Sample records for ankle joint angles

  1. Joint mobilization acutely improves landing kinematics in chronic ankle instability.

    PubMed

    Delahunt, Eamonn; Cusack, Kim; Wilson, Laura; Doherty, Cailbhe

    2013-03-01

    The objective of this study is to examine the acute effect of ankle joint mobilizations akin to those performed in everyday clinical practice on sagittal plane ankle joint kinematics during a single-leg drop landing in participants with chronic ankle instability (CAI). Fifteen participants with self-reported CAI (defined as <24 on the Cumberland Ankle Instability Tool) performed three single-leg drop landings under two different conditions: 1) premobilization and, 2) immediately, postmobilization. The mobilizations performed included Mulligan talocrural joint dorsiflexion mobilization with movement, Mulligan inferior tibiofibular joint mobilization, and Maitland anteroposterior talocrural joint mobilization. Three CODA cx1 units (Charnwood Dynamics Ltd., Leicestershire, UK) were used to provide information on ankle joint sagittal plane angular displacement. The dependent variable under investigation was the angle of ankle joint plantarflexion at the point of initial contact during the drop landing. There was a statistically significant acute decrease in the angle of ankle joint plantarflexion from premobilization (34.89° ± 4.18°) to postmobilization (31.90° ± 5.89°), t(14) = 2.62, P < 0.05 (two-tailed). The mean decrease in the angle of ankle joint plantarflexion as a result of the ankle joint mobilization was 2.98° with a 95% confidence interval ranging from 0.54 to 5.43. The eta squared statistic (0.32) indicated a large effect size. These results indicate that mobilization acted to acutely reduce the angle of ankle joint plantarflexion at initial contact during a single-leg drop landing. Mobilization applied to participants with CAI has a mechanical effect on the ankle joint, thus facilitating a more favorable positioning of the ankle joint when landing from a jump.

  2. [Relationship between muscle activity and kinematics of the lower extremity in slow motions of squats in humans].

    PubMed

    Khorievin, V I; Horkovenko, A V; Vereshchaka, I V

    2013-01-01

    Squatting can be performed on ankle strategy when ankle joint is flexed more than a hip joint and on hip strategy when large changes occur at the hip joint. The relationships between changes ofjoint angles and electromyogram (EMG) of the leg muscles were studied in five healthy men during squatting that was performed at the ankle and hip strategies with a slow changes in the knee angle of 40 and 60 degrees. It is established that at ankle strategy the ankle muscles were activated ahead of joint angle changes and shifting the center of pressure (CT) on stabilographic platform, whereas activation of the thigh muscles began simultaneously with the change of the joint angles, showing the clear adaptation in successive trials and a linear relationships between the static EMG component and the angle changes of the ankle joint. In the case of hip strategy of squatting the thigh muscles were activated simultaneously with the change in the joint angles and the displacement of CT, whereas the ankle muscles were activated later than the thigh muscles, especially the muscle tibialis anterior, showing some adaptations in consecutive attempts. At the ankle strategy the EMG amplitude was greatest in thigh muscles, reproducing contour of changes in joint angles, whereas the ankle muscles were activated only slightly during changes of joint angles. In the case of hip strategy dominated the EMG amplitude of the muscle tibialis anterior, which was activated when driving down the trunk and fixation of the joint angles that was accompanied by a slight coactivation of the calf muscles with the step-like increase in the amplitude of the EMG of the thigh muscles. Choice of leg muscles to start the squatting on both strategies occurred without a definite pattern, which may indicate the existence of a wide range of options for muscle activity in a single strategy.

  3. The effect of uncontrolled moment and short-term, repeated passive stretching on maximum ankle joint dorsiflexion angle.

    PubMed

    Gatt, Alfred; Chockalingam, Nachiappan

    2012-06-01

    Trials investigating ankle joint measurement normally apply a known moment. Maximum ankle angle is affected by foot posture and stretching characteristics of the calf muscles. To investigate whether consistent maximum ankle angles could be achieved without applying a constant moment to all subjects, and whether short, repetitive stretching of the calf muscle tendon unit would produce a difference in the maximum ankle angle. Passive dorsiflexion in 14 healthy participants was captured using an optoelectronic motion analysis system, with the foot placed in 3 postures. The maximum ankle angles for both the neutral and supinated positions did not differ significantly. In general, the majority of subjects (92.8%) showed no increase in the maximum ankle dorsiflexion angle following repetitive brief passive stretching. Only one subject exhibited a significant increase in maximum ankle angle at the neutral position. Since the range of motion of the ankle joint is clearly determined by other physical factors, the maximum ankle dorsiflexion angle can be assessed at both neutral and supinated positions without moment being controlled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Effect of the sagittal ankle angle at initial contact on energy dissipation in the lower extremity joints during a single-leg landing.

    PubMed

    Lee, Jinkyu; Song, Yongnam; Shin, Choongsoo S

    2018-05-01

    During landing, the ankle angle at initial contact (IC) exhibits relatively wide individual variation compared to the knee and hip angles. However, little is known about the effect of different IC ankle angles on energy dissipation. The purpose of this study was to investigate the relationship between individual ankle angles at IC and energy dissipation in the lower extremity joints. Twenty-seven adults performed single-leg landings from a 0.3-m height. Kinetics and kinematics of the lower extremity joints were measured. The relationship between ankle angles at IC and negative work, range of motion, the time to peak ground reaction force, and peak loading rate were analyzed. The ankle angle at IC was positively correlated with ankle negative work (r = 0.80, R 2  = 0.64, p < 0.001) and the contribution of the ankle to total (ankle, knee and hip joint) negative work (r = 0.84, R 2  = 0.70, p < 0.001), but the ankle angle was negatively correlated with hip negative work (r = -0.46, R 2  = 0.21, p = 0.01) and the contribution of the hip to total negative work (r = -0.61, R 2  = 0.37, p < 0.001). The knee negative work and the contribution of the knee to total negative work were not correlated with the ankle angle at IC. The ankle angle at IC was positively correlated with total negative work (r = 0.50, R 2  = 0.25, p < 0.01) and negatively correlated with the peak loading rate (r = -0.76, R 2  = 0.57, p < 0.001). These results indicated that landing mechanics changed as the ankle angle at IC increased, such that the ankle energy dissipation increased and redistributed the energy dissipation in the ankle and hip joints. Further, these results suggest that increased ankle energy dissipation with a higher IC plantar flexion angle may be a potential landing technique for reducing the risk of injury to the anterior cruciate ligament and hip musculature. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Ankle Joint Angle and Lower Leg Musculotendinous Unit Responses to Cryotherapy.

    PubMed

    Akehi, Kazuma; Long, Blaine C; Warren, Aric J; Goad, Carla L

    2016-09-01

    Akehi, K, Long, BC, Warren, AJ, and Goad, CL. Ankle joint angle and lower leg musculotendinous unit responses to cryotherapy. J Strength Cond Res 30(9): 2482-2492, 2016-The use of cold application has been debated for its influence on joint range of motion (ROM) and stiffness. The purpose of this study was to determine whether a 30-minute ice bag application to the plantarflexor muscles or ankle influences passive ankle dorsiflexion ROM and lower leg musculotendinous stiffness (MTS). Thirty-five recreationally active college-aged individuals with no history of lower leg injury 6 months before data collection volunteered. On each testing day, we measured maximum passive ankle dorsiflexion ROM (°) and plantarflexor torque (N·m) on an isokinetic dynamometer to calculate the passive plantarflexor MTS (N·m per degree) at 4 joint angles before, during, and after a treatment. Surface electromyography amplitudes (μV), and skin surface and ambient air temperature (°C) were also measured. Subjects received an ice bag to the posterior lower leg, ankle joint, or nothing for 30 minutes in different days. Ice bag application to the lower leg and ankle did not influence passive ROM (F(12,396) = 0.67, p = 0.78). Passive torque increased after ice bag application to the lower leg (F(12,396) = 2.21, p = 0.011). Passive MTS at the initial joint angle increased after ice bag application to the lower leg (F(12,396) = 2.14, p = 0.014) but not at the other joint angles (p > 0.05). Surface electromyography amplitudes for gastrocnemius and soleus muscles increased after ice application to the lower leg (F(2,66) = 5.61, p = 0.006; F(12,396) = 3.60, p < 0.001). Ice bag application to the lower leg and ankle joint does not alter passive dorsiflexion ROM but increases passive ankle plantarflexor torque in addition to passive ankle plantarflexor MTS at the initial joint angle.

  6. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke

    PubMed Central

    Kobayashi, Toshiki; Singer, Madeline L.; Orendurff, Michael S.; Gao, Fan; Daly, Wayne K.; Foreman, K. Bo

    2015-01-01

    Background The adjustment of plantarflexion resistive moment of an articulated ankle-foot orthosis is considered important in patients post stroke, but the evidence is still limited. Therefore, the aim of this study was to investigate the effect of changing the plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments in patients post stroke. Methods Gait analysis was performed on 10 subjects post stroke under four different plantarflexion resistive moment conditions using a newly designed articulated ankle-foot orthosis. Data were recorded using a Bertec split-belt instrumented treadmill in a 3-dimensional motion analysis laboratory. Findings The ankle and knee sagittal joint angles and moments were significantly affected by the amount of plantarflexion resistive moment of the ankle-foot orthosis. Increasing the plantarflexion resistive moment of the ankle-foot orthosis induced significant decreases both in the peak ankle plantarflexion angle (P<0.01) and the peak knee extension angle (P<0.05). Also, the increase induced significant increases in the internal dorsiflexion moment of the ankle joint (P<0.01) and significantly decreased the internal flexion moment of the knee joint (P<0.01). Interpretation These results suggest an important link between the kinematic/kinetic parameters of the lower-limb joints and the plantarflexion resistive moment of an articulated ankle-foot orthosis. A future study should be performed to clarify their relationship further so that the practitioners may be able to use these parameters as objective data to determine an optimal plantarflexion resistive moment of an articulated ankle-foot orthosis for improved orthotic care in individual patients. PMID:26149007

  7. The effect of changing plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments while walking in patients post stroke.

    PubMed

    Kobayashi, Toshiki; Singer, Madeline L; Orendurff, Michael S; Gao, Fan; Daly, Wayne K; Foreman, K Bo

    2015-10-01

    The adjustment of plantarflexion resistive moment of an articulated ankle-foot orthosis is considered important in patients post stroke, but the evidence is still limited. Therefore, the aim of this study was to investigate the effect of changing the plantarflexion resistive moment of an articulated ankle-foot orthosis on ankle and knee joint angles and moments in patients post stroke. Gait analysis was performed on 10 subjects post stroke under four different plantarflexion resistive moment conditions using a newly designed articulated ankle-foot orthosis. Data were recorded using a Bertec split-belt instrumented treadmill in a 3-dimensional motion analysis laboratory. The ankle and knee sagittal joint angles and moments were significantly affected by the amount of plantarflexion resistive moment of the ankle-foot orthosis. Increasing the plantarflexion resistive moment of the ankle-foot orthosis induced significant decreases both in the peak ankle plantarflexion angle (P<0.01) and the peak knee extension angle (P<0.05). Also, the increase induced significant increases in the internal dorsiflexion moment of the ankle joint (P<0.01) and significantly decreased the internal flexion moment of the knee joint (P<0.01). These results suggest an important link between the kinematic/kinetic parameters of the lower-limb joints and the plantarflexion resistive moment of an articulated ankle-foot orthosis. A future study should be performed to clarify their relationship further so that the practitioners may be able to use these parameters as objective data to determine an optimal plantarflexion resistive moment of an articulated ankle-foot orthosis for improved orthotic care in individual patients. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Triceps surae muscle-tendon unit length changes as a function of ankle joint angles and contraction levels: the effect of foot arch deformation.

    PubMed

    Iwanuma, Soichiro; Akagi, Ryota; Hashizume, Satoru; Kanehisa, Hiroaki; Yanai, Toshimasa; Kawakami, Yasuo

    2011-09-23

    The purpose of this study was to clarify how foot deformation affects the relationship between triceps surae muscle-tendon unit (MTU) length and ankle joint angle. For six women and six men a series of sagittal magnetic resonance (MR) images of the right foot were taken, and changes in MTU length (the displacement of the calcaneal tuberosity), foot arch angle, and ankle joint angle were measured. In the passive session, each subject's ankle joint was secured at 10° dorsiflexed position, neutral position (NP), and 10° and 20° plantar flexed positions while MR images were acquired. In the active session, each subject was requested to perform submaximal isometric plantar flexions (30%, 60%, and 80% of voluntary maximum) at NP. The changes in MTU length in each trial were estimated by two different formulae reported previously. The changes of the measured MTU length as a function of ankle joint angles observed in all trials of the active session were significantly (p<0.05) larger than corresponding values in the passive session and by the estimation formulae. In the passive session, MTU length changes were significantly smaller than the estimated values when the ankle was plantar flexed. The foot arch angle increased as the contraction level increased from rest (117 ± 4°) to 80% (125 ± 3°), and decreased as the ankle was positioned further into plantar flexion in the passive session (115 ± 3°). These results indicate that foot deformation profoundly affects the triceps surae MTU length-ankle joint angle relationship during plantar flexion. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Radiologic changes of ankle joint after total knee arthroplasty.

    PubMed

    Lee, Jung Hee; Jeong, Bi O

    2012-12-01

    The authors noticed that ankle joint osteoarthritis was not uncommon when lower extremity malalignment, such as a knee varus deformity, was present as a result of severe osteoarthritis of the knee. The purpose of this study was to analyze radiologic changes of the ankle joint after total knee arthroplasty. This study included 142 cases in 110 patients who underwent total knee arthroplasty and were followed for at least 3 years. The varus knee group included 128 cases and the valgus knee group included 14 cases. On anteroposterior standing lower extremity radiographs, varus and valgus angles of the knee were measured preoperatively and at the last follow-up. The angle between the ground surface and the distal tibial plafond as well as the upper talus was also measured. In addition, tibial anterior surface angle, talar tilt, space between the medial malleolar distal tip and the medial articular surface of the talus, and medial tibiotalar joint space of the ankle joint were measured. Out of 142 cases, 50 (35.2%) had arthritis in the ankle before total knee arthroplasty and 31 (21.8%) had newly developed or progressive arthritis after surgery. In particular, the varus knee group demonstrated statistically significant differences in preoperative varus deformity, preoperative talar tilt, and postoperative correction angle between the cases that developed or had progressive arthritis and those that did not show any changes (p < .05). After total knee arthroplasty, arthritis developed or progressed in the ankle of many cases radiographically. In particular, when the preoperative talar tilt increased medial to the ankle or the postoperative correction angle was large, the incidence of arthritis in the ankle joint increased. The authors recommend more cautious follow-up on the symptoms of the ankle joint after total knee arthroplasty.

  10. Effects of footwear on lead limb knee and ankle joint kinematics in a fast bowler with a history of posterior ankle joint impingement-a case report.

    PubMed

    Bishop, Chris; Bartold, Simon; Thewlis, Dominic

    2013-11-01

    This case study reports the kinematic effect of 2 different cricket shoes on a fast bowler who reports a history of posterior ankle joint impingement. The participant bowled 6 trials in 2 pairs of cricket shoes. The 3-dimensional kinematics of the joints of the front leg was quantified during stance phase of the delivery stride. Wearing the high-cut shoe resulted in the ankle being 7.7-degree angle more plantarflexed at initial contact compared with the low-cut shoe. Again, when wearing the high-cut shoe compared with the low-cut shoe, the ankle joint was 15.5-degree angle more adducted and the knee was 4.1-degree angle less externally rotated at initial contact. This case study identifies the bowler's preferred shoe (high-cut shoe) as a potential contributing factor to the symptoms he was experiencing.

  11. Gastrocnemius tightness on joint angle and work of lower extremity during gait.

    PubMed

    You, Jia-Yuan; Lee, Hsin-Min; Luo, Hong-Ji; Leu, Chwan-Chin; Cheng, Pen-Gang; Wu, Shyi-Kuen

    2009-11-01

    Muscular tightness is a common clinical musculoskeletal disorder and is regarded as a predisposing factor for muscle injuries. In this study, a two-way mixed design ANOVA was applied to investigate the effects of the gastrocnemius tightness on the joint angle and joint work during walking. Twenty-two patients with muscular tightness of gastrocnemius muscle (<12 degrees of ankle dorsiflexion with knee extended) and 22 age- and gender-matched subjects with normal gastrocnemius flexibility (>15 degrees of ankle dorsiflexion with knee extended) participated in this study. The joint angle and work at hip, knee, and ankle joints during the stance phase were analyzed at two preset cadences of 100 steps/min and 140 steps/min. Significantly greater flexion angles at hip (P=0.025) and knee (P=0.001) were found in the tightness group at the time of maximal ankle dorsiflexion. Significantly less work generation at knee (P=0.034) and greater work absorption at ankle (P=0.024) were detected in the tightness group. The subjects with gastrocnemius tightness revealed a compensatory gait pattern, which included the changes in the joint angles and associated work productions. The potential disturbance of the knee control and strain injuries of plantar flexors might be crucial in the clinical considerations for subjects with gastrocnemius tightness.

  12. Does the subtalar joint compensate for ankle malalignment in end-stage ankle arthritis?

    PubMed

    Wang, Bibo; Saltzman, Charles L; Chalayon, Ornusa; Barg, Alexej

    2015-01-01

    Patients with ankle arthritis often present with concomitant hindfoot deformity, which may involve the tibiotalar and subtalar joints. However, the possible compensatory mechanisms of these two mechanically linked joints are not well known. In this study we sought to (1) compare ankle and hindfoot alignment of our study cohort with end-stage ankle arthritis with that of a control group; (2) explore the frequency of compensated malalignment between the tibiotalar and subtalar joints in our study cohort; and (3) assess the intraobserver and interobserver reliability of classification methods of hindfoot alignment used in this study. Between March 2006 and September 2013, we performed 419 ankle arthrodesis and ankle replacements (380 patients). In this study, we evaluated radiographs for 233 (56%) ankles (226 patients) which met the following inclusion criteria: (1) no prior subtalar arthrodesis; (2) no previously failed total ankle replacement or ankle arthrodesis; (3) with complete conventional radiographs (all three ankle views were required: mortise, lateral, and hindfoot alignment view). Ankle and hindfoot alignment was assessed by measurement of the medial distal tibial angle, tibial talar surface angle, talar tilting angle, tibiocalcaneal axis angle, and moment arm of calcaneus. The obtained values were compared with those observed in the control group of 60 ankles from 60 people. Only those without obvious degenerative changes of the tibiotalar and subtalar joints and without previous surgeries of the ankle or hindfoot were included in the control group. Demographic data for the patients with arthritis and the control group were comparable (sex, p=0.321; age, p=0.087). The frequency of compensated malalignment between the tibiotalar and subtalar joints, defined as tibiocalcaneal angle or moment arm of the calcaneus being greater or smaller than the same 95% CI statistical cutoffs from the control group, was tallied. All ankle radiographs were independently measured by two observers to determine the interobserver reliability. One of the observers evaluated all images twice to determine the intraobserver reliability. There were differences in medial distal tibial surface angle (86.6°±7.3° [95% CI, 66.3°-123.7°) versus 89.1°±2.9° [95% CI, 83.0°-96.3°], p<0.001), tibiotalar surface angle (84.9°±14.4° [95% CI, 45.3°-122.7°] versus 89.1°±2.9° [95% CI, 83.0°-96.3°], p<0.001), talar tilting angle (-1.7°±12.5° [95% CI, -41.3°-30.3°) versus 0.0°±0.0° [95% CI, 0.0°-0.0°], p=0.003), and tibiocalcaneal axis angle (-7.2°±13.1° [95% CI, -57°-33°) versus -2.7°±5.2° [95% CI, -13.3°-9.0°], p<0.001) between patients with ankle arthritis and the control group. Using the classification system based on the tibiocalcaneal angle, there were 62 (53%) and 22 (39%) compensated ankles in the varus and valgus groups, respectively. Using the classification system based on the moment arm of the calcaneus, there were 68 (58%) and 20 (35%) compensated ankles in the varus and valgus groups, respectively. For all conditions or methods of measurement, patients with no or mild degenerative change of the subtalar joint have a greater likelihood of compensating coronal plane deformity of the ankle with arthritis (p<0.001-p=0.032). The interobserver and intraobserver reliability for all radiographic measurements was good to excellent (the correlation coefficients range from 0.820 to 0.943). Substantial ankle malalignment, mostly varus deformity, is common in ankles with end-stage osteoarthritis. The subtalar joint often compensates for the malaligned ankle in static weightbearing. Level III, diagnostic study.

  13. Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.

    PubMed

    Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon

    2016-11-01

    The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p  < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p  = 0.006) and FCTP-pre (OR = 2.13, p  = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint parameters were not significantly associated with abnormal KJLO after OWHTO. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. Ankle muscle coactivation and its relationship with ankle joint kinematics and kinetics during gait in hemiplegic patients after stroke.

    PubMed

    Kitatani, Ryosuke; Ohata, Koji; Sato, Shuhei; Watanabe, Aki; Hashiguchi, Yu; Yamakami, Natsuki; Sakuma, Kaoru; Yamada, Shigehito

    2016-06-01

    Increased ankle muscle coactivation during gait is a compensation strategy for enhancing postural stability in patients after stroke. However, no previous studies have demonstrated that increased ankle muscle coactivation influenced ankle joint movements during gait in patients after stroke. To investigate the relationship between ankle muscle coactivation and ankle joint movements in hemiplegic patients after stroke. Seventeen patients after stroke participated. The coactivation index (CoI) at the ankle joint was calculated separately for the first and second double support (DS1 and DS2, respectively) and single support (SS) phases on the paretic and non-paretic sides during gait using surface electromyography. Simultaneously, three-dimensional motion analysis was performed to measure the peak values of the ankle joint angle, moment, and power in the sagittal plane. Ground reaction forces (GRFs) of the anterior and posterior components and centers of pressure (COPs) trajectory ranges and velocities were also measured. The CoI during the SS phase on the paretic side was negatively related to ankle dorsiflexion angle, ankle plantarflexion moment, ankle joint power generation, and COP velocity on the paretic side. Furthermore, the CoI during the DS2 phase on both sides was negatively related to anterior GRF amplitude on each side. Increased ankle muscle coactivation is related to decreased ankle joint movement during the SS phase on the paretic side to enhance joint stiffness and compensate for stance limb instability, which may be useful for patients who have paretic instability during the stance phase after stroke.

  15. 3D strength surfaces for ankle plantar- and dorsi-flexion in healthy adults: an isometric and isokinetic dynamometry study.

    PubMed

    Hussain, Sara J; Frey-Law, Laura

    2016-01-01

    The ankle is an important component of the human kinetic chain, and deficits in ankle strength can negatively impact functional tasks such as balance and gait. While peak torque is influenced by joint angle and movement velocity, ankle strength is typically reported for a single angle or movement speed. To better identify deficits and track recovery of ankle strength after injury or surgical intervention, ankle strength across a range of movement velocities and joint angles in healthy adults is needed. Thus, the primary goals of this study were to generate a database of strength values and 3-dimensional strength surface models for plantarflexion (PF) and dorsiflexion (DF) ankle strength in healthy men and women. Secondary goals were to develop a means to estimate ankle strength percentiles as well as examine predictors of maximal ankle strength in healthy adults. Using an isokinetic dynamometer, we tested PF and DF peak torques at five joint angles (-10° [DF], 0° [neutral], 10° [PF], 20° [PF] and 30° [PF]) and six velocities (0°/s, 30°/s, 60°/s, 90°/s, 120°/s and 180°/s) in 53 healthy adults. These data were used to generate 3D plots, or "strength surfaces", for males and females for each direction; surfaces were fit using a logistic equation. We also tested predictors of ankle strength, including height, weight, sex, and self-reported physical activity levels. Torque-velocity and torque-angle relationships at the ankle interact, indicating that these relationships are interdependent and best modeled using 3D surfaces. Sex was the strongest predictor of ankle strength over height, weight, and self-reported physical activity levels. 79 to 97 % of the variance in mean peak torque was explained by joint angle and movement velocity using logistic equations, for men and women and PF and DF directions separately. The 3D strength data and surface models provide a more comprehensive dataset of ankle strength in healthy adults than previously reported. These models may allow researchers and clinicians to quantify ankle strength deficits and track recovery in patient populations, using angle- and velocity-specific ankle strength values and/or strength percentiles from healthy adults.

  16. Foot mechanics during the first six years of independent walking.

    PubMed

    Samson, William; Dohin, Bruno; Desroches, Guillaume; Chaverot, Jean-Luc; Dumas, Raphaël; Cheze, Laurence

    2011-04-29

    Recognition of the changes during gait that occur normally as a part of growth is essential to prevent mislabeling those changes from adult gait as evidence of gait pathology. Currently, in the literature, the definition of a mature age for ankle joint dynamics is controversial (i.e., between 5 and 10 years). Moreover, the mature age of the metatarsophalangeal (MP) joint, which is essential for the functioning of the foot, has not been defined in the literature. Thus, the objective of the present study explored foot mechanics (ankle and MP joints) in young children to define a mature age of foot function. Forty-two healthy children between 1 and 6 years of age and eight adults were measured during gait. The ground reaction force (GRF), the MP and ankle joint angles, moments, powers, and 3D angles between the joint moment and the joint angular velocity vectors (3D angle α(M.ω)) were processed and compared between four age groups (2, 3.5, 5 and adults). Based on statistical analysis, the MP joint biomechanical parameters were similar between children (older than 2 years) and adults, hinting at a quick maturation of this joint mechanics. The ankle joint parameters and the GRFs (except for the frontal plane) showed an adult-like pattern in 5-year-old children. Some ankle joint parameters, such as the joint power and the 3D angle α(M.ω) still evolved significantly until 3.5 years. Based on these results, it would appear that foot maturation during gait is fully achieved at 5 years. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Flexor bias of joint position in humans during spaceflight

    NASA Technical Reports Server (NTRS)

    McCall, G. E.; Goulet, C.; Boorman, G. I.; Roy, R. R.; Edgerton, V. R.

    2003-01-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  18. Flexor bias of joint position in humans during spaceflight.

    PubMed

    McCall, G E; Goulet, C; Boorman, G I; Roy, R R; Edgerton, V R

    2003-09-01

    The ability to estimate ankle and elbow joint position was tested before, during, and after a 17-day spaceflight. Subjects estimated targeted joint angles during isovelocity (IsoV) joint movements with agonist muscle groups either active or relaxed. These movements included elbow extension (EE) and elbow flexion (EF), and plantarflexion (PF) and dorsiflexion (DF) of the ankle. Subjects also estimated these joint positions while moving the dynamometer at their chosen (variable) velocity (VarV) during EE and PF. For IsoV tests, no differences were observed between active and passive movements for either the ankle or elbow. Compared with those of pre-flight test days, estimates of targeted elbow joint angles were approximately 5 degrees to 15 degrees more flexed in-flight, and returned toward the pre-flight values during recovery. The spaceflight effects for the ankle were inconsistent and less prevalent than those for the elbow. The VarV PF test condition for the 120 degrees target angle at the ankle exhibited approximately 5 degrees to 7 degrees more DF target angle estimates in-flight compared with those pre- or post-flight. In contrast, during IsoV PF there was a tendency for ankle estimates to be approximately 2 degrees to 3 degrees more PF after 2-3 days exposure to spaceflight. These data indicate that during spaceflight the perception of elbow extension is greater than actuality, and are consistent with the interpretation that microgravity induced a flexor bias in the estimation of the actual elbow joint position. Moreover, these effects in joint proprioception during spaceflight were observed in individual isolated single-joint movements during tasks in which vestibular function in maintaining posture were minimal.

  19. The Shank-to-Vertical-Angle as a parameter to evaluate tuning of Ankle-Foot Orthoses.

    PubMed

    Kerkum, Yvette L; Houdijk, Han; Brehm, Merel-Anne; Buizer, Annemieke I; Kessels, Manon L C; Sterk, Arjan; van den Noort, Josien C; Harlaar, Jaap

    2015-09-01

    The effectiveness of an Ankle-Foot Orthosis footwear combination (AFO-FC) may be partly dependent on the alignment of the ground reaction force with respect to lower limb joint rotation centers, reflected by joint angles and moments. Adjusting (i.e. tuning) the AFO-FC's properties could affect this alignment, which may be guided by monitoring the Shank-to-Vertical-Angle. This study aimed to investigate whether the Shank-to-Vertical-Angle during walking responds to variations in heel height and footplate stiffness, and if this would reflect changes in joint angles and net moments in healthy adults. Ten subjects walked on an instrumented treadmill and performed six trials while walking with bilateral rigid Ankle-Foot Orthoses. The AFO-FC heel height was increased, aiming to impose a Shank-to-Vertical-Angle of 5°, 11° and 20°, and combined with a flexible or stiff footplate. For each trial, the Shank-to-Vertical-Angle, joint flexion-extension angles and net joint moments of the right leg at midstance were averaged over 25 gait cycles. The Shank-to-Vertical-Angle significantly increased with increasing heel height (p<0.001), resulting in an increase in knee flexion angle and internal knee extensor moment (p<0.001). The stiff footplate reduced the effect of heel height on the internal knee extensor moment (p=0.030), while the internal ankle plantar flexion moment increased (p=0.035). Effects of heel height and footplate stiffness on the hip joint were limited. Our results support the potential to use the Shank-to-Vertical-Angle as a parameter to evaluate AFO-FC tuning, as it is responsive to changes in heel height and reflects concomitant changes in the lower limb angles and moments. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Comparison of custom-moulded ankle orthosis with hinged joints and off-the-shelf ankle braces in preventing ankle sprain in lateral cutting movements.

    PubMed

    Lee, Winson C C; Kobayashi, Toshiki; Choy, Barton T S; Leung, Aaron K L

    2012-06-01

    A custom moulded ankle orthosis with hinged joints potentially offers a better control over the subtalar joint and the ankle joint during lateral cutting movements, due to total contact design and increase in material strength. To test the above hypothesis by comparing it to three other available orthoses. Repeated measures. Eight subjects with a history of ankle sprains (Grade 2), and 11 subjects without such history performed lateral cutting movements in four test conditions: 1) non-orthotic, 2) custom-moulded ankle orthosis with hinges, 3) Sport-Stirrup, and 4) elastic ankle sleeve with plastic support. A VICON motion analysis system was used to study the motions at the ankle and subtalar joints. The custom-moulded ankle orthosis significantly lowered the inversion angle at initial contact (p = 0.006) and the peak inversion angle (p = 0.000) during lateral cutting movements in comparison to non-orthotic condition, while the other two orthoses did not. The three orthoses did not affect the plantarflexion motions, which had been suggested by previous studies to be important in shock wave attenuation. The custom-moulded ankle orthosis with hinges could better control inversion and thus expected to better prevent ankle sprain in lateral cutting movements. Custom-moulded ankle orthoses are not commonly used in preventing ankle sprains. This study raises the awareness of the use of custom-moulded ankle orthoses which are expected to better prevent ankle sprains.

  1. Correlations among pelvic positions and differences in lower extremity joint angles during walking in female university students.

    PubMed

    Cho, Misuk

    2015-06-01

    [Purpose] This study aimed to identify correlations among pelvic positions and differences in lower extremity joint angles during walking in female university students. [Subjects] Thirty female university students were enrolled and their pelvic positions and differences in lower extremity joint angles were measured. [Methods] Pelvic position, pelvic torsion, and pelvic rotation were assessed using the BackMapper. In addition, motion analysis was performed to derive differences between left and right flexion, abduction, and external rotation ranges of hip joints; flexion, abduction, and external rotation ranges of knee joints; and dorsiflexion, inversion, and abduction ranges of ankle joints, according to X, Y, and Z-axes. [Results] Pelvic position was found to be positively correlated with differences between left and right hip flexion (r=0.51), hip abduction (r=0.62), knee flexion (r=0.45), knee abduction (r=0.42), and ankle inversion (r=0.38). In addition, the difference between left and right hip abduction showed a positive correlation with difference between left and right ankle dorsiflexion (r=0.64). Moreover, differences between left and right knee flexion exhibited positive correlations with differences between left and right knee abduction (r=0.41) and ankle inversion (r=0.45). [Conclusion] Bilateral pelvic tilt angles are important as they lead to bilateral differences in lower extremity joint angles during walking.

  2. Chimpanzee ankle and foot joint kinematics: Arboreal versus terrestrial locomotion.

    PubMed

    Holowka, Nicholas B; O'Neill, Matthew C; Thompson, Nathan E; Demes, Brigitte

    2017-09-01

    Many aspects of chimpanzee ankle and midfoot joint morphology are believed to reflect adaptations for arboreal locomotion. However, terrestrial travel also constitutes a significant component of chimpanzee locomotion, complicating functional interpretations of chimpanzee and fossil hominin foot morphology. Here we tested hypotheses of foot motion and, in keeping with general assumptions, we predicted that chimpanzees would use greater ankle and midfoot joint ranges of motion during travel on arboreal supports than on the ground. We used a high-speed motion capture system to measure three-dimensional kinematics of the ankle and midfoot joints in two male chimpanzees during three locomotor modes: terrestrial quadrupedalism on a flat runway, arboreal quadrupedalism on a horizontally oriented tree trunk, and climbing on a vertically oriented tree trunk. Chimpanzees used relatively high ankle joint dorsiflexion angles during all three locomotor modes, although dorsiflexion was greatest in arboreal modes. They used higher subtalar joint coronal plane ranges of motion during terrestrial and arboreal quadrupedalism than during climbing, due in part to their use of high eversion angles in the former. Finally, they used high midfoot inversion angles during arboreal locomotor modes, but used similar midfoot sagittal plane kinematics across all locomotor modes. The results indicate that chimpanzees use large ranges of motion at their various ankle and midfoot joints during both terrestrial and arboreal locomotion. Therefore, we argue that chimpanzee foot anatomy enables a versatile locomotor repertoire, and urge caution when using foot joint morphology to reconstruct arboreal behavior in fossil hominins. © 2017 Wiley Periodicals, Inc.

  3. The effect of different decline angles on the biomechanics of double limb squats and the implications to clinical and training practice.

    PubMed

    Richards, Jim; Selfe, James; Sinclair, Jonathan; May, Karen; Thomas, Gavin

    2016-09-01

    Bilateral decline squatting has been well documented as a rehabilitation exercise, however, little information exists on the optimum angle of decline. The aim of this study was to determine the ankle and knee angle, moments, the patellofemoral joint load, patellar tendon load and associated muscle activity while performing a double limb squat at different decline angles and the implications to rehabilitation. Eighteen healthy subjects performed double limb squats at 6 angles of declination: 0, 5, 10, 15, 20 and 25 degrees. The range of motion of the knee and ankle joints, external moments, the patellofemoral/patellar tendon load and integrated EMG of gastrocnemius, tibialis anterior, rectus femoris and biceps femoris were evaluated. As the decline angle increased up to 20 degrees, the range of motion possible at the ankle and knee increased. The joint moments showed a decrease at the ankle up to 15 degrees and an increase at the knee up to 25 degrees, indicating a progressive reduction in loading around the ankle with a corresponding increase of the load in the patellar tendon and patellofemoral joint. These trends were supported by a decrease in tibialis anterior activity and an increase in the rectus femoris activity up to 15 degrees declination. However, gastrocnemius and biceps femoris activity increased as the decline angle increased above 15 degrees. The action of gastrocnemius and biceps femoris stabilises the knee against an anterior displacement of the femur on the tibia. These findings would suggest that there is little benefit in using a decline angle greater than 15-20 degrees unless the purpose is to offer an additional stability challenge to the knee joint.

  4. The effect of different decline angles on the biomechanics of double limb squats and the implications to clinical and training practice

    PubMed Central

    Richards, Jim; Selfe, James; Sinclair, Jonathan; May, Karen; Thomas, Gavin

    2016-01-01

    Abstract Bilateral decline squatting has been well documented as a rehabilitation exercise, however, little information exists on the optimum angle of decline. The aim of this study was to determine the ankle and knee angle, moments, the patellofemoral joint load, patellar tendon load and associated muscle activity while performing a double limb squat at different decline angles and the implications to rehabilitation. Eighteen healthy subjects performed double limb squats at 6 angles of declination: 0, 5, 10, 15, 20 and 25 degrees. The range of motion of the knee and ankle joints, external moments, the patellofemoral/patellar tendon load and integrated EMG of gastrocnemius, tibialis anterior, rectus femoris and biceps femoris were evaluated. As the decline angle increased up to 20 degrees, the range of motion possible at the ankle and knee increased. The joint moments showed a decrease at the ankle up to 15 degrees and an increase at the knee up to 25 degrees, indicating a progressive reduction in loading around the ankle with a corresponding increase of the load in the patellar tendon and patellofemoral joint. These trends were supported by a decrease in tibialis anterior activity and an increase in the rectus femoris activity up to 15 degrees declination. However, gastrocnemius and biceps femoris activity increased as the decline angle increased above 15 degrees. The action of gastrocnemius and biceps femoris stabilises the knee against an anterior displacement of the femur on the tibia. These findings would suggest that there is little benefit in using a decline angle greater than 15-20 degrees unless the purpose is to offer an additional stability challenge to the knee joint. PMID:28149400

  5. Estimations of relative effort during sit-to-stand increase when accounting for variations in maximum voluntary torque with joint angle and angular velocity.

    PubMed

    Bieryla, Kathleen A; Anderson, Dennis E; Madigan, Michael L

    2009-02-01

    The main purpose of this study was to compare three methods of determining relative effort during sit-to-stand (STS). Fourteen young (mean 19.6+/-SD 1.2 years old) and 17 older (61.7+/-5.5 years old) adults completed six STS trials at three speeds: slow, normal, and fast. Sagittal plane joint torques at the hip, knee, and ankle were calculated through inverse dynamics. Isometric and isokinetic maximum voluntary contractions (MVC) for the hip, knee, and ankle were collected and used for model parameters to predict the participant-specific maximum voluntary joint torque. Three different measures of relative effort were determined by normalizing STS joint torques to three different estimates of maximum voluntary torque. Relative effort at the hip, knee, and ankle were higher when accounting for variations in maximum voluntary torque with joint angle and angular velocity (hip=26.3+/-13.5%, knee=78.4+/-32.2%, ankle=27.9+/-14.1%) compared to methods which do not account for these variations (hip=23.5+/-11.7%, knee=51.7+/-15.0%, ankle=20.7+/-10.4%). At higher velocities, the difference in calculating relative effort with respect to isometric MVC or incorporating joint angle and angular velocity became more evident. Estimates of relative effort that account for the variations in maximum voluntary torque with joint angle and angular velocity may provide higher levels of accuracy compared to methods based on measurements of maximal isometric torques.

  6. The effect of ankle-foot orthosis plantarflexion stiffness on ankle and knee joint kinematics and kinetics during first and second rockers of gait in individuals with stroke

    PubMed Central

    Singer, Madeline L.; Kobayashi, Toshiki; Lincoln, Lucas S.; Orendurff, Michael S.; Foreman, K. Bo

    2014-01-01

    Background Stiffness of an ankle-foot orthosis plays an important role in improving gait in patients with a history of stroke. To address this, the aim of this case series study was to determine the effect of increasing plantarflexion stiffness of an ankle-foot orthosis on the sagittal ankle and knee joint angle and moment during the first and second rockers of gait. Methods Gait data were collected in 5 subjects with stroke at a self-selected walking speed under two plantarflexion stiffness conditions (0.4 Nm/deg and 1.3 Nm/deg) using a stiffness-adjustable experimental ankle-foot orthosis on a Bertec split-belt fully instrumented treadmill in a 3-dimensional motion analysis laboratory. Findings By increasing the plantarflexion stiffness of the ankle-foot orthosis, peak plantarfexion angle of the ankle was reduced and peak dorsiflexion moment was generally increased in the first rocker as hypothesized. Two subjects demonstrated increases in both peak knee flexion angle and peak knee extension moment in the second rocker as hypothesized. The two subjects exhibited minimum contractility during active plantarflexion, while the other three subjects could actively plantarflex their ankle joint. Interpretation It was suggested that those with the decreased ability to actively plantarflex their ankle could not overcome excessive plantarflexion stiffness at initial contact of gait, and as a result exhibited compensation strategies at the knee joint. Providing excessively stiff ankle-foot orthoses might put added stress on the extensor muscles of the knee joint, potentially creating fatigue and future pathologies in some patients with stroke. PMID:25241248

  7. Contribution of calcaneal and leg segment rotations to ankle joint dorsiflexion in a weight-bearing task.

    PubMed

    Chizewski, Michael G; Chiu, Loren Z F

    2012-05-01

    Joint angle is the relative rotation between two segments where one is a reference and assumed to be non-moving. However, rotation of the reference segment will influence the system's spatial orientation and joint angle. The purpose of this investigation was to determine the contribution of leg and calcaneal rotations to ankle rotation in a weight-bearing task. Forty-eight individuals performed partial squats recorded using a 3D motion capture system. Markers on the calcaneus and leg were used to model leg and calcaneal segment, and ankle joint rotations. Multiple linear regression was used to determine the contribution of leg and calcaneal segment rotations to ankle joint dorsiflexion. Regression models for left (R(2)=0.97) and right (R(2)=0.97) ankle dorsiflexion were significant. Sagittal plane leg rotation had a positive influence (left: β=1.411; right: β=1.418) while sagittal plane calcaneal rotation had a negative influence (left: β=-0.573; right: β=-0.650) on ankle dorsiflexion. Sagittal plane rotations of the leg and calcaneus were positively correlated (left: r=0.84, P<0.001; right: r=0.80, P<0.001). During a partial squat, the calcaneus rotates forward. Simultaneous forward calcaneal rotation with ankle dorsiflexion reduces total ankle dorsiflexion angle. Rear foot posture is reoriented during a partial squat, allowing greater leg rotation in the sagittal plane. Segment rotations may provide greater insight into movement mechanics that cannot be explained via joint rotations alone. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Expecting ankle tilts and wearing an ankle brace influence joint control in an imitated ankle sprain mechanism during walking.

    PubMed

    Gehring, Dominic; Wissler, Sabrina; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    A thorough understanding of the functional aspects of ankle joint control is essential to developing effective injury prevention. It is of special interest to understand how neuromuscular control mechanisms and mechanical constraints stabilize the ankle joint. Therefore, the aim of the present study was to determine how expecting ankle tilts and the application of an ankle brace influence ankle joint control when imitating the ankle sprain mechanism during walking. Ankle kinematics and muscle activity were assessed in 17 healthy men. During gait rapid perturbations were applied using a trapdoor (tilting with 24° inversion and 15° plantarflexion). The subjects either knew that a perturbation would definitely occur (expected tilts) or there was only the possibility that a perturbation would occur (potential tilts). Both conditions were conducted with and without a semi-rigid ankle brace. Expecting perturbations led to an increased ankle eversion at foot contact, which was mediated by an altered muscle preactivation pattern. Moreover, the maximal inversion angle (-7%) and velocity (-4%), as well as the reactive muscle response were significantly reduced when the perturbation was expected. While wearing an ankle brace did not influence muscle preactivation nor the ankle kinematics before ground contact, it significantly reduced the maximal ankle inversion angle (-14%) and velocity (-11%) as well as reactive neuromuscular responses. The present findings reveal that expecting ankle inversion modifies neuromuscular joint control prior to landing. Although such motor control strategies are weaker in their magnitude compared with braces, they seem to assist ankle joint stabilization in a close-to-injury situation. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Range of Motion of the Ankle According to Pushing Force, Gender and Knee Position.

    PubMed

    Cho, Kang Hee; Jeon, Yumi; Lee, Hyunkeun

    2016-04-01

    To investigate the difference of range of motion (ROM) of ankle according to pushing force, gender and knee position. One hundred and twenty-eight healthy adults (55 men, 73 women) between the ages of 20 and 51, were included in the study. One examiner measured the passive range of motion (PROM) of ankle by Dualer IQ Inclinometers and Commander Muscle Testing. ROM of ankle dorsiflexion (DF) and plantarflexion (PF) according to change of pushing force and knee position were measured at prone position. There was significant correlation between ROM and pushing force, the more pushing force leads the more ROM at ankle DF and ankle PF. Knee flexion of 90° position showed low PF angle and high ankle DF angle, as compared to the at neutral position of knee joint. ROM of ankle DF for female was greater than for male, with no significant difference. ROM of ankle PF for female was greater than male regardless of the pushing force. To our knowledge, this is the first study to assess the relationship between pushing force and ROM of ankle joint. There was significant correlation between ROM of ankle and pushing force. ROM of ankle PF for female estimated greater than male regardless of the pushing force and the number of measurement. The ROM of the ankle is measured differently according to the knee joint position. Pushing force, gender and knee joint position are required to be considered when measuring the ROM of ankle joint.

  10. Frontal plane landing mechanics in high-arched compared with low-arched female athletes.

    PubMed

    Powell, Douglas W; Hanson, Nicholas J; Long, Benjamin; Williams, D S Blaise

    2012-09-01

    To examine ground reaction forces (GRFs); frontal plane hip, knee, and ankle joint angles; and moments in high-arched (HA) and low-arched (LA) athletes during landing. Experimental study. Controlled research laboratory. Twenty healthy female recreational athletes (10 HA and 10 LA). Athletes performed 5 barefoot drop landings from a height of 30 cm. Frontal plane ankle, knee, and hip joint angles (in degrees) at initial contact, peak vertical GRF, and peak knee flexion; peak ankle, knee, and hip joint moments in the frontal plane. Vertical GRF profiles were similar between HA and LA athletes (P = 0.78). The HA athletes exhibited significantly smaller peak ankle inversion angles than the LA athletes (P = 0.01) at initial contact. At peak vertical GRF, HA athletes had significantly greater peak knee (P = 0.01) and hip abduction angles than LA athletes (P = 0.02). There were no significant differences between HA and LA athletes in peak joint moments (hip: P = 0.68; knee: P = 0.71; ankle: P = 0.15). These findings demonstrate that foot type is associated with altered landing mechanics, which may underlie lower extremity injuries. The ankle-driven strategy previously reported in female athletes suggests that foot function may have a greater relationship with lower extremity injury than that in male athletes. Future research should address the interaction of foot type and gender during landing tasks.

  11. Comparison of neuromuscular abnormalities between upper and lower extremities in hemiparetic stroke.

    PubMed

    Mirbagheri, M M; AliBiglou, L; Thajchayapong, M; Lilaonitkul, T; Rymer, W Z

    2006-01-01

    We studied the neuromuscular mechanical properties of the elbow and ankle joints in chronic, hemiparetic stroke patients and healthy subjects. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joint at different joint angles. The experiments were performed for both spastic (stroke) and contralateral (control) sides of stroke patients and one side of healthy (normal) subjects. We found reflex stiffness gain (GR) was significantly larger in the stroke than the control side for both elbow and ankle joints. GR was also strongly position dependent in both joints. However, the modulation of GR with position was slightly different in two joints. GR was also larger in the control than the normal joints but the differences were significant only for the ankle joint. Intrinsic stiffness gain (K) was also significantly larger in the stroke than the control joint at elbow extended positions and at ankle dorsiflexed positions. Modulation of K with the ankle angle was similar for stroke, control and normal groups. In contrast, the position dependency of the elbow was different. K was larger in the control than normal ankle whereas it was lower in the control than normal elbow. However, the differences were not significant for any joint. The findings demonstrate that both reflex and intrinsic stiffness gain increase abnormally in both upper and lower extremities. However, the major contribution of intrinsic and reflex stiffness to the abnormalities is at the end of ROM and at the middle ROM, respectively. The results also demonstrate that the neuromuscular properties of the contralateral limb are not normal suggesting that it may not be used as a suitable control at least for the ankle study.

  12. Acute influence of restricted ankle dorsiflexion angle on knee joint mechanics during gait.

    PubMed

    Ota, S; Ueda, M; Aimoto, K; Suzuki, Y; Sigward, S M

    2014-06-01

    Restrictions in range of ankle dorsiflexion (DF) motion can persist following ankle injuries. Ankle DF is necessary during terminal stance of gait, and its restricted range may affect knee joint kinematics and kinetics. The purpose of this study was to investigate the acute influence of varied levels of restricted ankle DF on knee joint sagittal and frontal plane kinematics and kinetics during gait. Thirty healthy volunteers walked with a custom-designed ankle brace that restricted ankle DF. Kinematics and kinetics were collected using a 7-camera motion analysis system and two force plates. Ankle dorsiflexion was restricted in 10-degree increments, allowing for four conditions: Free, light (LR), moderate (MR) and severe restriction (SR). Knee angles and moments were measured during terminal stance. Real peak ankle DF for Free, LR, MR, and SR were 13.7±4.8°, 11.6±5.0°, 7.5±5.3°, and 4.2±7.2°, respectively. Peak knee extension angles under the same conditions were -6.7±6.7°, -5.4±6.4°, -2.5±7.5°, and 0.6±7.8°, respectively, and the peak knee varus moment was 0.48±0.17 Nm/kg, 0.47±0.17 Nm/kg, 0.53±0.20 Nm/kg, and 0.57±0.20 Nm/kg. The knee varus moment was significantly increased from MR condition with an 8-degree restriction in ankle DF. Knee joint kinematics and kinetics in the sagittal and frontal planes were affected by reduced ankle DF during terminal stance of gait. Differences were observed with restriction in ankle DF range of approximately 8°. level III. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ankle instability effects on joint position sense when stepping across the active movement extent discrimination apparatus.

