muscles were observed at ovulation (p < 0.05). Additionally, weak-to-strong relationships between ankle muscle mechanical properties and postural sway characteristics were found (p < 0.05). These results suggest the effect of estrogen on human connective tissues. We therefore postulate that estrogen increases joint and muscle laxity and affects posture stability according to the phase of the menstrual cycle.

  18. Proximal forearm extensor muscle strain is reduced when driving nails using a shock-controlled hammer.

    PubMed

    Buchanan, Kimberly A; Maza, Maria; Pérez-Vázquez, Carlos E; Yen, Thomas Y; Kijowski, Richard; Liu, Fang; Radwin, Robert G

    2016-10-01

    Repetitive hammer use has been associated with strain and musculoskeletal injuries. This study investigated if using a shock-control hammer reduces forearm muscle strain by observing adverse physiological responses (i.e. inflammation and localized edema) after use. Three matched framing hammers were studied, including a wood-handle, steel-handle, and shock-control hammer. Fifty volunteers were randomly assigned to use one of these hammers at a fatiguing pace of one strike every second, to seat 20 nails in a wood beam. Magnetic resonance imaging was used to scan the forearm muscles for inflammation before the task, immediately after hammering, and one to two days after. Electromyogram signals were measured to estimate grip exertions and localized muscle fatigue. High-speed video was used to calculate the energy of nail strikes. While estimated grip force was similar across the three hammers, the shock-control hammer had 40% greater kinetic energy upon impact and markedly less proximal extensor muscle edema than the wood-handle and steel-handle hammers, immediately after use (p<.05). Less edema observed for the shock-control hammer suggests that isolating handle shock can mitigate strain in proximal forearm extensor muscles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Estimation of muscle torque in various combat sports.

    PubMed

    Pędzich, Wioletta; Mastalerz, Andrzej; Sadowski, Jerzy

    2012-01-01

    The purpose of the research was to compare muscle torque of elite combat groups. Twelve taekwondo WTF athletes, twelve taekwondo ITF athletes and nine boxers participated in the study. Measurements of muscle torques were done under static conditions on a special stand which belonged to the Department of Biomechanics. The sum of muscle torque of lower right and left extremities of relative values was significantly higher for taekwondo WTF athletes than for boxers (16%, p < 0.001 for right and 10%, p < 0.05 for left extremities) and taekwondo ITF (10%, p < 0.05 for right and 8% for left extremities). Taekwondo ITF athletes attained significantly higher absolute muscle torque values than boxers for elbow flexors (20%, p < 0.05 for right and 11% for left extremities) and extensors (14% for right and 18%, p < 0.05 for left extremities) and shoulder flexors (10% for right and 12%, p < 0.05 for left extremities) and extensors (11% for right and 1% for left extremities). Taekwondo WTF and taekwondo ITF athletes obtained significantly different relative values of muscle torque of the hip flexors (16%, p < 0.05) and extensors (11%, p < 0.05) of the right extremities.

  20. Prospective study of the " Inside-Out" arthroscopic ankle ligament technique: Preliminary result.

    PubMed

    Nery, Caio; Fonseca, Lucas; Raduan, Fernando; Moreno, Marcus; Baumfeld, Daniel

    2017-03-22

    Lateral ankle ligament injury is among the most common orthopedic injuries. The objective of this study is to present the preliminary prospective results of treatment using the "Inside-Out" variant of the fully arthroscopic Broström-Gould technique. Twenty six patients were included: 20 male and 6 female, aged 19-60 years, mean 41 years. All patients had positive "anterior drawer" and "talar tilt" tests. When necessary, cartilage injuries were treated with microfracture and arthroscopic resection for anterior impingement; three patients had hindfoot varus, on whom Dwyer osteotomy was performed; one patient had peroneal tendinopathy and was treated with tendoscopic debridement and another one had partial injury of the deltoid ligament, which was treated by direct repair. Two arthroscopic surgery portals were used; the anteromedial and anterolateral. After careful inspection of the joint, the anterior surface of the fibula was cleaned to resect the remains of the anterior talo-fibular ligament. An anchor with two sutures was placed on the anterior aspect of the fibula, 1cm from the distal apex of the malleolus. The sutures were passed through the remnant of the anterior talo-fibular ligament as well as the extensor retinaculum using special curved needles. Duncan knots were used to tie the ligament and the inferior extensor retinaculum while the ankle was kept in a neutral position. Patients were kept immobilized non-weight bearing for 2 weeks and were then allowed to start weight bearing in a removable protective boot for 4 weeks. The patients were able to return to sporting activities 6 months after surgery. After a mean follow-up of 27 months (range 21-36 months), patients were functionally evaluated using the American Orthopedics Foot and Ankle Society (AOFAS) ankle score. The mean preoperative value was 58 points, while the mean postoperative value increased to 90 points. One patient had paresthesia in the superficial fibular nerve area, which resolved spontaneously. Despite the limited cohort and the relatively short follow-up period, the use of the "inside-out" arthroscopic technique may be considered as a valid option for the treatment of chronic ankle instability. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  1. Effects of 2 ankle destabilization devices on electromyography measures during functional exercises in individuals with chronic ankle instability.

    PubMed

    Donovan, Luke; Hart, Joseph M; Hertel, Jay

    2015-03-01

    Randomized crossover laboratory study. To determine the effects of ankle destabilization devices on surface electromyography (sEMG) measures of selected lower extremity muscles during functional exercises in participants with chronic ankle instability. Ankle destabilization devices are rehabilitation tools that can be worn as a boot or sandal to increase lower extremity muscle activation during walking in healthy individuals. However, they have not been tested in a population with pathology. Fifteen adults with chronic ankle instability participated. Surface electromyography electrodes were located over the anterior tibialis, fibularis longus, lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius. The activity level of these muscles was recorded in a single testing session during unipedal stance with eyes closed, the Star Excursion Balance Test, lateral hops, and treadmill walking. Each task was performed under 3 conditions: shod, ankle destabilization boot, and ankle destabilization sandal. Surface electromyography signal amplitudes were measured for each muscle during each exercise for all 3 conditions. Participants demonstrated a significant increase, with moderate to large effect sizes, in sEMG signal amplitude of the fibularis longus in the ankle destabilization boot and ankle destabilization sandal conditions during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, lateral hops, and walking, when compared to the shod condition. Both devices also resulted in an increase in sEMG signal amplitudes, with large effect sizes of the lateral gastrocnemius, rectus femoris, biceps femoris, and gluteus medius during the unipedal-stance-with-eyes-closed test, compared to the shod condition. Wearing ankle destabilization devices caused greater muscle activation during functional exercises in individuals with chronic ankle instability. Based on the magnitude of the effect, there were consistent increases in fibularis longus sEMG amplitudes during the unipedal eyes-closed balance test, the Star Excursion Balance Test in the anterior and posteromedial directions, and pre-initial contact and post-initial contact during lateral hops and walking.

  2. Gastrocnemius operating length with ankle foot orthoses in cerebral palsy.

    PubMed

    Choi, Hwan; Wren, Tishya Anne Leong; Steele, Katherine Muterspaugh

    2017-06-01

    Many individuals with cerebral palsy wear ankle foot orthoses during daily life. Orthoses influence joint motion, but how they impact muscle remains unclear. In particular, the gastrocnemius is commonly stiff in cerebral palsy. Understanding whether orthoses stretch or shorten this muscle during daily life may inform orthosis design and rehabilitation. This study investigated the impact of different ankle foot orthoses on gastrocnemius operating length during walking in children with cerebral palsy. Case series, within subject comparison of gastrocnemius operating length while walking barefoot and with two types of ankle foot orthoses. We performed gait analyses for 11 children with cerebral palsy. Each child was fit with two types of orthoses: a dynamic ankle foot orthosis (Cascade dynamic ankle foot orthosis) and an adjustable dynamic response ankle foot orthosis (Ultraflex ankle foot orthosis). Musculoskeletal modeling was used to quantify gastrocnemius musculotendon operating length and velocity with each orthosis. Walking with ankle foot orthoses could stretch the gastrocnemius more than barefoot walking for some individuals; however, there was significant variability between participants and orthoses. At least one type of orthosis stretched the gastrocnemius during walking for 4/6 and 3/5 of the Gross Motor Functional Classification System Level I and III participants, respectively. AFOs also reduced peak gastrocnemius lengthening velocity compared to barefoot walking for some participants, with greater reductions among the Gross Motor Functional Classification System Level III participants. Changes in gastrocnemius operating length and lengthening velocity were related to changes in ankle and knee kinematics during gait. Ankle foot orthoses impact gastrocnemius operating length during walking and, with proper design, may assist with stretching tight muscles in daily life. Clinical relevance Determining whether ankle foot orthoses stretch tight muscles can inform future orthotic design and potentially provide a platform for integrating therapy into daily life. However, stretching tight muscles must be balanced with other goals of orthoses such as improving gait and preventing bone deformities.

  3. Acute and Chronic Lateral Ankle Instability Diagnosis, Management, and New Concepts.

    PubMed

    Shakked, Rachel; Sheskier, Steven

    2017-01-01

    Lateral ankle instability is a common entity that can result in degenerative arthritis if left untreated. Acute ligament injuries should primarily be treated nonoperatively with a course of physical therapy and functional bracing. Chronic ankle instability is defined as mechanical or functional and can be diagnosed using a combination of history, physical examination, stress radiographs, and magnetic resonance imaging. After failure of nonoperative treatment, surgical treatment with anatomic ligament repair and inferior extensor retinaculum augmentation has the best clinical outcomes. Patients with high athletic demands, ligamentous instability, and failure of initial surgical treatment may do better with an anatomic ligament reconstruction or combined ligament repair with peroneus brevis transfer. Those patients with underlying foot deformity benefit from deformity correction in addition to ligament repair or reconstruction. Ankle arthroscopy is an important component of ankle instability to treat the commonly associated intraarticular lesions; however, all-arthroscopic ligament repair is associated with a high complication rate, and techniques may not be perfected as of yet.

  4. Validation of Manual Muscle Testing and a Subset of Eight Muscles (MMT8) for Adult and Juvenile Idiopathic Inflammatory Myopathies

    PubMed Central

    Rider, Lisa G.; Koziol, Deloris; Giannini, Edward H.; Jain, Minal S.; Smith, Michaele R.; Whitney-Mahoney, Kristi; Feldman, Brian M.; Wright, Susan J.; Lindsley, Carol B.; Pachman, Lauren M.; Villalba, Maria L.; Lovell, Daniel J.; Bowyer, Suzanne L.; Plotz, Paul H.; Miller, Frederick W.; Hicks, Jeanne E.

    2010-01-01

    Objective To validate manual muscle testing (MMT) for strength assessment in juvenile and adult dermatomyositis (DM) and polymyositis (PM). Methods Seventy-three children and 45 adult DM/PM patients were assessed at baseline and reevaluated 6–9 months later. We compared Total MMT (a group of 24 proximal, distal, and axial muscles) and Proximal MMT (7 proximal muscle groups) tested bilaterally on a 0–10 scale with 144 subsets of six and 96 subsets of eight muscle groups tested unilaterally. Expert consensus was used to rank the best abbreviated MMT subsets for face validity and ease of assessment. Results The Total, Proximal and best MMT subsets had excellent internal reliability (rs:Total MMT 0.91–0.98), and consistency (Cronbach’s α 0.78–0.97). Inter- and intra-rater reliability were acceptable (Kendall’s W 0.68–0.76; rs 0.84–0.95). MMT subset scores correlated highly with Total and Proximal MMT scores and with the Childhood Myositis Assessment Scale, and correlated moderately with physician global activity, functional disability, magnetic resonance imaging, axial and distal MMT scores and, in adults, with creatine kinase. The standardized response mean for Total MMT was 0.56 in juveniles and 0.75 in adults. Consensus was reached to use a subset of eight muscles (neck flexors, deltoids, biceps, wrist extensors, gluteus maximus and medius, quadriceps and ankle dorsiflexors) that performed as well as the Total and Proximal MMT, and had good face validity and ease of assessment. Conclusions These findings aid in standardizing the use of MMT for assessing strength as an outcome measure for myositis. PMID:20391500

  5. Effects of age and sex on the results of an ankle plantar-flexor manual muscle test.

    PubMed

    Jan, Mei-Hwa; Chai, Huei-Ming; Lin, Yeong-Fwu; Lin, Janice Chien-Ho; Tsai, Li-Ying; Ou, Yu-Chih; Lin, Da-Hon

    2005-10-01

    The ability to perform 20 or more one-leg heel-rises is considered a "normal" grade for muscle strength (force-generating capacity of muscle) of the ankle plantar flexors, regardless of age and sex. Because muscle strength is closely related to age and sex, the "normal" test criterion was re-evaluated in different groups categorized by age and sex. One hundred eighty sedentary volunteers (21-80 years of age) without lower-limb lesions performed as many repetitions of one-leg heel-rise as possible. Lunsford and Perry criteria were used to determine completion of the test. The age and sex of the participants influenced the maximal repetitions of heel-rise, and the repetitions decreased with age and in female subjects. The muscle strength of the ankle plantar flexors, as measured by manual muscle testing, varied with age and sex. Clinicians should consider the variances of age and sex when they perform manual muscle testing of the ankle plantar flexors.

  6. Reliability and discriminative validity of sudden ankle inversion measurements in patients with chronic ankle instability.

    PubMed

    Eechaute, Christophe; Vaes, Peter; Duquet, William; Van Gheluwe, Bart

    2009-07-01

    Studies investigating peroneal muscle reaction times in chronically unstable ankle joints present conflicting results. The degree of reliability and accuracy of these measurements is unknown in patients with chronic ankle instability (CAI). 40 patients with CAI and 30 healthy subjects were tested using a sudden ankle inversion of 50 degrees while standing on a trapdoor device. Sudden ankle inversion measurements were registered using electromyography, accelerometry and electrogoniometry. For reliability testing, intra-class coefficients (ICCs; model 3,1) and standard errors of measurements of the latency time, motor response time and electromechanical delay of the peroneus longus muscle, the time and angular position of onset of decelerations, the mean and maximum inversion speed and the total inversion time were calculated in 15 patients with CAI. To assess between-group differences, t-tests for independent samples (p<.05) were used. ICCs ranged from .20 (angular position of onset of the second deceleration) to .98 (electromechanical delay of the peroneus longus muscle). Significant between-group differences were observed in only 2 of the 12 variables (for the electromechanical delay of the peroneus longus muscle, p=.001; time of onset of the second deceleration, p=.040). The latency time and motor response time of the peroneus longus muscle, the total inversion time and the mean inversion speed demonstrate acceptable reliability in healthy subjects and patients. The latency time and motor response time of the peroneus longus muscle are not delayed in patients with CAI. Ankle inversion measurements are not discriminative for CAI.

  7. Gait Biomechanics in Participants, Six Months after First-time Lateral Ankle Sprain.

    PubMed

    Doherty, C; Bleakley, C; Hertel, J; Caulfield, B; Ryan, J; Delahunt, E

    2016-06-01

    No research currently exists predicating a link between the injury-affiliated sensorimotor deficits of acute ankle sprain and those of chronic ankle instability during gait. This analysis evaluates participants with a 6-month history of ankle sprain injury to affirm this link. 69 participants with a 6-month history of acute first-time lateral ankle sprain were divided into subgroups ('chronic ankle instability' and 'coper') based on their self-reported disability and compared to 20 non-injured participants during a gait task. Lower extremity kinematic and kinetic data were collected from 200 ms pre- to 200 ms post-heel strike (period 1) and from 200 ms pre- to 200 ms post-toe off (period 2). The 'chronic ankle instability' subgroup (who reported greater disability) displayed increased knee flexion during period 1. During period 2, this subgroup exhibited greater total displacement at their ankle joint and greater extensor dominance at their knee. That many of these features are present, both in individuals with acute ankle sprain and those with chronic ankle instability may advocate a link between acute deficits and long-term outcome. Clinicians must be aware that the sensorimotor deficits of ankle sprain may persevere beyond the acute stage of injury and be cognizant of the capacity for impairments to pervade proximally. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Isokinetic Assessment and Musculoskeletal Complaints in Paralympic Athletes: A Longitudinal Study.

    PubMed

    Silva, Andressa; Zanca, Gisele; Alves, Eduardo Silva; Lemos, Valdir de Aquino; Gávea, Sebastião Augusto; Winckler, Ciro; Mattiello, Stela Márcia; Peterson, Ronnie; Vital, Roberto; Tufik, Sergio; De Mello, Marco Túlio

    2015-10-01

    The aim of this study was to assess and monitor the peak torque of the knee extensor and flexor muscles in flexion and extension and the reports of musculoskeletal complaints in members of the main Brazilian Paralympic athletics team through 1 yr. Fourteen healthy athletes from both sexes were assessed three times in 1 yr. The volunteers were assessed for the presence of musculoskeletal complaints and muscle strength at three time points: (1) at the onset of the preparatory phase on December 2009, (2) at a follow-up assessment on June 2010, and (3) before actual competition on December 2010. The athletes' self-reported musculoskeletal complaints were assessed in structured interviews, and the muscle strength was assessed by means of isokinetic dynamometry. The knee flexor and extensor muscle strength exhibited significant increase in both the right and left lower limbs at the second and third assessments compared with the first one (P < 0.05). Muscle imbalance was associated with knee and thigh complaints at all three assessments (P < 0.05). The knee flexor and extensor muscle strength exhibited a gradual increase in both lower limbs during the course of the three assessments. In parallel, muscle imbalance was associated with the occurrence of knee and thigh complaints.

  9. A biomechanical comparison of back and front squats in healthy trained individuals.

    PubMed

    Gullett, Jonathan C; Tillman, Mark D; Gutierrez, Gregory M; Chow, John W

    2009-01-01

    The strength and stability of the knee plays an integral role in athletics and activities of daily living. A better understanding of knee joint biomechanics while performing variations of the squat would be useful in rehabilitation and exercise prescription. We quantified and compared tibiofemoral joint kinetics as well as muscle activity while executing front and back squats. Because of the inherent change in the position of the center of mass of the bar between the front and back squat lifts, we hypothesized that the back squat would result in increased loads on the knee joint and that the front squat would result in increased knee extensor and decreased back extensor muscle activity. A crossover study design was used. To assess the net force and torque placed on the knee and muscle activation levels, a combination of video and force data, as well as surface electromyographic data, were collected from 15 healthy trained individuals. The back squat resulted in significantly higher compressive forces and knee extensor moments than the front squat. Shear forces at the knee were small in magnitude, posteriorly directed, and did not vary between the squat variations. Although bar position did not influence muscle activity, muscle activation during the ascending phase was significantly greater than during the descending phase. The front squat was as effective as the back squat in terms of overall muscle recruitment, with significantly less compressive forces and extensor moments. The results suggest that front squats may be advantageous compared with back squats for individuals with knee problems such as meniscus tears, and for long-term joint health.

  10. Relation between the Disability of the Arm, Shoulder and Hand Score and Muscle Strength in Post-Cardiac Surgery Patients.

    PubMed

    Izawa, Kazuhiro P; Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi

    2017-11-27

    Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m²; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength ( r = -0.38, p = 0.01) and with knee extensor muscle strength ( r = -0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation.

  11. Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting

    PubMed Central

    Hwang, Seonhong; Kim, Youngeun; Kim, Youngho

    2009-01-01

    Background In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis. Methods Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis. Results There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting. Conclusion In conclusion, the knee extension which is prominent kinematics during the squat lifting was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function). PMID:19183507

  12. Lower extremity joint kinetics and lumbar curvature during squat and stoop lifting.

    PubMed

    Hwang, Seonhong; Kim, Youngeun; Kim, Youngho

    2009-02-02

    In this study, kinematics and kinetics of the lower extremity joint and the lumbar lordosis during two different symmetrical lifting techniques(squat and stoop) were examined using the three-dimensional motion analysis. Twenty-six young male volunteers were selected for the subjects in this study. While they lifted boxes weighing 5, 10 and 15 kg by both squat and stoop lifting techniques, their motions were captured and analyzed using the 3D motion analysis system which was synchronized with two forceplates and the electromyographic system. Joint kinematics was determined by the forty-three reflective markers which were attached on the anatomical locations based on the VICON Plug-in-Gait marker placement protocol. Joint kinetics was analyzed by using the inverse dynamics. Paired t-test and Kruskal-Wallis test was used to compare the differences of variables between two techniques, and among three different weights. Correlation coefficient was calculated to explain the role of lower limb joint motion in relation to the lumbar lordosis. There were not significant differences in maximum lumbar joint moments between two techniques. The hip and ankle contributed the most part of the support moment during squat lifting, and the knee flexion moment played an important role in stoop lifting. The hip, ankle and lumbar joints generated power and only the knee joint absorbed power in the squat lifting. The knee and ankle joints absorbed power, the hip and lumbar joints generated power in the stoop lifting. The bi-articular antagonist muscles' co-contraction around the knee joint during the squat lifting and the eccentric co-contraction of the gastrocnemius and the biceps femoris were found important for maintaining the straight leg during the stoop lifting. At the time of lordotic curvature appearance in the squat lifting, there were significant correlations in all three lower extremity joint moments with the lumbar joint. Differently, only the hip moment had significant correlation with the lumbar joint in the stoop lifting. In conclusion, the knee extension which is prominent kinematics during the squat lifting was produced by the contributions of the kinetic factors from the hip and ankle joints(extensor moment and power generation) and the lumbar extension which is prominent kinematics during the stoop lifting could be produced by the contributions of the knee joint kinetic factors(flexor moment, power absorption, bi-articular muscle function).

  13. Low back and lower-limb muscle performance in male and female recreational runners with chronic low back pain.

    PubMed

    Cai, Congcong; Kong, Pui W

    2015-06-01

    Controlled laboratory study, cross-sectional. To compare lumbar extensor muscle fatigability, lumbar stabilizing muscle activation, and lower-limb strength between male and female runners with chronic low back pain (LBP) and healthy runners. Little is known about muscle performance in runners with chronic LBP. Eighteen recreational runners with chronic LBP (9 men, 9 women; mean age, 27.8 years) and 18 healthy recreational runners (9 men, 9 women; mean age, 24.6 years) were recruited. The median frequency slopes for bilateral iliocostalis and longissimus were calculated from electromyographic signals captured during a 2-minute Sorensen test. The thickness changes of the transversus abdominis and lumbar multifidus between resting and contraction were measured using an ultrasound scanner. Peak concentric torques of the bilateral hip extensors, hip abductors, and knee extensors were measured using an isokinetic dynamometer at 60°/s. The average values for both sides were used for statistical analysis. When averaged across sexes, peak knee extensor torque was 12.2% lower in the LBP group compared to the healthy group (mean difference, 0.29 Nm/kg; 95% confidence interval: 0.06, 0.53; P = .016). Male runners with chronic LBP exhibited smaller lumbar multifidus thickness changes compared to healthy male runners (mean difference, 0.13 cm; 95% confidence interval: 0.01, 0.25; P = .033). No other group differences were observed. Runners with chronic LBP exhibited diminished knee extensor strength compared to healthy runners. Male runners with chronic LBP demonstrated additional deficits in lumbar multifidus activation.

  14. Effects of Preventative Ankle Taping on Planned Change-of-Direction and Reactive Agility Performance and Ankle Muscle Activity in Basketballers

    PubMed Central

    Jeffriess, Matthew D.; Schultz, Adrian B.; McGann, Tye S.; Callaghan, Samuel J.; Lockie, Robert G.

    2015-01-01

    This study investigated the effects of preventative ankle taping on planned change-of-direction and reactive agility performance and peak ankle muscle activity in basketballers. Twenty male basketballers (age = 22.30 ± 3.97 years; height = 1.84 ± 0.09 meters; body mass = 85.96 ± 11.88 kilograms) with no ankle pathologies attended two testing sessions. Within each session, subjects completed six planned and six reactive randomized trials (three to the left and three to the right for each condition) of the Y-shaped agility test, which was recorded by timing lights. In one session, subjects had both ankles un-taped. In the other, both ankles were taped using a modified subtalar sling. Peak tibialis anterior, peroneus longus (PL), peroneus brevis (PB), and soleus muscle activity was recorded for both the inside and outside legs across stance phase during the directional change, which was normalized against 10-meter sprint muscle activity (nEMG). Both the inside and outside cut legs during the change-of-direction step were investigated. Repeated measures ANOVA determined performance time and nEMG differences between un-taped and taped conditions. There were no differences in planned change-of-direction or reactive agility times between the conditions. Inside cut leg PL nEMG decreased when taped for the planned left, reactive left, and reactive right cuts (p = 0.01). Outside leg PB and soleus nEMG increased during the taped planned left cut (p = 0.02). There were no other nEMG changes during the cuts with taping. Taping did not affect change-of-direction or agility performance. Inside leg PL activity was decreased, possibly due to the tape following the line of muscle action. This may reduce the kinetic demand for the PL during cuts. In conclusion, ankle taping did not significantly affect planned change-of-direction or reactive agility performance, and did not demonstrate large changes in activity of the muscle complex in healthy basketballers. Key points Ankle taping using the modified subtalar sling will not affect planned change-of-direction or reactive agility performance as measured by the Y-shaped agility test in healthy male basketball players. Ankle taping using the modified subtalar sling will also generally not affect the activity of the muscles about the ankle. There was some indication for reductions in the activity of the PL in the inside leg of certain cuts. The tape used for the modified subtalar sling may have supported the line of action of the PL, which could reduce the kinetic demand placed on this muscle, and provide a potential fatigue-reducing component for cutting actions. The subtalar sling taping of the ankle in healthy basketball players did not have any adverse effects on the muscle activity of the ankle-foot complex during planned change-of-direction or reactive agility performance tasks. PMID:26664285

  15. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.

    PubMed

    Hustert, R; Baldus, M

    2010-12-01

    Ballistic accelerations of a limb or the whole body require special joint mechanisms in many animals. Specialized joints can be moved by stereotypic or variable motor control during motor patterns with and without ballistic components. As a model of variable motor control, the specialized femur-tibia (knee) joints of cricket (Acheta domesticus) hindlegs were studied during ballistic kicking, jumping and swimming and in non-ballistic walking. In this joint the tendons of the antagonistic flexor and the extensor muscles attach at different distances from the pivot and the opposed lever arms form an angle of 120 deg. A 10:1 ratio of their effective lever arms at full knee flexion helps to prepare for most ballistic extensions: the tension of the extensor can reach its peak while it is restrained by flexor co-contraction. In kicks, preparatory flexion is rapid and the co-contraction terminates just before knee extensions. Therefore, mainly the stored tension of the extensor muscle accelerates the small mass of the tibia. Jumps are prepared with slower extensor-flexor co-contractions that flex both knees simultaneously and then halt to rotate both legs outward to a near horizontal level. From there, catapult extension of both knees accelerates the body, supported by continued high frequency motor activity to their tibia extensor muscles during the ongoing push-off from the substrate. Premature extension of one knee instantly takes load from the lagging leg that extends and catches up, which finally results in a straight jump. In swimming, synchronous ballistic power strokes of both hindlegs drive the tibiae on a ventral-to-posterior trajectory through the water, well coordinated with the swimming patterns of all legs. In walking, running and climbing the steps of the hindlegs range between 45 deg flexion and 125 deg extension and use non-ballistic, alternating activity of knee flexor and extensor muscles. Steep climbing requires longer bursts from the extensor tibiae muscles when they support the extended hindlegs against gravity forces when the body hangs over. All ballistic movements of cricket knees are elicited by a basic but variable motor pattern: knee flexions by co-contraction of the antagonists prepare catapult extensions with speeds and forces as required in the different behaviours.

  16. Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability.

    PubMed

    Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung

    2015-11-01

    [Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost.

  17. Muscle Strength Imbalance in the Hip Joint Caused by Fast Movements

    NASA Astrophysics Data System (ADS)

    Pontaga, I.

    2003-07-01

    Eleven male sportsmen at the age of 24.3 ± 4.5 were examined. Their hip joint flexors and extensors were tested by an "REV-9000" Technogym dynamometer system during isokinetic movements at angular velocities of 100 (low) and 200 (high) °/s. The range of hip joint movements was from 30 (in flexion) to 130° (in extension). Torque values and their ratios for hip flexors and extensors at different angular positions were obtained and compared. It is shown that, at high speeds, the flexion movement significantly raises ( p < 0.001) the torque ratios of flexors and extensors in flexion positions of the hip (50 and 60°). These ratios approximately twofold exceed their values at moderate velocities. The weakness of hip joint extensors in extreme flexion positions of the hip may cause injury of this group of muscles at fast movements.

  18. Acute Effects of Different Agonist and Antagonist Stretching Arrangements on Static and Dynamic Range of Motion

    PubMed Central

    Amiri-Khorasani, Mohammadtaghi; Kellis, Eleftherios

    2015-01-01

    Background: Traditionally, stretching exercises are considered as basic components of warm up aiming to prepare the musculoskeletal system for performance and to prevent injuries. Objectives: The purpose of this study was to examine the effects of different agonist and antagonist stretching arrangements within a pre-exercise warm-up on hip static (SROM) and dynamic range of motion (DROM). Materials and Methods: Sixty trained male subjects (Mean ± SD: height, 177.38 ± 6.92 cm; body mass, 68.4 ± 10.22 kg; age, 21.52 ± 1.17 years) volunteered to participate in this study. SROM was measured by V-sit test and DROM captured by a motion analysis system before and after (i) static stretching for both hip flexor and extensor muscles (SFSE), (ii) dynamic stretching for both hip flexor and extensor muscles (DFDE), (iii) static stretching for the hip flexors and dynamic stretching for hip extensors (SFDE), and (iv) dynamic stretching for the hip flexors and static stretching for hip extensors (DFSE). Results: DFSE showed a significantly higher increase in DROM and SROM than the remainder of the stretching protocols (P < 0.05). There were significant differences between DFDE with SFSE and SFDE (P < 0.05) and SFSE showed significant increase as compared to SFDE (P < 0.05). Conclusions: In conclusion, DFSE is probably the best stretching arrangement due to producing more post activation potentiation on agonist muscles and less muscle stiffness in antagonist muscles. PMID:26715975

  19. Musculoskeletal modelling deconstructs the paradoxical effects of elastic ankle exoskeletons on plantar-flexor mechanics and energetics during hopping

    PubMed Central

    Farris, Dominic James; Hicks, Jennifer L.; Delp, Scott L.; Sawicki, Gregory S.

    2014-01-01

    Experiments have shown that elastic ankle exoskeletons can be used to reduce ankle joint and plantar-flexor muscle loading when hopping in place and, in turn, reduce metabolic energy consumption. However, recent experimental work has shown that such exoskeletons cause less favourable soleus (SO) muscle–tendon mechanics than is observed during normal hopping, which might limit the capacity of the exoskeleton to reduce energy consumption. To directly link plantar-flexor mechanics and energy consumption when hopping in exoskeletons, we used a musculoskeletal model of the human leg and a model of muscle energetics in simulations of muscle–tendon dynamics during hopping with and without elastic ankle exoskeletons. Simulations were driven by experimental electromyograms, joint kinematics and exoskeleton torque taken from previously published data. The data were from seven males who hopped at 2.5 Hz with and without elastic ankle exoskeletons. The energetics model showed that the total rate of metabolic energy consumption by ankle muscles was not significantly reduced by an ankle exoskeleton. This was despite large reductions in plantar-flexor force production (40–50%). The lack of larger metabolic reductions with exoskeletons was attributed to increases in plantar-flexor muscle fibre velocities and a shift to less favourable muscle fibre lengths during active force production. This limited the capacity for plantar-flexors to reduce activation and energy consumption when hopping with exoskeleton assistance. PMID:25278469

  20. The potential of human toe flexor muscles to produce force

    PubMed Central

    Goldmann, Jan-Peter; Brüggemann, Gert-Peter

    2012-01-01

    The maximal force a muscle produces depends among others on the length of the muscle and therefore on the positions of the joints the muscle crosses. Long and short toe flexor muscles (TFM) cross the ankle joints and metatarsal phalangeal joints (MPJ) and work against gravity during human locomotion. The purpose of this study was to describe the maximal moments around the MPJ during maximal voluntary isometric contractions (MVIC) of the TFM as a function of ankle joint and MPJ position. Twenty men performed MVIC of the TFM in a custom-made dynamometer. Ankle and MPJ angles were modified after each contraction. External moments of force around the MPJ were determined. Moments ranged between 6.3 ± 2.6 Nm and 14.2 ± 5.8 Nm. Highest moments were produced at 0°–10° ankle joint dorsal flexion and 25°–45° MPJ dorsal flexion. Lowest moments were generated at 35° ankle joint plantar flexion and 0° MPJ dorsal flexion. In conclusion, if the ankle is plantar-flexed, dorsal flexion of the MPJ avoids a disadvantage of the force–length relationship of TFM. Therefore, MPJ dorsal flexion is a necessary function in the push-off phase of human locomotion to work against the loss of the mechanical output at the forefoot caused by plantar flexion of the ankle. PMID:22747582

  1. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  2. A simple model to estimate plantarflexor muscle-tendon mechanics and energetics during walking with elastic ankle exoskeletons

    PubMed Central

    Sawicki, Gregory S.; Khan, Nabil S.

    2016-01-01

    Goal A recent experiment demonstrated that when humans wear unpowered elastic ankle exoskeletons with intermediate spring stiffness they can reduce their metabolic energy cost to walk by ~7%. Springs that are too compliant or too stiff have little benefit. The purpose of this study was to use modeling and simulation to explore the muscle-level mechanisms for the ‘sweet-spot’ in stiffness during exoskeleton assisted walking. Methods We developed a simple lumped, uniarticular musculoskeletal model of the plantarflexors operating in parallel with an elastic ‘exo-tendon’. Using an inverse approach with constrained kinematics and kinetics, we rapidly simulated human walking over a range of exoskeleton stiffness values and examined the underlying neuromechanics and energetics of the biological plantarflexors. Results Stiffer ankle exoskeleton springs resulted in larger decreases in plantarflexor muscle forces, activations and metabolic energy consumption. However, in the process of unloading the compliant biological muscle-tendon unit (MTU), the muscle fascicles (CE) experienced larger excursions that negatively impacted series elastic element (SEE) recoil that is characteristic of a tuned ‘catapult mechanism’. Conclusion The combination of disrupted muscle-tendon dynamics and the need to produce compensatory forces/moments to maintain overall net ankle moment invariance could explain the ‘sweet spot’ in metabolic performance at intermediate ankle exoskeleton stiffness. Future work will aim to provide experimental evidence to support the model predictions presented here using ultrasound imaging of muscle-level dynamics during walking with elastic ankle exoskeletons. Significance Engineers must account for the muscle-level effects of exoskeleton designs in order to achieve maximal performance objectives. PMID:26485350

  3. Morphological and biochemical changes in soleus and extensor digitorum longus muscles of rats orbited in Spacelab 3

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Slocum, T.; Bain, J. L. W.; Sedlak, F. R.; Elis, S.; Satyanarayana, T.

    1985-01-01

    Muscle atrophy in rats exposed to hypogravity for seven days aboard Spacelab 3 is examined. Hindlimb muscles were harvested 12-16 days postflight, and prepared for enzyme studies and electron microscopy. Simple cell shrinkage was found, with a mean fiber area decrease of 35.8 percent for soleus and 24.9 percent for extensor digitorum longus (EDL) flight muscle fibers, as compared with control muscle fibers. EDL and soleus muscles showed increases in alkaline myofibrillar ATPase, alpha glycerophosphate dehydrogenase, and glycogen, and a decrease in NADH dehydrogenase staining. The 26 percent increase in calcium activated protease suggests that the focal degradation of myofibrils is the key process of myofibril breakdown. The presence in the flight soleus muscles of one percent necrotic fibers is unexplained. The observed shift towards histochemical fast-muscle type properties is consistent with previous findings.

  4. Relationships of muscle strength and bone mineral density in ambulatory children with cerebral palsy.

    PubMed

    Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y

    2012-02-01

    This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.

  5. Muscular control of a learned movement: the speed control system hypothesis.

    PubMed

    Enoka, R M

    1983-01-01

    The "speed control system" hypothesis, which represents an attempt to identify an invariant characteristic of learned movements, postulates that movements of variable extent are controlled by regulating the intensity of muscle contractions such that the contraction duration remains constant. The contingency set originally utilized to develop this hypothesis was expanded by examining a movement that was multidirectional and multiarticular, and executed by large muscle groups generating near maximum torques. The investigation focused on the techniques utilized by weightlifters to control lower extremity displacement during the initial phase of the double knee bend execution of the "clean" in Olympic weightlifting. The combination of the quantified muscle activity and the angular velocity, both about the knee joint, revealed a sequence of shortening-lengthening muscle contractions throughout the movement. The first two periods of net muscular activity, one extensor and the other flexor, were utilized to examine the movement for invariant characteristics. As predicted by the speed control system hypothesis, the duration of the first period of net muscle torque activity (extensor) did not vary significantly, for either group of subjects, over the relative loads examined. The duration of the second period of activity (resultant flexor muscle torque), however, was not constant across loads, and further, the direction of the change depended upon the level of expertise. The more capable lifters tended to increase the duration of the resultant flexor involvement while the less skilled athletes utilized the reverse strategy when the load was increased. Conversely, the intensity of the muscle activity for both groups of subjects and both the extensor and flexor periods covaried with load, as predicted by the hypothesis. The speed control system hypothesis, therefore, provided an appropriate explanation for the first component of the movement, the period of extensor dominated (shortening contraction) muscle torque, but was inappropriate for the subsequent interval, a resultant flexor (largely lengthening contraction) muscle torque.

  6. Muscle function in aged women in response to a water-based exercises program and progressive resistance training.

    PubMed

    Bento, Paulo Cesar Barauce; Rodacki, André Luiz Felix

    2015-11-01

    The purpose of the present study was to determine the effects of a water-based exercise program on muscle function compared with regular high-intensity resistance training. Older women (n = 87) were recruited from the local community. The inclusion criteria were, to be aged 60 years or older, able to walk and able to carry out daily living activities independently. Participants were randomly assigned to one of the following groups: water-based exercises (WBG), resistance training (RTG) or control (CG). The experimental groups carried out 12 weeks of an excise program performed on water or on land. The dynamic strength, the isometric peak, and rate of torque development for the lower limbs were assessed before and after interventions. The water-based program provided a similar improvement in dynamic strength in comparison with resistance training. The isometric peak torque increased around the hip and ankle joints in the water-based group, and around the knee joint in the resistance-training group (P < 0.05). The rate of torque development increased only in the water-based group around the hip extensors muscles (P < 0.05). Water-based programs constitute an attractive alternative to promote relevant strength gains using moderate loads and fast speed movements, which were also effective to improve the capacity to generate fast torques. © 2014 Japan Geriatrics Society.

  7. Changes in the activity of trunk and hip extensor muscles during bridge exercises with variations in unilateral knee joint angle.

    PubMed

    Kim, Juseung; Park, Minchul

    2016-09-01

    [Purpose] This study compared abdominal and hip extensor muscle activity during a bridge exercise with various knee joint angles. [Subjects and Methods] Twenty-two healthy male subjects performed a bridge exercise in which the knee joint angle was altered. While subjects performed the bridge exercise, external oblique, internal oblique, gluteus maximus, and semitendinosus muscle activity was measured using electromyography. [Results] The bilateral external and internal oblique muscle activity was significantly higher at 0° knee flexion compared to 120°, 90°, and 60°. The bilateral gluteus maximus muscle activity was significantly different at 0° of knee flexion compared to 120°, 90°, and 60°. The ipsilateral semitendinosus muscle activity was significantly increased at 90° and 60° of knee flexion compared to 120°, and significantly decreased at 0° knee flexion compared with 120°, 90°, and 60°. The contralateral semitendinosus muscle activity was significantly higher at 60° of knee flexion than at 120°, and significantly higher at 0° of knee flexion than at 120°, 90°, and 60°. [Conclusion] Bridge exercises performed with knee flexion less than 90° may be used to train the ipsilateral semitendinosus. Furthermore, bridge exercise performed with one leg may be used to train abdominal and hip extensor muscles.

  8. Discharge behavior of motor units in knee extensors during the initial stage of constant-force isometric contraction at low force level.

    PubMed

    Kamo, Mifuyu

    2002-03-01

    To elucidate the strategy of the activity of motor units (MUs) to maintain a constant-force isometric contraction, I examined the behavior of MUs in knee extensor muscles [(vastus medialis (VM), vastus lateralis (VL) and rectus femoris (RF)] during a sustained contraction at 5% of maximal voluntary contraction for 5 min. In all cases, the spike interval exhibited an elongating trend, and two discharge patterns were observed, continuous discharge and decruitment. In continuous-discharge MUs, the trend slope was steep immediately after the onset of constant force (steep phase), and then became gentle (gentle phase). Decruitments were observed frequently during each phase, and additional MU recruitment was observed throughout the contraction. The mean value of recruitment threshold force did not differ among the extensors. The mean spike interval at the onset of constant-force isometric contractions was shorter in RF than in VL. However, there were no differences in the duration and extent of the elongating trend, decruitment time and recruitment time among the extensors. The electromyogram of the antagonist biceps femoris muscle revealed no compensatory change for extensor activity. These results indicated that at a low force level, the strategy employed by the central nervous system to maintain constant force appears to involve cooperation among elongating trends in the spike interval, decruitment following elongation, and additional MU recruitment in synergistic muscles.

  9. Comparing two methods to record maximal voluntary contractions and different electrode positions in recordings of forearm extensor muscle activity: Refining risk assessments for work-related wrist disorders.

    PubMed

    Dahlqvist, Camilla; Nordander, Catarina; Granqvist, Lothy; Forsman, Mikael; Hansson, Gert-Åke

    2018-01-01

    Wrist disorders are common in force demanding industrial repetitive work. Visual assessment of force demands have a low reliability, instead surface electromyography (EMG) may be used as part of a risk assessment for work-related wrist disorders. For normalization of EMG recordings, a power grip (hand grip) is often used as maximal voluntary contraction (MVC) of the forearm extensor muscles. However, the test-retest reproducibility is poor and EMG amplitudes exceeding 100% have occasionally been recorded during work. An alternative MVC is resisted wrist extension, which may be more reliable. To compare hand grip and resisted wrist extension MVCs, in terms of amplitude and reproducibility, and to examine the effect of electrode positioning. Twelve subjects participated. EMG from right forearm extensors, from four electrode pairs, was recorded during MVCs, on three separate occasions. The group mean EMG amplitudes for resisted wrist extension were 1.2-1.7 times greater than those for hand grip. Resisted wrist extension showed better reproducibility than hand grip. The results indicate that the use of resisted wrist extension is a more accurate measurement of maximal effort of wrist extensor contractions than using hand grip and should increase the precision in EMG recordings from forearm extensor muscles, which in turn will increase the quality of risk assessments that are based on these.

  10. The relationship of hip muscle performance to leg, ankle and foot injuries: a systematic review.

    PubMed

    Steinberg, Nili; Dar, Gali; Dunlop, Martin; Gaida, James Edmund

    2017-02-01

    Hip control affects movement and muscle firing patterns in the leg, ankle and foot, and may contribute to overuse injuries. Muscle performance can be measured as strength, endurance or muscle activation patterns. Our objective was to systematically review whether hip muscle performance is associated with leg, ankle and foot injuries. A structured and comprehensive search of six medical literature databases was combined with forward and backward citation tracking (AMED, CINAHL, EMBASE, Medline, Scopus and SportDiscus). Eligible studies measured hip muscle performance in individuals with musculoskeletal injuries below the tibial tuberosity, using dynamometry or electromyography (EMG). All studies compared an injured group with a control group or compared the injured and non-injured limb in the same individual. Data was extracted from each study independently by two authors. Twenty case-control and four prospective studies (n = 24) met the inclusion criteria. Injury classifications included chronic ankle instability (n = 18), Achilles tendinopathy (n = 2), medial tibial stress syndrome and tibial stress fracture (n = 1), posterior tibial tendon dysfunction (n = 1), and exertional medial tibial pain (n = 2). Eleven of the studies revealed differences in hip muscle performance indicating less strength, delayed onset activation and decreased duration of activation in the injured groups. Two studies found evidence for differences between groups only in some of their measurements. Three out of the four prospective studies revealed that hip muscle performance was not a risk factor for leg, ankle and foot injuries. This review provides limited evidence that hip muscle performance variables are related to leg, ankle and foot injuries. Emerging evidence indicates this might be a result of the injury rather than a contributor to the injury.

  11. The intra- and inter-rater reliability of five clinical muscle performance tests in patients with and without neck pain

    PubMed Central

    2013-01-01

    Background This study investigates the reliability of muscle performance tests using cost- and time-effective methods similar to those used in clinical practice. When conducting reliability studies, great effort goes into standardising test procedures to facilitate a stable outcome. Therefore, several test trials are often performed. However, when muscle performance tests are applied in the clinical setting, clinicians often only conduct a muscle performance test once as repeated testing may produce fatigue and pain, thus variation in test results. We aimed to investigate whether cervical muscle performance tests, which have shown promising psychometric properties, would remain reliable when examined under conditions similar to those of daily clinical practice. Methods The intra-rater (between-day) and inter-rater (within-day) reliability was assessed for five cervical muscle performance tests in patients with (n = 33) and without neck pain (n = 30). The five tests were joint position error, the cranio-cervical flexion test, the neck flexor muscle endurance test performed in supine and in a 45°-upright position and a new neck extensor test. Results Intra-rater reliability ranged from moderate to almost perfect agreement for joint position error (ICC ≥ 0.48-0.82), the cranio-cervical flexion test (ICC ≥ 0.69), the neck flexor muscle endurance test performed in supine (ICC ≥ 0.68) and in a 45°-upright position (ICC ≥ 0.41) with the exception of a new test (neck extensor test), which ranged from slight to moderate agreement (ICC = 0.14-0.41). Likewise, inter-rater reliability ranged from moderate to almost perfect agreement for joint position error (ICC ≥ 0.51-0.75), the cranio-cervical flexion test (ICC ≥ 0.85), the neck flexor muscle endurance test performed in supine (ICC ≥ 0.70) and in a 45°-upright position (ICC ≥ 0.56). However, only slight to fair agreement was found for the neck extensor test (ICC = 0.19-0.25). Conclusions Intra- and inter-rater reliability ranged from moderate to almost perfect agreement with the exception of a new test (neck extensor test), which ranged from slight to moderate agreement. The significant variability observed suggests that tests like the neck extensor test and the neck flexor muscle endurance test performed in a 45°-upright position are too unstable to be used when evaluating neck muscle performance. PMID:24299621

  12. Role of glucocorticoids in increased muscle glutamine production in starvation

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Henriksen, Erik J.; Cook, Paul H.

    1988-01-01

    The role of glucocorticoids in the synthesis of muscle glutamine during starvation was investigated in adrenalectomized fasted rats injected with cortisol (1 mg/100 g body weight). It was found that administration of cortisol in vivo increased (compared to nontreated starved adrenalectomized controls) the glutamine/glutamate ratio and the activity of glutamine synthetase in the diaphragm and the extensor digitorum muscles, and that these effects were abolished by prior treatment with actinomycin D or proflavine. The results obtained in in vitro experiments, using fresh-frozen soleus, extensor digitorum longus, and diaphragm muscle preparations, supported the in vivo indications of the cortisol-enhanced glutamine synthesis and protein turnover in starved adrenalectomized animals.

  13. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy.

    PubMed

    Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F

    2011-03-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Ultrasound definition of tendon damage in patients with rheumatoid arthritis. Results of a OMERACT consensus-based ultrasound score focussing on the diagnostic reliability.

    PubMed

    Bruyn, George A W; Hanova, Petra; Iagnocco, Annamaria; d'Agostino, Maria-Antonietta; Möller, Ingrid; Terslev, Lene; Backhaus, Marina; Balint, Peter V; Filippucci, Emilio; Baudoin, Paul; van Vugt, Richard; Pineda, Carlos; Wakefield, Richard; Garrido, Jesus; Pecha, Ondrej; Naredo, Esperanza

    2014-11-01

    To develop the first ultrasound scoring system of tendon damage in rheumatoid arthritis (RA) and assess its intraobserver and interobserver reliability. We conducted a Delphi study on ultrasound-defined tendon damage and ultrasound scoring system of tendon damage in RA among 35 international rheumatologists with experience in musculoskeletal ultrasound. Twelve patients with RA were included and assessed twice by 12 rheumatologists-sonographers. Ultrasound examination for tendon damage in B mode of five wrist extensor compartments (extensor carpi radialis brevis and longus; extensor pollicis longus; extensor digitorum communis; extensor digiti minimi; extensor carpi ulnaris) and one ankle tendon (tibialis posterior) was performed blindly, independently and bilaterally in each patient. Intraobserver and interobserver reliability were calculated by κ coefficients. A three-grade semiquantitative scoring system was agreed for scoring tendon damage in B mode. The mean intraobserver reliability for tendon damage scoring was excellent (κ value 0.91). The mean interobserver reliability assessment showed good κ values (κ value 0.75). The most reliable were the extensor digiti minimi, the extensor carpi ulnaris, and the tibialis posterior tendons. An ultrasound reference image atlas of tenosynovitis and tendon damage was also developed. Ultrasound is a reproducible tool for evaluating tendon damage in RA. This study strongly supports a new reliable ultrasound scoring system for tendon damage. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities.

    PubMed

    Dolan, P; Adams, M A

    1993-01-01

    The relationship between EMG activity and extensor moment generation in the erector spinae muscles was investigated under isometric and concentric conditions. The full-wave rectified and averaged EMG signal was recorded from skin-surface electrodes located over the belly of the erector spinae at the levels of T10 and L3, and compared with measurements of extensor moment. The effects of muscle length and contraction velocity were studied by measuring the overall curvature (theta) and rate of change of curvature (d theta/dt) of the lumbar spine in the sagittal plane, using the '3-Space Isotrak' system. Isometric contractions were investigated with the subjects pulling up on a load cell attached to the floor. Hand height was varied to produce different amounts of lumbar flexion, as indicated by changes in lumbar curvature. The extensor moment was found to be linearly related to EMG activity, and the 'gradient' and 'intercept' of the relationship were themselves dependent upon the lumbar curvature at the time of testing. Concentric contractions were investigated with the subjects extending from a seated toe-touching position, at various speeds, while the torque exerted on the arm of a Cybex dynamometer was continuously measured. Under these conditions the EMG signal (E) was higher than the isometric signal (E0) associated with the same torque. E and E0 were related as follows: E0 = E/(1 + A d theta/dt), where A = 0.0014 exp (0.045P) and P = percentage lumbar flexion. This equation was used to correct the EMG data for the effect of contraction velocity. The corrected data were then used, in conjunction with the results of the isometric calibrations, to calculate the extensor moment generated by the erector spinae muscles during bending and lifting activities. The extensor moment can itself be used to calculate the compressive force acting on the lumbar spine.

  16. The feasibility of measuring joint angular velocity with a gyro-sensor.

    PubMed

    Arai, Takeshi; Obuchi, Shuichi; Shiba, Yoshitaka; Omuro, Kazuya; Nakano, Chika; Higashi, Takuya

    2008-01-01

    To determine the reliability of an assessment of joint angular velocity using a gyro-sensor and to examine the relationship between ankle angular velocity and physical functions. Cross-sectional. Kinesiology laboratory. Twenty healthy young adults (mean age, 22.5 y) and 113 community-dwelling older adults (mean age, 75.1 y). Not applicable. Maximal ankle joint velocity was measured using a gyro-sensor during heel-rising and jumping with knee extended. The intraclass correlation coefficient (ICC) was used to determine the intertester and intratester reliability. The Pearson correlation coefficient was used to examine the relationships between maximal ankle joint velocity and isometric muscle strength and isokinetic muscle power in young adults and also to examine the relationships between maximal ankle joint velocity and functional performance measurements such as walking time in older adults. High reliability was found for intertester (ICC=.96) and intratester reliability (ICC=.96). The data from the gyro-sensor highly correlated with muscle strength (r range, .62-.68; P<.01) and muscle power (r range, .45-.79; P range, .01-.05). In older subjects, mobility functions significantly correlated with the angular velocity of ankle plantarflexion. Measurement of ankle angular velocity using a gyro-sensor is both reliable and feasible, with the results representing a significant correlation to muscle power and performance measurements.

  17. Correlations between ankle-foot impairments and dropped foot gait deviations among stroke survivors.

    PubMed

    Chisholm, Amanda E; Perry, Stephen D; McIlroy, William E

    2013-01-01

    The purpose of this paper is to 1) evaluate the relationship between ankle kinematics during gait and standardized measures of ankle impairments among sub-acute stroke survivors, and 2) compare the degree of stroke-related ankle impairment between individuals with and without dropped foot gait deviations. Fifty-five independently ambulating stroke survivors participated in this study. Dropped foot was defined as decreased peak dorsiflexion during the swing phase and reduced ankle joint motion in stance. Standardized outcome measures included the Chedoke-McMaster Stroke Assessment (motor impairment), Modified Ashworth Scale (spasticity), Medical Research Council (muscle strength), passive and active range of motion, and isometric muscle force. Foot impairment was not related to peak dorsiflexion during swing (r=-0.17, P=0.247) and joint motion during stance (r=0.05, P=0.735). Active (r=0.45, P<0.001) and passive (r=0.48, P<0.001) range of motion was associated with stance phase joint motion. Peak dorsiflexion during swing was related to isometric dorsiflexor muscle force (r=-0.32, P=0.039). Individuals with dropped foot demonstrated greater motor impairment, plantarflexor spasticity and ankle muscle weakness compared to those without dropped foot. Our investigation suggests that ankle-foot impairments are related to ankle deviations during gait, as indicated by greater impairment among individuals with dropped foot. These findings contribute to a better understanding of gait-specific ankle deviations, and may lead to the development of a more effective clinical assessment of dropped foot impairment. © 2013.

  18. Do oarsmen have asymmetries in the strength of their back and leg muscles?

    PubMed

    Parkin, S; Nowicky, A V; Rutherford, O M; McGregor, A H

    2001-07-01

    The aim of this study was to establish whether asymmetry of the strength of the leg and trunk musculature is more prominent in rowers than in controls. Nineteen oarsmen and 20 male controls matched for age, height and body mass performed a series of isokinetic and isometric strength tests on an isokinetic dynamometer. These strength tests focused on the trunk and leg muscles. Comparisons of strength were made between and within groups for right and left symmetry patterns, hamstring: quadriceps ratios, and trunk flexor and extensor ratios. The results revealed no left and right asymmetries in either the knee extensor or flexor strength parameters (including both isometric and isokinetic measures). Knee extensor strength was significantly greater in the rowing population, but knee flexor strength was similar between the two groups. No difference was seen between the groups for the hamstring: quadriceps strength ratio. In the rowing population, stroke side had no influence on leg strength. No differences were observed in the isometric strength of the trunk flexors and extensors between groups, although EMG activity was significantly higher in the rowing population. Patterns of asymmetry of muscle activity were observed between the left and right erector spinae muscles during extension, which was significantly related to rowing side (P < 0.01). These observations could be related to the high incidence of low back pain in oarsmen.

  19. Poor correlation between handgrip strength and isokinetic performance of knee flexor and extensor muscles in community-dwelling elderly women.

    PubMed

    Felicio, Diogo Carvalho; Pereira, Daniele Sirineu; Assumpção, Alexandra Miranda; de Jesus-Moraleida, Fabianna Resende; de Queiroz, Barbara Zille; da Silva, Juscelio Pereira; de Brito Rosa, Naysa Maciel; Dias, João Marcos Domingues; Pereira, Leani Souza Máximo

    2014-01-01

    To investigate the correlation between handgrip strength and performance of knee flexor and extensor muscles determined using an isokinetic dynamometer in community-dwelling elderly women. This was a cross-sectional study. Sample selection for the study was made by convenience, and 221 (71.07 ± 4.93 years) community-dwelling elderly women were included. Knee flexor and extensor muscle performance was measured using an isokinetic dynamometer Biodex System 3 Pro. The isokinetic variables chosen for analysis were peak torque, peak torque/bodyweight, total work/bodyweight, total work, average power, and agonist/antagonist ratio at the angular velocities of 60°/s and 180°/s. Assessment of handgrip strength was carried out using the Jamar dynamometer. Spearman's correlation coefficient was calculated to identify intervariable correlations. Only knee flexor peak torque (60°/s) and average power (60°/s), and knee extensor peak torque (180°/s) and total work (180°/s) were significantly (P < 0.05), yet poorly, correlated with handgrip strength (r < 0.30). The majority of analyses did not show any correlation between variables assessed by isokinetic dynamometer and handgrip dynamometer. Caution is required when generalizing handgrip strength as a predictor of global muscle strength in community-dwelling elderly women. © 2013 Japan Geriatrics Society.

  20. Stretch reflex excitability of the anti-gravity ankle extensor muscle in elderly humans.

    PubMed

    Kawashima, N; Nakazawa, K; Yamamoto, S-I; Nozaki, D; Akai, M; Yano, H

    2004-01-01

    To examine whether the stretch reflex excitability of the soleus muscle changes with age, stretch reflexes at rest (REST) and during weak voluntary contractions (ACT) were elicited in 18 older and 14 younger subjects. The amplitude of the stretch reflex responses and gain, defined as the gradient of the regression line for the relation between stretch reflex responses against the angular velocity of the applied perturbation, were evaluated in each short-latency (M1) and two long-latency components (M2 and M3). It was found that in the older group, both the amplitude and gain of the M1 component did not change from the REST to the ACT conditions, whereas in the younger group both variables significantly increased from the REST to ACT conditions. The latency of the M1 component was significantly shorter under the REST condition (older vs. younger: 51.8 +/- 7.37 vs. 55.1 +/- 8.69 ms), while no group differences were found in those variables under the ACT condition, suggesting that the muscle-tendon complexes of SOL muscles of the older subjects were less elastic and had less slack, probably due to age-related histochemical alterations. Further, the Hoffman reflex (H-reflex), elicited during the REST condition in 10 older and 11 younger subjects showed no significant differences, suggesting that the soleus motoneuron response to the Ia input was comparable between the two subject groups. The histochemical alterations occurring with the ageing process might augment the short-latency stretch reflex in the SOL muscle without enhancement of motoneuronal excitability, and this effect might be masked when the muscle is voluntarily activated.

  1. Variations in motor unit recruitment patterns occur within and between muscles in the running rat (Rattus norvegicus).

    PubMed

    Hodson-Tole, E F; Wakeling, J M

    2007-07-01

    Motor units are generally considered to follow a set, orderly pattern of recruitment within each muscle with activation occurring in the slowest through to the fastest units. A growing body of evidence, however, suggests that recruitment patterns may not always follow such an orderly sequence. Here we investigate whether motor unit recruitment patterns vary within and between the ankle extensor muscles of the rat running at 40 cm s(-1) on a level treadmill. In the past it has been difficult to quantify motor unit recruitment patterns during locomotion; however, recent application of wavelet analysis techniques has made such detailed analysis of motor unit recruitment possible. Here we present methods for quantifying the interplay of fast and slow motor unit recruitment based on their myoelectric signals. Myoelectric data were collected from soleus, plantaris and medial gastrocnemius muscles representing populations of slow, mixed and fast fibres, respectively, and providing a good opportunity to relate myoelectric frequency content to motor unit recruitment patterns. Following wavelet transformation, principal component analysis quantified signal intensity and relative frequency content. Significant differences in signal frequency content occurred between different time points within a stride (P<0.001). We optimised high- and low-frequency wavelets to the major signals from the fast and slow motor units. The goodness-of-fit of the optimised wavelets to the signal intensity was high for all three muscles (r2>0.98). The low-frequency band had a significantly better fit to signals from the soleus muscle (P<0.001), while the high-frequency band had a significantly better fit to the medial gastrocnemius (P<0.001).

  2. Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Slocum, G. R.; Satyanarayana, T.; Bain, J. L.; Sedlak, F. R.

    1987-01-01

    Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.

  3. Effect of hindlimb suspension and clenbuterol treatment on polyamine levels in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Abukhalaf, Imad K.; von Deutsch, Daniel A.; Wineski, Lawrence E.; Silvestrov, Natalia A.; Abera, Saare A.; Sahlu, Sinafikish W.; Potter, David E.; Thierry-Palmer, M. (Principal Investigator)

    2002-01-01

    Polyamines are unbiquitous, naturally occurring small aliphatic, polycationic, endogenous compounds. They are involved in many cellular processes and may serve as secondary or tertiary messengers to hormonal regulation. The relationship of polyamines and skeletal muscle mass of adductor longus, extensor digitorum longus, and gastrocnemius under unloading (hindlimb suspension) conditions was investigated. Unloading significantly affected skeletal muscle polyamine levels in a fiber-type-specific fashion. Under loading conditions, clenbuterol treatment increased all polyamine levels, whereas under unloading conditions, only the spermidine levels were consistently increased. Unloading attenuated the anabolic effects of clenbuterol in predominately slow-twitch muscles (adductor longus), but had little impact on clenbuterol's action as a countermeasure in fast- twitch muscles such as the extensor digitorum longus. Spermidine appeared to be the primary polyamine involved in skeletal muscle atrophy/hypertrophy. Copyright 2002 S. Karger AG, Basel.

  4. Estimation method of finger tapping dynamics using simple magnetic detection system

    NASA Astrophysics Data System (ADS)

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  5. Estimation method of finger tapping dynamics using simple magnetic detection system.

    PubMed

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  6. Vibration-induced muscle injury. An experimental model and preliminary findings.

    PubMed

    Necking, L E; Dahlin, L B; Fridén, J; Lundborg, G; Lundström, R; Thornell, L E

    1992-06-01

    The hind paws of rats were subjected to vibration at a frequency of 80 Hz., an acceleration of 32 m./s.2 rms (i.e. ah.w approximately 6.3 m./s.2 rms) for five hours daily during five consecutive days. Morphological, histochemical and immunohistochemical analyses of the soleus, extensor digitorum longus and the plantar muscles in the vibrated limb and the contralateral control limb were performed. No changes were seen in the soleus or extensor digitorum longus muscles but different degrees of degeneration of the muscle fibres were seen in the plantar muscle sections as well as signs of regeneration. No changes were observed in the contralateral unexposed limb. It is concluded that it is not only nervous tissue but also muscle tissue that can be affected by vibration. The changes seem to be confined to muscles close to the vibration exciter.

  7. Prevalence of and referred pain from myofascial trigger points in the forearm muscles in patients with lateral epicondylalgia.

    PubMed

    Fernández-Carnero, Josué; Fernández-de-Las-Peñas, César; de la Llave-Rincón, Ana Isabel; Ge, Hong-You; Arendt-Nielsen, Lars

    2007-05-01

    Referred pain and pain characteristics evoked from the extensor carpi radialis brevis, extensor carpi radialis longus, extensor digitorum communis, and brachioradialis muscles was investigated in 20 patients with lateral epicondylalgia (LE) and 20-matched controls. Both groups were examined for the presence of myofascial trigger points (TrPs) in a blinded fashion. The quality and location of the evoked referred pain, and the pressure pain threshold (PPT) at the lateral epicondyle on the right upper extremity (symptomatic side in patients, and dominant-side on controls) were recorded. Several lateral elbow pain parameters were also evaluated. Within the patient group, the elicited referred pain by manual exploration of 13 out of 20 (65%) extensor carpi radialis brevis muscles, 12/20 (70%) extensor carpi radialis longus muscles, 10/20 (50%) brachioradialis muscles, and 5/20 (25%) extensor digitorum communis muscles, shares similar pain patterns as their habitual lateral elbow and forearm pain. The mean number of muscles with TrPs for each patient was 2.9 [95% confidence interval (CI) 1,4] of which 2 (95% CI 1,3) were active, and 0.9 (95% CI 0,2) were latent TrPs. Control participants only had latent TrPs (mean: 0.4; 95% CI 0,2). TrP occurrence between the 2 groups was significantly different for active TrPs (P<0.001), but not for latent TrPs (P>0.05). The referred pain pattern was larger in patients than in controls, with pain referral to the lateral epicondyle (proximally) and to the dorso-lateral aspect of the forearm in the patients, and confined to the dorso-lateral aspect of the forearm in the controls. Patients with LE showed a significant (P<0.001) lower PPT (mean: 2.1 kg/cm; 95% CI 0.8, 4 kg/cm) as compared with controls (mean: 4.5 kg/cm; 95% CI 3, 7 kg/cm). Within the patient group, PPT at the lateral epicondyle was negatively correlated with both the total number of TrPs (rs=-0.63; P=0.003) and the number of active TrPs (rs=-0.5; P=0.02): the greater the number of active TrPs, the lower the PPT at the lateral epicondyle. Our results suggest that in patients with LE, the evoked referred pain and its sensory characteristics shared similar patterns as their habitual elbow and forearm pain, consistent with active TrPs. Lower PPT and larger referred pain patterns suggest that peripheral and central sensitization exists in LE.

  8. Evaluation and management of crouch gait.

    PubMed

    Kedem, Paz; Scher, David M

    2016-02-01

    Crouch gait is defined as excessive ankle dorsiflexion, knee and hip flexion during the stance phase. This gait disorder is common among patients with cerebral palsy. The present article brings an up-to-date literature review on the pathoanatomy, natural history, and treatment of this frequent gait abnormality. Hamstrings are often not shortened in patients with crouch. Patella alta must be addressed if surgery is performed. Surgical correction of joint contractures and lever arm dysfunction can be effectively achieved through a single-event multilevel surgery. Crouch gait is a common gait deviation, often seen among ambulatory diplegic and quadriplegic patients, once they reach the pubertal spurt, when weak muscles can no longer support a toe walking pattern because of rapidly increased weight. This form of gait is highly ineffective and might compromise walking ability over time. The anterior knee is overloaded; pain, extensor mechanism failure, and arthritis might develop. Its progressive nature often requires surgical intervention. The cause of crouch gait is multifactorial, and surgery should be tailored to meet the individual's specific anatomic and physiologic abnormalities.

  9. Quantitative Evaluation of Muscle Function, Gait, and Postural Control in People Experiencing Critical Illness After Discharge From the Intensive Care Unit.

    PubMed

    Kiriella, Jeevaka B; Araujo, Tamara; Vergara, Martin; Lopez-Hernandez, Laura; Cameron, Jill I; Herridge, Margaret; Gage, William H; Mathur, Sunita

    2018-01-01

    The path to recovery of muscle strength and mobility following discharge from the intensive care unit (ICU) has not been well described. The study objective was to quantify muscle function, gait, and postural control at 3 and 6 months after discharge in people who were recovering from critical illness and who were ventilated for 7 days or more. This was a nested longitudinal study with continuous inclusion of individuals over a 2-year period and with age- and sex-matched controls. Twenty-four people were tested at 3 months after ICU discharge; 16 of them (67%) were reevaluated at 6 months (post-ICU group). Healthy controls (n = 12) were tested at a single time point. Muscle function of the knee extensors (KEs), plantar flexors (PFs), and dorsiflexors (DFs) was assessed on a dynamometer. Gait was measured using an electronic walkway, and postural control was measured with 2 portable force plates. Muscle weakness was observed across all muscle groups at 3 months, with the greatest strength reductions in the ankle PFs (45%) and DFs (30%). Muscle power was reduced in the PFs and DFs but was not reduced in the KEs. Gait in the post-ICU group was characterized by a narrower step, longer stride, and longer double-support time than in the controls. Improvements were found in KE strength and in stride time and double-support time during gait at 6 months. Leg muscle strength and power had moderate associations with gait velocity, step width, and stride length (r = .44-.65). The small heterogeneous sample of people with a high level of function was a limitation of this study. Muscle strength and power were impaired at 6 months after ICU discharge and were associated with gait parameters. Future studies are needed to examine the role of muscle strength and power training in post-ICU rehabilitation programs to improve mobility. © 2017 American Physical Therapy Association

  10. ANKLE JOINT CONTROL DURING SINGLE-LEGGED BALANCE USING COMMON BALANCE TRAINING DEVICES – IMPLICATIONS FOR REHABILITATION STRATEGIES

    PubMed Central

    Strøm, Mark; Thorborg, Kristian; Bandholm, Thomas; Tang, Lars; Zebis, Mette; Nielsen, Kristian

    2016-01-01

    ABSTRACT Background A lateral ankle sprain is the most prevalent musculoskeletal injury in sports. Exercises that aim to improve balance are a standard part of the ankle rehabilitation process. In an optimal progression model for ankle rehabilitation and prevention of future ankle sprains, it is important to characterize different balance exercises based on level of difficulty and sensori-motor training stimulus. Purpose The purpose of this study was to investigate frontal-plane ankle kinematics and associated peroneal muscle activity during single-legged balance on stable surface (floor) and three commonly used balance devices (Airex®, BOSU® Ball and wobble board). Design Descriptive exploratory laboratory study. Methods Nineteen healthy subjects performed single-legged balance with eyes open on an Airex® mat, BOSU® Ball, wobble board, and floor (reference condition). Ankle kinematics were measured using reflective markers and 3-dimensional recordings and expressed as inversion-eversion range of motion variability, peak velocity of inversion and number of inversion-eversion direction changes. Peroneus longus EMG activity was averaged and normalized to maximal activity during maximum voluntary contraction (MVC), and in addition amplitude probability distribution function (APDF) between 90 and 10% was calculated as a measure of muscle activation variability. Results Balancing on BOSU® Ball and wobble board generally resulted in increased ankle kinematic and muscle activity variables, compared to the other surfaces. BOSU® Ball was the most challenging in terms of inversion-eversion variability while wobble board was associated with a higher number of inversion-eversion direction changes. No differences in average muscle activation level were found between these two surfaces, but the BOSU® Ball did show a more variable activation pattern in terms of APDF. Conclusion The results showed large kinematic variability among different balance training devices and these differences are also reflected in muscle activation variability. The two most challenging devices were BOSU® Ball and Wobble board compared to Airex® and floor. This study can serve as guidance for clinicians who wish to implement a gradual progression of ankle rehabilitation and prevention exercises by taking the related ankle kinematics and muscle activity into account. Level of Evidence Level 3 PMID:27274425

  11. ASSOCIATION OF KNEE PAIN WITH A REDUCTION IN THIGH MUSCLE STRENGTH – A CROSS-SECTIONAL ANALYSIS INCLUDING 4553 OSTEOARTHRITIS INITIATIVE PARTICIPANTS

    PubMed Central

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2016-01-01

    Objective To cross-sectionally determine the quantitative relationship of age-adjusted, sex-specific isometric knee extensor and flexor strength to patient-reported knee pain. Methods Difference of thigh muscle strength by age, and that of age-adjusted strength per unit increase on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) knee pain scale, was estimated from linear regression analysis of 4553 Osteoarthritis Initiative participants (58% women). Strata encompassing the minimal clinically important difference (MCID) in knee pain were compared to evaluate a potentially non-linear relationship between WOMAC pain levels and muscle strength. Results In Osteoarthritis Initiative participants without pain, the age-related difference in isometric knee extensor strength was −9.0%/−8.2% (women/men) per decade, and that of flexor strength was −11%/−6.9%. Differences in age-adjusted strength values for each unit of WOMAC pain (1/20) amounted to −1.9%/−1.6% for extensor and −2.5%/−1.7% for flexor strength. Differences in torque/weight for each unit of WOMAC pain ranged from −3.3 to − 2.1%. There was no indication of a non-linear relationship between pain and strength across the range of observed WOMAC values, and similar results were observed in women and men. Conclusion Each increase by 1/20 units in WOMAC pain was associated with a ~2% lower age-adjusted isometric extensor and flexor strength in either sex. As a reduction in muscle strength is known to prospectively increase symptoms in knee osteoarthritis and as pain appears to reduce thigh muscle strength, adequate therapy of pain and muscle strength is required in knee osteoarthritis patients to avoid a vicious circle of self-sustaining clinical deterioration. PMID:27836675

  12. Cross-sectional association between muscle strength and self-reported physical function in 195 hip osteoarthritis patients.

    PubMed

    Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L

    2017-02-01

    This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Relation between the Disability of the Arm, Shoulder and Hand Score and Muscle Strength in Post-Cardiac Surgery Patients

    PubMed Central

    Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi

    2017-01-01

    Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m2; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength (r = −0.38, p = 0.01) and with knee extensor muscle strength (r = −0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation. PMID:29186880

  14. Monosynaptic Ia projections from intrinsic hand muscles to forearm motoneurones in humans.

    PubMed

    Marchand-Pauvert, V; Nicolas, G; Pierrot-Deseilligny, E

    2000-05-15

    Heteronymous Ia excitatory projections from intrinsic hand muscles to human forearm motoneurones (MNs) were investigated. Changes in firing probability of single motor units (MUs) in the flexor carpi radialis (FCR), flexor carpi ulnaris (FCU), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), extensor carpi ulnaris (ECU) and extensor digitorum communis (EDC) were studied after electrical stimuli were applied to the median and ulnar nerve at wrist level and to the corresponding homonymous nerve at elbow level. Homonymous facilitation, occurring at the same latency as the H reflex, and therefore attributed to monosynaptic Ia EPSPs, was found in all the sampled units. In many MUs an early facilitation was also evoked by heteronymous low-threshold afferents from intrinsic hand muscles. The low threshold (between 0.5 and 0.6 times motor threshold (MT)) and the inability of a pure cutaneous stimulation to reproduce this effect indicate that it is due to stimulation of group I muscle afferents. Evidence for a similar central delay (monosynaptic) in heteronymous as in homonymous pathways was accepted when the difference in latencies of the homonymous and heteronymous peaks did not differ from the estimated supplementary afferent conduction time from wrist to elbow level by more than 0.5 ms (conduction velocity in the fastest Ia afferents between wrist and elbow levels being equal to 69 m s-1). A statistically significant heteronymous monosynaptic Ia excitation from intrinsic hand muscles supplied by both median and ulnar nerves was found in MUs belonging to all forearm motor nuclei tested (although not in ECU MUs after ulnar stimulation). It was, however, more often found in flexors than in extensors, in wrist than in finger muscles and in muscles operating in the radial than in the ulnar side. It is argued that the connections of Ia afferents from intrinsic hand muscles to forearm MNs, which are stronger and more widely distributed than in the cat, might be used to provide a support to the hand during manipulatory movements.

  15. Effects of Nintendo Wii Fit Plus training on ankle strength with functional ankle instability

    PubMed Central

    Kim, Ki-Jong; Jun, Hyun-Ju; Heo, Myoung

    2015-01-01

    [Purpose] The objective of this study was to examine the effects of a training program using the Nintendo Wii Fit Plus on the ankle muscle strengths of subjects with functional ankle instability. [Subjects and Methods] This study was conducted using subjects in their 20s who had functional ankle instability. They were randomized to a strengthening training group and a balance training group with 10 subjects in each, and they performed an exercise using Nintendo Wii Fit Plus for 20 minutes. In addition, every participant completed preparation and finishing exercises for 5 minutes, respectively. [Results] The muscle strengths after conducting plantar flexion and dorsiflexion significantly increased at the angular velocities of 60° and 120° in the strengthening training group. Furthermore, the muscle strengths after conducting plantar flexion, dorsiflexion, eversion, and inversion significantly increased at the angular velocities of 60° and 120° in the balance training group. [Conclusion] The balance training group using Nintendo Wii Fit Plus showed better results than the strengthening training group. Consequently, it is recommended to add the balance training program of the Nintendo Wii Fit Plus to conventional exercise programs to improve ankle muscle strength in functional ankle instability at a low cost. PMID:26696703

  16. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis.

    PubMed

    Rinaldi, Martina; Ranavolo, Alberto; Conforto, Silvia; Martino, Giovanni; Draicchio, Francesco; Conte, Carmela; Varrecchia, Tiwana; Bini, Fabiano; Casali, Carlo; Pierelli, Francesco; Serrao, Mariano

    2017-10-01

    The aim of this study was to investigate the lower limb muscle coactivation and its relationship with muscles spasticity, gait performance, and metabolic cost in patients with hereditary spastic paraparesis. Kinematic, kinetic, electromyographic and energetic parameters of 23 patients and 23 controls were evaluated by computerized gait analysis system. We computed ankle and knee antagonist muscle coactivation indexes throughout the gait cycle and during the subphases of gait. Energy consumption and energy recovery were measured as well. In addition to the correlation analysis between coactivation indexes and clinical variables, correlations between coactivation indexes and time-distance, kinematic, kinetic, and energetic parameters were estimated. Increased coactivity indexes of both knee and ankle muscles throughout the gait cycle and during the subphases of gait were observed in patients compared with controls. Energetic parameters were significantly higher in patients than in controls. Both knee and ankle muscle coactivation indexes were positively correlated with knee and ankle spasticity (Ashworth score), respectively. Knee and ankle muscle coactivation indexes were both positively correlated with energy consumption and both negatively correlated with energy recovery. Positive correlations between the Ashworth score and lower limb muscle coactivation suggest that abnormal lower limb muscle coactivation in patients with hereditary spastic paraparesis reflects a primary deficit linked to lower limb spasticity. Furthermore, these abnormalities influence the energetic mechanisms during walking. Identifying excessive muscle coactivation may be helpful in individuating the rehabilitative treatments and designing specific orthosis to restrain spasticity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Tibialis anterior volumes and areas in ACL-injured limbs compared with unimpaired.