    PubMed

    Witchalls, Jeremy; Waddington, Gordon; Blanch, Peter; Adams, Roger

    2012-01-01

    Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Descriptive laboratory study. University clinical laboratory. Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Difference in scores between groups with stable and unstable ankles and between test repeats. Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus.

  14. Range of Motion of the Ankle According to Pushing Force, Gender and Knee Position

    PubMed Central

    Cho, Kang Hee; Lee, Hyunkeun

    2016-01-01

    Objective To investigate the difference of range of motion (ROM) of ankle according to pushing force, gender and knee position. Methods One hundred and twenty-eight healthy adults (55 men, 73 women) between the ages of 20 and 51, were included in the study. One examiner measured the passive range of motion (PROM) of ankle by Dualer IQ Inclinometers and Commander Muscle Testing. ROM of ankle dorsiflexion (DF) and plantarflexion (PF) according to change of pushing force and knee position were measured at prone position. Results There was significant correlation between ROM and pushing force, the more pushing force leads the more ROM at ankle DF and ankle PF. Knee flexion of 90° position showed low PF angle and high ankle DF angle, as compared to the at neutral position of knee joint. ROM of ankle DF for female was greater than for male, with no significant difference. ROM of ankle PF for female was greater than male regardless of the pushing force. Conclusion To our knowledge, this is the first study to assess the relationship between pushing force and ROM of ankle joint. There was significant correlation between ROM of ankle and pushing force. ROM of ankle PF for female estimated greater than male regardless of the pushing force and the number of measurement. The ROM of the ankle is measured differently according to the knee joint position. Pushing force, gender and knee joint position are required to be considered when measuring the ROM of ankle joint. PMID:27152277

  15. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint.

    PubMed

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan Rt

    2017-01-01

    Data about a muscle's fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function.

  16. Changes in ankle joint motion after Supramalleolar osteotomy: a cadaveric model.

    PubMed

    Kim, Hak Jun; Yeo, Eui Dong; Rhyu, Im Joo; Lee, Soon-Hyuck; Lee, Yeon Soo; Lee, Young Koo

    2017-09-09

    Malalignment of the ankle joint has been found after trauma, by neurological disorders, genetic predisposition and other unidentified factors, and results in asymmetrical joint loading. For a medial open wedge supramalleolar osteotomy(SMO), there are some debates as to whether concurrent fibular osteotomy should be performed. We assessed the changes in motion of ankle joint and plantar pressure after supramalleolar osteotomy without fibular osteotomy. Ten lower leg specimens below the knee were prepared from fresh-frozen human cadavers. They were harvested from five males (10 ankles)whose average age was 70 years. We assessed the motion of ankle joint as well as plantar pressure for SS(supra-syndesmotic) SMO and IS(intra-syndesmotic) SMO. After the osteotomy, each specimen was subjected to axial compression from 20 N preload to 350 N representing half-body weight. For the measurement of the motion of ankle joint, the changes in gap and point, angles in ankle joint were measured. The plantar pressure were also recorded using TekScan sensors. The changes in the various gap, point, and angles movements on SS-SMO and IS-SMO showed no statistically significant differences between the two groups. Regarding the shift of plantar center of force (COF) were noted in the anterolateral direction, but not statistically significant. SS-SMO and IS-SMO with intact fibula showed similar biomechanical effect on the ankle joint. We propose that IS-SMO should be considered carefully for the treatment of osteoarthrosis when fibular osteotomy is not performed because lateral cortex fracture was less likely using the intrasyndesmosis plane because of soft tissue support.

  17. Ankle Instability Effects on Joint Position Sense When Stepping Across the Active Movement Extent Discrimination Apparatus

    PubMed Central

    Witchalls, Jeremy; Waddington, Gordon; Blanch, Peter; Adams, Roger

    2012-01-01

    Context Individuals with and without functional ankle instability have been tested for deficits in lower limb proprioception with varied results. Objective To determine whether a new protocol for testing participants' joint position sense during stepping is reliable and can detect differences between participants with unstable and stable ankles. Design Descriptive laboratory study. Setting University clinical laboratory. Patients or Other Participants Sample of convenience involving 21 young adult university students and staff. Ankle stability was categorized by score on the Cumberland Ankle Instability Tool; 13 had functional ankle instability, 8 had healthy ankles. Intervention(s) Test-retest of ankle joint position sense when stepping onto and across the Active Movement Extent Discrimination Apparatus twice, separated by an interim test, standing still on the apparatus and moving only 1 ankle into inversion. Main Outcome Measure(s) Difference in scores between groups with stable and unstable ankles and between test repeats. Results Participants with unstable ankles were worse at differentiating between inversion angles underfoot in both testing protocols. On repeated testing with the stepping protocol, performance of the group with unstable ankles was improved (Cohen d = 1.06, P = .006), whereas scores in the stable ankle group did not change in the second test (Cohen d = 0.04, P = .899). Despite this improvement, the unstable group remained worse at differentiating inversion angles on the stepping retest (Cohen d = 0.99, P = .020). Conclusions The deficits on proprioceptive tests shown by individuals with functional ankle instability improved with repeated exposure to the test situation. The learning effect may be the result of systematic exposure to ankle-angle variation that led to movement-specific learning or increased confidence when stepping across the apparatus. PMID:23182010

  18. Identification of the contribution of the ankle and hip joints to multi-segmental balance control

    PubMed Central

    2013-01-01

    Background Human stance involves multiple segments, including the legs and trunk, and requires coordinated actions of both. A novel method was developed that reliably estimates the contribution of the left and right leg (i.e., the ankle and hip joints) to the balance control of individual subjects. Methods The method was evaluated using simulations of a double-inverted pendulum model and the applicability was demonstrated with an experiment with seven healthy and one Parkinsonian participant. Model simulations indicated that two perturbations are required to reliably estimate the dynamics of a double-inverted pendulum balance control system. In the experiment, two multisine perturbation signals were applied simultaneously. The balance control system dynamic behaviour of the participants was estimated by Frequency Response Functions (FRFs), which relate ankle and hip joint angles to joint torques, using a multivariate closed-loop system identification technique. Results In the model simulations, the FRFs were reliably estimated, also in the presence of realistic levels of noise. In the experiment, the participants responded consistently to the perturbations, indicated by low noise-to-signal ratios of the ankle angle (0.24), hip angle (0.28), ankle torque (0.07), and hip torque (0.33). The developed method could detect that the Parkinson patient controlled his balance asymmetrically, that is, the right ankle and hip joints produced more corrective torque. Conclusion The method allows for a reliable estimate of the multisegmental feedback mechanism that stabilizes stance, of individual participants and of separate legs. PMID:23433148

  19. Changes in coronal alignment of the ankle joint after high tibial osteotomy.

    PubMed

    Choi, Gi Won; Yang, Jae Hyuk; Park, Jung Ho; Yun, Ho Hyun; Lee, Yong In; Chae, Jin Eon; Yoon, Jung Ro

    2017-03-01

    The purpose of this study was to investigate changes in coronal alignment of the ankle joint after HTO. Our hypothesis was that ankle joint orientation may become more parallel or less parallel to the ground after HTO, and this change may affect ankle symptoms. Eighty-six knees were retrospectively analysed after HTO for varus osteoarthritis. Preoperative and follow-up whole-leg radiographs were taken. The hip-knee-ankle (HKA) angle and medial proximal tibial angle (MPTA) were measured to evaluate coronal alignment of the knee. Tibial plafond inclination (TPI), talar inclination (TI), talar tilt (TT), and lateral distal tibial angle (LDTA) were measured to evaluate coronal alignment of the ankle. Patients were divided into two groups: those who exhibited a decrease in the absolute value of TPI and TI after HTO (group A) and those who exhibited an increase in the absolute value of TPI or TI after HTO (group B). Clinical outcomes of the knee and ankle were evaluated pre- and postoperatively. Mean TPI and TI changed from 6.9° ± 3.6° and 8.0° ± 3.8° to 2.8° ± 3.1° and 3.9° ± 3.0° in group A (P < 0.001 for both) and from -1.3° ± 3.7° and 0.6° ± 4.5° to -6.0° ± 4.2° and -4.6° ± 5.9° in group B (P = 0.018 for both). VAS for ankle pain did not change significantly after HTO (n.s.) in group A, whereas those of group B increased significantly after HTO (P = 0.014). Ankle joint orientation becomes more parallel or less parallel to the ground after HTO. Smaller preoperative HKA and LDTA result in a more valgus ankle joint orientation after HTO. Ankle symptoms were affected by coronal alignment changes of the ankle after HTO. III.

  20. The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    PubMed Central

    Sopher, Ran S; Amis, Andrew A; Davies, D Ceri; Jeffers, Jonathan RT

    2016-01-01

    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function. PMID:29805194

  1. Ankle Dorsiflexion Displacement During Landing is Associated With Initial Contact Kinematics but not Joint Displacement.

    PubMed

    Begalle, Rebecca L; Walsh, Meghan C; McGrath, Melanie L; Boling, Michelle C; Blackburn, J Troy; Padua, Darin A

    2015-08-01

    The ankle, knee, and hip joints work together in the sagittal plane to absorb landing forces. Reduced sagittal plane motion at the ankle may alter landing strategies at the knee and hip, potentially increasing injury risk; however, no studies have examined the kinematic relationships between the joints during jump landings. Healthy adults (N = 30; 15 male, 15 female) performed jump landings onto a force plate while three-dimensional kinematic data were collected. Joint displacement values were calculated during the loading phase as the difference between peak and initial contact angles. No relationship existed between ankle dorsiflexion displacement during landing and three-dimensional knee and hip displacements. However, less ankle dorsiflexion displacement was associated with landing at initial ground contact with larger hip flexion, hip internal rotation, knee flexion, knee varus, and smaller plantar flexion angles. Findings of the current study suggest that restrictions in ankle motion during landing may contribute to contacting the ground in a more flexed position but continuing through little additional motion to absorb the landing. Transverse plane hip and frontal plane knee positioning may also occur, which are known to increase the risk of lower extremity injury.

  2. Kinematic error magnitude in the single-mass inverted pendulum model of human standing posture.

    PubMed

    Fok, Kai Lon; Lee, Jae; Vette, Albert H; Masani, Kei

    2018-06-01

    Many postural control studies employ a single-mass inverted pendulum model (IPM) to represent the body during standing. However, it is not known to what degree and for what conditions the model's kinematic assumptions are valid. Our first objective was to quantify the IPM error, corresponding to a distance change between the ankle joint and center of mass (COM) during unrestricted, natural, unperturbed standing. A second objective was to quantify the error of having the ankle joint angle represent the COM angle. Eleven young participants completed five standing conditions: quiet standing with eyes open (EO) and closed (EC), voluntarily swaying forward (VSf) and backward (VSb), and freely moving (FR). The modified Helen-Hayes marker model was used to capture the body kinematics. The COM distance changed <0.1% during EO and EC, <0.25% during VSf and VSb, and <1.5% during FR. The ankle angle moderately and positively correlated with the COM angle for EO, EC, and VSf, indicating that temporal features of the ankle angle moderately represent those of the COM angle. However, a considerable offset between the two existed, which needs to be considered when estimating the COM angle using the ankle angle. For VSb and FR, the correlation coefficients were low and/or negative, suggesting that a large error would result from using the ankle angle as an estimate of the COM angle. Insights from this study will be critical for deciding when to use the IPM in postural control research and for interpreting associated results. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. An articulated ankle-foot orthosis with adjustable plantarflexion resistance, dorsiflexion resistance and alignment: A pilot study on mechanical properties and effects on stroke hemiparetic gait

    PubMed Central

    Kobayashi, Toshiki; Orendurff, Michael S.; Hunt, Grace; Lincoln, Lucas S.; Gao, Fan; LeCursi, Nicholas; Foreman, K. Bo

    2017-01-01

    Mechanical properties of an articulated ankle-foot orthosis (AFO) are closely related to gait performance in individuals post-stroke. This paper presents a pilot study on the mechanical properties of a novel articulated AFO with adjustable plantarflexion resistance, dorsiflexion resistance and alignment, and its effect on ankle and knee joint kinematics and kinetics in an individual post-stroke during gait. The mechanical properties of the AFO were quantified. Gait analysis was performed using a 3D motion capture system with a split-belt instrumented treadmill under 12 different settings of the mechanical properties of the AFO [i.e. 4 plantarflexion resistances (P1

  4. Effect of linear polarized near-infrared light irradiation on flexibility of shoulder and ankle joints.

    PubMed

    Demura, S; Yamaji, S; Ikemoto, Y

    2002-12-01

    There is a possibility that heat stimulus by linear polarized near-infrared light irradiation (PL: Super Lizer HA-30, Tokyo Medical Laboratory) improves the range of joint motion, because the flexibility of soft-part tissues, such as a muscle or a tendon, is improved by increasing the muscle temperature. The purpose of this study was to examine the influence of PL-irradiation on the ranges of shoulder and ankle motions. 30 healthy young adults (15 males: mean+/-SD, age 19.1+/-0.8 yrs, height 173.3+/-4.6 cm, body mass 68.5+/-8.0 kg and 15 females: mean+/-SD, age 19.2+/-0.7 yrs, height 162.3+/-4.5 cm, body mass 58.1+/-6.6 kg) participated in the experiment under PL-irradiation and no-irradiation (placebo) conditions. the angles of shoulder and ankle joint motions were measured twice, before and after the PL- and placebo-irradiations. The angle of a motion was defined as the angle connecting 3 points at linearity as follows: for the shoulder, the greater trochanter, acromion, and caput ulnare, and for the ankle, the knee joint, fassa of lateral malleolus and metacarpal bone. Each angle was measured when a subject extended or flexed maximally without support. The trial-to-trial reliability of each range of joint motion was very high. All parameters in PL-irradiation were significantly larger in postirradiation than pre-irradiation, and the value of postirradiation in PL-irradiation was significantly greater than that for placebo. The ranges of shoulder and ankle motions in placebo-irradiation were also significantly greater in postirradiation than pre-irradiation. Moreover, the change rate for each range of joint motion between pre- and postirradiations was significantly greater in PL-irradiation in both joints. In PL-irradiation, most subject's motions were greater in postirradiation than pre-irradiation, but not in the placebo-irradiation. The effect of PL-irradiation tended to be greater on subjects with a small range of a joint motion. It is considered from the present results that the ranges of shoulder and ankle motions became greater with PL-irradiation, and is effective as a warming-up method.

  5. Differences in kinematic control of ankle joint motions in people with chronic ankle instability.

    PubMed

    Kipp, Kristof; Palmieri-Smith, Riann M

    2013-06-01

    People with chronic ankle instability display different ankle joint motions compared to healthy people. The purpose of this study was to investigate the strategies used to control ankle joint motions between a group of people with chronic ankle instability and a group of healthy, matched controls. Kinematic data were collected from 11 people with chronic ankle instability and 11 matched control subjects as they performed a single-leg land-and-cut maneuver. Three-dimensional ankle joint angles were calculated from 100 ms before, to 200 ms after landing. Kinematic control of the three rotational ankle joint degrees of freedom was investigated by simultaneously examining the three-dimensional co-variation of plantarflexion/dorsiflexion, toe-in/toe-out rotation, and inversion/eversion motions with principal component analysis. Group differences in the variance proportions of the first two principal components indicated that the angular co-variation between ankle joint motions was more linear in the control group, but more planar in the chronic ankle instability group. Frontal and transverse plane motions, in particular, contributed to the group differences in the linearity and planarity of angular co-variation. People with chronic ankle instability use a different kinematic control strategy to coordinate ankle joint motions during a single-leg landing task. Compared to the healthy group, the chronic ankle instability group's control strategy appeared to be more complex and involved joint-specific contributions that would tend to predispose this group to recurring episodes of instability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report

    PubMed Central

    2011-01-01

    Background Ankle joint sprain and the subsequent development of chronic ankle instability (CAI) are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. Methods The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed/agility drills. The outcome measures chosen to assess for interventional efficacy were: [1] Cumberland Ankle Instability Tool (CAIT) scores, [2] Star Excursion Balance Test (SEBT) reach distances, [3] ankle joint plantar flexion during drop landing and drop vertical jumping, and [4] ground reaction forces (GRFs) during walking. Results CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. Conclusions The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors. PMID:21658224

  7. Effect of a 6-week dynamic neuromuscular training programme on ankle joint function: A Case report.

    PubMed

    O'Driscoll, Jeremiah; Kerin, Fearghal; Delahunt, Eamonn

    2011-06-09

    Ankle joint sprain and the subsequent development of chronic ankle instability (CAI) are commonly encountered by clinicians involved in the treatment and rehabilitation of musculoskeletal injuries. It has recently been advocated that ankle joint post-sprain rehabilitation protocols should incorporate dynamic neuromuscular training to enhance ankle joint sensorimotor capabilities. To date no studies have reported on the effects of dynamic neuromuscular training on ankle joint positioning during landing from a jump, which has been reported as one of the primary injury mechanisms for ankle joint sprain. This case report details the effects of a 6-week dynamic neuromuscular training programme on ankle joint function in an athlete with CAI. The athlete took part in a progressive 6-week dynamic neuromuscular training programme which incorporated postural stability, strengthening, plyometric, and speed/agility drills. The outcome measures chosen to assess for interventional efficacy were: 1 Cumberland Ankle Instability Tool (CAIT) scores, 2 Star Excursion Balance Test (SEBT) reach distances, 3 ankle joint plantar flexion during drop landing and drop vertical jumping, and 4 ground reaction forces (GRFs) during walking. CAIT and SEBT scores improved following participation in the programme. The angle of ankle joint plantar flexion decreased at the point of initial contact during the drop landing and drop vertical jumping tasks, indicating that the ankle joint was in a less vulnerable position upon landing following participation in the programme. Furthermore, GRFs were reduced whilst walking post-intervention. The 6-week dynamic neuromuscular training programme improved parameters of ankle joint sensorimotor control in an athlete with CAI. Further research is now required in a larger cohort of subjects to determine the effects of neuromuscular training on ankle joint injury risk factors.

  8. How Well Can Modern Nonhabitual Barefoot Youth Adapt to Barefoot and Minimalist Barefoot Technology Shoe Walking, in regard to Gait Symmetry.

    PubMed

    Xu, Y; Hou, Q; Wang, C; Simpson, T; Bennett, B; Russell, S

    2017-01-01

    We aim to test how well modern nonhabitual barefoot people can adapt to barefoot and Minimalist Bare Foot Technology (MBFT) shoes, in regard to gait symmetry. 28 healthy university students (22 females/6 males) were recruited to walk on a 10-meter walkway randomly on barefoot, in MBFT shoes, and in neutral running shoes at their comfortable walking speed. Kinetic and kinematic data were collected using an 8-camera motion capture system. Data of joint angles, joint forces, and joint moments were extracted to compute a consecutive symmetry index. Compared to walking in neutral running shoes, walking barefoot led to worse symmetry of the following: ankle joint force in sagittal plane, knee joint moment in transverse plane, and ankle joint moment in frontal plane, while improving the symmetry of joint angle in sagittal plane at ankle joints and global (hip-knee-ankle) level. Walking in MBFT shoes had intermediate gait symmetry performance as compared to walking barefoot/walking in neutral running shoes. We conclude that modern nonhabitual barefoot adults will lose some gait symmetry in joint force/moment if they switch to barefoot walking without fitting in; MBFT shoe might be an ideal compromise for healthy youth as regards gait symmetry in walking.

  9. Skin sensory information from the dorsum of the foot and ankle is necessary for kinesthesia at the ankle joint.

    PubMed

    Lowrey, Catherine R; Strzalkowski, Nick D J; Bent, Leah R

    2010-11-12

    Previous research has shown that skin is capable of providing kinesthetic cues at particular joints but we are unsure how these cues are used by the central nervous system. The current study attempted to identify the role of skin on the dorsum of the ankle during a joint matching task. A 30cm patch of skin was anesthetized and matching accuracy in a passive joint matching task was compared before and after skin anesthetization. Goniometers were used to measure ankle angular displacement. Four target angles were used in the matching task, 7° of dorsiflexion, 7°, 14° and 21° of plantarflexion. We hypothesized that, based on the location of skin anesthetized, only the plantarflexion matching tasks would be affected. Absolute error (accuracy) increased significantly for all angles when the skin was anesthetized. Directional error indicated that overall subjects tended to undershoot the target angles, significantly more so for 21° of plantarflexion when the skin was anesthetized. Following anesthetization, variable error (measure of task difficulty) increased significantly at 7° of dorsiflexion and 21° of plantarflexion. These results indicate that the subjects were less accurate and more variable when skin sensation was reduced suggesting that skin information plays an important role in kinesthesia at the ankle. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. Contribution of ankle-foot orthosis moment in regulating ankle and knee motions during gait in individuals post-stroke.

    PubMed

    Kobayashi, Toshiki; Orendurff, Michael S; Singer, Madeline L; Gao, Fan; Foreman, K Bo

    2017-06-01

    Ankle-foot orthosis moment resisting plantarflexion has systematic effects on ankle and knee joint motion in individuals post-stroke. However, it is not known how much ankle-foot orthosis moment is generated to regulate their motion. The aim of this study was to quantify the contribution of an articulated ankle-foot orthosis moment to regulate ankle and knee joint motion during gait in individuals post-stroke. Gait data were collected from 10 individuals post-stroke using a Bertec split-belt instrumented treadmill and a Vicon 3-dimensional motion analysis system. Each participant wore an articulated ankle-foot orthosis whose moment resisting plantarflexion was adjustable at four levels. Ankle-foot orthosis moment while walking was calculated under the four levels based on angle-moment relationship of the ankle-foot orthosis around the ankle joint measured by bench testing. The ankle-foot orthosis moment and the joint angular position (ankle and knee) relationship in a gait cycle was plotted to quantify the ankle-foot orthosis moment needed to regulate the joint motion. Ankle and knee joint motion were regulated according to the amount of ankle-foot orthosis moment during gait. The ankle-foot orthosis maintained the ankle angular position in dorsiflexion and knee angular position in flexion throughout a gait cycle when it generated moment from -0.029 (0.011) to -0.062 (0.019) Nm/kg (moment resisting plantarflexion was defined as negative). Quantifying the contribution of ankle-foot orthosis moment needed to regulate lower limb joints within a specific range of motion could provide valuable criteria to design an ankle-foot orthosis for individuals post-stroke. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Determination of Ankle and Metatarsophalangeal Stiffness During Walking and Jogging.

    PubMed

    Mager, Fabian; Richards, Jim; Hennies, Malika; Dötzel, Eugen; Chohan, Ambreen; Mbuli, Alex; Capanni, Felix

    2018-05-29

    Forefoot stiffness has been shown to influence joint biomechanics. However, little or no data exists on metatarsophalangeal stiffness. Twenty-four healthy rearfoot strike runners were recruited from a staff and student population at the University of Central Lancashire. Five repetitions of shod, self-selected speed level walking and jogging were performed. Kinetic and kinematic data were collected using retro-reflective markers placed on the lower limb and foot, to create a three-segment foot model using the Calibrated Anatomical System Technique. Ankle and metatarsophalangeal moments and angles were calculated. Stiffness values were calculated using a linear best fit line of moment versus of angle plots. Paired t-tests were used to compare values between walking and jogging conditions. Significant differences were seen in ankle range of motion (ROM), but not in metatarsophalangeal ROM. Maximum moments were significantly greater in the ankle during jogging, but these were not significantly different at the metatarsophalangeal joint. Average ankle joint stiffness exhibited significantly lower stiffness when walking compared to jogging. However, the metatarsophalangeal joint exhibited significantly greater stiffness when walking compared to jogging. A greater understanding of forefoot stiffness may inform the development of footwear, prosthetic feet and orthotic devices, such as ankle-foot orthoses for walking and sporting activities.

  12. Gait cycle analysis: parameters sensitive for functional evaluation of peripheral nerve recovery in rat hind limbs.

    PubMed

    Rui, Jing; Runge, M Brett; Spinner, Robert J; Yaszemski, Michael J; Windebank, Anthony J; Wang, Huan

    2014-10-01

    Video-assisted gait kinetics analysis has been a sensitive method to assess rat sciatic nerve function after injury and repair. However, in conduit repair of sciatic nerve defects, previously reported kinematic measurements failed to be a sensitive indicator because of the inferior recovery and inevitable joint contracture. This study aimed to explore the role of physiotherapy in mitigating joint contracture and to seek motion analysis indices that can sensitively reflect motor function. Data were collected from 26 rats that underwent sciatic nerve transection and conduit repair. Regular postoperative physiotherapy was applied. Parameters regarding step length, phase duration, and ankle angle were acquired and analyzed from video recording of gait kinetics preoperatively and at regular postoperative intervals. Stride length ratio (step length of uninjured foot/step length of injured foot), percent swing of the normal paw (percentage of the total stride duration when the uninjured paw is in the air), propulsion angle (toe-off angle subtracted by midstance angle), and clearance angle (ankle angle change from toe off to midswing) decreased postoperatively comparing with baseline values. The gradual recovery of these measurements had a strong correlation with the post-nerve repair time course. Ankle joint contracture persisted despite rigorous physiotherapy. Parameters acquired from a 2-dimensional motion analysis system, that is, stride length ratio, percent swing of the normal paw, propulsion angle, and clearance angle, could sensitively reflect nerve function impairment and recovery in the rat sciatic nerve conduit repair model despite the existence of joint contractures.

  13. Does distal tibiofibular joint mobilization decrease limitation of ankle dorsiflexion?

    PubMed

    Fujii, Misaki; Suzuki, Daisuke; Uchiyama, Eiichi; Muraki, Takayuki; Teramoto, Atsushi; Aoki, Mitsuhiro; Miyamoto, Shigenori

    2010-02-01

    Limitation of ankle motion is in many cases treated by joint mobilization (JM), a kind of manual physical therapy technique. Until now, the JM approach has mainly focused on the talocrural joint, with less attention to the distal tibiofibular joint. We applied cyclic loading to the lateral malleolus as in JM in order to clarify the relationship between the dorsiflexion angle and the excursion of the lateral malleolus. Seven normal, fresh-frozen cadaver legs were used. To each specimen, cyclic loading with a 30N force was applied 1000 times to the lateral malleolus at a speed of 15N/s. The displacement of the lateral malleolus was measured with a magnetic tracking system. The maximum dorsiflexion angle was measured before and after cyclic loading. After the first 100 and 1000 times of cyclic loading, the tibia was displaced 0.44+/-0.30mm and 0.75+/-0.36mm, respectively, and the fibula was displaced 0.44+/-0.28mm and 0.92+/-0.39mm, respectively. The average dorsiflexion angle increased from 14.36+/-7.51 degrees to 16.74+/-7.21 degrees after cyclic loading (P<0.05). Movement of the distal tibiofibular joint led to a significant increase in the range of ankle dorsiflexion. These results suggest that tibiofibular JM would be effective for limitation of ankle dorsiflexion.

  14. A powered prosthetic ankle joint for walking and running.

    PubMed

    Grimmer, Martin; Holgate, Matthew; Holgate, Robert; Boehler, Alexander; Ward, Jeffrey; Hollander, Kevin; Sugar, Thomas; Seyfarth, André

    2016-12-19

    Current prosthetic ankle joints are designed either for walking or for running. In order to mimic the capabilities of an able-bodied, a powered prosthetic ankle for walking and running was designed. A powered system has the potential to reduce the limitations in range of motion and positive work output of passive walking and running feet. To perform the experiments a controller capable of transitions between standing, walking, and running with speed adaptations was developed. In the first case study the system was mounted on an ankle bypass in parallel with the foot of a non-amputee subject. By this method the functionality of hardware and controller was proven. The Walk-Run ankle was capable of mimicking desired torque and angle trajectories in walking and running up to 2.6 m/s. At 4 m/s running, ankle angle could be matched while ankle torque could not. Limited ankle output power resulting from a suboptimal spring stiffness value was identified as a main reason. Further studies have to show to what extent the findings can be transferred to amputees.

  15. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    PubMed

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  16. Multiunit Activity-Based Real-Time Limb-State Estimation from Dorsal Root Ganglion Recordings

    PubMed Central

    Han, Sungmin; Chu, Jun-Uk; Kim, Hyungmin; Park, Jong Woong; Youn, Inchan

    2017-01-01

    Proprioceptive afferent activities could be useful for providing sensory feedback signals for closed-loop control during functional electrical stimulation (FES). However, most previous studies have used the single-unit activity of individual neurons to extract sensory information from proprioceptive afferents. This study proposes a new decoding method to estimate ankle and knee joint angles using multiunit activity data. Proprioceptive afferent signals were recorded from a dorsal root ganglion with a single-shank microelectrode during passive movements of the ankle and knee joints, and joint angles were measured as kinematic data. The mean absolute value (MAV) was extracted from the multiunit activity data, and a dynamically driven recurrent neural network (DDRNN) was used to estimate ankle and knee joint angles. The multiunit activity-based MAV feature was sufficiently informative to estimate limb states, and the DDRNN showed a better decoding performance than conventional linear estimators. In addition, processing time delay satisfied real-time constraints. These results demonstrated that the proposed method could be applicable for providing real-time sensory feedback signals in closed-loop FES systems. PMID:28276474

  17. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO) to Create Normal Ankle Joint Behavior

    PubMed Central

    Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges

    2017-01-01

    Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects. PMID:29215571

  18. Application of the Superelastic NiTi Spring in Ankle Foot Orthosis (AFO) to Create Normal Ankle Joint Behavior.

    PubMed

    Amerinatanzi, Amirhesam; Zamanian, Hashem; Shayesteh Moghaddam, Narges; Jahadakbar, Ahmadreza; Elahinia, Mohammad

    2017-12-07

    Hinge-based Ankle Foot Orthosis (HAFO) is one of the most common non-surgical solutions for the foot drop. In conventional HAFOs, the ankle joint is almost locked, and plantar flexion is restricted due to the high stiffness of the hinge mechanism. This often leads to a rigid walking gate cycle, poor muscle activity, and muscle atrophy. Since the ankle torque-angle loop has a non-linear profile, the use of a superelastic NiTi spring within the hinge, due to its nonlinear behavior, could recreate a close-to-normal stiffness of the normal ankle joint, which, in turn, could create a more natural walk. The focus of this study is to evaluate the performance of a superelastic NiTi spring versus a conventional Stainless Steel spring in a hinge mechanism of a custom-fit HAFO. To this aim, a custom-fit HAFO was fabricated via the fast casting technique. Then, motion analysis was performed for two healthy subjects (Case I and Case II): (i) subjects with bare foot; (ii) subjects wearing a conventional HAFO with no spring; (iii) subjects wearing a conventional Stainless Steel-based HAFO; and (iv) subjects wearing a NiTi spring-based HAFO. The data related to the ankle angle and the amount of moment applied to the ankle during walking were recorded using Cortex software and used for the evaluations. Finally, Finite Element Analysis (FEA) was performed to evaluate the safety of the designed HAFO. The NiTi spring offers a higher range of motion (7.9 versus 4.14 degree) and an increased level of moment (0.55 versus 0.36 N·m/kg). Furthermore, a NiTi spring offers an ankle torque-angle loop closer to that of the healthy subjects.

  19. Analysis of muscle activity and ankle joint movement during the side-hop test.

    PubMed

    Yoshida, Masahiro; Taniguchi, Keigo; Katayose, Masaki

    2011-08-01

    Functional performance tests (FPTs) that consist of movements, such as hopping, landing, and cutting, provide useful measurements. Although some tests have been established for kinematic studies of the knee joint, very few tests have been established for the ankle joint. To use the FPT as a test battery for patients with an ankle sprain, it is necessary to document typical patterns of muscle activation and range of motion (ROM) of the ankle joint during FPTs. Therefore, the purpose of this study was to investigate the pattern of the ROM of the ankle inversion/eversion and the muscle activity of the peroneus longus muscle (PL) and the tibial anterior muscle (TA) in normal subjects during the side-hop test. To emphasize the characteristics of ROM and electromyography (EMG) at each phase, the side-hop tests were divided into 4 phases: lateral-hop contact phase (LC), lateral-hop flight phase (LF), medial hop contact phase (MC), and medial hop flight phase (MF), and the ROM of ankle inversion/eversion, a peak angle of ankle inversion, and Integral EMG (IEMG) of PL and TA compared among 4 phases. Fifteen male subjects with no symptoms of ankle joint problems participated in this research. The ROM of ankle inversion/eversion during the side-hop test was 27 ± 3.8° (mean ± SD), and there was a significant difference in the ROM of ankle inversion/eversion among 4 phases (p < 0.05). The phase in which the widest ROM was presented was the MF. A peak angle of the ankle inversion at MC was significantly greater than at LC and MF (p <0.05). A peak angle of the ankle inversion at LF was significantly greater than at LC and MF. The PL remained contracting with 50-160% of maximal voluntary contraction (MVC). The IEMGs of PL in both the contact phases were significantly greater than in both the flight phases (p < 0.05). In addition, the PL activity at LC was significantly greater than at MC. The TA remained contracting at 50-80% of MVC through the side-hop test. The IEMG of TA at both the contact phases was significantly greater than at 2 flight phases. However, there was no significant difference between LC and MF. Results of this study could be useful as basic data when evaluating the validity of the side-hop test for patients with ankle sprain.

  20. Does Shoe Collar Height Influence Ankle Joint Kinematics and Kinetics in Sagittal Plane Maneuvers?

    PubMed Central

    Yang, Yang; Fang, Ying; Zhang, Xini; He, Junliang; Fu, Weijie

    2017-01-01

    The Objective of the study is to investigate the effects of basketball shoes with different collar heights on ankle kinematics and kinetics and athletic performance in different sagittal plane maneuvers. Twelve participants who wore high-top and low-top basketball shoes (hereafter, HS and LS, respectively) performed a weight-bearing dorsiflexion (WB-DF) maneuver, drop jumps (DJs), and lay-up jumps (LJs). Their sagittal plane kinematics and ground reaction forces were recorded using the Vicon motion capture system and Kistler force plates simultaneously. Moreover, ankle dorsiflexion and plantarflexion angles, moment, power, stiffness, and jump height were calculated. In the WB-DF test, the peak ankle dorsiflexion angle (p = 0.041) was significantly smaller in HS than in LS. Additionally, the peak ankle plantarflexion moment (p = 0.028) and power (p = 0.022) were significantly lower in HS than in LS during LJs but not during DJs. In both jumping maneuvers, no significant differences were found in the jump height or ankle kinematics between the two shoe types. According to the WB-DF test, increasing shoe collar height can effectively reduce the ankle range of motion in the sagittal plane. Although the HS did not restrict the flexion–extension performance of the ankle joint during two jumping maneuvers, an increased shoe collar height can reduce peak ankle plantarflexion moment and peak power during the push-off phase in LJs. Therefore, a higher shoe collar height should be used to circumvent effects on the partial kinetics of the ankle joint in the sagittal plane. Key points An increased shoe collar height effectively reduced ankle joint ROM in the sagittal plane in weight-bearing dorsiflexion maneuver. Shoe collar height did not affect sagittal plane ankle kinematics and had no effect on performance during realistic jumping. Shoe collar height can affect the ankle plantarflexion torque and peak power during the push-off phase in lay-up jump. PMID:29238255

  1. Bilateral differences in muscle fascicle architecture are not related to the preferred leg in jumping athletes.

    PubMed

    Aeles, Jeroen; Lenchant, Sietske; Vanlommel, Liesbeth; Vanwanseele, Benedicte

    2017-07-01

    In many sports, athletes have a preferred leg for sport-specific tasks, such as jumping, which leads to strength differences between both legs, yet the underlying changes in force-generating mechanical properties of the muscle remain unknown. The purpose of this study was to investigate whether the muscle architecture of the medial gastrocnemius (MG) is different between both legs in well-trained jumping athletes and untrained individuals. In addition, we investigated the effect of two ankle joint positions on ultrasound muscle architecture measurements. Muscle architecture of both legs was measured in 16 athletes and 11 untrained individuals at two ankle joint angles: one with the ankle joint in a tendon slack length (TSL) angle and one in a 90° angle. Fascicle lengths and pennation angles at TSL were not different between the preferred and non-preferred legs in either group. The comparison between groups showed no difference in fascicle length, but greater pennation angles were found in the athletes (21.7° ± 0.5°) compared to the untrained individuals (19.8° ± 0.6°). Analyses of the muscle architecture at a 90° angle yielded different results, mainly in the comparison between groups. These results provide only partial support for the notion of training-induced changes in muscle architecture as only differences in pennation angles were found between athletes and untrained individuals. Furthermore, our results provide support to the recommendation to take into account the tension-length relationship and to measure muscle architecture at individually determined tendon slack joint angles.

  2. Delayed latency of peroneal reflex to sudden inversion with ankle taping or bracing.

    PubMed

    Shima, N; Maeda, A; Hirohashi, K

    2005-01-01

    The purpose of the present study was to examine the effects of ankle taping and bracing based on the peroneal reflex in the hypermobile and normal ankle joints with and without history of ankle injury. Thirty-six ankle joints of 18 collegiate American football athletes with and without previous history of injury were studied. The angle of talar tilt (TT) was measured by stress radiograph for classifying normal (TT5 degrees ) ankles. They were tested with taping, bracing, and without any supports as a control. The latency of peroneus longus muscle was measured by a sudden inversion of 25 degrees using surface EMG signals. The results of the present study show no significant three-way Group (hypermobile or normal ankles) by History (previously injured or uninjured ankles) by Condition (control, taping, or bracing) interaction, while Condition main effect was significant (p<0.05). There were significant differences between control (80.8 ms) and taping (83.8 ms, p<0.01), between control and bracing (83.0 ms, p<0.05), but not between taping and bracing (p>0.05). In conclusion, ankle taping and bracing delayed the peroneal reflex latency not only for hypermobile ankles and/or injured ankle joints but also for intact ankle joints.

  3. The contribution of quasi-joint stiffness of the ankle joint to gait in patients with hemiparesis.

    PubMed

    Sekiguchi, Yusuke; Muraki, Takayuki; Kuramatsu, Yuko; Furusawa, Yoshihito; Izumi, Shin-Ichi

    2012-06-01

    The role of ankle joint stiffness during gait in patients with hemiparesis has not been clarified. The purpose of this study was to determine the contribution of quasi-joint stiffness of the ankle joint to spatiotemporal and kinetic parameters regarding gait in patients with hemiparesis due to brain tumor or stroke and healthy individuals. Spatiotemporal and kinetic parameters regarding gait in twelve patients with hemiparesis due to brain tumor or stroke and nine healthy individuals were measured with a 3-dimensional motion analysis system. Quasi-joint stiffness was calculated from the slope of the linear regression of the moment-angle curve of the ankle joint during the second rocker. There was no significant difference in quasi-joint stiffness among both sides of patients and the right side of controls. Quasi-joint stiffness on the paretic side of patients with hemiparesis positively correlated with maximal ankle power (r=0.73, P<0.01) and gait speed (r=0.66, P<0.05). In contrast, quasi-joint stiffness in controls negatively correlated with maximal ankle power (r=-0.73, P<0.05) and gait speed (r=-0.76, P<0.05). Our findings suggested that ankle power during gait might be generated by increasing quasi-joint stiffness in patients with hemiparesis. In contrast, healthy individuals might decrease quasi-joint stiffness to avoid deceleration of forward tilt of the tibia. Our findings might be useful for selecting treatment for increased ankle stiffness due to contracture and spasticity in patients with hemiparesis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Anatomical reconstruction of the lateral ligaments of the ankle with a gracilis autograft: a new technique using an interference fit anchoring system.

    PubMed

    Takao, Masato; Oae, Kazunori; Uchio, Yuji; Ochi, Mitsuo; Yamamoto, Haruyasu

    2005-06-01

    Few anatomical and minor invasive procedures have been reported for surgical reconstruction of the lateral ligaments to treat lateral instability of the ankle. Furthermore, there are no standards according to which ligaments should be reconstructed. A new technique for anatomically reconstructing the lateral ligaments of the ankle using an interference fit anchoring system and determining which ligaments need to be reconstructed according to the results of standard stress radiography of the talocrural and subtalar joints will be effective for treating lateral instability of the ankle. Case series; level of evidence, 4. Twenty-one patients with lateral instability of the ankle underwent surgery using the proposed interference fit anchoring system. Standard stress radiographs of the subtalar joint were performed, and if the talocalcaneal angle was less than 10 degrees , only the anterior talofibular ligament was reconstructed; if there was a 10 degrees or greater opening of the talocalcaneal angle, both the anterior talofibular ligament and the calcaneofibular ligament were reconstructed. In the 17 patients who received only the anterior talofibular ligament reconstruction, the mean talar tilt angle on standard stress radiography of the talocrural joint was 14.5 degrees +/- 1.7 degrees before surgery and 2.6 degrees +/- 0.8 degrees 2 years after surgery (P < .0001). For the 4 patients who had both the anterior talofibular ligament and calcaneofibular ligament reconstructed, the mean talar tilt angle was 16.5 degrees +/- 1.5 degrees before surgery and 3.0 degrees +/- 0.5 degrees 2 years after surgery (P = .0015). The overall mean talocalcaneal angle on standard stress radiography of the subtalar joint was 11.3 degrees +/- 1.4 degrees before surgery and 3.5 degrees +/- 0.8 degrees 2 years after surgery (P = .0060). The proposed system has several advantages, including anatomical reconstruction with normal stability and range of motion restored, the need for only a small incision during the reconstruction, and sufficient strength at the tendon graft-bone tunnel junction, in comparison with the tension strength of the lateral ligaments of the ankle.

  5. Gait changes after using a temporomandibular joint exerciser in patients who underwent lower limb joint surgery

    PubMed Central

    Chung, Gu-Young; Choi, Geun-Seok; Shin, Ki-Young; Park, Joon-Soo

    2016-01-01

    [Purpose] The improvements in gait of the patients with lower limb disease who used a temporomandibular joint (TMJ) exerciser were verified. [Subjects and Methods] Eleven subjects were included. Their mean age was 53.2 years. The lower limb joint angles before and after using the TMJ exerciser were measured using a gait analyzer. Before the gait experiment, the TMJ exerciser setting process and one-leg stance balance test (OLST) were repeated until the balance maintenance time improved. [Results] Because of the OLST, the mean change in the body center point after the subjects used the exerciser improved from 5.76 mm to 4.20 mm. When the TMJ exerciser was used, the joint angle range of the subjects approached that of the normal individuals. [Conclusion] According to the gait experiments, the angles of the subjects’ hips, knees, and ankle joints approached to those of the normal individuals after the subjects used the TMJ exerciser; however, the results did not completely match. The changes in the hip, knee, and ankle joint angles were statistically significant, which confirm the usefulness of the TMJ exerciser. PMID:27313377

  6. The correlation of the morphological changes of ankle point and ankle joint function after surgery on the Ruedi-Allgouer type III Pilon fracture: A case series study.

    PubMed

    Zhou, Yifei; Cai, Leyi; Lu, Xiaolang; Yu, Yang; Hong, Jianjun

    2017-08-01

    To analyze the relationship between imaging findings and postoperative curative effect by measuring the morphology of the ankle mortise in patients with the Ruedi-Allgouer type III Pilon fractures. Forty-seven patients with Ruedi-Allgouer type III Pilon fractures who underwent surgical treatment from January 2011 to January 2015 were retrospectively analyzed. At the last follow-up, x-rays of the affected ankle and the healthy side were measured. According to the Kitaoka score of ankle joint function at the last follow-up. All patients were followed up for 18-24 months (mean 21 months). This study demonstrated that compared with the healthy side, the index of the width, depth, and coronal/sagittal angles of the ankle mortise were significantly different (P < 0.05) in the 47 patients except for the index of height (P > 0.05). According to the Kitaoka score, the difference between the affected and the healthy sides of each index of the ankle mortise was compared between the 3 groups. That is, the intraoperative treatment of the width and depth of the ankle mortise as well as the coronal and sagittal angles of the ankle mortise were significantly correlated with the postoperative curative effect. The intraoperative treatment of ankle mortise width, depth, and ankle coronal/sagittal angle in patients with severe Pilon fractures has a significant impact on postoperative efficacy. In order to prevent the occurrence of traumatic arthritis, the anatomical morphology of the ankle should be restored as much as possible in the course of surgery. Copyright © 2017. Published by Elsevier Ltd.

  7. Movement behavior of high-heeled walking: how does the nervous system control the ankle joint during an unstable walking condition?

    PubMed

    Alkjær, Tine; Raffalt, Peter; Petersen, Nicolas C; Simonsen, Erik B

    2012-01-01

    The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking.

  8. Movement Behavior of High-Heeled Walking: How Does the Nervous System Control the Ankle Joint during an Unstable Walking Condition?

    PubMed Central

    Alkjær, Tine; Raffalt, Peter; Petersen, Nicolas C.; Simonsen, Erik B.

    2012-01-01

    The human locomotor system is flexible and enables humans to move without falling even under less than optimal conditions. Walking with high-heeled shoes constitutes an unstable condition and here we ask how the nervous system controls the ankle joint in this situation? We investigated the movement behavior of high-heeled and barefooted walking in eleven female subjects. The movement variability was quantified by calculation of approximate entropy (ApEn) in the ankle joint angle and the standard deviation (SD) of the stride time intervals. Electromyography (EMG) of the soleus (SO) and tibialis anterior (TA) muscles and the soleus Hoffmann (H-) reflex were measured at 4.0 km/h on a motor driven treadmill to reveal the underlying motor strategies in each walking condition. The ApEn of the ankle joint angle was significantly higher (p<0.01) during high-heeled (0.38±0.08) than during barefooted walking (0.28±0.07). During high-heeled walking, coactivation between the SO and TA muscles increased towards heel strike and the H-reflex was significantly increased in terminal swing by 40% (p<0.01). These observations show that high-heeled walking is characterized by a more complex and less predictable pattern than barefooted walking. Increased coactivation about the ankle joint together with increased excitability of the SO H-reflex in terminal swing phase indicates that the motor strategy was changed during high-heeled walking. Although, the participants were young, healthy and accustomed to high-heeled walking the results demonstrate that that walking on high-heels needs to be controlled differently from barefooted walking. We suggest that the higher variability reflects an adjusted neural strategy of the nervous system to control the ankle joint during high-heeled walking. PMID:22615997

  9. [Influence of Restricting the Ankle Joint Complex Motions on Gait Stability of Human Body].

    PubMed

    Li, Yang; Zhang, Junxia; Su, Hailong; Wang, Xinting; Zhang, Yan

    2016-10-01

    The purpose of this study is to determine how restricting inversion-eversion and pronation-supination motions of the ankle joint complex influences the stability of human gait.The experiment was carried out on a slippery level ground walkway.Spatiotemporal gait parameter,kinematics and kinetics data as well as utilized coefficient of friction(UCOF)were compared between two conditions,i.e.with restriction of the ankle joint complex inversion-eversion and pronation-supination motions(FIXED)and without restriction(FREE).The results showed that FIXED could lead to a significant increase in velocity and stride length and an obvious decrease in double support time.Furthermore,FIXED might affect the motion angle range of knee joint and ankle joint in the sagittal plane.In FIXED condition,UCOF was significantly increased,which could lead to an increase of slip probability and a decrease of gait stability.Hence,in the design of a walker,bipedal robot or prosthetic,the structure design which is used to achieve the ankle joint complex inversion-eversion and pronation-supination motions should be implemented.

  10. A parametric model of muscle moment arm as a function of joint angle: application to the dorsiflexor muscle group in mice.