    PubMed

    Binder-Macleod, Benjamin I; Buchanan, Thomas S

    2006-09-01

    Past research has shown that subjects with ACL injuries show activation differences and atrophy in the muscles that cross the knee, including the gastrocnemii, which predominately act at the ankle. However, it is not known how the other ankle muscles that do not cross the knee are affected. We focused on the two muscles that control the ankle, the soleus and tibialis anterior muscles, to see how they were affected by an ACL injury. We hypothesized that the ankle muscles of subjects with ACL injuries that did not require surgery (copers) would be more like normals and that the muscles of subjects with ACL injuries who required surgery to return to normal activity (noncopers) would atrophy. Twenty-seven subjects were divided into three even categories: unimpaired subjects, copers, and noncopers. Axial spin-echo T1-weighted MRI images were used to digitally reconstruct the tibialis anterior and the soleus. We used the digitally reconstructed muscles to determine the peak cross-sectional area and volume of each muscle. The copers' tibialis anterior muscles were similar to the unimpaired subjects, but, surprisingly, the noncoper's tibialis anterior muscles of the injured leg were larger than those of their uninjured legs (P < 0.05). In the soleus, the results showed a trend of not being affected. The increase in size of the tibialis anterior in noncopers may have been caused by altered gait patterns in noncopers. We believe this is due to either an ankle-stiffening strategy during heel strike or from the inversion of the foot causing external rotation of the tibia as a stabilizing technique for the knee.

  18. The role of muscle strengthening in exercise therapy for knee osteoarthritis: A systematic review and meta-regression analysis of randomized trials.

    PubMed

    Bartholdy, Cecilie; Juhl, Carsten; Christensen, Robin; Lund, Hans; Zhang, Weiya; Henriksen, Marius

    2017-08-01

    To analyze if exercise interventions for patients with knee osteoarthritis (OA) following the American College of Sports Medicine (ACSM) definition of muscle strength training differs from other types of exercise, and to analyze associations between changes in muscle strength, pain, and disability. A systematic search in 5 electronic databases was performed to identify randomized controlled trials comparing exercise interventions with no intervention in knee OA, and reporting changes in muscle strength and in pain or disability assessed as standardized mean differences (SMD) with 95% confidence intervals (95% CI). Interventions were categorized as ACSM interventions or not-ACSM interventions and compared using stratified random effects meta-analysis models. Associations between knee extensor strength gain and changes in pain/disability were assessed using meta-regression analyses. The 45 eligible trials with 4699 participants and 56 comparisons (22 ACSM interventions) were included in this analysis. A statistically significant difference favoring the ACSM interventions with respect to knee extensor strength was found [SMD difference: 0.448 (95% CI: 0.091-0.805)]. No differences were observed regarding effects on pain and disability. The meta-regressions indicated that increases in knee extensor strength of 30-40% would be necessary for a likely concomitant beneficial effect on pain and disability, respectively. Exercise interventions following the ACSM criteria for strength training provide superior outcomes in knee extensor strength but not in pain or disability. An increase of less than 30% in knee extensor strength is not likely to be clinically beneficial in terms of changes in pain and disability (PROSPERO: CRD42014015344). Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Validity of trunk extensor and flexor torque measurements using isokinetic dynamometry.

    PubMed

    Guilhem, Gaël; Giroux, Caroline; Couturier, Antoine; Maffiuletti, Nicola A

    2014-12-01

    This study aimed to evaluate the validity and test-retest reliability of trunk muscle strength testing performed with a latest-generation isokinetic dynamometer. Eccentric, isometric, and concentric peak torque of the trunk flexor and extensor muscles was measured in 15 healthy subjects. Muscle cross sectional area (CSA) and surface electromyographic (EMG) activity were respectively correlated to peak torque and submaximal isometric torque for erector spinae and rectus abdominis muscles. Reliability of peak torque measurements was determined during test and retest sessions. Significant correlations were consistently observed between muscle CSA and peak torque for all contraction types (r=0.74-0.85; P<0.001) and between EMG activity and submaximal isometric torque (r ⩾ 0.99; P<0.05), for both extensor and flexor muscles. Intraclass correlation coefficients were comprised between 0.87 and 0.95, and standard errors of measurement were lower than 9% for all contraction modes. The mean difference in peak torque between test and retest ranged from -3.7% to 3.7% with no significant mean directional bias. Overall, our findings establish the validity of torque measurements using the tested trunk module. Also considering the excellent test-retest reliability of peak torque measurements, we conclude that this latest-generation isokinetic dynamometer could be used with confidence to evaluate trunk muscle function for clinical or athletic purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The Shank-to-Vertical-Angle as a parameter to evaluate tuning of Ankle-Foot Orthoses.

    PubMed

    Kerkum, Yvette L; Houdijk, Han; Brehm, Merel-Anne; Buizer, Annemieke I; Kessels, Manon L C; Sterk, Arjan; van den Noort, Josien C; Harlaar, Jaap

    2015-09-01

    The effectiveness of an Ankle-Foot Orthosis footwear combination (AFO-FC) may be partly dependent on the alignment of the ground reaction force with respect to lower limb joint rotation centers, reflected by joint angles and moments. Adjusting (i.e. tuning) the AFO-FC's properties could affect this alignment, which may be guided by monitoring the Shank-to-Vertical-Angle. This study aimed to investigate whether the Shank-to-Vertical-Angle during walking responds to variations in heel height and footplate stiffness, and if this would reflect changes in joint angles and net moments in healthy adults. Ten subjects walked on an instrumented treadmill and performed six trials while walking with bilateral rigid Ankle-Foot Orthoses. The AFO-FC heel height was increased, aiming to impose a Shank-to-Vertical-Angle of 5°, 11° and 20°, and combined with a flexible or stiff footplate. For each trial, the Shank-to-Vertical-Angle, joint flexion-extension angles and net joint moments of the right leg at midstance were averaged over 25 gait cycles. The Shank-to-Vertical-Angle significantly increased with increasing heel height (p<0.001), resulting in an increase in knee flexion angle and internal knee extensor moment (p<0.001). The stiff footplate reduced the effect of heel height on the internal knee extensor moment (p=0.030), while the internal ankle plantar flexion moment increased (p=0.035). Effects of heel height and footplate stiffness on the hip joint were limited. Our results support the potential to use the Shank-to-Vertical-Angle as a parameter to evaluate AFO-FC tuning, as it is responsive to changes in heel height and reflects concomitant changes in the lower limb angles and moments. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Sagittal plane joint kinetics during stair ascent in patients with peripheral arterial disease and intermittent claudication.

    PubMed

    King, Stephanie L; Vanicek, Natalie; O'Brien, Thomas D

    2017-06-01

    Stair negotiation poses a substantial physical demand on the musculoskeletal system and this challenging task can place individuals at risk of falls. Peripheral arterial disease (PAD) can cause intermittent claudication (IC) pain in the calf and results in altered gait mechanics during level walking. However, whether those with PAD-IC adopt alternate strategies to climb stairs is unknown. Twelve participants with PAD-IC (six bilateral and six unilateral) and 10 healthy controls were recruited and instructed to ascend a five-step staircase whilst 3D kinematic data of the lower-limbs were recorded synchronously with kinetic data from force plates embedded into the staircase on steps two and three. Limbs from the unilateral group and both limbs from the bilateral claudicants were categorised as claudicating (N=18), asymptomatic (N=6) and control (N=10). Claudicants walked more slowly than healthy controls (trend; P=<0.066). Both claudicating- and asymptomatic-limb groups had reduced propulsive GRF (P=0.025 and P=0.002, respectively) and vertical GRF (P=0.005 and P=0.001, respectively) compared to controls. The claudicating-limb group had a reduced knee extensor moment during forward continuance (P=0.060), ankle angular velocity at peak moment (P=0.039) and ankle power generation (P=0.055) compared to the controls. The slower gait speed, irrespective of laterality of symptoms, indicates functional capacity was determined by the limitations of the claudicating limb. Reduced ankle power generation and angular velocity (despite adequate plantarflexor moment) implies velocity-dependent limitations existed in the calf. The lack of notable compensatory strategies indicates reliance on an impaired muscle group to accomplish this potentially hazardous task, highlighting the importance of maintaining plantarflexor strength and power in those with PAD-IC. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Cryotherapy does not affect peroneal reaction following sudden inversion.

    PubMed

    Berg, Christine L; Hart, Joseph M; Palmieri-Smith, Riann; Cross, Kevin M; Ingersoll, Christopher D

    2007-11-01

    If ankle joint cryotherapy impairs the ability of the ankle musculature to counteract potentially injurious forces, the ankle is left vulnerable to injury. To compare peroneal reaction to sudden inversion following ankle joint cryotherapy. Repeated measures design with independent variables, treatment (cryotherapy and control), and time (baseline, immediately post treatment, 15 minutes post treatment, and 30 minutes post treatment). University research laboratory. Twenty-seven healthy volunteers. An ice bag was secured to the lateral ankle joint for 20 minutes. The onset and average root mean square amplitude of EMG activity in the peroneal muscles was calculated following the release of a trap door mechanism causing inversion. There was no statistically significant change from baseline for peroneal reaction time or average peroneal muscle activity at any post treatment time. Cryotherapy does not affect peroneal muscle reaction following sudden inversion perturbation.

  3. ASSOCIATION OF ISOMETRIC STRENGTH OF HIP AND KNEE MUSCLES WITH INJURY RISK IN HIGH SCHOOL CROSS COUNTRY RUNNERS.

    PubMed

    Luedke, Lace E; Heiderscheit, Bryan C; Williams, D S Blaise; Rauh, Mitchell J

    2015-11-01

    High school cross country runners have a high incidence of overuse injuries, particularly to the knee and shin. As lower extremity strength is modifiable, identification of strength attributes that contribute to anterior knee pain (AKP) and shin injuries may influence prevention and management of these injuries. To determine if a relationship existed between isometric hip abductor, knee extensor and flexor strength and the incidence of AKP and shin injury in high school cross country runners. Sixty-eight high school cross country runners (47 girls, 21 boys) participated in the study. Isometric strength tests of hip abductors, knee extensors and flexors were performed with a handheld dynamometer. Runners were prospectively followed during the 2014 interscholastic cross country season for occurrences of AKP and shin injury. Bivariate logistic regression was used to examine risk relationships between strength values and occurrence of AKP and shin injury. During the season, three (4.4%) runners experienced AKP and 13 (19.1%) runners incurred a shin injury. Runners in the tertiles indicating weakest hip abductor (chi-square = 6.140; p=0.046), knee extensor (chi-square = 6.562; p=0.038), and knee flexor (chi-square = 6.140; p=0.046) muscle strength had a significantly higher incidence of AKP. Hip and knee muscle strength was not significantly associated with shin injury. High school cross country runners with weaker hip abductor, knee extensor and flexor muscle strength had a higher incidence of AKP. Increasing hip and knee muscle strength may reduce the likelihood of AKP in high school cross country runners. 2b.

  4. The Acute Effects of Static and Cyclic Stretching on Muscle Stiffness and Hardness of Medial Gastrocnemius Muscle.

    PubMed

    Maeda, Noriaki; Urabe, Yukio; Tsutsumi, Shogo; Sakai, Shogo; Fujishita, Hironori; Kobayashi, Toshiki; Asaeda, Makoto; Hirata, Kazuhiko; Mikami, Yukio; Kimura, Hiroaki

    2017-12-01

    This study aimed to clarify the acute effects of static stretching (SS) and cyclic stretching (CS) on muscle stiffness and hardness of the medial gastrocnemius muscle (MG) by using ultrasonography, range of motion (ROM) of the ankle joint and ankle plantar flexor. Twenty healthy men participated in this study. Participants were randomly assigned to SS, CS and control conditions. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions in another day: (a) 2 minutes static stretching, (b) 2 minutes cyclic stretching, (c) control. Maximum ankle dorsiflexion range of motion (ROM max) and normalized peak torque (NPT) of ankle plantar flexor were measured in the pre- and post-stretching. To assess muscle stiffness, muscle-tendon junction (MTJ) displacement (the length changes in tendon and muscle) and MTJ angle (the angle made by the tendon of insertion and muscle fascicle) of MG were measured using ultrasonography at an ankle dorsiflexion angle of -10°, 0°, 10° and 20° before and after SS and CS for 2 minutes in the pre- and post-stretching. MG hardness was measured using ultrasound real-time tissue elastography (RTE). The results of this study indicate a significant effect of SS for ROM maximum, MTJ angle (0°, 10°, 20°) and RTE (10°, 20°) compared with CS (p < 0.05). There were no significant differences in MTJ displacement between SS and CS. CS was associated with significantly higher NPT values than SS. This study suggests that SS of 2 minutes' hold duration significantly affected muscle stiffness and hardness compared with CS. In addition, CS may contribute to the elongation of muscle tissue and increased muscle strength.

  5. Are Females More Resistant to Extreme Neuromuscular Fatigue?

    PubMed

    Temesi, John; Arnal, Pierrick J; Rupp, Thomas; Féasson, Léonard; Cartier, Régine; Gergelé, Laurent; Verges, Samuel; Martin, Vincent; Millet, Guillaume Y

    2015-07-01

    Despite interest in the possibility of females outperforming males in ultraendurance sporting events, little is known about the sex differences in fatigue during prolonged locomotor exercise. This study investigated possible sex differences in central and peripheral fatigue in the knee extensors and plantar flexors resulting from a 110-km ultra-trail-running race. Neuromuscular function of the knee extensors and plantar flexors was evaluated via transcranial magnetic stimulation (TMS) and electrical nerve stimulation before and after an ultra-trail-running race in 20 experienced ultraendurance trail runners (10 females and 10 males matched by percent of the winning time by sex) during maximal and submaximal voluntary contractions and in relaxed muscle. Maximal voluntary knee extensor torque decreased more in males than in females (-38% vs -29%, P = 0.006) although the reduction in plantar flexor torque was similar between sexes (-26% vs -31%). Evoked mechanical plantar flexor responses decreased more in males than in females (-23% vs -8% for potentiated twitch amplitude, P = 0.010), indicating greater plantar flexor peripheral fatigue in males. Maximal voluntary activation assessed by TMS and electrical nerve stimulation decreased similarly in both sexes for both muscle groups. Indices of knee extensor peripheral fatigue and corticospinal excitability and inhibition changes were also similar for both sexes. Females exhibited less peripheral fatigue in the plantar flexors than males did after a 110-km ultra-trail-running race and males demonstrated a greater decrease in maximal force loss in the knee extensors. There were no differences in the magnitude of central fatigue for either muscle group or TMS-induced outcomes. The lower level of fatigue in the knee extensors and peripheral fatigue in the plantar flexors could partly explain the reports of better performance in females in extreme duration running races as race distance increases.

  6. Speed adaptation in a powered transtibial prosthesis controlled with a neuromuscular model.

    PubMed

    Markowitz, Jared; Krishnaswamy, Pavitra; Eilenberg, Michael F; Endo, Ken; Barnhart, Chris; Herr, Hugh

    2011-05-27

    Control schemes for powered ankle-foot prostheses would benefit greatly from a means to make them inherently adaptive to different walking speeds. Towards this goal, one may attempt to emulate the intact human ankle, as it is capable of seamless adaptation. Human locomotion is governed by the interplay among legged dynamics, morphology and neural control including spinal reflexes. It has been suggested that reflexes contribute to the changes in ankle joint dynamics that correspond to walking at different speeds. Here, we use a data-driven muscle-tendon model that produces estimates of the activation, force, length and velocity of the major muscles spanning the ankle to derive local feedback loops that may be critical in the control of those muscles during walking. This purely reflexive approach ignores sources of non-reflexive neural drive and does not necessarily reflect the biological control scheme, yet can still closely reproduce the muscle dynamics estimated from biological data. The resulting neuromuscular model was applied to control a powered ankle-foot prosthesis and tested by an amputee walking at three speeds. The controller produced speed-adaptive behaviour; net ankle work increased with walking speed, highlighting the benefits of applying neuromuscular principles in the control of adaptive prosthetic limbs.

  7. Medial compressible forefoot sole elements reduce ankle inversion in lateral SSC jumps.

    PubMed

    Fleischmann, Jana; Mornieux, Guillaume; Gehring, Dominic; Gollhofer, Albert

    2013-06-01

    Sideward movements are associated with high incidences of lateral ankle sprains. Special shoe constructions might be able to reduce these injuries during lateral movements. The purpose of this study was to investigate whether medial compressible forefoot sole elements can reduce ankle inversion in a reactive lateral movement, and to evaluate those elements' influence on neuromuscular and mechanical adjustments in lower extremities. Foot placement and frontal plane ankle joint kinematics and kinetics were analyzed by 3-dimensional motion analysis. Electromyographic data of triceps surae, peroneus longus, and tibialis anterior were collected. This modified shoe reduced ankle inversion in comparison with a shoe with a standard sole construction. No differences in ankle inversion moments were found. With the modified shoe, foot placement occurred more internally rotated, and muscle activity of the lateral shank muscles was reduced. Hence, lateral ankle joint stability during reactive sideward movements can be improved by these compressible elements, and therefore lower lateral shank muscle activity is required. As those elements limit inversion, the strategy to control inversion angles via a high external foot rotation does not need to be used.

  8. Cross-spectral analysis of physiological tremor and muscle activity. I. Theory and application to unsynchronized electromyogram.

    PubMed

    Timmer, J; Lauk, M; Pfleger, W; Deuschl, G

    1998-05-01

    We investigate the relationship between the extensor electromyogram (EMG) and tremor times series in physiological hand tremor by cross-spectral analysis. Special attention is directed to the phase spectrum and the effects of observational noise. We calculate the theoretical phase spectrum for a second-order linear stochastic process and compare the results to measured tremor data recorded from subjects who did not show a synchronized EMG activity in the corresponding extensor muscle. The results show that physiological tremor is well described by the proposed model and that the measured EMG represents a Newtonian force by which the muscle acts on the hand.

  9. Ankle and knee biomechanics during normal walking following ankle plantarflexor fatigue.

    PubMed

    Hunt, Michael A; Hatfield, Gillian L

    2017-08-01

    The purpose of this study was to investigate the immediate effects of unilateral ankle plantarflexor fatigue on bilateral knee and ankle biomechanics during gait. Lower leg kinematics, kinetics, and muscle activation were assessed before and after an ankle plantarflexor fatiguing protocol in 31 healthy individuals. Fatigue (defined as >10% reduction in maximal isometric ankle plantarflexor torque production and a downward shift in the median power frequency of both heads of the gastrocnemius muscle of the fatigued limb) was achieved in 18 individuals, and only their data were used for analysis purposes. Compared to pre-fatigue walking trials, medial gastrocnemius activity was significantly reduced in the study (fatigued) limb. Other main changes following fatigue included significantly more knee flexion during loading, and an associated larger external knee flexion moment in the study limb. At the ankle joint, participants exhibited significantly less peak plantarflexion (occurring at toe-off) with fatigue. No significant differences were observed in the contralateral (non-fatigued) limb. Findings from this study indicate that fatigue of the ankle plantarflexor muscle does not produce widespread changes in gait biomechanics, suggesting that small to moderate changes in maximal ankle plantarflexor force production capacity (either an increase or decrease) will not have a substantial impact on normal lower limb functioning during gait. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Salvage of the lower limb after a full thickness burn with loss of the knee extensor mechanism: a case report.

    PubMed

    Sarraf, Khaled M; Atherton, Duncan D; Jayaweera, Asantha R; Gibbons, Charles E; Jones, Isabel

    2013-04-01

    We report on a 79-year-old woman who underwent salvage of the knee and lower leg using a Whichita Fusion Nail for knee arthrodesis, combined with a medial gastrocnemius muscle flap for a 3% contact burn that resulted in loss of the extensor mechanism. This provided an alternative to above-knee amputation when extensor mechanism reconstruction was not feasible.

  11. Myoelectric stimulation on peroneal muscles resists simulated ankle sprain motion.

    PubMed

    Fong, Daniel Tik-Pui; Chu, Vikki Wing-Shan; Chan, Kai-Ming

    2012-07-26

    The inadequate reaction time of the peroneal muscles in response to an incorrect foot contact event has been proposed as one of the etiological factors contributing to ankle joint inversion injury. Thus, the current study aimed to investigate the efficacy of a myoelectric stimulation applied to the peroneal muscles in the prevention of a simulated ankle inversion trauma. Ten healthy male subjects performed simulated inversion and supination tests on a pair of mechanical sprain simulators. An electrical signal was delivered to the peroneal muscles of the subjects through a pair of electrode pads. The start of the stimulus was synchronized with the drop of the sprain simulator's platform. In order to determine the maximum delay time which the stimulus could still resist the simulated ankle sprain motion, different delay time were test (0, 5, 10, and 15ms). Together with the control trial (no stimulus), there were 5 testing conditions for both simulated inversion and supination test. The effect was quantified by the drop in maximum ankle tilting angle and angular velocity, as determined by a motion analysis system with a standard laboratory procedure. Results showed that the myoelectric stimulation was effective in all conditions except the one with myoelectric stimulus delayed for 15ms in simulated supination test. It is concluded that myoelectric stimulation on peroneal muscles could resist an ankle spraining motion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Effects of Lumbar Strengthening Exercise in Lower-Limb Amputees With Chronic Low Back Pain.

    PubMed

    Shin, Min Kyung; Yang, Hee Seung; Yang, Hea-Eun; Kim, Dae Hyun; Ahn, Bo Ram; Kwon, Hyup; Lee, Ju Hwan; Jung, Suk; Choi, Hyun Chul; Yun, Sun Keaung; Ahn, Dong Young; Sim, Woo Sob

    2018-02-01

    To analyze the effect of lumbar strengthening exercise in lower-limb amputees with chronic low back pain. We included in this prospective study 19 lower-limb amputees who had experienced low back pain for longer than 6 months. Participants were treated with 30-minute lumbar strengthening exercises, twice weekly, for 8 weeks. We used the visual analog scale (VAS), and Oswestry low back pain disability questionnaire, and measured parameters such as iliopsoas length, abdominal muscle strength, back extensor strength, and back extensor endurance. In addition, we assessed the isometric peak torque and total work of the trunk flexors and extensors using isokinetic dynamometer. The pre- and post-exercise measurements were compared. Compared with the baseline, abdominal muscle strength (from 4.4±0.7 to 4.8±0.6), back extensor strength (from 2.6±0.6 to 3.5±1.2), and back extensor endurance (from 22.3±10.7 to 46.8±35.1) improved significantly after 8 weeks. The VAS decreased significantly from 4.6±2.2 to 2.6±1.6 after treatment. Furthermore, the peak torque and total work of the trunk flexors and extensors increased significantly (p<0.05). Lumbar strengthening exercise in lower-limb amputees with chronic low back pain resulted in decreased pain and increased lumbar extensor strength. The lumbar strengthening exercise program is very effective for lower-limb amputees with chronic low back pain.

  13. Associations of knee muscle force, bone malalignment, and knee-joint laxity with osteoarthritis in elderly people.

    PubMed

    Nakagawa, Kazumasa; Maeda, Misako

    2017-03-01

    [Purpose] From the viewpoint of prevention of knee osteoarthritis, the aim of this study was to verify how muscle strength and joint laxity are related to knee osteoarthritis. [Subjects and Methods] The study subjects consisted of 90 community-dwelling elderly people aged more than 60 years (22 males, 68 females). Femorotibial angle alignment, knee joint laxity, knee extensors and flexor muscle strengths were measured in all subjects. In addition, the subjects were divided into four groups based on the presence of laxity and knee joint deformation, and the muscle strength values were compared. [Results] There was no significant difference in knee extensor muscle strength among the four groups. However, there was significant weakness of the knee flexor muscle in the group with deformation and laxity was compared with the group without deformation and laxity. [Conclusion] Decreased knee flexor muscle strengths may be involved in knee joint deformation. The importance of muscle strength balance was also considered.

  14. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait

    PubMed Central

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee. PMID:27977681

  15. Evaluation of a Powered Ankle-Foot Prosthesis during Slope Ascent Gait.

    PubMed

    Rábago, Christopher A; Aldridge Whitehead, Jennifer; Wilken, Jason M

    2016-01-01

    Passive prosthetic feet lack active plantarflexion and push-off power resulting in gait deviations and compensations by individuals with transtibial amputation (TTA) during slope ascent. We sought to determine the effect of active ankle plantarflexion and push-off power provided by a powered prosthetic ankle-foot (PWR) on lower extremity compensations in individuals with unilateral TTA as they walked up a slope. We hypothesized that increased ankle plantarflexion and push-off power would reduce compensations commonly observed with a passive, energy-storing-returning prosthetic ankle-foot (ESR). We compared the temporal spatial, kinematic, and kinetic measures of ten individuals with TTA (age: 30.2 ± 5.3 yrs) to matched abled-bodied (AB) individuals during 5° slope ascent. The TTA group walked with an ESR and separately with a PWR. The PWR produced significantly greater prosthetic ankle plantarflexion and push-off power generation compared to an ESR and more closely matched AB values. The PWR functioned similar to a passive ESR device when transitioning onto the prosthetic limb due to limited prosthetic dorsiflexion, which resulted in similar deviations and compensations. In contrast, when transitioning off the prosthetic limb, increased ankle plantarflexion and push-off power provided by the PWR contributed to decreased intact limb knee extensor power production, lessening demand on the intact limb knee.

  16. Which Treatment is More Effective for Functional Ankle Instability: Strengthening or Combined Muscle Strengthening and Proprioceptive Exercises?

    PubMed

    Kim, Ki-Jong; Kim, Young-Eok; Jun, Hyun-Ju; Lee, Jin-Su; Ji, Sung-Ha; Ji, Sang-Goo; Seo, Tae-Hwa; Kim, Young-Ok

    2014-03-01

    [Purpose] The purpose of this study was to implement combined muscle strengthening and proprioceptive exercises to examine the effects of combined exercises on functional ankle instability. [Subjects and Methods] Experiments were conducted with 30 adult males and females. The study subjects were randomly assigned to either a control group (Group A), a muscle strengthening exercise group (Group B), or a combined muscle strengthening and proprioceptive exercise group (Group C) consisting of 10 subjects each. In Group A, measurements were only conducted before and after the experiment without any intervention, whereas the exercise programs for Group B and Group C were implemented three days per week for four weeks. [Results] Muscle strength showed significant increases in Groups B and C compared with the control group during plantar flexion, dorsiflexion, inversion, and eversion. The Cumberland ankle instability tool showed significant increases in Group B and Group C compared with Group A and significant increases in Group C compared with Group B. [Conclusion] Applying combined muscle strengthening and proprioceptive exercises to those who have functional ankle instability is more effective than applying only muscle strengthening exercises.

  17. Differences in in vivo muscle fascicle and tendinous tissue behavior between the ankle plantarflexors during running.

    PubMed

    Lai, A K M; Lichtwark, G A; Schache, A G; Pandy, M G

    2018-03-30

    The primary human ankle plantarflexors, soleus (SO), medial gastrocnemius (MG), and lateral gastrocnemius (LG) are typically regarded as synergists and play a critical role in running. However, due to differences in muscle-tendon architecture and joint articulation, the muscle fascicles and tendinous tissue of the plantarflexors may exhibit differences in their behavior and interactions during running. We combined in vivo dynamic ultrasound measurements with inverse dynamics analyses to identify and explain differences in muscle fascicle, muscle-tendon unit, and tendinous tissue behavior of the primary ankle plantarflexors across a range of steady-state running speeds. Consistent with their role as a force generator, the muscle fascicles of the uniarticular SO shortened less rapidly than the fascicles of the MG during early stance. Furthermore, the MG and LG exhibited delays in tendon recoil during the stance phase, reflecting their ability to transfer power and work between the knee and ankle via tendon stretch and storage of elastic strain energy. Our findings add to the growing body of evidence surrounding the distinct mechanistic functions of uni- and biarticular muscles during dynamic movements. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Greater glucose uptake heterogeneity in knee muscles of old compared to young men during isometric contractions detected by [18F]-FDG PET/CT

    PubMed Central

    Rudroff, Thorsten; Kindred, John H.; Benson, John-Michael; Tracy, Brian L.; Kalliokoski, Kari K.

    2014-01-01

    We used positron emission tomography/computed tomography (PET/CT) and [18F]-FDG to test the hypothesis that glucose uptake (GU) heterogeneity in skeletal muscles as a measure of heterogeneity in muscle activity is greater in old than young men when they perform isometric contractions. Six young (26 ± 6 years) and six old (77 ± 6 years) men performed two types of submaximal isometric contractions that required either force or position control. [18F]-FDG was injected during the task and PET/CT scans were performed immediately after the task. Within-muscle heterogeneity of knee muscles was determined by calculating the coefficient of variation (CV) of GU in PET image voxels within the muscles of interest. The average GU heterogeneity (mean ± SD) for knee extensors and flexors was greater for the old (35.3 ± 3.3%) than the young (28.6 ± 2.4%) (P = 0.006). Muscle volume of the knee extensors were greater for the young compared to the old men (1016 ± 163 vs. 598 ± 70 cm3, P = 0.004). In a multiple regression model, knee extensor muscle volume was a predictor (partial r = −0.87; P = 0.001) of GU heterogeneity for old men (R2 = 0.78; P < 0.001), and MVC force predicted GU heterogeneity for young men (partial r = −0.95, P < 0.001). The findings demonstrate that GU is more spatially variable for old than young men and especially so for old men who exhibit greater muscle atrophy. PMID:24904432

  19. Effects of step length and step frequency on lower-limb muscle function in human gait.

    PubMed

    Lim, Yoong Ping; Lin, Yi-Chung; Pandy, Marcus G

    2017-05-24

    The aim of this study was to quantify the effects of step length and step frequency on lower-limb muscle function in walking. Three-dimensional gait data were used in conjunction with musculoskeletal modeling techniques to evaluate muscle function over a range of walking speeds using prescribed combinations of step length and step frequency. The body was modeled as a 10-segment, 21-degree-of-freedom skeleton actuated by 54 muscle-tendon units. Lower-limb muscle forces were calculated using inverse dynamics and static optimization. We found that five muscles - GMAX, GMED, VAS, GAS, and SOL - dominated vertical support and forward progression independent of changes made to either step length or step frequency, and that, overall, changes in step length had a greater influence on lower-limb joint motion, net joint moments and muscle function than step frequency. Peak forces developed by the uniarticular hip and knee extensors, as well as the normalized fiber lengths at which these muscles developed their peak forces, correlated more closely with changes in step length than step frequency. Increasing step length resulted in larger contributions from the hip and knee extensors and smaller contributions from gravitational forces (limb posture) to vertical support. These results provide insight into why older people with weak hip and knee extensors walk more slowly by reducing step length rather than step frequency and also help to identify the key muscle groups that ought to be targeted in exercise programs designed to improve gait biomechanics in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Muscle atrophy, voluntary activation disturbances, and low serum concentrations of IGF-1 and IGFBP-3 are associated with weakness in people with chronic stroke.

    PubMed

    Silva-Couto, Marcela de Abreu; Prado-Medeiros, Christiane Lanatovitz; Oliveira, Ana Beatriz; Alcântara, Carolina Carmona; Guimarães, Araci Teixeira; Salvini, Tania de Fatima; Mattioli, Rosana; de Russo, Thiago Luiz

    2014-07-01

    The muscle weakness that is exhibited poststroke is due to a multifactorial etiology involving the central nervous system and skeletal muscle changes. Insulinlike growth factor 1 (IGF-1) and IGF binding protein 3 (IGFBP-3) have been described as biomarkers of neuromuscular performance in many conditions. However, no information about these biomarkers is available for people with chronic hemiparesis. The purpose of this study was to investigate possible factors involved in muscle weakness, such as IGF-1 and IGFBP-3 serum concentrations, muscle volume, and neuromuscular performance of the knee flexors and extensors, in people with chronic hemiparesis poststroke. This was a cross-sectional study. A cross-sectional study was performed on 14 individuals poststroke who were paired with healthy controls. Mobility, function, balance, and quality of life were recorded as outcome measures. Knee flexor and extensor muscle volumes and neuromuscular performance were measured using nuclear magnetic resonance imaging, dynamometry, and electromyography. The serum concentrations of IGF-1 and IGFBP-3 were quantified by enzyme-linked immunosorbent assay (ELISA). The hemiparetic group had low serum concentrations of IGF-1 (25%) and IGFBP-3 (40%); reduced muscle volume in the vastus medialis (32%), vastus intermedius (29%), biceps femoris (16%), and semitendinosus and semimembranosus (12%) muscles; reduced peak torque, power, and work of the knee flexors and extensors; and altered agonist and antagonist muscle activation compared with controls. Low serum concentrations of IGF-1 and IGFBP-3, deficits in neuromuscular performance, selective muscle atrophy, and decreased agonist muscle activation were found in the group with chronic hemiparesis poststroke. Both hemorrhagic and ischemic stroke were considered, and the data reflect a chronic poststroke population with good function. © 2014 American Physical Therapy Association.

  1. A Novel Two-Velocity Method for Elaborate Isokinetic Testing of Knee Extensors.

    PubMed

    Grbic, Vladimir; Djuric, Sasa; Knezevic, Olivera M; Mirkov, Dragan M; Nedeljkovic, Aleksandar; Jaric, Slobodan

    2017-09-01

    Single outcomes of standard isokinetic dynamometry tests do not discern between various muscle mechanical capacities. In this study, we aimed to (1) evaluate the shape and strength of the force-velocity relationship of knee extensors, as observed in isokinetic tests conducted at a wide range of angular velocities, and (2) explore the concurrent validity of a simple 2-velocity method. Thirteen physically active females were tested for both the peak and averaged knee extensor concentric force exerted at the angular velocities of 30°-240°/s recorded in the 90°-170° range of knee extension. The results revealed strong (0.960

  2. Passive-dynamic ankle-foot orthosis replicates soleus but not gastrocnemius muscle function during stance in gait: Insights for orthosis prescription.

    PubMed

    Arch, Elisa S; Stanhope, Steven J; Higginson, Jill S

    2016-10-01

    Passive-dynamic ankle-foot orthosis characteristics, including bending stiffness, should be customized for individuals. However, while conventions for customizing passive-dynamic ankle-foot orthosis characteristics are often described and implemented in clinical practice, there is little evidence to explain their biomechanical rationale. To develop and combine a model of a customized passive-dynamic ankle-foot orthosis with a healthy musculoskeletal model and use simulation tools to explore the influence of passive-dynamic ankle-foot orthosis bending stiffness on plantar flexor function during gait. Dual case study. The customized passive-dynamic ankle-foot orthosis characteristics were integrated into a healthy musculoskeletal model available in OpenSim. Quasi-static forward dynamic simulations tracked experimental gait data under several passive-dynamic ankle-foot orthosis conditions. Predicted muscle activations were calculated through a computed muscle control optimization scheme. Simulations predicted that the passive-dynamic ankle-foot orthoses substituted for soleus but not gastrocnemius function. Induced acceleration analyses revealed the passive-dynamic ankle-foot orthosis acts like a uniarticular plantar flexor by inducing knee extension accelerations, which are counterproductive to natural knee kinematics in early midstance. These passive-dynamic ankle-foot orthoses can provide plantar flexion moments during mid and late stance to supplement insufficient plantar flexor strength. However, the passive-dynamic ankle-foot orthoses negatively influenced knee kinematics in early midstance. Identifying the role of passive-dynamic ankle-foot orthosis stiffness during gait provides biomechanical rationale for how to customize passive-dynamic ankle-foot orthoses for patients. Furthermore, these findings can be used in the future as the basis for developing objective prescription models to help drive the customization of passive-dynamic ankle-foot orthosis characteristics. © The International Society for Prosthetics and Orthotics 2015.

  3. Adaptations in single-leg hop biomechanics following anterior cruciate ligament reconstruction.

    PubMed

    Orishimo, Karl F; Kremenic, Ian J; Mullaney, Michael J; McHugh, Malachy P; Nicholas, Stephen J

    2010-11-01

    When a patient performs a clinically normal hop test based on distance, it cannot be assumed that the biomechanics are similar between limbs. The objective was to compare takeoff and landing biomechanics between legs in patients who have undergone anterior cruciate ligament reconstruction. Kinematics and ground reaction forces were recorded as 13 patients performed the single-leg hop on each leg. Distance hopped, joint range of motion, peak joint kinetics and the peak total extensor moment were compared between legs during both takeoff and landing. Average hop distance ratio (involved/noninvolved) was 93 ± 4%. Compared to the noninvolved side, knee motion during takeoff on the involved side was significantly reduced (P = 0.008). Peak moments and powers on the involved side were lower at the knee and higher at the ankle and hip compared with the noninvolved side (Side by Joint P = 0.011; P = 0.003, respectively). The peak total extensor moment was not different between legs (P = 0.305) despite a decrease in knee moment and increases in ankle and hip moments (Side by Joint P = 0.015). During landing, knee motion was reduced (P = 0.043), and peak power absorbed was decreased at the knee and hip and increased at the ankle on the involved side compared to the noninvolved side (P = 0.003). The compensations by other joints may indicate protective adaptations to avoid overloading the reconstructed knee.

  4. Rhythmic Isometric Fatigue Patterns of the Elbow Flexors and Knee Extensors

    ERIC Educational Resources Information Center

    Ordway, George A.; And Others

    1977-01-01

    During a rhythmic, all-out task, the rates of fatigue experienced by elbow flexor and knee extendor muscle groups tend to differ, with the elbow flexors fatiguing more rapidly initially, but reaching a plateau at a relatively higher level than the knee extensors. (Author)

  5. Meta-analysis of the effect of strengthening interventions in individuals with cerebral palsy.

    PubMed

    Park, Eun-Young; Kim, Won-Ho

    2014-02-01

    This study aimed to investigate the evidence that strengthening interventions can improve muscle strength and activity in individuals with cerebral palsy. The search focused on studies that employed strength training for children with cerebral palsy for which six electronic databases were used to extract literature published from 2001 to 2012. The key terms used in these searches were combined strength training, strengthening, weight training, weight lifting, resistance, and cerebral palsy. The quality of each study was assessed using the PEDro (Physiotherapy Evidence Database) scale. Thirteen randomized controlled trial studies were selected and divided into categories according to program type, mode, and outcome measures. The overall effect sizes of each study and types of strengthening were large. Strengthening exercise improved muscle strength to a greater degree, when practiced 3 times per week in 40-50 min sessions than in other categories of session length, and greater improvement was observed in younger children than in older. The effect size of the activities and variables related to gait, except for gait endurance, were medium to large. The effect size of individual muscles was large, but the effect sizes for ankle plantar flexor, hip abductor/adductor, and extensor were insignificant. Strengthening interventions are useful for increasing muscle strength in individuals with cerebral palsy, specifically in youth and children, and optimal exercise consisted of 40- to 50-min sessions performed 3 times per week. Although strengthening interventions may improve activities, including gait, more studies that are rigorous are needed to determine the contributions to gross motor function. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effects of resistance exercise training and nandrolone decanoate on body composition and muscle function among patients who receive hemodialysis: A randomized, controlled trial.