    PubMed

    Miller, S W; Dennis, R G

    1996-12-01

    A parametric model was developed to describe the relationship between muscle moment arm and joint angle. The model was applied to the dorsiflexor muscle group in mice, for which the moment arm was determined as a function of ankle angle. The moment arm was calculated from the torque measured about the ankle upon application of a known force along the line of action of the dorsiflexor muscle group. The dependence of the dorsiflexor moment arm on ankle angle was modeled as r = R sin(a + delta), where r is the moment arm calculated from the measured torque and a is the joint angle. A least-squares curve fit yielded values for R, the maximum moment arm, and delta, the angle at which the maximum moment arm occurs as offset from 90 degrees. Parametric models were developed for two strains of mice, and no differences were found between the moment arms determined for each strain. Values for the maximum moment arm, R, for the two different strains were 0.99 and 1.14 mm, in agreement with the limited data available from the literature. While in some cases moment arm data may be better fitted by a polynomial, use of the parametric model provides a moment arm relationship with meaningful anatomical constants, allowing for the direct comparison of moment arm characteristics between different strains and species.

  11. The in situ force in the calcaneofibular ligament and the contribution of this ligament to ankle joint stability.

    PubMed

    Kobayashi, Takuma; Yamakawa, Satoshi; Watanabe, Kota; Kimura, Kei; Suzuki, Daisuke; Otsubo, Hidenori; Teramoto, Atsushi; Fujimiya, Mineko; Fujie, Hiromichi; Yamashita, Toshihiko

    2016-12-01

    Numerous biomechanical studies of the lateral ankle ligaments have been reported; however, the isolated function of the calcaneofibular ligament has not been clarified. We hypothesize that the calcaneofibular ligament would stabilize the ankle joint complex under multidirectional loading, and that the in situ force in the calcaneofibular ligament would change in each flexed position. Using seven fresh frozen cadaveric lower extremities, the motions and forces of the intact ankle under multidirectional loading were recorded using a 6-degree-of-freedom robotic system. On repeating these intact ankle joint complex motions after the calcaneofibular ligament transection, the in situ force in the calcaneofibular ligament and the contribution of the calcaneofibular ligament to ankle joint complex stability were calculated. Finally, the motions of the calcaneofibular ligament-transected ankle joint complex were recorded. Under an inversion load, significant increases of inversion angle were observed in all the flexed positions following calcaneofibular ligament transection, and the calcaneofibular ligament accounted for 50%-70% of ankle joint complex stability during inversion. The in situ forces in the calcaneofibular ligament under an anterior force, inversion moment, and external rotation moment were larger in the dorsiflexed position than in the plantarflexed position. The calcaneofibular ligament plays a role in stabilizing the ankle joint complex to multidirectional loads and the role differs with load directions. The in situ force of the calcaneofibular ligament is larger at the dorsiflexed position. This ligament provides the primary restraint to the inversion ankle stability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Evaluation of joint position sense measured by inversion angle replication error in patients with an osteochondral lesion of the talus.

    PubMed

    Nakasa, Tomoyuki; Adachi, Nobuo; Shibuya, Hayatoshi; Okuhara, Atsushi; Ochi, Mitsuo

    2013-01-01

    The etiology of the osteochondral lesion of the talar dome (OLT) remains unclear. A joint position sense deficit of the ankle is reported to be a possible cause of ankle disorder. Repeated contact of the articular surface of the talar dome with the plafond during inversion might be a cause of OLT. The aim of the present study was to evaluate the joint position sense deficit by measuring the replication error of the inversion angle in patients with OLT. The replication error, which is the difference between the index angle and replication angle in inversion, was measured in 15 patients with OLT. The replication error in 15 healthy volunteers was evaluated as a control group. The side to side differences of the replication errors between the patients with OLT and healthy volunteers and the replication errors in each angle between the involved and uninvolved ankle in the patients with OLT were investigated. Finally, the side to side differences of the replication errors between the patients with OLT with a traumatic and nontraumatic history were compared. The side to side difference in the patients with OLT (1.3° ± 0.2°) was significantly greater than that in the healthy subjects (0.4° ± 0.7°) (p ≤ .05). Significant differences were found between the involved and uninvolved sides at 10°, 15°, 20°, and 25° in the patients with OLT. No significant difference (p > .05) was found between the patients with traumatic and nontraumatic OLT. The present study found that the patients with OLT have a joint position sense deficit during inversion movement, regardless of a traumatic history. Although various factors for the etiology of OLT have been reported, the joint position sense deficit in inversion might be a cause of OLT. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  13. Preparation time influences ankle and knee joint control during dynamic change of direction movements.

    PubMed

    Fuerst, Patrick; Gollhofer, Albert; Gehring, Dominic

    2017-04-01

    The influence of preparation time on ankle joint biomechanics during highly dynamic movements is largely unknown. The aim of this study was to evaluate the impact of limited preparation time on ankle joint loading during highly dynamic run-and-cut movements. Thirteen male basketball players performed 45°-sidestep-cutting and 180°-turning manoeuvres in reaction to light signals which appeared during the approach run. Both movements were executed under (1) an easy condition, in which the light signal appeared very early, (2) a medium condition and (3) a hard condition with very little time to prepare the movements. Maximum ankle inversion angles, moments and velocities during ground contact, as well as EMG signals of three lower extremity muscles, were analysed. In 180°-turning movements, reduced preparation time led to significantly increased maximum ankle inversion velocities. Muscular activation levels, however, did not change. Increased inversion velocities, without accompanying changes in muscular activation, may have the potential to destabilise the ankle joint when less preparation time is available. This may result in a higher injury risk during turning movements and should therefore be considered in ankle injury research and the aetiology of ankle sprains.

  14. Movement within foot and ankle joint in children with spastic cerebral palsy: a 3-dimensional ultrasound analysis of medial gastrocnemius length with correction for effects of foot deformation

    PubMed Central

    2013-01-01

    Background In spastic cerebral palsy (SCP), a limited range of motion of the foot (ROM), limits gait and other activities. Assessment of this limitation of ROM and knowledge of active mechanisms is of crucial importance for clinical treatment. Methods For a comparison between spastic cerebral palsy (SCP) children and typically developing children (TD), medial gastrocnemius muscle-tendon complex length was assessed using 3-D ultrasound imaging techniques, while exerting externally standardized moments via a hand-held dynamometer. Exemplary X-ray imaging of ankle and foot was used to confirm possible TD-SCP differences in foot deformation. Results SCP and TD did not differ in normalized level of excitation (EMG) of muscles studied. For given moments exerted in SCP, foot plate angles were all more towards plantar flexion than in TD. However, foot plate angle proved to be an invalid estimator of talocrural joint angle, since at equal foot plate angles, GM muscle-tendon complex was shorter in SCP (corresponding to an equivalent of 1 cm). A substantial difference remained even after normalizing for individual differences in tibia length. X-ray imaging of ankle and foot of one SCP child and two typically developed adults, confirmed that in SCP that of total footplate angle changes (0-4 Nm: 15°), the contribution of foot deformation to changes in foot plate angle (8) were as big as the contribution of dorsal flexion at the talocrural joint (7°). In typically developed individuals there were relatively smaller contributions (10 -11%) by foot deformation to changes in foot plate angle, indicating that the contribution of talocrural angle changes was most important. Using a new estimate for position at the talocrural joint (the difference between GM muscle–tendon complex length and tibia length, GM relative length) removed this effect, thus allowing more fair comparison of SCP and TD data. On the basis of analysis of foot plate angle and GM relative length as a function of externally applied moments, it is concluded that foot plate angle measurements underestimate angular changes at the talocrural joint when moving in dorsal flexion direction and overestimate them when moving in plantar flexion direction, with concomitant effects on triceps surae lengths. Conclusions In SCP children diagnosed with decreased dorsal ROM of the ankle joint, the commonly used measure (i.e. range of foot plate angle), is not a good estimate of rotation at the talocrural joint. since a sizable part of the movement of the foot (or foot plate) derives from internal deformation of the foot. PMID:24364826

  15. Relationships between the center of pressure and the movements of the ankle and knee joints during the stance phase in patients with severe medial knee osteoarthritis.

    PubMed

    Fukaya, Takashi; Mutsuzaki, Hirotaka; Okubo, Tomoyuki; Mori, Koichi; Wadano, Yasuyoshi

    2016-08-01

    The knee joint movement during the stance phase is affected by altered ankle movement and the center of pressure (COP). However the relationships between changes in the center of pressure (COP) and the altered kinematics and kinetics of the ankle and knee joints in patients with osteoarthritis (OA) of the knee are not well understood. The purpose of this study was to determine the relationships between changes in the COP and the altered kinematic and kinetic variables in ankle and knee joints during the stance phase in patients with medial knee OA. Fourteen patients with knee OA (21 knees) and healthy subjects were assessed by gait analysis using an eight-camera motion analysis system to record forward and lateral shifts in the COP and the angle and net internal moments of the knee and ankle joint. Spearman rank-correlation coefficients were used to determine the relationship between these results. In knees with medial OA, lateral shifts in the COP were correlated with knee flexion angle. Lateral shifts in the COP were correlated with the second peak of the knee extensor moment and correlated with the knee abductor moment. In patients with medial knee OA, lateral shifts in the COP were negatively correlated with the kinematic and kinetic variables in the sagittal plane of the knee joints. Controlling such lateral shifts in the COP may thus be an effective intervention for mechanical loads on the knee during the stance phase in patients with knee OA. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Walking patterns and hip contact forces in patients with hip dysplasia.

    PubMed

    Skalshøi, Ole; Iversen, Christian Hauskov; Nielsen, Dennis Brandborg; Jacobsen, Julie; Mechlenburg, Inger; Søballe, Kjeld; Sørensen, Henrik

    2015-10-01

    Several studies have investigated walking characteristics in hip dysplasia patients, but so far none have described all hip rotational degrees of freedom during the whole gait cycle. This descriptive study reports 3D joint angles and torques, and furthermore extends previous studies with muscle and joint contact forces in 32 hip dysplasia patients and 32 matching controls. 3D motion capture data from walking and standing trials were analysed. Hip, knee, ankle and pelvis angles were calculated with inverse kinematics for both standing and walking trials. Hip, knee and ankle torques were calculated with inverse dynamics, while hip muscle and joint contact forces were calculated with static optimisation for the walking trials. No differences were found between the two groups while standing. While walking, patients showed decreased hip extension, increased ankle pronation and increased hip abduction and external rotation torques. Furthermore, hip muscle forces were generally lower and shifted to more posteriorly situated muscles, while the hip joint contact force was lower and directed more superiorly. During walking, patients showed lower and more superiorly directed hip joint contact force, which might alleviate pain from an antero-superiorly degenerated joint. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Mechanical stability of the subtalar joint after lateral ligament sectioning and ankle brace application: a biomechanical experimental study.

    PubMed

    Kamiya, Tomoaki; Kura, Hideji; Suzuki, Daisuke; Uchiyama, Eiichi; Fujimiya, Mineko; Yamashita, Toshihiko

    2009-12-01

    The roles of each ligament supporting the subtalar joint have not been clarified despite several biomechanical studies. The effects of ankle braces on subtalar instability have not been shown. The ankle brace has a partial effect on restricting excessive motion of the subtalar joint. Controlled laboratory study. Ten normal fresh-frozen cadaveric specimens were used. The angular motions of the talus were measured via a magnetic tracking system. The specimens were tested while inversion and eversion forces, as well as internal and external rotation torques, were applied. The calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament were sectioned sequentially, and the roles of each ligament, as well as the stabilizing effects of the ankle brace, were examined. Complete sectioning of the ligaments increased the angle between the talus and calcaneus in the frontal plane to 51.7 degrees + or - 11.8 degrees compared with 35.7 degrees + or - 6.0 degrees in the intact state when inversion force was applied. There was a statistically significant difference in the angles between complete sectioning of the ligaments and after application of the brace (34.1 degrees + or - 7.3 degrees ) when inversion force was applied. On the other hand, significant differences in subtalar rotation were not found between complete sectioning of the ligaments and application of the brace when internal and external rotational torques were applied. The ankle brace limited inversion of the subtalar joint, but it did not restrict motion after application of internal or external rotational torques. In cases of severe ankle sprains involving the calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament injuries, application of an ankle brace might be less effective in limiting internal-external rotational instabilities than in cases of inversion instabilities in the subtalar joint. An improvement in the design of the brace is needed to restore better rotational stability in the subtalar joint.

  18. Biomechanical response to ankle-foot orthosis stiffness during running.

    PubMed

    Russell Esposito, Elizabeth; Choi, Harmony S; Owens, Johnny G; Blanck, Ryan V; Wilken, Jason M

    2015-12-01

    The Intrepid Dynamic Exoskeletal Orthosis (IDEO) is an ankle-foot orthosis developed to address the high rates of delayed amputation in the military. Its use has enabled many wounded Service Members to run again. During running, stiffness is thought to influence an orthosis' energy storage and return mechanical properties. This study examined the effect of orthosis stiffness on running biomechanics in patients with lower limb impairments who had undergone unilateral limb salvage. Ten patients with lower limb impairments underwent gait analysis at a self-selected running velocity. 1. Nominal (clinically-prescribed), 2. Stiff (20% stiffer than nominal), and 3. Compliant (20% less stiff than nominal) ankle-foot orthosis stiffnesses were tested. Ankle joint stiffness was greatest in the stiffest strut and lowest in the compliant strut, however ankle mechanical work remained unchanged. Speed, stride length, cycle time, joint angles, moments, powers, and ground reaction forces were not significantly different among stiffness conditions. Ankle joint kinematics and ankle, knee and hip kinetics were different between limbs. Ankle power, in particular, was lower in the injured limb. Ankle-foot orthosis stiffness affected ankle joint stiffness but did not influence other biomechanical parameters of running in individuals with unilateral limb salvage. Foot strike asymmetries may have influenced the kinetics of running. Therefore, a range of stiffness may be clinically appropriate when prescribing ankle-foot orthoses for active individuals with limb salvage. Published by Elsevier Ltd.

  19. Design and characterization of a biologically inspired quasi-passive prosthetic ankle-foot.

    PubMed

    Mooney, Luke M; Lai, Cara H; Rouse, Elliott J

    2014-01-01

    By design, commonly worn energy storage and release (ESR) prosthetic feet cannot provide biologically realistic ankle joint torque and angle profiles during walking. Additionally, their anthropomorphic, cantilever architecture causes their mechanical stiffness to decrease throughout the stance phase of walking, opposing the known trend of the biological ankle. In this study, the design of a quasi-passive pneumatic ankle-foot prosthesis is detailed that is able to replicate the biological ankle's torque and angle profiles during walking. The prosthetic ankle is comprised of a pneumatic piston, bending spring and solenoid valve. The mechanical properties of the pneumatic ankle prosthesis are characterized using a materials testing machine and the properties are compared to those from a common, passive ESR prosthetic foot. The characterization spanned a range of ankle equilibrium pressures and testing locations beneath the foot, analogous to the location of center of pressure within the stance phase of walking. The pneumatic ankle prosthesis was shown to provide biologically appropriate trends and magnitudes of torque, angle and stiffness behavior, when compared to the passive ESR prosthetic foot. Future work will focus on the development of a control system for the quasi-passive device and clinical testing of the pneumatic ankle to demonstrate efficacy.

  20. Effect of Reduced Stiffness Dance Flooring on Lower Extremity Joint Angular Trajectories During a Ballet Jump.

    PubMed

    Hackney, James; Brummel, Sara; Newman, Mary; Scott, Shannon; Reinagel, Matthew; Smith, Jennifer

    2015-09-01

    We carried out a study to investigate how low stiffness flooring may help prevent overuse injuries of the lower extremity in dancers. It was hypothesized that performing a ballet jump (sauté) on a reduced stiffness dance floor would decrease maximum joint flexion angles and negative angular velocities at the hips, knees, or ankles compared to performing the same jump on a harder floor. The participants were 15 young adult female dancers (age range 18 to 28, mean = 20.89 ± 2.93 years) with at least 5 years of continuous ballet experience and without history of serious lower body injury, surgery, or recent pain. They performed sautés on a (low stiffness) Harlequin ® WoodSpring Floor and on a vinyl-covered hardwood on concrete floor. Maximum joint flexion angles and negative velocities at bilateral hips, knees, and ankles were measured with the "Ariel Performance Analysis System" (APAS). Paired one-tailed t-tests yielded significant decreases in maximum knee angle (average decrease = 3.4° ± 4.2°, p = 0.026) and angular negative velocity of the ankles (average decrease = 18.7°/sec ± 27.9°/sec, p = 0.009) with low stiffness flooring. If the knee angle is less acute, then the length of the external knee flexion moment arm will also be shorter and result in a smaller external knee flexion moment, given an equal landing force. Also, high velocities of eccentric muscle contraction, which are necessary to control negative angular velocity of the ankle joint, are associated with higher risk of musculotendinous injury. Hence, our findings indicate that reduced floor stiffness may indeed help decrease the likelihood of lower extremity injuries.

  1. Gender-related differences in lower limb alignment, range of joint motion, and the incidence of sports injuries in Japanese university athletes.

    PubMed

    Mitani, Yasuhiro

    2017-01-01

    [Purpose] To investigate the gender-related differences in lower limb alignment, range of joint motion, and history of lower limb sports injuries in Japanese university athletes. [Subjects and Methods] The subjects were 224 Japanese university athletes (154 males and 70 females). The quadriceps angle (Q-angle), arch height index, and ranges of internal and external rotation of the hip joints were measured. History of lower limb sports injury was surveyed using a questionnaire. [Results] Females had a significantly higher Q-angle and hip joint internal rotation angle and a significantly lower arch height index than males. The survey revealed that a significantly higher proportion of females had a history of lower limb sports injuries, and that the proportion of those with a history of foot/ankle injuries was particularly high. [Conclusion] These results suggested that females experience more lower limb sports injuries than males, and that a large proportion of these injuries involve the foot/ankle. Reduced lower limb alignment and increased range of joint motion in females may be risk factors for injury because they lead to increased physical stress being exerted on the lower legs during sporting activities.

  2. The potential of human toe flexor muscles to produce force

    PubMed Central

    Goldmann, Jan-Peter; Brüggemann, Gert-Peter

    2012-01-01

    The maximal force a muscle produces depends among others on the length of the muscle and therefore on the positions of the joints the muscle crosses. Long and short toe flexor muscles (TFM) cross the ankle joints and metatarsal phalangeal joints (MPJ) and work against gravity during human locomotion. The purpose of this study was to describe the maximal moments around the MPJ during maximal voluntary isometric contractions (MVIC) of the TFM as a function of ankle joint and MPJ position. Twenty men performed MVIC of the TFM in a custom-made dynamometer. Ankle and MPJ angles were modified after each contraction. External moments of force around the MPJ were determined. Moments ranged between 6.3 ± 2.6 Nm and 14.2 ± 5.8 Nm. Highest moments were produced at 0°–10° ankle joint dorsal flexion and 25°–45° MPJ dorsal flexion. Lowest moments were generated at 35° ankle joint plantar flexion and 0° MPJ dorsal flexion. In conclusion, if the ankle is plantar-flexed, dorsal flexion of the MPJ avoids a disadvantage of the force–length relationship of TFM. Therefore, MPJ dorsal flexion is a necessary function in the push-off phase of human locomotion to work against the loss of the mechanical output at the forefoot caused by plantar flexion of the ankle. PMID:22747582

  3. Mechanical instability destabilises the ankle joint directly in the ankle-sprain mechanism.

    PubMed

    Gehring, Dominic; Faschian, Katrin; Lauber, Benedikt; Lohrer, Heinz; Nauck, Tanja; Gollhofer, Albert

    2014-03-01

    Despite massive research efforts, it remains unclear how mechanical ankle instability (MAI) and functional ankle instability (FAI) affect joint control in the situation of ankle sprain. Thus, the purpose of this study was to evaluate whether individuals with MAI have deficits in stabilising their ankle joint in a close-to-injury situation compared with those with FAI and healthy controls. Ankle-joint control was assessed by means of three-dimensional motion analysis and electromyography in participants with FAI and MAI (n=19), in participants with pure FAI (n=9) and in healthy controls (n=18). Close-to-injury situations were simulated during standing, walking and jumping by means of a custom-made tilt platform. Individuals with FAI and MAI displayed significantly greater maximum ankle inversion angles (+5°) and inversion velocities (+50°/s) in the walking and jumping conditions compared to those with pure FAI and controls. Furthermore, individuals in the FAI and MAI group showed a significantly decreased pre-activation of the peroneus longus muscle during jumping compared to those with FAI. No differences between groups were found for plantar flexion and internal rotation, or for muscle activities following tilting of the platform. The present study demonstrates that MAI is characterised by impairments of ankle-joint control in close-to-injury situations. This could make these individuals more prone to recurrent ankle sprains, and suggests the need for additional mechanical support such as braces or even surgery. In addition, the study highlights the fact that dynamic experimental test conditions in the acting participant are needed to further unravel the mystery of chronic ankle instability.

  4. Relationship of medial gastrocnemius relative fascicle excursion and ankle joint power and work performance during gait in typically developing children: A cross-sectional study.

    PubMed

    Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2017-07-01

    Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles' force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (-) r(14) = -0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight on the relationship between relative fascicle excursions and joint function.

  5. Relationship of medial gastrocnemius relative fascicle excursion and ankle joint power and work performance during gait in typically developing children

    PubMed Central

    Martín Lorenzo, Teresa; Albi Rodríguez, Gustavo; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2017-01-01

    Abstract Muscle fascicles lengthen in response to chronic passive stretch through in-series sarcomere addition in order to maintain an optimum sarcomere length. In turn, the muscles’ force generating capacity, maximum excursion, and contraction velocity is enhanced. Thus, longer fascicles suggest a greater capacity to develop joint power and work. However, static fascicle length measurements may not be taking sarcomere length differences into account. Thus, we considered relative fascicle excursions through passive ankle dorsiflexion may better correlate with the capacity to generate joint power and work than fascicle length. Therefore, the aim of the present study was to determine if medial gastrocnemius relative fascicle excursions correlate with ankle joint power and work generation during gait in typically developing children. A sample of typically developing children (n = 10) were recruited for this study and data analysis was carried out on 20 legs. Medial gastrocnemius relative fascicle excursion from resting joint angle to maximum dorsiflexion was estimated from trigonometric relations of medial gastrocnemius pennation angle and thickness obtained from B-mode real-time ultrasonography. Furthermore, a three-dimensional motion capture system was used to obtain ankle joint work and power during the stance phase of gait. Significant correlations were found between relative fascicle excursion and peak power absorption (–) r(14) = −0.61, P = .012 accounting for 31% variability, positive work r(18) = 0.56, P = .021 accounting for 31% variability, and late stance positive work r(15) = 0.51, P = .037 accounting for 26% variability. The large unexplained variance may be attributed to mechanics of neighboring structures (e.g., soleus or Achilles tendon mechanics) and proximal joint kinetics which may also contribute to ankle joint power and work performance, and were not taken into account. Further studies are encouraged to provide greater insight on the relationship between relative fascicle excursions and joint function. PMID:28723790

  6. Effects of repeated ankle stretching on calf muscle-tendon and ankle biomechanical properties in stroke survivors

    PubMed Central

    Gao, Fan; Ren, Yupeng; Roth, Elliot J.; Harvey, Richard; Zhang, Li-Qun

    2011-01-01

    Background The objective of this study was to investigate changes in active and passive biomechanical properties of the calf muscle-tendon unit induced by controlled ankle stretching in stroke survivors. Methods Ten stroke survivors with ankle spasticity/contracture and ten healthy control subjects received intervention of 60-min ankle stretching. Joint biomechanical properties including resistance torque, stiffness and index of hysteresis were evaluated pre- and post-intervention. Achilles tendon length was measured using ultrasonography. The force output of the triceps surae muscles was characterized via the torque-angle relationship, by stimulating the calf muscles at a controlled intensity across different ankle positions. Findings Compared to healthy controls, the ankle position corresponding to the peak torque of the stroke survivors was shifted towards plantar flexion (P<0.001). Stroke survivors showed significantly higher resistance torques and joint stiffness (P<0.05), and these higher resistances were reduced significantly after the stretching intervention, especially in dorsiflexion (P = 0.013). Stretching significantly improved the force output of the impaired calf muscles in stroke survivors under matched stimulations (P<0.05). Ankle range of motion was also increased by stretching (P<0.001). Interpretation At the joint level, repeated stretching loosened the ankle joint with increased passive joint range of motion and decreased joint stiffness. At the muscle-tendon level, repeated stretching improved calf muscle force output, which might be associated with decreased muscle fascicle stiffness, increased fascicle length and shortening of the Achilles tendon. The study provided evidence of improvement in muscle tendon properties through stretching intervention. PMID:21211873

  7. Ankle moment generation and maximum-effort curved sprinting performance.

    PubMed

    Luo, Geng; Stefanyshyn, Darren

    2012-11-15

    Turning at high speed along acute curves is crucial for athletic performance. One determinant of curved sprinting speed is the ground reaction force that can be created by the supporting limb; the moment generated at the ankle joint may influence such force generation. Body lean associated with curved sprints positions the ankle joints in extreme in-/eversion, and may hinder the ankle moment generation. To examine the influence of ankle moment generation on curved sprinting performance, 17 male subjects performed maximum-effort curved sprints in footwear with and without a wedge. The wedged footwear was constructed with the intention to align the ankle joints closer to their neutral frontal-plane configuration during counter-clockwise curved sprints so greater joint moments might be generated. We found, with the wedged footwear, the average eversion angle of the inside leg ankle was reduced, and the plantarflexion moment generation increased significantly. Meanwhile, the knee extension moment remained unchanged. With the wedged footwear, stance-average centripetal ground reaction force increased significantly while no difference in the vertical ground reaction force was detected. The subjects created a greater centripetal ground reaction impulse in the wedged footwear despite a shortened stance phase when compared to the control. Stance-average curved sprinting speed improved by 4.3% with the wedged footwear. The changes in ankle moment and curved sprinting speed observed in the current study supports the notion that the moment generation at the ankle joint may be a performance constraint for curved sprinting. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Association between the gait pattern characteristics of older people and their two-step test scores.

    PubMed

    Kobayashi, Yoshiyuki; Ogata, Toru

    2018-04-27

    The Two-Step test is one of three official tests authorized by the Japanese Orthopedic Association to evaluate the risk of locomotive syndrome (a condition of reduced mobility caused by an impairment of the locomotive organs). It has been reported that the Two-Step test score has a good correlation with one's walking ability; however, its association with the gait pattern of older people during normal walking is still unknown. Therefore, this study aims to clarify the associations between the gait patterns of older people observed during normal walking and their Two-Step test scores. We analyzed the whole waveforms obtained from the lower-extremity joint angles and joint moments of 26 older people in various stages of locomotive syndrome using principal component analysis (PCA). The PCA was conducted using a 260 × 2424 input matrix constructed from the participants' time-normalized pelvic and right-lower-limb-joint angles along three axes (ten trials of 26 participants, 101 time points, 4 angles, 3 axes, and 2 variable types per trial). The Pearson product-moment correlation coefficient between the scores of the principal component vectors (PCVs) and the scores of the Two-Step test revealed that only one PCV (PCV 2) among the 61 obtained relevant PCVs is significantly related to the score of the Two-Step test. We therefore concluded that the joint angles and joint moments related to PCV 2-ankle plantar-flexion, ankle plantar-flexor moments during the late stance phase, ranges of motion and moments on the hip, knee, and ankle joints in the sagittal plane during the entire stance phase-are the motions associated with the Two-Step test.

  9. Neuromuscular properties of different spastic human joints vary systematically.

    PubMed

    Mirbagheri, M M; Settle, K

    2010-01-01

    We quantified the mechanical abnormalities of the spastic wrist in chronic stroke survivors, and determined whether these findings were representative of those recorded at the elbow and ankle joints. System identification techniques were used to characterize the mechanical abnormalities of these joints and to identify the contribution of intrinsic and reflex stiffness to these abnormalities. Modulation of intrinsic and reflex stiffness with the joint angle was studied by applying PRBS perturbations to the joints at different joint angles over the range of motion. Age-matched healthy subjects were used as control.

  10. A quasi-linear control theory analysis of timesharing skills

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Gottlieb, G. L.

    1977-01-01

    The compliance of the human ankle joint is measured by applying 0 to 50 Hz band-limited gaussian random torques to the foot of a seated human subject. These torques rotate the foot in a plantar-dorsal direction about a horizontal axis at a medial moleolus of the ankle. The applied torques and the resulting angular rotation of the foot are measured, digitized and recorded for off-line processing. Using such a best-fit, second-order model, the effective moment of inertia of the ankle joint, the angular viscosity and the stiffness are calculated. The ankle joint stiffness is shown to be a linear function of the level of tonic muscle contraction, increasing at a rate of 20 to 40 Nm/rad/Kg.m. of active torque. In terms of the muscle physiology, the more muscle fibers that are active, the greater the muscle stiffness. Joint viscosity also increases with activation. Joint stiffness is also a linear function of the joint angle, increasing at a rate of about 0.7 to 1.1 Nm/rad/deg from plantar flexion to dorsiflexion rotation.

  11. Evaluation of joint findings with gait analysis in children with hemophilia.

    PubMed

    Cayir, Atilla; Yavuzer, Gunes; Sayli, Revide Tülin; Gurcay, Eda; Culha, Vildan; Bozkurt, Murat

    2014-01-01

    Hemophilic arthropathy due to recurrent joint bleeding leads to physical, psychological and socioeconomic problems in children with hemophilia and reduces their quality of life. The purpose of this study was to evaluate joint damage through various parameters and to determine functional deterioration in the musculoskeletal system during walking using kinetic and kinematic gait analysis. Physical examination and kinetic and kinematic gait analysis findings of 19 hemophilic patients aged 7-20 years were compared with those of age, sex and leg length matched controls. Stride time was longer in the hemophilia group (p=0.001) compared to the age matched healthy control group, while hip, knee and ankle joint rotation angles were more limited (p=0.001, p=0.035 and p=0.001, respectively). In the hemophilia group, the extensor moment of the knee joint in the stance phase was less than that in the control group (p=0.001). Stride time was longer in the severe hemophilia group compared to the mild-moderate hemophilia and control groups (p=0.011 and p=0.001, respectively). Rotation angle of the ankle was wider in the control group compared to the other two groups (p=0.001 for both). Rotation angle of the ankle joint was narrower in the severe hemophilia group compared to the others (p=0.001 for each). Extensor moment of the knee joint was greater in the control group compared to the other two groups (p=0.003 and p=0.001, respectively). Walking velocity was higher in the control group compared to the severe hemophilia group. Kinetic and kinematic gait analysis has the sensitivity to detect minimal changes in biomechanical parameters. Gait analysis can be used as a reliable method to detect early joint damage.

  12. Increased delivery stride length places greater loads on the ankle joint in elite male cricket fast bowlers.

    PubMed

    Spratford, Wayne; Hicks, Amy

    2014-01-01

    The purpose of this study was to investigate the effect stride length has on ankle biomechanics of the leading leg with reference to the potential risk of injury in cricket fast bowlers. Ankle joint kinematic and kinetic data were collected from 51 male fast bowlers during the stance phase of the final delivery stride. The bowling cohort comprised national under-19, first class and international-level athletes. Bowlers were placed into either Short, Average or Long groups based on final stride length, allowing statistical differences to be measured. A multivariate analysis of variance with a Bonferroni post-hoc correction (α = 0.05) revealed significant differences between peak plantarflexion angles (Short-Long P = 0.005, Average and Long P = 0.04) and negative joint work (Average-Long P = 0.026). This study highlighted that during fast bowling the ankle joint of the leading leg experiences high forces under wide ranges of movement. As stride length increases, greater amounts of negative work and plantarflexion are experienced. These increases place greater loads on the ankle joint and move the foot into positions that make it more susceptible to injuries such as posterior impingement syndrome.

  13. A preliminary study on effects of increment of loads to lower extremity joints during kettlebell swing activity

    NASA Astrophysics Data System (ADS)

    Zin, Muhammad Athif Mat; Rambely, Azmin Sham; Ariff, Noratiqah Mohd

    2018-04-01

    The purpose of the study was to determine the effects of increment of loads to lower extremity joints during the two-hand kettlebell swing (KS) activity with loads of 4 kg, 6 kg and 8 kg. Three male adults participated in this study. Subjects were required to perform a two-hand KS with three different loads which were 4 kg, 6 kg and 8 kg. A Vicon Nexus system (v1.5.2) with three infrared cameras adjusted with 100 Hz speed were used to capture KS motion to produce kinematics data for lower extremity joints which were ankle, knee and hip joints. The results showed that mean maximum flexion angle (MFA) of ankle, knee and hip joints decreased as load increased. Mean MFA of knee joint was the highest while mean MFA of ankle joint was the smallest recorded. Mean MFA of ipsilateral leg was higher than that of contralateral leg for a right-dominant subject.

  14. Functional vs. Traditional Analysis in Biomechanical Gait Data: An Alternative Statistical Approach

    PubMed Central

    Seeley, Matthew K.; Francom, Devin; Reese, C. Shane; Hopkins, J. Ty

    2017-01-01

    Abstract In human motion studies, discrete points such as peak or average kinematic values are commonly selected to test hypotheses. The purpose of this study was to describe a functional data analysis and describe the advantages of using functional data analyses when compared with a traditional analysis of variance (ANOVA) approach. Nineteen healthy participants (age: 22 ± 2 yrs, body height: 1.7 ± 0.1 m, body mass: 73 ± 16 kg) walked under two different conditions: control and pain+effusion. Pain+effusion was induced by injection of sterile saline into the joint capsule and hypertonic saline into the infrapatellar fat pad. Sagittal-plane ankle, knee, and hip joint kinematics were recorded and compared following injections using 2×2 mixed model ANOVAs and FANOVAs. The results of ANOVAs detected a condition × time interaction for the peak ankle (F1,18 = 8.56, p = 0.01) and hip joint angle (F1,18 = 5.77, p = 0.03), but did not for the knee joint angle (F1,18 = 0.36, p = 0.56). The functional data analysis, however, found several differences at initial contact (ankle and knee joint), in the mid-stance (each joint) and at toe off (ankle). Although a traditional ANOVA is often appropriate for discrete or summary data, in biomechanical applications, the functional data analysis could be a beneficial alternative. When using the functional data analysis approach, a researcher can (1) evaluate the entire data as a function, and (2) detect the location and magnitude of differences within the evaluated function. PMID:29339984

  15. Functional vs. Traditional Analysis in Biomechanical Gait Data: An Alternative Statistical Approach.

    PubMed

    Park, Jihong; Seeley, Matthew K; Francom, Devin; Reese, C Shane; Hopkins, J Ty

    2017-12-01

    In human motion studies, discrete points such as peak or average kinematic values are commonly selected to test hypotheses. The purpose of this study was to describe a functional data analysis and describe the advantages of using functional data analyses when compared with a traditional analysis of variance (ANOVA) approach. Nineteen healthy participants (age: 22 ± 2 yrs, body height: 1.7 ± 0.1 m, body mass: 73 ± 16 kg) walked under two different conditions: control and pain+effusion. Pain+effusion was induced by injection of sterile saline into the joint capsule and hypertonic saline into the infrapatellar fat pad. Sagittal-plane ankle, knee, and hip joint kinematics were recorded and compared following injections using 2×2 mixed model ANOVAs and FANOVAs. The results of ANOVAs detected a condition × time interaction for the peak ankle (F1,18 = 8.56, p = 0.01) and hip joint angle (F1,18 = 5.77, p = 0.03), but did not for the knee joint angle (F1,18 = 0.36, p = 0.56). The functional data analysis, however, found several differences at initial contact (ankle and knee joint), in the mid-stance (each joint) and at toe off (ankle). Although a traditional ANOVA is often appropriate for discrete or summary data, in biomechanical applications, the functional data analysis could be a beneficial alternative. When using the functional data analysis approach, a researcher can (1) evaluate the entire data as a function, and (2) detect the location and magnitude of differences within the evaluated function.

  16. Functional vs. Traditional Analysis in Biomechanical Gait Data: An Alternative Statistical Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihong; Seeley, Matthew K.; Francom, Devin

    In human motion studies, discrete points such as peak or average kinematic values are commonly selected to test hypotheses. The purpose of this study was to describe a functional data analysis and describe the advantages of using functional data analyses when compared with a traditional analysis of variance (ANOVA) approach. Nineteen healthy participants (age: 22 ± 2 yrs, body height: 1.7 ± 0.1 m, body mass: 73 ± 16 kg) walked under two different conditions: control and pain+effusion. Pain+effusion was induced by injection of sterile saline into the joint capsule and hypertonic saline into the infrapatellar fat pad. Sagittal-plane ankle,more » knee, and hip joint kinematics were recorded and compared following injections using 2×2 mixed model ANOVAs and FANOVAs. The results of ANOVAs detected a condition × time interaction for the peak ankle (F1,18 = 8.56, p = 0.01) and hip joint angle (F1,18 = 5.77, p = 0.03), but did not for the knee joint angle (F1,18 = 0.36, p = 0.56). The functional data analysis, however, found several differences at initial contact (ankle and knee joint), in the mid-stance (each joint) and at toe off (ankle). Although a traditional ANOVA is often appropriate for discrete or summary data, in biomechanical applications, the functional data analysis could be a beneficial alternative. Thus when using the functional data analysis approach, a researcher can (1) evaluate the entire data as a function, and (2) detect the location and magnitude of differences within the evaluated function.« less

  17. Functional vs. Traditional Analysis in Biomechanical Gait Data: An Alternative Statistical Approach

    DOE PAGES

    Park, Jihong; Seeley, Matthew K.; Francom, Devin; ...

    2017-12-28

    In human motion studies, discrete points such as peak or average kinematic values are commonly selected to test hypotheses. The purpose of this study was to describe a functional data analysis and describe the advantages of using functional data analyses when compared with a traditional analysis of variance (ANOVA) approach. Nineteen healthy participants (age: 22 ± 2 yrs, body height: 1.7 ± 0.1 m, body mass: 73 ± 16 kg) walked under two different conditions: control and pain+effusion. Pain+effusion was induced by injection of sterile saline into the joint capsule and hypertonic saline into the infrapatellar fat pad. Sagittal-plane ankle,more » knee, and hip joint kinematics were recorded and compared following injections using 2×2 mixed model ANOVAs and FANOVAs. The results of ANOVAs detected a condition × time interaction for the peak ankle (F1,18 = 8.56, p = 0.01) and hip joint angle (F1,18 = 5.77, p = 0.03), but did not for the knee joint angle (F1,18 = 0.36, p = 0.56). The functional data analysis, however, found several differences at initial contact (ankle and knee joint), in the mid-stance (each joint) and at toe off (ankle). Although a traditional ANOVA is often appropriate for discrete or summary data, in biomechanical applications, the functional data analysis could be a beneficial alternative. Thus when using the functional data analysis approach, a researcher can (1) evaluate the entire data as a function, and (2) detect the location and magnitude of differences within the evaluated function.« less

  18. Comparison of biomechanical gait parameters of young children with haemophilia and those of age-matched peers.

    PubMed

    Stephensen, D; Drechsler, W; Winter, M; Scott, O

    2009-03-01

    Quality of life for children with haemophilia has improved since the introduction of prophylaxis. The frequency of joint haemorrhages has reduced, but the consequences of reduced bleeding on the biomechanical parameters of walking are not well understood. This study explored the differences in sagittal plane biomechanics of walking between a control group (Group 1) of normal age-matched children and children with haemophilia (Group 2) with a target ankle joint. A motion capture system and two force platforms were used to collect sagittal plane kinematic, kinetic and temporal-spatial data during walking of 14 age-matched normal children and 14 children with haemophilia aged 7-13 years. Group differences in maximum and minimum flexion/extension angles and moments of the hip, knee and ankle joints, ground reaction forces and temporal-spatial gait cycle parameters were analysed using one-way anova. Significant changes (P < 0.05) in kinematic and kinetic parameters but not temporal-spatial parameters were found in children with haemophilia; greater flexion angles and external moments of force at the knee, greater ankle plantarflexion external moments and lower hip flexion external moments. These results suggest that early biomechanical changes are present in young haemophilic children with a history of a target ankle joint and imply that lower limb joint function is more impaired than current clinical evaluations indicate. Protocols and quantitative data on the biomechanical gait pattern of children with haemophilia reported in this study provide a baseline to evaluate lower limb joint function and clinical progression.

  19. Biomechanical analysis of posture in patients with spinal kyphosis due to ankylosing spondylitis: a pilot study.

    PubMed

    Bot, S D; Caspers, M; Van Royen, B J; Toussaint, H M; Kingma, I

    1999-05-01

    Patients with ankylosing spondylitis may experience a progressive spinal kyphosis, which induces a forward and downward displacement of the centre of mass (COM) of the trunk. In this pilot study, the possible mechanisms used to compensate for the displacement of the trunk COM were analysed. Joint angles of hip, knee and ankle were determined in four patients with ankylosing spondylitis and compared to data of 18 healthy subjects. Each patient stood on a force platform and had to adopt several predefined postures, which were recorded by a video camera. In three patients, the hips were flexed when standing relaxed, and in all patients hip extension was limited. The knee angles of three patients were smaller and in two patients the angle of the ankles was larger compared to healthy subjects. The results suggest that the hip joints are at least no longer involved in balance control. This may imply that conservative therapy should focus on the prevention of restriction of the hip joints.

  20. Ambulant adults with spastic cerebral palsy: the validity of lower limb joint angle measurements from sagittal video recordings.

    PubMed

    Larsen, Kerstin L; Maanum, Grethe; Frøslie, Kathrine F; Jahnsen, Reidun

    2012-02-01

    In the development of a clinical program for ambulant adults with cerebral palsy (CP), we investigated the validity of joint angles measured from sagittal video recordings and explored if movements in the transversal plane identified with three-dimensional gait analysis (3DGA) affected the validity of sagittal video joint angle measurements. Ten observers, and 10 persons with spastic CP (19-63 years), Gross Motor Function Classification System I-II, participated in the study. Concurrent criterion validity between video joint angle measurements and 3DGA was assessed by Bland-Altman plots with mean differences and 95% limits of agreement (LoA). Pearson's correlation coefficients (r) and scatter plots were used supplementary. Transversal kinematics ≥2 SD from our reference band were defined as increased movement in the transversal plane. The overall mean differences in degrees between joint angles measured by 3DGA and video recordings (3°, 5° and -7° for the hip, knee and ankle respectively) and corresponding LoA (18°, 10° and 15° for the hip, knee and ankle, respectively) demonstrated substantial discrepancies between the two methods. The correlations ranged from low (r=0.39) to moderate (r=0.68). Discrepancy between the two measurements was seen both among persons with and without the presence of deviating transversal kinematics. Quantifying lower limb joint angles from sagittal video recordings in ambulant adults with spastic CP demonstrated low validity, and should be conducted with caution. This gives implications for selecting evaluation method of gait. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Parachute Questionnaire Project,

    DTIC Science & Technology

    1945-03-17

    i Ankle ---- ---- 8 Knee ---.--.-- 9 Spine 2 Neck Muscles -5 Arch of foot ---------- 2 Leg muscles 1 Pelvis 2 0 Sacroiliac Joint ---- I Femur...11 Angle .- 2 Leg -0------ 1 Cartilage of knee ---- 1 Chest ...- . 9 Symphysis Pubis 1 Sacrum .... - 5 Sacroiliac joint -------- 1 Groin ..... . 4

  2. Ankle-Dorsiflexion Range of Motion After Ankle Self-Stretching Using a Strap

    PubMed Central

    Jeon, In-cheol; Kwon, Oh-yun; Yi, Chung-Hwi; Cynn, Heon-Seock; Hwang, Ui-jae

    2015-01-01

    Context  A variety of ankle self-stretching exercises have been recommended to improve ankle-dorsiflexion range of motion (DFROM) in individuals with limited ankle dorsiflexion. A strap can be applied to stabilize the talus and facilitate anterior glide of the distal tibia at the talocrural joint during ankle self-stretching exercises. Novel ankle self-stretching using a strap (SSS) may be a useful method of improving ankle DFROM. Objective  To compare the effects of 2 ankle-stretching techniques (static stretching versus SSS) on ankle DFROM. Design  Randomized controlled clinical trial. Setting  University research laboratory. Patients or Other Participants  Thirty-two participants with limited active dorsiflexion (<20°) while sitting (14 women and 18 men) were recruited. Main Outcome Measure(s)  The participants performed 2 ankle self-stretching techniques (static stretching and SSS) for 3 weeks. Active DFROM (ADFROM), passive DFROM (PDFROM), and the lunge angle were measured. An independent t test was used to compare the improvements in these values before and after the 2 stretching interventions. The level of statistical significance was set at α = .05. Results  Active DFROM and PDFROM were greater in both stretching groups after the 3-week interventions. However, ADFROM, PDFROM, and the lunge angle were greater in the SSS group than in the static-stretching group (P < .05). Conclusions  Ankle SSS is recommended to improve ADFROM, PDFROM, and the lunge angle in individuals with limited DFROM. PMID:26633750

  3. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint

    PubMed Central

    Bent, Leah R.

    2016-01-01

    It has previously been shown that cutaneous sensory input from across a broad region of skin can influence proprioception at joints of the hand. The present experiment tested whether cutaneous input from different skin regions across the foot can influence proprioception at the ankle joint. The ability to passively match ankle joint position (17° and 7° plantar flexion and 7° dorsiflexion) was measured while cutaneous vibration was applied to the sole (heel, distal metatarsals) or dorsum of the target foot. Vibration was applied at two different frequencies to preferentially activate Meissner's corpuscles (45 Hz, 80 μm) or Pacinian corpuscles (255 Hz, 10 μm) at amplitudes ∼3 dB above mean perceptual thresholds. Results indicated that cutaneous input from all skin regions across the foot could influence joint-matching error and variability, although the strongest effects were observed with heel vibration. Furthermore, the influence of cutaneous input from each region was modulated by joint angle; in general, vibration had a limited effect on matching in dorsiflexion compared with matching in plantar flexion. Unlike previous results in the upper limb, we found no evidence that Pacinian input exerted a stronger influence on proprioception compared with Meissner input. Findings from this study suggest that fast-adapting cutaneous input from the foot modulates proprioception at the ankle joint in a passive joint-matching task. These results indicate that there is interplay between tactile and proprioceptive signals originating from the foot and ankle. PMID:26823342

  4. Effect of External Ankle Support on Ankle and Knee Biomechanics During the Cutting Maneuver in Basketball Players.

    PubMed

    Klem, Nardia-Rose; Wild, Catherine Y; Williams, Sian A; Ng, Leo

    2017-03-01

    Despite the high prevalence of lower extremity injuries in female basketball players as well as a high proportion of athletes who wear ankle braces, there is a paucity of research pertaining to the effects of ankle bracing on ankle and knee biomechanics during basketball-specific tasks. To compare the effects of a lace-up brace (ASO), a hinged brace (Active T2), and no ankle bracing (control) on ankle and knee joint kinematics and joint reaction forces in female basketball athletes during a cutting maneuver. Controlled laboratory study. Twenty healthy, semi-elite female basketball players performed a cutting task under both ankle brace conditions (lace-up ankle brace and hinged ankle brace) and a no-brace condition. The 3-dimensional kinematics of the ankle and knee during the cutting maneuver were measured with an 18-camera motion analysis system (250 Hz), and ground-reaction force data were collected by use of a multichannel force plate (2000 Hz) to quantify ankle and knee joint reaction forces. Conditions were randomized using a block randomization method. Compared with the control condition, the hinged ankle brace significantly restricted peak ankle inversion (mean difference, 1.7°; P = .023). No significant difference was found between the lace-up brace and the control condition ( P = .865). Compared with the lace-up brace, the hinged brace significantly reduced ankle and knee joint compressive forces at the time of peak ankle dorsiflexion (mean difference, 1.5 N/kg [ P = .018] and 1.4 N/kg [ P = .013], respectively). Additionally, the hinged ankle brace significantly reduced knee anterior shear forces compared with the lace-up brace both during the deceleration phase and at peak ankle dorsiflexion (mean difference, 0.8 N/kg [ P = .018] and 0.9 N/kg [ P = .011], respectively). The hinged ankle brace significantly reduced ankle inversion compared with the no-brace condition and reduced ankle and knee joint forces compared with the lace-up brace in a female basketball population during a cutting task. Compared with the lace-up brace, the hinged brace may be a better choice of prophylactic ankle support for female basketball players from a biomechanical perspective. However, both braces increased knee internal rotation and knee abduction angles, which may be problematic for a population that already has a high prevalence of knee injuries.