    PubMed

    Johansen, Kirsten L; Painter, Patricia L; Sakkas, Giorgos K; Gordon, Patricia; Doyle, Julie; Shubert, Tiffany

    2006-08-01

    Patients who are on hemodialysis commonly experience muscle wasting and weakness, which have a negative effect on physical functioning and quality of life. The objective of this study was to determine whether anabolic steroid administration and resistance exercise training induce anabolic effects among patients who receive maintenance hemodialysis. A randomized 2 x 2 factorial trial of anabolic steroid administration and resistance exercise training was conducted in 79 patients who were receiving maintenance hemodialysis at University of California, San Francisco-affiliated dialysis units. Interventions included double-blinded weekly nandrolone decanoate (100 mg for women; 200 mg for men) or placebo injections and lower extremity resistance exercise training for 12 wk during hemodialysis sessions three times per week using ankle weights. Primary outcomes included change in lean body mass (LBM) measured by dual-energy x-ray absorptiometry, quadriceps muscle cross-sectional area measured by magnetic resonance imaging, and knee extensor muscle strength. Secondary outcomes included changes in physical performance, self-reported physical functioning, and physical activity. Sixty-eight patients completed the study. Patients who received nandrolone decanoate increased their LBM by 3.1 +/- 2.2 kg (P < 0.0001). Exercise did not result in a significant increase in LBM. Quadriceps muscle cross-sectional area increased in patients who were assigned to exercise (P = 0.01) and to nandrolone (P < 0.0001) in an additive manner. Patients who exercised increased their strength in a training-specific fashion, and exercise was associated with an improvement in self-reported physical functioning (P = 0.04 compared with nonexercising groups). Nandrolone decanoate and resistance exercise produced anabolic effects among patients who were on hemodialysis. Further studies are needed to determine whether these interventions improve survival.

  7. Hypodynamic and hypokinetic condition of skeletal muscles

    NASA Technical Reports Server (NTRS)

    Katinas, G. S.; Oganov, V. S.; Potapov, A. N.

    1980-01-01

    Data are presented in regard to the effect of unilateral brachial amputation on the physiological characteristics of two functionally different muscles, the brachial muscle (flexor of the brachium) and the medial head of the brachial triceps muscle (extensor of the brachium), which in rats represents a separate muscle. Hypokinesia and hypodynamia were studied.

  8. Isometric elbow extensors strength in supine- and prone-lying positions.

    PubMed

    Abdelzaher, Ibrahim E; Ababneh, Anas F; Alzyoud, Jehad M

    2013-01-01

    The purpose of this study was to compare isometric strength of elbow extensors measured in supine- and prone-lying positions at elbow flexion angles of 45 and 90 degrees. Twenty-two male subjects under single-blind procedures participated in the study. Each subject participated in both supine-lying and prone-lying measuring protocols. Calibrated cable tensiometer was used to measure isometric strength of the right elbow extensors and a biofeedback electromyography was used to assure no substitution movements from shoulder girdle muscles. The mean values of isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees were 11.1  ±  4.2 kg and 13.1  ±  4.6 kg, while those measured from prone-lying position were 9.9  ±  3.6 kg and 12  ±  4.2 kg, respectively. There is statistical significant difference between the isometric strength of elbow extensors measured from supine-lying position at elbow flexion angles of 45 and 90 degrees compared to that measured from prone-lying position (p  <  0.05). The results suggest that in manual muscle testing starting position can affect the isometric strength of elbow extensors since supine-lying starting position is better than prone-lying starting position.

  9. The effect of high-top and low-top shoes on ankle inversion kinematics and muscle activation in landing on a tilted surface.

    PubMed

    Fu, Weijie; Fang, Ying; Liu, Yu; Hou, Jianfu

    2014-02-18

    There is still uncertainty concerning the beneficial effects of shoe collar height for ankle sprain prevention and very few data are available in the literature regarding the effect of high-top and low-top shoes on muscle responses during landing. The purpose of this study was to quantify the effect of high-top and low-top shoes on ankle inversion kinematics and pre-landing EMG activation of ankle evertor muscles during landing on a tilted surface. Thirteen physical education students landed on four types of surfaces wearing either high-top shoes (HS) or low-top shoes (LS). The four conditions were 15° inversion, 30° inversion, combined 25° inversion + 10° plantar flexion, and combined 25° inversion + 20° plantar flexion. Ankle inversion kinematics and EMG data of the tibialis anterior (TA), peroneus longus (PL), and peroneus brevis (PB) muscles were measured simultaneously. A 2 × 4 (shoe × surface) repeated measures ANOVA was performed to examine the effect of shoe and landing surfaces on ankle inversion and EMG responses. No significant differences were observed between the various types of shoes in the maximum ankle inversion angle, the ankle inversion range of motion, and the maximum ankle inversion angular velocity after foot contact for all conditions. However, the onset time of TA and PB muscles was significantly later wearing HS compared to LS for the 15° inversion condition. Meanwhile, the mean amplitude of the integrated EMG from the 50 ms prior to contact (aEMGpre) of TA was significantly lower with HS compared to LS for the 15° inversion condition and the combined 25° inversion + 20° plantarflexion condition. Similarly, the aEMGpre when wearing HS compared to LS also showed a 37.2% decrease in PL and a 31.0% decrease in PB for the combined 25° inversion + 20° plantarflexion condition and the 15° inversion condition, respectively. These findings provide preliminary evidence suggesting that wearing high-top shoes can, in certain conditions, induce a delayed pre-activation timing and decreased amplitude of evertor muscle activity, and may therefore have a detrimental effect on establishing and maintaining functional ankle joint stability.

  10. Effect of immobilization and retraining on torque-velocity relationship of human knee flexor and extensor muscles.

    PubMed

    Labarque, V L; Eijnde, B Op 't; Van Leemputte, M

    2002-01-01

    The effect of 2 weeks immobilization of the uninjured right knee and 10 weeks of retraining on muscle torque-velocity characteristics was investigated in nine young subjects. Left and right knee extension and flexion maximal voluntary isometric torque (Tmax) and dynamic torque at 60 degrees s(-1) (T60) and 180 degrees x s(-1) (T180) were measured before (PRE) and after immobilization (POST) and after 3 (R3) and 10 (R10) weeks of dynamic retraining. The torque-velocity relationship was quantified by expressing T60 and T180 relative to Tmax (NT60 and NT180, respectively). For the right extensor muscles, percutaneous biopsy samples were obtained from the vastus lateralis muscle and fibre type distribution was measured. POST extension and flexion torque (mean of Tmax, T60 and T180) decreased by 27% and 11%, respectively. During the course of the experiment, the changes in NT60 and NT180 were similar. POST extensor muscle NTV (mean of NT60 and NT180) was decreased significantly (12%, P<0.05), but no significant change was found for flexor muscle NTV (+ 3%). At R3 Tmax, dynamic torque and NTV were restored to normal. Unlike isometric torque, NTV did not change from R3 to R10. No changes in fibre type distribution were found. The adaptation of muscle length is suggested as the mechanism to explain the change in NTV.

  11. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  12. RELATIONSHIP BETWEEN ISOMETRIC THIGH MUSCLE STRENGTH AND MINIMAL CLINICALLY IMPORTANT DIFFERENCES (MCIDS) IN KNEE FUNCTION IN OSTEOARTHRITIS – DATA FROM THE OSTEOARTHRITIS INITIATIVE

    PubMed Central

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2014-01-01

    Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012

  13. Side Differences of Thigh Muscle Cross-Sectional Areas and Maximal Isometric Muscle Force in Bilateral Knees with the Same Radiographic Disease Stage, but Unilateral Frequent Pain – Data from the Osteoarthritis Initiative

    PubMed Central

    Sattler, Martina; Dannhauer, Torben; Hudelmaier, Martin; Wirth, Wolfgang; Sänger, Alexandra M.; Kwoh, C. Kent; Hunter, David J.; Eckstein, Felix

    2012-01-01

    Objective To determine whether anatomical thigh muscle cross-sectional areas (MCSAs) and strength differ between osteoarthritis (OA) knees with frequent pain compared with contralateral knees without pain, and to examine the correlation between MCSAs and strength in painful versus painless knees. Methods 48 subjects (31 women; 17 men; age 45–78 years) were drawn from 4796 Osteoarthritis Initiative (OAI) participants, in whom both knees displayed the same radiographic stage (KLG2 or 3), one with frequent pain (most days of the month within the past 12 months) and the contralateral one without pain. Axial MR images were used to determine MCSAs of extensors, flexors and adductors at 35% femoral length (distal to proximal) and in two adjacent 5 mm images. Maximal isometric extensor and flexor forces were used as provided from the OAI data base. Results Painful knees showed 5.2% lower extensor MCSAs (p=0.00003; paired t-test), and 7.8% lower maximal extensor muscle forces (p=0.003) than contra-lateral painless knees. There were no significant differences in flexor forces, or flexor and adductor MCSAs (p>0.39). Correlations between force and MCSAs were similar in painful and painless OA knees (0.44

  14. [Upright posture of man and morphologic evolution of the musculi extensores digitorum pedis with reference to evolutionary myology. III].

    PubMed

    Kaneff, A

    1986-01-01

    The following anatomical objects were studied with regard to myology during evolution: M. extensor hallucis longus (MEHL), M. extensor digitorum longus (MEDL) with M. peroneus tertius (MP III), M. peroneus brevis (MPB) with M. peroneus digiti V (MPD V), M. extensor hallucis brevis (MEHB), M. extensor digitorum brevis (MEDB), and the Retinaculum musculorum extensorum imum (RMEI). The study was carried out by the preparation of 3 different groups of material. The 1st group consists of lower extremities of humans. The number of the extremities differs for the particular objects between 151 and 358 (see page 381). The 2nd group of material consists of 122 Membra pelvina from Marsupialia, Insectivora, and Primates. Table 1 shows as well the mammalian species as the number of the studied extremities. The extremities of the 1st and 2nd group were preserved in an manner suitable for a macroscopic preparation. The 3rd group of material consists of 71 lower extremities from embryos and fetus. The lower legs and feet were stained either according to the method described by Morel and Bassal with eosin added or according to Weigert. From this material, complete series of cross sections were prepared. Table 2 shows the age of the embryos (VCL [mm]) as well as the number of the studied extremities. It is important that up to the age of 46 mm VCL the difference in the age of the embryos usually amounts from 0.5 to 1.0 mm. This small difference in the age of the embryos and fetus allows a very good follow up of the changes in construction during the organogenesis. The comparison of the 3 different groups shows the following changes for the above mentioned muscles: The M. extensor hallucis longus (MEHL) is a muscle which is not split. The same result applies for its tendon which inserts at the distal phalanx of the hallux. This primitive form of the muscle amounts actually to 51.12% in human beings. In 48.88% of the cases, additional tendons and muscles are formed by the MEHL. Most of these supplements are positioned on the medial side of the main tendon, only a few lie to the lateral side. For the supplement tendons, the medial one as well as the lateral one occasionally possess a muscle belly. The muscle of the medial tendon is split off from the proximal margin of the MEHL. The muscle of the lateral tendon is split off from the distal margin of the MEHL.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Different corticospinal control between discrete and rhythmic movement of the ankle.

    PubMed

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement.

  16. Different corticospinal control between discrete and rhythmic movement of the ankle

    PubMed Central

    Goto, Yumeno; Jono, Yasutomo; Hatanaka, Ryota; Nomura, Yoshifumi; Tani, Keisuke; Chujo, Yuta; Hiraoka, Koichi

    2014-01-01

    We investigated differences in corticospinal and spinal control between discrete and rhythmic ankle movements. Motor evoked potentials (MEPs) in the tibialis anterior and soleus muscles and soleus H-reflex were elicited in the middle of the plantar flexion phase during discrete ankle movement or in the initial or later cycles of rhythmic ankle movement. The H-reflex was evoked at an intensity eliciting a small M-wave and MEPs were elicited at an intensity of 1.2 times the motor threshold of the soleus MEPs. Only trials in which background EMG level, ankle angle, and ankle velocity were similar among the movement conditions were included for data analysis. In addition, only trials with a similar M-wave were included for data analysis in the experiment evoking H-reflexes. Results showed that H reflex and MEP amplitudes in the soleus muscle during discrete movement were not significantly different from those during rhythmic movement. MEP amplitude in the tibialis anterior muscle during the later cycles of rhythmic movement was significantly larger than that during the initial cycle of the rhythmic movement or during discrete movement. Higher corticospinal excitability in the tibialis anterior muscle during the later cycles of rhythmic movement may reflect changes in corticospinal control from the initial cycle to the later cycles of rhythmic movement. PMID:25126066

  17. Static Postural Stability in Chronic Ankle Instability, An Ankle Sprain and Healthy Ankles.

    PubMed

    Kwon, Yong Ung

    2018-05-18

    To identify the single leg balance (SLB) test that discriminates among healthy, coper, and chronic ankle instability (CAI) groups and to determine effects of ankle muscles on the balance error scoring system (BESS) among the three populations. 60 subjects (20 per group) performed the SLB test with eyes open (EO) and eyes closed (EC). Normalized mean amplitude (NMA) of the tibia anterior (TA), fibularis longus (FL), and medial gastrocnemius (MG) muscles and BESS were measured while performing the SLB test. The coper group had a lower error score than the CAI group in the EC. NMA was greater in the CAI group compared to in the healthy and coper groups regardless of muscle type. NMA of the TA was less than the PL and MG regardless of the group in the EO. The CAI group demonstrated greater NMAs of the PL and MG than the healthy and coper groups in the EC. The CAI group demonstrated greater NMA of the PL and MG by compensating their ankle muscles in the EO and EC. BESS suggests that the coper group may have coping mechanisms to stabilize static postural control compared to the CAI group. The EC may be better to detect static postural instability in the CAI or coper group. © Georg Thieme Verlag KG Stuttgart · New York.

  18. The effect of calf muscle stretching exercises on ankle joint dorsiflexion and dynamic foot pressures, force and related temporal parameters.

    PubMed

    Macklin, K; Healy, A; Chockalingam, N

    2012-03-01

    Previous research has found that ankle joint equinus can lead to foot pathologies. Calf stretching exercises are a common treatment prescription; however, no dynamic quantitative data on its effectiveness is available. To investigate the effect of calf muscle stretching on ankle joint dorsiflexion and subsequent changes within dynamic forefoot peak plantar pressures (PPP), force and temporal parameters. Thirteen runners with ankle joint equinus were required to perform calf muscle stretching twice a day (morning and evening) on a Flexeramp. Measurements were collected on day 1, week 4 and week 8. A repeated measures ANOVA with Bonferroni-adjusted post hoc comparisons was used to assess differences across the three data collection sessions. Findings indicated that the calf stretching program increased ankle joint dorsiflexion significantly (from 5° to 16°, p≤0.05). The adaptive kinetics brought about by the increased ankle joint range of motion included significantly increased forefoot PPP and maximum force during stance phase but decreased time between heel contact and heel lift and total stance phase time. The calf stretching programme used in this study was found to increase ankle joint dorsiflexion and hence can be used for first line conservative management of ankle equinus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Leg and trunk muscle coordination and postural sway during increasingly difficult standing balance tasks in young and older adults.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2016-09-01

    Ageing impairs body balance and increases older adults' fall risk. Balance training can improve intrinsic fall risk factors. However, age comparisons of muscle activity responses during balance tasks are lacking. This study investigated relative muscle activity, muscle coordination and postural sway during various recommended static balance training tasks. Muscle activity (%MVC), amplitude ratios (AR) and co-activity (CAI) were determined during standing tasks for 30s (1: double limb stance on a foam surface, eyes open; 2: double limb stance on firm ground, eyes closed; 3: double limb stance, feet in step position on a foam surface, eyes open; 4: double limb stance, feet in step position on firm ground, eyes closed; 5: single limb stance on firm ground, eyes open) in 20 healthy young adults (24±2 y) and 20 older adults (73±6 y). Surface electromyography (SEMG) was applied (SENIAM guidelines) to ankle (tibialis anterior, soleus, medial gastrocnemius, peroneus longus) and thigh (vastus lateralis, vastus medialis, biceps femoris, semitendinosus) muscles (non-dominant leg). Electrodes over trunk (multifidus and internal oblique) muscles were applied bilaterally. Two- to six-fold higher levels of relative muscle activity were found in older adults for ankle (0.0002

  20. Longer reaction time of the fibularis longus muscle and reduced postural control in basketball players with functional ankle instability: A pilot study.

    PubMed

    Méndez-Rebolledo, Guillermo; Guzmán-Muñoz, Eduardo; Gatica-Rojas, Valeska; Zbinden-Foncea, Hermann

    2015-08-01

    Motor control evaluation in subjects with functional ankle instability is questionable when both ankles of the same subject are compared (affected vs non-affected). To compare the postural control and reaction time of ankle muscles among: basketball players with FAI (instability group), basketball players without FAI (non-instability group) and healthy non-basketball-playing participants (control group). Case-control study. Laboratory. Instability (n = 10), non-instability (n = 10), and control groups (n = 11). Centre of pressure variables (area, velocity and sway) were measured with a force platform. Reaction time of ankle muscles was measured via electromyography. A one-way ANOVA demonstrated that there were significant differences between the instability and non-instability groups in the fibularis longus (p < 0.001), fibularis brevis (p = 0.031) and tibialis anterior (p = 0.049) muscles. Repeated-measures ANOVA and post hoc analysis determined significant differences for the area between the instability and non-instability groups (p = 0.001). Basketball players with FAI have reduced postural control and longer reaction time of the fibularis and tibialis anterior muscles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Cold shivering activity after unilateral destruction of the vestibular apparatus

    NASA Technical Reports Server (NTRS)

    Kuzmina, G. I.

    1980-01-01

    The bioelectric activity of muscles (flexors and extensors of the forelimbs and hindlimbs) during cold shivering after unilateral destruction of the vestibular apparatus. It was found, that unilateral delabyrinthing produces bilateral facilitation of cold shivering in the flexor extremities more pronounced on the ipsilateral side. In the extensor muscles there was an absence of bioelectric activity both before and after delabyrinthing. Enhancement of cold shivering in the flexor extremities following intervention was evidently conditioned by removal of the inhibiting effect of the vestibulary apparatus on the function of special centers.

  2. Low-frequency electric muscle stimulation combined with physical therapy after total hip arthroplasty for hip osteoarthritis in elderly patients: a randomized controlled trial.

    PubMed

    Gremeaux, Vincent; Renault, Julien; Pardon, Laurent; Deley, Gaelle; Lepers, Romuald; Casillas, Jean-Marie

    2008-12-01

    To assess the effects of low-frequency electric muscle stimulation associated with usual physiotherapy on functional outcome after total hip arthroplasty (THA) for hip osteoarthritis (OA) in elderly subjects. Randomized controlled trial; pre- and posttreatment measurements. Hospital rehabilitation department. Subjects (N=29) referred to the rehabilitation department after THA for hip OA. The intervention group (n=16; 78+/-8 y) received simultaneous low-frequency electric muscle stimulation of bilateral quadriceps and calf muscles (highest tolerated intensity, 1h session, 5 d/wk, for 5 weeks) associated with conventional physical therapy including resistance training. The control group (n=13; 76+/-10 y) received conventional physical therapy alone (25 sessions). Maximal isometric strength of knee extensors, FIM instrument, before and after; a six-minute walk test and a 200 m fast walk test, after; length of stay (LOS). Low-frequency electric muscle stimulation was well tolerated. It resulted in a greater improvement in strength of knee extensors on the operated side (77% vs 23%; P<.01), leading to a better balance of muscle strength between the operated and nonoperated limb. The low-frequency electric muscle stimulation group also showed a greater improvement in FIM scores, though improvements in the walk tests were similar for the 2 groups, as was LOS. Low-frequency electric muscle stimulation is a safe, well-tolerated therapy after THA for hip OA. It improves knee extensor strength, which is one of the factors leading to greater functional independence after THA.

  3. The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability.

    PubMed

    Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo

    2017-06-01

    Although it is widely accepted that diabetic polyneuropathy (DPN) is linked to a marked decline in neuromuscular performance, information on the possible impact of type 1 diabetes (T1D) on muscle strength and fatigue remains unclear. The purpose of this study was to investigate the effects of T1D and DPN on strength and fatigability in knee extensor muscles. Thirty-one T1D patients (T1D), 22 T1D patients with DPN (DPN) and 23 matched healthy control participants (C) were enrolled. Maximal voluntary contraction (MVC) and endurance time at an intensity level of 50% of the MVC were assessed at the knee extensor muscles with an isometric dynamometer. Clinical characteristics of diabetic patients were assessed by considering a wide range of vascular and neurological parameters. DPN group had lower knee extensor muscles strength than T1D (-19%) and the C group (-37.5%). T1D group was 22% weaker when compared to the C group. Lower body muscle fatigability of DPN group was 22 and 45.5% higher than T1D and C group, respectively. T1D group possessed a higher fatigability (29.4%) compared to C group. A correlation was found between motor and sensory nerve conduction velocity and muscle strength and fatigability. Patients with T1D are characterised by both a higher fatigability and a lower muscle strength, which are aggravated by DPN. Our data suggest that factors other than nervous damage play a role in the pathogenesis of such defect.

  4. Anticipatory Effects on Lower Extremity Neuromechanics During a Cutting Task.

    PubMed

    Meinerz, Carolyn M; Malloy, Philip; Geiser, Christopher F; Kipp, Kristof

    2015-09-01

    Continued research into the mechanism of noncontact anterior cruciate ligament injury helps to improve clinical interventions and injury-prevention strategies. A better understanding of the effects of anticipation on landing neuromechanics may benefit training interventions. To determine the effects of anticipation on lower extremity neuromechanics during a single-legged land-and-cut task. Controlled laboratory study. University biomechanics laboratory. Eighteen female National Collegiate Athletic Association Division I collegiate soccer players (age = 19.7 ± 0.8 years, height = 167.3 ± 6.0 cm, mass = 66.1 ± 2.1 kg). Participants performed a single-legged land-and-cut task under anticipated and unanticipated conditions. Three-dimensional initial contact angles, peak joint angles, and peak internal joint moments and peak vertical ground reaction forces and sagittal-plane energy absorption of the 3 lower extremity joints; muscle activation of selected hip- and knee-joint muscles. Unanticipated cuts resulted in less knee flexion at initial contact and greater ankle toe-in displacement. Unanticipated cuts were also characterized by greater internal hip-abductor and external-rotator moments and smaller internal knee-extensor and external-rotator moments. Muscle-activation profiles during unanticipated cuts were associated with greater activation of the gluteus maximus during the precontact and landing phases. Performing a cutting task under unanticipated conditions changed lower extremity neuromechanics compared with anticipated conditions. Most of the observed changes in lower extremity neuromechanics indicated the adoption of a hip-focused strategy during the unanticipated condition.

  5. Genome-wide linkage scan for contraction velocity characteristics of knee musculature in the Leuven Genes for Muscular Strength Study.

    PubMed

    De Mars, Gunther; Windelinckx, An; Huygens, Wim; Peeters, Maarten W; Beunen, Gaston P; Aerssens, Jeroen; Vlietinck, Robert; Thomis, Martine A I

    2008-09-17

    The torque-velocity relationship is known to be affected by ageing, decreasing its protective role in the prevention of falls. Interindividual variability in this torque-velocity relationship is partly determined by genetic factors (h(2): 44-67%). As a first attempt, this genome-wide linkage study aimed to identify chromosomal regions linked to the torque-velocity relationship of the knee flexors and extensors. A selection of 283 informative male siblings (17-36 yr), belonging to 105 families, was used to conduct a genome-wide SNP-based (Illumina Linkage IVb panel) multipoint linkage analysis for the torque-velocity relationship of the knee flexors and extensors. The strongest evidence for linkage was found at 15q23 for the torque-velocity slope of the knee extensors (TVSE). Other interesting linkage regions with LOD scores >2 were found at 7p12.3 [logarithm of the odds ratio (LOD) = 2.03, P = 0.0011] for the torque-velocity ratio of the knee flexors (TVRF), at 2q14.3 (LOD = 2.25, P = 0.0006) for TVSE, and at 4p14 and 18q23 for the torque-velocity ratio of the knee extensors TVRE (LOD = 2.23 and 2.08; P = 0.0007 and 0.001, respectively). We conclude that many small contributing genes are involved in causing variation in the torque-velocity relationship of the knee flexor and extensor muscles. Several earlier reported candidate genes for muscle strength and muscle mass and new candidates are harbored within or in close vicinity of the linkage regions reported in the present study.

  6. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    NASA Astrophysics Data System (ADS)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  7. Muscle strength at the trunk*.

    PubMed

    Smidt, G L; Amundsen, L R; Dostal, W F

    1980-01-01

    The purpose of this study was to determine the strength of trunk flexors and extensors in normal male subjects during isometric, concentric, and eccentric contractions. Subjects were tested in the sidelying position to minimize the effects of gravity. The pelvis and lower extremities were measured on a custom built force table (lowa Force Table). Muscle strength was expressed as a moment of force (external force times the moment arm) in Newton-meter (Nm) units. Greater Nm were registered in the muscle-lengthened position than in the muscle-shortened position for all isometric contractions. The Nm registered for eccentric contractions always exceeded the Nm registered for concentric contractions of the same muscle group. The Nm registered during contractions of trunk extensors always exceeded the values obtained during corresponding modes of contractions (isometric, eccentric, and concentric) of trunk flexors.J Orthop Sports Phys Ther 1980;1(3):165-170.

  8. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-12-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.

  9. Does trampoline or hard surface jumping influence lower extremity alignment?

    PubMed Central

    Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby

    2017-01-01

    [Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592

  10. The role of series ankle elasticity in bipedal walking

    PubMed Central

    Zelik, Karl E.; Huang, Tzu-Wei P.; Adamczyk, Peter G.; Kuo, Arthur D.

    2014-01-01

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. PMID:24365635

  11. The role of series ankle elasticity in bipedal walking.

    PubMed

    Zelik, Karl E; Huang, Tzu-Wei P; Adamczyk, Peter G; Kuo, Arthur D

    2014-04-07

    The elastic stretch-shortening cycle of the Achilles tendon during walking can reduce the active work demands on the plantarflexor muscles in series. However, this does not explain why or when this ankle work, whether by muscle or tendon, needs to be performed during gait. We therefore employ a simple bipedal walking model to investigate how ankle work and series elasticity impact economical locomotion. Our model shows that ankle elasticity can use passive dynamics to aid push-off late in single support, redirecting the body's center-of-mass (COM) motion upward. An appropriately timed, elastic push-off helps to reduce dissipative collision losses at contralateral heelstrike, and therefore the positive work needed to offset those losses and power steady walking. Thus, the model demonstrates how elastic ankle work can reduce the total energetic demands of walking, including work required from more proximal knee and hip muscles. We found that the key requirement for using ankle elasticity to achieve economical gait is the proper ratio of ankle stiffness to foot length. Optimal combination of these parameters ensures proper timing of elastic energy release prior to contralateral heelstrike, and sufficient energy storage to redirect the COM velocity. In fact, there exist parameter combinations that theoretically yield collision-free walking, thus requiring zero active work, albeit with relatively high ankle torques. Ankle elasticity also allows the hip to power economical walking by contributing indirectly to push-off. Whether walking is powered by the ankle or hip, ankle elasticity may aid walking economy by reducing collision losses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The effect of uncontrolled moment and short-term, repeated passive stretching on maximum ankle joint dorsiflexion angle.

    PubMed

    Gatt, Alfred; Chockalingam, Nachiappan

    2012-06-01

    Trials investigating ankle joint measurement normally apply a known moment. Maximum ankle angle is affected by foot posture and stretching characteristics of the calf muscles. To investigate whether consistent maximum ankle angles could be achieved without applying a constant moment to all subjects, and whether short, repetitive stretching of the calf muscle tendon unit would produce a difference in the maximum ankle angle. Passive dorsiflexion in 14 healthy participants was captured using an optoelectronic motion analysis system, with the foot placed in 3 postures. The maximum ankle angles for both the neutral and supinated positions did not differ significantly. In general, the majority of subjects (92.8%) showed no increase in the maximum ankle dorsiflexion angle following repetitive brief passive stretching. Only one subject exhibited a significant increase in maximum ankle angle at the neutral position. Since the range of motion of the ankle joint is clearly determined by other physical factors, the maximum ankle dorsiflexion angle can be assessed at both neutral and supinated positions without moment being controlled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Joint Coordination and Muscle Activities of Ballet Dancers During Tiptoe Standing.

    PubMed

    Tanabe, Hiroko; Fujii, Keisuke; Kouzaki, Motoki

    2017-01-01

    We aimed to investigate joint coordination of lower limbs in dancers during tiptoe standing and the relationship between joint coordination and muscle coactivation. Seven female ballet dancers performed tiptoe standing with six leg positions (fi e classical dance positions and one modern dance position) for 10 s. The kinematic data of the metatarsophalangeal (MP), ankle, knee, and hip joints was collected, and surface electromyography (EMG) of over 13 lower limb muscles was conducted. Principal component analysis was performed to determine joint coordination. MP-ankle and ankle-knee had in-phase coordination, whereas knee-hip showed anti-phase coordination in the sagittal plane. In addition, most EMG-EMG coherence around the MP and ankle joints was significant up to 50 Hz when these two joints swayed with in-phase. This suggests that different joint coordination patterns are associated with neural processing related to different muscle coactivation patterns. In conclusion, ballet dancers showed in-phase coordination from the MP to knee joints, which was associated with muscle coactivation to a higher frequency domain (up to 50 Hz) in comparison with anti-phase coordination.

  14. Analysis of muscle activity and ankle joint movement during the side-hop test.

    PubMed

    Yoshida, Masahiro; Taniguchi, Keigo; Katayose, Masaki

    2011-08-01

    Functional performance tests (FPTs) that consist of movements, such as hopping, landing, and cutting, provide useful measurements. Although some tests have been established for kinematic studies of the knee joint, very few tests have been established for the ankle joint. To use the FPT as a test battery for patients with an ankle sprain, it is necessary to document typical patterns of muscle activation and range of motion (ROM) of the ankle joint during FPTs. Therefore, the purpose of this study was to investigate the pattern of the ROM of the ankle inversion/eversion and the muscle activity of the peroneus longus muscle (PL) and the tibial anterior muscle (TA) in normal subjects during the side-hop test. To emphasize the characteristics of ROM and electromyography (EMG) at each phase, the side-hop tests were divided into 4 phases: lateral-hop contact phase (LC), lateral-hop flight phase (LF), medial hop contact phase (MC), and medial hop flight phase (MF), and the ROM of ankle inversion/eversion, a peak angle of ankle inversion, and Integral EMG (IEMG) of PL and TA compared among 4 phases. Fifteen male subjects with no symptoms of ankle joint problems participated in this research. The ROM of ankle inversion/eversion during the side-hop test was 27 ± 3.8° (mean ± SD), and there was a significant difference in the ROM of ankle inversion/eversion among 4 phases (p < 0.05). The phase in which the widest ROM was presented was the MF. A peak angle of the ankle inversion at MC was significantly greater than at LC and MF (p <0.05). A peak angle of the ankle inversion at LF was significantly greater than at LC and MF. The PL remained contracting with 50-160% of maximal voluntary contraction (MVC). The IEMGs of PL in both the contact phases were significantly greater than in both the flight phases (p < 0.05). In addition, the PL activity at LC was significantly greater than at MC. The TA remained contracting at 50-80% of MVC through the side-hop test. The IEMG of TA at both the contact phases was significantly greater than at 2 flight phases. However, there was no significant difference between LC and MF. Results of this study could be useful as basic data when evaluating the validity of the side-hop test for patients with ankle sprain.

  15. Gender differences in the circadian variations in muscle strength assessed with and without superimposed electrical twitches.

    PubMed

    Giacomoni, Magali; Edwards, Ben; Bambaeichi, Effat

    The circadian rhythm in muscle strength was analysed in 12 males (28 +/- 4 years, 79.6 +/- 12.3 kg, 1.80 +/- 0.05 m) and eight females (28 +/- 4 years, 60.3 +/- 5.5 kg, 1.61 +/- 0.08 m). After two familiarization sessions, participants were tested at six different times of the day (02:00, 06:00, 10:00, 14:00, 18:00 and 22:00 hours), the order of which was randomly assigned over 3-4 days. Rectal temperature (T(rec)) was measured over 30 min before each test. Peak isokinetic torques (PT) of knee extensors and flexors were then measured at 1.05 rad s(-1) and 3.14 rad s(-1) through a 90 degrees range of motion. Maximal isometric voluntary contraction (MVC) of knee extensors and flexors was measured at 60 degrees of knee flexion and the MVC of knee extensors was also assessed with superimposed electrical twitches (50 Hz, 250 V, 200 mus pulse width) in order to control for motivational effects. Three trials were performed in each condition, separated by 3 min recovery, and the highest values were retained for subsequent analyses. A significant circadian rhythm was observed for T(rec) in both males and females (acrophase, Phi, 17:29 and 16:40 hours; mesor, Me, 37.0 and 36.8 degrees C; amplitude, A, 0.28 and 0.33 degrees C for males and females, respectively). The mesor of T(rec) was higher in males than in females (p < 0.05). Significant circadian rhythms were observed for knee extensor PT at 3.14 rad s(-1) in males (Phi, 17:06 hours; Me, 178.2 N m; A, 4.7 N m) and for knee extensor PT at 1.05 rad s(-1) in females (Phi, 15:35 hours; Me, 128.7 N m; A, 3.7 N m). In males, the MVC of knee extensors demonstrated a significant circadian rhythm, but only when electrical twitches were superimposed (Phi, 16:17 h; Me, 302.1 N m; A, 13.6 N m). Acrophases of all indices of muscle strength were not statistically different between the two groups and were located in the afternoon (12:47 < Phi < 17:16 hours). The amplitude (percentage of mesor) of extensors MVC (electrically stimulated) was higher in males (6.4%) than in females (4.2%; p < 0.05). Significant circadian rhythms were not consistently observed for all indices of muscle strength whatever the gender. Our group of female subjects tended to show lower circadian amplitudes than the males. In males, maximal voluntary contraction of electrically stimulated muscles followed a circadian curve, which was not significant without the superimposed twitches. These results suggest that motivation could have a masking effect on the circadian rhythm in muscle performance and strengthen the view that peripheral factors are implicated in this rhythm.

  16. Lack of Effect of Ankle Position During the Nordic Curl on Muscle Activity of the Biceps Femoris and Medial Gastrocnemius.

    PubMed

    Comfort, Paul; Regan, Amy; Herrington, Lee; Thomas, Chris; McMahon, John; Jones, Paul

    2017-05-01

    Regular performance (~2×/wk) of Nordic curls has been shown to increase hamstring strength and reduce the risk of hamstring strain injury, although no consensus on ankle position has been provided. To compare the effects of performing Nordic curls, with the ankle in a dorsiflexed (DF) or plantar-flexed (PF) position, on muscle activity of the biceps femoris (BF) and medial gastrocnemius (MG). 15 male college athletes (age 22.6 ± 2.1 y, height 1.78 ± 0.06 m, body mass 88.75 ± 8.95 kg). A repeated-measures design was used, with participants performing 2 sets of 3 repetitions of both variations of Nordic curls, while muscle activity was assessed via surface electromyography (EMG) of the BF and MG. Comparisons of muscle activity were made by examining the normalized EMG data as the percentage of their maximum voluntary isometric contraction. Paired-samples t test revealed no significant difference in normalized muscle activity of the BF (124.5% ± 6.2% vs 128.1 ± 5.0%, P > .05, Cohen d = 0.64, power = .996) or MG (82.1% ± 3.9% vs 83.5 ± 4.8%, P > .05, Cohen d = 0.32, power = .947) during the Nordic curls in a PF or DF position, respectively. Ankle position does not influence muscle activity during the Nordic curl; however, performance of Nordic curls with the ankle in a DF position may be preferential, as this replicates the ankle position during terminal leg swing during running, which tends to be the point at which hamstring strains have been reported.

  17. Evaluation of Relationship between Trunk Muscle Endurance and Static Balance in Male Students

    PubMed Central

    Barati, Amirhossein; SafarCherati, Afsaneh; Aghayari, Azar; Azizi, Faeze; Abbasi, Hamed

    2013-01-01

    Purpose Fatigue of trunk muscle contributes to spinal instability over strenuous and prolonged physical tasks and therefore may lead to injury, however from a performance perspective, relation between endurance efficient core muscles and optimal balance control has not been well-known. The purpose of this study was to examine the relationship of trunk muscle endurance and static balance. Methods Fifty male students inhabitant of Tehran university dormitory (age 23.9±2.4, height 173.0±4.5 weight 70.7±6.3) took part in the study. Trunk muscle endurance was assessed using Sørensen test of trunk extensor endurance, trunk flexor endurance test, side bridge endurance test and static balance was measured using single-limb stance test. A multiple linear regression analysis was applied to test if the trunk muscle endurance measures significantly predicted the static balance. Results There were positive correlations between static balance level and trunk flexor, extensor and lateral endurance measures (Pearson correlation test, r=0.80 and P<0.001; r=0.71 and P<0.001; r=0.84 and P<0.001, respectively). According to multiple regression analysis for variables predicting static balance, the linear combination of trunk muscle endurance measures was significantly related to the static balance (F (3,46) = 66.60, P<0.001). Endurance of trunk flexor, extensor and lateral muscles were significantly associated with the static balance level. The regression model which included these factors had the sample multiple correlation coefficient of 0.902, indicating that approximately 81% of the variance of the static balance is explained by the model. Conclusion There is a significant relationship between trunk muscle endurance and static balance. PMID:24800004

  18. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth

    PubMed Central

    Cabaj, Anna M.; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2–8 and 10–28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15–29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23–33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24–28 vs 8 and 23–26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement. PMID:28095499

  19. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth.

    PubMed

    Zmysłowski, Wojciech; Cabaj, Anna M; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.

  20. Leg extensor muscle strength, postural stability, and fear of falling after a 2-month home exercise program in women with severe knee joint osteoarthritis.

    PubMed

    Rätsepsoo, Monika; Gapeyeva, Helena; Sokk, Jelena; Ereline, Jaan; Haviko, Tiit; Pääsuke, Mati

    2013-01-01

    BACKGROUND AND OBJECTIVE. The aim of this study was to compare the leg extensor muscle strength, the postural stability, and the fear of falling in the women with severe knee joint osteoarthritis (OA) before and after a 2-month home exercise program (HEP). MATERIAL AND METHODS. In total, 17 women aged 46-72 years with late-stage knee joint OA scheduled for total knee arthroplasty participated in this study before and after the 2-month HEP with strengthening, stretching, balance, and step exercises. The isometric peak torque (PT) of the leg extensors and postural stability characteristics when standing on a firm or a foam surface for 30 seconds were recorded. The fear of falling and the pain intensity (VAS) were estimated. RESULTS. A significant increase in the PT and the PT-to-body weight (PT-to-BW) ratio of the involved leg as well as the bilateral PT and the PT-to-BW ratio was found after the 2-month HEP compared with the data before the HEP (P<0.05). The PT and the PT-to-BW ratio of the involved leg were significantly lower compared with the uninvolved leg before the HEP (P<0.05). The center of the pressure sway length (foam surface) decreased significantly after the HEP (P<0.05). Significant correlations were found between the PT of the involved leg and the bilateral PT and the fear of falling and between the PT of the involved leg and the postural sway (foam surface) before the HEP. CONCLUSIONS. After the 2-month HEP, the leg extensor muscle strength increased and the postural sway length on a foam surface decreased. The results indicate that the increased leg extensor muscle strength improves postural stability and diminishes the fear of falling in women with late-stage knee joint OA.