  5. Three-Dimensional Ankle Moments and Nonlinear Summation of Rat Triceps Surae Muscles

    PubMed Central

    Tijs, Chris; van Dieën, Jaap H.; Baan, Guus C.; Maas, Huub

    2014-01-01

    The Achilles tendon and epimuscular connective tissues mechanically link the triceps surae muscles. These pathways may cause joint moments exerted by each muscle individually not to sum linearly, both in magnitude and direction. The aims were (i) to assess effects of sagittal plane ankle angle (varied between 150° and 70°) on isometric ankle moments, in both magnitude and direction, exerted by active rat triceps surae muscles, (ii) to assess ankle moment summation between those muscles for a range of ankle angles and (iii) to assess effects of sagittal plane ankle angle and muscle activation on Achilles tendon length. At each ankle angle, soleus (SO) and gastrocnemius (GA) muscles were first excited separately to assess ankle-angle moment characteristics and subsequently both muscles were excited simultaneously to investigate moment summation. The magnitude of ankle moment exerted by SO and GA, the SO direction in the transverse and sagittal planes, and the GA direction in the transverse plane were significantly affected by ankle angle. SO moment direction in the frontal and sagittal planes were significantly different from that of GA. Nonlinear magnitude summation varied between 0.6±2.9% and −3.6±2.9%, while the nonlinear direction summation varied between 0.3±0.4° and −0.4±0.7° in the transverse plane, between 0.5±0.4° and 0.1±0.4° in the frontal plane, and between 3.0±7.9° and 0.3±2.3° in the sagittal plane. Changes in tendon length caused by SO contraction were significantly lower than those during contraction of GA and GA+SO simultaneously. Thus, moments exerted by GA and SO sum nonlinearly both in the magnitude and direction. The limited degree of nonlinear summation may be explained by different mechanisms acting in opposite directions. PMID:25360524

  6. The deficit of joint position sense in the chronic unstable ankle as measured by inversion angle replication error.

    PubMed

    Nakasa, Tomoyuki; Fukuhara, Kohei; Adachi, Nobuo; Ochi, Mitsuo

    2008-05-01

    Functional instability is defined as a repeated ankle inversion sprain and a giving way sensation. Previous studies have described the damage of sensori-motor control in ankle sprain as being a possible cause of functional instability. The aim of this study was to evaluate the inversion angle replication errors in patients with functional instability after ankle sprain. The difference between the index angle and replication angle was measured in 12 subjects with functional instability, with the aim of evaluating the replication error. As a control group, the replication errors of 17 healthy volunteers were investigated. The side-to-side differences of the replication errors were compared between both the groups, and the relationship between the side-to-side differences of the replication errors and the mechanical instability were statistically analyzed in the unstable group. The side-to-side difference of the replication errors was 1.0 +/- 0.7 degrees in the unstable group and 0.2 +/- 0.7 degrees in the control group. There was a statistically significant difference between both the groups. The side-to-side differences of the replication errors in the unstable group did not statistically correlate to the anterior talar translation and talar tilt. The patients with functional instability had the deficit of joint position sense in comparison with healthy volunteers. The replication error did not correlate to the mechanical instability. The patients with functional instability should be treated appropriately in spite of having less mechanical instability.

  7. Effect of isokinetic training on strength, functionality and proprioception in athletes with functional ankle instability.

    PubMed

    Sekir, Ufuk; Yildiz, Yavuz; Hazneci, Bulent; Ors, Fatih; Aydin, Taner

    2007-05-01

    The purpose of this study was to investigate the effects of isokinetic exercise on strength, joint position sense and functionality in recreational athletes with functional ankle instability (FAI). Strength, proprioception and balance of 24 recreational athletes with unilateral FAI were evaluated by using isokinetic muscle strength measurement, ankle joint position sense and one leg standing test. The functional ability was evaluated using five different tests. These were; single limb hopping course (SLHC), one legged and triple legged hop for distance (OLHD-TLHD), and six and cross six meter hop for time (SMHT-CSMHT). Isokinetic peak torque of the ankle invertor and evertor muscles were assessed eccentrically and concentrically at test speeds of 120 degrees /s. Isokinetic exercise protocol was carried out at an angular velocity of 120 degrees /s. The exercise session was repeated three times a week and lasted after 6 weeks. At baseline, concentric invertor strength was found to be significantly lower in the functionally unstable ankles compared to the opposite healthy ankles (p < 0.001). This difference was not present after executing the 6 weeks exercise sessions (p > 0.05). Ankle joint position sense in the injured ankles declined significantly from 2.35 +/- 1.16 to 1.33 +/- 0.62 degrees for 10 degrees of inversion angle (p < 0.001) and from 3.10 +/- 2.16 to 2.19 +/- 0.98 degrees for 20 degrees of inversion angle (p < 0.05) following the isokinetic exercise. One leg standing test score decreased significantly from 15.17 +/- 8.50 to 11.79 +/- 7.81 in the injured ankles (p < 0.001). Following the isokinetic exercise protocol, all of the worsened functional test scores in the injured ankles as compared to the opposite healthy ankles displayed a significant improvement (p < 0.01 for OLHD and CSMHT, p < 0.001 for SLHC, TLHD, and SMHT). These results substantiate the deficits of strength, proprioception, balance and functionality in recreational athletes with FAI. The isokinetic exercise program used in this study had a positive effect on these parameters.

  8. Anatomical predisposition of the ankle joint for lateral sprain or lateral malleolar fracture evaluated by radiographic measurements.

    PubMed

    Lee, Kyoung Min; Chung, Chin Youb; Sung, Ki Hyuk; Lee, SeungYeol; Kim, Tae Gyun; Choi, Young; Jung, Ki Jin; Kim, Yeon Ho; Koo, Seung Bum; Park, Moon Seok

    2015-01-01

    Injury mechanism and the amount of force are important factors determining whether a fracture or sprain occurs at the time of an ankle inversion injury. However, the anatomical differences between the ankle fracture and sprain have not been investigated sufficiently. This study was performed to investigate whether an anatomical predisposition of the ankle joint results in a lateral malleolar fracture or lateral ankle sprain. Two groups of consecutive patients, one with lateral malleolar fracture (274 patients, mean age 49.0 years) and the other with lateral ankle sprain (400 patients, mean age 38.4 years), were evaluated. Ankle radiographs were examined for 7 measures: distal tibial articular surface (DTAS) angle, bimalleolar tilt (BT), medial malleolar relative length (MMRL), lateral malleolar relative length (LMRL), medial malleolar slip angle (MMSA), anterior inclination of tibia (AI), and fibular position (FP). After an interobserver reliability test, the radiographic measurements were compared between the 2 groups. Linear regression analysis was performed to correct for age and sex effects between the groups. The fracture group and the sprain group showed significant differences in BT (P = .001), MMSA (P < .001), AI (P = .023), and FP (P < .001). In multiple regression analysis, after adjusting for age and sex effects, fracture and sprain groups showed a significant difference in BT (P = .001), MMRL (P < .001), MMSA (P < .001), and FP (P < .001). The lateral malleolar fracture group tended to show more bony constraint than that of the lateral ankle sprain group. Further 3-dimensional assessment of the bony structure and subsequent biomechanical studies are needed to elucidate the mechanism of injury according to the various types of ankle fractures and ankle sprain. Level III, retrospective comparative study. © The Author(s) 2014.

  9. Provocative mechanical tests of the peripheral nervous system affect the joint torque-angle during passive knee motion.

    PubMed

    Andrade, R J; Freitas, S R; Vaz, J R; Bruno, P M; Pezarat-Correia, P

    2015-06-01

    This study aimed to determine the influence of the head, upper trunk, and foot position on the passive knee extension (PKE) torque-angle response. PKE tests were performed in 10 healthy subjects using an isokinetic dynamometer at 2°/s. Subjects lay in the supine position with their hips flexed to 90°. The knee angle, passive torque, surface electromyography (EMG) of the semitendinosus and quadriceps vastus medialis, and stretch discomfort were recorded in six body positions during PKE. The different maximal active positions of the cervical spine (neutral; flexion; extension), thoracic spine (neutral; flexion), and ankle (neutral; dorsiflexion) were passively combined for the tests. Visual analog scale scores and EMG were unaffected by body segment positioning. An effect of the ankle joint was verified on the peak torque and knee maximum angle when the ankle was in the dorsiflexion position (P < 0.05). Upper trunk positioning had an effect on the knee submaximal torque (P < 0.05), observed as an increase in the knee passive submaximal torque when the cervical and thoracic spines were flexed (P < 0.05). In conclusion, other apparently mechanical unrelated body segments influence torque-angle response since different positions of head, upper trunk, and foot induce dissimilar knee mechanical responses during passive extension. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Redistribution of Mechanical Work at the Knee and Ankle Joints During Fast Running in Minimalist Shoes.

    PubMed

    Fuller, Joel T; Buckley, Jonathan D; Tsiros, Margarita D; Brown, Nicholas A T; Thewlis, Dominic

    2016-10-01

    Minimalist shoes have been suggested as a way to alter running biomechanics to improve running performance and reduce injuries. However, to date, researchers have only considered the effect of minimalist shoes at slow running speeds. To determine if runners change foot-strike pattern and alter the distribution of mechanical work at the knee and ankle joints when running at a fast speed in minimalist shoes compared with conventional running shoes. Crossover study. Research laboratory. Twenty-six trained runners (age = 30.0 ± 7.9 years [age range, 18-40 years], height = 1.79 ± 0.06 m, mass = 75.3 ± 8.2 kg, weekly training distance = 27 ± 15 km) who ran with a habitual rearfoot foot-strike pattern and had no experience running in minimalist shoes. Participants completed overground running trials at 18 km/h in minimalist and conventional shoes. Sagittal-plane kinematics and joint work at the knee and ankle joints were computed using 3-dimensional kinematic and ground reaction force data. Foot-strike pattern was classified as rearfoot, midfoot, or forefoot strike based on strike index and ankle angle at initial contact. We observed no difference in foot-strike classification between shoes (χ 2 1 = 2.29, P = .13). Ankle angle at initial contact was less (2.46° versus 7.43°; t 25 = 3.34, P = .003) and strike index was greater (35.97% versus 29.04%; t 25 = 2.38, P = .03) when running in minimalist shoes compared with conventional shoes. We observed greater negative (52.87 J versus 42.46 J; t 24 = 2.29, P = .03) and positive work (68.91 J versus 59.08 J; t 24 = 2.65, P = .01) at the ankle but less negative (59.01 J versus 67.02 J; t 24 = 2.25, P = .03) and positive work (40.37 J versus 47.09 J; t 24 = 2.11, P = .046) at the knee with minimalist shoes compared with conventional shoes. Running in minimalist shoes at a fast speed caused a redistribution of work from the knee to the ankle joint. This finding suggests that runners changing from conventional to minimalist shoes for short-distance races could be at an increased risk of ankle and calf injuries but a reduced risk of knee injuries.

  11. Does Vertical Ground Reaction Force of the Hip, Knee, and Ankle Joints Change in Patients with Adolescent Idiopathic Scoliosis after Spinal Fusion?

    PubMed

    Yusof, Mohd Imran; Shaharudin, Shazlin; Sivalingarajah, Prema

    2018-04-01

    Comparative cross-sectional study. We measured the vertical ground reaction force (vGRF) of the hip, knee, and ankle joints during normal gait in normal patients, adolescent idiopathic scoliosis (AIS) patients with a Cobb angle <40° and in AIS patients with spinal fusion. We aimed to investigate whether vGRF in the aforementioned joints is altered in these three groups of patients. vGRF of the lower limb joints may be altered in these groups of patients. Although it is known that excessive force in the joints may induce early arthritis, there is limited relevant information in the literatures. We measured vGRF of the hip, knee, and ankle joints during heel strike, early stance, mid stance, and toe-off phases in normal subjects (group 1, n=14), AIS patients with Cobb angle <40° (group 2, n=14), and AIS patients with spinal fusion (group 3, n=13) using a gait analysis platform. Fifteen auto-reflective tracking markers were attached to standard anatomical landmarks in both the lower limbs. The captured motion images were used to define the orientations of the body segments and force exerted on the force plate using computer software. Statistical analysis was performed using independent t-test and analysis of variance to examine differences between the right and left sides as well as those among the different subject groups. The measurements during the four gait phases in all the groups did not show any significant difference ( p >0.05). In addition, no significant difference was found in the vGRF measurements of all the joints among the three groups ( p >0.05). A Cobb angle <40° and spinal fusion did not significantly create imbalance or alter vGRF of the lower limb joints in AIS patients.

  12. Knee and Ankle Joint Angles Influence the Plantarflexion Torque of the Gastrocnemius.

    PubMed

    Landin, Dennis; Thompson, Melissa; Reid, Meghan

    2015-08-01

    The gastrocnemius (GA) is the lone bi-articular muscle of the leg, crossing both the knee and ankle. As with any bi-articular muscle, both joints affect its length/tension curve. The role of the GA as a plantarflexor is firmly established; however, no current research has investigated how changes in knee and ankle joint positions on its ability to generate a plantarflexion (PF) torque. This paper reports on the PF force generated by the GA at specific knee and ankle joint combinations. The right GA of 26 participants was electrically stimulated via surface electrodes following a standardized protocol at 24 knee and ankle joint combinations. Three stimulations were applied at each of the 24 positions. Data were recorded on three dependent measures: the passive moment, which was the PF moment created by the tissue without stimulation, the maximum moment, which was the highest PF moment during the stimulation and included the passive moment, and the stimulated moment, which reflected the PF moment during stimulation minus the passive moment. A straight knee and dorsiflexed ankle create the position in which the GA generates the greatest PF moment, but it is also the position of greatest length. This finding is in contrast to conclusions from previous research with bi-articular muscles, which has consistently shown that the greatest length is not a muscle's optimal length. The full ranges of motion for the knee and ankle apparently do not elongate the GA beyond its optimal length for producing a PF moment. Clinicians commonly evaluate GA status with the patient seated and the foot subject to gravity. The present results indicate that manual testing of the GA in isolation should be performed, whenever possible, with the knee extended and the ankle dorsiflexed to potentially elicit the maximum PF torque from the GA.

  13. Model-Based Estimation of Ankle Joint Stiffness

    PubMed Central

    Misgeld, Berno J. E.; Zhang, Tony; Lüken, Markus J.; Leonhardt, Steffen

    2017-01-01

    We address the estimation of biomechanical parameters with wearable measurement technologies. In particular, we focus on the estimation of sagittal plane ankle joint stiffness in dorsiflexion/plantar flexion. For this estimation, a novel nonlinear biomechanical model of the lower leg was formulated that is driven by electromyographic signals. The model incorporates a two-dimensional kinematic description in the sagittal plane for the calculation of muscle lever arms and torques. To reduce estimation errors due to model uncertainties, a filtering algorithm is necessary that employs segmental orientation sensor measurements. Because of the model’s inherent nonlinearities and nonsmooth dynamics, a square-root cubature Kalman filter was developed. The performance of the novel estimation approach was evaluated in silico and in an experimental procedure. The experimental study was conducted with body-worn sensors and a test-bench that was specifically designed to obtain reference angle and torque measurements for a single joint. Results show that the filter is able to reconstruct joint angle positions, velocities and torque, as well as, joint stiffness during experimental test bench movements. PMID:28353683

  14. Effects of mid-foot contact area ratio on lower body kinetics/kinematics in sagittal plane during stair descent in women.

    PubMed

    Lee, Jinkyu; Hong, Yoon No Gregory; Shin, Choongsoo S

    2016-07-01

    The mid-foot contact area relative to the total foot contact area can facilitate foot arch structure evaluation. A stair descent motion consistently provides initial fore-foot contact and utilizes the foot arch more actively for energy absorption. The purpose of this study was to compare ankle and knee joint angle, moment, and work in sagittal plane during stair descending between low and high Mid-Foot-Contact-Area (MFCA) ratio group. The twenty-two female subjects were tested and classified into two groups (high MFCA and low MFCA) using their static MFCA ratios. The ground reaction force (GRF) and kinematics of ankle and knee joints were measured while stair descending. During the period between initial contact and the first peak in vertical GRF (early absorption phase), ankle negative work for the low MFCA ratio group was 33% higher than that for the high MFCA ratio group (p<0.05). However, ankle negative work was not significantly different between the two groups during the period between initial contact and peak dorsiflexion angle (early absorption phase+late absorption phase). The peak ankle dorsiflexion angle was smaller in the low MFCA ratio group (p<0.05). Our results suggest that strategy of energy absorption at the ankle and foot differs depending upon foot arch types classified by MFCA. The low MFCA ratio group seemed to absorb more impact energy using strain in the planar fascia during early absorption phase, whereas the high MFCA ratio group absorbed more impact energy using increased dorsiflexion during late absorption phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Upper ankle joint space detection on low contrast intraoperative fluoroscopic C-arm projections

    NASA Astrophysics Data System (ADS)

    Thomas, Sarina; Schnetzke, Marc; Brehler, Michael; Swartman, Benedict; Vetter, Sven; Franke, Jochen; Grützner, Paul A.; Meinzer, Hans-Peter; Nolden, Marco

    2017-03-01

    Intraoperative mobile C-arm fluoroscopy is widely used for interventional verification in trauma surgery, high flexibility combined with low cost being the main advantages of the method. However, the lack of global device-to- patient orientation is challenging, when comparing the acquired data to other intrapatient datasets. In upper ankle joint fracture reduction accompanied with an unstable syndesmosis, a comparison to the unfractured contralateral site is helpful for verification of the reduction result. To reduce dose and operation time, our approach aims at the comparison of single projections of the unfractured ankle with volumetric images of the reduced fracture. For precise assessment, a pre-alignment of both datasets is a crucial step. We propose a contour extraction pipeline to estimate the joint space location for a prealignment of fluoroscopic C-arm projections containing the upper ankle joint. A quadtree-based hierarchical variance comparison extracts potential feature points and a Hough transform is applied to identify bone shaft lines together with the tibiotalar joint space. By using this information we can define the coarse orientation of the projections independent from the ankle pose during acquisition in order to align those images to the volume of the fractured ankle. The proposed method was evaluated on thirteen cadaveric datasets consisting of 100 projections each with manually adjusted image planes by three trauma surgeons. The results show that the method can be used to detect the joint space orientation. The correlation between angle deviation and anatomical projection direction gives valuable input on the acquisition direction for future clinical experiments.

  16. Linear feature projection-based real-time decoding of limb state from dorsal root ganglion recordings.

    PubMed

    Han, Sungmin; Chu, Jun-Uk; Park, Jong Woong; Youn, Inchan

    2018-05-15

    Proprioceptive afferent activities recorded by a multichannel microelectrode have been used to decode limb movements to provide sensory feedback signals for closed-loop control in a functional electrical stimulation (FES) system. However, analyzing the high dimensionality of neural activity is one of the major challenges in real-time applications. This paper proposes a linear feature projection method for the real-time decoding of ankle and knee joint angles. Single-unit activity was extracted as a feature vector from proprioceptive afferent signals that were recorded from the L7 dorsal root ganglion during passive movements of ankle and knee joints. The dimensionality of this feature vector was then reduced using a linear feature projection composed of projection pursuit and negentropy maximization (PP/NEM). Finally, a time-delayed Kalman filter was used to estimate the ankle and knee joint angles. The PP/NEM approach had a better decoding performance than did other feature projection methods, and all processes were completed within the real-time constraints. These results suggested that the proposed method could be a useful decoding method to provide real-time feedback signals in closed-loop FES systems.

  17. Medial compressible forefoot sole elements reduce ankle inversion in lateral SSC jumps.

    PubMed

    Fleischmann, Jana; Mornieux, Guillaume; Gehring, Dominic; Gollhofer, Albert

    2013-06-01

    Sideward movements are associated with high incidences of lateral ankle sprains. Special shoe constructions might be able to reduce these injuries during lateral movements. The purpose of this study was to investigate whether medial compressible forefoot sole elements can reduce ankle inversion in a reactive lateral movement, and to evaluate those elements' influence on neuromuscular and mechanical adjustments in lower extremities. Foot placement and frontal plane ankle joint kinematics and kinetics were analyzed by 3-dimensional motion analysis. Electromyographic data of triceps surae, peroneus longus, and tibialis anterior were collected. This modified shoe reduced ankle inversion in comparison with a shoe with a standard sole construction. No differences in ankle inversion moments were found. With the modified shoe, foot placement occurred more internally rotated, and muscle activity of the lateral shank muscles was reduced. Hence, lateral ankle joint stability during reactive sideward movements can be improved by these compressible elements, and therefore lower lateral shank muscle activity is required. As those elements limit inversion, the strategy to control inversion angles via a high external foot rotation does not need to be used.

  18. Changes in Balancing Ability of Athletes With Chronic Ankle Instability After Foot Orthotics Application and Rehabilitation Exercises

    PubMed Central

    Lee, Hong-Jae; Lim, Kil-Byung; Jung, Tae-Ho; Kim, Dug-Young

    2013-01-01

    Objective To compare the effect of foot orthotics and rehabilitation exercises by assessing balancing ability and joint proprioception in athletes who have chronic ankle instability. Methods Forty-one athletes who visited hospitals due to chronic ankle instability were randomly assigned to two groups. One group had ankle rehabilitation exercises while the other group had the same rehabilitation exercises as well as foot orthotics. Joint position sense of the ankle joint was examined by using an isokinetic exercise machine. Balancing abilities categorized into static, dynamic and functional balance abilities were evaluated by using computerized posturography. We tested the subjects before and after the four-week rehabilitation program. Results After the four-week treatment, for joint reposition sense evaluation, external 75% angle evaluation was done, revealing that the group with the application of foot orthotics improved by -1.07±1.64 on average, showing no significant difference between the two groups (p>0.05). Static, dynamic and functional balancing abilities using balance masters were evaluated, revealing that the two groups improved in some items, but showing no significant difference between them (p>0.05). Conclusion This study found that athletes with chronic ankle instability who had foot orthotics applied for four weeks improved their proprioceptive and balancing abilities, but did not show additional treatment effects compared with rehabilitation exercise treatment. PMID:24020033

  19. Changes in balancing ability of athletes with chronic ankle instability after foot orthotics application and rehabilitation exercises.

    PubMed

    Lee, Hong-Jae; Lim, Kil-Byung; Jung, Tae-Ho; Kim, Dug-Young; Park, Kyung-Rok

    2013-08-01

    To compare the effect of foot orthotics and rehabilitation exercises by assessing balancing ability and joint proprioception in athletes who have chronic ankle instability. Forty-one athletes who visited hospitals due to chronic ankle instability were randomly assigned to two groups. One group had ankle rehabilitation exercises while the other group had the same rehabilitation exercises as well as foot orthotics. Joint position sense of the ankle joint was examined by using an isokinetic exercise machine. Balancing abilities categorized into static, dynamic and functional balance abilities were evaluated by using computerized posturography. We tested the subjects before and after the four-week rehabilitation program. After the four-week treatment, for joint reposition sense evaluation, external 75% angle evaluation was done, revealing that the group with the application of foot orthotics improved by -1.07±1.64 on average, showing no significant difference between the two groups (p>0.05). Static, dynamic and functional balancing abilities using balance masters were evaluated, revealing that the two groups improved in some items, but showing no significant difference between them (p>0.05). This study found that athletes with chronic ankle instability who had foot orthotics applied for four weeks improved their proprioceptive and balancing abilities, but did not show additional treatment effects compared with rehabilitation exercise treatment.

  20. Vibrotactile stimulation of fast-adapting cutaneous afferents from the foot modulates proprioception at the ankle joint.

    PubMed

    Mildren, Robyn L; Bent, Leah R

    2016-04-15

    It has previously been shown that cutaneous sensory input from across a broad region of skin can influence proprioception at joints of the hand. The present experiment tested whether cutaneous input from different skin regions across the foot can influence proprioception at the ankle joint. The ability to passively match ankle joint position (17° and 7° plantar flexion and 7° dorsiflexion) was measured while cutaneous vibration was applied to the sole (heel, distal metatarsals) or dorsum of the target foot. Vibration was applied at two different frequencies to preferentially activate Meissner's corpuscles (45 Hz, 80 μm) or Pacinian corpuscles (255 Hz, 10 μm) at amplitudes ∼3 dB above mean perceptual thresholds. Results indicated that cutaneous input from all skin regions across the foot could influence joint-matching error and variability, although the strongest effects were observed with heel vibration. Furthermore, the influence of cutaneous input from each region was modulated by joint angle; in general, vibration had a limited effect on matching in dorsiflexion compared with matching in plantar flexion. Unlike previous results in the upper limb, we found no evidence that Pacinian input exerted a stronger influence on proprioception compared with Meissner input. Findings from this study suggest that fast-adapting cutaneous input from the foot modulates proprioception at the ankle joint in a passive joint-matching task. These results indicate that there is interplay between tactile and proprioceptive signals originating from the foot and ankle. Copyright © 2016 the American Physiological Society.

  1. Inverted Pendulum Standing Apparatus for Investigating Closed-Loop Control of Ankle Joint Muscle Contractions during Functional Electrical Stimulation.

    PubMed

    Tan, John F; Masani, Kei; Vette, Albert H; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R

    2014-01-01

    The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing.

  2. Inverted Pendulum Standing Apparatus for Investigating Closed-Loop Control of Ankle Joint Muscle Contractions during Functional Electrical Stimulation

    PubMed Central

    Tan, John F.; Masani, Kei; Vette, Albert H.; Zariffa, José; Robinson, Mark; Lynch, Cheryl; Popovic, Milos R.

    2014-01-01

    The restoration of arm-free standing in individuals with paraplegia can be facilitated via functional electrical stimulation (FES). In developing adequate control strategies for FES systems, it remains challenging to test the performance of a particular control scheme on human subjects. In this study, we propose a testing platform for developing effective control strategies for a closed-loop FES system for standing. The Inverted Pendulum Standing Apparatus (IPSA) is a mechanical inverted pendulum, whose angular position is determined by the subject's ankle joint angle as controlled by the FES system while having the subject's body fixed in a standing frame. This approach provides a setup that is safe, prevents falling, and enables a research and design team to rigorously test various closed-loop controlled FES systems applied to the ankle joints. To demonstrate the feasibility of using the IPSA, we conducted a case series that employed the device for studying FES closed-loop controllers for regulating ankle joint kinematics during standing. The utilized FES system stimulated, in able-bodied volunteers, the plantarflexors as they prevent toppling during standing. Four different conditions were compared, and we were able to show unique performance of each condition using the IPSA. We concluded that the IPSA is a useful tool for developing and testing closed-loop controlled FES systems for regulating ankle joint position during standing. PMID:27350992

  3. Lower limb joint motion during a cross cutting movement differs in individuals with and without chronic ankle instability.

    PubMed

    Koshino, Yuta; Yamanaka, Masanori; Ezawa, Yuya; Ishida, Tomoya; Kobayashi, Takumi; Samukawa, Mina; Saito, Hiroshi; Takeda, Naoki

    2014-11-01

    To compare the kinematics of lower limb joints between individuals with and without chronic ankle instability (CAI) during cross-turn and -cutting movements. Cross-sectional study. Motion analysis laboratory. Twelve subjects with CAI and twelve healthy controls. Hip flexion, adduction, and internal rotation, knee flexion, and ankle dorsiflexion and inversion angles were calculated in the 200 ms before initial ground contact and from initial ground contact to toe-off (stance phase) in a cross-turn movement during gait and a cross-cutting movement from a forward jump, and compared across the two groups. In the cross-cutting movement, the CAI group exhibited greater hip and knee flexion than the control group during the stance phase, and more hip abduction during the period before initial contact and the stance phase. In the cross-turn movement the joint kinematics were similar in the two groups. CAI subjects exhibited an altered pattern of the proximal joint kinematics during a cross-cutting movement. It is important for clinicians to assess the function of the hip and knee as well as the ankle, and to incorporate coordination training for the entire lower limb into rehabilitation after lateral ankle sprains. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Joint Angular Velocity in Spastic Gait and the Influence of Muscle-Tendon Lengthening*

    PubMed Central

    GRANATA, KEVIN P.; ABEL, MARK F.; DAMIANO, DIANE L.

    2006-01-01

    Background Joint angular velocity (the rate of flexion and extension of a joint) is related to the dynamics of muscle activation and force generation during walking. Therefore, the goal of this research was to examine the joint angular velocity in normal and spastic gait and changes resulting from muscle-tendon lengthening (recession and tenotomy) in patients who have spastic cerebral palsy. Methods The gait patterns of forty patients who had been diagnosed with spastic cerebral palsy (mean age, 8.3 years; range, 3.7 to 14.8 years) and of seventy-three age-matched, normally developing subjects were evaluated with three-dimensional motion analysis and electromyography. The patients who had cerebral palsy were evaluated before muscle-tendon lengthening and nine months after treatment. Results The gait patterns of the patients who had cerebral palsy were characterized by increased flexion of the knee in the stance phase, premature plantar flexion of the ankle, and reduced joint angular velocities compared with the patterns of the normally developing subjects. Even though muscle-tendon lengthening altered sagittal joint angles in gait, the joint angular velocities were generally unchanged at the hip and knee. Only the ankle demonstrated modified angular velocities, including reduced dorsiflexion velocity at foot-strike and improved dorsiflexion velocity through midstance, after treatment. Electromyographic changes included reduced amplitude of the gastrocnemius-soleus during the loading phase and decreased knee coactivity (the ratio of quadriceps and hamstring activation) at toe-off. Principal component analyses showed that, compared with joint-angle data, joint angular velocity was better able to discriminate between the gait patterns of the normal and cerebral palsy groups. Conclusions This study showed that muscle-tendon lengthening corrects biomechanical alignment as reflected by changes in sagittal joint angles. However, joint angular velocity and electromyographic data suggest that the underlying neural input remains largely unchanged at the hip and knee. Conversely, electromyographic changes and changes in velocity in the ankle indicate that the activation pattern of the gastrocnemius-soleus complex in response to stretch was altered by recession of the complex. PMID:10682726

  5. Lower extremity kinematics during walking and elliptical training in individuals with and without traumatic brain injury.

    PubMed

    Buster, Thad; Burnfield, Judith; Taylor, Adam P; Stergiou, Nicholas

    2013-12-01

    Elliptical training may be an option for practicing walking-like activity for individuals with traumatic brain injuries (TBI). Understanding similarities and differences between participants with TBI and neurologically healthy individuals during elliptical trainer use and walking may help guide clinical applications incorporating elliptical trainers. Ten participants with TBI and a comparison group of 10 neurologically healthy participants underwent 2 familiarization sessions and 1 data collection session. Kinematic data were collected as participants walked on a treadmill or on an elliptical trainer. Gait-related measures, including coefficient of multiple correlations (a measure of similarity between ensemble joint movement profiles; coefficient of multiple correlations [CMCs]), critical event joint angles, variability of peak critical event joint angles (standard deviations [SDs]) of peak critical event joint angles, and maximum Lyapunov exponents (a measure of the organization of the variability [LyEs]) were compared between groups and conditions. Coefficient of multiple correlations values comparing the similarity in ensemble motion profiles between the TBI and comparison participants exceeded 0.85 for the hip, knee, and ankle joints. The only critical event joint angle that differed significantly between participants with TBI and comparison participants was the ankle during terminal stance. Variability was higher for the TBI group (6 of 11 comparisons significant) compared with comparison participants. Hip and knee joint movement patterns of both participants with TBI and comparison participants on the elliptical trainer were similar to walking (CMCs ≥ 0.87). Variability was higher during elliptical trainer usage compared with walking (5 of 11 comparisons significant). Hip LyEs were higher during treadmill walking. Ankle LyEs were greater during elliptical trainer usage. Movement patterns of participants with TBI were similar to, but more variable than, those of comparison participants while using both the treadmill and the elliptical trainer. If incorporation of complex movements similar to walking is a goal of rehabilitation, elliptical training is a reasonable alternative to treadmill-based training.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A65) for more insights from the authors.

  6. Specialized properties of the triceps surae muscle-tendon unit in professional ballet dancers.

    PubMed

    Moltubakk, M M; Magulas, M M; Villars, F O; Seynnes, O R; Bojsen-Møller, J

    2018-05-03

    This study compared professional ballet dancers (n = 10) to nonstretching controls (n = 10) with the purpose of comparing muscle and tendon morphology, mechanical, neural, and functional properties of the triceps surae and their role for ankle joint flexibility. Torque-angle and torque-velocity data were obtained during passive and active conditions by use of isokinetic dynamometry, while tissue morphology and mechanical properties were evaluated by ultrasonography. Dancers displayed longer gastrocnemius medialis fascicles (55 ± 5 vs 47 ± 6 mm) and a longer (207 ± 33 vs 167 ± 10 mm) and more compliant (230 ± 87 vs 364 ± 106 N/mm) Achilles tendon compared to controls. Greater passive ankle dorsiflexion range of motion (40 ± 7 vs 17 ± 9°) was seen in dancers, resulting from greater fascicle strain and greater elongation of the muscle. Peak electromyographic (EMG) activity recorded during passive stretching was lower in dancers, and at common joint angles, dancers displayed lower EMG amplitude and lower passive joint stiffness. No differences between groups were seen in maximal isometric plantar flexor torque, isokinetic peak torque, angle of peak torque, or work. In conclusion, the greater ankle joint flexibility of professional dancers seems attributed to multiple differences in morphological and mechanical properties of muscle and tendinous tissues, and to factors related to neural activation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses.

    PubMed

    Sinitski, Emily H; Hansen, Andrew H; Wilken, Jason M

    2012-02-02

    Unilateral lower limb prosthesis users display temporal, kinematic, and kinetic asymmetries between limbs while ascending and descending stairs. These asymmetries are due, in part, to the inability of current prosthetic devices to effectively mimic normal ankle function. The purpose of this study was to provide a comprehensive set of biomechanical data for able-bodied and unilateral transtibial amputee (TTA) ankle-foot systems for level-ground (LG), stair ascent (SA), and stair descent (SD), and to characterize deviations from normal performance associated with prosthesis use. Ankle joint kinematics, kinetics, torque-angle curves, and effective shapes were calculated for twelve able-bodied individuals and twelve individuals with TTA. The data from this study demonstrated the prosthetic limb can more effectively mimic the range of motion and power output of a normal ankle-foot during LG compared to SA and SD. There were larger differences between the prosthetic and able-bodied limbs during SA and SD, most evident in the torque-angle curves and effective shapes. These data can be used by persons designing ankle-foot prostheses and provide comparative data for assessment of future ankle-foot prosthesis designs. Published by Elsevier Ltd.

  8. Joint dynamics of rear- and fore-foot unplanned sidestepping.

    PubMed

    Donnelly, Cyril J; Chinnasee, Chamnan; Weir, Gillian; Sasimontonkul, Siriporn; Alderson, Jacqueline

    2017-01-01

    Compare the lower-limb mechanics and anterior cruciate ligament (ACL) injury risk of athletes using a habitual rear-foot (RF) and fore-foot (FF) fall pattern during unplanned sidestepping (UnSS). Experimental cross-sectional. Nineteen elite female field hockey players attended one biomechanical motion capture testing session, which consisted of a random series of pre-planned and unplanned sidestepping sport tasks. Following data collection, participants were classified as possessing a habitual RF or FF fall pattern during UnSS. Hip, knee and ankle joint angles, moments, instantaneous powers and net joint work were calculated during weight acceptance. Between group differences were evaluated using independent sample t-tests (α=0.05). Athletes using a habitual RF fall pattern during UnSS absorbed significantly more work and power through their knee joint (p<0.001), which was coupled with significantly elevated externally applied peak non-sagittal plane peak ankle moments (p<0.05) as well as peak flexion and abduction knee moments (p<0.005). Athletes using a habitual FF fall pattern during UnSS absorbed more power through their ankle joint (p<0.001). A RF fall pattern during UnSS places a large mechanical demand on the knee joint, which is associated with elevated ACL injury risk. Conversely, a FF fall pattern placed a large mechanical demand on the ankle joint. Modifying an athlete's foot fall pattern during UnSS may be viable technique recommendation when returning from knee or ankle injury. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Effects of Lateral and Medial Wedged Insoles on Knee and Ankle Internal Joint Moments During Walking in Healthy Men.

    PubMed

    Fukuchi, Claudiane A; Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2016-11-01

    Wedged insoles have been used to treat knee pathologies and to prevent injuries. Although they have received much attention for the study of knee injury, the effects of wedges on ankle joint biomechanics are not well understood. This study sought to evaluate the immediate effects of lateral and medial wedges on knee and ankle internal joint loading and center of pressure (CoP) in men during walking. Twenty-one healthy men walked at 1.4 m/sec in five footwear conditions: neutral, 6° (LW6) and 9° (LW9) lateral wedges, and 6° (MW6) and 9° (MW9) medial wedges. Peak internal knee abduction moments and angular impulses, internal ankle inversion moments and angular impulses, and mediolateral CoP were analyzed. Analysis of variance with post hoc analysis and Pearson correlations were performed to detect differences between conditions. No differences in internal knee joint loading were found between neutral and any of the wedge conditions. However, as the wedge angle increased from medial to lateral, the internal ankle inversion moment (LW6: P = .020; LW9: P < .001; MW6: P = .046; MW9: P < .001) and angular impulse (LW9: P = .012) increased, and the CoP shifted laterally (LW9: P < .001) and medially (MW9: P < .001) compared with the neutral condition. Neither lateral nor medial wedges were effective in altering internal knee joint loading during walking. However, the greater internal ankle inversion moment and angular impulse observed with lateral wedges could lead to a higher risk of ankle injury. Thus, caution should be taken when lateral wedges need to be prescribed.

  10. Lower limb joint work and joint work contribution during downhill and uphill walking at different inclinations.

    PubMed

    Alexander, Nathalie; Strutzenberger, Gerda; Ameshofer, Lisa Maria; Schwameder, Hermann

    2017-08-16

    Work performance and individual joint contribution to total work are important information for creating training protocols, but were not assessed so far for sloped walking. Therefore, the purpose of this study was to analyze lower limb joint work and joint contribution of the hip, knee and ankle to total lower limb work during sloped walking in a healthy population. Eighteen male participants (27.0±4.7yrs, 1.80±0.05m, 74.5±8.2kg) walked on an instrumented ramp at inclination angles of 0°, ±6°, ±12° and ±18° at 1.1m/s. Kinematic and kinetic data were captured using a motion-capture system (Vicon) and two force plates (AMTI). Joint power curves, joint work (positive, negative, absolute) and each joint's contribution to total lower limb work were analyzed throughout the stance phase using an ANOVA with repeated measures. With increasing inclination positive joint work increased for the ankle and hip joint and in total during uphill walking. Negative joint work increased for each joint and in total work during downhill walking. Absolute work was increased during both uphill (all joints) and downhill (ankle & knee) walking. Knee joint contribution to total negative and absolute work increased during downhill walking while hip and ankle contributions decreased. This study identified, that, when switching from level to a 6° and from 6° to a 12° inclination the gain of individual joint work is more pronounced compared to switching from 12° to an 18° inclination. The results might be used for training recommendations and specific training intervention with respect to sloped walking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Extreme Kinematics in Selected Hip Hop Dance Sequences.

    PubMed

    Bronner, Shaw; Ojofeitimi, Sheyi; Woo, Helen

    2015-09-01

    Hip hop dance has many styles including breakdance (breaking), house, popping and locking, funk, streetdance, krumping, Memphis jookin', and voguing. These movements combine the complexity of dance choreography with the challenges of gymnastics and acrobatic movements. Despite high injury rates in hip hop dance, particularly in breakdance, to date there are no published biomechanical studies in this population. The purpose of this study was to compare representative hip hop steps found in breakdance (toprock and breaking) and house and provide descriptive statistics of the angular displacements that occurred in these sequences. Six expert female hip hop dancers performed three choreographed dance sequences, top rock, breaking, and house, to standardized music-based tempos. Hip, knee, and ankle kinematics were collected during sequences that were 18 to 30 sec long. Hip, knee, and ankle three-dimensional peak joint angles were compared in repeated measures ANOVAs with post hoc tests where appropriate (p<0.01). Peak angles of the breaking sequence, which included floorwork, exceeded the other two sequences in the majority of planes and joints. Hip hop maximal joint angles exceeded reported activities of daily living and high injury sports such as gymnastics. Hip hop dancers work at weight-bearing joint end ranges where muscles are at a functional disadvantage. These results may explain why lower extremity injury rates are high in this population.

  12. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity

    PubMed Central

    Nicholas, Kevin; Sparkes, Valerie; Sheeran, Liba; Davies, Jennifer L

    2018-01-01

    The aim of this study was to investigate the reliability and concurrent validity of a commercially available Xsens MVN BIOMECH inertial-sensor-based motion capture system during clinically relevant functional activities. A clinician with no prior experience of motion capture technologies and an experienced clinical movement scientist each assessed 26 healthy participants within each of two sessions using a camera-based motion capture system and the MVN BIOMECH system. Participants performed overground walking, squatting, and jumping. Sessions were separated by 4 ± 3 days. Reliability was evaluated using intraclass correlation coefficient and standard error of measurement, and validity was evaluated using the coefficient of multiple correlation and the linear fit method. Day-to-day reliability was generally fair-to-excellent in all three planes for hip, knee, and ankle joint angles in all three tasks. Within-day (between-rater) reliability was fair-to-excellent in all three planes during walking and squatting, and poor-to-high during jumping. Validity was excellent in the sagittal plane for hip, knee, and ankle joint angles in all three tasks and acceptable in frontal and transverse planes in squat and jump activity across joints. Our results suggest that the MVN BIOMECH system can be used by a clinician to quantify lower-limb joint angles in clinically relevant movements. PMID:29495600

  13. Estimation of ligament strains and joint moments in the ankle during a supination sprain injury.

    PubMed

    Wei, Feng; Fong, Daniel Tik-Pui; Chan, Kai-Ming; Haut, Roger C

    2015-01-01

    This study presents the ankle ligament strains and ankle joint moments during an accidental injury event diagnosed as a grade I anterior talofibular ligament (ATaFL) sprain. A male athlete accidentally sprained his ankle while performing a cutting motion in a laboratory setting. The kinematic data were input to a three-dimensional rigid-body foot model for simulation analyses. Maximum strains in 20 ligaments were evaluated in simulations that investigated various combinations of the reported ankle joint motions. Temporal strains in the ATaFL and the calcaneofibular ligament (CaFL) were then compared and the three-dimensional ankle joint moments were evaluated from the model. The ATaFL and CaFL were highly strained when the inversion motion was simulated (10% for ATaFL and 12% for CaFL). These ligament strains were increased significantly when either or both plantarflexion and internal rotation motions were added in a temporal fashion (up to 20% for ATaFL and 16% for CaFL). Interestingly, at the time strain peaked in the ATaFL, the plantarflexion angle was not large but apparently important. This computational simulation study suggested that an inversion moment of approximately 23 N m plus an internal rotation moment of approximately 11 N m and a small plantarflexion moment may have generated a strain of 15-20% in the ATaFL to produce a grade I ligament injury in the athlete's ankle. This injury simulation study exhibited the potentially important roles of plantarflexion and internal rotation, when combined with a large inversion motion, to produce a grade I ATaFL injury in the ankle of this athlete.

  14. Redistribution of Mechanical Work at the Knee and Ankle Joints During Fast Running in Minimalist Shoes

    PubMed Central

    Fuller, Joel T.; Buckley, Jonathan D.; Tsiros, Margarita D.; Brown, Nicholas A. T.; Thewlis, Dominic

    2016-01-01

    Context: Minimalist shoes have been suggested as a way to alter running biomechanics to improve running performance and reduce injuries. However, to date, researchers have only considered the effect of minimalist shoes at slow running speeds. Objective: To determine if runners change foot-strike pattern and alter the distribution of mechanical work at the knee and ankle joints when running at a fast speed in minimalist shoes compared with conventional running shoes. Design: Crossover study. Setting: Research laboratory. Patients or Other Participants: Twenty-six trained runners (age = 30.0 ± 7.9 years [age range, 18−40 years], height = 1.79 ± 0.06 m, mass = 75.3 ± 8.2 kg, weekly training distance = 27 ± 15 km) who ran with a habitual rearfoot foot-strike pattern and had no experience running in minimalist shoes. Intervention(s): Participants completed overground running trials at 18 km/h in minimalist and conventional shoes. Main Outcome Measure(s): Sagittal-plane kinematics and joint work at the knee and ankle joints were computed using 3-dimensional kinematic and ground reaction force data. Foot-strike pattern was classified as rearfoot, midfoot, or forefoot strike based on strike index and ankle angle at initial contact. Results: We observed no difference in foot-strike classification between shoes (χ21 = 2.29, P = .13). Ankle angle at initial contact was less (2.46° versus 7.43°; t25 = 3.34, P = .003) and strike index was greater (35.97% versus 29.04%; t25 = 2.38, P = .03) when running in minimalist shoes compared with conventional shoes. We observed greater negative (52.87 J versus 42.46 J; t24 = 2.29, P = .03) and positive work (68.91 J versus 59.08 J; t24 = 2.65, P = .01) at the ankle but less negative (59.01 J versus 67.02 J; t24 = 2.25, P = .03) and positive work (40.37 J versus 47.09 J; t24 = 2.11, P = .046) at the knee with minimalist shoes compared with conventional shoes. Conclusions: Running in minimalist shoes at a fast speed caused a redistribution of work from the knee to the ankle joint. This finding suggests that runners changing from conventional to minimalist shoes for short-distance races could be at an increased risk of ankle and calf injuries but a reduced risk of knee injuries. PMID:27834504

  15. The influence of landing mat composition on ankle injury risk during a gymnastic landing: a biomechanical quantification.

    PubMed

    Xiao, Xiaofei; Hao, Weiya; Li, Xuhong; Wan, Bingjun; Shan, Gongbing

    2017-01-01

    About 70% injury of gymnasts happened during landing - an interaction between gymnast and landing mat. The most injured joint is the ankle. The current study examined the effect of mechanical properties of landing mat on ankle loading with aims to identify means of decreasing the risk of ankle injury. Gymnastic skill - salto backward stretched with 3/2 twist was captured by two high-speed camcorders and digitized by using SIMI-Motion software. A subject-specific, 14-segment rigid-body model and a mechanical landing-mat model were built using BRG.LifeMODTM. The landings were simulated with varied landing-mat mechanical properties (i.e., stiffness, dampness and friction coefficients). Real landing performance could be accurately reproduced by the model. The simulations revealed that the ankle angle was relatively sensitive to stiffness and dampness of the landing mat, the ankle loading rate increased 26% when the stiffness was increased by 30%, and the changing of dampness had notable effect on horizontal ground reaction force and foot velocity. Further, the peak joint-reaction force and joint torque were more sensitive to friction than to stiffness and dampness of landing mat. Finally, ankle muscles would dissipate about twice energy (189%) when the friction was increased by 30%. Loads to ankles during landing would increase as the stiffness and dampness of the landing mat increase. Yet, increasing friction would cause a substantial rise of the ankle internal loads. As such, the friction should be a key factor influencing the risk of injury. Unfortunately, this key factor has rarely attracted attention in practice.

  16. Treadmill training with an incline reduces ankle joint stiffness and improves active range of movement during gait in adults with cerebral palsy.

    PubMed

    Lorentzen, Jakob; Kirk, Henrik; Fernandez-Lago, Helena; Frisk, Rasmus; Scharff Nielsen, Nanna; Jorsal, Martin; Nielsen, Jens Bo

    2017-05-01

    We investigated if 30 min of daily treadmill training with an incline for 6 weeks would reduce ankle joint stiffness and improve active range of movement in adults with cerebral palsy (CP). The study was designed as a randomized controlled clinical trial including 32 adults with CP (GMFCS 1-3) aged 38.1 SD 12 years. The training group (n = 16) performed uphill treadmill training at home daily for 30 min for 6 weeks in addition to their usual activities. Passive and reflex mediated stiffness and range of motion (ROM) of the ankle joint, kinematic and functional measures of gait were obtained before and after the intervention/control period. Intervention subjects trained 31.4 SD 10.1 days for 29.0 SD 2.3 min (total) 15.2 h. Passive ankle joint stiffness was reduced (F = 5.1; p = 0.031), maximal gait speed increased (F = 42.8, p < 0.001), amplitude of toe lift prior to heel strike increased (F = 5.3, p < 0.03) and ankle angle at heel strike was decreased (F = 12.5; p < 0.001) significant in the training group as compared to controls. Daily treadmill training with an incline for 6 weeks reduces ankle joint stiffness and increases active ROM during gait in adults with CP. Intensive gait training may thus be beneficial in preventing and reducing contractures and help to maintain functional gait ability in adults with CP. Implications for rehabilitation Uphill gait training is an effective way to reduce ankle joint stiffness in adult with contractures. 6 weeks of daily uphill gait training improves functional gait parameters such as gait speed and dorsal flexion during gait in adults with cerebral palsy.

  17. Intramuscular Pressure of Tibialis Anterior Reflects Ankle Torque but Does Not Follow Joint Angle-Torque Relationship.