  1. Effect of toe extension on EMG of triceps surae muscles during isometric dorsiflexion.

    PubMed

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh

    2016-12-01

    The protocol for estimating force of contraction by triceps surae (TS) muscles requires the immobilization of the ankle during dorsiflexion and plantar flexion. However, large variability in the results has been observed. To identify the cause of this variability, experiments were conducted where ankle dorsiflexion force and electromyogram (EMG) of the TS were recorded under two conditions: (i) toes were strapped and (ii) toes were unstrapped, with all other conditions such as immobilization of the ankle remaining unchanged. The root mean square (RMS) of the EMG and the force were analyzed and one-tail Student's t-test was performed for significance between the two conditions. The RMS of the EMG from TS muscles was found to be significantly higher (~55%) during dorsiflexion with toes unstrapped compared with when the toes were strapped. The torque corresponding to dorsiflexion was also higher with toes unstrapped. Our study has shown that it is important to strap the toes when measuring the torque at the ankle and EMG of the TS muscles.

  2. Difficulties in measuring the effect of testosterone replacement therapy on muscle function in older men.

    PubMed

    Clague, J E; Wu, F C; Horan, M A

    1999-08-01

    Muscle wasting in older men may be related to androgen deficiency. We have assessed the effect of testosterone replacement therapy on muscle function in the upper and lower limbs of older (age > 60 years) men with blood testosterone levels < 14 nmol/L. Subjects (n = 7 per group) received testosterone enanthate 200 mg i.m. or placebo every 2 weeks in a double blind study over a 12-week period and underwent muscle testing every 4 weeks. A significant increase in blood levels of testosterone and a reduction in levels of sex hormone binding globulin occurred in the treatment group. Total body mass, haemoglobin and packed cell volume also increased significantly (p < 0.05). No improvements in handgrip strength, isometric strength of knee flexors and extensors or leg extensor power were seen in either group. Wide variability in all measures of muscle function were observed in these elderly men suggesting that very large study groups would be required to determine potential treatment benefits on muscle function.

  3. Influence of muscle groups' activation on proximal femoral growth tendency.

    PubMed

    Yadav, Priti; Shefelbine, Sandra J; Pontén, Eva; Gutierrez-Farewik, Elena M

    2017-12-01

    Muscle and joint contact force influence stresses at the proximal growth plate of the femur and thus bone growth, affecting the neck shaft angle (NSA) and femoral anteversion (FA). This study aims to illustrate how different muscle groups' activation during gait affects NSA and FA development in able-bodied children. Subject-specific femur models were developed for three able-bodied children (ages 6, 7, and 11 years) using magnetic resonance images. Contributions of different muscle groups-hip flexors, hip extensors, hip adductors, hip abductors, and knee extensors-to overall hip contact force were computed. Specific growth rate for the growth plate was computed, and the growth was simulated in the principal stress direction at each element in the growth front. The predicted growth indicated decreased NSA and FA (of about [Formula: see text] over a four-month period) for able-bodied children. Hip abductors contributed the most, and hip adductors, the least, to growth rate. All muscles groups contributed to a decrease in predicted NSA ([Formula: see text]0.01[Formula: see text]-0.04[Formula: see text] and FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]), except hip extensors and hip adductors, which showed a tendency to increase the FA ([Formula: see text]0.004[Formula: see text]-[Formula: see text]). Understanding influences of different muscle groups on long bone growth tendency can help in treatment planning for growing children with affected gait.

  4. Changes in trunk posture and muscle responses in standing during pregnancy and postpartum

    PubMed Central

    Biviá-Roig, Gemma; Lisón, Juan Francisco

    2018-01-01

    The aim of this study was to analyze the position of the lumbopelvic region and the muscle activation of erector spinae and biceps femoris muscles in a group of pregnant women in the third trimester. The hypothesis was that pregnancy-related biomechanical and morphological changes modify the position of the lumbopelvic region and the activation of extensor muscles. The position of the lumbar spine and pelvis in the sagittal plane, and the EMG activity of the erector spinae and biceps femoris muscles, were recorded during standing in 34 nulliparous and 34 pregnant women in the third trimester, and also two months after birth in the group of pregnant women. No significant differences in the position of the lumbar spine or pelvis between the group of pregnant women and nulliparous or postpartum were observed. A significant increase was observed in the EMG activity of the erector spinae (4.6% vs 2.4% and 2.1% in the nulliparous group and postpartum respectively) and the biceps femoris (3.4% vs 1.2% and 1.4%) in pregnant women compared to the other two groups (p <0.01). We conclude that pregnant women in the third trimester show no alterations in lumbopelvic position compared to nulliparous and postpartum women. However, there is an increase of the EMG activity of the trunk extensors. These results indicate that the extensor muscles of the trunk show, in static positions, adaptive responses to the increase of anterior loads during pregnancy. PMID:29584774

  5. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.

    PubMed

    Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David

    2012-01-01

    Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P < 0.05) between ankle stiffness (5.93 ± 0.75 N x m x deg(-1)) and selected performance variables. Relationships between negative power phase ankle stiffness and horizontal (r = -0.79) and vertical (r = 0.74) centre of mass velocities were opposite in direction to the positive power phase ankle stiffness (horizontal: r = 0.85; vertical: r = -0.54). Thus ankle stiffness may affect the goals of the sprint push-off in different ways, depending on the phase of stance considered.

  6. Behavior of human gastrocnemius muscle fascicles during ramped submaximal isometric contractions.

    PubMed

    Héroux, Martin E; Stubbs, Peter W; Herbert, Robert D

    2016-09-01

    Precise estimates of muscle architecture are necessary to understand and model muscle mechanics. The primary aim of this study was to estimate continuous changes in fascicle length and pennation angle in human gastrocnemius muscles during ramped plantar flexor contractions at two ankle angles. The secondary aim was to determine whether these changes differ between proximal and distal fascicles. Fifteen healthy subjects performed ramped contractions (0-25% MVC) as ultrasound images were recorded from the medial (MG, eight sites) and lateral (LG, six sites) gastrocnemius muscle with the ankle at 90° and 120° (larger angles correspond to shorter muscle lengths). In all subjects, fascicles progressively shortened with increasing torque. MG fascicles shortened 5.8 mm (11.1%) at 90° and 4.5 mm (12.1%) at 120°, whereas LG muscle fascicles shortened 5.1 mm (8.8%) at both ankle angles. MG pennation angle increased 1.4° at 90° and 4.9° at 120°, and LG pennation angle decreased 0.3° at 90° and increased 2.6° at 120°. Muscle architecture changes were similar in proximal and distal fascicles at both ankle angles. This is the first study to describe continuous changes in fascicle length and pennation angle in the human gastrocnemius muscle during ramped isometric contractions. Very similar changes occurred in proximal and distal muscle regions. These findings are relevant to studies modeling active muscle mechanics. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  7. The Immediate Effect of Neuromuscular Joint Facilitation (NJF) Treatment on Hip Muscle Strength.

    PubMed

    Wang, Hongdan; Huo, Ming; Huang, Qiuchen; Li, Desheng; Maruyama, Hitoshi

    2013-11-01

    [Purpose] This study investigated the change in hip muscle strength of younger persons after neuromuscular joint facilitation (NJF) treatment. [Subjects] The subjects were 45 healthy young people, who were divided into two groups: a NJF group and a proprioceptive neuromuscular facilitation (PNF) group. The NJF group consisted of 21 subjects (11 males, 10 females), and the PNF group consisted of 24 subjects (11 males, 13 females). [Methods] Participants in the NJF group received NJF treatment. We measured the maximal flexor strength and the maximal extensor strength during isokinetic movement of the hip joint before and after intervention in both groups. The angular velocities used were 60°/sec and 180°/sec. [Results] The NJF group showed significant increases in the maximal flexor strength and the maximal extensor strength after the intervention at each angular velocity. In the PNF group, the maximal flexor strength of 60°/sec and the maximal extensor strength of 180°/sec were significant increases. [Conclusion] These results suggest that there is an immediate effect of NJF intervention on hip muscle strength.

  8. Effects of equal-volume resistance training with different training frequencies in muscle size and strength in trained men

    PubMed Central

    Fisher, James; Steele, James; Campos, Mario H.; Silva, Marcelo H.; Paoli, Antonio; Giessing, Jurgen; Bottaro, Martim

    2018-01-01

    Background The objective of the present study was to compare the effects of equal-volume resistance training (RT) performed with different training frequencies on muscle size and strength in trained young men. Methods Sixteen men with at least one year of RT experience were divided into two groups, G1 and G2, that trained each muscle group once and twice a week, respectively, for 10 weeks. Elbow flexor muscle thickness (MT) was measured using a B-Mode ultrasound and concentric peak torque of elbow extensors and flexors were assessed by an isokinetic dynamometer. Results ANOVA did not reveal group by time interactions for any variable, indicating no difference between groups for the changes in MT or PT of elbow flexors and extensors. Notwithstanding, MT of elbow flexors increased significantly (3.1%, P < 0.05) only in G1. PT of elbow flexors and extensors did not increase significantly for any group. Discussion The present study suggest that there were no differences in the results promoted by equal-volume resistance training performed once or twice a week on upper body muscle strength in trained men. Only the group performing one session per week significantly increased the MT of their elbow flexors. However, with either once or twice a week training, adaptations appear largely minimal in previously trained males.

  9. Effects of equal-volume resistance training with different training frequencies in muscle size and strength in trained men.

    PubMed

    Gentil, Paulo; Fisher, James; Steele, James; Campos, Mario H; Silva, Marcelo H; Paoli, Antonio; Giessing, Jurgen; Bottaro, Martim

    2018-01-01

    The objective of the present study was to compare the effects of equal-volume resistance training (RT) performed with different training frequencies on muscle size and strength in trained young men. Sixteen men with at least one year of RT experience were divided into two groups, G1 and G2, that trained each muscle group once and twice a week, respectively, for 10 weeks. Elbow flexor muscle thickness (MT) was measured using a B-Mode ultrasound and concentric peak torque of elbow extensors and flexors were assessed by an isokinetic dynamometer. ANOVA did not reveal group by time interactions for any variable, indicating no difference between groups for the changes in MT or PT of elbow flexors and extensors. Notwithstanding, MT of elbow flexors increased significantly (3.1%, P  < 0.05) only in G1. PT of elbow flexors and extensors did not increase significantly for any group. The present study suggest that there were no differences in the results promoted by equal-volume resistance training performed once or twice a week on upper body muscle strength in trained men. Only the group performing one session per week significantly increased the MT of their elbow flexors. However, with either once or twice a week training, adaptations appear largely minimal in previously trained males.

  10. Low back pain characterized by muscle resistance and occupational factors associated with nursing1

    PubMed Central

    Petersen, Rafael de Souza; Marziale, Maria Helena Palucci

    2014-01-01

    Objective to identify the occupational factors associated with low back pain using a surveillance tool and to characterize the low back pain by the resistance of the extensor muscles of the vertebral column among nursing professionals at an Intensive Care Unit. Methods Cross-sectional study. The workers answered a questionnaire about occupational factors and participated in a resistance test of the extensor muscles of the vertebral column. Associations were established through Student's T-test or Mann-Whitney's U-test and correlations using Pearson's test. Results Out of 48 participants, 32 (67%) suffered from low pain. For the resistance test, the subjects suffering from low back pain endured less time in comparison with asymptomatic subjects, but without significant differences (p=0.147). The duration of the pain episode showed a significant negative correlation (p=0.016) with the results of the resistance test though. The main factors identified as causes of low back pain were biomechanical and postural elements, conditions of the muscle structure and physical and organizational conditions. Conclusions the main occupational factors associated with the low back pain were the posture and the characteristics of the physical and organizational conditions. In addition, the extensor muscles of the column showed a trend towards lesser resistance for workers in pain. This evidence is important when considering prevention and treatment strategies. PMID:25029048

  11. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.

    PubMed

    Zhang, Mingming; Meng, Wei; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Q

    2016-04-01

    Robot-assisted ankle assessment could potentially be conducted using sensor-based and model-based methods. Existing ankle rehabilitation robots usually use torquemeters and multiaxis load cells for measuring joint dynamics. These measurements are accurate, but the contribution as a result of muscles and ligaments is not taken into account. Some computational ankle models have been developed to evaluate ligament strain and joint torque. These models do not include muscles and, thus, are not suitable for an overall ankle assessment in robot-assisted therapy. This study proposed a computational ankle model for use in robot-assisted therapy with three rotational degrees of freedom, 12 muscles, and seven ligaments. This model is driven by robotics, uses three independent position variables as inputs, and outputs an overall ankle assessment. Subject-specific adaptations by geometric and strength scaling were also made to allow for a universal model. This model was evaluated using published results and experimental data from 11 participants. Results show a high accuracy in the evaluation of ligament neutral length and passive joint torque. The subject-specific adaptation performance is high, with each normalized root-mean-square deviation value less than 10%. This model could be used for ankle assessment, especially in evaluating passive ankle torque, for a specific individual. The characteristic that is unique to this model is the use of three independent position variables that can be measured in real time as inputs, which makes it advantageous over other models when combined with robot-assisted therapy.

  12. Multiple variations of the tendons of the anatomical snuffbox.

    PubMed

    Thwin, San San; Fazlin, Fazlin; Than, Myo

    2014-01-01

    Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3-14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery.

  13. Knee and Ankle Joint Angles Influence the Plantarflexion Torque of the Gastrocnemius.

    PubMed

    Landin, Dennis; Thompson, Melissa; Reid, Meghan

    2015-08-01

    The gastrocnemius (GA) is the lone bi-articular muscle of the leg, crossing both the knee and ankle. As with any bi-articular muscle, both joints affect its length/tension curve. The role of the GA as a plantarflexor is firmly established; however, no current research has investigated how changes in knee and ankle joint positions on its ability to generate a plantarflexion (PF) torque. This paper reports on the PF force generated by the GA at specific knee and ankle joint combinations. The right GA of 26 participants was electrically stimulated via surface electrodes following a standardized protocol at 24 knee and ankle joint combinations. Three stimulations were applied at each of the 24 positions. Data were recorded on three dependent measures: the passive moment, which was the PF moment created by the tissue without stimulation, the maximum moment, which was the highest PF moment during the stimulation and included the passive moment, and the stimulated moment, which reflected the PF moment during stimulation minus the passive moment. A straight knee and dorsiflexed ankle create the position in which the GA generates the greatest PF moment, but it is also the position of greatest length. This finding is in contrast to conclusions from previous research with bi-articular muscles, which has consistently shown that the greatest length is not a muscle's optimal length. The full ranges of motion for the knee and ankle apparently do not elongate the GA beyond its optimal length for producing a PF moment. Clinicians commonly evaluate GA status with the patient seated and the foot subject to gravity. The present results indicate that manual testing of the GA in isolation should be performed, whenever possible, with the knee extended and the ankle dorsiflexed to potentially elicit the maximum PF torque from the GA.

  14. Examining Ankle-Joint Laxity Using 2 Knee Positions and With Simulated Muscle Guarding

    PubMed Central

    Hanlon, Shawn; Caccese, Jaclyn; Knight, Christopher A.; Swanik, Charles “Buz”; Kaminski, Thomas W.

    2016-01-01

    Context:  Several factors affect the reliability of the anterior drawer and talar tilt tests, including the individual clinician's experience and skill, ankle and knee positioning, and muscle guarding. Objectives:  To compare gastrocnemius activity during the measurement of ankle-complex motion at different knee positions, and secondarily, to compare ankle-complex motion during a simulated trial of muscle guarding. Design:  Cross-sectional study. Setting:  Research laboratory. Patients or Other Participants:  Thirty-three participants aged 20.2 ± 1.7 years were tested. Intervention(s):  The ankle was loaded under 2 test conditions (relaxed, simulated muscle guarding) at 2 knee positions (0°, 90° of flexion) while gastrocnemius electromyography (EMG) activity was recorded. Main Outcome Measure(s):  Anterior displacement (mm), inversion-eversion motion (°), and peak EMG amplitude values of the gastrocnemius (μV). Results:  Anterior displacement did not differ between the positions of 0° and 90° of knee flexion (P = .193). Inversion-eversion motion was greater at 0° of knee flexion compared with 90° (P < .001). Additionally, peak EMG amplitude of the gastrocnemius was not different between 0° and 90° of knee flexion during anterior displacement (P = .101). As expected, the simulated muscle-guarding trial reduced anterior displacement compared with the relaxed condition (0° of knee flexion, P = .008; 90° of knee flexion, P = .016) and reduced inversion-eversion motion (0° of knee flexion, P = .03; 90° of knee flexion, P < .001). Conclusions:  In a relaxed state, the gastrocnemius muscle did not appear to affect anterior ankle laxity at the 2 most common knee positions for anterior drawer testing; however, talar tilt testing may be best performed with the knee in 0° of knee flexion. Finally, our outcomes from the simulated muscle-guarding condition suggest that clinicians should use caution and be aware of reduced perceived laxity when performing these clinical examination techniques immediately postinjury. PMID:26881870

  15. Examining Ankle-Joint Laxity Using 2 Knee Positions and With Simulated Muscle Guarding.

    PubMed

    Hanlon, Shawn; Caccese, Jaclyn; Knight, Christopher A; Swanik, Charles Buz; Kaminski, Thomas W

    2016-02-01

    Several factors affect the reliability of the anterior drawer and talar tilt tests, including the individual clinician's experience and skill, ankle and knee positioning, and muscle guarding. To compare gastrocnemius activity during the measurement of ankle-complex motion at different knee positions, and secondarily, to compare ankle-complex motion during a simulated trial of muscle guarding. Cross-sectional study. Research laboratory. Thirty-three participants aged 20.2 ± 1.7 years were tested. The ankle was loaded under 2 test conditions (relaxed, simulated muscle guarding) at 2 knee positions (0°, 90° of flexion) while gastrocnemius electromyography (EMG) activity was recorded. Anterior displacement (mm), inversion-eversion motion (°), and peak EMG amplitude values of the gastrocnemius (μV). Anterior displacement did not differ between the positions of 0° and 90° of knee flexion (P = .193). Inversion-eversion motion was greater at 0° of knee flexion compared with 90° (P < .001). Additionally, peak EMG amplitude of the gastrocnemius was not different between 0° and 90° of knee flexion during anterior displacement (P = .101). As expected, the simulated muscle-guarding trial reduced anterior displacement compared with the relaxed condition (0° of knee flexion, P = .008; 90° of knee flexion, P = .016) and reduced inversion-eversion motion (0° of knee flexion, P = .03; 90° of knee flexion, P < .001). In a relaxed state, the gastrocnemius muscle did not appear to affect anterior ankle laxity at the 2 most common knee positions for anterior drawer testing; however, talar tilt testing may be best performed with the knee in 0° of knee flexion. Finally, our outcomes from the simulated muscle-guarding condition suggest that clinicians should use caution and be aware of reduced perceived laxity when performing these clinical examination techniques immediately postinjury.

  16. Motor modules during adaptation to walking in a powered ankle exoskeleton.

    PubMed

    Jacobs, Daniel A; Koller, Jeffrey R; Steele, Katherine M; Ferris, Daniel P

    2018-01-03

    Modules of muscle recruitment can be extracted from electromyography (EMG) during motions, such as walking, running, and swimming, to identify key features of muscle coordination. These features may provide insight into gait adaptation as a result of powered assistance. The aim of this study was to investigate the changes (module size, module timing and weighting patterns) of surface EMG data during assisted and unassisted walking in an powered, myoelectric, ankle-foot orthosis (ankle exoskeleton). Eight healthy subjects wore bilateral ankle exoskeletons and walked at 1.2 m/s on a treadmill. In three training sessions, subjects walked for 40 min in two conditions: unpowered (10 min) and powered (30 min). During each session, we extracted modules of muscle recruitment via nonnegative matrix factorization (NNMF) from the surface EMG signals of ten muscles in the lower limb. We evaluated reconstruction quality for each muscle individually using R 2 and normalized root mean squared error (NRMSE). We hypothesized that the number of modules needed to reconstruct muscle data would be the same between conditions and that there would be greater similarity in module timings than weightings. Across subjects, we found that six modules were sufficient to reconstruct the muscle data for both conditions, suggesting that the number of modules was preserved. The similarity of module timings and weightings between conditions was greater then random chance, indicating that muscle coordination was also preserved. Motor adaptation during walking in the exoskeleton was dominated by changes in the module timings rather than module weightings. The segment number and the session number were significant fixed effects in a linear mixed-effect model for the increase in R 2 with time. Our results show that subjects walking in a exoskeleton preserved the number of modules and the coordination of muscles within the modules across conditions. Training (motor adaptation within the session and motor skill consolidation across sessions) led to improved consistency of the muscle patterns. Subjects adapted primarily by changing the timing of their muscle patterns rather than the weightings of muscles in the modules. The results of this study give new insight into strategies for muscle recruitment during adaptation to a powered ankle exoskeleton.

  17. Muscular activity during dynamic squats in patients with ACL reconstruction.

    PubMed

    Ceaglio, Sebastian; Alberto, Federico; Catalfamo, Paola Andrea; Braidot, Ariel Andres

    2010-01-01

    One of the most frequent injuries in subjects who practice sport is the rupture of the anterior cruciate ligament (ACL). Appropriate reconstruction and rehabilitation are key issues in full recovery of patients and their return to previous activities. This paper presents a new method to estimate muscle strength during a dynamic exercise from kinematic and electromyographic (EMG) data. Recovery of patients with ACL rupture and reconstruction was evaluated 4 and 6 months after surgery by assessing the differences in knee extensor and flexor muscle activity between the unimpaired and injured limbs. The results show that squat EMGs from the extensor muscles of the knee from the injured and unimpaired limb could help assess rehabilitation outputs in patients who had undergone an ACL reconstructive surgery.

  18. Effectiveness of two modalities of physiotherapy in the treatment of haemophilic arthropathy of the ankle: a randomized pilot study.

    PubMed

    Cuesta-Barriuso, R; Gómez-Conesa, A; López-Pina, J-A

    2014-01-01

    Although different techniques of physiotherapy have been described for the treatment of haemophilic arthropathy (HA) of ankle, hardly any studies have been applied manual therapy or educational physiotherapy and home exercises. The aim of this study was to assess the effectiveness of manual therapy and educational physiotherapy in the treatment of HA of the ankle. Thirty-one patients with HA of the ankle with a mean age of 35.29 (SD: 12.877) years randomized to manual therapy group (n = 11), educational group (n = 10) and a control group (n = 10). The two physiotherapy programmes were one with manual therapy articular traction, passive stretching of the gastrocnemius muscles, and exercises for muscle strength and proprioception (MT group) and the other with educational sessions and home exercises (E group). The study lasted for 12 weeks. The treatment with manual therapy improved the gastrocnemius muscle circumference, and the pain of ankle (P < 0.05). Six months later, MT group still enjoyed improvement. In the educational group there were improvements, but not significant, in the measured variables. No patient had ankle haemarthrosis during the study. The treatment with manual therapy improved the circumference of gastrocnemius and lessened pain in the patients with haemophilic arthropathy of the ankle. © 2013 John Wiley & Sons Ltd.

  19. Muscle power failure in mobility-limited adults: preserved single muscle fibre function despite reduced whole muscle size, quality and neuromuscular activiation

    USDA-ARS?s Scientific Manuscript database

    This study investigated the physiological and gender determinants of the age-related loss of muscle power in 31 healthy middle-aged adults (aged 40-55 years), 28 healthy older adults (70-85 years) and 34 mobility-limited older adults (70-85 years). We hypothesized that leg extensor muscle power woul...

  20. Asymmetry of Muscle Strength in Elite Athletes

    ERIC Educational Resources Information Center

    Drid, Patrik; Drapsin, Miodrag; Trivic, Tatjana; Lukac, Damir; Obadov, Slavko; Milosevic, Zoran

    2009-01-01

    "Study aim": To determine muscle strength variables in elite judoists and wrestlers since thigh muscle strength and bilaterally balanced flexor-to-extensor ratio minimise injury risk and are desirable for achieving sport successes. "Material and methods": Judoists, wrestlers and untrained subjects, 10 each, were subjected to isokinetic strength…

  1. Treatment of peroneal tendon dislocation and coexisting medial and lateral ligamentous laxity in the ankle joint.

    PubMed

    Ziai, Pejman; Sabeti-Aschraf, Manuel; Fehske, Kai; Dlaska, Constantin E; Funovics, Philipp; Wenzel, Florian; Graf, Alexandra; Buchhorn, Tomas

    2011-06-01

    Acute dislocation of the peroneal tendon is caused by massive combined flexion-torsion trauma supported by preexisting ligamentous laxity of the ankle joint. This study aimed to investigate the clinical outcome of combined treatment of peroneal tendon dislocation and lateral and medial ligamentous laxity. Between 2005 and 2007, forty-two patients with peroneal tendon dislocation and coexisting ligamentous laxity were treated. The superior extensor retinaculum was reconstructed using anchor technique and periosteal flap repair, whereas the preexisting ligamentous laxity with regard to the extensor inferior retinaculum was addressed using anchor reconstruction. All patients underwent arthroscopy prior to surgery. Thirty-eight of a total of 42 patients (aged 17-31) completed the 24-month follow-up. Clinical and arthroscopic examination was accomplished consistently by always the same two surgeons. Postoperative follow-up comprised clinical evaluation after 3, 6, 12 and 24 months. Clinical results showed a significant (P<0.0001) increase in the AOFAS-Hindfoot Score as an often used but not validated outcome measure, as well as a significant decrease in the Visual Analogue Scale and in the internal and external rotation, after 3 months. The clinical outcome was confirmed at the 6-, 12- and 24-months measuring points. No dislocation of the peroneal tendon recurred within the 24-month follow-up. Subjective patient satisfaction was stated as high. Combined treatment of peroneal tendon dislocation and coexisting lateral and medial ligamentous laxity in the ankle joint following arthroscopy results in good clinical outcome and high patient satisfaction. Case series, Level IV.

  2. Proximity of arthroscopic ankle stabilization procedures to surrounding structures: an anatomic study.

    PubMed

    Drakos, Mark; Behrens, Steve B; Mulcahey, Mary K; Paller, David; Hoffman, Eve; DiGiovanni, Christopher W

    2013-06-01

    To examine the anatomy of the lateral ankle after arthroscopic repair of the lateral ligament complex (anterior talofibular ligament [ATFL] and calcaneofibular ligament [CFL]) with regard to structures at risk. Ten lower extremity cadaveric specimens were obtained and were screened for gross anatomic defects and pre-existing ankle laxity. The ATFL and CFL were sectioned from the fibula by an open technique. Standard anterolateral and anteromedial arthroscopy portals were made. An additional portal was created 2 cm distal to the anterolateral portal. The articular surface of the fibula was identified, and the ATFL and CFL were freed from the superficial and deeper tissues. Suture anchors were placed in the fibula at the ATFL and CFL origins and were used to repair the origin of the lateral collateral structures. The distance from the suture knot to several local anatomic structures was measured. Measurements were taken by 2 separate observers, and the results were averaged. Several anatomic structures lie in close proximity to the ATFL and CFL sutures. The ATFL sutures entrapped 9 of 55 structures, and no anatomic structures were inadvertently entrapped by the CFL sutures. The proximity of the peroneus tertius and the extensor tendons to the ATFL makes them at highest risk of entrapment, but the proximity of the intermediate branch of the superficial peroneal nerve (when present) is a risk with significant morbidity. Our results indicate that the peroneus tertius and extensor tendons have the highest risk for entrapment and show the smallest mean distances from the anchor knot to the identified structure. Careful attention to these structures, as well as the superficial peroneal nerve, is mandatory to prevent entrapment of tendons and nerves when one is attempting arthroscopic lateral ankle ligament reconstruction. Defining the anatomic location and proximity of the intervening structures adjacent to the lateral ligament complex of the ankle may help clarify the anatomic safe zone through which arthroscopic repair of the lateral ligament complex can be safely performed. Copyright © 2013 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  3. Weightlifting performance is related to kinematic and kinetic patterns of the hip and knee joints.

    PubMed

    Kipp, Kristof; Redden, Josh; Sabick, Michelle B; Harris, Chad

    2012-07-01

    The purpose of this study was to investigate the correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while 10 subjects performed a clean at 85% of 1 repetition maximum (1RM). Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body mass-normalized 1RM. Two hip kinematic and 2 knee kinetic patterns were significantly correlated with relative 1RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pulls. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, and an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.

  4. Sex Comparison of Knee Extensor Size, Strength and Fatigue Adaptation to Sprint Interval Training.

    PubMed

    Bagley, Liam; Al-Shanti, Nasser; Bradburn, Steven; Baig, Osamah; Slevin, Mark; McPhee, Jamie S

    2018-03-12

    Regular sprint interval training (SIT) improves whole-body aerobic capacity and muscle oxidative potential, but very little is known about knee extensor anabolic or fatigue resistance adaptations, or whether effects are similar for males and females. The purpose of this study was to compare sex-related differences in knee extensor size, torque-velocity relationship and fatigability adaptations to 12 weeks SIT. Sixteen males and fifteen females (mean (SEM) age: 41 (±2.5) yrs) completed measurements of total body composition assessed by DXA, quadriceps muscle cross-sectional area (CSAQ) assessed by MRI, the knee extensor torque-velocity relationship (covering 0 - 240°·sec) and fatigue resistance, which was measured as the decline in torque from the first to the last of 60 repeated concentric knee extensions performed at 180°·sec. SIT consisted of 4 x 20 second sprints on a cycle ergometer set at an initial power output of 175% of power at VO2max, three times per week for 12 weeks. CSAQ increased by 5% (p=0.023) and fatigue resistance improved 4.8% (p=0.048), with no sex differences in these adaptations (sex comparisons: p=0.140 and p=0.282, respectively). Knee extensor isometric and concentric torque was unaffected by SIT in both males and females (p>0.05 for all velocities). 12 weeks SIT, totalling 4 minutes very intense cycling per week, significantly increased fatigue resistance and CSAQ similarly in males and females, but did not significantly increase torque in males or females. These results suggest that SIT is a time-effective training modality for males and females to increase leg muscle size and fatigue resistance.

  5. Effects of squat lift training and free weight muscle training on maximum lifting load and isolinetic peak torque of young adults without impairments.

    PubMed

    Yeung, S S; Ng, G Y

    2000-06-01

    Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.

  6. Effect of Superimposed Electromyostimulation on Back Extensor Strengthening: A Pilot Study.

    PubMed

    Park, Jae Hyeon; Seo, Kwan Sik; Lee, Shi-Uk

    2016-09-01

    Park, JH, Seo, KS, and Lee, S-U. Effect of superimposed electromyostimulation on back extensor strengthening: a pilot study. J Strength Cond Res 30(9): 2470-2475, 2016-Electromyostimulation (EMS) superimposed on voluntary contraction (VC) can increase muscle strength. However, no study has examined the effect of superimposing EMS on back extensor strengthening. The purpose of this study was to determine the effect of superimposed EMS on back extensor strengthening in healthy adults. Twenty healthy men, 20-29 years of age, without low-back pain were recruited. In the EMS group, electrodes were attached to bilateral L2 and L4 paraspinal muscles. Stimulation intensity was set for maximally tolerable intensity. With VC, EMS was superimposed for 10 seconds followed by a 20-second rest period. The same protocol was used in the sham stimulation (SS) group, except that the stimulation intensity was set at the lowest intensity (5 mA). All subjects performed back extension exercise using a Swiss ball, with 10 repetitions per set, 2 sets each day, 5 times a week for 2 weeks. The primary outcome measure was the change in isokinetic strength of the back extensor using an isokinetic dynamometer. Additionally, endurance was measured using the Sorensen test. After 2 weeks of back extension exercise, the peak torque and endurance increased significantly in both groups (p ≤ 0.05). Effect size between the EMS group and the SS group was medium in strength and endurance. However, there was no statistically significant difference between 2 groups. In conclusion, 2 weeks of back extensor strengthening exercise was effective for strength and endurance. Superimposing EMS on back extensor strengthening exercise could provide an additional effect on increasing strength.

  7. Idiopathic toe-walking in children, adolescents and young adults: a matter of local or generalised stiffness?

    PubMed Central

    2011-01-01

    Background Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. Methods In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. Results A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. Conclusion ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered. PMID:21418634

  8. Idiopathic toe-walking in children, adolescents and young adults: a matter of local or generalised stiffness?

    PubMed

    Engelbert, Raoul; Gorter, Jan Willem; Uiterwaal, Cuno; van de Putte, Elise; Helders, Paul

    2011-03-21

    Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered.

  9. It pays to have a spring in your step

    PubMed Central

    Sawicki, Gregory S.; Lewis, Cara L.; Ferris, Daniel P.

    2010-01-01

    A large portion of the mechanical work required for walking comes from muscles and tendons crossing the ankle joint. By storing and releasing elastic energy in the Achilles tendon during each step, humans greatly enhance the efficiency of ankle joint work far beyond what is possible for work performed at the knee and hip joints. Summary Humans produce mechanical work at the ankle joint during walking with an efficiency two to six times greater than isolated muscle efficiency. PMID:19550204

  10. Protein degradation in skeletal muscle during experimental hyperthyroidism in rats and the effect of beta-blocking agents.

    PubMed

    Angerås, U; Hasselgren, P O

    1987-04-01

    beta-Blocking agents are increasingly used in the management of hyperthyroid patients. The effect of this treatment on increased muscle protein breakdown in the hyperthyroid state is not known. In the present study, experimental hyperthyroidism was induced in rats by daily ip injections of T3 (100 micrograms/100 g BW) during a 10-day period. Control animals received corresponding volumes of solvent. In groups of rats the selective beta-1-blocking agent metoprolol or the nonselective beta-blocker propranolol was infused by miniosmotic pumps implanted sc on the backs of the animals. Protein degradation was measured in incubated intact soleus and extensor digitorum longus muscles by determining tyrosine release into the incubation medium. The protein degradation rate in incubated extensor digitorum longus and soleus muscles was increased by 50-60% during T3 treatment. Metoprolol or propranolol did not influence muscle protein breakdown in either T3-treated or control animals. The results suggest that T3-induced increased muscle proteolysis is not mediated by beta-receptors, and muscle weakness and wasting in hyperthyroidism might not be affected by beta-blockers.

  11. Intramuscular pressure and electromyography as indexes of force during isokinetic exercise

    NASA Technical Reports Server (NTRS)

    Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.

    1993-01-01

    A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.

  12. Effects of Sun-style Tai Chi exercise on physical fitness and fall prevention in fall-prone older adults.

    PubMed

    Choi, Jung Hyun; Moon, Jung-Soon; Song, Rhayun

    2005-07-01

    This paper reports a study to determine changes in the physical fitness (knee and ankle muscle strength, balance, flexibility, and mobility), fall avoidance efficacy, and fall episodes of institutionalized older adults after participating in a 12-week Sun-style Tai Chi exercise programme. Fall prevention has a high priority in health promotion for older people because a fall is associated with serious morbidity in this population. Regular exercise is effective in fall prevention for older adults because of improvements in strength and balance. Tai Chi exercise is considered to offer great potential for health promotion and rehabilitation, particularly in the maintenance of good mental and physical condition in older people. A quasi-experimental design with a non-equivalent control group was used. Data were collected from September 2001 to January 2002. A total of 68 fall-prone older adults with a mean age of 77.8 years participated in the study, and 29 people in the Tai Chi group and 30 controls completed the post-test measures. The Tai Chi exercise programme was provided three times a week for 12 weeks in the experimental group. Data were analysed for group differences using t-tests. At post-test, the experimental group showed significantly improved muscle strength in knee and ankle flexors (P < 0.001) and extensors (P < 0.01), and improved flexibility (P < 0.01) and mobility (P < 0.001) compared with the control group. There was no significant group difference in fall episodes, but the relative risk ratio for the Tai Chi exercise group compared with the control group was 0.62. The experimental group reported significantly more confidence in fall avoidance than did the control group. The findings reveal that Tai Chi exercise programmes can safely improve physical strength and reduce fall risk for fall-prone older adults in residential care facilities.

  13. Feed forward and feedback control for over-ground locomotion in anaesthetized cats

    NASA Astrophysics Data System (ADS)

    Mazurek, K. A.; Holinski, B. J.; Everaert, D. G.; Stein, R. B.; Etienne-Cummings, R.; Mushahwar, V. K.

    2012-04-01

    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1 = 6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, within these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future.