    PubMed

    Ateş, Filiz; Davies, Brenda L; Chopra, Swati; Coleman-Wood, Krista; Litchy, William J; Kaufman, Kenton R

    2018-01-01

    Intramuscular pressure (IMP) is the hydrostatic fluid pressure that is directly related to muscle force production. Electromechanical delay (EMD) provides a link between mechanical and electrophysiological quantities and IMP has potential to detect local electromechanical changes. The goal of this study was to assess the relationship of IMP with the mechanical and electrical characteristics of the tibialis anterior muscle (TA) activity at different ankle positions. We hypothesized that (1) the TA IMP and the surface EMG (sEMG) and fine-wire EMG (fwEMG) correlate to ankle joint torque, (2) the isometric force of TA increases at increased muscle lengths, which were imposed by a change in ankle angle and IMP follows the length-tension relationship characteristics, and (3) the electromechanical delay (EMD) is greater than the EMD of IMP during isometric contractions. Fourteen healthy adults [7 female; mean ( SD ) age = 26.9 (4.2) years old with 25.9 (5.5) kg/m 2 body mass index] performed (i) three isometric dorsiflexion (DF) maximum voluntary contraction (MVC) and (ii) three isometric DF ramp contractions from 0 to 80% MVC at rate of 15% MVC/second at DF, Neutral, and plantarflexion (PF) positions. Ankle torque, IMP, TA fwEMG, and TA sEMG were measured simultaneously. The IMP, fwEMG, and sEMG were significantly correlated to the ankle torque during ramp contractions at each ankle position tested. This suggests that IMP captures in vivo mechanical properties of active muscles. The ankle torque changed significantly at different ankle positions however, the IMP did not reflect the change. This is explained with the opposing effects of higher compartmental pressure at DF in contrast to the increased force at PF position. Additionally, the onset of IMP activity is found to be significantly earlier than the onset of force which indicates that IMP can be designed to detect muscular changes in the course of neuromuscular diseases impairing electromechanical transmission.

  18. Comparison in three dimensional gait kinematics between young and older adults on land and in shallow water.

    PubMed

    Abdul Jabbar, Khalid; Kudo, Shigetada; Goh, Kee Wee; Goh, Ming Rong

    2017-09-01

    This study investigated in three-dimensional space, firstly whether the aquatic medium and secondly ageing, had any effect on the lower limb's joint angles during aquatic-based gait. Three-dimensional joint kinematics of the lower limb of 51 healthy male participants [25 young group (24.6±4.9 years, 172.1±5.5cm, 69.8±10.3kg) and 26 older group (58.5±5.1 years, 167.9±5.1cm, 70.8±12.1kg)] were quantified during land and shallow water walking. Participants walked at their self-selected comfortable speed in both mediums. The results suggested that the properties of water - hydrodynamic drag, and buoyancy - affected the gait kinematics for both groups. Both age groups used more of their hip flexion in the aquatic environment to help them propel forward instead of using the ankle plantarflexion. The effect of age during the aquatic-based gait was identified in ankle adduction angle and knee abduction/adduction angle at initial contact. Only the older group elicited a significantly smaller ankle adduction angle during the aquatic-based gait when compared to the land-based gait. Only the young group elicited a significantly larger knee abduction/adduction angle at initial contact during the aquatic-based gait when compared to the land-based gait. These findings can facilitate professionals in the area of aquatic rehabilitation to better customise aquatic-based walking exercise programmes to suit their client's specific needs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Comparing the effects of mechanical perturbation training with a compliant surface and manual perturbation training on joints kinematics after ACL-rupture.

    PubMed

    Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn

    2018-05-23

    Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (p<0.004), with manual group significantly increased knee flexion angle at IC and PKF (p<0.03). Main effects of group were found for hip flexion angle at IC (Manual:34.34+3.51°, Mechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p < 0.0001), and knee adduction angle at PKE (Manual:-2.00+2.23°, Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee health needs to be determined. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: in vivo observations in man

    PubMed Central

    Maganaris, Constantinos N; Baltzopoulos, Vasilios; Sargeant, Anthony J

    1998-01-01

    The purpose of the present study was to examine the effect of a plantarflexor maximum voluntary contraction (MVC) on Achilles tendon moment arm length. Sagittal magnetic resonance (MR) images of the right ankle were taken in six subjects both at rest and during a plantarflexor MVC in the supine position at a knee angle of 90 deg and at ankle angles of -30 deg (dorsiflexed direction), -15 deg, 0 deg (neutral ankle position), +15 deg (plantarflexed direction), +30 deg and +45 deg. A system of mechanical stops, support triangles and velcro straps was used to secure the subject in the above positions. Location of a moving centre of rotation was calculated for ankle rotations from -30 to 0 deg, -15 to +15 deg, 0 to +30 deg and +15 to +45 deg. All instant centres of rotation were calculated both at rest and during MVC. Achilles tendon moment arms were measured at ankle angles of -15, 0, +15 and +30 deg. At any given ankle angle, Achilles tendon moment arm length during MVC increased by 1-1.5 cm (22-27%, P < 0.01) compared with rest. This was attributed to a displacement of both Achilles tendon by 0.6-1.1 cm (P < 0.01) and all instant centres of rotation by about 0.3 cm (P < 0.05) away from their corresponding resting positions. The findings of this study have important implications for estimating loads in the musculoskeletal system. Substantially unrealistic Achilles tendon forces and moments generated around the ankle joint during a plantarflexor MVC would be calculated using resting Achilles tendon moment arm measurements. PMID:9660906

  1. Changes in Achilles tendon moment arm from rest to maximum isometric plantarflexion: in vivo observations in man.

    PubMed

    Maganaris, C N; Baltzopoulos, V; Sargeant, A J

    1998-08-01

    1. The purpose of the present study was to examine the effect of a plantarflexor maximum voluntary contraction (MVC) on Achilles tendon moment arm length. 2. Sagittal magnetic resonance (MR) images of the right ankle were taken in six subjects both at rest and during a plantarflexor MVC in the supine position at a knee angle of 90 deg and at ankle angles of -30 deg (dorsiflexed direction), -15 deg, 0 deg (neutral ankle position), +15 deg (plantarflexed direction), +30 deg and +45 deg. A system of mechanical stops, support triangles and velcro straps was used to secure the subject in the above positions. Location of a moving centre of rotation was calculated for ankle rotations from -30 to 0 deg, -15 to +15 deg, 0 to +30 deg and +15 to +45 deg. All instant centres of rotation were calculated both at rest and during MVC. Achilles tendon moment arms were measured at ankle angles of -15, 0, +15 and +30 deg. 3. At any given ankle angle, Achilles tendon moment arm length during MVC increased by 1-1.5 cm (22-27 %, P < 0.01) compared with rest. This was attributed to a displacement of both Achilles tendon by 0.6-1.1 cm (P < 0.01) and all instant centres of rotation by about 0.3 cm (P < 0.05) away from their corresponding resting positions. 4. The findings of this study have important implications for estimating loads in the musculoskeletal system. Substantially unrealistic Achilles tendon forces and moments generated around the ankle joint during a plantarflexor MVC would be calculated using resting Achilles tendon moment arm measurements.

  2. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    PubMed

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

  3. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness.

    PubMed

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  4. Design of a simple, lightweight, passive-elastic ankle exoskeleton supporting ankle joint stiffness

    NASA Astrophysics Data System (ADS)

    Kim, Seyoung; Son, Youngsu; Choi, Sangkyu; Ham, Sangyong; Park, Cheolhoon

    2015-09-01

    In this study, a passive-elastic ankle exoskeleton (PEAX) with a one-way clutch mechanism was developed and then pilot-tested with vertical jumping to determine whether the PEAX is sufficiently lightweight and comfortable to be used in further biomechanical studies. The PEAX was designed to supplement the function of the Achilles tendon and ligaments as they passively support the ankle torque with their inherent stiffness. The main frame of the PEAX consists of upper and lower parts connected to each other by tension springs (N = 3) and lubricated hinge joints. The upper part has an offset angle of 5° with respect to the vertical line when the springs are in their resting state. Each spring has a slack length of 8 cm and connects the upper part to the tailrod of the lower part in the neutral position. The tailrod freely rotates with low friction but has a limited range of motion due to the stop pin working as a one-way clutch. Because of the one-way clutch system, the tension springs store the elastic energy only due to an ankle dorsiflexion when triggered by the stop pin. This clutch mechanism also has the advantage of preventing any inconvenience during ankle plantarflexion because it does not limit the ankle joint motion during the plantarflexion phase. In pilot jumping tests, all of the subjects reported that the PEAX was comfortable for jumping due to its lightweight (approximately 1 kg) and compact (firmly integrated with shoes) design, and subjects were able to nearly reach their maximum vertical jump heights while wearing the PEAX. During the countermovement jump, elastic energy was stored during dorsiflexion by spring extension and released during plantarflexion by spring restoration, indicating that the passive spring torque (i.e., supportive torque) generated by the ankle exoskeleton partially supported the ankle joint torque throughout the process.

  5. Allocation of Attentional Resources toward a Secondary Cognitive Task Leads to Compromised Ankle Proprioceptive Performance in Healthy Young Adults

    PubMed Central

    Yasuda, Kazuhiro; Iimura, Naoyuki; Iwata, Hiroyasu

    2014-01-01

    The objective of the present study was to determine whether increased attentional demands influence the assessment of ankle joint proprioceptive ability in young adults. We used a dual-task condition, in which participants performed an ankle ipsilateral position-matching task with and without a secondary serial auditory subtraction task during target angle encoding. Two experiments were performed with two different cohorts: one in which the auditory subtraction task was easy (experiment 1a) and one in which it was difficult (experiment 1b). The results showed that, compared with the single-task condition, participants had higher absolute error under dual-task conditions in experiment 1b. The reduction in position-matching accuracy with an attentionally demanding cognitive task suggests that allocation of attentional resources toward a difficult second task can lead to compromised ankle proprioceptive performance. Therefore, these findings indicate that the difficulty level of the cognitive task might be the possible critical factor that decreased accuracy of position-matching task. We conclude that increased attentional demand with difficult cognitive task does influence the assessment of ankle joint proprioceptive ability in young adults when measured using an ankle ipsilateral position-matching task. PMID:24523966

  6. Ankle fusion for definitive management of non-reconstructable pilon fractures.

    PubMed

    Bozic, Vladimir; Thordarson, David B; Hertz, Jennifer

    2008-09-01

    Highly comminuted pilon fractures, especially with a compromised soft tissue envelope, present a challenging treatment scenario. This study presents our results for patients managed with ankle fusion rather than ORIF. Fourteen patients with ankle joint incongruence after non-reconstructable tibia pilon fractures were treated with primary tibiotalar arthrodesis using a fixed-angle cannulated blade plate. Delayed metaphyseal unions due to bone defects were treated concurrently. The subtalar joint was preserved in all cases. Metaphyseal healing and stable arthrodesis was obtained in each case. There was one case of blade plate breakage in a patient who still achieved successful arthrodesis without reoperation. Union was achieved at an average of 15 weeks. No secondary procedures were required to obtain union. All 14 patients were ambulatory at last followup. Average followup was 39 weeks. Primary ankle arthrodesis can be achieved using a cannulated blade plate to address a non-reconstructable articular surface and metaphyseal bone defects in complex tibia pilon fractures.

  7. Hip and knee joints are more stabilized than driven during the stance phase of gait: an analysis of the 3D angle between joint moment and joint angular velocity.

    PubMed

    Dumas, R; Cheze, L

    2008-08-01

    Joint power is commonly used in orthopaedics, ergonomics or sports analysis but its clinical interpretation remains controversial. Some basic principles on muscle actions and energy transfer have been proposed in 2D. The decomposition of power on 3 axes, although questionable, allows the same analysis in 3D. However, these basic principles have been widely criticized, mainly because bi-articular muscles must be considered. This requires a more complex computation in order to determine how the individual muscle force contributes to drive the joint. Conversely, with simple 3D inverse dynamics, the analysis of both joint moment and angular velocity directions is essential to clarify when the joint moment can contribute or not to drive the joint. The present study evaluates the 3D angle between the joint moment and the joint angular velocity and investigates when the hip, knee and ankle joints are predominantly driven (angle close to 0 degrees and 180 degrees ) or stabilized (angle close to 90 degrees ) during gait. The 3D angle curves show that the three joints are never fully but only partially driven and that the hip and knee joints are mainly stabilized during the stance phase. The notion of stabilization should be further investigated, especially for subjects with motion disorders or prostheses.

  8. Reliability and accuracy of a goniometer mobile device application for video measurement of the functional movement screen deep squat test.

    PubMed

    Krause, David A; Boyd, Michael S; Hager, Allison N; Smoyer, Eric C; Thompson, Anthony T; Hollman, John H

    2015-02-01

    The squat is a fundamental movement of many athletic and daily activities. Methods to clinically assess the squat maneuver range from simple observation to the use of sophisticated equipment. The purpose of this study was to examine the reliability of Coach's Eye (TechSmith Corp), a 2-dimensional (2D) motion analysis mobile device application (app), for assessing maximal sagittal plane hip, knee, and ankle motion during a functional movement screen deep squat, and to compare range of motion values generated by it to those from a Vicon (Vicon Motion Systems Ltd) 3-dimensional (3D) motion analysis system. Twenty-six healthy subjects performed three functional movement screen deep squats recorded simultaneously by both the app (on an iPad [Apple Inc]) and the 3D motion analysis system. Joint angle data were calculated with Vicon Nexus software (Vicon Motion Systems Ltd). The app video was analyzed frame by frame to determine, and freeze on the screen, the deepest position of the squat. With a capacitive stylus reference lines were then drawn on the iPad screen to determine joint angles. Procedures were repeated with approximately 48 hours between sessions. Test-retest intrarater reliability (ICC3,1) for the app at the hip, knee, and ankle was 0.98, 0.98, and 0.79, respectively. Minimum detectable change was hip 6°, knee 6°, and ankle 7°. Hip joint angles measured with the 2D app exceeded measurements obtained with the 3D motion analysis system by approximately 40°. Differences at the knee and ankle were of lower magnitude, with mean differences of 5° and 3°, respectively. Bland-Altman analysis demonstrated a systematic bias in the hip range-of-motion measurement. No such bias was demonstrated at the knee or ankle. The 2D app demonstrated excellent reliability and appeared to be a responsive means to assess for clinical change, with minimum detectable change values ranging from 6° to 7°. These results also suggest that the 2D app may be used as an alternative to a sophisticated 3D motion analysis system for assessing sagittal plane knee and ankle motion; however, it does not appear to be a comparable alternative for assessing hip motion. 3.

  9. Multi-Axis Prosthetic Knee Resembles Alpine Skiing Movements of an Intact Leg

    PubMed Central

    Demšar, Ivan; Duhovnik, Jože; Lešnik, Blaž; Supej, Matej

    2015-01-01

    The purpose of the study was to analyse the flexion angles of the ski boot, ankle and knee joints of an above-knee prosthesis and to compare them with an intact leg and a control group of skiers. One subject with an above-knee amputation of the right leg and eight healthy subjects simulated the movement of a skiing turn by performing two-leg squats in laboratory conditions. By adding additional loads in proportion to body weight (BW; +1/3 BW, +2/3 BW, +3/3 BW), various skiing regimes were simulated. Change of Flexion Angle (CoFA) and Range of Motion (RoM) in the ski boot, ankle and knee joints were calculated and compared. An average RoM in the skiing boot on the side of prosthesis (4.4 ± 1.1°) was significantly lower compared to an intact leg (5.9 ± 1.8°) and the control group (6.5 ± 2.3°). In the ankle joint, the average RoM was determined to be 13.2±2.9° in the prosthesis, 12.7 ± 2.8° in an intact leg and 14.8±3.6 in the control group. However, the RoM of the knee joint in the prosthesis (42.2 ± 4.2°) was significantly larger than that of the intact leg (34.7 ± 4.4°). The average RoM of the knee joint in the control group was 47.8 ± 5.4°. The influences of additional loads on the kinematics of the lower extremities were different on the side of the prosthesis and on the intact leg. In contrast, additional loads did not produce any significant differences in the control group. Although different CoFAs in the ski boot, ankle and knee joints were used, an above-knee prosthesis with a built-in multi-axis prosthetic knee enables comparable leg kinematics in simulated alpine skiing. Key points The RoM in the ski boot on the side of the prosthetic leg was smaller than the RoM of the intact leg and the control group of healthy subjects. The RoM in the ankle joint of prosthetic leg was comparable to that of the intact leg and the control group of healthy subjects. The RoM in the prosthetic knee joint was greater than the RoM in the knee joint of the intact leg and smaller than that of the control group. The total knee flexions in the laboratory measurements were comparable with field measurements. Additional load affects the RoM of the ski boot, ankle and knee joints for the amputated skier in both legs. No significant influence from the additional load was found on the RoM in the control group of healthy subjects. The above-knee prosthesis with a multiple-axis prosthetic knee reproduces the alpine skiing kinematics of an intact leg. PMID:26664282

  10. Lower-extremity biomechanics during forward and lateral stepping activities in older adults

    PubMed Central

    Wang, Man-Ying; Flanagan, Sean; Song, Joo-Eun; Greendale, Gail A.; Salem, George J.

    2012-01-01

    Objective To characterize the lower-extremity biomechanics associated with stepping activities in older adults. Design Repeated-measures comparison of kinematics and kinetics associated with forward step-up and lateral step-up activities. Background Biomechanical analysis may be used to assess the effectiveness of various ‘in-home activities’ in targeting appropriate muscle groups and preserving functional strength and power in elders. Methods Data were analyzed from 21 participants (mean 74.7 yr (standard deviation, 4.4 yr)) who performed the forward and lateral step-up activities while instrumented for biomechanical analysis. Motion analysis equipment, inverse dynamics equations, and repeated measures anovas were used to contrast the maximum joint angles, peak net joint moments, angular impulse, work, and power associated with the activities. Results The lateral step-up resulted in greater maximum knee flexion (P < 0.001) and ankle dorsiflexion angles (P < 0.01). Peak joint moments were similar between exercises. The forward step-up generated greater peak hip power (P < 0.05) and total work (P < 0.001); whereas, the lateral step-up generated greater impulse (P < 0.05), work (P < 0.01), and power (P < 0.05) at the knee and ankle. Conclusions In older adults, the forward step-up places greater demand on the hip extensors, while lateral step-up places greater demand on the knee extensors and ankle plantar flexors. PMID:12620784

  11. Habitual Minimalist Shod Running Biomechanics and the Acute Response to Running Barefoot.

    PubMed

    Tam, Nicholas; Darragh, Ian A J; Divekar, Nikhil V; Lamberts, Robert P

    2017-09-01

    The aim of the study was to determine whether habitual minimalist shoe runners present with purported favorable running biomechanithat reduce running injury risk such as initial loading rate. Eighteen minimalist and 16 traditionally cushioned shod runners were assessed when running both in their preferred training shoe and barefoot. Ankle and knee joint kinetics and kinematics, initial rate of loading, and footstrike angle were measured. Sagittal ankle and knee joint stiffness were also calculated. Results of a two-factor ANOVA presented no group difference in initial rate of loading when participants were running either shod or barefoot; however, initial loading rate increased for both groups when running barefoot (p=0.008). Differences in footstrike angle were observed between groups when running shod, but not when barefoot (minimalist:8.71±8.99 vs. traditional: 17.32±11.48 degrees, p=0.002). Lower ankle joint stiffness was found in both groups when running barefoot (p=0.025). These findings illustrate that risk factors for injury potentially differ between the two groups. Shoe construction differences do change mechanical demands, however, once habituated to the demands of a given shoe condition, certain acute favorable or unfavorable responses may be moderated. The purported benefits of minimalist running shoes in mimicking habitual barefoot running is questioned, and risk of injury may not be attenuated. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Wavelet Packet Analysis for Angular Data Extraction from Muscle Afferent Cuff Electrode Signals

    DTIC Science & Technology

    2001-10-25

    from rabbits. In order to estimate ankle flexion/extension angles, we recorded ENG signals from the left Tibial and Peroneal nerves, both during FES...afferent ENG. II. METHODOLOGY A. Experimental Setup Acute experiments were conducted with 2 female New Zealand rabbits. The rabbits were pre-anesthetized...fixating the knee and ankle joints in place (see [3] for more details) . For extracting the ENG signals, tripolar cuff electrodes were implanted onto the

  13. Joint angles of the ankle, knee, and hip and loading conditions during split squats.

    PubMed

    Schütz, Pascal; List, Renate; Zemp, Roland; Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2014-06-01

    The aim of this study was to quantify how step length and the front tibia angle influence joint angles and loading conditions during the split squat exercise. Eleven subjects performed split squats with an additional load of 25% body weight applied using a barbell. Each subject's movements were recorded using a motion capture system, and the ground reaction force was measured under each foot. The joint angles and loading conditions were calculated using a cluster-based kinematic approach and inverse dynamics modeling respectively. Increases in the tibia angle resulted in a smaller range of motion (ROM) of the front knee and a larger ROM of the rear knee and hip. The external flexion moment in the front knee/hip and the external extension moment in the rear hip decreased as the tibia angle increased. The flexion moment in the rear knee increased as the tibia angle increased. The load distribution between the legs changed < 25% when split squat execution was varied. Our results describing the changes in joint angles and the resulting differences in the moments of the knee and hip will allow coaches and therapists to adapt the split squat exercise to the individual motion and load demands of athletes.

  14. Effects of high-heeled shoes and asymmetrical load carrying on lower-extremity kinematics during walking in young women.

    PubMed

    Lee, Soul; Li, Jing Xian

    2014-01-01

    Asymmetrical load carrying and wearing high-heeled shoes are very common. Biomechanics studies on the combined effects of high-heeled shoe wearing and asymmetrical load carrying are lacking. We sought to identify changes in lower-extremity joint kinematics associated with the effect of shoes and asymmetrical load carrying during walking. Fifteen healthy young women (mean ± SD: age, 24.67 ± 3.54 years; body weight, 54.96 ± 6.67 kg; and height, 162.2 ± 3.91 cm) who habitually wore high-heeled shoes participated in the study. They were asked to walk under nine combined conditions of three heights of shoe heels (0, 3, and 9 cm) and three carried loads (0%, 5%, and 10% of body weight). Temporospatial parameters and maximal joint angles in the sagittal and frontal planes of the hip, knee, and ankle on both limbs were studied. It was found that high-heeled shoe wearing and asymmetrical load carrying altered temporospatial parameters and joint kinematics. With increased heel height and load weight, cadence decreased and stride length increased. The knee flexion angle increased with an increase in heel height, and the load served only to exacerbate the changes. Changes in the hip angle were mostly caused by asymmetrical load carrying, whereas angle changes in the ankle were mostly caused by an increase in heel height. This study demonstrated that when high-heeled shoe wearing and asymmetrical load carrying are combined, changes at each joint are much greater than with high-heeled shoe wearing or load carrying alone.

  15. Lower extremity joint moments of collegiate soccer players differ between genders during a forward jump.

    PubMed

    Hart, Joseph M; Garrison, J Craig; Palmieri-Smith, Riann; Kerrigan, D Casey; Ingersoll, Christopher D

    2008-05-01

    Lower extremity kinetics while performing a single-leg forward jump landing may help explain gender biased risk for noncontact anterior cruciate ligament injury. Gender comparison of lower extremity joint angles and moments. Static groups comparison. Motion analysis laboratory. 8 male and 8 female varsity, collegiate soccer athletes. 5 single-leg landings from a 100cm forward jump. Peak and initial contact external joint moments and joint angles of the ankle, knee, and hip. At initial heel contact, males exhibited a adduction moment whereas females exhibited a abduction moment at the hip. Females also had significantly less peak hip extension moment and significantly less peak hip internal rotation moment than males had. Females exhibited greater knee adduction and hip internal rotation angles than men did. When decelerating from a forward jump, gender differences exist in forces acting at the hip.

  16. Gender, Vertical Height and Horizontal Distance Effects on Single-Leg Landing Kinematics: Implications for Risk of non-contact ACL Injury.

    PubMed

    Ali, Nicholas; Rouhi, Gholamreza; Robertson, Gordon

    2013-01-01

    There is a lack of studies investigating gender differences in whole-body kinematics during single-leg landings from increasing vertical heights and horizontal distances. This study determined the main effects and interactions of gender, vertical height, and horizontal distance on whole-body joint kinematics during single-leg landings, and established whether these findings could explain the gender disparity in non-contact anterior cruciate ligament (ACL) injury rate. Recreationally active males (n=6) and females (n=6) performed single-leg landings from a takeoff deck of vertical height of 20, 40, and 60 cm placed at a horizontal distance of 30, 50 and 70 cm from the edge of a force platform, while 3D kinematics and kinetics were simultaneously measured. It was determined that peak vertical ground reaction force (VGRF) and the ankle flexion angle exhibited significant gender differences (p=0.028, partial η(2)=0.40 and p=0.035, partial η(2)=0.37, respectively). Peak VGRF was significantly correlated to the ankle flexion angle (r= -0.59, p=0.04), hip flexion angle (r= -0.74, p=0.006), and trunk flexion angle (r= -0.59, p=0.045). Peak posterior ground reaction force (PGRF) was significantly correlated to the ankle flexion angle (r= -0.56, p=0.035), while peak knee abduction moment was significantly correlated to the knee flexion angle (r= -0.64, p=0.03). Rearfoot landings may explain the higher ACL injury rate among females. Higher plantar-flexed ankle, hip, and trunk flexion angles were associated with lower peak ground reaction forces, while higher knee flexion angle was associated with lower peak knee abduction moment, and these kinematics implicate reduced risk of non-contact ACL injury.

  17. A Biomechanical Investigation of A Single-Limb Squat: Implications for Lower Extremity Rehabilitation Exercise

    PubMed Central

    Richards, Jim; Thewlis, Dominic; Selfe, James; Cunningham, Andrew; Hayes, Colin

    2008-01-01

    Context: Single-limb squats on a decline angle have been suggested as a rehabilitative intervention to target the knee extensors. Investigators, however, have presented very little empirical research in which they have documented the biomechanics of these exercises or have determined the optimum angle of decline used. Objective: To determine the involvement of the gastrocnemius and rectus femoris muscles and the external ankle and knee joint moments at 60° of knee flexion while performing a single-limb squat at different decline angles. Design: Participants acted as their own controls in a repeated-measures design. Patients or Other Participants: We recruited 10 participants who had no pain, injury, or neurologic disorder. Intervention(s): Participants performed single-limb squats at different decline angles. Main Outcome Measure(s): Angle-specific knee and ankle moments were calculated at 60° of knee flexion. Angle-specific electromyography (EMG) activity was calculated at 60° of knee flexion. Integrated EMG also was calculated to determine the level of muscle activity over the entire squat. Results: An increase was seen in the knee moments (P < .05) and integrated EMG in the rectus femoris (P < .001) as the decline angle increased. A decrease was seen in the ankle moments as the decline angle increased (P  =  .001), but EMG activity in the gastrocnemius increased between 16° and 24° (P  =  .018). Conclusions: As the decline angle increased, the knee extensor moment and EMG activity increased. As the decline angle increased, the ankle plantar-flexor moments decreased; however, an increase in the EMG activity was seen with the 24° decline angle compared with the 16° decline angle. This indicates that decline squats at an angle greater than 16° may not reduce passive calf tension, as was suggested previously, and may provide no mechanical advantage for the knee. PMID:18833310

  18. Realignment Surgery for Malunited Ankle Fracture.

    PubMed

    Guo, Chang-Jun; Li, Xing-Cheng; Hu, Mu; Xu, Yang; Xu, Xiang-Yang

    2017-02-01

    To investigate the characteristics and the results of realignment surgery for the treatment of malunited ankle fracture. Thirty-three patients with malunited fractures of the ankle who underwent reconstructive surgery at our hospital from January 2010 to January 2014 were reviewed. The tibial anterior surface angle (TAS), the tibiotalar tilt angle (TTA), the malleolar angle (MA), and the tibial lateral surface angle (TLS) were measured. Clinical assessment was performed with use of the American Orthopaedic Foot and Ankle Society (AOFAS) scale and visual analogue scale (VAS) scores, and the osteoarthritis stage was determined radiographically with the modified Takakura classification system. The Wilcoxon matched-pairs test was used to analyze the difference between the preoperative and the postoperative data. The mean follow-up was 36 months (range, 20-60 months). The mean age at the time of realignment surgery was 37.1 years (range, 18-62 years). Compared with preoperation, the TAS at the last follow-up showed a significant increase (88.50° ± 4.47° vs. 90.80° ± 3.49°, P = 0.0035); similar results were observed in TTA (1.62° ± 1.66° vs. 0.83° ± 0.90°, P < 0.01) and MA (82.30° ± 8.03° vs. 78.70° ± 4.76°, P = 0.005). At the last follow-up, the mean AOFAS score was significantly increased compared with the score at preoperation (44.5 ± 13.7 vs. 78.0 ± 8.9, P < 0.01). Significant differences in VAS scores were found at the last follow-up (6.76 ± 1.03 vs. 2.03 ± 1.21, P < 0.01). There was no significant difference in the Takakura grade between the preoperation and the last follow-up. One patient had increased talar tilt postsurgery; the postoperative talar tilt angle of this patient was 20°. One patient had progressive ankle osteoarthritis, and was treated by ankle joint distraction. Realignment surgery for a malunited ankle fracture can reduce pain, improve function, and delay ankle arthrodesis or total ankle replacement. Postoperative large talar tilt and advanced stages of ankle arthritis are the risk factors for the surgery. © 2017 Chinese Orthopaedic Association and John Wiley & Sons Australia, Ltd.

  19. Control of paraplegic ankle joint stiffness using FES while standing.

    PubMed

    Hunt, K J; Gollee, H; Jaime, R P

    2001-10-01

    The goal of this work was to investigate the feasibility of ankle stiffness control using functional electrical stimulation (FES) while standing, as relevant to the development of feedback systems for balance control in paraplegia. The work was carried out using apparatus in which the subject stands with all joints above the ankles braced, and where ankle moment is provided via FES of the ankle flexor and extensor muscles. A feedback control strategy for ankle stiffness control is proposed in which the ankle moment is controlled to a reference value equal to the product of the desired stiffness and the measured ankle angle. Two subjects participated in the study: one neurologically-intact person, and one paraplegic person with a complete thoracic spinal cord lesion. The results show that during forward-leaning postures, when the plantarflexor muscles are stimulated, relatively high ankle moments of up to 60 Nm can be generated and accurate moment tracking is achieved. As a consequence, ankle stiffness is close to the desired value. During backward lean, on the other hand, the dorsiflexor muscles are stimulated. These muscles are relatively weak and only modest ankle moments of up to around 15 Nm can be produced. As a result, dorsiflexor stimulation readily saturates giving poor stiffness control. It was further observed that when the desired stiffness is higher more external force has to be applied to perturb the body away from the neutral (upright) position. We conclude that: (i) accurate ankle stiffness control, up to the fundamental strength limits of the muscles, can be achieved with controlled FES; (ii) ankle stiffness control using FES in paraplegia has the potential to ease the task of stabilising upright posture by application of additional upper-body forces.

  20. Reliability of sagittal plane hip, knee, and ankle joint angles from a single frame of video data using the GAITRite camera system.

    PubMed

    Ross, Sandy A; Rice, Clinton; Von Behren, Kristyn; Meyer, April; Alexander, Rachel; Murfin, Scott

    2015-01-01

    The purpose of this study was to establish intra-rater, intra-session, and inter-rater, reliability of sagittal plane hip, knee, and ankle angles with and without reflective markers using the GAITRite walkway and single video camera between student physical therapists and an experienced physical therapist. This study included thirty-two healthy participants age 20-59, stratified by age and gender. Participants performed three successful walks with and without markers applied to anatomical landmarks. GAITRite software was used to digitize sagittal hip, knee, and ankle angles at two phases of gait: (1) initial contact; and (2) mid-stance. Intra-rater reliability was more consistent for the experienced physical therapist, regardless of joint or phase of gait. Intra-session reliability was variable, the experienced physical therapist showed moderate to high reliability (intra-class correlation coefficient (ICC) = 0.50-0.89) and the student physical therapist showed very poor to high reliability (ICC = 0.07-0.85). Inter-rater reliability was highest during mid-stance at the knee with markers (ICC = 0.86) and lowest during mid-stance at the hip without markers (ICC = 0.25). Reliability of a single camera system, especially at the knee joint shows promise. Depending on the specific type of reliability, error can be attributed to the testers (e.g. lack of digitization practice and marker placement), participants (e.g. loose fitting clothing) and camera systems (e.g. frame rate and resolution). However, until the camera technology can be upgraded to a higher frame rate and resolution, and the software can be linked to the GAITRite walkway, the clinical utility for pre/post measures is limited.

  1. The impact of different types of talus deformation after treatment of clubfeet.

    PubMed

    Kolb, Alexander; Willegger, Madeleine; Schuh, Reinhard; Kaider, Alexandra; Chiari, Catharina; Windhager, Reinhard

    2017-01-01

    Deformation of the talus in idiopathic congenital clubfeet is a known problem after treatment. However evidence on types of talus deformation and clinical relevance is rare. The aims of this study were first to define different types of talus deformation, and second, to evaluate the impact of these types on long-term results. At a minimum follow-up of ten years 40 idiopathic clubfeet treated by a modified dorsomedial release were analyzed. Based on morphological appearance and the widened range of radius to length ratios (R/L-ratio) in treated clubfeet deformed tali were divided into two groups: tali with decreased R/L-ratios were classified as small-dome talus deformation (SD), tali with increased R/L-ratios were classified as flat-top talus deformation (FT). The impact on degree of arthrosis in the ankle joint, clinical outcome, and ankle range of motion was analyzed. Small-dome talus deformation (SD) was found in nine feet. This group showed decreased R/L-ratios and increased talus opening angles, which were linked to an increased range of motion of the ankle joint (p = 0.033). The impact on onset of arthrosis was not significant for this group (p = 0.056). The group of flat top talus deformation (nine feet) showed increased R/L-ratios and decreased talus opening angles, decreased range of motion (p = 0.019), and a significant impact on onset of arthrosis (p = 0.010). Our study defines a new subgroup of talus deformation: the small dome talus deformation tends to show a better ankle joint range of motion and a lower risk of arthrosis compared to the classical flat dome talus deformation.

  2. Does osteoarthritis of the ankle joint progress after triple arthrodesis? A midterm prospective outcome study.

    PubMed

    Aarts, Chris A M; Heesterbeek, Petra J C; Jaspers, Perry E M; Stegeman, Mark; Louwerens, Jan Willem K

    2016-12-01

    Debate exists regarding the effect of triple fusion on the development of osteoarthritis (OA) of the ankle joint. The midterm outcome after triple arthrodesis and the prevalence of OA following triple arthrodesis are reported in this study. The role of alignment in the development of OA was investigated. Seventy five patients (87 feet) were evaluated in 2003 and of these, 48 patients (55 feet) were available for second evaluation in 2008. X-rays of the ankles and feet were made prior to surgery, in 2003 and in 2008, and the level of osteoarthritis (OA) was graded with the Kellgren and Lawrence score. Of all postoperative X-rays, the AP and lateral talo first metatarsal angle X-rays were compared. Also, standardized digital photos were made to assess the geometry/alignment. The Foot Function Index (FFI) and the American Orthopaedic Foot and Ankle Society (AOFAS) hindfoot score were completed. In order to investigate the role of the underlying alignment on the aggravation of ankle osteoarthritis, patients were divided into a 'varus' and a 'valgus' group based on the indication for surgery. The outcome scores (AOFAS and FFI) after triple arthrodesis remained stable in the present 7.5-year follow-up study. An important increase of OA of the ankle was not established, 58% of the patients showed no aggravation, 31% one-grade and 2% two-grade increase of OA. A trend was found (P=.063) towards aggravation of OA of the ankle in patients of the varus group with the highest medial arches (persistent cavovarus deformity). This study reports minor, not statistically significant, changes of the ankle joint following triple arthrodesis after 7.5 years. Clinical outcome remained stable in time. Clinical relevance It seems that triple arthrodesis as such does not lead to major osteoarthritis of the ankle, given that adequate alignment of the hindfoot is achieved. Level II, retrospective study. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  3. Changes in lower extremity movement and power absorption during forefoot striking and barefoot running.

    PubMed

    Williams, D S Blaise; Green, Douglas H; Wurzinger, Brian

    2012-10-01

    Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. The study included 10 male and 10 female RFS runners who completed 3-dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee.

  4. CHANGES IN LOWER EXTREMITY MOVEMENT AND POWER ABSORPTION DURING FOREFOOT STRIKING AND BAREFOOT RUNNING

    PubMed Central

    Green, Douglas H.; Wurzinger, Brian

    2012-01-01

    Purpose/Background: Both forefoot strike shod (FFS) and barefoot (BF) running styles result in different mechanics when compared to rearfoot strike (RFS) shod running. Additionally, running mechanics of FFS and BF running are similar to one another. Comparing the mechanical changes occurring in each of these patterns is necessary to understand potential benefits and risks of these running styles. The authors hypothesized that FFS and BF conditions would result in increased sagittal plane joint angles at initial contact and that FFS and BF conditions would demonstrate a shift in sagittal plane joint power from the knee to the ankle when compared to the RFS condition. Finally, total lower extremity power absorption will be least in BF and greatest in the RFS shod condition. Methods: The study included 10 male and 10 female RFS runners who completed 3‐dimensional running analysis in 3 conditions: shod with RFS, shod with FFS, and BF. Variables were the angles of plantarflexion, knee flexion, and hip flexion at initial contact and peak sagittal plane joint power at the hip, knee, and ankle during stance phase. Results: Running with a FFS pattern and BF resulted in significantly greater plantarflexion and significantly less negative knee power (absorption) when compared to shod RFS condition. FFS condition runners landed in the most plantarflexion and demonstrated the most peak ankle power absorption and lowest knee power absorption between the 3 conditions. BF and FFS conditions demonstrated decreased total lower extremity power absorption compared to the shod RFS condition but did not differ from one another. Conclusions: BF and FFS running result in reduced total lower extremity power, hip power and knee power and a shift of power absorption from the knee to the ankle. Clinical Relevance: Alterations associated with BF running patterns are present in a FFS pattern when wearing shoes. Additionally, both patterns result in increased demand at the foot and ankle as compared to the knee. PMID:23091785

  5. Three-dimensional kinematics of the knee and ankle joints for three consecutive push-offs during ice hockey skating starts.

    PubMed

    Lafontaine, Dany

    2007-09-01

    Little biomechanical research has been conducted recently on hockey skating despite the sport's worldwide appeal. One reason for this lack of biomechanical knowledge stems from the difficulty of collecting data. The lack of accuracy, the disputable realism of treadmills, and the large field of view required are some of the technical challenges that have to be overcome. The main objective of the current study was to improve our knowledge of the joint kinematics during the skating stroke. A second objective was to improve the data collection system we developed and the third was to establish if a kinematic progression exists in the hockey skating stroke similar to that in speed skating. Relative motions at the knee and ankle joints were computed using a joint coordinate system approach. The differences at the knee joints in push-offs indicated that the skating skill was progressively changing with each push-off. The relative stability of the ankle angles can be attributed to the design of the skate boots, which have recently become very rigid. Further research on ice hockey skating is warranted and should include more skaters and investigate the effect various starting strategies and variations in equipment have on skaters' performance.

  6. Real-time controller for foot-drop correction by using surface electromyography sensor.

    PubMed

    Al Mashhadany, Yousif I; Abd Rahim, Nasrudin

    2013-04-01

    Foot drop is a disease caused mainly by muscle paralysis, which incapacitates the nerves generating the impulses that control feet in a heel strike. The incapacity may stem from lesions that affect the brain, the spinal cord, or peripheral nerves. The foot becomes dorsiflexed, affecting normal walking. A design and analysis of a controller for such legs is the subject of this article. Surface electromyography electrodes are connected to the skin surface of the human muscle and work on the mechanics of human muscle contraction. The design uses real surface electromyography signals for estimation of the joint angles. Various-speed flexions and extensions of the leg were analyzed. The two phases of the design began with surface electromyography of real human leg electromyography signal, which was subsequently filtered, amplified, and normalized to the maximum amplitude. Parameters extracted from the surface electromyography signal were then used to train an artificial neural network for prediction of the joint angle. The artificial neural network design included various-speed identification of the electromyography signal and estimation of the angles of the knee and ankle joints by a recognition process that depended on the parameters of the real surface electromyography signal measured through real movements. The second phase used artificial neural network estimation of the control signal, for calculation of the electromyography signal to be stimulated for the leg muscle to move the ankle joint. Satisfactory simulation (MATLAB/Simulink version 2012a) and implementation results verified the design feasibility.

  7. The angle-torque-relationship of the subtalar pronators and supinators in male athletes: A comparative study of soccer and handball players.

    PubMed

    Hagen, Marco; Asholt, Johannes; Lemke, Martin; Lahner, Matthias

    2016-05-18

    It is currently unclear how participation in different sports affects the angle-specific subtalar pronator and supinator muscle strength and pronator-to-supinator strength ratio (PSR). Based on the hypothesis that both differences sport-related patterns of play and foot-ground interaction may lead to sport-specific muscle adaptations, this study compared the angle specific pronator and supinator strength capacity of handball and soccer players. Eighteen healthy male handball and 19 soccer players performed maximum isometric voluntary isometric contractions using a custom-made testing apparatus. Peak pronator (PPT) and supinator torques (PST), pronator and supinator strength curves (normalised to the peak torque across all joint angles) and PSR were measured in five anatomical joint angles across the active subtalar range of motion (ROM). All analysed parameters were dependent on the subtalar joint angle. The ANOVA revealed significant `joint angle' × `group' interactions on PPT, pronator strength curves and PSR. No group differences were found for active subtalar ROM. In previously uninjured handball and soccer athletes, there were intrinsic differences in angle-specific subtalar pronator muscle strength. The lower PSR, which was found in the most supinated angle, can be seen as a risk factor for sustaining an ankle sprain.

  8. Intrinsic ankle stiffness during standing increases with ankle torque and passive stretch of the Achilles tendon

    PubMed Central

    Gill, Jaspret

    2018-01-01

    Individuals may stand with a range of ankle angles. Furthermore, shoes or floor surfaces may elevate or depress their heels. Here we ask how these situations impact ankle stiffness and balance. We performed two studies (each with 10 participants) in which the triceps surae, Achilles tendon and aponeurosis were stretched either passively, by rotating the support surface, or actively by leaning forward. Participants stood freely on footplates which could rotate around the ankle joint axis. Brief, small stiffness-measuring perturbations (<0.7 deg; 140 ms) were applied at intervals of 4–5 s. In study 1, participants stood at selected angles of forward lean. In study 2, normal standing was compared with passive dorsiflexion induced by 15 deg toes-up tilt of the support surface. Smaller perturbations produced higher stiffness estimates, but for all perturbation sizes stiffness increased with active torque or passive stretch. Sway was minimally affected by stretch or lean, suggesting that this did not underlie the alterations in stiffness. In quiet stance, maximum ankle stiffness is limited by the tendon. As tendon strain increases, it becomes stiffer, causing an increase in overall ankle stiffness, which would explain the effects of leaning. However, stiffness also increased considerably with passive stretch, despite a modest torque increase. We discuss possible explanations for this increase. PMID:29558469

  9. Higher medially-directed joint reaction forces are a characteristic of dysplastic hips: A comparative study using subject-specific musculoskeletal models.

    PubMed

    Harris, Michael D; MacWilliams, Bruce A; Bo Foreman, K; Peters, Christopher L; Weiss, Jeffrey A; Anderson, Andrew E

    2017-03-21

    Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Higher Medially-directed Joint Reaction Forces are a Characteristic of Dysplastic Hips: A Comparative Study Using Subject-Specific Musculoskeletal Models

    PubMed Central

    Harris, Michael D.; MacWilliams, Bruce A.; Foreman, K. Bo; Peters, Christopher L.; Weiss, Jeffrey A.; Anderson, Andrew E.

    2018-01-01

    Acetabular dysplasia is a known cause of hip osteoarthritis. In addition to abnormal anatomy, changes in kinematics, joint reaction forces (JRFs), and muscle forces could cause tissue damage to the cartilage and labrum, and may contribute to pain and fatigue. The objective of this study was to compare lower extremity joint angles, moments, hip JRFs and muscle forces during gait between patients with symptomatic acetabular dysplasia and healthy controls. Marker trajectories and ground reaction forces were measured in 10 dysplasia patients and 10 typically developing control subjects. A musculoskeletal model was scaled in OpenSim to each subject and subject-specific hip joint centers were determined using reconstructions from CT images. Joint kinematics and moments were calculated using inverse kinematics and inverse dynamics, respectively. Muscle forces and hip JRFs were estimated with static optimization. Inter-group differences were tested for statistical significance (p≤0.05) and large effect sizes (d≥0.8). Results demonstrated that dysplasia patients had higher medially directed JRFs. Joint angles and moments were mostly similar between the groups, but large inter-group effect sizes suggested some restriction in range of motion by patients at the hip and ankle. Higher medially-directed JRFs and inter-group differences in hip muscle forces likely stem from lateralization of the hip joint center in dysplastic patients. Joint force differences, combined with reductions in range of motion at the hip and ankle may also indicate compensatory strategies by patients with dysplasia to maintain joint stability. PMID:28233552

  11. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods.

    PubMed

    Schwartz, Mathew; Dixon, Philippe C

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM.

  12. The effect of subject measurement error on joint kinematics in the conventional gait model: Insights from the open-source pyCGM tool using high performance computing methods

    PubMed Central

    Dixon, Philippe C.

    2018-01-01

    The conventional gait model (CGM) is a widely used biomechanical model which has been validated over many years. The CGM relies on retro-reflective markers placed along anatomical landmarks, a static calibration pose, and subject measurements as inputs for joint angle calculations. While past literature has shown the possible errors caused by improper marker placement, studies on the effects of inaccurate subject measurements are lacking. Moreover, as many laboratories rely on the commercial version of the CGM, released as the Plug-in Gait (Vicon Motion Systems Ltd, Oxford, UK), integrating improvements into the CGM code is not easily accomplished. This paper introduces a Python implementation for the CGM, referred to as pyCGM, which is an open-source, easily modifiable, cross platform, and high performance computational implementation. The aims of pyCGM are to (1) reproduce joint kinematic outputs from the Vicon CGM and (2) be implemented in a parallel approach to allow integration on a high performance computer. The aims of this paper are to (1) demonstrate that pyCGM can systematically and efficiently examine the effect of subject measurements on joint angles and (2) be updated to include new calculation methods suggested in the literature. The results show that the calculated joint angles from pyCGM agree with Vicon CGM outputs, with a maximum lower body joint angle difference of less than 10-5 degrees. Through the hierarchical system, the ankle joint is the most vulnerable to subject measurement error. Leg length has the greatest effect on all joints as a percentage of measurement error. When compared to the errors previously found through inter-laboratory measurements, the impact of subject measurements is minimal, and researchers should rather focus on marker placement. Finally, we showed that code modifications can be performed to include improved hip, knee, and ankle joint centre estimations suggested in the existing literature. The pyCGM code is provided in open source format and available at https://github.com/cadop/pyCGM. PMID:29293565

  13. Analysis of the Effects of Normal Walking on Ankle Joint Contact Characteristics After Acute Inversion Ankle Sprain.

    PubMed

    Bae, Ji Yong; Park, Kyung Soon; Seon, Jong Keun; Jeon, Insu

    2015-12-01

    To show the causal relationship between normal walking after various lateral ankle ligament (LAL) injuries caused by acute inversion ankle sprains and alterations in ankle joint contact characteristics, finite element simulations of normal walking were carried out using an intact ankle joint model and LAL injury models. A walking experiment using a volunteer with a normal ankle joint was performed to obtain the boundary conditions for the simulations and to support the appropriateness of the simulation results. Contact pressure and strain on the talus articular cartilage and anteroposterior and mediolateral translations of the talus were calculated. Ankles with ruptured anterior talofibular ligaments (ATFLs) had a higher likelihood of experiencing increased ankle joint contact pressures, strains and translations than ATFL-deficient ankles. In particular, ankles with ruptured ATFL + calcaneofibular ligaments and all ruptured ankles had a similar likelihood as the ATFL-ruptured ankles. The push off stance phase was the most likely situation for increased ankle joint contact pressures, strains and translations in LAL-injured ankles.

  14. Effects of circumferential ankle pressure on ankle proprioception, stiffness, and postural stability: a preliminary investigation.

    PubMed

    You, Sung H; Granata, Kevin P; Bunker, Linda K

    2004-08-01

    Cross-sectional repeated-measures design. Determine the effects of circumferential ankle pressure (CAP) intervention on proprioceptive acuity, ankle stiffness, and postural stability. The application of CAP using braces, taping, and adaptive shoes or military boots is widely used to address chronic ankle instability (CAI). An underlying assumption is that the CAP intervention might improve ankle stability through increased proprioceptive acuity and stiffness in the ankle. METHOD AND MEASURES: A convenience sample of 10 subjects was recruited from the local university community and categorized according to proprioceptive acuity (high, low) and ankle stability (normal, CAI). Proprioceptive acuity was measured when blindfolded subjects were asked to accurately reproduce a self-selected target ankle position before and after the application of CAP. Proprioceptive acuity was determined in 5 different ankle joint position sense tests: neutral, inversion, eversion, plantar flexion, and dorsiflexion. Joint position angles were recorded electromechanically using a potentiometer. Passive ankle stiffness was computed from the ratio of applied static moment versus angular displacement. Active ankle stiffness was determined from biomechanical analyses of ankle motion following a mediolateral perturbation. Postural stability was quantified from the center of pressure displacement in the mediolateral and the anteroposterior directions in unipedal stance. All measurements were recorded with and without CAP applied by a pediatric blood pressure cuff. Data were analyzed using a separate mixed-model analysis of variance (ANOVA) for each dependent variable. Post hoc comparison using Tukey's honestly significant difference (HSD) test was performed if significant interactions were obtained. Significance level was set at P<.05 for all analyses. Significant group (high versus low proprioceptive acuity) x CAP interactions were identified for postural stability. Passive ankle stiffness was not increased by an application of CAP. Active ankle stiffness was significantly different between the high and low proprioceptive acuity groups and was not affected by an application of CAP. Significant group (normal versus CAI) x CAP interactions were observed for mediolateral center-of-pressure displacement with a main effect of group on neutral joint position sense. Application of CAP increased proprioceptive acuity and demonstrated trends toward increased active stiffness in the ankle, hence improved postural stability. The effects tend to be limited to individuals with low proprioceptive acuity.

  15. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.

    PubMed

    Augustsson, J; Thomeé, R; Lindén, C; Folkesson, M; Tranberg, R; Karlsson, J

    2006-04-01

    A fatiguing exercise protocol was combined with single-leg hop testing to improve the possibilities of evaluating the effects of training or rehabilitation interventions. In the first test-retest experiment, 11 healthy male subjects performed two trials of single-leg hops under three different test conditions: non-fatigued and following fatiguing exercise, which consisted of unilateral weight machine knee extensions at 80% and 50%, respectively, of 1 repetition maximum (1 RM) strength. Intraclass correlation coefficients ranged from 0.75 to 0.98 for different hop test conditions, indicating that all tests were reliable. For the second experiment, eight healthy male subjects performed the fatiguing exercise protocol to investigate how fatigue influences lower-extremity joint kinematics and kinetics during single-leg hops. Hip, knee and ankle joint angles, moments and powers, as well as ground-reaction forces were recorded with a six-camera, motion-capture system and a force platform. Recovery of hop performance following the fatiguing exercise was also measured. During the take-off for the single-leg hops, hip and knee flexion angles, generated powers for the knee and ankle joints, and ground-reaction forces decreased for the fatigued hop conditions compared with the non-fatigued condition (P<0.05). Compared with landing during the non-fatigued condition, hip moments and ground-reaction forces were lower for the fatigued hop conditions (P<0.05). The negative joint power was two to three times greater for the knee than for the hip and five to 10 times greater for the knee than for the ankle during landing for all test conditions (P<0.05). Most measured variables had recovered three minutes post-exercise. It is concluded that the fatiguing exercise protocol combined with single-leg hop testing was a reliable method for investigating functional performance under fatigued test conditions. Further, subjects utilized an adapted hop strategy, which employed less hip and knee flexion and generated powers for the knee and ankle joints during take-off, and less hip joint moments during landing under fatigued conditions. The large negative power values observed at the knee joint during the landing phase of the single-leg hop, during which the quadriceps muscle activates eccentrically, indicate that not only hop distance but also the ability to perform successful landings should be investigated when assessing dynamic knee function.

  16. Joint torques and joint reaction forces during squatting with a forward or backward inclined Smith machine.

    PubMed

    Biscarini, Andrea; Botti, Fabio M; Pettorossi, Vito E

    2013-02-01

    We developed a biomechanical model to determine the joint torques and loadings during squatting with a backward/forward-inclined Smith machine. The Smith squat allows a large variety of body positioning (trunk tilt, foot placement, combinations of joint angles) and easy control of weight distribution between forefoot and heel. These distinctive aspects of the exercise can be managed concurrently with the equipment inclination selected to unload specific joint structures while activating specific muscle groups. A backward (forward) equipment inclination decreases (increases) knee torque, and compressive tibiofemoral and patellofemoral forces, while enhances (depresses) hip and lumbosacral torques. For small knee flexion angles, the strain-force on the posterior cruciate ligament increases (decreases) with a backward (forward) equipment inclination, whereas for large knee flexion angles, this behavior is reversed. In the 0 to 60 degree range of knee flexion angles, loads on both cruciate ligaments may be simultaneously suppressed by a 30 degree backward equipment inclination and selecting, for each value of the knee angle, specific pairs of ankle and hip angles. The anterior cruciate ligament is safely maintained unloaded by squatting with backward equipment inclination and uniform/forward foot weight distribution. The conditions for the development of anterior cruciate ligament strain forces are clearly explained.

  17. Squat exercise to estimate knee megaprosthesis rehabilitation: a pilot study

    PubMed Central

    Lovecchio, Nicola; Zago, Matteo; Sciumè, Luciana; Lopresti, Maurizio; Sforza, Chiarella

    2015-01-01

    [Purpose] This study evaluated a specific rehabilitation protocol using a half squat after total knee reconstruction with distal femur megaprosthesis and tibial allograft-prosthesis composite. [Subject and Methods] Squat execution was recorded by a three-dimensional system before and after a specific rehabilitation program on a 28-year-old patient. Squat duration, body center of mass trajectory, and vertical range of motion were determined. Step width and joint angles and symmetry (hip flexion, extension, and rotation, knee flexion, and ankle dorsal and plantar flexion) were estimated. Knee and hip joint symmetry was computed using a bilateral cyclogram technique. [Results] After rehabilitation, the squat duration was longer (75%), step width was similar, and vertical displacement was higher. Hip flexion increased by over 20%, and ankle dorsiflexion diminished by 14%. The knee had the highest symmetry gain (4.1–3.4%). Angle-angle plot subtended areas decreased from 108° to 40°2 (hip) and from 204° to 85°2 (knee), showing improvement in movement symmetry. [Conclusion] We concluded that the squat is an effective multifactorial exercise to estimate rehabilitation outcomes after megaprosthesis, also considering that compressive and shear forces are minimal up to 60–70° of knee flexion. PMID:26311992

  18. Ankle Fusion Combined With Calcaneal Sliding Osteotomy for Severe Arthritic Ball and Socket Ankle Deformity.

    PubMed

    Cho, Byung-Ki; Park, Kyoung-Jin; Choi, Seung-Myung; Kang, Sang-Woo; Lee, Hyung-Ki

    2016-12-01

    Although a ball and socket ankle deformity is usually congenital and asymptomatic, abnormal inversion and eversion mobility can result in recurrent ankle sprain and osteoarthritis. This retrospective study was performed to evaluate the clinical and radiologic outcomes of ankle fusion combined with calcaneal sliding osteotomy for severe arthritic ball and socket ankle deformity. Fourteen patients with severe arthritic ball and socket ankle deformity were followed for more than 3 years after operation. The clinical evaluation consisted of American Orthopaedic Foot & Ankle Society (AOFAS) score, Foot and Ankle Ability Measure (FAAM), visual analog scale (VAS) for pain, and subjective satisfaction score. The period to fusion and union of osteotomy, the change of hindfoot alignment angle, and complications were evaluated radiologically. AOFAS and FAAM scores were significantly improved from an average of 37.4 and 34.5 points to 74.6 and 78.5 points, respectively. VAS for pain with walking over 20 minutes was significantly improved from an average of 8.4 points to 1.9 points. The average satisfaction score of patients was 88.9 points. The difference in heel alignment angle (compared to contralateral side) was significantly improved from an average of 34.8 to 5.4 degrees. There were 2 cases of progressive arthritis in an adjacent joint and 1 case of failed fusion. Ankle fusion combined with calcaneal sliding osteotomy can be an effective operative option for ball and socket ankle deformity with advanced arthritis. In spite of increased complication rate, reliable pain relief, and restoration of gait ability through correcting hindfoot malalignment could improve the quality of life. Level IV, retrospective case series. © The Author(s) 2016.

  19. Ball and Socket Ankle: Mechanism and Computational Evidence of Concept.

    PubMed

    Jastifer, James R; Gustafson, Peter A; Labomascus, Aaron; Snoap, Tyler

    The ball and socket ankle joint is a morphologically abnormal joint characterized by rounding of the articular surface of the talus. Other than anecdotal observation, little evidence has been presented to describe the development of this deformity. The purpose of the present study was to review ankle and subtalar joint mechanics and to kinematically examine the functional combination of these joints as a mechanism of the ball and socket ankle deformity. We reviewed functional representations of the ankle joint, subtalar joint, and ball and socket ankle deformity. A computational study of joint kinematics was then performed using a 3-dimensional model derived from a computed tomography scan of a ball and socket deformity. The joint kinematics were captured by creating a "virtual map" of the combined kinematics of the ankle and subtalar joints in the respective models. The ball and socket ankle deformity produces functionally similar kinematics to a combination of the ankle and subtalar joints. The findings of the present study support the notion that a possible cause of the ball and socket deformity is bony adaptation that compensates for a functional deficit of the ankle and subtalar joints. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. Bone alterations are associated with ankle osteoarthritis joint pain

    PubMed Central

    Nakamura, Yukio; Uchiyama, Shigeharu; Kamimura, Mikio; Komatsu, Masatoshi; Ikegami, Shota; Kato, Hiroyuki

    2016-01-01

    The etiology of ankle osteoarthritis (OA) is largely unknown. We analyzed 24 ankle OA of 21 patients diagnosed by plain radiographs using magnetic resonance imaging (MRI). Ankle joint pain disappeared in 22 out of 24 joints by conservative treatment. MRI bone signal changes in and around the ankle joints were observed in 22 of 24 joints. Bone signal changes along the joint line were seen in 10 of 11 joints as a Kellgren-Lawrence (KL) grade of II to IV. Such signal changes were witnessed in only 4 of 13 joints with KL grade 0 or I. In the talocrural joint, bone alterations occurred in both tibia and talus bones through the joint line in cases of KL grade III or IV, while focal bone alterations were present in the talus only in KL grade I or II cases. Sixteen of 24 joints exhibited intraosseous bone signal changes, which tended to correspond to joint pain of any ankle OA stage. Our results suggest that bone alterations around the ankle joint might be one of the etiologies of OA and associated with ankle joint pain. PMID:26776564

  1. Bone alterations are associated with ankle osteoarthritis joint pain.

    PubMed

    Nakamura, Yukio; Uchiyama, Shigeharu; Kamimura, Mikio; Komatsu, Masatoshi; Ikegami, Shota; Kato, Hiroyuki

    2016-01-18

    The etiology of ankle osteoarthritis (OA) is largely unknown. We analyzed 24 ankle OA of 21 patients diagnosed by plain radiographs using magnetic resonance imaging (MRI). Ankle joint pain disappeared in 22 out of 24 joints by conservative treatment. MRI bone signal changes in and around the ankle joints were observed in 22 of 24 joints. Bone signal changes along the joint line were seen in 10 of 11 joints as a Kellgren-Lawrence (KL) grade of II to IV. Such signal changes were witnessed in only 4 of 13 joints with KL grade 0 or I. In the talocrural joint, bone alterations occurred in both tibia and talus bones through the joint line in cases of KL grade III or IV, while focal bone alterations were present in the talus only in KL grade I or II cases. Sixteen of 24 joints exhibited intraosseous bone signal changes, which tended to correspond to joint pain of any ankle OA stage. Our results suggest that bone alterations around the ankle joint might be one of the etiologies of OA and associated with ankle joint pain.

  2. Syndesmotic ankle sprain.

    PubMed

    Childs, Sharon G

    2012-01-01

    Ankle sprain injuries are the most common type of joint sprain. The prevalence of ankle joint sprains accounts for 21% of joint injuries in the body. Although somewhat rare, high-ankle or syndesmotic ankle sprains occur in up to 15% of ankle trauma. This article will present the pathomechanics of the high-ankle or syndesmotic sprain.

  3. Salvage of tibial pilon fractures using fusion of the ankle with a 90 degrees cannulated blade-plate: a preliminary report.

    PubMed

    Morgan, S J; Thordarson, D B; Shepherd, L E

    1999-06-01

    Six patients with ankle joint destruction and delayed metaphyseal union after tibial plafond fracture were surgically treated with tibiotalar arthrodesis and metaphyseal reconstruction, using a fixed-angle cannulated blade-plate. The procedure was performed through a posterior approach in five cases and a lateral approach in one case. The subtalar joint was preserved in all cases. Metaphyseal union and a stable arthrodesis were obtained in all cases without loss of fixation and with no mechanical failure of the blade-plate. Union was obtained in an average of 26 weeks. No secondary procedures were required to obtain union. All six patients were ambulatory at last follow-up. Stable internal fixation for simultaneous tibiotalar fusion and metaphyseal reconstruction can be achieved with a cannulated blade-plate while preserving the subtalar joint in complex plafond fractures.

  4. An Investigation into the Relation between the Technique of Movement and Overload in Step Aerobics

    PubMed Central

    Wysocka, Katarzyna

    2017-01-01

    The aim of this research was to determine the features of a step workout technique which may be related to motor system overloading in step aerobics. Subjects participating in the research were instructors (n = 15) and students (n = 15) without any prior experience in step aerobics. Kinematic and kinetic data was collected with the use of the BTS SMART system comprised of 6 calibrated video cameras and two Kistler force plates. The subjects' task was to perform basic steps. The following variables were analyzed: vertical, anteroposterior, and mediolateral ground reaction forces; foot flexion and abduction and adduction angles; knee joint flexion angle; and trunk flexion angle in the sagittal plane. The angle of a foot adduction recorded for the instructors was significantly smaller than that of the students. The knee joint angle while stepping up was significantly higher for the instructors compared to that for the students. Our research confirmed that foot dorsal flexion and adduction performed while stepping up increased load on the ankle joint. Both small and large angles of knee flexion while stepping up and down resulted in knee joint injuries. A small trunk flexion angle in the entire cycle of step workout shut down dorsal muscles, which stopped suppressing the load put on the spine. PMID:28348501

  5. A practical solution to reduce soft tissue artifact error at the knee using adaptive kinematic constraints.

    PubMed

    Potvin, Brigitte M; Shourijeh, Mohammad S; Smale, Kenneth B; Benoit, Daniel L

    2017-09-06

    Musculoskeletal modeling and simulations have vast potential in clinical and research fields, but face various challenges in representing the complexities of the human body. Soft tissue artifact from skin-mounted markers may lead to non-physiological representation of joint motions being used as inputs to models in simulations. To address this, we have developed adaptive joint constraints on five of the six degree of freedom of the knee joint based on in vivo tibiofemoral joint motions recorded during walking, hopping and cutting motions from subjects instrumented with intra-cortical pins inserted into their tibia and femur. The constraint boundaries vary as a function of knee flexion angle and were tested on four whole-body models including four to six knee degrees of freedom. A musculoskeletal model developed in OpenSim simulation software was constrained to these in vivo boundaries during level gait and inverse kinematics and dynamics were then resolved. Statistical parametric mapping indicated significant differences (p<0.05) in kinematics between bone pin constrained and unconstrained model conditions, notably in knee translations, while hip and ankle flexion/extension angles were also affected, indicating the error at the knee propagates to surrounding joints. These changes to hip, knee, and ankle kinematics led to measurable changes in hip and knee transverse plane moments, and knee frontal plane moments and forces. Since knee flexion angle can be validly represented using skin mounted markers, our tool uses this reliable measure to guide the five other degrees of freedom at the knee and provide a more valid representation of the kinematics for these degrees of freedom. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Foot and ankle function after tibial overlengthening.

    PubMed

    Emara, Khaled M; Diab, Ramy Ahmed; El Ghazali, Sherif; Farouk, Amr; El Kersh, Mohamed Ahmed

    2014-01-01

    Lengthening the tibia more than 25% of its original length can be indicated for proximal femoral deficiency, poliomyelitis, or femoral infected nonunion. Such lengthening of the tibia can adversely affect the ankle or foot shape and function. The present study aimed to assess the effect of tibial lengthening of more than 25% of its original length on the foot and ankle shape and function compared with the preoperative condition. This was a retrospective study of 13 children with severe proximal focal femoral deficiency, Aitken classification type D, who had undergone limb lengthening from June 2000 to June 2008 using Ilizarov external fixators. The techniques used in tibial lengthening included lengthening without intramedullary rodding and lengthening over a nail. The foot assessment was done preoperatively, at fixator removal, and then annually for 3 years, documenting the range of motion and deformity of the ankle and subtalar joints and big toe and the navicular height, calcaneal pitch angle, and talo-first metatarsal angle. At fixator removal, all cases showed equinocavovarus deformity, with decreased ankle, subtalar, and big toe motion. The mean American Orthopedic Foot and Ankle Society score was significantly reduced. During follow-up, the range of motion, foot deformity, and American Orthopedic Foot and Ankle Society score improved, reaching nearly to the preoperative condition by 2 years of follow-up. The results of our study have shown that tibial overlengthening has an adverse effect on foot and ankle function. This effect was reversible in the patients included in the present study. Lengthening of more than 25% can be safely done after careful discussion with the patients and their families about the probable effects of lengthening on foot and ankle function. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  7. The Acute Effects of Static and Cyclic Stretching on Muscle Stiffness and Hardness of Medial Gastrocnemius Muscle.

    PubMed

    Maeda, Noriaki; Urabe, Yukio; Tsutsumi, Shogo; Sakai, Shogo; Fujishita, Hironori; Kobayashi, Toshiki; Asaeda, Makoto; Hirata, Kazuhiko; Mikami, Yukio; Kimura, Hiroaki

    2017-12-01

    This study aimed to clarify the acute effects of static stretching (SS) and cyclic stretching (CS) on muscle stiffness and hardness of the medial gastrocnemius muscle (MG) by using ultrasonography, range of motion (ROM) of the ankle joint and ankle plantar flexor. Twenty healthy men participated in this study. Participants were randomly assigned to SS, CS and control conditions. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions in another day: (a) 2 minutes static stretching, (b) 2 minutes cyclic stretching, (c) control. Maximum ankle dorsiflexion range of motion (ROM max) and normalized peak torque (NPT) of ankle plantar flexor were measured in the pre- and post-stretching. To assess muscle stiffness, muscle-tendon junction (MTJ) displacement (the length changes in tendon and muscle) and MTJ angle (the angle made by the tendon of insertion and muscle fascicle) of MG were measured using ultrasonography at an ankle dorsiflexion angle of -10°, 0°, 10° and 20° before and after SS and CS for 2 minutes in the pre- and post-stretching. MG hardness was measured using ultrasound real-time tissue elastography (RTE). The results of this study indicate a significant effect of SS for ROM maximum, MTJ angle (0°, 10°, 20°) and RTE (10°, 20°) compared with CS (p < 0.05). There were no significant differences in MTJ displacement between SS and CS. CS was associated with significantly higher NPT values than SS. This study suggests that SS of 2 minutes' hold duration significantly affected muscle stiffness and hardness compared with CS. In addition, CS may contribute to the elongation of muscle tissue and increased muscle strength.

  8. IMU-Based Joint Angle Measurement for Gait Analysis

    PubMed Central

    Seel, Thomas; Raisch, Jorg; Schauer, Thomas

    2014-01-01

    This contribution is concerned with joint angle calculation based on inertial measurement data in the context of human motion analysis. Unlike most robotic devices, the human body lacks even surfaces and right angles. Therefore, we focus on methods that avoid assuming certain orientations in which the sensors are mounted with respect to the body segments. After a review of available methods that may cope with this challenge, we present a set of new methods for: (1) joint axis and position identification; and (2) flexion/extension joint angle measurement. In particular, we propose methods that use only gyroscopes and accelerometers and, therefore, do not rely on a homogeneous magnetic field. We provide results from gait trials of a transfemoral amputee in which we compare the inertial measurement unit (IMU)-based methods to an optical 3D motion capture system. Unlike most authors, we place the optical markers on anatomical landmarks instead of attaching them to the IMUs. Root mean square errors of the knee flexion/extension angles are found to be less than 1° on the prosthesis and about 3° on the human leg. For the plantar/dorsiflexion of the ankle, both deviations are about 1°. PMID:24743160

  9. Age and sex influences on running mechanics and coordination variability.

    PubMed

    Boyer, Katherine A; Freedman Silvernail, Julia; Hamill, Joseph

    2017-11-01

    The purpose of this study was to examine the impact of age on running mechanics separately for male and female runners and to quantify sex differences in running mechanics and coordination variability for older runners. Kinematics and kinetics were captured for 20 younger (10 male) and 20 older (10 male) adults running overground at 3.5 m · s -1 . A modified vector coding technique was used to calculate segment coordination variability. Lower extremity joint angles, moments and segment coordination variability were compared between age and sex groups. Significant sex-age interaction effects were found for heel-strike hip flexion and ankle in/eversion angles and peak ankle dorsiflexion angle. In older adults, mid-stance knee flexion angle, ankle inversion and abduction moments and hip abduction and external rotation moments differed by sex. Older compared with younger females had reduced coordination variability in the thigh-shank transverse plane couple but greater coordination variability for the shank rotation-foot eversion couple in early stance. These results suggest there may be a non-equivalent aging process in the movement mechanics for males and females. The age and sex differences in running mechanics and coordination variability highlight the need for sex-based analyses for future studies examining injury risk with age.

  10. Identifying changes in gait waveforms following a strengthening intervention for women with knee osteoarthritis using principal components analysis.

    PubMed

    Brenneman, Elora C; Maly, Monica R

    2018-01-01

    Lower limb strengthening exercise is pivotal for the management of symptoms related to knee osteoarthritis (OA). Though improvement in clinical symptoms is well documented, concurrent changes in gait biomechanics are ill-defined. This may occur because discrete analyses miss changes following an intervention, analyses limited to the knee undermine potential mechanical trade-offs at other joints, or strengthening interventions not been designed based on biomechanical principles. The purpose of this study was to characterize differences in entire gait waveforms for sagittal plane ankle, knee, and hip angles and external moments; the knee adduction moment; and frontal plane hip angle and moment following 12-weeks of a previously designed novel lower limb strengthening program. Forty women with knee OA completed two laboratory visits: one at baseline and one immediately following intervention (follow-up). Self-report measures, strength, and gait analyses were completed at each visit. Principal components analyses were completed for sagittal angles and external moments at the ankle, knee, and hip joints, as well as frontal plane angle and moment for the hip. Participants improved self-report and strength (p≤0.004). Two significant, yet subtle differences in principal components were identified between baseline and follow-up waveforms (p<0.05) pertaining to the knee and hip sagittal external moments. The subtle changes in concert with the lack of differences in other joints and planes suggest the lower limb strengthening program does not translate to changes in the gait waveform. It is likely this program is improving symptoms without worsening mechanics. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  12. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  13. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  14. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/polymer semi-constrained... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer semi-constrained cemented prosthesis is a device intended to be implanted to replace an ankle...

  15. Influence of lower body pressure support on the walking patterns of healthy children and adults.

    PubMed

    Kurz, Max J; Deffeyes, Joan E; Arpin, David J; Karst, Gregory M; Stuberg, Wayne A

    2012-11-01

    The purpose of this investigation was to evaluate the effect of a lower body positive pressure support system on the joint kinematics and activity of the lower extremity antigravity musculature of adults and children during walking. Adults (age = 25 ± 4 years) and children (age = 13 ± 2 years) walked at a preferred speed and a speed that was based on the Froude number, while 0-80% of their body weight was supported. Electrogoniometers were used to monitor knee and ankle joint kinematics. Surface electromyography was used to quantify the magnitude of the vastus lateralis and gastrocnemius muscle activity. There were three key findings: (1) The lower extremity joint angles and activity of the lower extremity antigravity muscles of children did not differ from those of adults. (2) The magnitude of the changes in the lower extremity joint motion and antigravity muscle activity was dependent upon an interaction between body weight support and walking speed. (3) Lower body positive pressure support resulted in reduced activation of the antigravity musculature, and reduced range of motion of the knee and ankle joints.

  16. Ankle joint function during walking in tophaceous gout: A biomechanical gait analysis study.

    PubMed

    Carroll, Matthew; Boocock, Mark; Dalbeth, Nicola; Stewart, Sarah; Frampton, Christopher; Rome, Keith

    2018-04-17

    The foot and ankle are frequently affected in tophaceous gout, yet kinematic and kinetic changes in this region during gait are unknown. The aim of the study was to evaluate ankle biomechanical characteristics in people with tophaceous gout using three-dimensional gait analysis. Twenty-four participants with tophaceous gout were compared with 24 age-and sex-matched control participants. A 9-camera motion analysis system and two floor-mounted force plates were used to calculate kinematic and kinetic parameters. Peak ankle joint angular velocity was significantly decreased in participants with gout (P < 0.01). No differences were found for ankle ROM in either the sagittal (P = 0.43) or frontal planes (P = 0.08). No differences were observed between groups for peak ankle joint power (P = 0.41), peak ankle joint force (P = 0.25), peak ankle joint moment (P = 0.16), timing for peak ankle joint force (P = 0.81), or timing for peak ankle joint moment (P = 0.16). Three dimensional gait analysis demonstrated that ankle joint function does not change in people with gout. People with gout demonstrated a reduced peak ankle joint angular velocity which may reflect gait-limiting factors and adaptations from the high levels of foot pain, impairment and disability experienced by this population. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Soft Smart Garments for Lower Limb Joint Position Analysis.

    PubMed

    Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia

    2017-10-12

    Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors' responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case.

  18. Soft Smart Garments for Lower Limb Joint Position Analysis

    PubMed Central

    Totaro, Massimo; Poliero, Tommaso; Mondini, Alessio; Lucarotti, Chiara; Cairoli, Giovanni; Ortiz, Jesùs; Beccai, Lucia

    2017-01-01

    Revealing human movement requires lightweight, flexible systems capable of detecting mechanical parameters (like strain and pressure) while being worn comfortably by the user, and not interfering with his/her activity. In this work we address such multifaceted challenge with the development of smart garments for lower limb motion detection, like a textile kneepad and anklet in which soft sensors and readout electronics are embedded for retrieving movement of the specific joint. Stretchable capacitive sensors with a three-electrode configuration are built combining conductive textiles and elastomeric layers, and distributed around knee and ankle. Results show an excellent behavior in the ~30% strain range, hence the correlation between sensors’ responses and the optically tracked Euler angles is allowed for basic lower limb movements. Bending during knee flexion/extension is detected, and it is discriminated from any external contact by implementing in real time a low computational algorithm. The smart anklet is designed to address joint motion detection in and off the sagittal plane. Ankle dorsi/plantar flexion, adduction/abduction, and rotation are retrieved. Both knee and ankle smart garments show a high accuracy in movement detection, with a RMSE less than 4° in the worst case. PMID:29023365

  19. Full Step Cycle Kinematic and Kinetic Comparison of Barefoot Walking and a Traditional Shoe Walking in Healthy Youth: Insights for Barefoot Technology.

    PubMed

    Xu, Yi; Hou, Qinghua; Wang, Chuhuai; Sellers, Andrew J; Simpson, Travis; Bennett, Bradford C; Russell, Shawn D

    2017-01-01

    Barefoot technology shoes are becoming increasingly popular, yet modifications are still needed. The present study aims to gain valuable insights by comparing barefoot walking to neutral shoe walking in a healthy youth population. 28 healthy university students (22 females and 6 males) were recruited to walk on a 10-meter walkway both barefoot and in neutral running shoes at their comfortable walking speed. Full step cycle kinematic and kinetic data were collected using an 8-camera motion capture system. In the early stance phase, the knee extension moment (MK1), the first peak absorbed joint power at the knee joint (PK1), and the flexion angle of knee/dorsiflexion angle of the ankle were significantly reduced when walking in neutral running shoes. However, in the late stance, barefoot walking resulted in decreased hip joint flexion moment (MH2), second peak extension knee moment (MK3), hip flexors absorbed power (PH2), hip flexors generated power (PH3), second peak absorbed power by knee flexors (PK2), and second peak anterior-posterior component of joint force at the hip (APFH2), knee (APFK2), and ankle (APFA2). These results indicate that it should be cautious to discard conventional elements from future running shoe designs and rush to embrace the barefoot technology fashion.

  20. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain.

    PubMed

    Ju, Sung-Bum; Park, Gi Duck

    2017-02-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function.

  1. Effects of the application of ankle functional rehabilitation exercise on the ankle joint functional movement screen and isokinetic muscular function in patients with chronic ankle sprain

    PubMed Central

    Ju, Sung-Bum; Park, Gi Duck

    2017-01-01

    [Purpose] This study was conducted to investigate the effects of ankle functional rehabilitation exercise on ankle joint functional movement screen results and isokinetic muscular function in patients with chronic ankle sprain patients. [Subjects and Methods] In this study, 16 patients with chronic ankle sprain were randomized to an ankle functional rehabilitation exercise group (n=8) and a control group (n=8). The ankle functional rehabilitation exercise centered on a proprioceptive sense exercise program, which was applied 12 times for 2 weeks. To verify changes after the application, ankle joint functional movement screen scores and isokinetic muscular function were measured and analyzed. [Results] The ankle functional rehabilitation exercise group showed significant improvements in all items of the ankle joint functional movement screen and in isokinetic muscular function after the exercise, whereas the control group showed no difference after the application. [Conclusion] The ankle functional rehabilitation exercise program can be effectively applied in patients with chronic ankle sprain for the improvement of ankle joint functional movement screen score and isokinetic muscular function. PMID:28265157

  2. Osteoligamentous injuries of the medial ankle joint.

    PubMed

    Lötscher, P; Lang, T H; Zwicky, L; Hintermann, B; Knupp, M

    2015-12-01

    Injuries of the ankle joint have a high incidence in daily life and sports, thus, playing an important socioeconomic role. Therefore, proper diagnosis and adequate treatment are mandatory. While most of the ligament injuries around the ankle joint are treated conservatively, great controversy exists on how to treat deltoid ligament injuries in ankle fractures. Missed injuries and inadequate treatment of the medial ankle lead to inferior outcome with instability, progressive deformity, and ankle joint osteoarthritis.

  3. Evaluating the contribution of a neural component of ankle joint resistive torque in patients with stroke using a manual device.

    PubMed

    Kobayashi, Toshiki; Leung, Aaron K L; Akazawa, Yasushi; Hutchins, Stephen W

    2011-01-01

    To investigate the methodology using a manual ankle joint resistive torque measurement device to evaluate the contribution of the neural component of ankle joint resistive torque in patients with stroke. Within-subject comparison to compare the ankle joint resistive torque between fast and slow stretching conditions. Ten patients with stroke participated in this study. The incremental ratio of ankle joint resistive torque at the ankle angular position of 5degrees dorsiflexion under the fast stretching condition in comparison to the slow one was calculated in each patient. A significant increase (p<0.01) in the ankle joint resistive torque was demonstrated under the fast stretching condition in comparison to the slow one in all patients and the mean ankle joint resistive torque was 4.6 (SD=1.7) Nm under the slow stretching condition, while it was 8.4 (SD=4.1) Nm under the fast stretching condition at the ankle angular position of 5 degrees dorsiflexion. The incremental ratio ranged from 9.4-139.3% among the patients. The results of this study demonstrated the potential advantage of the device to evaluate the contribution of the neural component of ankle joint resistive torque.

  4. Combined medial displacement calcaneal osteotomy, subtalar joint arthrodesis, and ankle arthrodiastasis for end-stage posterior tibial tendon dysfunction.

    PubMed

    Stapleton, John J; Belczyk, Ronald; Zgonis, Thomas; Polyzois, Vasilios D

    2009-04-01

    Combining an ankle arthrodiastasis with a medial displacement calcaneal osteotomy and a subtalar joint arthrodesis offers surgeons a joint-sparing procedure for young and active patients who have end-stage posterior tibial tendon dysfunction and ankle joint involvement. An isolated subtalar joint arthrodesis or triple arthrodesis combined with an ankle arthrodiastasis is an option that can be used in certain case scenarios. Delaying the need for a joint destructive procedure through an ankle arthrodiastasis, however, may have a great impact in the near future, as advancements are underway to improve the use of ankle endoprosthesis.

  5. Whole limb kinematics are preferentially conserved over individual joint kinematics after peripheral nerve injury

    PubMed Central

    Chang, Young-Hui; Auyang, Arick G.; Scholz, John P.; Nichols, T. Richard

    2009-01-01

    Summary Biomechanics and neurophysiology studies suggest whole limb function to be an important locomotor control parameter. Inverted pendulum and mass-spring models greatly reduce the complexity of the legs and predict the dynamics of locomotion, but do not address how numerous limb elements are coordinated to achieve such simple behavior. As a first step, we hypothesized whole limb kinematics were of primary importance and would be preferentially conserved over individual joint kinematics after neuromuscular injury. We used a well-established peripheral nerve injury model of cat ankle extensor muscles to generate two experimental injury groups with a predictable time course of temporary paralysis followed by complete muscle self-reinnervation. Mean trajectories of individual joint kinematics were altered as a result of deficits after injury. By contrast, mean trajectories of limb orientation and limb length remained largely invariant across all animals, even with paralyzed ankle extensor muscles, suggesting changes in mean joint angles were coordinated as part of a long-term compensation strategy to minimize change in whole limb kinematics. Furthermore, at each measurement stage (pre-injury, paralytic and self-reinnervated) step-by-step variance of individual joint kinematics was always significantly greater than that of limb orientation. Our results suggest joint angle combinations are coordinated and selected to stabilize whole limb kinematics against short-term natural step-by-step deviations as well as long-term, pathological deviations created by injury. This may represent a fundamental compensation principle allowing animals to adapt to changing conditions with minimal effect on overall locomotor function. PMID:19837893

  6. Effectiveness of roundhouse kick in elite Taekwondo athletes.

    PubMed

    Thibordee, Sutima; Prasartwuth, Orawan

    2014-06-01

    The roundhouse kick is a powerful attack in Taekwondo. Most athletes intently perform this kick for scoring in competition. Therefore, kinematic and kinetic analyzes of this kick were the topics of interest; however, they were separately investigated and rarely recorded for impact force. Our objectives were to investigate knee and ankle joint kinematics and electromyographic (EMG) activity of leg muscle and compare them between high-impact (HI) and low-impact (LO) kicks. Sixteen male black-belt Taekwondo athletes performed five roundhouse kicks at their maximal effort. Electrogoniometer sensors measured angular motions of ankle and knee joints. Surface EMG activities were recorded for tibialis anterior, gastrocnemius medialis, rectus femoris, and biceps femoris muscles. Based on maximal impact forces, the athletes were classified into HI and LO groups. All athletes in both groups showed greater activation of rectus femoris than other muscles. The HI group only showed significantly less plantarflexion angles than the LO group during preimpact and impact phases (P<0.05). During the impact phase, the HI group demonstrated significantly greater biceps femoris activation than the LO group (P<0.05). In conclusion, rectus femoris activation could predominantly contribute to the powerful roundhouse kicks. Moreover, high biceps femoris co-activation and optimal angle of ankle plantarflexion of about 35° could help achieve the high impact force. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The association between physical characteristics of the ankle joint and the mobility performance in elderly people with type 2 diabetes mellitus.

    PubMed

    Ng, Thomas Ka-Wai; Lo, Sing-Kai; Cheing, Gladys Lai-Ying

    2014-01-01

    Previous studies showed that older adults with diabetes have a worse mobility performance as compared with those without diabetes. Studies also demonstrated that older adults with diabetes have weakened ankle muscle strength, reduced joint range in ankle dorsiflexion and worsened ankle joint proprioception as compared with control population. The purpose of the present study was to examine the relationship between the physical characteristics of the ankle joint and the mobility performance in older adults with type 2 diabetes. Older adults with type 2 diabetes (n=85) were recruited, and Timed Up and Go test (TUG) for mobility assessment was performed. Active ankle joint repositioning test was used for assessing the ankle joint proprioception sense; peak torque of ankle dorsiflexors and plantar flexors were tested by using a Cybex Norm dynamometer, and weight-bearing lunge test (WBLT) was used for assessing the stiffness of ankle dorsiflexion. Our results showed that age, body mass index (BMI), normalized peak torque of plantar flexors and dorsiflexors, active ankle joint repositioning test errors and the WBLT distance were significantly correlated with the TUG (all p<0.001). These ankle characteristics, together with the demographic data of the subjects, contributed 59.9% of the variance in the TUG by multiple regression analysis. Body mass, ankle plantar flexors strength and ankle joint proprioception are important factors contributing to the physical mobility of the older adults with type 2 diabetes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Influence of different shortening velocities preceding stretch on human triceps surae moment generation in vivo.

    PubMed

    De Monte, Gianpiero; Arampatzis, Adamantios

    2008-07-19

    The purpose of this study was to examine the influence of different shortening velocities preceding the stretch on moment generation of the triceps surae muscles and architecture of the m. gastrocnemius medialis after shortening-stretch cycles of equal magnitude in vivo. Eleven male subjects (31.6+/-5.8 years, 178.4+/-7.3cm, 80.6+/-9.6kg) performed a series of electro-stimulated (85Hz) shortening-stretch plantar flexion contractions. The shortening-stretch cycles were performed at three constant angular velocities (25, 50, 100 degrees /s) in the plantar flexion direction (shortening) and at 50 degrees /s in the dorsiflexion direction (stretching). The resultant ankle joint moments were calculated through inverse dynamics. Pennation angle and fascicle length of the m. gastrocnemius medialis at rest and during contractions were measured using ultrasonography. The corresponding ankle moments, kinematics and changes in muscle architecture were analysed at seven time intervals. An analysis of variance for repeated measurements and post hoc test with Bonferroni correction was used to check the velocity-related effects on moment enhancement (alpha=0.05). The results show an increase in pennation angles and a decrease in fascicle lengths after the shortening-stretch cycle. The ankle joint moment ratio (post to pre) was higher (p<0.01) than 1.0 indicating a moment enhancement after the shortening-stretch cycle. The found ankle joint moment enhancement was 2-5% after the shortening-stretch cycle and was independed of the shortening velocity. Furthermore, the decrease in fascicle length after the shortening-stretch cycle indicates that the moment enhancement found in the present study is underestimated at least by 1-3%. Considering that the experiments have been done at the ascending limb of the force-length curve and that force enhancement is higher at the descending and the plateau region of the force-length curve, we conclude that the moment enhancement after shortening-stretch cycle can have important physiological affects while locomotion.

  9. Design, analysis and verification of a knee joint oncological prosthesis finite element model.

    PubMed

    Zach, Lukáš; Kunčická, Lenka; Růžička, Pavel; Kocich, Radim

    2014-11-01

    The aim of this paper was to design a finite element model for a hinged PROSPON oncological knee endoprosthesis and to verify the model by comparison with ankle flexion angle using knee-bending experimental data obtained previously. Visible Human Project CT scans were used to create a general lower extremity bones model and to compose a 3D CAD knee joint model to which muscles and ligaments were added. Into the assembly the designed finite element PROSPON prosthesis model was integrated and an analysis focused on the PEEK-OPTIMA hinge pin bushing stress state was carried out. To confirm the stress state analysis results, contact pressure was investigated. The analysis was performed in the knee-bending position within 15.4-69.4° hip joint flexion range. The results showed that the maximum stress achieved during the analysis (46.6 MPa) did not exceed the yield strength of the material (90 MPa); the condition of plastic stability was therefore met. The stress state analysis results were confirmed by the distribution of contact pressure during knee-bending. The applicability of our designed finite element model for the real implant behaviour prediction was proven on the basis of good correlation of the analytical and experimental ankle flexion angle data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. A three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses.

    PubMed

    Fatone, Stefania; Johnson, William Brett; Tucker, Kerice

    2016-04-01

    Misalignment of an articulated ankle-foot orthosis joint axis with the anatomic joint axis may lead to discomfort, alterations in gait, and tissue damage. Theoretical, two-dimensional models describe the consequences of misalignments, but cannot capture the three-dimensional behavior of ankle-foot orthosis use. The purpose of this project was to develop a model to describe the effects of ankle-foot orthosis ankle joint misalignment in three dimensions. Computational simulation. Three-dimensional scans of a leg and ankle-foot orthosis were incorporated into a link segment model where the ankle-foot orthosis joint axis could be misaligned with the anatomic ankle joint axis. The leg/ankle-foot orthosis interface was modeled as a network of nodes connected by springs to estimate interface pressure. Motion between the leg and ankle-foot orthosis was calculated as the ankle joint moved through a gait cycle. While the three-dimensional model corroborated predictions of the previously published two-dimensional model that misalignments in the anterior -posterior direction would result in greater relative motion compared to misalignments in the proximal -distal direction, it provided greater insight showing that misalignments have asymmetrical effects. The three-dimensional model has been incorporated into a freely available computer program to assist others in understanding the consequences of joint misalignments. Models and simulations can be used to gain insight into functioning of systems of interest. We have developed a three-dimensional model to assess the effect of ankle joint axis misalignments in ankle-foot orthoses. The model has been incorporated into a freely available computer program to assist understanding of trainees and others interested in orthotics. © The International Society for Prosthetics and Orthotics 2014.

  11. Short-term changes in running mechanics and foot strike pattern after introduction to minimalistic footwear.

    PubMed

    Willson, John D; Bjorhus, Jordan S; Williams, D S Blaise; Butler, Robert J; Porcari, John P; Kernozek, Thomas W

    2014-01-01

    Minimalistic footwear has garnered widespread interest in the running community, based largely on the premise that the footwear may reduce certain running-related injury risk factors through adaptations in running mechanics and foot strike pattern. To examine short-term adaptations in running mechanics among runners who typically run in conventional cushioned heel running shoes as they transition to minimalistic footwear. A 2-week, prospective, observational study. A movement science laboratory. Nineteen female runners with a rear foot strike (RFS) pattern who usually train in conventional running shoes. The participants trained for 20 minutes, 3 times per week for 2 weeks by using minimalistic footwear. Three-dimensional lower extremity running mechanics were analyzed before and after this 2-week period. Hip, knee, and ankle joint kinematics at initial contact; step length; stance time; peak ankle joint moment and joint work; impact peak; vertical ground reaction force loading rate; and foot strike pattern preference were evaluated before and after the intervention. The knee flexion angle at initial contact increased 3.8° (P < .01), but the ankle and hip flexion angles at initial contact did not change after training. No changes in ankle joint kinetics or running temporospatial parameters were observed. The majority of participants (71%), before the intervention, demonstrated an RFS pattern while running in minimalistic footwear. The proportion of runners with an RFS pattern did not decrease after 2 weeks (P = .25). Those runners who chose an RFS pattern in minimalistic shoes experienced a vertical loading rate that was 3 times greater than those who chose to run with a non-RFS pattern. Few systematic changes in running mechanics were observed among participants after 2 weeks of training in minimalistic footwear. The majority of the participants continued to use an RFS pattern after training in minimalistic footwear, and these participants experienced higher vertical loading rates. Continued exposure to these greater loading rates may have detrimental effects over time. Copyright © 2014 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  12. Change in muscle fascicle length influences the recruitment and discharge rate of motor units during isometric contractions.

    PubMed

    Pasquet, Benjamin; Carpentier, Alain; Duchateau, Jacques

    2005-11-01

    This study examines the effect of fascicle length change on motor-unit recruitment and discharge rate in the human tibialis anterior (TA) during isometric contractions of various intensities. The torque produced during dorsiflexion and the surface and intramuscular electromyograms (EMGs) from the TA were recorded in eight subjects. The behavior of the same motor unit (n = 59) was compared at two ankle joint angles (+10 and -10 degrees around the ankle neutral position). Muscle fascicle length of the TA was measured noninvasively using ultrasonography recordings. When the ankle angle was moved from 10 degrees plantarflexion to 10 degrees dorsiflexion, the torque produced during maximal voluntary contraction (MVC) was significantly reduced [35.2 +/- 3.3 vs. 44.3 +/- 4.2 (SD) Nm; P < 0.001] and the average surface EMG increased (0.47 +/- 0.08 vs. 0.43 +/- 0.06 mV; P < 0.05). At reduced ankle joint angle, muscle fascicle length declined by 12.7% (P < 0.01) at rest and by 18.9% (P < 0.001) during MVC. Motor units were activated at a lower recruitment threshold for short compared with long muscle fascicle length, either when expressed in absolute values (2.1 +/- 2.5 vs. 3.6 +/- 3.7 Nm; P < 0.001) or relative to their respective MVC (5.2 +/- 6.1 vs. 8.8 +/- 9.0%). Higher discharge rate and additional motor-unit recruitment were observed at a given absolute or relative torque when muscle fascicles were shortened. However, the data indicate that increased rate coding was mainly present at low torque level (<10% MVC), when the muscle-tendon complex was compliant, whereas recruitment of additional motor units played a dominant role at higher torque level and decreased compliance (10-35% MVC). Taken together, the results suggest that the central command is modulated by the afferent proprioceptive information during submaximal contractions performed at different muscle fascicle lengths.

  13. Hip rotation angle is associated with frontal plane knee joint mechanics during running.

    PubMed

    Sakaguchi, Masanori; Shimizu, Norifumi; Yanai, Toshimasa; Stefanyshyn, Darren J; Kawakami, Yasuo

    2015-02-01

    Inability to control lower extremity segments in the frontal and transverse planes resulting in large knee abduction angle and increased internal knee abduction impulse has been associated with patellofemoral pain (PFP). However, the influence of hip rotation angles on frontal plane knee joint kinematics and kinetics remains unclear. The purpose of this study was to explore how hip rotation angles are related to frontal plane knee joint kinematics and kinetics during running. Seventy runners participated in this study. Three-dimensional marker positions and ground reaction forces were recorded with an 8-camera motion analysis system and a force plate while subjects ran along a 25-m runway at a speed of 4m/s. Knee abduction, hip rotation and toe-out angles, frontal plane lever arm at the knee, internal knee abduction moment and impulse, ground reaction forces and the medio-lateral distance from the ankle joint center to the center of pressure (AJC-CoP) were quantified. The findings of this study indicate that greater hip external rotation angles were associated with greater toe-out angles, longer AJC-CoP distances, smaller internal knee abduction impulses with shorter frontal plane lever arms and greater knee abduction angles. Thus, there appears to exist a conflict between kinematic and kinetic risk factors of PFP, and hip external rotation angle may be a key factor to control frontal plane knee joint kinematics and kinetics. These results may help provide an appropriate manipulation and/or intervention on running style to reduce the risk of PFP. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  15. 21 CFR 888.3100 - Ankle joint metal/composite semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/composite semi-constrained... Ankle joint metal/composite semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal/composite semi-constrained cemented prosthesis is a device intended to be implanted to replace an...

  16. Ankle mechanics during sidestep cutting implicates need for 2-degrees of freedom powered ankle-foot prostheses.

    PubMed

    Ficanha, Evandro M; Rastgaar, Mohammad; Kaufman, Kenton R

    2015-01-01

    The ankle joint of currently available powered prostheses is capable of controlling one degree of freedom (DOF), focusing on improved mobility in the sagittal plane. To increase agility, the requirements of turning in prosthesis design need to be considered. Ankle kinematics and kinetics were studied during sidestep cutting and straight walking. There were no significant differences between the ankle sagittal plane mechanics when comparing sidestep cutting and straight walking; however, significant differences were observed in ankle frontal plane mechanics. During straight walking, the inversion-eversion (IE) angles were smaller than with sidestep cutting. The ankle that initiated the sidestep cutting showed progressively increasing inversion from 2 to 13 degrees while the following contralateral step showed progressively decreasing inversion from 8 to -4 degrees during normal walking speed. The changes in IE kinematics were the most significant during sidestep cutting compared with straight walking. The IE moments of the step that initiated the sidestep cutting were always in eversion, acting as a braking moment opposing the inverting motion. This suggests that an ankle-foot prosthesis with active DOFs in the sagittal and frontal planes will increase the agility of gait for patients with limb loss.