  14. Feed forward and feedback control for over-ground locomotion in anaesthetized cats

    PubMed Central

    Mazurek, K A; Holinski, B J; Everaert, D G; Stein, R B; Etienne-Cummings, R; Mushahwar, V K

    2012-01-01

    The biological central pattern generator (CPG) integrates open and closed loop control to produce over-ground walking. The goal of this study was to develop a physiologically based algorithm capable of mimicking the biological system to control multiple joints in the lower extremities for producing over-ground walking. The algorithm used state-based models of the step cycle each of which produced different stimulation patterns. Two configurations were implemented to restore over-ground walking in five adult anaesthetized cats using intramuscular stimulation (IMS) of the main hip, knee and ankle flexor and extensor muscles in the hind limbs. An open loop controller relied only on intrinsic timing while a hybrid-CPG controller added sensory feedback from force plates (representing limb loading), and accelerometers and gyroscopes (representing limb position). Stimulation applied to hind limb muscles caused extension or flexion in the hips, knees and ankles. A total of 113 walking trials were obtained across all experiments. Of these, 74 were successful in which the cats traversed 75% of the 3.5 m over-ground walkway. In these trials, the average peak step length decreased from 24.9 ± 8.4 to 21.8 ± 7.5 (normalized units) and the median number of steps per trial increased from 7 (Q1=6, Q3 = 9) to 9 (8, 11) with the hybrid-CPG controller. Moreover, these trials, the hybrid-CPG controller produced more successful steps (step length ≤ 20 cm; ground reaction force ≥ 12.5% body weight) than the open loop controller: 372 of 544 steps (68%) versus 65 of 134 steps (49%), respectively. This supports our previous preliminary findings, and affirms that physiologically based hybrid-CPG approaches produce more successful stepping than open loop controllers. The algorithm provides the foundation for a neural prosthetic controller and a framework to implement more detailed control of locomotion in the future. PMID:22328615

  15. Evaluation of biodegradable electric conductive tube-guides and mesenchymal stem cells

    PubMed Central

    Ribeiro, Jorge; Pereira, Tiago; Caseiro, Ana Rita; Armada-da-Silva, Paulo; Pires, Isabel; Prada, Justina; Amorim, Irina; Amado, Sandra; França, Miguel; Gonçalves, Carolina; Lopes, Maria Ascensão; Santos, José Domingos; Silva, Dina Morais; Geuna, Stefano; Luís, Ana Lúcia; Maurício, Ana Colette

    2015-01-01

    AIM: To study the therapeutic effect of three tube-guides with electrical conductivity associated to mesenchymal stem cells (MSCs) on neuro-muscular regeneration after neurotmesis. METHODS: Rats with 10-mm gap nerve injury were tested using polyvinyl alcohol (PVA), PVA-carbon nanotubes (CNTs) and MSCs, and PVA-polypyrrole (PPy). The regenerated nerves and tibialis anterior muscles were processed for stereological studies after 20 wk. The functional recovery was assessed serially for gait biomechanical analysis, by extensor postural thrust, sciatic functional index and static sciatic functional index (SSI), and by withdrawal reflex latency (WRL). In vitro studies included cytocompatibility, flow cytometry, reverse transcriptase polymerase chain reaction and karyotype analysis of the MSCs. Histopathology of lung, liver, kidneys, and regional lymph nodes ensured the biomaterials biocompatibility. RESULTS: SSI remained negative throughout and independently from treatment. Differences between treted groups in the severity of changes in WRL existed, showing a faster regeneration for PVA-CNTs-MSCs (P < 0.05). At toe-off, less acute ankle joint angles were seen for PVA-CNTs-MSCs group (P = 0.051) suggesting improved ankle muscles function during the push off phase of the gait cycle. In PVA-PPy and PVA-CNTs groups, there was a 25% and 42% increase of average fiber area and a 13% and 21% increase of the “minimal Feret’s diameter” respectively. Stereological analysis disclosed a significantly (P < 0.05) increased myelin thickness (M), ratio myelin thickness/axon diameter (M/d) and ratio axon diameter/fiber diameter (d/D; g-ratio) in PVA-CNT-MSCs group (P < 0.05). CONCLUSION: Results revealed that treatment with MSCs and PVA-CNTs tube-guides induced better nerve fiber regeneration. Functional and kinematics analysis revealed positive synergistic effects brought by MSCs and PVA-CNTs. The PVA-CNTs and PVA-PPy are promising scaffolds with electric conductive properties, bio- and cytocompatible that might prevent the secondary neurogenic muscular atrophy by improving the reestablishment of the neuro-muscular junction. PMID:26240682

  16. Low intensity vibration of ankle muscles improves balance in elderly persons at high risk of falling

    PubMed Central

    Toosizadeh, Nima; Mohler, Jane

    2018-01-01

    In our study we examined postural performance of young healthy persons (HY), elderly healthy persons (HE), and elderly persons at high risk of falling (FR). Anterio-posterior (AP) and medio-lateral (ML) ankle and hip angular deviations, as well as linear displacements of the center of mass (COM) were assessed in persons standing with eyes either open or closed, while none, and 40 and 30 Hz vibrations were applied bilaterally to the ankle muscle gastrocnemius. During quiet standing with eyes open, balance parameters in FR group differed from those in healthy groups. ML ankle and hip angular deviations, as well as COM linear displacements were noticeably larger in FR group. During quiet standing with eyes closed, all balance parameters in participants of all groups had a clear trend to increase. During standing with eyes open, 40 Hz vibration increased all but one balance parameter within HY group, ankle angular deviations in HE group, but none in FR group. In response to 30 Hz vibration, only ankle angular deviations and COM linear displacements increased in HY group. There were no changes in both elderly groups. During standing with eyes closed, 40 and 30 Hz vibrations did not produce consistent changes in balance parameters in HY and HE groups. In FR persons, 40 Hz vibration did not change balance parameters. However, in FR groups, 30 Hz vibration decreased ankle and hip angular deviations, and COM linear displacements. The major result of the study is a finding that low intensity vibration of ankle muscles makes balance better in elderly persons at high risk of falling. This result is clinically relevant because it suggests that applying mild vibration to ankle muscles while standing and walking might benefit elderly persons, improving their postural performance and reducing a risk of unexpected falls. PMID:29579098

  17. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship.

    PubMed

    Ateş, Filiz; Davies, Brenda L; Chopra, Swati; Coleman-Wood, Krista; Litchy, William J; Kaufman, Kenton R

    2018-01-01

    Intramuscular pressure (IMP) is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD) provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA) activity at different ankle positions. We hypothesized that (1) the TA IMP and the surface EMG (sEMG) and fine-wire EMG (fwEMG) correlate to ankle joint torque, (2) the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3) the electromechanical delay (EMD) is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean ( SD ) age = 26.9 (4.2) years old with 25.9 (5.5) kg/m 2 body mass index] performed (i) three isometric dorsiflexion (DF) maximum voluntary contraction (MVC) and (ii) three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF) positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.

  18. Contribution of knee flexor and extensor strength on sex-specific energy absorption and torsional joint stiffness during drop jumping.

    PubMed

    Schmitz, Randy J; Shultz, Sandra J

    2010-01-01

    Lower extremity injury often occurs during abrupt deceleration when attempting to change the body's direction. Although sex-specific biomechanics have been implicated in the greater risk of acute knee injury in women than in men, it is unknown if sex differences in thigh strength affect sex-specific energy absorption and torsional joint stiffness patterns. To determine sex differences in energy absorption patterns and joint stiffnesses of the lower extremity during a drop jump and to determine if these sex differences were predicted by knee extensor and flexor strength. Cross-sectional study. Laboratory environment. Recreationally active, college-aged students (41 women: age  =  22.1 ± 2.9 years, height  =  1.63 ± 0.07 m, mass  =  59.3 ± 8.0 kg; 40 men: age  =  22.4 ± 2.8 years, height  =  1.77 ± 0.1 m, mass  =  80.9 ± 14.1 kg). Participants performed knee flexor and extensor maximal voluntary isometric contractions followed by double-leg drop-jump landings. Lower extremity joint energetics (J × N(-1) × m(-1)) and torsional joint stiffnesses (Nm × N(-1) × m(-1) × degrees(-1)) were calculated for the hip, knee, and ankle during the initial landing phase. Body weight was measured in newtons and height was measured in meters. Sex comparisons were made and sex-specific regressions determined if thigh muscle strength (Nm/kg) predicted sagittal-plane landing energetics and stiffnesses. Women absorbed 69% more knee energy and had 36% less hip torsional stiffness than men. In women, greater knee extensor strength predicted greater knee energy absorption (R(2)  =  0.11, P  =  .04), and greater knee flexor strength predicted greater hip torsional stiffness (R(2)  =  0.12, P  =  .03). Sex-specific biomechanics during the deceleration phase of a drop jump revealed that women used a strategy to attempt to decrease system stiffness. Additionally, only female strength values were predictive of landing energetics and stiffnesses. These findings collectively demonstrated that the task may have been more difficult for women, resulting in a different movement strategy among those with different levels of thigh strength to safely complete the task. Future researchers should look at other predictive factors of observed sex differences.

  19. Contribution of sensory feedback to plantar flexor muscle activation during push-off in adults with cerebral palsy.

    PubMed

    Frisk, Rasmus F; Jensen, Peter; Kirk, Henrik; Bouyer, Laurent J; Lorentzen, Jakob; Nielsen, Jens B

    2017-12-01

    Exaggerated sensory activity has been assumed to contribute to functional impairment following lesion of the central motor pathway. However, recent studies have suggested that sensory contribution to muscle activity during gait is reduced in stroke patients and children with cerebral palsy (CP). We investigated whether this also occurs in CP adults and whether daily treadmill training is accompanied by alterations in sensory contribution to muscle activity. Seventeen adults with CP and 12 uninjured individuals participated. The participants walked on a treadmill while a robotized ankle-foot orthosis applied unload perturbations at the ankle, thereby removing sensory feedback naturally activated during push-off. Reduction of electromyographic (EMG) activity in the soleus muscle caused by unloads was compared and related to kinematics and ankle joint stiffness measurements. Similar measures were obtained after 6 wk of gait training. We found that sensory contribution to soleus EMG activation was reduced in CP adults compared with uninjured adults. The lowest contribution of sensory feedback was found in participants with lowest maximal gait speed. This was related to increased ankle plantar flexor stiffness. Six weeks of gait training did not alter the contribution of sensory feedback. We conclude that exaggerated sensory activity is unlikely to contribute to impaired gait in CP adults, because sensory contribution to muscle activity during gait was reduced compared with in uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait so that a larger part of plantar flexor muscle activity must be generated by descending motor commands. NEW & NOTEWORTHY Findings suggest that adults with cerebral palsy have less contribution of sensory feedback to ongoing soleus muscle activation during push-off than uninjured individuals. Increased passive stiffness around the ankle joint is likely to diminish sensory feedback during gait, and/or sensory feedback is less integrated with central motor commands in the activation of spinal motor neurons. Consequently, muscle activation must to a larger extent rely on descending drive, which is already decreased because of the cerebral lesion. Copyright © 2017 the American Physiological Society.

  20. Effects of fatigue on motor unit firing rate versus recruitment threshold relationships.

    PubMed

    Stock, Matt S; Beck, Travis W; Defreitas, Jason M

    2012-01-01

    The purpose of this study was to examine the influence of fatigue on the average firing rate versus recruitment threshold relationships for the vastus lateralis (VL) and vastus medialis. Nineteen subjects performed ten maximum voluntary contractions of the dominant leg extensors. Before and after this fatiguing protocol, the subjects performed a trapezoid isometric muscle action of the leg extensors, and bipolar surface electromyographic signals were detected from both muscles. These signals were then decomposed into individual motor unit action potential trains. For each subject and muscle, the relationship between average firing rate and recruitment threshold was examined using linear regression analyses. For the VL, the linear slope coefficients and y-intercepts for these relationships increased and decreased, respectively, after fatigue. For both muscles, many of the motor units decreased their firing rates. With fatigue, recruitment of higher threshold motor units resulted in an increase in slope for the VL. Copyright © 2011 Wiley Periodicals, Inc.

  1. Multivariable Dynamic Ankle Mechanical Impedance With Relaxed Muscles

    PubMed Central

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2015-01-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic “peanut” shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed. PMID:24686292

  2. Multivariable dynamic ankle mechanical impedance with relaxed muscles.

    PubMed

    Lee, Hyunglae; Krebs, Hermano Igo; Hogan, Neville

    2014-11-01

    Neurological or biomechanical disorders may distort ankle mechanical impedance and thereby impair locomotor function. This paper presents a quantitative characterization of multivariable ankle mechanical impedance of young healthy subjects when their muscles were relaxed, to serve as a baseline to compare with pathophysiological ankle properties of biomechanically and/or neurologically impaired patients. Measurements using a highly backdrivable wearable ankle robot combined with multi-input multi-output stochastic system identification methods enabled reliable characterization of ankle mechanical impedance in two degrees-of-freedom (DOFs) simultaneously, the sagittal and frontal planes. The characterization included important ankle properties unavailable from single DOF studies: coupling between DOFs and anisotropy as a function of frequency. Ankle impedance in joint coordinates showed responses largely consistent with a second-order system consisting of inertia, viscosity, and stiffness in both seated (knee flexed) and standing (knee straightened) postures. Stiffness in the sagittal plane was greater than in the frontal plane and furthermore, was greater when standing than when seated, most likely due to the stretch of bi-articular muscles (medial and lateral gastrocnemius). Very low off-diagonal partial coherences implied negligible coupling between dorsiflexion-plantarflexion and inversion-eversion. The directions of principal axes were tilted slightly counterclockwise from the original joint coordinates. The directional variation (anisotropy) of ankle impedance in the 2-D space formed by rotations in the sagittal and frontal planes exhibited a characteristic "peanut" shape, weak in inversion-eversion over a wide range of frequencies from the stiffness dominated region up to the inertia dominated region. Implications for the assessment of neurological and biomechanical impairments are discussed.

  3. A Comparison of Two Injection Locations in Obese Patients Having Lower Leg/Foot Surgery

    ClinicalTrials.gov

    2015-10-13

    Strain of Muscle and/or Tendon of Lower Leg; Fracture of Lower Leg; Crushing Injury of Lower Leg; Fracture Malunion - Ankle and/ or Foot; Complete Tear, Ankle and/or Foot Ligament; Pathological Fracture - Ankle and/or Foot; Loose Body in Joint of Ankle and/or Foot

  4. Embryonic development of the innervation of the locust extensor tibiae muscle by identified neurons: formation and elimination of inappropriate axon branches.

    PubMed

    Myers, C M; Whitington, P M; Ball, E E

    1990-01-01

    Intracellular dye fills have been used to reveal the pattern of embryonic growth of each of the four neurons which innervate the extensor tibiae muscle (ETi) of the hind leg of the locust. The growth cone of the slow extensor tibiae motoneuron (SETi), the first of the four neurons to leave the central nervous system, pioneers nerve 3 (N3). The fast extensor motoneuron (FETi), the next neuron to grow out, follows earlier outgrowing motoneurons into the periphery in nerve 5 (N5) and then rejoins SETi in N3. As it transfers from N5 to N3, it is transiently dye-coupled to the Tr1 pioneer neuron which spans the gap between the two nerves. It then follows SETi onto the ETi muscle in the femur. The common inhibitory neuron and the dorsal unpaired median neuron (DUMETi) follow SETi and FETi in nerves 3B2 and 5B1, respectively. SETi's growth cone requires almost twice as long to reach ETi as those of the three later motoneurons, all of which follow preexisting neural pathways. At least three of the four developing motoneurons form one or more axon branches not found in the adult. These branches may occur (1) at segmental boundaries; (2) where the nerve, which the growth cone is following, itself branches or the growth cone encounters another nerve; or (3) when the axon continues to grow beyond its target muscle. These findings contrast with the apparent absence of inappropriate axon branches in another developing locust neuromuscular system and during the innervation of zebrafish myotomes, but resemble in some ways the transient production of inappropriate axonal branches reported for embryonic leech motoneurons.

  5. Onset Time of Nerve Block: A Comparison of Two Injection Locations in Patients Having Lower Leg/ Foot Surgery

    ClinicalTrials.gov

    2014-03-20

    Strain of Muscle and/or Tendon of Lower Leg; Fracture of Lower Leg; Crushing Injury of Lower Leg; Fracture Malunion - Ankle and/or Foot; Disorder of Joint of Ankle and/or Foot; Complete Tear, Ankle and/or Foot Ligament; Pathological Fracture - Ankle and/or Foot; Loose Body in Joint of Ankle and/or Foot

  6. Alterations in neuromuscular function in girls with generalized joint hypermobility.

    PubMed

    Jensen, Bente Rona; Sandfeld, Jesper; Melcher, Pia Sandfeld; Johansen, Katrine Lyders; Hendriksen, Peter; Juul-Kristensen, Birgit

    2016-10-03

    Generalized Joint Hypermobility (GJH) is associated with increased risk of musculoskeletal joint pain. We investigated neuromuscular performance and muscle activation strategy. Girls with GJH and non-GJH (NGJH) performed isometric knee flexions (90°,110°,130°), and extensions (90°) at 20 % Maximum Voluntary Contraction, and explosive isometric knee flexions while sitting. EMG was recorded from knee flexor and extensor muscles. Early rate of torque development was 53 % faster for GJH. Reduced hamstring muscle activation in girls with GJH was found while knee extensor and calf muscle activation did not differ between groups. Flexion-extension and medial-lateral co-activation ratio during flexions were higher for girls with GJH than NGJH girls. Girls with GJH had higher capacity to rapidly generate force than NGJH girls which may reflect motor adaptation to compensate for hypermobility. Higher medial muscle activation indicated higher levels of medial knee joint compression in girls with GJH. Increased flexion-extension co-activation ratios in GJH were explained by decreased agonist drive to the hamstrings.

  7. Ontogeny of the cranial musculature in Corydoras aeneus Callichthyidae, Siluriformes.

    PubMed

    Huysentruyt, F; Brunain, M; Adriaens, D

    2009-11-01

    A complete study of the early ontogeny of the cranial muscles of Corydoras aeneus (Callichthyidae) was undertaken and results were compared with those for the loricariid Ancistrus cf. triradiatus. This comparison reveals a high degree of similarity in the ontogeny of both species' cranial muscles. Both species lack a musculus protractor hyoidei, and the musculus intermandibularis posterior is divided into two different parts that have partly obtained a novel function (serving the lower lip) in A. cf. triradiatus. A similar increase in muscular complexity in this species is found in the dorsal constrictor of the hyoid muscle plate. This constrictor gives rise to the same muscles in both C. aeneus and A. cf. triradiatus, but in A. cf. triradiatus the musculus levator operculi later hypertrophies. In C. aeneus the musculus extensor tentaculi forms a single muscle diverging posteriorly, whereas in A. cf. triradiatus the musculus extensor tentaculi differentiates into two separate bundles. Also, a loricariid neoformation is present called the musculus levator tentaculi.

  8. Ankle muscle strength discriminates fallers from non-fallers

    PubMed Central

    Cattagni, Thomas; Scaglioni, Gil; Laroche, Davy; Van Hoecke, Jacques; Gremeaux, Vincent; Martin, Alain

    2014-01-01

    It is well known that center of pressure (CoP) displacement correlates negatively with the maximal isometric torque (MIT) of ankle muscles. This relationship has never been investigated in elderly fallers (EF). The purpose of this study was thus to analyze the relationship between the MIT of ankle muscles and CoP displacement in upright stance in a sample aged between 18 and 90 years old that included EF. The aim was to identify a threshold of torque below which balance is compromised. The MIT of Plantar flexors (PFs) and dorsal flexors (DFs) and CoP were measured in 90 volunteers: 21 healthy young adults (YA) (age: 24.1 ± 5.0), 12 healthy middle-aged adults (MAA) (age: 50.2 ± 4.5), 27 healthy elderly non-fallers (ENF) (age: 75.5 ± 7.0) and 30 EF (age: 78.8 ± 6.7). The MIT of PF and DF were summed to obtain the overall maximal ankle muscle strength. Body weight and height were used to normalize MIT (nMIT) and CoP (nCoP), respectively. nCoP correlated negatively with nMIT. 90% of EF generated an nMIT <3.1 N·m·kg−1, whereas 85% of non-fallers generated an nMIT >3.1 N·m·kg−1. The relationship between nMIT and nCoP implies that ankle muscle weakness contributes to increased postural instability and the risk of falling. We observed that below the threshold of 3.1 N·m·kg−1, postural stability was dramatically diminished and balance was compromised. Our results suggest that measuring ankle torque could be used in routine clinical practice to identify potential fallers. PMID:25566068

  9. The efficacy of virtual reality assisted versus traditional rehabilitation intervention on individuals with functional ankle instability: a pilot randomized controlled trial.

    PubMed

    Kim, Kijong; Choi, Bongsam; Lim, Wootaek

    2018-01-31

    Virtual reality (VR) training, a virtual environment commonly generated by computer systems, may enhance the therapeutic efficacy of functional rehabilitation programmes. The aim of this study was to investigate the efficacy of a VR assisted intervention (VRAI) versus traditional rehabilitation intervention (TRI) on functional ankle instability (FAI). A single-blind randomized controlled study was conducted with 10 subjects for each group. The VRAI was conducted with the Nintendo Wii Fit Plus, whilst the TRI was conducted with a series of exercises with theraband. The muscle strength change of the two groups and the difference between pre and post interventions for each group were compared. The VRAI group had less improvement in the muscle strength of all ankle motions than did the TRI group (p > .05). The VRAI group had a greater improvement in muscle strength of plantar flexion than other motions, whilst the TRI group had an improvement in muscle strength of all ankle motions (p < .05). The effects of VR training for the condition of FAI were not comparable to conventional training. However, VR training may be added to the conventional training programme as an optional for the condition of FAI. Implications for Rehabilitation Functional ankle instability (FAI) is subjective feelings of ankle instability resulting from proprioceptive and neuromuscular deficits in which individuals may experience "giving way" condition of the ankle. Therapeutic applications of virtual reality (VR) may be comparable to traditional rehabilitation interventions (TRI) in the rehabilitation of individuals with FAI. However, there is no definitive evidence for the issue. Integrating low-cost VR into functional rehabilitation programme can provide insight into an issue of whether it can be replaced with traditional therapeutic approaches. Although, the efficacy of VR application on strengthening muscles is unable to compare to traditional strengthening programmes, it may be considered an optional treatment based on the proprioceptive improvements.

  10. A quasi-linear control theory analysis of timesharing skills

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Gottlieb, G. L.

    1977-01-01

    The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.

  11. Changes in diffusion tensor imaging (DTI) eigenvalues of skeletal muscle due to hybrid exercise training.

    PubMed

    Okamoto, Yoshikazu; Kemp, Graham J; Isobe, Tomonori; Sato, Eisuke; Hirano, Yuji; Shoda, Junichi; Minami, Manabu

    2014-12-01

    Several studies have proposed the cell membrane as the main water diffusion restricting factor in the skeletal muscle cell. We sought to establish whether a particular form of exercise training (which is likely to affect only intracellular components) could affect water diffusion. The purpose of this study is to characterise prospectively the changes in diffusion tensor imaging (DTI) eigenvalues of thigh muscle resulting from hybrid training (HYBT) in patients with non-alcoholic fatty liver disease (NAFLD). Twenty-one NAFLD patients underwent HYBT for 30 minutes per day, twice a week for 6 months. Patients were scanned using DTI of the thigh pre- and post-HYBT. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), the three eigenvalues lambda 1 (λ1), λ2, λ3, and the maximal cross sectional area (CSA) were measured in bilateral thigh muscles: knee flexors (biceps femoris (BF), semitendinosus (ST), semimembranous (SM)) and knee extensors (medial vastus (MV), intermediate vastus (IV), lateral vastus (LV), and rectus femoris (RF)), and compared pre- and post-HYBT by paired t-test. Muscle strength of extensors (P<0.01), but not flexors, increased significantly post-HYBT. For FA, ADC and eigenvalues, the overall picture was of increase. Some (P<0.05 in λ2 and P<0.01 in λ1) eigenvalues of flexors and all (λ1-λ3) eigenvalues of extensors increased significantly (P<0.01) post-HYBT. HYBT increased all 3 eigenvalues. We suggest this might be caused by enlargement of muscle intracellular space. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Functional specialization and ontogenetic scaling of limb anatomy in Alligator mississippiensis

    PubMed Central

    Allen, Vivian; Elsey, Ruth M; Jones, Nicola; Wright, Jordon; Hutchinson, John R

    2010-01-01

    Crocodylians exhibit a fascinating diversity of terrestrial gaits and limb motions that remain poorly described and are of great importance to understanding their natural history and evolution. Their musculoskeletal anatomy is pivotal to this diversity and yet only qualitative studies of muscle-tendon unit anatomy exist. The relative masses and internal architecture (fascicle lengths and physiological cross-sectional areas) of muscles of the pectoral and pelvic limbs of American alligators (Alligator mississippiensis Daudin 1801) were recorded for an ontogenetic series of wild specimens (n = 15, body masses from 0.5 to 60 kg). The data were analysed by reduced major axis regression to determine scaling relationships with body mass. Physiological cross-sectional areas and therefore muscle force-generating capacity were found to be greater in the extensor (anti-gravity) muscles of the pelvic limb than in the pectoral limb, reflecting how crocodylians differ from mammals in having greater loading of the hindlimbs than the forelimbs. Muscle masses and architecture were generally found to scale isometrically with body mass, suggesting an ontogenetic decrease in terrestrial athleticism. This concurs with the findings of previous studies showing ontogenetic decreases in limb bone length and the general scaling principle of a decline of strength : weight ratios with increasing size in animals. Exceptions to isometric scaling found included positive allometry in fascicle length for extensor musculature of both limbs, suggesting an ontogenetic increase in working range interpreted as increasing postural variability – in particular the major hip extensors – the interpretation of which is complicated by previous described ontogenetic increase of moment arms for these muscles. PMID:20148991

  13. Effect of muscle length on strength and dexterity after stroke.

    PubMed

    Ada, L; Canning, C; Dwyer, T

    2000-02-01

    The effect of muscle length on strength and dexterity after stroke was investigated. The aim was to determine if poor function at a particular muscle length could be attributed solely to differential weakness at this joint angle or whether an additional problem of differential dexterity exists. This descriptive research study measured elbow flexor and extensor strength as well as dexterity at three elbow joint angles: 30 degrees , 60 degrees and 90 degrees flexion. Dexterity was measured independently of strength. Fifteen (seven female, eight male) chronic stroke patients (mean age 67 years) who could actively flex and extend their affected elbow participated. Ten neurologically normal control subjects (mean age 67 years) acted as controls. Strength was measured as peak elbow flexor and extensor torque at three angles; and dexterity was measured as coherence for slow and fast tracking also at three angles. Dexterity was not affected by muscle length but strength was and this finding was the same for both stroke and controls. While the magnitude of the torque-angle curves was not significantly different between stroke and controls, the shape of torque-angle curves was altered after stroke so that both the elbow flexors (p < 0.05) and extensors (p < 0.05) tested weaker in the testing position where they were shortest. Since there was no differential loss of dexterity, it appears that differential loss of strength, especially in the shortened range, may explain the clinical observation of poorer function at one muscle length than another after stroke. Specific training to strengthen the muscles in these ranges is therefore of clinical importance for rehabilitation.

  14. Electrophysiological appraisal of relative segmental motoneurone pool excitability in flexor and extensor.

    PubMed Central

    Fisher, M A

    1978-01-01

    F responses recorded from flexor and extensor muscles were analysed in 18 normal subjects and in 16 patients with motor system abnormalities. The prominence of the F responses was evaluated quantitatively by determining the persistence--that is, the fraction of measurable F responses which actually occur after a series of supramaximal stimuli--and average amplitude of the F responses. In the normal resting state, the data are consistent with the hypothesis that the "central excitatory states" of motoneurones is greater in the antigravity muscles than in those muscles not stretched by gravity. This pattern was disrupted in eight of the 16 patients with motor system abnormalities caused by central nervous system lesions. These changes reflect a clinically testable aspect of the pathophysiology of certain motor system disorders. PMID:690640

  15. Relationship between isometric thigh muscle strength and minimum clinically important differences in knee function in osteoarthritis: data from the osteoarthritis initiative.

    PubMed

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2015-04-01

    To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower leg function. Isometric knee extensor and flexor strength of 4,553 Osteoarthritis Initiative participants (2,651 women and 1,902 men) was related to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function scores by linear regression. Further, groups of male and female participant strata with minimum clinically important differences (MCIDs) in WOMAC function scores (6 of 68 units) were compared across the full range of observed values and to participants without functional deficits (WOMAC score 0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Per regression equations, a 3.7% reduction in extensor strength and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and, respectively, a 3.6% and 4.8% reduction in men. For strength divided by body weight, reductions were 5.2% and 6.7%, respectively, in women and 5.8% and 6.7%, respectively, in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest nonlinear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Reductions of approximately 4% in isometric muscle strength and of 6% in strength per body weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower leg function. Copyright © 2015 by the American College of Rheumatology.

  16. Do lower-extremity joint dynamics change when stair negotiation is initiated with a self-selected comfortable gait speed?

    PubMed

    Vallabhajosula, Srikant; Yentes, Jennifer M; Momcilovic, Mira; Blanke, Daniel J; Stergiou, Nicholas

    2012-02-01

    Previous research on the biomechanics of stair negotiation has ignored the effect of the approaching speed. We examined if initiating stair ascent with a comfortable self-selected speed can affect the lower-extremity joint moments and powers as compared to initiating stair ascent directly in front of the stairs. Healthy young adults ascended a custom-built staircase instrumented with force platforms. Kinematics and kinetics data were collected simultaneously for two conditions: starting from farther away and starting in front of the stairs and analyzed at the first and second ipsilateral steps. Results showed that for the first step, participants produced greater peak knee extensor moment, peak hip extensor and flexor moments and peak hip positive power while starting from farther away. Also, for both the conditions combined, participants generated lesser peak ankle plantiflexor, greater peak knee flexor moment, lesser peak ankle negative power and greater peak hip negative power while encountering the first step. These results identify the importance of the starting position in experiments dealing with biomechanics of stair negotiation. Further, these findings have important implications for studying stair ascent characteristics of other populations such as older adults. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Electromyographic activity of the trunk extensor muscles: effect of varying hip position and lumbar posture during Roman chair exercise.

    PubMed

    Mayer, John M; Verna, Joe L; Manini, Todd M; Mooney, Vert; Graves, James E

    2002-11-01

    To evaluate the effect of hip position and lumbar posture on the surface electromyographic activity of the trunk extensors during Roman chair exercise. Descriptive, repeated measures. University-based musculoskeletal research laboratory. Twelve healthy volunteers (7 men, 5 women; age range, 18-35y) without a history of low back pain were recruited from a university setting. Not applicable. Surface electromyographic activity was recorded from the lumbar extensor, gluteal, and hamstring musculature during dynamic Roman chair exercise. For each muscle group, electromyographic activity (mV/rep) was compared among exercises with internal hip rotation and external hip rotation and among exercises by using a typical lumbar posture (nonbiphasic) and a posture that accentuated lumbar lordosis (biphasic). For the lumbar extensors, electromyographic activity during exercise was 18% greater with internal hip rotation than external hip rotation (P< or =.05) and was 25% greater with a biphasic posture than with a nonbiphasic posture (P< or =.05). For the gluteals and hamstrings, there was no difference in electromyographic activity between internal and external hip rotation or between biphasic and nonbiphasic postures (P >.05). The level of recruitment of the lumbar extensors can be modified during Roman chair exercise by altering hip position and lumbar posture. Clinicians can use these data to develop progressive exercise protocols for the lumbar extensors with a variety of resistance levels without the need for complex equipment. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation

  18. Multiple variations of the tendons of the anatomical snuffbox

    PubMed Central

    Thwin, San San; Zaini, Fazlin; Than, Myo

    2014-01-01

    INTRODUCTION Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. METHODS Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. RESULTS In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3–14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. CONCLUSION Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery. PMID:24452976

  19. Neuromuscular Alterations After Ankle Sprains: An Animal Model to Establish Causal Links After Injury.

    PubMed

    Lepley, Lindsey K; McKeon, Patrick O; Fitzpatrick, Shane G; Beckemeyer, Catherine L; Uhl, Timothy L; Butterfield, Timothy A

    2016-10-01

    The mechanisms that contribute to the development of chronic ankle instability are not understood. Investigators have developed a hypothetical model in which neuromuscular alterations that stem from damaged ankle ligaments are thought to affect periarticular and proximal muscle activity. However, the retrospective nature of these studies does not allow a causal link to be established. To assess temporal alterations in the activity of 2 periarticular muscles of the rat ankle and 2 proximal muscles of the rat hind limb after an ankle sprain. Controlled laboratory study. Laboratory. Five healthy adult male Long Evans rats (age = 16 weeks, mass = 400.0 ± 13.5 g). Indwelling fine-wire electromyography (EMG) electrodes were implanted surgically into the biceps femoris, medial gastrocnemius, vastus lateralis, and tibialis anterior muscles of the rats. We recorded baseline EMG measurements while the rats walked on a motor-driven treadmill and then induced a closed lateral ankle sprain by overextending the lateral ankle ligaments. After ankle sprain, the rats were placed on the treadmill every 24 hours for 7 days, and we recorded postsprain EMG data. Onset time of muscle activity, phase duration, sample entropy, and minimal detectable change (MDC) were assessed and compared with baseline using 2-tailed dependent t tests. Compared with baseline, delayed onset time of muscle activity was exhibited in the biceps femoris (baseline = -16.7 ± 54.0 milliseconds [ms]) on day 0 (5.2 ± 64.1 ms; t 4 = -4.655, P = .043) and tibialis anterior (baseline = 307.0 ± 64.2 ms) muscles on day 3 (362.5 ± 55.9 ms; t 4 = -5.427, P = .03) and day 6 (357.3 ± 39.6 ms; t 4 = -3.802, P = .02). Longer phase durations were observed for the vastus lateralis (baseline = 321.9 ± 92.6 ms) on day 3 (401.3 ± 101.2 ms; t 3 = -4.001, P = .03), day 4 (404.1 ± 93.0 ms; t 3 = -3.320, P = .048), and day 5 (364.6 ± 105.2 ms; t 3 = -3.963, P = .03) and for the tibialis anterior (baseline = 103.9 ± 16.4 ms) on day 4 (154.9 ± 7.8 ms; t 3 = -4.331, P = .050) and day 6 (141.9 ± 16.2 ms; t 3 = -3.441, P = .03). After sprain, greater sample entropy was found for the vastus lateralis (baseline = 0.7 ± 0.3) on day 6 (0.9 ± 0.4; t 4 = -3.481, P = .03) and day 7 (0.9 ± 0.3; t 4 = -2.637, P = .050) and for the tibialis anterior (baseline = 0.6 ± 0.4) on day 4 (0.9 ± 0.5; t 4 = -3.224, P = .03). The MDC analysis revealed increased sample entropy values for the vastus lateralis and tibialis anterior. Manually inducing an ankle sprain in a rat by overextending the lateral ankle ligaments altered the complexity of muscle-activation patterns, and the alterations exceeded the MDC of the baseline data.

  20. Kinesthetic perception based on integration of motor imagery and afferent inputs from antagonistic muscles with tendon vibration.

    PubMed

    Shibata, E; Kaneko, F

    2013-04-29

    The perceptual integration of afferent inputs from two antagonistic muscles, or the perceptual integration of afferent input and motor imagery are related to the generation of a kinesthetic sensation. However, it has not been clarified how, or indeed whether, a kinesthetic perception would be generated by motor imagery if afferent inputs from two antagonistic muscles were simultaneously induced by tendon vibration. The purpose of this study was to investigate how a kinesthetic perception would be generated by motor imagery during co-vibration of the two antagonistic muscles at the same frequency. Healthy subjects participated in this experiment. Illusory movement was evoked by tendon vibration. Next, the subjects imaged wrist flexion movement simultaneously with tendon vibration. Wrist flexor and extensor muscles were vibrated according to 4 patterns such that the difference between the two vibration frequencies was zero. After each trial, the perceived movement sensations were quantified on the basis of the velocity and direction of the ipsilateral hand-tracking movements. When the difference in frequency applied to the wrist flexor and the extensor was 0Hz, no subjects perceived movements without motor imagery. However, during motor imagery, the flexion velocity of the perceived movement was higher than the flexion velocity without motor imagery. This study clarified that the afferent inputs from the muscle spindle interact with motor imagery, to evoke a kinesthetic perception, even when the difference in frequency applied to the wrist flexor and extensor was 0Hz. Furthermore, the kinesthetic perception resulting from integrations of vibration and motor imagery increased depending on the vibration frequency to the two antagonistic muscles. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity.

    PubMed

    Chen, Hung-Ting; Chung, Yu-Chun; Chen, Yu-Jen; Ho, Sung-Yen; Wu, Huey-June

    2017-04-01

    To investigate the influence of resistance training (RT), aerobic training (AT), or combination training (CT) interventions on the body composition, muscle strength performance, and insulin-like growth factor 1 (IGF-1) of patients with sarcopenic obesity. Randomized controlled trial. Community center and research center. Sixty men and women aged 65-75 with sarcopenic obesity. Participants were randomly assigned to RT, AT, CT, and control (CON) groups. After training twice a week for 8 weeks, the participants in each group ceased training for 4 weeks before being examined for the retention effects of the training interventions. The body composition, grip strength, maximum back extensor strength, maximum knee extensor muscle strength, and blood IGF-1 concentration were measured. The skeletal muscle mass (SMM), body fat mass, appendicular SMM/weight %, and visceral fat area (VFA) of the RT, AT, and CT groups were significantly superior to those of the CON group at both week 8 and week 12. Regarding muscle strength performance, the RT group exhibited greater grip strength at weeks 8 and 12 as well as higher knee extensor performance at week 8 than that of the other groups. At week 8, the serum IGF-1 concentration of the RT group was higher than the CON group, whereas the CT group was superior to the AT and CON groups. Older adults with sarcopenic obesity who engaged in the RT, AT, and CT interventions demonstrated increased muscle mass and reduced total fat mass and VFA compared with those without training. The muscle strength performance and serum IGF-1 level in trained groups, especially in the RT group, were superior to the control group. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  2. Effect of 7-days dry immersion in combination with mechanical stimulation of foot support zones upon resistance to fatigue of knee extensors and flexors

    NASA Astrophysics Data System (ADS)

    Netreba, A. I.; Khusnutdiniva, D. R.; Vinogradova, O. L.; Kozlovskaya, I. B.

    2005-08-01

    The aim of investigation was to reveal the effect of supportlessness in combination with artificial stimulation of foot support zones on fatigue resistance of knee extensors and flexors in static and rhythmic tests. 10 volunteers were exposed to 7 days dry immersion (DI). 4 of them were subjected to mechanical stimulation of foot support zones. 7-day DI did not evoke any changes in fatigue resistance during rhythmic contractions of knee extensors and flexors in both groups. Static test revealed significant decrease of fatigue resistance of both knee flexors and extensors. In the group with stimulation of support zones unfavorable effects of immersion were minimized for knee extensors but not for flexors. Thus support withdrawal is associated with a decrease of fatigue resistance for both knee flexors and extensors only under conditions of static tension. Artificial stimulation of support zones of the foot selectively affects the posture muscles.

  3. Association of lower extremity range of motion and muscle strength with physical performance of community-dwelling older women.

    PubMed

    Jung, Hungu; Yamasaki, Masahiro

    2016-12-08

    Reduced lower extremity range of motion (ROM) and muscle strength are related to functional disability in older adults who cannot perform one or more activities of daily living (ADL) independently. The purpose of this study was to determine which factors of seven lower extremity ROMs and two muscle strengths play dominant roles in the physical performance of community-dwelling older women. Ninety-five community-dwelling older women (mean age ± SD, 70.7 ± 4.7 years; age range, 65-83 years) were enrolled in this study. Seven lower extremity ROMs (hip flexion, hip extension, knee flexion, internal and external hip rotation, ankle dorsiflexion, and ankle plantar flexion) and two muscle strengths (knee extension and flexion) were measured. Physical performance tests, including functional reach test (FRT), 5 m gait test, four square step test (FSST), timed up and go test (TUGT), and five times sit-to-stand test (FTSST) were performed. Stepwise regression models for each of the physical performance tests revealed that hip extension ROM and knee flexion strength were important explanatory variables for FRT, FSST, and FTSST. Furthermore, ankle plantar flexion ROM and knee extension strength were significant explanatory variables for the 5 m gait test and TUGT. However, ankle dorsiflexion ROM was a significant explanatory variable for FRT alone. The amount of variance on stepwise multiple regression for the five physical performance tests ranged from 25 (FSST) to 47% (TUGT). Hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs, as well as knee extension and flexion strengths may play primary roles in the physical performance of community-dwelling older women. Further studies should assess whether specific intervention programs targeting older women may achieve improvements in lower extremity ROM and muscle strength, and thereby play an important role in the prevention of dependence on daily activities and loss of physical function, particularly focusing on hip extension, ankle dorsiflexion, and ankle plantar flexion ROMs as well as knee extension and flexion strength.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricafort, Juliet

    A model was developed to determine the forces exerted by several flexor and extensor muscles of the human knee under static conditions. The following muscles were studied: the gastrocnemius, biceps femoris, semitendinosus, semimembranosus, and the set of quadricep muscles. The tibia and fibula were each modeled as rigid bodies; muscles were modeled by their functional lines of action in space. Assumptions based on previous data were used to resolve the indeterminacy.

  5. Central and peripheral fatigue in knee and elbow extensor muscles after a long-distance cross-country ski race.

    PubMed

    Boccia, G; Dardanello, D; Zoppirolli, C; Bortolan, L; Cescon, C; Schneebeli, A; Vernillo, G; Schena, F; Rainoldi, A; Pellegrini, B

    2017-09-01

    Although elbow extensors (EE) have a great role in cross-country skiing (XC) propulsion, previous studies on neuromuscular fatigue in long-distance XC have investigated only knee extensor (KE) muscles. In order to investigate the origin and effects of fatigue induced by long-distance XC race, 16 well-trained XC skiers were tested before and after a 56-km classical technique race. Maximal voluntary isometric contraction (MVC) and rate of force development (RFD) were measured for both KE and EE. Furthermore, electrically evoked double twitch during MVC and at rest were measured. MVC decreased more in KE (-13%) than in EE (-6%, P = 0.016), whereas the peak RFD decreased only in EE (-26%, P = 0.02) but not in KE. The two muscles showed similar decrease in voluntary activation (KE -5.0%, EE -4.8%, P = 0.61) and of double twitch amplitude (KE -5%, EE -6%, P = 0.44). A long-distance XC race differently affected the neuromuscular function of lower and upper limbs muscles. Specifically, although the strength loss was greater for lower limbs, the capacity to produce force in short time was more affected in the upper limbs. Nevertheless, both KE and EE showed central and peripheral fatigue, suggesting that the origins of the strength impairments were multifactorial for the two muscles. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Experience with peroneus brevis muscle flaps for reconstruction of distal leg and ankle defects

    PubMed Central

    Bajantri, Babu; Bharathi, Ravindra; Ramkumar, Sanjai; Latheef, Latheesh; Dhane, Smitha; Sabapathy, S. Raja

    2013-01-01

    Objective: Peroneus brevis is a muscle in the leg which is expendable without much functional deficit. The objective of this study was to find out its usefulness in coverage of the defects of the lower leg and ankle. Patients and Methods: A retrospective analysis of the use of 39 pedicled peroneus brevis muscle flaps used for coverage of defects of the lower leg and ankle between November 2010 and December 2012 was carried out. The flaps were proximally based for defects of the lower third of the leg in 12 patients and distally based for reconstruction of defects of the ankle in 26 patients, with one patient having flaps on both ankles. Results: Partial flap loss in critical areas was found in four patients requiring further flap cover and in non-critical areas in two patients, which were managed with a skin graft. Three of the four critical losses occurred when we used it for covering defects over the medial malleolus. There was no complete flap loss in any of the patients. Conclusion: This flap has a unique vascular pattern and fails to fit into the classification of the vasculature of muscles by Mathes and Nahai. The unusual feature is an axial vessel system running down the deep aspect of the muscle and linking the perforators from the peroneal artery and anterior tibial artery, which allows it to be raised proximally or distally on a single perforator. The flap is simple to raise and safe for the reconstruction of small-to moderate-sized skin defects of the distal third of the tibia and all parts of the ankle except the medial malleolus, which is too far from the pedicle of the distally based flap. The donor site can be closed primarily to provide a linear scar. The muscle flap thins with time to provide a good result aesthetically at the primary defect. PMID:23960305

  7. The Influence of Ambulatory Aid on Lower-Extremity Muscle Activation During Gait.

    PubMed

    Sanders, Michael; Bowden, Anton E; Baker, Spencer; Jensen, Ryan; Nichols, McKenzie; Seeley, Matthew K

    2018-05-10

    Foot and ankle injuries are common and often require a nonweight-bearing period of immobilization for the involved leg. This nonweight-bearing period usually results in muscle atrophy for the involved leg. There is a dearth of objective data describing muscle activation for different ambulatory aids that are used during the aforementioned nonweight-bearing period. To compare activation amplitudes for 4 leg muscles during (1) able-bodied gait and (2) ambulation involving 3 different ambulatory aids that can be used during the acute phase of foot and ankle injury care. Within-subject, repeated measures. University biomechanics laboratory. Sixteen able-bodied individuals (7 females and 9 males). Each participant performed able-bodied gait and ambulation using 3 different ambulatory aids (traditional axillary crutches, knee scooter, and a novel lower-leg prosthesis). Muscle activation amplitude quantified via mean surface electromyography amplitude throughout the stance phase of ambulation. Numerous statistical differences (P < .05) existed for muscle activation amplitude between the 4 observed muscles, 3 ambulatory aids, and able-bodied gait. For the involved leg, comparing the 3 ambulatory aids: (1) knee scooter ambulation resulted in the greatest vastus lateralis activation, (2) ambulation using the novel prosthesis and traditional crutches resulted in greater biceps femoris activation than knee scooter ambulation, and (3) ambulation using the novel prosthesis resulted in the greatest gastrocnemius activation (P < .05). Generally speaking, muscle activation amplitudes were most similar to able-bodied gait when subjects were ambulating using the knee scooter or novel prosthesis. Type of ambulatory aid influences muscle activation amplitude. Traditional axillary crutches appear to be less likely to mitigate muscle atrophy during the nonweighting, immobilization period that often follows foot or ankle injuries. Researchers and clinicians should consider these results when recommending ambulatory aids for foot or ankle injuries.

  8. Sensorimotor adaptations to microgravity in humans.

    PubMed

    Edgerton, V R; McCall, G E; Hodgson, J A; Gotto, J; Goulet, C; Fleischmann, K; Roy, R R

    2001-09-01

    Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.

  9. Sensorimotor adaptations to microgravity in humans

    NASA Technical Reports Server (NTRS)

    Edgerton, V. R.; McCall, G. E.; Hodgson, J. A.; Gotto, J.; Goulet, C.; Fleischmann, K.; Roy, R. R.

    2001-01-01

    Motor function is altered by microgravity, but little detail is available as to what these changes are and how changes in the individual components of the sensorimotor system affect the control of movement. Further, there is little information on whether the changes in motor performance reflect immediate or chronic adaptations to changing gravitational environments. To determine the effects of microgravity on the neural control properties of selected motor pools, four male astronauts from the NASA STS-78 mission performed motor tasks requiring the maintenance of either ankle dorsiflexor or plantarflexor torque. Torques of 10 or 50% of a maximal voluntary contraction (MVC) were requested of the subjects during 10 degrees peak-to-peak sinusoidal movements at 0.5 Hz. When 10% MVC of the plantarflexors was requested, the actual torques generated in-flight were similar to pre-flight values. Post-flight torques were higher than pre- and in-flight torques. The actual torques when 50% MVC was requested were higher in- and post-flight than pre-flight. Soleus (Sol) electromyographic (EMG) amplitudes during plantarflexion were higher in-flight than pre- or post-flight for both the 10 and 50% MVC tasks. No differences in medial gastrocnemius (MG) EMG amplitudes were observed for either the 10 or 50% MVC tasks. The EMG amplitudes of the tibialis anterior (TA), an antagonist to plantarflexion, were higher in- and post-flight than pre-flight for the 50% MVC task. During the dorsiflexion tasks, the torques generated in both the 10 and 50% MVC tasks did not differ pre-, in- and post-flight. TA EMG amplitudes were significantly higher in- than pre-flight for both the 10 or 50% MVC tasks, and remained elevated post-flight for the 50% MVC test. Both the Sol and MG EMG amplitudes were significantly higher in-flight than either pre- or post-flight for both the 10 and 50% MVC tests. These data suggest that the most consistent response to space flight was an elevation in the level of contractions of agonists and antagonists when attempting to maintain constant torques at a given level of MVC. Also, the chronic levels of EMG activity in selected ankle flexor and extensor muscles during space flight and during routine activities on Earth were recorded. Compared with pre- and post-flight values, there was a marked increase in the total EMG activity of the TA and the Sol and no change in the MG EMG activity in-flight. These data indicate that space flight, as occurs on shuttle missions, is a model of elevated activation of both flexor and extensor muscles, probably reflecting the effects of programmed work schedules in flight rather than a direct effect of microgravity.

  10. Increasing Running Step Rate Reduces Patellofemoral Joint Forces

    PubMed Central

    Lenhart, Rachel L.; Thelen, Darryl G.; Wille, Christa M.; Chumanov, Elizabeth S.; Heiderscheit, Bryan C.

    2013-01-01

    Purpose Increasing step rate has been shown to elicit changes in joint kinematics and kinetics during running, and has been suggested as a possible rehabilitation strategy for runners with patellofemoral pain. The purpose of this study was to determine how altering step rate affects internal muscle forces and patellofemoral joint loads, and then to determine what kinematic and kinetic factors best predict changes in joint loading. Methods We recorded whole body kinematics of 30 healthy adults running on an instrumented treadmill at three step rate conditions (90%, 100%, and 110% of preferred step rate). We then used a 3D lower extremity musculoskeletal model to estimate muscle, patellar tendon, and patellofemoral joint forces throughout the running gait cycles. Additionally, linear regression analysis allowed us to ascertain the relative influence of limb posture and external loads on patellofemoral joint force. Results Increasing step rate to 110% of preferred reduced peak patellofemoral joint force by 14%. Peak muscle forces were also altered as a result of the increased step rate with hip, knee and ankle extensor forces, and hip abductor forces all reduced in mid-stance. Compared to the 90% step rate condition, there was a concomitant increase in peak rectus femoris and hamstring loads during early and late swing, respectively, at higher step rates. Peak stance phase knee flexion decreased with increasing step rate, and was found to be the most important predictor of the reduction in patellofemoral joint loading. Conclusion Increasing step rate is an effective strategy to reduce patellofemoral joint forces and could be effective in modulating biomechanical factors that can contribute to patellofemoral pain. PMID:23917470

  11. Lower extremity function during gait in participants with first time acute lateral ankle sprain compared to controls.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2015-02-01

    Laboratory analyses of chronic ankle instability populations during gait have elucidated a number of anomalous movement patterns. No current research exists analysing these movement patterns in a group in the acute phase of lateral ankle sprain (LAS) injury. It is possible that participants with an acute LAS display movement patterns continuous with their chronically impaired counterparts. Sixty eight participants with acute LAS and nineteen non-injured participants completed five gait trials. 3D lower extremity temporal kinematic and kinetic data were collected from 200 ms pre- to 200 ms post-heel strike (period 1) and from 200 ms pre- to 200 ms post-toe off (period 2). During period 1, the LAS group displayed increased knee flexion with increased net extensor pattern at the knee joint, increased ankle inversion with a greater inversion moment, and reduced ankle plantar flexion, compared to the non-injured control group. During period 2, the LAS group displayed decreased hip extension with a decrease in the flexor moment at the hip, and decreased ankle plantar flexion with a decrease in the net plantar flexion moment, compared to the non-injured control group. These results indicate that participants with acute LAS display coordination strategies which may play a role in the onset of chronicity or recovery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Muscle power is an independent determinant of pain and quality of life in knee osteoarthritis

    USDA-ARS?s Scientific Manuscript database

    OBJECTIVE: This study examined the relationships between leg muscle strength, power, and perceived disease severity in subjects with knee osteoarthritis (OA) in order to determine whether dynamic leg extensor muscle power would be associated with pain and quality of life in knee OA. METHODS: Baseli...

  13. Electrophysiological assessment of piano players' back extensor muscles on a regular piano bench and chair with back rest.

    PubMed

    Honarmand, Kavan; Minaskanian, Rafael; Maboudi, Seyed Ebrahim; Oskouei, Ali E

    2018-01-01

    [Purpose] Sitting position is the dominant position for a professional pianist. There are many static and dynamic forces which affect musculoskeletal system during sitting. In prolonged sitting, these forces are harmful. The aim of this study was to compare pianists' back extensor muscles activity during playing piano while sitting on a regular piano bench and a chair with back rest. [Subjects and Methods] Ten professional piano players (mean age 25.4 ± 5.28, 60% male, 40% female) performed similar tasks for 5 hours in two sessions: one session sitting on a regular piano bench and the other sitting on a chair with back rest. In each session, muscular activity was assessed in 3 ways: 1) recording surface electromyography of the back-extensor muscles at the beginning and end of each session, 2) isometric back extension test, and 3) musculoskeletal discomfort questionnaire. [Results] There were significantly lesser muscular activity, more ability to perform isometric back extension and better personal comfort while sitting on a chair with back rest. [Conclusion] Decreased muscular activity and perhaps fatigue during prolonged piano playing on a chair with back rest may reduce acquired musculoskeletal disorders amongst professional pianists.

  14. Electrophysiological assessment of piano players’ back extensor muscles on a regular piano bench and chair with back rest

    PubMed Central

    Honarmand, Kavan; Minaskanian, Rafael; Maboudi, Seyed Ebrahim; Oskouei, Ali E.

    2018-01-01

    [Purpose] Sitting position is the dominant position for a professional pianist. There are many static and dynamic forces which affect musculoskeletal system during sitting. In prolonged sitting, these forces are harmful. The aim of this study was to compare pianists’ back extensor muscles activity during playing piano while sitting on a regular piano bench and a chair with back rest. [Subjects and Methods] Ten professional piano players (mean age 25.4 ± 5.28, 60% male, 40% female) performed similar tasks for 5 hours in two sessions: one session sitting on a regular piano bench and the other sitting on a chair with back rest. In each session, muscular activity was assessed in 3 ways: 1) recording surface electromyography of the back-extensor muscles at the beginning and end of each session, 2) isometric back extension test, and 3) musculoskeletal discomfort questionnaire. [Results] There were significantly lesser muscular activity, more ability to perform isometric back extension and better personal comfort while sitting on a chair with back rest. [Conclusion] Decreased muscular activity and perhaps fatigue during prolonged piano playing on a chair with back rest may reduce acquired musculoskeletal disorders amongst professional pianists. PMID:29410569

  15. Comparison of physical fitness between rice farmers with and without chronic low back pain: a cross-sectional study.

    PubMed

    Taechasubamorn, Panada; Nopkesorn, Tawesak; Pannarunothai, Supasit

    2010-12-01

    To compare physical fitness between rice farmers with chronic low back pain (CLBP) and a healthy control group. Sixty-eight rice farmers with CLBP were matched according to age and sex with healthy farmers. All subjects underwent nine physical fitness tests for body composition, lifting capacity, static back extensor endurance, leg strength, static abdominal endurance, handgrip strength, hamstring flexibility, posterior leg and back muscles flexibility and abdominal flexibility. There was no significant difference between CLBP and healthy groups for all tests, except the static back extensor endurance. The back extensor endurance times of the CLBP group was significantly lower than that of the control group (p = 0.002). Static back extensor endurance is the deficient physical fitness in CLBP rice farmers. Back extensor endurance training should be emphasized in both prevention and rehabilitation programs.

  16. Gait Improvements After Peroneal or Tibial Nerve Transfer in Patients with Foot Drop: A Retrospective Study

    PubMed Central

    Somasundaram, Chandra

    2017-01-01

    Background: Injury to the common peroneal nerve disrupts the motor control pathway to ankle dorsiflexors and evertors, as well as toe extensors, resulting in pathological gait and foot drop. Direct external compression on the fibular head is the most frequent cause of peroneal nerve impairment and has poor prognosis. Methods and Patients: Here, we report the surgical outcome of 21 patients with foot drop (9 males and 12 females) who underwent nerve transfer procedure of either the superficial peroneal nerve or the tibial nerve fascicles to the motor branch of the tibialis anterior and to the deep peroneal nerve. They had at least 6 months postoperative follow-up (mean = 17; range, 6-32 months). Results: Among 21 patients who had no ankle dorsiflexion (BMRC 0/5) preoperatively, 9 patients had successful restoration of ankle dorsiflexion (BMRC 4 to 4+/5), 7 patients had BMRC 2 to 3+/5, and 4 patients had no or poor restoration of dorsiflexion (BMRC 0 to 1+/5) but achieved good ankle eversion (BMRC 3 to 4+/5). Overall statistically significant clinical improvement of ankle dorsiflexion and eversion from preoperative BMRC grade 2.6 ± 0.5 to postoperative BMRC grade 3.6 ± 0.7 (P = .0000004) was achieved. Conclusion: Overall statistically significant clinical improvement of ankle dorsiflexion and eversion was achieved in 80% of our study patients. Most of these patients gained antigravity and were able to walk with minimal steppage gait. In the other 4 patients (20%), there was good improvement in ankle eversion but poor or no ankle dorsiflexion. PMID:29018508

  17. Gait Improvements After Peroneal or Tibial Nerve Transfer in Patients with Foot Drop: A Retrospective Study.

    PubMed

    Nath, Rahul K; Somasundaram, Chandra

    2017-01-01

    Background: Injury to the common peroneal nerve disrupts the motor control pathway to ankle dorsiflexors and evertors, as well as toe extensors, resulting in pathological gait and foot drop. Direct external compression on the fibular head is the most frequent cause of peroneal nerve impairment and has poor prognosis. Methods and Patients: Here, we report the surgical outcome of 21 patients with foot drop (9 males and 12 females) who underwent nerve transfer procedure of either the superficial peroneal nerve or the tibial nerve fascicles to the motor branch of the tibialis anterior and to the deep peroneal nerve. They had at least 6 months postoperative follow-up (mean = 17; range, 6-32 months). Results: Among 21 patients who had no ankle dorsiflexion (BMRC 0/5) preoperatively, 9 patients had successful restoration of ankle dorsiflexion (BMRC 4 to 4+/5), 7 patients had BMRC 2 to 3+/5, and 4 patients had no or poor restoration of dorsiflexion (BMRC 0 to 1+/5) but achieved good ankle eversion (BMRC 3 to 4+/5). Overall statistically significant clinical improvement of ankle dorsiflexion and eversion from preoperative BMRC grade 2.6 ± 0.5 to postoperative BMRC grade 3.6 ± 0.7 ( P = .0000004) was achieved. Conclusion: Overall statistically significant clinical improvement of ankle dorsiflexion and eversion was achieved in 80% of our study patients. Most of these patients gained antigravity and were able to walk with minimal steppage gait. In the other 4 patients (20%), there was good improvement in ankle eversion but poor or no ankle dorsiflexion.

  18. Characterisation of myosin heavy chain gene variants in the fast and slow muscle fibres of gammarid amphipods.

    PubMed

    Whiteley, N M; Magnay, J L; McCleary, S J; Nia, S Khazraee; El Haj, A J; Rock, J

    2010-10-01

    Recent molecular work has revealed a large diversity of myosin heavy chain (MyHC) gene variants in the abdominal musculature of gammarid amphipods. An unusual truncated MyHC transcript from the loop 1 region (Variant A(3)) was consistently observed in multiple species and populations. The current study aimed to determine whether this MyHC variant is specific to a particular muscle fibre type, as a change in net charge to the loop 1 region of Variant A(3) could be functionally significant. The localisation of different fibre types within the abdominal musculature of several gammarid species revealed that the deep flexor and extensor muscles are fast-twitch muscle fibres. The dorsal superficial muscles were identified as slow fibres and the muscles extrinsic to the pleopods were identified as intermediate fibres. Amplification of loop 1 region mRNA from isolated superficial extensor and deep flexor muscles, and subsequent liquid chromatography and sequence analysis revealed that Variant A(3) was the primary MyHC variant in slow muscles, and the conserved A(1) sequence was the primary variant in fast muscles. The specific role of Variant A(3) in the slow muscles remains to be investigated. 2010 Elsevier Inc. All rights reserved.

  19. A comparison of muscle activity in using touchscreen smartphone among young people with and without chronic neck-shoulder pain.

    PubMed

    Xie, Yanfei; Szeto, Grace P Y; Dai, Jie; Madeleine, Pascal

    2016-01-01

    This study aimed to examine differences in muscle activity between young people with and without neck-shoulder pain (n = 20 in each group), when they performed texting on a smartphone. Texting was compared between using both hands ('bilateral texting') and with only one hand ('unilateral texting'). Texting tasks were also compared with computer typing. Surface electromyography from three proximal postural muscles and four distal hand/thumb muscles on the right side was recorded. Compared with healthy controls, young people with neck-shoulder pain showed altered motor control consisting of higher muscle activity in the cervical erector spinae and upper trapezius when performing texting and typing tasks. Generally, unilateral texting was associated with higher muscle loading compared with bilateral texting especially in the forearm muscles. Compared with computer typing, smartphone texting was associated with higher activity in neck extensor and thumb muscles but lower activity in upper and lower trapezius as well as wrist extensors. This study demonstrated that symptomatic individuals had increased muscle activity in the neck–shoulder region when texting on a smartphone. Contemporary ergonomic guidelines should include advice on how to interact with handheld electronic devices to achieve a relaxed posture and reduced muscle load in order to reduce the risk of musculoskeletal disorders.

  20. A Gender-Based Kinematic and Kinetic Analysis of the Snatch Lift In Elite Weightlifters in 69-Kg Category

    PubMed Central

    Harbili, Erbil

    2012-01-01

    The objective of this study was to compare the kinematic and kinetic differences in snatch performances of elite 69-kg men and women weightlifters, the only category common to both genders. The heaviest lifts performed by 9 men and 9 women weightlifters competing in 69-kg weight class in Group A in the 2010 World Weightlifting Championship were analyzed. The snatch lifts were recorded using 2 cameras (PAL). Points on the barbell and body were manually digitized by using Ariel Performance Analysis System. The results showed that maximal extension angle of the ankle and knee during the first pull, the knee angle at the end of the transition phase, and maximal extension angle of the knee in the second pull were significantly greater in men (p < 0.05). The angular velocity of the hip was significantly greater in men during the first pull (p < 0.05). During the second pull, women showed significantly greater maximal angular velocity at the hip and ankle joints (p < 0.05). Moreover, the maximal vertical linear velocity of the barbell was significantly greater in women (p < 0.05). The absolute mechanical work and power output in the first pull and power output in the second pull were significantly greater in men (p < 0.05). However, the relative mechanical work was significantly greater in women during the second pull (p < 0.05). The results revealed that in 69-kg weight class, women were less efficient than men in the first pull, which is strength oriented, whereas they were as efficient as men in the second pull, which is more power oriented. Key points Women weightlifters should do assistant exercises to strengthen their ankle flexor and knee extensor muscles in order to increase their maximal strength in the first pull. Women weightlifters should be able to execute a deeper and faster knee flexion in the transition phase in order to obtain a greater explosive strength during the second pull. PMID:24149133

  1. Different ankle muscle coordination patterns and co-activation during quiet stance between young adults and seniors do not change after a bout of high intensity training.

    PubMed

    Donath, Lars; Kurz, Eduard; Roth, Ralf; Zahner, Lukas; Faude, Oliver

    2015-03-04

    Available evidence suggests that young adults and seniors use different strategies to adjust for increasing body sway during quiet standing. Altered antagonist muscle co-activation and different ankle muscle coordination patterns may account for this finding. Consequently, we aimed at addressing whether aging leads to changes in neuromuscular coordination patterns as well as co-activation during quiet stance. We additionally investigated whether a bout of high intensity interval training additionally alters these patterns. Twenty healthy seniors (age: 70 ± 4 y) and twenty young adults (age: 27 ± 3 y) were enrolled in the present study. In between the testing procedures, four consecutive high-intensity intervals of 4 min duration at a target exercise intensity of 90 to 95% HRmax were completed on a treadmill. The total center of pressure (COP) path length displacement served as standing balance performance outcome. In order to assess ankle muscle coordination patterns, amplitude ratios (AR) were calculated for each muscle (e.g. tibialis anterior (TA) [%] = (TA × 100)/(gastrocnemius medialis (GM) + soleus (SOL) + peroneus longus (PL) + TA). The co-activation was calculated for the SOL and TA muscles computing the co-activation index (CAI = 2 × TA/TA + SOL). Seniors showed an inverted ankle muscle coordination pattern during single limb stance with eyes open (SLEO), compared to young adults (rest: GM, S: 15 ± 8% vs Y: 24 ± 9%; p = 0.03; SOL, S: 27 ± 14% vs Y: 37 ± 18%; p = 0.009; TA, S: 31 ± 13% vs Y: 13 ± 7%; p = 0.003). These patterns did not change after a high-intensity training session. A moderate correlation between amplitude ratios of the TA-contribution and postural sway was observed for seniors during SLEO (r = 0.61). Ankle co-activation was twofold elevated in seniors compared to young adults during SLEO (p < 0.001). These findings were also not affected by high intensity training. Increased ankle co-activation in the anterior-posterior plane and inverted ankle muscle coordination pattern merely occurred during single-leg stance. Seniors with decreased postural control showed higher TA contributions during SLEO. These neuromuscular changes are not affected by acute intermittent high intensity aerobic exercise.

  2. Vibration Therapy Is No More Effective Than the Standard Practice of Massage and Stretching for Promoting Recovery From Muscle Damage After Eccentric Exercise.

    PubMed

    Fuller, Joel T; Thomson, Rebecca L; Howe, Peter R C; Buckley, Jonathan D

    2015-07-01

    The purpose of this study was to determine if vibration therapy is more effective than the standard treatment of stretching and massage for improving recovery of muscle strength and reducing muscle soreness after muscle damage induced by eccentric exercise. A randomized, single-blinded parallel intervention trial design was used. Research laboratory. Fifty untrained men aged 18 to 30 years completed the study. Participants performed 100 maximal eccentric muscle actions (ECCmax) of the right knee extensor muscles. For the next 7 days, 25 participants applied cycloidal vibration therapy to the knee extensors twice daily and 25 participants performed stretching and sports massage (SSM) twice daily. Changes in markers of muscle damage [peak isometric torque (PIT), serum creatine kinase (CK), and serum myoglobin (Mb)], muscle soreness (visual analog scale), and inflammation [serum C-reactive protein (CRP)] were assessed. After ECCmax, there was no difference in recovery of PIT and muscle soreness or serum CK, Mb, and CRP levels between vibration and SSM groups (P > 0.28). Cycloidal vibration therapy is no more effective than the standard practice of stretching and massage to promote muscle recovery after the performance of muscle-damaging exercise. Prescription of vibration therapy after maximal exercise involving eccentric muscle damage did not alleviate signs and symptoms of muscle damage faster than the standard prescription of stretching and massage.

  3. Effects of knee and ankle muscle fatigue on postural control in the unipedal stance.

    PubMed

    Bizid, Riadh; Margnes, Eric; François, Yrieix; Jully, Jean Louis; Gonzalez, Gerard; Dupui, Philippe; Paillard, Thierry

    2009-06-01

    The aim of this study was to compare the effects of acute muscle fatigue of the ankle and knee musculature on postural control by immediate measures after performing fatiguing tasks (POST condition). One group of subjects (n = 8) performed a fatiguing task by voluntary contractions of the triceps surae (group TRI) and the other (n = 9) performed a fatiguing task by voluntary contractions of the quadriceps femoris (group QUA). Each muscle group was exercised until the loss of maximal voluntary contraction torque reached 50% (isokinetic dynamometer). Posture was assessed by measuring the centre of foot pressure (COP) with a force platform during a test of unipedal quiet standing posture with eyes closed. Initially (in PRE condition), the mean COP velocity was not significantly different between group TRI and group QUA. In POST condition, the mean COP velocity increased more in group QUA than in group TRI. The postural control was more impaired by knee muscle fatigue than by ankle muscle fatigue.

  4. Flexor and extensor muscle tone evaluated using the quantitative pendulum test in stroke and parkinsonian patients.

    PubMed

    Huang, Han-Wei; Ju, Ming-Shaung; Lin, Chou-Ching K

    2016-05-01

    The aim of this study was to evaluate the flexor and extensor muscle tone of the upper limbs in patients with spasticity or rigidity and to investigate the difference in hypertonia between spasticity and rigidity. The two experimental groups consisted of stroke patients and parkinsonian patients. The control group consisted of age and sex-matched normal subjects. Quantitative upper limb pendulum tests starting from both flexed and extended joint positions were conducted. System identification with a simple linear model was performed and model parameters were derived. The differences between the three groups and two starting positions were investigated by these model parameters and tested by two-way analysis of variance. In total, 57 subjects were recruited, including 22 controls, 14 stroke patients and 21 parkinsonian patients. While stiffness coefficient showed no difference among groups, the number of swings, relaxation index and damping coefficient showed changes suggesting significant hypertonia in the two patient groups. There was no difference between these two patient groups. The test starting from the extended position constantly manifested higher muscle tone in all three groups. In conclusion, the hypertonia of parkinsonian and stroke patients could not be differentiated by the modified pendulum test; the elbow extensors showed a higher muscle tone in both control and patient groups; and hypertonia of both parkinsonian and stroke patients is velocity dependent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Evaluation of joint findings with gait analysis in children with hemophilia.

    PubMed

    Cayir, Atilla; Yavuzer, Gunes; Sayli, Revide Tülin; Gurcay, Eda; Culha, Vildan; Bozkurt, Murat

    2014-01-01

    Hemophilic arthropathy due to recurrent joint bleeding leads to physical, psychological and socioeconomic problems in children with hemophilia and reduces their quality of life. The purpose of this study was to evaluate joint damage through various parameters and to determine functional deterioration in the musculoskeletal system during walking using kinetic and kinematic gait analysis. Physical examination and kinetic and kinematic gait analysis findings of 19 hemophilic patients aged 7-20 years were compared with those of age, sex and leg length matched controls. Stride time was longer in the hemophilia group (p=0.001) compared to the age matched healthy control group, while hip, knee and ankle joint rotation angles were more limited (p=0.001, p=0.035 and p=0.001, respectively). In the hemophilia group, the extensor moment of the knee joint in the stance phase was less than that in the control group (p=0.001). Stride time was longer in the severe hemophilia group compared to the mild-moderate hemophilia and control groups (p=0.011 and p=0.001, respectively). Rotation angle of the ankle was wider in the control group compared to the other two groups (p=0.001 for both). Rotation angle of the ankle joint was narrower in the severe hemophilia group compared to the others (p=0.001 for each). Extensor moment of the knee joint was greater in the control group compared to the other two groups (p=0.003 and p=0.001, respectively). Walking velocity was higher in the control group compared to the severe hemophilia group. Kinetic and kinematic gait analysis has the sensitivity to detect minimal changes in biomechanical parameters. Gait analysis can be used as a reliable method to detect early joint damage.

  6. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry

    PubMed Central

    Chaves, Daniela F. S.; Carvalho, Paulo C.; Lima, Diogo B.; Nicastro, Humberto; Lorenzetti, Fábio M.; Filho, Mário S.; Hirabara, Sandro M.; Alves, Paulo H. M.; Moresco, James J.; Yates, John R.; Lancha, Antonio H.

    2013-01-01

    Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism, leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. Briefly, we employed tandem mass tags (TMT) to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related, involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers, and most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence (GAS), zero beta-globin, and prolargin. PMID:24001182

  7. Comparative proteomic analysis of the aging soleus and extensor digitorum longus rat muscles using TMT labeling and mass spectrometry.

    PubMed

    Chaves, Daniela F S; Carvalho, Paulo C; Lima, Diogo B; Nicastro, Humberto; Lorenzeti, Fábio M; Siqueira-Filho, Mário; Hirabara, Sandro M; Alves, Paulo H M; Moresco, James J; Yates, John R; Lancha, Antonio H

    2013-10-04

    Sarcopenia describes an age-related decline in skeletal muscle mass, strength, and function that ultimately impairs metabolism and leads to poor balance, frequent falling, limited mobility, and a reduction in quality of life. Here we investigate the pathogenesis of sarcopenia through a proteomic shotgun approach. In brief, we employed tandem mass tags to quantitate and compare the protein profiles obtained from young versus old rat slow-twitch type of muscle (soleus) and a fast-twitch type of muscle (extensor digitorum longus, EDL). Our results disclose 3452 and 1848 proteins identified from soleus and EDL muscles samples, of which 78 and 174 were found to be differentially expressed, respectively. In general, most of the proteins were structural related and involved in energy metabolism, oxidative stress, detoxification, or transport. Aging affected soleus and EDL muscles differently, and several proteins were regulated in opposite ways. For example, pyruvate kinase had its expression and activity different in both soleus and EDL muscles. We were able to verify with existing literature many of our differentially expressed proteins as candidate aging biomarkers and, most importantly, disclose several new candidate biomarkers such as the glioblastoma amplified sequence, zero β-globin, and prolargin.

  8. Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Yoshinaga, T.; Nomura, T.; Kawano, F.; Ishihara, A.; Nonaka, I.; Roy, R. R.; Edgerton, V. R.

    2002-01-01

    The effects of gravitational unloading with or without intact neural activity and/or tension development on myosin heavy chain (MHC) composition, cross-sectional area (CSA), number of myonuclei, and myonuclear domain (cytoplasmic volume per myonucleus ratio) in single fibers of both slow and fast muscles of rat hindlimbs are reviewed briefly. The atrophic response to unloading is generally graded as follows: slow extensors > fast extensors > fast flexors. Reduction of CSA is usually greater in the most predominant fiber type of that muscle. The percentage of fibers expressing fast MHC isoforms increases in unloaded slow but not fast muscles. Myonuclear number per mm of fiber length and myonuclear domain is decreased in the fibers of the unloaded predominantly slow soleus muscle, but not in the predominantly fast plantaris. Decreases in myonuclear number and domain, however, are observed in plantaris fibers when tenotomy, denervation, or both are combined with hindlimb unloading. All of these results are consistent with the view that a major factor for fiber atrophy is an inhibition or reduction of loading of the hindlimbs. These data also indicate that predominantly slow muscles are more responsive to unloading than predominantly fast muscles. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  9. Kicking modality during erratic-dynamic and static condition effects the muscular co-activation of attacker.

    PubMed

    Kim, Tae-Whan; Lee, Sang-Cheol; Kil, Se-Kee; Kang, Sung-Chul; Lim, Young-Tae; Kim, Ki-Tae; Panday, Siddhartha Bikram

    2017-05-01

    The purpose of the study was to investigate the effect of different kicking modality, i.e., erratic-dynamic target (EDT) versus static target (ST) on the performance of the roundhouse kick in two groups of taekwondo athletes of different skill level. Three-dimensional analysis and surface electromyography (SEMG) analysis were performed on 12 (Group A: six sub-elite, Group B: six elite) athletes to investigate muscle co-activation pattern under two conditions, i.e., EDT versus ST. In the results, the muscle recruitment ratio of the agonistic muscles was higher for Group A, whereas Group B had higher recruitment ratio for antagonist muscles. Overall, the co-activation index (CI) of hip joints appeared higher in the extensors for Group A, whereas higher CI was observed in flexor muscles for Group B with comparatively higher CI during EDT condition than ST condition. Higher value of CI was observed in flexor muscles of the knee joints among Group A during EDT conditions, in contrast, higher CI in the extensor muscles was observed among Group B during ST conditions. In conclusion, the study confirmed that erratic-dynamic movements of target could change the movement coordination pattern to maintain the joint stability of participants.

  10. The association of visually-assessed quality of movement during jump-landing with ankle dorsiflexion range-of-motion and hip abductor muscle strength among healthy female athletes.

    PubMed

    Rabin, Alon; Einstein, Ofira; Kozol, Zvi

    2018-05-01

    To explore the association between ankle dorsiflexion (DF) range of motion (ROM), and hip abductor muscle strength, to visually-assessed quality of movement during jump-landing. Cross-sectional. Gymnasium of participating teams. 37 female volleyball players. Quality of movement in the frontal-plane, sagittal-plane, and overall (both planes) was visually rated as "good/moderate" or "poor". Weight-bearing Ankle DF ROM and hip abductor muscle strength were compared between participants with differing quality of movement. Weight-bearing DF ROM on both sides was decreased among participants with "poor" sagittal-plane quality of movement (dominant side: 50.8° versus 43.6°, P = .02; non-dominant side: 54.6° versus 45.9°, P = .01), as well as among participants with an overall "poor" quality of movement (dominant side: 51.8° versus 44.0°, P < .01; non-dominant side: 56.5° versus 45.1°, P < .01). Weight-bearing ankle DF on the non-dominant side was decreased among participants with a "poor" frontal-plane quality of movement (53.9° versus 46.0°, P = .02). No differences in hip abductor muscle strength were noted between participants with differing quality of movement. Visual assessment of jump-landing can detect differences in quality of movement that are associated with ankle DF ROM. Clinicians observing a poor quality of movement may wish to assess ankle DF ROM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Persistent cauda equina syndrome after caudal epidural injection under severe spinal stenosis: a case report

    PubMed Central

    Seo, Young Tak; Kong, Hyun Ho; Lee, Goo Joo; Bang, Heui Je

    2017-01-01

    Caudal epidural injection (CEI) is one of the most common treatments for low-back pain with sciatica. CEI rarely leads to neurologic complications. We report a case of persistent cauda equina syndrome after CEI. A 44-year-old male patient with severe L4 and L5 spinal ste-nosis underwent CEI for low-back pain and sciatica. The CEI solution consisted of bupivacaine, hyaluronidase, triamcinolone acetonide, and normal saline. He experienced motor weakness and sensory loss in both lower extremities and neurogenic bladder for more than 1 year after the procedure. His ankle dorsiflexors, big-toe extensors, and ankle plantar flexors on both sides were checked and categorized as motor-power Medical Research Council grade 0. His bilateral ankle-jerk reflection was absent. An electrophysiological study showed lumbosacral polyradiculopathy affecting both sides of the L5 and S1 nerve roots. A urodynamic study revealed hypoactive neurogenic bladder affecting both sacral roots. PMID:28652808

  12. Persistent cauda equina syndrome after caudal epidural injection under severe spinal stenosis: a case report.

    PubMed

    Seo, Young Tak; Kong, Hyun Ho; Lee, Goo Joo; Bang, Heui Je

    2017-01-01

    Caudal epidural injection (CEI) is one of the most common treatments for low-back pain with sciatica. CEI rarely leads to neurologic complications. We report a case of persistent cauda equina syndrome after CEI. A 44-year-old male patient with severe L4 and L5 spinal ste-nosis underwent CEI for low-back pain and sciatica. The CEI solution consisted of bupivacaine, hyaluronidase, triamcinolone acetonide, and normal saline. He experienced motor weakness and sensory loss in both lower extremities and neurogenic bladder for more than 1 year after the procedure. His ankle dorsiflexors, big-toe extensors, and ankle plantar flexors on both sides were checked and categorized as motor-power Medical Research Council grade 0. His bilateral ankle-jerk reflection was absent. An electrophysiological study showed lumbosacral polyradiculopathy affecting both sides of the L5 and S1 nerve roots. A urodynamic study revealed hypoactive neurogenic bladder affecting both sacral roots.