  17. The influence of lower leg configurations on muscle force variability.

    PubMed

    Ofori, Edward; Shim, Jaeho; Sosnoff, Jacob J

    2018-04-11

    The maintenance of steady contractions is required in many daily tasks. However, there is little understanding of how various lower limb configurations influence the ability to maintain force. The purpose of the current investigation was to examine the influence of joint angle on various lower-limb constant force contractions. Nineteen adults performed knee extension, knee flexion, and ankle plantarflexion isometric force contractions to 11 target forces, ranging from 2 to 95% maximal voluntary contraction (MVC) at 2 angles. Force variability was quantified with mean force, standard deviation, and the coefficient of variation of force output. Non-linearities in force output were quantified with approximate entropy. Curve fitting analyses were performed on each set of data from each individual across contractions to further examine whether joint angle interacts with global functions of lower-limb force variability. Joint angle had significant effects on the model parameters used to describe the force-variability function for each muscle contraction (p < 0.05). Regularities in force output were more explained by force level in smaller angle conditions relative to the larger angle conditions (p < 0.05). The findings support the notion that limb configuration influences the magnitude and regularities in force production. Biomechanical factors, such as joint angle, along with neurophysiological factors should be considered together in the discussion of the dynamics of constant force production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    PubMed

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p < 0.05). The results demonstrate that the novel ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Acute aquatic treadmill exercise improves gait and pain in people with knee osteoarthritis.

    PubMed

    Roper, Jaimie A; Bressel, Eadric; Tillman, Mark D

    2013-03-01

    To examine the acute effects of aquatic and land treadmill exercise on gait kinematics as well as the level of disease-specific and movement-related pain for individuals with osteoarthritis. Quasi-experimental crossover design. Biomechanics laboratory. Participants (N=14; age, 43-64y) diagnosed with osteoarthritis at the knee (n=12), osteoarthritis at the knee and ankle (n=1), or osteoarthritis at the knee and hip (n=1). Participants performed 3 exercise sessions separated by at least 24 hours in 1 week for each mode of exercise (aquatic treadmill and land treadmill). Gait kinematics and pain were measured before and after each intervention. The angular velocity gain score during stance for left knee extension was improved by 38% after aquatic treadmill exercise (P=.004). Similarly, during swing, the gain scores for angular velocity were also greater for left knee internal rotation and extension by 65% and 20%, respectively (P=.004, P=.008, respectively). During stance, the joint angle gain score for left hip flexion was 7.23% greater after land exercise (P=.007). During swing, the angular velocity gain score for right hip extension was significantly greater for aquatic exercise by 28% (P=.01). Only the joint angle gain score for left ankle abduction during stance was significantly higher after land exercise (4.72%, P=.003). No other joint angle gain scores for either stance or swing were significantly different for either condition (P=.06-.96). Perceived pain was 100% greater after land than aquatic treadmill exercise (P=.02). Step rate and step length were not different between conditions (P=.31-.92). An acute training period on an aquatic treadmill positively influenced joint angular velocity and arthritis-related joint pain. Acute aquatic treadmill exercise may be useful as a conservative treatment to improve angular speed of the lower-extremity joints and pain related to osteoarthritis. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  20. Influences of Fascicle Length During Isometric Training on Improvement of Muscle Strength.

    PubMed

    Tanaka, Hiroki; Ikezoe, Tome; Umehara, Jun; Nakamura, Masatoshi; Umegaki, Hiroki; Kobayashi, Takuya; Nishishita, Satoru; Fujita, Kosuke; Araki, Kojiro; Ichihashi, Noriaki

    2016-11-01

    Tanaka, H, Ikezoe, T, Umehara, J, Nakamura, M, Umegaki, H, Kobayashi, T, Nishishita, S, Fujita, K, Araki, K, and Ichihashi, N. Influences of fascicle length during isometric training on improvement of muscle strength. J Strength Cond Res 30(11): 3249-3255, 2016-This study investigated whether low-intensity isometric training would elicit a greater improvement in maximum voluntary contraction (MVC) at the same fascicle length, rather than the joint angle, adopted during training. Sixteen healthy women (21.8 ± 1.5 years) were randomly divided into an intervention group and a control group. Before (Pre) and after (Post) training, isometric plantarflexion MVCs were measured every 10° through the range of ankle joint position from 20° dorsiflexion to 30° plantarflexion (i.e., 6 ankle angles). Medial gastrocnemius fascicle length was also measured at each position, using B-mode ultrasound under 3 conditions of muscle activation: at rest, 30%MVC at respective angles, and MVC. Plantarflexion resistance training at an angle of 20° plantarflexion was performed 3 days a week for 4 weeks at 30%MVC using 3 sets of twenty 3-second isometric contractions. Maximum voluntary contraction in the intervention group increased at 0 and 10° plantarflexion (0°; Pre: 81.2 ± 26.5 N·m, Post: 105.0 ± 21.6 N·m, 10°; Pre: 63.0 ± 23.6 N·m, Post: 81.3 ± 20.3 N·m), which was not the angle used in training (20°). However, the fascicle length adopted in training at 20° plantarflexion and 30%MVC was similar to the value at 0 or 10° plantarflexion at MVC. Low-intensity isometric training at a shortened muscle length may be effective for improving MVC at a lengthened muscle length because of specificity of the fascicle length than the joint angle.

  1. 21 CFR 888.3110 - Ankle joint metal/polymer semi-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/polymer semi-constrained cemented prosthesis. 888.3110 Section 888.3110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Ankle joint metal/polymer semi-constrained cemented prosthesis. (a) Identification. An ankle joint metal...

  2. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non... December 26, 1996 for any ankle joint metal/polymer non-constrained cemented prosthesis that was in...

  3. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non... December 26, 1996 for any ankle joint metal/polymer non-constrained cemented prosthesis that was in...

  4. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... substantially equivalent to an ankle joint metal/polymer non-constrained cemented prosthesis that was in... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  5. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... substantially equivalent to an ankle joint metal/polymer non-constrained cemented prosthesis that was in... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  6. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... substantially equivalent to an ankle joint metal/polymer non-constrained cemented prosthesis that was in... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ankle joint metal/polymer non-constrained cemented... metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  7. Biomechanical Comparison of 3 Ankle Braces With and Without Free Rotation in the Sagittal Plane

    PubMed Central

    Alfuth, Martin; Klein, Dieter; Koch, Raphael; Rosenbaum, Dieter

    2014-01-01

    Context: Various designs of braces including hinged and nonhinged models are used to provide external support of the ankle. Hinged ankle braces supposedly allow almost free dorsiflexion and plantar flexion of the foot in the sagittal plane. It is unclear, however, whether this additional degree of freedom affects the stabilizing effect of the brace in the other planes of motion. Objective: To investigate the dynamic and passive stabilizing effects of 3 ankle braces, 2 hinged models that provide free plantar flexion–dorsiflexion in the sagittal plane and 1 ankle brace without a hinge. Design: Crossover study. Setting: University Movement Analysis Laboratory. Patients or Other Participants: Seventeen healthy volunteers (5 women, 12 men; age = 25.4 ± 4.8 years; height = 180.3 ± 6.5 cm; body mass = 75.5 ± 10.4 kg). Intervention(s): We dynamically induced foot inversion on a tilting platform and passively induced foot movements in 6 directions via a custom-built apparatus in 3 brace conditions and a control condition (no brace). Main Outcome Measure(s): Maximum inversion was determined dynamically using an in-shoe electrogoniometer. Passively induced maximal joint angles were measured using a torque and angle sensor. We analyzed differences among the 4 ankle-brace conditions (3 braces, 1 control) for each of the dependent variables with Friedman and post hoc tests (P < .05). Results: Each ankle brace restricted dynamic foot-inversion movements on the tilting platform as compared with the control condition, whereas only the 2 hinged ankle braces differed from each other, with greater movement restriction caused by the Ankle X model. Passive foot inversion was reduced with all ankle braces. Passive plantar flexion was greater in the hinged models as compared with the nonhinged brace. Conclusions: All ankle braces showed stabilizing effects against dynamic and passive foot inversion. Differences between the hinged braces and the nonhinged brace did not appear to be clinically relevant. PMID:25098661

  8. Asymmetry between the Dominant and Non-Dominant Legs in the Kinematics of the Lower Extremities during a Running Single Leg Jump in Collegiate Basketball Players.

    PubMed

    Sugiyama, Takashi; Kameda, Mai; Kageyama, Masahiro; Kiba, Kazufusa; Kanehisa, Hiroaki; Maeda, Akira

    2014-12-01

    The present study aimed to clarify the asymmetry between the dominant (DL) and non-dominant takeoff legs (NDL) in terms of lower limb behavior during running single leg jumps (RSJ) in collegiate male basketball players in relation to that of the jump height. Twenty-seven players performed maximal RSJ with a 6 m approach. Three-dimensional kinematics data during RSJ was collected using a 12 Raptor camera infrared motion analysis system (MAC 3D system) at a sampling frequency of 500 Hz. The symmetry index in the jump heights and the kinematics variables were calculated as {2 × (DL - NDL) / (DL + NDL)} × 100. The run-up velocity was similar between the two legs, but the jump height was significantly higher in the DL than in the NDL. During the takeoff phase, the joint angles of the ankle and knee were significantly larger in the DL than the NDL. In addition, the contact time for the DL was significantly shorter than that for the NDL. The symmetry index of the kinematics for the ankle joint was positively correlated with that of jump height, but that for the knee joint was not. The current results indicate that, for collegiate basketball players, the asymmetry in the height of a RSJ can be attributed to that in the joint kinematics of the ankle during the takeoff phase, which may be associated with the ability to effectively transmit run-up velocity to jump height. Key pointsAsymmetry of height during running single leg jump between two legs is due to the behavior of the ankle joint (i.e. stiffer the ankle joint and explosive bounding).The dominant leg can transmit run-up velocity into the vertical velocity at takeoff phase to jump high compared with the non-dominant leg.Basketball players who have a greater asymmetry of the RSJ at the collegiate level could be assessed as non-regulars judging by the magnitude of asymmetry.

  9. Kinetics of cross-slope running.

    PubMed

    Willwacher, Steffen; Fischer, Katina Mira; Benker, Rita; Dill, Stephan; Brüggemann, Gert-Peter

    2013-11-15

    The purpose of the present study was to identify kinetic responses to running on mediolaterally elevated (cross-sloped) running surfaces. Ground reaction forces (GRFs), GRF lever arms and joint moment characteristics of 19 male runners were analyzed when running at 3.5m/s on a custom-made, tiltable runway. Tilt angles of 3° and 6° for medial and lateral elevation were analyzed using a 10 camera Vicon Nexus system and a force platform. The point of force application of the GRF showed a systematic shift in the order of 1-1.5cm to either the lateral or medial aspect of the foot for lateral or medial inclinations, respectively. Consequently, the strongest significant effects of tilt orientation and level on joint kinetics and ground reaction force lever arms were identified at the ankle, knee and hip joint in the frontal plane of movement. External eversion moments at the ankle were significantly increased by 35% for 6° of lateral elevation and decreased by 16% for 6° of medial elevation. Altering the cross-slope of the running surface changed the pattern of ankle joint moments in the transversal plane. Effect sizes were on average larger for laterally elevated conditions, indicating a higher sensitivity of kinetic parameters to this kind of surface tilt. These alterations in joint kinetics should be considered in the choice of the running environment, especially for specific risk groups, like runners in rehabilitation processes. © 2013 Elsevier Ltd. All rights reserved.

  10. Effects of Design Variants in Lower-Limb Prostheses on Gait Synergy

    PubMed Central

    Pitkin, Mark R.

    2016-01-01

    A lower-limb prosthesis is the mechanical device with which an amputee’s residual limb interacts with the walking surface. The pressure and shear forces that affect the residuum due to prosthesis use are the sources of pain, residual-limb skin problems and gait deviations. Direct approaches to reducing these problems include improving fit, alignment technique and socket design as well as increasing cushioning with socket liners. A summary of typical malalignments and their consequences is presented. The malalignments are considered sources of excessive moments applied to the residuum, which simplifies the analysis of a patient’s gait. A better design of prosthetic joints could improve prosthetic gait. This article addresses the key mechanical parameter of prosthetic joints, namely the dependence “moment of resistance/angle of deflection.” A mathematical model has been developed that links stresses on the residuum in transtibial amputees with the moment of resistance in the prosthetic ankle at the critical gait phases. Analysis of the model yields a substantial decrease in stresses on the residuum during the most demanding, load-bearing phase of stance if the moment of resistance in the ankle is similar to that seen in the biological ankle joint. Gait study shows use of the experimental rolling-joint prosthetic foot more closely simulates normal gait synergy than the SACH foot. PMID:27087763

  11. Kinematic Analysis of Gait Following Intra-articular Corticosteroid Injection into the Knee Joint with an Acute Exacerbation of Arthritis

    PubMed Central

    Mehta, Saurabh; Szturm, Tony; El-Gabalawy, Hani S.

    2011-01-01

    ABSTRACT Purpose: The objective of this study was to examine the effects of intra-articular corticosteroid injection (ICI) on ipsilateral knee flexion/extension, ankle dorsiflexion/plantarflexion (DF/PF), and hip abduction/adduction (abd/add) during stance phase in people with an acute exacerbation of rheumatoid arthritis (RA) of the knee joint. The study also assessed the effects of ICI on spatiotemporal parameters of gait and functional status in this group. Methods: Nine people with an exacerbation of RA of the knee were recruited. Kinematic and spatiotemporal gait parameters were obtained for each participant. Knee-related functional status was assessed using the Knee injury and Osteoarthritis Outcome Score (KOOS). Spatiotemporal gait parameters and joint angles (knee flexion, ankle DF/PF, hip abd/add) of the affected side were compared pre- and post-ICI. Results: Data for eight people were available for analysis. Median values for knee flexion and ankle PF increased significantly following ICI. Gait parameters of cadence, velocity, bilateral stride length, bilateral step length, step width, double-support percentage, and step time on the affected side also showed improvement. Pain and knee-related functional status as measured by the KOOS showed improvement. Conclusions: This study demonstrated a beneficial short-term effect of ICI on knee-joint movements, gait parameters, and knee-related functional status in people with acute exacerbation of RA of the knee. PMID:22942516

  12. Exercise-induced muscle fatigue in the unaffected knee joint and its influence on postural control and lower limb kinematics in stroke patients.

    PubMed

    Park, Sun Wook; Son, Sung Min; Lee, Na Kyung

    2017-05-01

    This study aimed to investigate the effects of exercise-induced muscle fatigue in the unaffected knee joint on postural control and kinematic changes in stroke patients. Forty participants (20 stroke patients, 20 age-matched healthy participants) were recruited. To induce fatigue, maximum voluntary isometric contractions were performed in the unaffected knee joint in a Leg Extension Rehab exercise machine using the pneumatic resistance. We measured static and dynamic balance and lower-limb kinematics during gait. Changes in postural control parameters anteroposterior sway speed and total center of pressure distance differed significantly between the stroke and control groups. In addition, changes in gait kinematic parameters knee and ankle angles of initial contact differed significantly between stroke (paretic and non-paretic) and control groups. Muscle fatigue in the unaffected knee and ankle impaired postural control and debilitates kinematic movement of ipsilateral and contralateral lower limbs, and may place the fatigued stroke patients at greater risk for falls.

  13. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization.

    PubMed

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-10-31

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms.

  14. An Integrated Wireless Wearable Sensor System for Posture Recognition and Indoor Localization

    PubMed Central

    Huang, Jian; Yu, Xiaoqiang; Wang, Yuan; Xiao, Xiling

    2016-01-01

    In order to provide better monitoring for the elderly or patients, we developed an integrated wireless wearable sensor system that can realize posture recognition and indoor localization in real time. Five designed sensor nodes which are respectively fixed on lower limbs and a standard Kalman filter are used to acquire basic attitude data. After the attitude angles of five body segments (two thighs, two shanks and the waist) are obtained, the pitch angles of the left thigh and waist are used to realize posture recognition. Based on all these attitude angles of body segments, we can also calculate the coordinates of six lower limb joints (two hip joints, two knee joints and two ankle joints). Then, a novel relative localization algorithm based on step length is proposed to realize the indoor localization of the user. Several sparsely distributed active Radio Frequency Identification (RFID) tags are used to correct the accumulative error in the relative localization algorithm and a set-membership filter is applied to realize the data fusion. The experimental results verify the effectiveness of the proposed algorithms. PMID:27809230

  15. Interjoint coordination of the lower extremities in short-track speed skating.

    PubMed

    Khuyagbaatar, Batbayar; Purevsuren, Tserenchimed; Park, Won Man; Kim, Kyungsoo; Kim, Yoon Hyuk

    2017-10-01

    In short-track speed skating, the three-dimensional kinematics of the lower extremities during the whole skating cycle have not been studied. Kinematic parameters of the lower extremities during skating are presented as joint angles versus time. However, the angle-time presentation is not sufficient to describe the relationship between multi-joint movement patterns. Thus, angle-angle presentations were developed and used to describe interjoint coordination in sport activities. In this study, 15 professional male skaters' full body motion data were recorded using a wearable motion capture system during short-track speed skating. We investigated the three-dimensional kinematics of the lower extremities and then established the interjoint coordination between hip-knee and knee-ankle for both legs during the whole skating cycle. The results demonstrate the relationship between multi-joint movements during different phases of short-track speed skating. This study provides fundamentals of the movement mechanism of the lower extremities that can be integrated with physiotherapy to improve skating posture and prevent injuries from repetitive stress since physiological characteristics play an important role in skating performance.

  16. The relationships between instrumented measurements of ankle and knee ligamentous laxity and generalized joint laxity.

    PubMed

    Pearsall, A W; Kovaleski, J E; Heitman, R J; Gurchiek, L R; Hollis, J M

    2006-03-01

    The purpose of this study was to evaluate whether lower extremity joint laxity is a function of a particular joint and/or a generalizable characteristic (trait) of the person. Validated instrumented measurements of ankle and knee joint-specific laxity in the same individual were correlated to determine whether a relationship exists. In addition, ankle and knee joint-specific laxity were correlated with generalized joint laxity using the modified Beighton mobility index. Fifty-seven male and female athletes were studied. We examined dominant ankle laxity using an ankle arthrometer and dominate knee anterior laxity using the KT 2000. The dominant ankle was loaded in anteroposterior (AP) drawer and inversion-eversion (I-E) rotation. Laxity was measured as total AP displacement (millimeters) after +/-125 N of applied force and total I-E rotation (degrees) was measured after +/-4 N x m of applied torque. The dominant knee was loaded with an anterior drawer and laxity (millimeters) was measured after manual maximum displacement. Non-significant correlations were observed among the test variables for generalized joint laxity (0.21 to 0.37; P>0.05) and instrumented ankle and knee joint laxity (0.19 to 0.21; P>0.05). When examined by gender, no statistically significant correlations (0.05 to 0.40; P>0.05) were found for either generalized laxity or instrumented ankle and knee joint laxity. These results imply that ankle and knee joint laxity are joint-specific and not generalizable.

  17. Biomechanical analysis of the single‐leg decline squat

    PubMed Central

    Zwerver, J; Bredeweg, S W; Hof, A L

    2007-01-01

    Background The single‐leg squat on a 25° decline board has been described as a clinical assessment tool and as a rehabilitation exercise for patients with patellar tendinopathy. Several assumptions have been made about its working mechanism on patellar load and patellofemoral forces, but these are not substantiated by biomechanical evaluations. Aim To investigate knee moment and patellofemoral contact force as a function of decline angle in the single‐leg squat. Methods Five subjects performed single‐leg eccentric squats at decline angles of 0°, 5°, 10°, 15°, 20° and 25° (with/without a backpack of 10 kg), and 30° on a board that was placed over a forceplate. Kinematic and forceplate data were recorded by the Optotrak system. Joint moments of ankle, knee and hip were calculated by two‐dimensional inverse dynamics. Results Knee moment increased by 40% at decline angles of 15° and higher, whereas hip and ankle moment decreased. Maximum knee and ankle angles increased with steeper decline. With a 10 kg backpack at 25° decline, the knee moment was 23% higher than unloaded. Both patellar tendon and patellofemoral forces increased with higher decline angles, but beyond 60°, the patellofemoral force rose steeper than the tendon force. Conclusions All single‐leg squats at decline angles >15° result in 40% increase in maximum patellar tendon force. In knee flexions >60°, patellofemoral forces increase more than patellar tendon forces. Higher tendon load can be achieved by the use of a backpack with extra weight. PMID:17224441

  18. Medial gastrocnemius structure and gait kinetics in spastic cerebral palsy and typically developing children: A cross-sectional study.

    PubMed

    Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Lerma Lara, Sergio

    2018-05-01

    To compare medial gastrocnemius muscle-tendon structure, gait propulsive forces, and ankle joint gait kinetics between typically developing children and those with spastic cerebral palsy, and to describe significant associations between structure and function in children with spastic cerebral palsy.A sample of typically developing children (n = 9 /16 limbs) and a sample of children with spastic cerebral palsy (n = 29 /43 limbs) were recruited. Ultrasound and 3-dimensional motion capture were used to assess muscle-tendon structure, and propulsive forces and ankle joint kinetics during gait, respectively.Children with spastic cerebral palsy had shorter fascicles and muscles, and longer Achilles tendons than typically developing children. Furthermore, total negative power and peak negative power at the ankle were greater, while total positive power, peak positive power, net power, total vertical ground reaction force, and peak vertical and anterior ground reaction forces were smaller compared to typically developing children. Correlation analyses revealed that smaller resting ankle joint angles and greater maximum dorsiflexion in children with spastic cerebral palsy accounted for a significant decrease in peak negative power. Furthermore, short fascicles, small fascicle to belly ratios, and large tendon to fascicle ratios accounted for a decrease in propulsive force generation.Alterations observed in the medial gastrocnemius muscle-tendon structure of children with spastic cerebral palsy may impair propulsive mechanisms during gait. Therefore, conventional treatments should be revised on the basis of muscle-tendon adaptations.

  19. Invariant hip moment pattern while walking with a robotic hip exoskeleton

    PubMed Central

    Lewis, Cara L.; Ferris, Daniel P.

    2011-01-01

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 minutes of the powered condition and the unpowered condition. After completing three 30-minute training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. PMID:21333995

  20. Running Mechanics and Variability with Aging.

    PubMed

    Silvernail, Julia Freedman; Boyer, Katherine; Rohr, Eric; Brüggemann, Gert-Peter; Hamill, Joseph

    2015-10-01

    As the elderly population in the United States continues to grow, issues related to maintenance of health become increasingly important. Physical activity has positive benefits for healthy aging. Running, a popular form of exercise, is associated with the risk of developing injury, especially in older runners. Initial differences between older and younger runners have been observed, but these were observed without consideration of other differences between groups, such as running mileage. This study aims to compare running mechanics and lower-extremity coordination variability in matched groups of healthy younger and healthy older runners. Three-dimensional kinetics and kinematics were collected while 14 older adults (45-65 yr) and younger adults (18-35 yr) ran overground at 3.5 m·s. Knee, ankle, and hip joint angles and moments were determined. Discrete measures at foot strike (maximum and minimum) were determined and compared between groups. Segment angles during stance were utilized to calculate segment coordination variability between pelvis and thigh, thigh and shank, and shank and foot, using a modified vector coding technique. Knee and ankle joint angles were similar between groups (P > 0.05). Older runners had greater hip range of motion (P = 0.01) and peak hip flexion (P = 0.001) at a more extended hip position than younger runners. Older runners had smaller ankle plantarflexion moment (P = 0.04) and hip rotational moment (P = 0.005) than younger runners. There were no between-group differences in any of the variability measures (P > 0.05). Runners appear to maintain movement patterns and variability during running with increasing age, indicating that running itself may be contributing to maintenance of health among older runners in the current study.

  1. Three-dimensional moment arms and architecture of chimpanzee (Pan troglodytes) leg musculature

    PubMed Central

    Holowka, Nicholas B; O'Neill, Matthew C

    2013-01-01

    The muscular and skeletal morphology of the chimpanzee ankle and foot differs from that of humans in many important respects. However, little information is available on the moment arms and architecture of the muscles that function around chimpanzee ankle and foot joints. The main goals of this study were to determine the influence of changes in leg and foot position on the moment arms of these muscle–tendon units (MTUs), and provide new measurements of their architecture. Three-dimensional moment arm data were collected from two adult, cadaveric Pan troglodytes specimens for 11 MTUs that cross the ankle and foot joints. Tendon-excursion measurements were made throughout the full range of plantarflexion–dorsiflexion (PF–DF) and eversion–inversion (EV–IN), including repeated measurements for mm. gastrocnemius at 0 °, 45 °, 90 ° and 135 ° of knee flexion. The total range of motion was calculated from three-dimensional joint motion data while ensuring that foot movement was restricted to a single plane. Measurements of muscle mass, fascicle length, pennation angle and physiological cross-sectional area were then collected for each MTU. Our results demonstrate that joint position has a significant effect on moment arm lengths, and that in some cases this effect is counterintuitive. These new data contribute to filling a significant gap in previously published chimpanzee moment arm data, providing a comprehensive characterization of the MTUs that move the chimpanzee ankle and foot joints. They also provide empirical support to the notion that chimpanzees have larger ranges of motion at these joints than humans. Comparison of osteometric estimates of moment arm lengths to direct tendon-excursion measures provides some guidance for the use of skeletal features in estimations of PF–DF moment arms. Finally, muscle architecture data are consistent with the findings of previous studies, and increase the sample size of the chimpanzee data that are currently available. PMID:24117363

  2. Variable Cadence Walking and Ground Adaptive Standing with a Powered Ankle Prosthesis

    PubMed Central

    Shultz, Amanda H.; Lawson, Brian E.; Goldfarb, Michael

    2015-01-01

    Abstract This paper describes a control approach that provides walking and standing functionality for a powered ankle prosthesis, and demonstrates the efficacy of the approach in experiments in which a unilateral transtibial amputee subject walks with the prosthesis at variable cadences, and stands on various slopes. Both controllers incorporate a finite-state structure that emulates healthy ankle joint behavior via a series of piecewise passive impedance functions. The walking controller incorporates an algorithm to modify impedance parameters based on estimated cadence, while the standing controller incorporates an algorithm to modulate the ankle equilibrium angle in order to adapt to the ground slope and user posture, and the supervisory controller selects between the walking and standing controllers. The system is shown to reproduce several essential biomechanical features of the healthy joint during walking, particularly relative to a passive prosthesis, and is shown to adapt to variable cadences. The system is also shown to adapt to slopes over a range of ± 15 deg and to provide support to the user in a manner that is biomimetic, as validated by quasi-static stiffness measurements recorded by the prosthesis. Data from standing trials indicate that the user places more weight on the powered prosthesis than on his passive prosthesis when standing on sloped surfaces, particularly at angles of 10 deg or greater. The authors also demonstrated that the prosthesis typically began providing support within 1 s of initial contact with the ground. Further, the supervisory controller was shown to be effective in switching between walking and standing, as well as in determining ground slope just prior to the transition from the standing controller to the walking controller, where the estimated ground slope was within 1.25 deg of the actual ground slope for all trials. PMID:25955789

  3. Biomechanical Evaluation of a Prototype Foot/Ankle Prosthesis

    PubMed Central

    Quesada, P. M.; Pitkin, M.; Colvin, J.

    2016-01-01

    In this paper, we report on our pilot evaluation of a prototype foot/ankle prosthesis. This prototype has been designed and fabricated with the intention of providing decreased ankle joint stiffness during the middle portion of the stance phase of gait, and increased (i.e., more normal) knee range of motion during stance. Our evaluation involved fitting the existing prototype foot/ankle prosthesis, as well as a traditional solid ankle cushioned heel (SACH) foot, to an otherwise healthy volunteer with a below-knee (BK) amputation. We measured this individual’s lower extremity joint kinematics and kinetics during walking using a video motion analysis system and force platform. These measurements permitted direct comparison of prosthetic ankle joint stiffness and involved side knee joint motion, as well as prosthetic ankle joint moment and power. PMID:10779119

  4. [Advances on biomechanics and kinematics of sprain of ankle joint].

    PubMed

    Zhao, Yong; Wang, Gang

    2015-04-01

    Ankle sprains are orthopedic clinical common disease, accounting for joint ligament sprain of the first place. If treatment is not timely or appropriate, the joint pain and instability maybe develop, and even bone arthritis maybe develop. The mechanism of injury of ankle joint, anatomical basis has been fully study at present, and the diagnostic problem is very clear. Along with the development of science and technology, biological modeling and three-dimensional finite element, three-dimensional motion capture system,digital technology study, electromyographic signal study were used for the basic research of sprain of ankle. Biomechanical and kinematic study of ankle sprain has received adequate attention, combined with the mechanism research of ankle sprain,and to explore the the biomechanics and kinematics research progress of the sprain of ankle joint.

  5. Improved kinect-based spatiotemporal and kinematic treadmill gait assessment.

    PubMed

    Eltoukhy, Moataz; Oh, Jeonghoon; Kuenze, Christopher; Signorile, Joseph

    2017-01-01

    A cost-effective, clinician friendly gait assessment tool that can automatically track patients' anatomical landmarks can provide practitioners with important information that is useful in prescribing rehabilitative and preventive therapies. This study investigated the validity and reliability of the Microsoft Kinect v2 as a potential inexpensive gait analysis tool. Ten healthy subjects walked on a treadmill at 1.3 and 1.6m·s -1 , as spatiotemporal parameters and kinematics were extracted concurrently using the Kinect and three-dimensional motion analysis. Spatiotemporal measures included step length and width, step and stride times, vertical and mediolateral pelvis motion, and foot swing velocity. Kinematic outcomes included hip, knee, and ankle joint angles in the sagittal plane. The absolute agreement and relative consistency between the two systems were assessed using interclass correlations coefficients (ICC2,1), while reproducibility between systems was established using Lin's Concordance Correlation Coefficient (rc). Comparison of ensemble curves and associated 90% confidence intervals (CI90) of the hip, knee, and ankle joint angles were performed to investigate if the Kinect sensor could consistently and accurately assess lower extremity joint motion throughout the gait cycle. Results showed that the Kinect v2 sensor has the potential to be an effective clinical assessment tool for sagittal plane knee and hip joint kinematics, as well as some spatiotemporal temporal variables including pelvis displacement and step characteristics during the gait cycle. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes.

    PubMed

    Zhang, Xiuli; Paquette, Max R; Zhang, Songning

    2013-11-06

    Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear.

  7. Mobile ankle and knee perturbator.

    PubMed

    Andersen, Jacob Buus; Sinkjaer, Thomas

    2003-10-01

    A mobile ankle and knee perturbator has been developed. It consists of a functional joint with an integrated clutch. Four Bowden wires connect the joint to a powerful motor and a double pneumatic cylinder. When needed during any time of the gait cycle, it is possible to impose an ankle rotation by engaging the clutch and rotating the ankle or knee joint with a predefined displacement. The system is designed to investigate electrophysiological and biomechanical features of the human ankle or knee joint during gait.

  8. What triggers the continuous muscle activity during upright standing?

    PubMed

    Masani, Kei; Sayenko, Dimitry G; Vette, Albert H

    2013-01-01

    The ankle extensors play a dominant role in controlling the equilibrium during bipedal quiet standing. Their primary role is to resist the gravity toppling torque that pulls the body forward. The purpose of this study was to investigate whether the continuous muscle activity of the anti-gravity muscles during standing is triggered by the joint torque requirement for opposing the gravity toppling torque, rather than by the vertical load on the lower limbs. Healthy adults subjects stood on a force plate. The ankle torque, ankle angle, and electromyograms from the right lower leg muscles were measured. A ground-fixed support device was used to support the subject at his/her knees, without changing the posture from the free standing one. During the supported condition, which eliminates the ankle torque requirement while maintaining both the vertical load on the lower limbs and the natural upright standing posture, the plantarflexor activity was attenuated to the resting level. Also, this attenuated plantarflexor activity was found only in one side when the ipsilateral leg was supported. Our results suggest that the vertical load on the lower limb is not determinant for inducing the continuous muscle activity in the anti-gravity muscles, but that it depends on the required joint torque to oppose the gravity toppling torque. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Decline eccentric squats increases patellar tendon loading compared to standard eccentric squats.

    PubMed

    Kongsgaard, M; Aagaard, P; Roikjaer, S; Olsen, D; Jensen, M; Langberg, H; Magnusson, S P

    2006-08-01

    Recent studies have shown excellent clinical results using eccentric squat training on a 25 degrees decline board to treat patellar tendinopathy. It remains unknown why therapeutic management of patellar tendinopathy using decline eccentric squats offer superior clinical efficacy compared to standard horizontal eccentric squats. This study aimed to compare electromyography activity, patellar tendon strain and joint angle kinematics during standard and decline eccentric squats. Thirteen subjects performed unilateral eccentric squats on flat-and a 25 degrees decline surface. During the squats, electromyography activity was obtained in eight representative muscles. Also, ankle, knee and hip joint goniometry was obtained. Additionally, patellar tendon strain was measured in vivo using ultrasonography as subjects maintained a unilateral isometric 90 degrees knee angle squat position on either flat or 25 degrees decline surface. Patellar tendon strain was significantly greater (P<0.05) during the squat position on the decline surface compared to the standard surface. The stop angles of the ankle and hip joints were significantly smaller during the decline compared to the standard squats (P<0.001, P<0.05). Normalized mean electromyography amplitudes of the knee extensor muscles were significantly greater during the decline compared to the standard squats (P<0.05). Hamstring and calf muscle mean electromyography did not differ, respectively, between standard and decline squats. The use of a 25 degrees decline board increases the load and the strain of the patellar tendon during unilateral eccentric squats. This finding likely explains previous reports of superior clinical efficacy of decline eccentric squats in the rehabilitative management of patellar tendinopathy.

  10. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy

    PubMed Central

    2013-01-01

    Background Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: “spasticity” vs. “contracture”). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Methods Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. Results In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Conclusions Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy. PMID:23880287

  11. Differentiation between non-neural and neural contributors to ankle joint stiffness in cerebral palsy.

    PubMed

    de Gooijer-van de Groep, Karin L; de Vlugt, Erwin; de Groot, Jurriaan H; van der Heijden-Maessen, Hélène C M; Wielheesen, Dennis H M; van Wijlen-Hempel, Rietje M S; Arendzen, J Hans; Meskers, Carel G M

    2013-07-23

    Spastic paresis in cerebral palsy (CP) is characterized by increased joint stiffness that may be of neural origin, i.e. improper muscle activation caused by e.g. hyperreflexia or non-neural origin, i.e. altered tissue viscoelastic properties (clinically: "spasticity" vs. "contracture"). Differentiation between these components is hard to achieve by common manual tests. We applied an assessment instrument to obtain quantitative measures of neural and non-neural contributions to ankle joint stiffness in CP. Twenty-three adolescents with CP and eleven healthy subjects were seated with their foot fixated to an electrically powered single axis footplate. Passive ramp-and-hold rotations were applied over full ankle range of motion (RoM) at low and high velocities. Subject specific tissue stiffness, viscosity and reflexive torque were estimated from ankle angle, torque and triceps surae EMG activity using a neuromuscular model. In CP, triceps surae reflexive torque was on average 5.7 times larger (p = .002) and tissue stiffness 2.1 times larger (p = .018) compared to controls. High tissue stiffness was associated with reduced RoM (p < .001). Ratio between neural and non-neural contributors varied substantially within adolescents with CP. Significant associations of SPAT (spasticity test) score with both tissue stiffness and reflexive torque show agreement with clinical phenotype. Using an instrumented and model based approach, increased joint stiffness in CP could be mainly attributed to higher reflexive torque compared to control subjects. Ratios between contributors varied substantially within adolescents with CP. Quantitative differentiation of neural and non-neural stiffness contributors in CP allows for assessment of individual patient characteristics and tailoring of therapy.

  12. Loading rate increases during barefoot running in habitually shod runners: Individual responses to an unfamiliar condition.

    PubMed

    Tam, Nicholas; Astephen Wilson, Janie L; Coetzee, Devon R; van Pletsen, Leanri; Tucker, Ross

    2016-05-01

    The purpose of this study was to examine the effect of barefoot running on initial loading rate (LR), lower extremity joint kinematics and kinetics, and neuromuscular control in habitually shod runners with an emphasis on the individual response to this unfamiliar condition. Kinematics and ground reaction force data were collected from 51 habitually shod runners during overground running in a barefoot and shod condition. Joint kinetics and stiffness were calculated with inverse dynamics. Inter-individual initial LR variability was explored by separating individuals by a barefoot/shod ratio to determine acute responders/non-responders. Mean initial LR was 54.1% greater in the barefoot when compared to the shod condition. Differences between acute responders/non-responders were found at peak and initial contact sagittal ankle angle and at initial ground contact. Correlations were found between barefoot sagittal ankle angle at initial ground contact and barefoot initial LR. A large variability in biomechanical responses to an acute exposure to barefoot running was found. A large intra-individual variability was found in initial LR but not ankle plantar-dorsiflexion between footwear conditions. A majority of habitually shod runners do not exhibit previously reported benefits in terms of reduced initial LRs when barefoot. Lastly, runners who increased LR when barefoot reduced LRs when wearing shoes to levels similar seen in habitually barefoot runners who do adopt a forefoot-landing pattern, despite increased dorsiflexion. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Spasticity Measurement Based on Tonic Stretch Reflex Threshold in Children with Cerebral Palsy Using the PediAnklebot.

    PubMed

    Germanotta, Marco; Taborri, Juri; Rossi, Stefano; Frascarelli, Flaminia; Palermo, Eduardo; Cappa, Paolo; Castelli, Enrico; Petrarca, Maurizio

    2017-01-01

    Nowadays, objective measures are becoming prominent in spasticity assessment, to overcome limitations of clinical scales. Among others, Tonic Stretch Reflex Threshold (TSRT) showed promising results. Previous studies demonstrated the validity and reliability of TSRT in spasticity assessment at elbow and ankle joints in adults. Purposes of the present study were to assess: (i) the feasibility of measuring TSRT to evaluate spasticity at the ankle joint in children with Cerebral Palsy (CP), and (ii) the correlation between objective measures and clinical scores. A mechatronic device, the pediAnklebot, was used to impose 50 passive stretches to the ankle of 10 children with CP and 3 healthy children, to elicit muscles response at 5 different velocities. Surface electromyography, angles, and angular velocities were recorded to compute dynamic stretch reflex threshold; TSRT was computed with a linear regression through angles and angular velocities. TSRTs for the most affected side of children with CP resulted into the biomechanical range (95.7 ± 12.9° and 86.7 ± 17.4° for Medial and Lateral Gastrocnemius, and 75.9 ± 12.5° for Tibialis Anterior). In three patients, the stretch reflex was not elicited in the less affected side. TSRTs were outside the biomechanical range in healthy children. However, no correlation was found between clinical scores and TSRT values. Here, we demonstrated the capability of TSRT to discriminate between spastic and non-spastic muscles, while no significant outcomes were found for the dorsiflexor muscle.

  14. In Vivo Talocrural Joint Contact Mechanics With Functional Ankle Instability.

    PubMed

    Kobayashi, Takumi; Suzuki, Eiichi; Yamazaki, Naohito; Suzukawa, Makoto; Akaike, Atsushi; Shimizu, Kuniaki; Gamada, Kazuyoshi

    2015-12-01

    Functional ankle instability (FAI) may involve abnormal kinematics and contact mechanics during ankle internal rotation. Understanding of these abnormalities is important to prevent secondary problems in patients with FAI. However, there are no in vivo studies that have investigated talocrural joint contact mechanics during weightbearing ankle internal rotation. The objective of this study to determine talocrural contact mechanics during weightbearing ankle internal rotation in patients with FAI. Twelve male subjects with unilateral FAI (age range, 18-26 years) were enrolled. Computed tomography and fluoroscopic imaging of both lower extremities were obtained during weightbearing passive ankle joint complex rotation. Three-dimensional bone models created from the computed tomographic images were matched to the fluoroscopic images to compute 6 degrees of freedom for talocrural joint kinematics. The closest contact area in the talocrural joint in ankle neutral rotation and maximum internal rotation during either dorsiflexion or plantar flexion was determined using geometric bone models and talocrural joint kinematics data. The closest contact area in the talus shifted anteromedially during ankle dorsiflexion-internal rotation, whereas it shifted posteromedially during ankle plantar flexion-internal rotation. The closest contact area in FAI joints was significantly more medial than that in healthy joints during maximum ankle internal rotation and was associated with excessive talocrural internal rotation or inversion. This study demonstrated abnormal talocrural kinematics and contact mechanics in FAI subjects. Such abnormal kinematics may contribute to abnormal contact mechanics and may increase cartilage stress in FAI joints. Therapeutic, Level IV: cross-sectional case-control study. © 2015 The Author(s).

  15. Quantitative evaluations of ankle spasticity and stiffness in neurological disorders using manual spasticity evaluator.

    PubMed

    Peng, Qiyu; Park, Hyung-Soon; Shah, Parag; Wilson, Nicole; Ren, Yupeng; Wu, Yi-Ning; Liu, Jie; Gaebler-Spira, Deborah J; Zhang, Li-Qun

    2011-01-01

    Spasticity and contracture are major sources of disability in people with neurological impairments that have been evaluated using various instruments: the Modified Ashworth Scale, tendon reflex scale, pendulum test, mechanical perturbations, and passive joint range of motion (ROM). These measures generally are either convenient to use in clinics but not quantitative or they are quantitative but difficult to use conveniently in clinics. We have developed a manual spasticity evaluator (MSE) to evaluate spasticity/contracture quantitatively and conveniently, with ankle ROM and stiffness measured at a controlled low velocity and joint resistance and Tardieu catch angle measured at several higher velocities. We found that the Tardieu catch angle was linearly related to the velocity, indicating that increased resistance at higher velocities was felt at further stiffer positions and, thus, that the velocity dependence of spasticity may also be position-dependent. This finding indicates the need to control velocity in spasticity evaluation, which is achieved with the MSE. Quantitative measurements of spasticity, stiffness, and ROM can lead to more accurate characterizations of pathological conditions and outcome evaluations of interventions, potentially contributing to better healthcare services for patients with neurological disorders such as cerebral palsy, spinal cord injury, traumatic brain injury, and stroke.

  16. Normal human gait patterns in Peruvian individuals: an exploratory assessment using VICON motion capture system

    NASA Astrophysics Data System (ADS)

    Dongo, R.; Moscoso, M.; Callupe, R.; Pajaya, J.; Elías, D.

    2017-11-01

    Gait analysis is of clinical relevance for clinicians. However, normal gait patterns used in foreign literature could be different from local individuals. The aim of this study was to determine the normal gait patterns and parameters of Peruvian individuals in order to have a local referent for clinical assessments and making diagnosis and treatment Peruvian people with lower motor neuron injuries. A descriptive study with 34 subjects was conducted to assess their gait cycle. VICON® cameras were used to capture body movements. For the analyses, we calculated spatiotemporal gait parameters and average angles of displacement of the hip, knee, and ankle joints with their respective 95% confidence intervals. The results showed gait speed was 0.58m/s, cadence was 102.1steps/min, and the angular displacement of the hip, knee and ankle joints were all lower than those described in the literature. In the graphs, gait cycles were close to those reported in previous studies, but the parameters of speed, cadence and angles of displacements are lower than the ones shown in the literature. These results could be used as a better reference pattern in the clinical setting.

  17. Altered leverage around the ankle in people with diabetes: A natural strategy to modify the muscular contribution during walking?

    PubMed

    Petrovic, Milos; Deschamps, Kevin; Verschueren, Sabine M; Bowling, Frank L; Maganaris, Constantinos N; Boulton, Andrew J M; Reeves, Neil D

    2017-09-01

    Diabetes patients display gait alterations compared to controls including a higher metabolic cost of walking. This study aimed to investigate whether differences in external moment arm (ExtMA) and effective mechanical advantage (EMA) at the ankle in diabetes patients could partly explain the increased cost of walking compared to controls. Thirty one non-diabetic controls (Ctrl); 22 diabetes patients without peripheral neuropathy (DM) and 14 patients with moderate/severe diabetic peripheral neuropathy (DPN) underwent gait analysis using a motion analysis system and force plates. The internal Achilles tendon moment arm length was determined using magnetic resonance imaging during weight-bearing and ExtMA was calculated using gait analysis. A greater value (P<0.01) for the EMA at the ankle was found in the DPN (0.488) and DM (0.46) groups compared to Ctrl (0.448). The increased EMA was mainly caused by a smaller ExtMA in the DPN (9.63cm; P<0.01) and DM (10.31cm) groups compared to Ctrl (10.42cm) These findings indicate that the ankle plantarflexor muscles would need to generate lower forces to overcome the external resistance during walking compared to controls. Our findings do not explain the previously observedhigher metabolic cost of walking in the DM and DPN groups, but uncover a new mechanism through which patients with diabetes and particularly those with DPN reduce the joint moment at the ankle during walking: by applying the ground reaction force more proximally on the foot, or at an angle directed more towards the ankle, thereby increasing the EMA and reducing the ankle joint moment. Copyright © 2017. Published by Elsevier B.V.

  18. Effect of strength and speed of torque development on balance recovery with the ankle strategy.

    PubMed

    Robinovitch, Stephen N; Heller, Britta; Lui, Andrew; Cortez, Jeffrey

    2002-08-01

    In the event of an unexpected disturbance to balance, the ability to recover a stable upright stance should depend not only on the magnitude of torque that can be generated by contraction of muscles spanning the lower extremity joints but also on how quickly these torques can be developed. In the present study, we used a combination of experimental and mathematical models of balance recovery by sway (feet in place responses) to test this hypothesis. Twenty-three young subjects participated in experiments in which they were supported in an inclined standing position by a horizontal tether and instructed to recover balance by contracting only their ankle muscles. The maximum lean angle where they could recover balance without release of the tether (static recovery limit) averaged 14.9 +/- 1.4 degrees (mean +/- SD). The maximum initial lean angle where they could recover balance after the tether was unexpectedly released and the ankles were initially relaxed (dynamic recovery limit) averaged 5.9 +/- 1.1 degrees, or 60 +/- 11% smaller than the static recovery limit. Peak ankle torque did not differ significantly between the two conditions (and averaged 116 +/- 32 Nm), indicating the strong effect on recovery ability of latencies in the onset and subsequent rates of torque generation (which averaged 99 +/- 13 ms and 372 +/- 267 N. m/s, respectively). Additional experiments indicated that dynamic recovery limits increased 11 +/- 14% with increases in the baseline ankle torques prior to release (from an average value of 31 +/- 18 to 54 +/- 24 N. m). These trends are in agreement with predictions from a computer simulation based on an inverted pendulum model, which illustrate the specific combinations of baseline ankle torque, rate of torque generation, and peak ankle torque that are required to attain target recovery limits.

  19. The Effect of Joint Mobilization on Dynamic Postural Control in Patients With Chronic Ankle Instability: A Critically Appraised Topic.

    PubMed

    Kosik, Kyle B; Gribble, Phillip A

    2018-01-01

    Clinical Scenario: Dorsiflexion range of motion is an important factor in the performance of the Star Excursion Balance Test (SEBT). While patients with chronic ankle instability (CAI) commonly experience decreased reach distances on the SEBT, ankle joint mobilization has been suggested to be an effective therapeutic intervention for targeting dorsiflexion range of motion. What is the evidence to support ankle joint mobilization for improving performance on the SEBT in patients with CAI? Summary of Key Findings: The literature was searched for articles examining the effects of ankle joint mobilization on scores of the SEBT. A total of 3 peer-reviewed articles were retrieved, 2 prospective individual cohort studies and 1 randomized controlled trial. Only 2 articles demonstrated favorable results following 6 sessions of ankle joint mobilization. Clinical Bottom Line: Despite the mixed results, the majority of the available evidence suggests that ankle joint mobilization improves dynamic postural control. Strength of Recommendation: In accordance with the Centre of Evidence Based Medicine, the inconsistent results and the limited high-quality studies indicate that there is level C evidence to support the use of ankle joint mobilization to improve performance on the SEBT in patients with CAI.

  20. Evaluation of breast reduction surgery effect on body posture and gait pattern using three-dimensional gait analysis.