  13. Predicting the safe load on backpacker's arm using Lagrange multipliers method

    NASA Astrophysics Data System (ADS)

    Abdalla, Faisal Saleh; Rambely, Azmin Sham

    2014-09-01

    In this study, a technique has been suggested to reduce a backpack load by transmitting determined loads to the children arm. The purpose of this paper is to estimate school children arm muscles while load carriage as well as to determine the safe load can be carried at wrist while walking with backpack. A mathematical model, as three DOFs model, was investigated in the sagittal plane and Lagrange multipliers method (LMM) was utilized to minimize a quadratic objective function of muscle forces. The muscle forces were minimized with three different load conditions which are termed as 0-L=0 N, 1-L=21.95 N, and 2-L=43.9 N. The investigated muscles were estimated and compared to their maximum forces throughout the load conditions. Flexor and extensor muscles were estimated and the results showed that flexor muscles were active while extensor muscles showed inactivity. The estimated muscle forces were didn't exceed their maximum forces with 0-L and 1-L conditions whereas biceps and FCR muscles exceeded their maximum forces with 2-L condition. Consequently, 1-L condition is quiet safe to be carried by hand whereas 2-L condition is not. Thus to reduce the load in the backpack the transmitted load shouldn't exceed 1-L condition.

  14. Pre/Post Data Analysis - Simple or Is It?

    NASA Technical Reports Server (NTRS)

    Feiveson, Al; Fiedler, James; Ploutz-Snyder, Robert

    2011-01-01

    This slide presentation reviews some of the problems of data analysis in analyzing pre and post data. Using as an example, ankle extensor strength (AES) experiments, to measure bone density loss during bed rest, the presentation discusses several questions: (1) How should we describe change? (2) Common analysis methods for comparing post to pre results. (3) What do we mean by "% change"? and (4) What are we testing when we compare % changes?

  15. Correlation between muscle structure and filter characteristics of the muscle-joint system in three orthopteran insect species

    PubMed

    BÄSsler; BÜSchges; Meditz; BÄSsler

    1996-01-01

    In orthopteran insects, neural networks for joint control exhibit different characteristics due to behavioural specializations. We investigated whether these differences are generated purely by the neuronal networks, or whether characteristics of the muscles or joint architecture (muscle­joint system) are also involved in these behavioural specializations. We compared the properties of the muscle system moving the femur­tibia joint of the middle and hindleg of three species, Carausius morosus, Cuniculina impigra and Locusta migratoria. Four aspects were analysed for the tibial extensor muscle: (i) the frequency-dependence of motoneuronal activity in response to sinusoidal stimulation of the femoral chordotonal organ (fCO), (ii) the muscle structure, (iii) the innervation pattern of the muscle and (iv) the histochemical properties of the muscle fibres. These aspects were compared with the filter characteristics of the open-loop femur­tibia control system and of the muscle­joint system involved. Whereas in both phasmid species (Carausius morosus and Cuniculina impigra) the motoneuronal activity steadily increases with sinusoidal stimulation of the fCO in the frequency range 0.01­5 Hz, in Locusta migratoria there is a decrease in motoneuronal activity between 0.01 and 0.3 Hz. The muscle structure is basically similar in all three species, as the number of singly innervated muscle fibres (supplied by the fast extensor tibiae motor neurone, FETi) decreases from proximal to distal. The number of triply innervated fibres supplied by the FETi, the slow extensor tibiae (SETi) and the common inhibitor 1 (CI1) is maximal in the middle of the muscle, and the number of dually innervated fibres (supplied by SETi, CI1) increases from proximal to distal. Differences between the locust and the two phasmid species exist in the distal portion of the muscle. The phasmid extensor tibiae muscle contains a morphologically distinct bundle of muscle fibres, not present in the locust, which is mostly dually innervated and which is larger in Cuniculina impigra. Similar results were obtained for the histochemical characterisation of the muscle fibres as revealed from their staining for myofibrillar ATPase activity. The number of histochemically identified fast fibres decreased from proximal to distal, while the number of slow fibres increased. In Carausius morosus and Locusta migratoria, the percentage of slow fibres increased by up to 60­70 % at the distal end, while this increase was to almost 100 % in Cuniculina impigra. Apparently, the larger this distal region and the higher the percentage of slow, dually innervated fibres in it, the lower is the upper corner frequency (the stimulus frequency at which the joint control system produces a movement with 70 % of its maximal response amplitude) of the muscle­joint system. In summary, it appears that the upper corner frequency of the open-loop system in Locusta migratoria (<0.05 Hz) results at least in part from properties of the neuronal joint control network, but in Carausius morosus (0.5­1.0 Hz) and Cuniculina impigra (0.1­0.2 Hz) it results from the upper corner frequency of the muscle­joint system.

  16. Spinal mobility and trunk muscle strength in elite hockey players.

    PubMed

    Lindgren, S; Twomey, L

    1988-01-01

    Elite hockey players of both sexes from the Australian Institute of Sport were assessed for lumbar spine mobility, trunk flexion and back extensor muscle strength, hamstring flexibility and postural characteristics over a two year period. All the athletes were more mobile in rotation than the 'normal' West Australian population, and demonstrated flexible hamstrings and powerful back extensor muscles; trunk flexion was less strong initially, but improved after intervention in the form of a specific exercise programme, over the measurement period. A questionnaire disclosed that low back pain is a common complaint of hockey players, but rarely required intensive physical and medical treatment. The term 'hockey player's back' has been coined in recognition of the long flat thoracolumbar spine frequently noted in these subjects. Copyright © 1988 Australian Physiotherapy Association. Published by . All rights reserved.

  17. Changes in biomechanics and muscle activation in injured ballet dancers during a jump-land task with turnout (Sissonne Fermée).

    PubMed

    Lee, Hsing-Hsan; Lin, Chia-Wei; Wu, Hong-Wen; Wu, Tzu-Chuan; Lin, Cheng-Feng

    2012-01-01

    Large impact loading with abnormal muscle activity and motion patterns may contribute to lower extremity injuries in ballet dancers. Yet, few studies investigated the influence of injury on the ballet movement. The purpose of this study was to find the neuromuscular and biomechanical characteristics in dancers with and without ankle injury during a jump-landing Sissonne Fermée task. Twenty-two ballet dancers were recruited and divided into the injured group (n = 11) and the uninjured group (n = 11). They performed a ballet movement called "Sissonne Fermée" with reflective markers and electrodes attached to their lower extremities. Ground reaction force, joint kinematics, and muscle activity were measured. The injured dancers had greater peak ankle eversion but smaller hindfoot-to-tibial eversion angles. Also, the injured dancers had greater activity of the hamstring of the dominant leg and tibialis anterior of the non-dominant leg during the pre-landing phase. The injured dancers had greater tibialis anterior activity of the dominant leg but less muscle activity in the medial gastrocnemius of the non-dominant leg during the post-landing phase. The injured dancers had a greater co-contraction index in the non-dominant ankle and a lower loading rate. The higher co-contraction indices showed that the injured dancers required more muscle effort to control ankle stability. Furthermore, the injured dancers used a "load avoidance strategy" to protect themselves from re-injury. Neuromuscular control training of the ankle joint for ballet dancers to prevent injury is necessary.

  18. Neuromuscular Alterations After Ankle Sprains: An Animal Model to Establish Causal Links After Injury

    PubMed Central

    Lepley, Lindsey K.; McKeon, Patrick O.; Fitzpatrick, Shane G.; Beckemeyer, Catherine L.; Uhl, Timothy L.; Butterfield, Timothy A.

    2016-01-01

    Context: The mechanisms that contribute to the development of chronic ankle instability are not understood. Investigators have developed a hypothetical model in which neuromuscular alterations that stem from damaged ankle ligaments are thought to affect periarticular and proximal muscle activity. However, the retrospective nature of these studies does not allow a causal link to be established. Objective: To assess temporal alterations in the activity of 2 periarticular muscles of the rat ankle and 2 proximal muscles of the rat hind limb after an ankle sprain. Design: Controlled laboratory study. Setting: Laboratory. Patients or Other Participants: Five healthy adult male Long Evans rats (age = 16 weeks, mass = 400.0 ± 13.5 g). Intervention(s): Indwelling fine-wire electromyography (EMG) electrodes were implanted surgically into the biceps femoris, medial gastrocnemius, vastus lateralis, and tibialis anterior muscles of the rats. We recorded baseline EMG measurements while the rats walked on a motor-driven treadmill and then induced a closed lateral ankle sprain by overextending the lateral ankle ligaments. After ankle sprain, the rats were placed on the treadmill every 24 hours for 7 days, and we recorded postsprain EMG data. Main Outcome Measure(s): Onset time of muscle activity, phase duration, sample entropy, and minimal detectable change (MDC) were assessed and compared with baseline using 2-tailed dependent t tests. Results: Compared with baseline, delayed onset time of muscle activity was exhibited in the biceps femoris (baseline = −16.7 ± 54.0 milliseconds [ms]) on day 0 (5.2 ± 64.1 ms; t4 = −4.655, P = .043) and tibialis anterior (baseline = 307.0 ± 64.2 ms) muscles on day 3 (362.5 ± 55.9 ms; t4 = −5.427, P = .03) and day 6 (357.3 ± 39.6 ms; t4 = −3.802, P = .02). Longer phase durations were observed for the vastus lateralis (baseline = 321.9 ± 92.6 ms) on day 3 (401.3 ± 101.2 ms; t3 = −4.001, P = .03), day 4 (404.1 ± 93.0 ms; t3 = −3.320, P = .048), and day 5 (364.6 ± 105.2 ms; t3 = −3.963, P = .03) and for the tibialis anterior (baseline = 103.9 ± 16.4 ms) on day 4 (154.9 ± 7.8 ms; t3 = −4.331, P = .050) and day 6 (141.9 ± 16.2 ms; t3 = −3.441, P = .03). After sprain, greater sample entropy was found for the vastus lateralis (baseline = 0.7 ± 0.3) on day 6 (0.9 ± 0.4; t4 = −3.481, P = .03) and day 7 (0.9 ± 0.3; t4 = −2.637, P = .050) and for the tibialis anterior (baseline = 0.6 ± 0.4) on day 4 (0.9 ± 0.5; t4 = −3.224, P = .03). The MDC analysis revealed increased sample entropy values for the vastus lateralis and tibialis anterior. Conclusions: Manually inducing an ankle sprain in a rat by overextending the lateral ankle ligaments altered the complexity of muscle-activation patterns, and the alterations exceeded the MDC of the baseline data. PMID:27831747

  19. Disturbance-Estimated Adaptive Backstepping Sliding Mode Control of a Pneumatic Muscles-Driven Ankle Rehabilitation Robot.

    PubMed

    Ai, Qingsong; Zhu, Chengxiang; Zuo, Jie; Meng, Wei; Liu, Quan; Xie, Sheng Q; Yang, Ming

    2017-12-28

    A rehabilitation robot plays an important role in relieving the therapists' burden and helping patients with ankle injuries to perform more accurate and effective rehabilitation training. However, a majority of current ankle rehabilitation robots are rigid and have drawbacks in terms of complex structure, poor flexibility and lack of safety. Taking advantages of pneumatic muscles' good flexibility and light weight, we developed a novel two degrees of freedom (2-DOF) parallel compliant ankle rehabilitation robot actuated by pneumatic muscles (PMs). To solve the PM's nonlinear characteristics during operation and to tackle the human-robot uncertainties in rehabilitation, an adaptive backstepping sliding mode control (ABS-SMC) method is proposed in this paper. The human-robot external disturbance can be estimated by an observer, who is then used to adjust the robot output to accommodate external changes. The system stability is guaranteed by the Lyapunov stability theorem. Experimental results on the compliant ankle rehabilitation robot show that the proposed ABS-SMC is able to estimate the external disturbance online and adjust the control output in real time during operation, resulting in a higher trajectory tracking accuracy and better response performance especially in dynamic conditions.

  20. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults.

    PubMed

    Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei

    2016-07-01

    Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  1. Fatigability of rat hindlimb muscle: associations between electromyogram and force during a fatigue test.

    PubMed Central

    Enoka, R M; Rankin, L L; Stuart, D G; Volz, K A

    1989-01-01

    1. An experimental protocol designed to assess fatigability in motor units (Burke, Levine, Tsairis & Zajac, 1973) has been applied to the whole muscles of anaesthetized adult rats, and the association between the electromyogram (EMG) and force was monitored over the course of the test. 2. Both test muscles (soleus and extensor digitorum longus) exhibited a wide range of fatigability, which was defined as the decline in isometric peak force at 6 min, such that the data could be separated into five levels of fatigability. Fatigue indices for each test muscle were distributed across three levels. 3. The EMG was quantified with four measures of amplitude, four of duration, and one interaction term (area). Correlation analyses indicated that the EMG was adequately represented by one measure of amplitude (absolute amplitude), one of duration (peak-to-peak duration) and area. The best single measure was area. 4. The EMG-force associations for soleus varied markedly among its three fatigability groups. In contrast, over the course of the test, all three extensor digitorum longus groups displayed qualitatively similar EMG-force associations. 5. Multiple regression analyses indicated that the EMG parameters were able to predict peak force better for extensor digitorum longus than for soleus. Furthermore, for both test muscle, the prediction was best for the most fatigable group. 6. The associations between EMG and force exhibited three patterns for the two test muscles and three levels of fatigability. These differences suggested variation in the mechanisms, related to both fibre-type composition and susceptibility to fatigue, that dictate the performance elicited by this particular stimulus regimen. The mechanisms seem to include both intracellular and transmission processes. Images Fig. 1 PMID:2778729

  2. Assessment of isokinetic knee strength in elite young female basketball players: correlation with vertical jump.

    PubMed

    Rouis, M; Coudrat, L; Jaafar, H; Filliard, J-R; Vandewalle, H; Barthelemy, Y; Driss, T

    2015-12-01

    To explore the isokinetic concentric strength of the knee muscle groups, and the relationship between the isokinetic knee extensors strength and the vertical jump performance in young elite female basketball players. Eighteen elite female basketball players performed a countermovement jump, and an isokinetic knee test using a Biodex dynamometer. The maximal isokinetic peak torque of the knee extensor and flexor muscles was recorded at four angular velocities (90°/s, 180°/s, 240°/s and 300°/s) for the dominant and non-dominant legs. The conventional hamstring/quadriceps ratio (H/Q) was assessed at each angular velocity for both legs. There was no significant difference between dominant and non-dominant leg whatever the angular velocity (all P>0.05). However, the H/Q ratio enhanced as the velocity increased from 180°/s to 300°/s (P<0.05). Furthermore, low to high significant positive correlations were detected between the isokinetic measures of the knee extensors and the vertical jump height. The highest one was found for the knee extensors peak torque at a velocity of 240°/s (r=0.88, P<0.001). The results accounted for an optimal velocity at which a strong relationship could be obtained between isokinetic knee extensors strength and vertical jump height. Interestingly, the H/Q ratio of the young elite female basketball players in the present study was unusual as it was close to that generally observed in regular sportsmen.

  3. Joint capsule attachment to the extensor carpi radialis brevis origin: an anatomical study with possible implications regarding the etiology of lateral epicondylitis.

    PubMed

    Nimura, Akimoto; Fujishiro, Hitomi; Wakabayashi, Yoshiaki; Imatani, Junya; Sugaya, Hiroyuki; Akita, Keiichi

    2014-02-01

    To identify the unique anatomical characteristic of the extensor carpi radialis brevis (ECRB) origin and points of differentiation from other extensors and to clarify the specific relationship of the ECRB to the underlying structures. We studied the origin of each extensor macroscopically for its muscular and tendinous parts; to identify the relationship between the ECRB origin and the deeper structures, we also examined the attachment of the joint capsule under the ECRB origin. The ECRB simply originated as a tendon without any muscle, whereas other extensors originated as a mixture of tendon and muscle. At the anterior part of the ECRB origin, the thin attachment of the joint capsule (average width, 3.3 mm) lay deep to the ECRB and was distinct. However, at the posterodistal portion, the joint capsule, annular ligament, and supinator were intermingled and originated as a single wide sheet from the humerus (average width, 10.7 mm). The anterior part of the ECRB origin was delicate, because the ECRB origin was purely tendinous, and the attachment of the articular capsule was thin compared with that of the posterodistal attachment. This thin attachment could be an initial factor leading to the development of lateral epicondylitis. The results of the current study may enhance magnetic resonance imaging understanding and may help clarify the etiology of the lateral epicondylitis. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  4. Feedforward neural control of toe walking in humans.

    PubMed

    Lorentzen, Jakob; Willerslev-Olsen, Maria; Hüche Larsen, Helle; Svane, Christian; Forman, Christian; Frisk, Rasmus; Farmer, Simon Francis; Kersting, Uwe; Nielsen, Jens Bo

    2018-03-23

    Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h -1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of human gait during voluntary toe walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  5. Comparison of muscle cross-sectional areas between weight lifters and wrestlers.

    PubMed

    Kanehisa, H; Ikegawa, S; Fukunaga, T

    1998-05-01

    The purpose of this study was to investigate the difference in the magnitude of muscular development between Olympic weight lifters and wrestlers through the measurements of fat-free mass (FFM) and limb muscle cross-sectional area (CSA). Subjects were college Olympic weight lifters (N = 34, age = 20.0 +/- 1.3 years, stature = 1.67 +/- 0.07 m, body mass = 70.1 +/- 10.2 kg, X +/- SD) and wrestlers (N = 33,20.3 +/- 1.2 years, 1.69 +/- 0.06 m, 71.0 +/- 1.8 kg) who had identical range of body mass. Body density and the CSAs of reciprocal muscle groups in the forearm, upper arm, lower leg and thigh were measured by underwater weighing and B-mode ultrasound methods, respectively. No significant difference was found in body density between the weight lifters (1.077 +/- 0.007 g x ml(-3)) and wrestlers (1.076 +/- 0.008 g x ml(-3)). Moreover, FFM and the CSA values of all muscle groups tested were similar in the two groups of weight-classified athletes, with an exception that the wrist flexor CSA was significantly larger in wrestlers than in weight lifters, and the knee extensor and thigh (extensors + flexors) CSAs were larger in weight lifters than in wrestlers. The total muscle CSA of every site was significantly correlated to FFM2/3 in the separate groups; r = 0.714 to 0.815 (p < 0.05) in weight lifters and r = 0.769 to 0.919 (p < 0.05) in wrestlers. While the CSA-to-FFM2/3 ratios of the upper arm and wrist flexor muscles were significantly higher in wrestlers than in weight lifters, those of the thigh and knee extensor muscles were higher in weight lifters than in wrestlers. Thus, the present results suggest that an event-related difference exists in the magnitude of limb muscle CSA between competitive weight lifters and wrestlers of similar FFM.

  6. Differences of muscle co-contraction of the ankle joint between young and elderly adults during dynamic postural control at different speeds.

    PubMed

    Iwamoto, Yoshitaka; Takahashi, Makoto; Shinkoda, Koichi

    2017-08-02

    Agonist and antagonist muscle co-contractions during motor tasks are greater in the elderly than in young adults. During normal walking, muscle co-contraction increases with gait speed in young adults, but not in elderly adults. However, no study has compared the effects of speed on muscle co-contraction of the ankle joint during dynamic postural control in young and elderly adults. We compared muscle co-contractions of the ankle joint between young and elderly subjects during a functional stability boundary test at different speeds. Fifteen young adults and 16 community-dwelling elderly adults participated in this study. The task was functional stability boundary tests at different speeds (preferred and fast). Electromyographic evaluations of the tibialis anterior and soleus were recorded. The muscle co-contraction was evaluated using the co-contraction index (CI). There were no statistically significant differences in the postural sway parameters between the two age groups. Elderly subjects showed larger CI in both speed conditions than did the young subjects. CI was higher in the fast speed condition than in the preferred speed condition in the young subjects, but there was no difference in the elderly subjects. Moreover, after dividing the analytical range into phases (acceleration and deceleration phases), the CI was larger in the deceleration phase than in the acceleration phase in both groups, except for the young subjects in the fast speed conditions. Our results showed a greater muscle co-contraction of the ankle joint during dynamic postural control in elderly subjects than in young subjects not only in the preferred speed condition but also in the fast speed condition. In addition, the young subjects showed increased muscle co-contraction in the fast speed condition compared with that in the preferred speed condition; however, the elderly subjects showed no significant difference in muscle co-contraction between the two speed conditions. This indicates that fast movements cause different influences on dynamic postural control in elderly people, particularly from the point of view of muscle activation. These findings highlight the differences in the speed effects on muscle co-contraction of the ankle joint during dynamic postural control between the two age groups.

  7. Bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells: Case series of 14 patients

    PubMed Central

    Amr, Sherif M.; Gouda, Ashraf; Koptan, Wael T.; Galal, Ahmad A.; Abdel-Fattah, Dina Sabry; Rashed, Laila A.; Atta, Hazem M.; Abdel-Aziz, Mohammad T.

    2014-01-01

    Objective To investigate the effect of bridging defects in chronic spinal cord injury using peripheral nerve grafts combined with a chitosan-laminin scaffold and enhancing regeneration through them by co-transplantation with bone-marrow-derived mesenchymal stem cells. Methods In 14 patients with chronic paraplegia caused by spinal cord injury, cord defects were grafted and stem cells injected into the whole construct and contained using a chitosan-laminin paste. Patients were evaluated using the International Standards for Classification of Spinal Cord Injuries. Results Chitosan disintegration leading to post-operative seroma formation was a complication. Motor level improved four levels in 2 cases and two levels in 12 cases. Sensory-level improved six levels in two cases, five levels in five cases, four levels in three cases, and three levels in four cases. A four-level neurological improvement was recorded in 2 cases and a two-level neurological improvement occurred in 12 cases. The American Spinal Impairment Association (ASIA) impairment scale improved from A to C in 12 cases and from A to B in 2 cases. Although motor power improvement was recorded in the abdominal muscles (2 grades), hip flexors (3 grades), hip adductors (3 grades), knee extensors (2–3 grades), ankle dorsiflexors (1–2 grades), long toe extensors (1–2 grades), and plantar flexors (0–2 grades), this improvement was too low to enable them to stand erect and hold their knees extended while walking unaided. Conclusion Mesenchymal stem cell-derived neural stem cell-like cell transplantation enhances recovery in chronic spinal cord injuries with defects bridged by sural nerve grafts combined with a chitosan-laminin scaffold. PMID:24090088

  8. Anatomical feasibility study of flexor hallucis longus transfer in treatment of Achilles tendon and posteromedial portal of ankle arthroscopy.

    PubMed

    Mao, Haijiao; Wang, Linger; Dong, Wenwei; Liu, Zhenxin; Yin, Weigang; Xu, Dachuan; Wapner, Keith L

    2018-04-16

    The aim of this study was to evaluate the occurrence of anatomical variations of the musculotendinous junction of the flexor hallucis longus (FHL) muscle, the relationship between FHL tendon or muscle and the tibial neurovascular bundle at the level of the posterior ankle joint in human cadavers. Seventy embalmed feet from 20 male and 15 female cadavers, the cadavers' mean age was 65.4 (range from 14 to 82) years, were dissected and anatomically classified to observe FHL muscle morphology define the relationship between FHL tendon or muscle and the tibial neurovascular bundle. The distance between the musculotendinous junction and the relationship between FHL tendon or muscle and the tibial neurovascular bundle was determined. Three morphology types of FHL muscle were identified: a long lateral and shorter medial muscle belly, which was observed in 63 specimens (90%); equal length medial and lateral muscle bellies, this variant was only observed in five specimens (7.1%); one lateral and no medial muscle belly, which was observed in two specimens (2.9%). No statistically significant difference was observed according to gender or side (p > 0.05). Two patterns were identified and described between FHL tendon or muscle and the tibial neurovascular bundle. Pattern 1, the distance between the neurovascular bundle and FHL tendon was 3.46 mm (range 2.34-8.84, SD = 2.12) which was observed in 66 specimens (94.3%); Pattern 2, there was no distance which was observed in four specimens (5.7%). Knowing FHL muscle morphology, variations provide new important insights into secure planning and execution of a FHL transfer for Achilles tendon defect as well as for the interpretation of ultrasound and magnetic resonance images. With posterior arthroscopic for the treatment of various ankle pathologies, posteromedial portal may be introduced into the posterior aspect of the ankle without gross injury to the tibial neurovascular structures because of the gap between the neurovascular bundle and FHL tendon.

  9. Digital image analysis of striated skeletal muscle tissue injury during reperfusion after induced ischemia

    NASA Astrophysics Data System (ADS)

    Rosero Salazar, Doris Haydee; Salazar Monsalve, Liliana

    2015-01-01

    Conditions such as surgical procedures or vascular diseases produce arterial ischemia and reperfusion injuries, which generate changes in peripheral tissues and organs, for instance, in striated skeletal muscle. To determine such changes, we conducted an experimental method in which 42 male Wistar rat were selected, to be undergone to tourniquet application on the right forelimb and left hind limb, to induce ischemia during one and three hours, followed by reperfusion periods starting at one hour and it was prolonged up to 32 days. Extensor carpi radialis longus and soleus respectively, were obtained to be processed for histochemical and morphometric analysis. By means of image processing and detection of regions of interest, variations of areas occupied by muscle fibers and intramuscular extracellular matrix (IM-ECM) throughout reperfusion were observed. In extensor carpi radialis longus, results shown reduction in the area occupied by muscle fibers; this change is significant between one hour and three hours ischemia followed by 16 hours, 48 hours and 32 days reperfusión (p˂0.005). To compare only periods of reperfusión that continued to three hours ischemia, were found significant differences, as well. For area occupied by IM-ECM, were identified increments in extensor carpi radialis longus by three hours ischemia and eight to 16 days reperfusion; in soleus, was observed difference by one hour ischemia with 42 hours reperfusion, and three hours ischemia followed by four days reperfusion (p˂0.005). Skeletal muscle develops adaptive changes in longer reperfusion, to deal with induced injury. Descriptions beyond 32 days reperfusion, can determine recovering normal pattern.

  10. Smaller external notebook mice have different effects on posture and muscle activity.

    PubMed

    Oude Hengel, Karen M; Houwink, Annemieke; Odell, Dan; van Dieën, Jaap H; Dennerlein, Jack T

    2008-07-01

    Extensive computer mouse use is an identified risk factor for computer work-related musculoskeletal disorders; however, notebook computer mouse designs of varying sizes have not been formally evaluated but may affect biomechanical risk factors. Thirty adults performed a set of mouse tasks with five notebook mice, ranging in length from 75 to 105 mm and in width from 35 to 65 mm, and a reference desktop mouse. An electro-magnetic motion analysis system measured index finger (metacarpophalangeal joint), wrist and forearm postures, and surface electromyography measured muscle activity of three extensor muscles in the forearm and the first dorsal interosseus. The smallest notebook mice were found to promote less neutral postures (up to 3.2 degrees higher metacarpophalangeal joint adduction; 6.5 degrees higher metacarpophalangeal joint flexion, 2.3 degrees higher wrist extension) and higher muscle activity (up to 4.1% of maximum voluntary contraction higher wrist extensor muscle activity). Participants with smaller hands had overall more non-neutral postures than participants with larger hands (up to 5.6 degrees higher wrist extension and 5.9 degrees higher pronation); while participants with larger hands were more influenced by the smallest notebook mice (up to 3.6 degrees higher wrist extension and 5.5% of maximum voluntary contraction higher wrist extensor values). Self-reported ratings showed that while participants preferred smaller mice for portability; larger mice scored higher on comfort and usability. The smallest notebook mice increased the intensity of biomechanical exposures. Longer term mouse use could enhance these differences, having a potential impact on the prevention of work-related musculoskeletal disorders.

  11. Sheep YAP1 temporal and spatial expression trend and its relation with MyHCs expression.

    PubMed

    Gao, W; Sun, W; Su, R; Lv, X Y; Wang, Q Z; Li, D; Musa, H H; Chen, L; Zhou, H; Xu, H S; Hua, W H

    2016-04-04

    RT-PCR was used to study the temporal and spatial pattern of Yes-associated protein 1 (YAP1) and myosin heavy chain (MyHC) expression in four different skeletal muscles (i.e., longissimus dorsi muscle, soleus muscle, gastrocnemius muscle, and extensor digitorum longus) and three growth stages (i.e., 2 days old, 2 and 6 months old) of Hu Sheep. The results showed that YAP1 was differentially expressed in skeletal muscles of sheep, that expression increased gradually with age, and that there were high levels of expression in the gastrocnemius muscle and lower levels in the longissimus dorsi muscle. MyHCI was expressed at high levels in the soleus muscle and at lower levels in the longissimus dorsi muscle. In contrast, MyHCIIA and MyHCIIX were expressed at high levels in the extensor digitorum longus and at lower levels in the soleus muscle. The expression of MyHCI and MyHCIIA decreased with increasing age while that of MyHCIIX increased. YAP1 expression was negatively correlated with MyHCII (P < 0.01) and positively correlated with MyHCIIX (P < 0.01) across all growth stages and skeletal muscle types studied. We speculate that after birth, the thicker muscle fiber diameter is associated with the high expression of MyHCIIX. Therefore, we conclude that YAP1 expression affects sheep muscle fiber development after birth and provides important genetic information for the selection candidate genes for sheep muscle growth.

  12. Stance controlled knee flexion improves stimulation driven walking after spinal cord injury

    PubMed Central

    2013-01-01

    Background Functional neuromuscular stimulation (FNS) restores walking function after paralysis from spinal cord injury via electrical activation of muscles in a coordinated fashion. Combining FNS with a controllable orthosis to create a hybrid neuroprosthesis (HNP) has the potential to extend walking distance and time by mechanically locking the knee joint during stance to allow knee extensor muscle to rest with stimulation turned off. Recent efforts have focused on creating advanced HNPs which couple joint motion (e.g., hip and knee or knee and ankle) to improve joint coordination during swing phase while maintaining a stiff-leg during stance phase. Methods The goal of this study was to investigate the effects of incorporating stance controlled knee flexion during loading response and pre-swing phases on restored gait. Knee control in the HNP was achieved by a specially designed variable impedance knee mechanism (VIKM). One subject with a T7 level spinal cord injury was enrolled and served as his own control in examining two techniques to restore level over-ground walking: FNS-only (which retained a stiff knee during stance) and VIKM-HNP (which allowed controlled knee motion during stance). The stimulation pattern driving the walking motion remained the same for both techniques; the only difference was that knee extensor stimulation was constant during stance with FNS-only and modulated together with the VIKM to control knee motion during stance with VIKM-HNP. Results Stance phase knee angle was more natural during VIKM-HNP gait while knee hyperextension persisted during stiff-legged FNS-only walking. During loading response phase, vertical ground reaction force was less impulsive and instantaneous gait speed was increased with VIKM-HNP, suggesting that knee flexion assisted in weight transfer to the leading limb. Enhanced knee flexion during pre-swing phase also aided flexion during swing, especially when response to stimulation was compromised. Conclusions These results show the potential advantages of incorporating stance controlled knee flexion into a hybrid neuroprosthesis for walking. The addition of such control to FNS driven walking could also enable non-level walking tasks such as uneven terrain, slope navigation and stair descent where controlled knee flexion during weight bearing is critical. PMID:23826711

  13. A cross-sectional study of the effects of load carriage on running characteristics and tibial mechanical stress: implications for stress-fracture injuries in women.

    PubMed

    Xu, Chun; Silder, Amy; Zhang, Ju; Reifman, Jaques; Unnikrishnan, Ginu

    2017-03-23

    Load carriage is associated with musculoskeletal injuries, such as stress fractures, during military basic combat training. By investigating the influence of load carriage during exercises on the kinematics and kinetics of the body and on the biomechanical responses of bones, such as the tibia, we can quantify the role of load carriage on bone health. We conducted a cross-sectional study using an integrated musculoskeletal-finite-element model to analyze how the amount of load carriage in women affected the kinematics and kinetics of the body, as well as the tibial mechanical stress during running. We also compared the biomechanics of walking (studied previously) and running under various load-carriage conditions. We observed substantial changes in both hip kinematics and kinetics during running when subjects carried a load. Relative to those observed during running without load, the joint reaction forces at the hip increased by an average of 49.1% body weight when subjects carried a load that was 30% of their body weight (ankle, 4.8%; knee, 20.6%). These results indicate that the hip extensor muscles in women are the main power generators when running with load carriage. When comparing running with walking, finite element analysis revealed that the peak tibial stress during running (tension, 90.6 MPa; compression, 136.2 MPa) was more than three times as great as that during walking (tension, 24.1 MPa; compression, 40.3 MPa), whereas the cumulative stress within one stride did not differ substantially between running (15.2 MPa · s) and walking (13.6 MPa · s). Our findings highlight the critical role of hip extensor muscles and their potential injury in women when running with load carriage. More importantly, our results underscore the need to incorporate the cumulative effect of mechanical stress when evaluating injury risk under various exercise conditions. The results from our study help to elucidate the mechanisms of stress fracture in women.

  14. Rehabilitation of Ankle and Foot Injuries in Athletes

    PubMed Central

    Chinn, Lisa; Hertel, Jay

    2009-01-01

    Foot and ankle injuries are extremely common among athletes and other physically active individuals. Rehabilitation programs that emphasize the use of therapeutic exercise to restore joint range of motion, muscle strength, neuromuscular coordination, and gait mechanics have been shown to have clinical success for patients suffering various foot and ankle pathologies. Rehabilitation programs are discussed for ankle sprains, plantar fasciitis, Achilles tendonitis, and turf toe. PMID:19945591

  15. Validity and reliability of an instrumented leg-extension machine for measuring isometric muscle strength of the knee extensors.

    PubMed

    Ruschel, Caroline; Haupenthal, Alessandro; Jacomel, Gabriel Fernandes; Fontana, Heiliane de Brito; Santos, Daniela Pacheco dos; Scoz, Robson Dias; Roesler, Helio

    2015-05-20

    Isometric muscle strength of knee extensors has been assessed for estimating performance, evaluating progress during physical training, and investigating the relationship between isometric and dynamic/functional performance. To assess the validity and reliability of an adapted leg-extension machine for measuring isometric knee extensor force. Validity (concurrent approach) and reliability (test and test-retest approach) study. University laboratory. 70 healthy men and women aged between 20 and 30 y (39 in the validity study and 31 in the reliability study). Intraclass correlation coefficient (ICC) values calculated for the maximum voluntary isometric torque of knee extensors at 30°, 60°, and 90°, measured with the prototype and with an isokinetic dynamometer (ICC2,1, validity study) and measured with the prototype in test and retest sessions, scheduled from 48 h to 72 h apart (ICC1,1, reliability study). In the validity analysis, the prototype showed good agreement for measurements at 30° (ICC2,1 = .75, SEM = 18.2 Nm) and excellent agreement for measurements at 60° (ICC2,1 = .93, SEM = 9.6 Nm) and at 90° (ICC2,1 = .94, SEM = 8.9 Nm). Regarding the reliability analysis, between-days' ICC1,1 were good to excellent, ranging from .88 to .93. Standard error of measurement and minimal detectable difference based on test-retest ranged from 11.7 Nm to 18.1 Nm and 32.5 Nm to 50.1 Nm, respectively, for the 3 analyzed knee angles. The analysis of validity and repeatability of the prototype for measuring isometric muscle strength has shown to be good or excellent, depending on the knee joint angle analyzed. The new instrument, which presents a relative low cost and easiness of transportation when compared with an isokinetic dynamometer, is valid and provides consistent data concerning isometric strength of knee extensors and, for this reason, can be used for practical, clinical, and research purposes.

  16. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy.

    PubMed

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.

  17. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy

    PubMed Central

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561

  18. The extensor digitorum brevis: histological and histochemical aspects

    PubMed Central

    Jennekens, F. G. I.; Tomlinson, B. E.; Walton, J. N.

    1972-01-01

    Samples of the extensor digitorum brevis muscle (EDB) obtained at necropsy from 26 subjects without known neuromuscular disease were examined histologically and histochemically. In the two youngest subjects, aged 2 months and 8 years, a mosaic distribution of type I and type II fibres was present. From the second decade onwards, increasing with age, the mosaic pattern was gradually replaced by groups of type I and type II fibres and areas of grouped fibre atrophy appeared. It is suggested that these findings may be explained by a slow process of denervation and reinnervation. This process does not seem to occur to the same extent in three other distal limb muscles from which specimens were also examined. Images PMID:4260286

  19. Sexual dimorphism of extensor carpi radialis muscle size, isometric force, relaxation rate and stamina during the breeding season of the frog Rana temporaria Linnaeus 1758.

    PubMed

    Navas, Carlos A; James, Rob S

    2007-02-01

    Mating success of individual male frogs within explosive breeding species can depend on their ability to compete for a mate and to hold onto that mate during amplexus. Such importance of amplexus has resulted in the evolution of sexual dimorphism in the morphology and contractile characteristics of the anuran forelimb muscles used during amplexus. The aims of our study were to use an explosive breeding frog (Rana temporaria) during the breeding season to compare extensor carpi radialis (ECR) muscle length, mass, isometric activation times, relaxation times, absolute force, relative force (stress) and fatigue between male and female frogs. We found that ECR muscle mass and length were greater (tenfold and 1.4-fold, respectively), absolute tetanic muscle force and relative tetanic force (stress) were greater (16-fold and 2.2-fold, respectively) and relaxation times were slower in males than in females. Male ECR muscles incompletely relaxed during fatigue tests and showed less fatigue than female muscles. These sex differences are likely to be beneficial to the male frogs in allowing them to produce relatively high absolute muscle forces for prolonged periods of time to hold onto their mate during amplexus.

  20. Gait and physical impairments in patients with acute ankle sprains who did not receive physical therapy.

    PubMed

    Punt, Ilona M; Ziltener, Jean-Luc; Laidet, Magali; Armand, Stéphane; Allet, Lara

    2015-01-01

    To assess ankle function 4 weeks after conservative management and to examine the correlation of function with gait. A prospective comparison study. Thirty patients with grade I or II acute ankle sprains were followed up after 4 weeks of conservative management not involving physical therapy. Participants underwent a clinical assessment and had to walk at a normal self-selected walking speed. Their results were compared with the data of 15 healthy subjects. Participants' joint swelling, muscle strength, passive mobility, and pain were assessed. In addition, patients' temporal-spatial, kinematic, and kinetic gait data were measured while walking. Muscle strength and passive mobility were significantly reduced on the injured side compared with the noninjured side (P < .001). During gait analysis, patients with ankle sprains showed slower walking speed, shorter step length, shorter single support time, reduced and delayed maximum plantar flexion, decreased maximum power, and decreased maximum moment (P < .050) compared with healthy persons. Decreased walking speed was mainly correlated with pain (R = -0.566, P = .001) and deficits in muscle strength of dorsiflexors (R = 0.506, P = .004). Four weeks after an ankle sprain, patients who did not receive physical therapy showed physical impairments of the ankle that were correlated with gait parameters. These findings might help fine-tune rehabilitation protocols. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

Top