    PubMed

    Sahin, Ismail; Iskender, Salim; Ozturk, Serdar; Balaban, Birol; Isik, Selcuk

    2013-06-01

    Breast hypertrophy is a significant health burden with symptoms of back and shoulder pain, intertrigo, and shoulder grooving from the bra straps. Women often rely on surgery to relieve these symptoms, and they are mostly satisfied with the results. The satisfaction from surgery usually is evaluated by subjective measures. Objective evidence testing of the surgical outcomes is lacking. In this study, 10 women with breast hypertrophy underwent reduction mammaplasty. Their surgical outcomes were evaluated using three-dimensional gait analysis before surgery and 2 months afterward. A statistical difference was sought between the kinematic data of the spine, hip, knee, and ankle joints. The average maximum anterior pelvic tilt angles decreased 41 %, and the average maximum spine anterior flexion angles decreased 30 %. The difference between the pre- and postoperative values was statistically significant. The analysis of the kinematic data showed no significant difference in the hip, knee, or ankle joint angles postoperatively. The outcomes of breast reduction surgery have been evaluated mostly by subjective means until recently. As an objective evidence for surgical gain in the current study, reduction mammaplasty resulted in the patients' improved body posture when walking. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

  1. The effects of a semi-rigid ankle brace on a simulated isolated subtalar joint instability.

    PubMed

    Choisne, Julie; Hoch, Matthew C; Bawab, Sebastian; Alexander, Ian; Ringleb, Stacie I

    2013-12-01

    Subtalar joint instability is hypothesized to occur after injuries to the calcaneofibular ligament (CFL) in isolation or in combination with the cervical and the talocalcaneal interosseous ligaments. A common treatment for hindfoot instability is the application of an ankle brace. However, the ability of an ankle brace to promote subtalar joint stability is not well established. We assessed the kinematics of the subtalar joint, ankle, and hindfoot in the presence of isolated subtalar instability, investigated the effect of bracing in a CFL deficient foot and with a total rupture of the intrinsic ligaments, and evaluated how maximum inversion range of motion is affected by the position of the ankle in the sagittal plane. Kinematics from nine cadaveric feet were collected with the foot placed in neutral, dorsiflexion, and plantar flexion. Motion was applied with and without a brace on an intact foot and after sequentially sectioning the CFL and the intrinsic ligaments. Isolated CFL sectioning increased ankle joint inversion, while sectioning the CFL and intrinsic ligaments affected subtalar joint stability. The brace limited inversion at the subtalar and ankle joints. Additionally, examining the foot in dorsiflexion reduced ankle and subtalar joint motion. © 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  2. The role of arthroscopy in ankle and subtalar degenerative joint disease.

    PubMed

    Cheng, J C; Ferkel, R D

    1998-04-01

    Treatment options for degenerative joint disease of the ankle and subtalar joints are limited. When conservative management fails, the only effective procedure is arthrodesis. With the advent of the small arthroscope and the development of better instrumentation and distraction techniques, small joint arthroscopy has gained popularity as an important diagnostic and therapeutic tool in the treatment of ankle and subtalar disorders. Although the benefits of arthroscopic ankle arthrodesis are well established, and arthroscopic subtalar arthrodesis has been described recently, the role of arthroscopic debridement for degenerative joint disease of the ankle and subtalar joints remains controversial. Traditionally, operative arthroscopy for ankle arthritis has not met with great success; however, recent studies have shown that it can provide an interim alternative to arthrodesis in early arthritis with preserved range of motion. Lesions associated with arthritis, such as impinging osteophytes and loose bodies, can be treated effectively with arthroscopy.

  3. Deep brain stimulation enhances movement complexity during gait in individuals with Parkinson's disease.

    PubMed

    Powell, Douglas W; Blackmore, Sarah E; Puppa, Melissa; Lester, Deranda; Murray, Nicholas G; Reed-Jones, Rebecca J; Xia, Rui-Ping

    2018-05-08

    Deep brain stimulation (DBS) is associated with substantial improvements in motor symptoms of PD. Emerging evidence has suggested that nonlinear measures of complexity may provide greater insight into the efficacy of anti-PD treatments. This study investigated sample entropy and complexity index values in individuals with PD when DBS was OFF compared to ON. Five individuals with PD using DBS performed a four-minute treadmill walking task while 3D kinematics were collected over two periods of 30 s. Participants were tested in the DBS-ON and DBS-OFF conditions. Sample entropy (SE) and complexity index (CI) values were calculated for ankle, knee and hip joint angles. Paired samples t-tests were used to compare mean SE and CI values between the DBS-OFF and DBS-ON conditions, respectively. No differences in SE or CI were observed between the DBS-ON and DBS-OFF conditions at the ankle. At the knee, the DBS-ON was associated with greater SE and CI values than the DBS-OFF condition. At the hip, DBS-ON was associated with greater SE and CI values than the DBS-OFF condition. DBS enhances complexity of movement at the hip and knee joints while complexity at the ankle joint is not significantly altered. Greater complexity of knee and hip joint motion may represent increased adaptability and a greater number of available strategies to complete the gait task. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Evidence for intermuscle difference in slack angle in human triceps surae.

    PubMed

    Hirata, Kosuke; Kanehisa, Hiroaki; Miyamoto-Mikami, Eri; Miyamoto, Naokazu

    2015-04-13

    This study examined whether the slack angle (i.e., the joint angle corresponding to the slack length) varies among the synergists of the human triceps surae in vivo. By using ultrasound shear wave elastography, shear modulus of each muscle of the triceps surae was measured during passive stretching from 50° of plantar flexion in the knee extended position at an angular velocity of 1°/s in 9 healthy adult subjects. The slack angle of each muscle was determined from the ankle joint angle-shear modulus relationship as the first increase in shear modulus. The slack angle was significantly greater in the medial gastrocnemius (20.7±6.7° plantarflexed position) than in the lateral gastrocnemius (14.9±6.7° plantarflexed position) and soleus (2.0±4.8° dorsiflexed position) and greater in the lateral gastrocnemius than in the soleus. This study provided evidence that the slack angle differs among the triceps surae; the medial gastrocnemius produced passive force at the most plantarflexed position while the slack angle of the soleus was the most dorsiflexed position. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. No evidence hip joint angle modulates intrinsically produced stretch reflex in human hopping.

    PubMed

    Gibson, W; Campbell, A; Allison, G

    2013-09-01

    Motor output in activities such as walking and hopping is suggested to be mediated neurally by purported stretch reflex augmentation of muscle output. Reflex EMG activity during these tasks has been frequently investigated in the soleus muscle; with alterations in reflex amplitude being associated with changes in hip joint angle/phase of the gait cycle. Previous work has focussed on reflex activity induced by an artificial perturbation or by induction of H-reflexes. As such, it is currently unknown if stretch reflex activity induced intrinsically (as part of the task) is modulated by changes in hip joint angle. This study investigated whether hip joint angle modulated reflex EMG 'burst' activity during a hopping task performed on a custom-built partially reclined sleigh. Ten subjects participated; EMG and kinematic data (VICON motor capture system) was collected for each hop cycle. Participants completed 5 sets of 30s of self-paced hopping in (1) hip neutral and (2) hip 60° flexion conditions. There was no difference in EMG 'burst' activity or in sagittal plane kinematics (knee/ankle) in the hopping task between the two conditions. The results indicate that during a functional task such as hopping, changes in hip angle do not alter the stretch reflex-like activity associated with landing. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Joint distraction results in clinical and structural improvement of haemophilic ankle arthropathy: a series of three cases.

    PubMed

    Van Meegeren, M E R; Van Veghel, K; De Kleijn, P; Van Roermund, P M; Biesma, D H; Lafeber, F P J G; Roosendaal, G

    2012-09-01

    The incidence of haemophilic arthropathy in multiple joints decreased due to treatment with clotting factor. Nowadays patients are enabled to live a rather normal life, resulting in more (sports) trauma-induced arthropathy in isolated joints like the ankle. As surgical treatment options, fusion of the tibiotalar joint and total ankle replacement are available. Both standard treatments have complications and therefore an alternative treatment is desired. In this study, treatment of haemophilic ankle arthropathy with joint distraction was explored. Three patients with haemophilic ankle arthropathy were treated with joint distraction using an Ilizarov external fixator. Clinical outcomes like function, participation and pain were evaluated in retrospect with three different questionnaires: haemophilia activities list, impact on participation and autonomy and the Van Valburg questionnaire. Structural changes were assessed blinded on X-ray by the Pettersson score and ankle images digital analysis (AIDA) and by an MRI score. All three patients were very satisfied with the clinical outcome of the procedure. They reported a clear improvement for self-perceived functional health, participation in society and autonomy and pain. Partial ankle joint mobility was preserved in the three patients. The Pettersson score remained the same in one patient and slightly improved in the two other patients, while joint space width measured by AIDA and the MRI score demonstrated improvement for all three patients after ankle distraction. This study suggests that joint distraction is a promising treatment for individual cases of haemophilic ankle arthropathy, without additional risk of bleedings during treatment. © 2012 Blackwell Publishing Ltd.

  7. Invariant hip moment pattern while walking with a robotic hip exoskeleton.

    PubMed

    Lewis, Cara L; Ferris, Daniel P

    2011-03-15

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 min of the powered condition and the unpowered condition. After completing three 30-min training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Radiological evaluation of ankle arthrodesis with Ilizarov fixation compared to internal fixation.

    PubMed

    Morasiewicz, Piotr; Dejnek, Maciej; Urbański, Wiktor; Dragan, Szymon Łukasz; Kulej, Mirosław; Dragan, Szymon Feliks

    2017-07-01

    We asked whether the type of ankle joint arthrodesis stabilization will affect: (1) rate of union, (2) rate of adjacted-joint arthritis, (3) malalignment of the ankle joint. We retrospectively radiological studied 62 patients who underwent ankle arthrodesis with Ilizarov external fixator stabilization (group 1,n=29) or internal stabilization (group 2,n=33) from 2006 to 2015. Radiologic outcomes were mesure by: (1) rate of union, (2) rate of adjacent-joint arthritis, (3) malalignment of the ankle joint. The Levene's test,Mann-Whitney U test and Students t-test were used to the statistical analyses. Ankle fusion was achieved in 100% of patients treated with external fixation and in 88% with internal stabilization. Desired frontal plane alignment was achieved in 100% of patients with external fixation and 76% with internal stabilization. Desired sagittal plane alignment was achieved in 100% of external fixation and 85% of internal stabilization. A total of 14 (48.3%) patients from group 1 showed a radiographic evidence of pre-existing adjacent-joint OA. The radiographic evidence of pre-existing adjacent-joint OA was also found in 27(81.8%) subjects from group 2. Alterations of adjacent joints were also found on postoperative radiograms of 19 (65.5%) patients subjected to Ilizarov fixation and in all 33 patients from group 2. Ilizarov fixation of ankle arthrodesis is associated with lower prevalence of adjacent-joint OA and ankle joint misalignment,and with higher fusion rates than after internal fixation.Although achieving a complex ankle fusion is generally challenging,radiological outcomes after fixation with the Ilizarov apparatus are better than after internal stabilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Plantar-flexion of the ankle joint complex in terminal stance is initiated by subtalar plantar-flexion: A bi-planar fluoroscopy study.

    PubMed

    Koo, Seungbum; Lee, Kyoung Min; Cha, Young Joo

    2015-10-01

    Gross motion of the ankle joint complex (AJC) is a summation of the ankle and subtalar joints. Although AJC kinematics have been widely used to evaluate the function of the AJC, the coordinated movements of the ankle and subtalar joints are not well understood. The purpose of this study was to accurately quantify the individual kinematics of the ankle and subtalar joints in the intact foot during ground walking by using a bi-planar fluoroscopic system. Bi-planar fluoroscopic images of the foot and ankle during walking and standing were acquired from 10 healthy subjects. The three-dimensional movements of the tibia, talus, and calcaneus were calculated with a three-dimensional/two-dimensional registration method. The skeletal kinematics were quantified from 9% to 86% of the full stance phase because of the limited camera speed of the X-ray system. At the beginning of terminal stance, plantar-flexion of the AJC was initiated in the subtalar joint on average at 75% ranging from 62% to 76% of the stance phase, and plantar-flexion of the ankle joint did not start until 86% of the stance phase. The earlier change to plantar-flexion in the AJC than the ankle joint due to the early plantar-flexion in the subtalar joint was observed in 8 of the 10 subjects. This phenomenon could be explained by the absence of direct muscle insertion on the talus. Preceding subtalar plantar-flexion could contribute to efficient and stable ankle plantar-flexion by locking the midtarsal joint, but this explanation needs further investigation. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. The effect of calf muscle stretching exercises on ankle joint dorsiflexion and dynamic foot pressures, force and related temporal parameters.

    PubMed

    Macklin, K; Healy, A; Chockalingam, N

    2012-03-01

    Previous research has found that ankle joint equinus can lead to foot pathologies. Calf stretching exercises are a common treatment prescription; however, no dynamic quantitative data on its effectiveness is available. To investigate the effect of calf muscle stretching on ankle joint dorsiflexion and subsequent changes within dynamic forefoot peak plantar pressures (PPP), force and temporal parameters. Thirteen runners with ankle joint equinus were required to perform calf muscle stretching twice a day (morning and evening) on a Flexeramp. Measurements were collected on day 1, week 4 and week 8. A repeated measures ANOVA with Bonferroni-adjusted post hoc comparisons was used to assess differences across the three data collection sessions. Findings indicated that the calf stretching program increased ankle joint dorsiflexion significantly (from 5° to 16°, p≤0.05). The adaptive kinetics brought about by the increased ankle joint range of motion included significantly increased forefoot PPP and maximum force during stance phase but decreased time between heel contact and heel lift and total stance phase time. The calf stretching programme used in this study was found to increase ankle joint dorsiflexion and hence can be used for first line conservative management of ankle equinus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Interrater and intrarater reliability in the measurement of ankle joint dorsiflexion is independent of examiner experience and technique used.

    PubMed

    Kim, Paul Jeong; Peace, Ruth; Mieras, Jamie; Thoms, Tanya; Freeman, Denise; Page, Jeffrey

    2011-01-01

    Goniometric measurement is currently being used as a diagnostic and outcomes assessment tool for ankle joint dorsiflexion. Despite its common use, its interrater and intrarater reliability has been questioned. This is a prospective study examining whether the experience of the examiner or the technique used affects the interrater and intrarater reliability for measuring ankle joint dorsiflexion. Fourteen asymptomatic individuals (8 male and 6 female) with a mean age of 28.2 years (range, 23-52) were enrolled into this study. The years of clinical experience of the five examiners averaged 10.4 years (range, 0-26). Four examiners used a modified Root, Weed and Orien method of measuring ankle joint dorsiflexion. The fifth examiner utilized a nonstandardized technique. A standard goniometer was used for bilateral measurements of ankle joint dorsiflexion with the knee extended and flexed. All five examiners repeated each measurement three times during each of the three sessions, with each session spaced at least 1 week apart. The interclass correlation coefficient reveals a moderate intrarater and poor interrater reliability in ankle joint dorsiflexion measurements using a standard goniometer. More importantly, further analysis indicates that the use of a standardized technique for measurement of ankle joint dorsiflexion or years of clinical experience does not increase the intrarater or interrater reliability. The utility of the goniometric measurement of ankle joint dorsiflexion may be limited.

  12. Soluble Flt-1 improves the repair of ankle joint injury in rats

    PubMed Central

    Tian, Jing; Xie, Bing; Xiang, Liangbi; Zhao, Yong; Zhou, Dapeng

    2016-01-01

    The ankle injuries create great pain to a great number of patients worldwide. Past studies have focused on the development of practical treatments to relieve pain and improve recovery, but the molecular mechanisms underlying the ankle injuries, especially the local inflammation in the damaged ankle joint, have been rarely studied. Moreover, although reduction of production and secretion of pro-inflammatory cytokines may reduce the pain and promote the recovery, a practical approach is currently lacking. Here, we detected significantly higher levels of placental growth factor (PLGF) and pro-inflammatory cytokines in the joint fluid from the patients of acute ankle joint injury (AAJI). Interestingly, the levels of PLGF and pro-inflammatory cytokines in the joint fluid strongly correlated. In order to examine whether PLGF may regulate the production and secretion of pro-inflammatory cytokines in the injured joint, we used a rat carrageenan-induced ankle injury model for AAJI in humans. We injected soluble Flt-1 (sFlt-1) into the articular cavity of the injured ankle joint to block PLGF signaling and found that injection of sFlt-1 significantly improved the rat behavior in activity wheels test, which appeared to result from reduced secretion of the pro-inflammatory cytokines in the ankle joint. Thus, our study suggests that blocking PLGF signaling may be a novel therapeutic approach for treating AAJI in humans. PMID:27904694

  13. Lower extremity joint coupling variability during gait in young adults with and without chronic ankle instability.

    PubMed

    Lilley, Thomas; Herb, Christopher C; Hart, Joseph; Hertel, Jay

    2018-06-01

    Chronic ankle instability (CAI) is a condition resulting from a lateral ankle sprain. Shank-rearfoot joint-coupling variability differences have been found in CAI patients; however, joint-coupling variability (VCV) of the ankle and proximal joints has not been explored. Our purpose was to analyse VCV in adults with and without CAI during gait. Four joint-coupling pairs were analysed: knee sagittal-ankle sagittal, knee sagittal-ankle frontal, hip frontal-ankle sagittal and hip frontal-ankle frontal. Twenty-seven adults participated (CAI:n = 13, Control:n = 14). Lower extremity kinematics were collected during walking (4.83 km/h) and jogging (9.66 km/h). Vector-coding was used to assess the stride-to-stride variability of four coupling pairs. During walking, CAI patients exhibited higher VCV than healthy controls for knee sagittal-ankle frontal in latter parts of stance thru mid-swing. When jogging, CAI patients demonstrated lower VCV with specific differences occurring across various intervals of gait. The increased knee sagittal-ankle frontal VCV in CAI patients during walking may indicate an adaptation to deal with the previously identified decrease in variability in transverse plane shank and frontal plane rearfoot coupling during walking; while the decreased ankle-knee and ankle-hip VCV identified in CAI patients during jogging may represent a more rigid, less adaptable sensorimotor system ambulating at a faster speed.

  14. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot

    PubMed Central

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Background/Methodology Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Principal Findings/Conclusions Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery. PMID:26222188

  15. Effects of Ankle Arthrodesis on Biomechanical Performance of the Entire Foot.

    PubMed

    Wang, Yan; Li, Zengyong; Wong, Duo Wai-Chi; Zhang, Ming

    2015-01-01

    Ankle arthrodesis is one popular surgical treatment for ankle arthritis, chronic instability, and degenerative deformity. However, complications such as foot pain, joint arthritis, and bone fracture may cause patients to suffer other problems. Understanding the internal biomechanics of the foot is critical for assessing the effectiveness of ankle arthrodesis and provides a baseline for the surgical plan. This study aimed to understand the biomechanical effects of ankle arthrodesis on the entire foot and ankle using finite element analyses. A three-dimensional finite element model of the foot and ankle, involving 28 bones, 103 ligaments, the plantar fascia, major muscle groups, and encapsulated soft tissue, was developed and validated. The biomechanical performances of a normal foot and a foot with ankle arthrodesis were compared at three gait instants, first-peak, mid-stance, and second-peak. Changes in plantar pressure distribution, joint contact pressure and forces, von Mises stress on bone and foot deformation were predicted. Compared with those in the normal foot, the peak plantar pressure was increased and the center of pressure moved anteriorly in the foot with ankle arthrodesis. The talonavicular joint and joints of the first to third rays in the hind- and mid-foot bore the majority of the loading and sustained substantially increased loading after ankle arthrodesis. An average contact pressure of 2.14 MPa was predicted at the talonavicular joint after surgery and the maximum variation was shown to be 80% in joints of the first ray. The contact force and pressure of the subtalar joint decreased after surgery, indicating that arthritis at this joint was not necessarily a consequence of ankle arthrodesis but rather a progression of pre-existing degenerative changes. Von Mises stress in the second and third metatarsal bones at the second-peak instant increased to 52 MPa and 34 MPa, respectively, after surgery. These variations can provide indications for outcome assessment of ankle arthrodesis surgery.

  16. Bowersox prepares for the FOOT experiment in Destiny during Expedition Six

    NASA Image and Video Library

    2003-02-07

    ISS006-E-25010 (7 February 2003) --- Astronaut Kenneth D. Bowersox, Expedition Six mission commander, conducts a Foot/Ground Reaction Forces During Spaceflight (FOOT) – Electromyography (EMG) calibration at the Human Research Facility (HRF) rack in the Destiny laboratory on the International Space Station (ISS). This experiment determines the change in joint angles (muscle activity) of the ankle, knee, and hip.

  17. The effect of weight-bearing exercise and non-weight-bearing exercise on gait in rats with sciatic nerve crush injury.

    PubMed

    Kim, Ki-Hyun; Hwangbo, Gak; Kim, Seong-Gil

    2015-04-01

    [Purpose] The purpose of this study was to access the effect of weight bearing exercise (treadmill exercise) and non-weight-bearing exercise (swimming exercise) on gait in the recovery process after a sciatic nerve crush injury. [Subjects and Methods] Rats were randomly divided into a swimming group (n=3) with non-weight-bearing exercise after a sciatic nerve crush and a treadmill group (n=3) with weight bearing exercise after a sciatic nerve crush. Dartfish is a program that can analyze and interpret motion through video images. The knee lateral epicondyle, lateral malleolus, and metatarsophalangeal joint of the fifth toe were marked by black dots before recording. [Results] There were significant differences in TOK (knee angle toe off) and ICK (knee angle at initial contact) in the swimming group and in TOK, ICA (ankle angle at initial contact), and ICK in the treadmill group. In comparison between groups, there were significant differences in TOA (ankle angle in toe off) and ICA at the 7th day. [Conclusion] There was no difference between weight bearing and non-weight-bearing exercise in sciatic nerve damage, and both exercises accelerated the recovery process in this study.

  18. Joint power and kinematics coordination in load carriage running: Implications for performance and injury.

    PubMed

    Liew, Bernard X W; Morris, Susan; Netto, Kevin

    2016-06-01

    Investigating the impact of incremental load magnitude on running joint power and kinematics is important for understanding the energy cost burden and potential injury-causative mechanisms associated with load carriage. It was hypothesized that incremental load magnitude would result in phase-specific, joint power and kinematic changes within the stance phase of running, and that these relationships would vary at different running velocities. Thirty-one participants performed running while carrying three load magnitudes (0%, 10%, 20% body weight), at three velocities (3, 4, 5m/s). Lower limb trajectories and ground reaction forces were captured, and global optimization was used to derive the variables. The relationships between load magnitude and joint power and angle vectors, at each running velocity, were analyzed using Statistical Parametric Mapping Canonical Correlation Analysis. Incremental load magnitude was positively correlated to joint power in the second half of stance. Increasing load magnitude was also positively correlated with alterations in three dimensional ankle angles during mid-stance (4.0 and 5.0m/s), knee angles at mid-stance (at 5.0m/s), and hip angles during toe-off (at all velocities). Post hoc analyses indicated that at faster running velocities (4.0 and 5.0m/s), increasing load magnitude appeared to alter power contribution in a distal-to-proximal (ankle→hip) joint sequence from mid-stance to toe-off. In addition, kinematic changes due to increasing load influenced both sagittal and non-sagittal plane lower limb joint angles. This study provides a list of plausible factors that may influence running energy cost and injury risk during load carriage running. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Musculoskeletal ultrasonography delineates ankle symptoms in rheumatoid arthritis.

    PubMed

    Toyota, Yukihiro; Tamura, Maasa; Kirino, Yohei; Sugiyama, Yumiko; Tsuchida, Naomi; Kunishita, Yosuke; Kishimoto, Daiga; Kamiyama, Reikou; Miura, Yasushi; Minegishi, Kaoru; Yoshimi, Ryusuke; Ueda, Atsuhisa; Nakajima, Hideaki

    2017-05-01

    To clarify the use of musculoskeletal ultrasonography (US) of ankle joints in rheumatoid arthritis (RA). Consecutive RA patients with or without ankle symptoms participated in the study. The US, clinical examination (CE), and patients' visual analog scale for pain (pVAS) for ankles were assessed. Prevalence of tibiotalar joint synovitis and tenosynovitis were assessed by grayscale (GS) and power Doppler (PD) US using a semi-quantitative grading (0-3). The positive US and CE findings were defined as GS score ≥2 and/or PD score ≥1, and joint swelling and/or tenderness, respectively. Multivariate analysis with the generalized linear mixed model was performed by assigning ankle pVAS as a dependent variable. Among a total of 120 ankles from 60 RA patients, positive ankle US findings were found in 21 (35.0%) patients. The concordance rate of CE and US was moderate (kappa 0.57). Of the 88 CE negative ankles, US detected positive findings in 9 (10.2%) joints. Multivariate analysis revealed that ankle US, clinical disease activity index, and foot Health Assessment Questionnaire, but not CE, was independently associated with ankle pVAS. US examination is useful to illustrate RA ankle involvement, especially for patients who complain ankle pain but lack CE findings.

  20. Comparative evaluation between anatomic and non-anatomic lateral ligament reconstruction techniques in the ankle joint: A computational study.

    PubMed

    Purevsuren, Tserenchimed; Batbaatar, Myagmarbayar; Khuyagbaatar, Batbayar; Kim, Kyungsoo; Kim, Yoon Hyuk

    2018-03-12

    Biomechanical studies have indicated that the conventional non-anatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis. Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular non-anatomic reconstruction techniques. An LAS injury, three popular non-anatomic reconstruction models (Watson-Jones, Evans, and Chrisman-Snook), and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 Nm inversion moment), internal rotational test (3 Nm internal rotation moment), and the combined loading test (9 Nm inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the non-anatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which mainly observed in Watson-Jones and Chrisman-Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.

  1. Arthroscopic ankle arthrodesis with intra-articular distraction.

    PubMed

    Kim, Hyong Nyun; Jeon, June Young; Noh, Kyu Cheol; Kim, Hong Kyun; Dong, Quanyu; Park, Yong Wook

    2014-01-01

    Arthroscopic ankle arthrodesis has shown high rates of union comparable to those with open arthrodesis but with substantially less postoperative morbidity, shorter operative times, less blood loss, and shorter hospital stays. To easily perform arthroscopic resection of the articular cartilage, sufficient distraction of the joint is necessary to insert the arthroscope and instruments. However, sometimes, standard noninvasive ankle distraction will not be sufficient in post-traumatic ankle arthritis, with the development of arthrofibrosis and joint contracture after severe ankle trauma. In the present report, we describe a technique to distract the ankle joint by inserting a 4.6-mm stainless steel cannula with a blunt trocar inside the joint. The cannula allowed sufficient intra-articular distraction, and, at the same time, a 4.0-mm arthroscope can be inserted through the cannula to view the joint. Screws can be inserted to fix the joint under fluoroscopic guidance without changing the patient's position or removing the noninvasive distraction device and leg holder, which are often necessary during standard arthroscopic arthrodesis with noninvasive distraction. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Subtalar joint stress imaging with tomosynthesis.

    PubMed

    Teramoto, Atsushi; Watanabe, Kota; Takashima, Hiroyuki; Yamashita, Toshihiko

    2014-06-01

    The purpose of this study was to perform stress imaging of hindfoot inversion and eversion using tomosynthesis and to assess the subtalar joint range of motion (ROM) of healthy subjects. The subjects were 15 healthy volunteers with a mean age of 29.1 years. Coronal tomosynthesis stress imaging of the subtalar joint was performed in a total of 30 left and right ankles. A Telos stress device was used for the stress load, and the load was 150 N for both inversion and eversion. Tomographic images in which the posterior talocalcaneal joint could be confirmed on the neutral position images were used in measurements. The angle of the intersection formed by a line through the lateral articular facet of the posterior talocalcaneal joint and a line through the surface of the trochlea of the talus was measured. The mean change in the angle of the calcaneus with respect to the talus was 10.3 ± 4.8° with inversion stress and 5.0 ± 3.8° with eversion stress from the neutral position. The result was a clearer depiction of the subtalar joint, and inversion and eversion ROM of the subtalar joint was shown to be about 15° in healthy subjects. Diagnostic, Level IV.

  3. Joint stability characteristics of the ankle complex after lateral ligamentous injury, part I: a laboratory comparison using arthrometric measurement.

    PubMed

    Kovaleski, John E; Heitman, Robert J; Gurchiek, Larry R; Hollis, J M; Liu, Wei; Pearsall, Albert W

    2014-01-01

    The mechanical property of stiffness may be important to investigating how lateral ankle ligament injury affects the behavior of the viscoelastic properties of the ankle complex. A better understanding of injury effects on tissue elastic characteristics in relation to joint laxity could be obtained from cadaveric study. To biomechanically determine the laxity and stiffness characteristics of the cadaver ankle complex before and after simulated injury to the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL) during anterior drawer and inversion loading. Cross-sectional study. University research laboratory. Seven fresh-frozen cadaver ankle specimens. All ankles underwent loading before and after simulated lateral ankle injury using an ankle arthrometer. The dependent variables were anterior displacement, anterior end-range stiffness, inversion rotation, and inversion end-range stiffness. Isolated ATFL and combined ATFL and CFL sectioning resulted in increased anterior displacement but not end-range stiffness when compared with the intact ankle. With inversion loading, combined ATFL and CFL sectioning resulted in increased range of motion and decreased end-range stiffness when compared with the intact and ATFL-sectioned ankles. The absence of change in anterior end-range stiffness between the intact and ligament-deficient ankles indicated bony and other soft tissues functioned to maintain stiffness after pathologic joint displacement, whereas inversion loading of the CFL-deficient ankle after pathologic joint displacement indicated the ankle complex was less stiff when supported only by the secondary joint structures.

  4. Optimal design and control of an electromechanical transfemoral prosthesis with energy regeneration.

    PubMed

    Rohani, Farbod; Richter, Hanz; van den Bogert, Antonie J

    2017-01-01

    In this paper, we present the design of an electromechanical above-knee active prosthesis with energy storage and regeneration. The system consists of geared knee and ankle motors, parallel springs for each motor, an ultracapacitor, and controllable four-quadrant power converters. The goal is to maximize the performance of the system by finding optimal controls and design parameters. A model of the system dynamics was developed, and used to solve a combined trajectory and design optimization problem. The objectives of the optimization were to minimize tracking error relative to human joint motions, as well as energy use. The optimization problem was solved by the method of direct collocation, based on joint torque and joint angle data from ten subjects walking at three speeds. After optimization of controls and design parameters, the simulated system could operate at zero energy cost while still closely emulating able-bodied gait. This was achieved by controlled energy transfer between knee and ankle, and by controlled storage and release of energy throughout the gait cycle. Optimal gear ratios and spring parameters were similar across subjects and walking speeds.

  5. Idiopathic toe-walking in children, adolescents and young adults: a matter of local or generalised stiffness?

    PubMed Central

    2011-01-01

    Background Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. Methods In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. Results A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. Conclusion ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered. PMID:21418634

  6. Idiopathic toe-walking in children, adolescents and young adults: a matter of local or generalised stiffness?

    PubMed

    Engelbert, Raoul; Gorter, Jan Willem; Uiterwaal, Cuno; van de Putte, Elise; Helders, Paul

    2011-03-21

    Idiopathic Toe Walking (ITW) is present in children older than 3 years of age still walking on their toes without signs of neurological, orthopaedic or psychiatric diseases. ITW has been estimated to occur in 7% to 24% of the childhood population. To study associations between Idiopathic Toe Walking (ITW) and decrease in range of joint motion of the ankle joint. To study associations between ITW (with stiff ankles) and stiffness in other joints, muscle strength and bone density. In a cross-sectional study, 362 healthy children, adolescents and young adults (mean age (sd): 14.2 (3.9) years) participated. Range of joint motion (ROM), muscle strength, anthropometrics sport activities and bone density were measured. A prevalence of 12% of ITW was found. Nine percent had ITW and severely restricted ROM of the ankle joint. Children with ITW had three times higher chance of severe ROM restriction of the ankle joint. Participants with ITW and stiff ankle joints had a decreased ROM in other joints, whereas bone density and muscle strength were comparable. ITW and a decrease in ankle joint ROM might be due to local stiffness. Differential etiological diagnosis should be considered.

  7. Does ankle joint power reflect type of muscle action of soleus and gastrocnemius during walking in cats and humans?

    PubMed

    Cronin, Neil J; Prilutsky, Boris I; Lichtwark, Glen A; Maas, Huub

    2013-04-26

    The main objective of this paper is to highlight the difficulties of identifying shortening and lengthening contractions based on analysis of power produced by resultant joint moments. For that purpose, we present net ankle joint powers and muscle fascicle/muscle-tendon unit (MTU) velocities for medial gastrocnemius (MG) and soleus (SO) muscles during walking in species of different size (humans and cats). For the cat, patterns of ankle joint power and MTU velocity of MG and SO during stance were similar: negative power (ankle moment×angular velocity<0), indicating absorption of mechanical energy, was associated with MTU lengthening, and positive power (generation of mechanical energy) was found during MTU shortening. This was also found for the general fascicle velocity pattern in SO. In contrast, substantial differences between ankle joint power and fascicle velocity patterns were observed for MG muscle. In humans, like cats, the patterns of ankle joint power and MTU velocity of SO and MG were similar. Unlike the cat, there were substantial differences between patterns of fascicle velocity and ankle joint power during stance in both muscles. These results indicate that during walking, only a small fraction of mechanical work of the ankle moment is either generated or absorbed by the muscle fascicles, thus confirming the contribution of in-series elastic structures and/or energy transfer via two-joint muscles. We conclude that ankle joint negative power does not necessarily indicate eccentric action of muscle fibers and that positive power cannot be exclusively attributed to muscle concentric action, especially in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Correlation and sex differences between ankle and knee cartilage morphology determined by quantitative magnetic resonance imaging

    PubMed Central

    Eckstein, F; Siedek, V; Glaser, C; Al-Ali, D; Englmeier, K; Reiser, M; Graichen, H

    2004-01-01

    Objective: To study the correlation between ankle and knee cartilage morphology to test the hypothesis that knee joint cartilage loss in gonarthritis can be estimated retrospectively using quantitative MRI analysis of the knee and ankle and established regression equations; and to test the hypothesis that sex differences in joint surface area are larger in the knee than the ankle, which may explain the greater incidence of knee osteoarthritis in elderly women than in elderly men. Methods: Sagittal MR images (3D FLASH WE) of the knee and hind foot were acquired in 29 healthy subjects (14 women, 15 men; mean (SD) age, 25 (3) years), with no signs joint disease. Cartilage volume, thickness, and joint surface area were determined in the knee, ankle, and subtalar joint. Results: Knee cartilage volumes and joint surface areas showed only moderate correlations with those of the ankle and subtalar joint (r = 0.33 to 0.81). The correlations of cartilage thickness between the two joints were weaker still (r = –0.05 to 0.53). Sex differences in cartilage morphology at the knee and the ankle were similar, with surface areas being –17.5% to –23.5% lower in women than in men. Conclusions: Only moderate correlations in cartilage morphology of healthy subjects were found between knee and ankle. It is therefore impractical to estimate knee joint cartilage loss a posteriori in cross sectional studies by measuring the hind foot and then applying a scaling factor. Sex differences in cartilage morphology do not explain differences in osteoarthritis incidence between men and women in the knee and ankle. PMID:15479900

  9. A comparison of gait biomechanics of flip-flops, sandals, barefoot and shoes

    PubMed Central

    2013-01-01

    Background Flip-flops and sandals are popular choices of footwear due to their convenience. However, the effects of these types of footwear on lower extremity biomechanics are still poorly understood. Therefore, the objective of this study was to investigate differences in ground reaction force (GRF), center of pressure (COP) and lower extremity joint kinematic and kinetic variables during level-walking in flip-flops, sandals and barefoot compared to running shoes. Methods Ten healthy males performed five walking trials in the four footwear conditions at 1.3 m/s. Three-dimensional GRF and kinematic data were simultaneously collected. Results A smaller loading rate of the 1st peak vertical GRF and peak propulsive GRF and greater peak dorsiflexion moment in early stance were found in shoes compared to barefoot, flip-flops and sandals. Barefoot walking yielded greater mediolateral COP displacement, flatter foot contact angle, increased ankle plantarflexion contact angle, and smaller knee flexion contact angle and range of motion compared to all other footwear. Conclusions The results from this study indicate that barefoot, flip-flops and sandals produced different peak GRF variables and ankle moment compared to shoes while all footwear yield different COP and ankle and knee kinematics compared to barefoot. The findings may be helpful to researchers and clinicians in understanding lower extremity mechanics of open-toe footwear. PMID:24196492

  10. The efficacy of manual joint mobilisation/manipulation in treatment of lateral ankle sprains: a systematic review.

    PubMed

    Loudon, Janice K; Reiman, Michael P; Sylvain, Jonathan

    2014-03-01

    Lateral ankle sprains are common and can have detrimental consequences to the athlete. Joint mobilisation/manipulation may limit these outcomes. Systematically summarise the effectiveness of manual joint techniques in treatment of lateral ankle sprains. This review employed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A computer-assisted literature search of MEDLINE, CINHAL, EMBASE, OVID and Physiotherapy Evidence Database (PEDro) (January 1966 to March 2013) was used with the following keywords alone and in combination 'ankle', 'sprain', 'injuries', 'lateral', 'manual therapy', and 'joint mobilisation'. The methodological quality of individual studies was assessed using the PEDro scale. After screening of titles, abstracts and full articles, eight articles were kept for examination. Three articles achieved a score of 10 of 11 total points; one achieved a score of 9; two articles scored 8; one article scored a 7 and the remaining article scored a 5. Three articles examined joint techniques for acute sprains and the remainder examined subacute/chronic ankle sprains. Outcome measures included were pain level, ankle range of motion, swelling, functional score, stabilometry and gait parameters. The majority of the articles only assessed these outcome measures immediately after treatment. No detrimental effects from the joint techniques were revealed in any of the studies reviewed. For acute ankle sprains, manual joint mobilisation diminished pain and increased dorsiflexion range of motion. For treatment of subacute/chronic lateral ankle sprains, these techniques improved ankle range-of-motion, decreased pain and improved function.

  11. Musculoskeletal modelling of human ankle complex: Estimation of ankle joint moments.

    PubMed

    Jamwal, Prashant K; Hussain, Shahid; Tsoi, Yun Ho; Ghayesh, Mergen H; Xie, Sheng Quan

    2017-05-01

    A musculoskeletal model for the ankle complex is vital in order to enhance the understanding of neuro-mechanical control of ankle motions, diagnose ankle disorders and assess subsequent treatments. Motions at the human ankle and foot, however, are complex due to simultaneous movements at the two joints namely, the ankle joint and the subtalar joint. The musculoskeletal elements at the ankle complex, such as ligaments, muscles and tendons, have intricate arrangements and exhibit transient and nonlinear behaviour. This paper develops a musculoskeletal model of the ankle complex considering the biaxial ankle structure. The model provides estimates of overall mechanical characteristics (motion and moments) of ankle complex through consideration of forces applied along ligaments and muscle-tendon units. The dynamics of the ankle complex and its surrounding ligaments and muscle-tendon units is modelled and formulated into a state space model to facilitate simulations. A graphical user interface is also developed during this research in order to include the visual anatomical information by converting it to quantitative information on coordinates. Validation of the ankle model was carried out by comparing its outputs with those published in literature as well as with experimental data obtained from an existing parallel ankle rehabilitation robot. Qualitative agreement was observed between the model and measured data for both, the passive and active ankle motions during trials in terms of displacements and moments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises.

    PubMed

    Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee

    2015-10-01

    Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Descriptive laboratory study. Laboratory. A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat.

  13. Effect of Ankle Position and Noninvasive Distraction on Arthroscopic Accessibility of the Distal Tibial Plafond.

    PubMed

    Akoh, Craig C; Dibbern, Kevin; Amendola, Annuziato; Sittapairoj, Tinnart; Anderson, Donald D; Phisitkul, Phinit

    2017-10-01

    Osteochondral lesions of the tibial plafond (OLTPs) can lead to chronic ankle pain and disability. It is not known how limited ankle motion or joint distraction affects arthroscopic accessibility of these lesions. The purpose of this study was to determine the effects of different fixed flexion angles and distraction on accessibility of the distal tibial articular surface during anterior and posterior arthroscopy. Fourteen below-knee cadaver specimens underwent anterior and posterior ankle arthroscopy using a 30-degree 2.7-mm arthroscopic camera. Intra-articular working space was measured with a precision of 1 mm using sizing rods. The accessible areas at the plafond were marked under direct visualization at varying fixed ankle flexion positions. Arthroscopic accessibilities were normalized as percent area using a surface laser scan. Statistical analyses were performed to assess the relationship between preoperative ankle range of motion, amount of distraction, arthroscopic approach, and arthroscopic plafond visualization. There was significantly greater accessibility during posterior arthroscopy (73.5%) compared with anterior arthroscopy (51.2%) in the neutral ankle position ( P = .007). There was no difference in accessibility for anterior arthroscopy with increasing level of plantarflexion ( P > .05). Increasing dorsiflexion during posterior arthroscopy significantly reduced ankle accessibility ( P = .028). There was a significant increase in accessibility through the anterior and posterior approach with increasing amount of intra-articular working space (parameter estimates ± SE): anterior = 14.2 ± 3.34 ( P < .01) and posterior = 10.6 ± 3.7 ( P < .05). Frequency data showed that the posterior third of the plafond was completely inaccessible in 33% of ankles during anterior arthroscopy. The frequency of inaccessible anterior plafond during posterior arthroscopy was 12%. Intra-articular working space and arthroscopic accessibility were greater during posterior arthroscopy compared with anterior arthroscopy. Improved accessibility of OLTPs may be achieved from posterior arthroscopy. Arthroscopic accessibility was heavily dependent on the amount of intraoperative joint working space achieved and not on ankle position. OLTPs are often encountered in tandem with talar lesions, and safely achieving intra-articular working space through noninvasive distraction greatly improved arthroscopic accessibility.

  14. Thermal imaging in screening of joint inflammation and rheumatoid arthritis in children.

    PubMed

    Lasanen, R; Piippo-Savolainen, E; Remes-Pakarinen, T; Kröger, L; Heikkilä, A; Julkunen, P; Karhu, J; Töyräs, J

    2015-02-01

    Potential of modern thermal imaging for screening and differentiation of joint inflammation has not been assessed in child and juvenile patient populations, typically demanding groups in diagnostics of musculoskeletal disorders. We hypothesize that thermal imaging can detect joint inflammation in patients with juvenile idiopathic arthritis or autoimmune disease with arthritis such as systemic lupus erythematosus. To evaluate the hypothesis, we studied 58 children exhibiting symptoms of joint inflammation. First, the patients' joints were examined along clinical procedure supplemented with ultrasound imaging when deemed necessary by the clinician. Second, thermal images were acquired from patients' knees and ankles. Results of thermal imaging were compared to clinical evaluations in knee and ankle. The temperatures were significantly (pmax = 0.044, pmean < 0.001) higher in inflamed ankle joints, but not in inflamed knee joints. No significant difference was found between the skin surface temperatures of medial and lateral aspects of ankle joints. In knee joints the mean temperatures of medial and lateral aspect differed significantly (p = 0.004). We have demonstrated that thermal imaging may have potential for detecting joint inflammation in ankle joints of children. For knee joints our results are inconclusive and further research is warranted.

  15. Squatting Exercises in Older Adults: Kinematic and Kinetic Comparisons

    PubMed Central

    FLANAGAN, SEAN; SALEM, GEORGE J.; WANG, MAN-YING; SANKER, SERENA E.; GREENDALE, GAIL A.

    2012-01-01

    Purpose Squatting activities may be used, within exercise programs, to preserve physical function in older adults. This study characterized the lower-extremity peak joint angles, peak moments, powers, work, impulse, and muscle recruitment patterns (electromyographic; EMG) associated with two types of squatting activities in elders. Methods Twenty-two healthy, older adults (ages 70–85) performed three trials each of: 1) a squat to a self-selected depth (normal squat; SQ) and 2) a squat onto a chair with a standardized height of 43.8 cm (chair squat; CSQ). Descending and ascending phase joint kinematics and kinetics were obtained using a motion analysis system and inverse dynamics techniques. Results were averaged across the three trials. A 2 × 2 (activity × phase) ANOVA with repeated measures was used to examine the biomechanical differences among the two activities and phases. EMG temporal characteristics were qualitatively examined. Results CSQ generated greater hip flexion angles, peak moments, power, and work, whereas SQ generated greater knee and ankle flexion angles, peak moments, power, and work. SQ generated a greater knee extensor impulse, a greater plantar flexor impulse and a greater total support impulse. The EMG temporal patterns were consistent with the kinetic data. Conclusions The results suggest that, with older adults, CSQ places greater demand on the hip extensors, whereas SQ places greater demand on the knee extensors and ankle plantar flexors. Clinicians may use these discriminate findings to more effectively target specific lower-extremity muscle groups when prescribing exercise for older adults. PMID:12673148

  16. Acute Ankle Sprain in a Mouse Model: Changes in Knee-Joint Space

    PubMed Central

    Wikstrom, Erik A.; Guderian, Sophie; Turner, Michael J.

    2017-01-01

    Context:  Ankle sprains remain the most common orthopaedic injury. Conducting long-term studies in humans is difficult and costly, so the long-term consequences of an ankle sprain are not entirely known. Objective:  To measure knee-joint space after a single surgically induced ankle sprain in mice. Design:  Randomized controlled trial. Setting:  University research laboratory. Patients or Other Participants:  Thirty male mice (CBA/2J) were randomly placed into 1 of 3 surgical groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament/CFL group, or a sham treatment group. The right ankle was operated on in all mice. Main Outcome Measure(s):  Three days after surgery, all of the mice were individually housed in cages containing a solid-surface running wheel, and daily running-wheel measurements were recorded. Before surgery and every 6 weeks after surgery, a diagnostic ultrasound was used to measure medial and lateral knee-joint space in both hind limbs. Results:  Right medial (P = .003), right lateral (P = .002), left medial (P = .03), and left lateral (P = .002) knee-joint spaces decreased across the life span. The mice in the anterior talofibular ligament/CFL group had decreased right medial (P = .004) joint space compared with the sham and CFL groups starting at 24 weeks of age and continuing throughout the life span. No differences occurred in contralateral knee-joint degeneration among any of the groups. Conclusions:  Based on current data, mice that sustained a surgically induced severe ankle sprain developed greater joint degeneration in the ipsilateral knee. Knee degeneration could result from accommodation to the laxity of the ankle or biomechanical alterations secondary to ankle instability. A single surgically induced ankle sprain could significantly affect knee-joint function. PMID:28437129

  17. Acute Ankle Sprain in a Mouse Model: Changes in Knee-Joint Space.

    PubMed

    Hubbard-Turner, Tricia; Wikstrom, Erik A; Guderian, Sophie; Turner, Michael J

    2017-06-02

      Ankle sprains remain the most common orthopaedic injury. Conducting long-term studies in humans is difficult and costly, so the long-term consequences of an ankle sprain are not entirely known.   To measure knee-joint space after a single surgically induced ankle sprain in mice.   Randomized controlled trial.   University research laboratory.   Thirty male mice (CBA/2J) were randomly placed into 1 of 3 surgical groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament/CFL group, or a sham treatment group. The right ankle was operated on in all mice.   Three days after surgery, all of the mice were individually housed in cages containing a solid-surface running wheel, and daily running-wheel measurements were recorded. Before surgery and every 6 weeks after surgery, a diagnostic ultrasound was used to measure medial and lateral knee-joint space in both hind limbs.   Right medial (P = .003), right lateral (P = .002), left medial (P = .03), and left lateral (P = .002) knee-joint spaces decreased across the life span. The mice in the anterior talofibular ligament/CFL group had decreased right medial (P = .004) joint space compared with the sham and CFL groups starting at 24 weeks of age and continuing throughout the life span. No differences occurred in contralateral knee-joint degeneration among any of the groups.   Based on current data, mice that sustained a surgically induced severe ankle sprain developed greater joint degeneration in the ipsilateral knee. Knee degeneration could result from accommodation to the laxity of the ankle or biomechanical alterations secondary to ankle instability. A single surgically induced ankle sprain could significantly affect knee-joint function.

  18. An Incidental Finding of a Talonavicular and Talocalcaneal Joint Coalition After a Tibial Pilon Fracture: A Case Report.

    PubMed

    Godoy, Heidi M; Micciche, Mark J

    It has been proposed that patients with talocalcaneal and talonavicular coalitions have decreased ankle joint range of motion. It has also been reported that rotational forces regularly absorbed by the talocalcaneal joint are transferred to the ankle joint in patients with coalitions, increasing the stress on the ankle joint after trauma. To the best of our knowledge, only 1 reported study has detailed the increased stress placed on the ankle joint secondary to a coalition. We present a case study of a 53-year-old female who experienced a traumatic fall and subsequent right ankle fracture. Advanced imaging studies revealed a comminuted tibial pilon fracture and talocalcaneal and talonavicular joint coalitions. She underwent open reduction and internal fixation for treatment of the fracture, and the coalitions were not treated because they were asymptomatic. She was kept non-weightbearing for 6 weeks postoperatively and was returned to a regular sneaker at 10 weeks postoperatively. The postoperative films revealed stable intact fixation and pain-free gait with no increased restriction in her ankle joint range of motion. The hardware was removed at 13 months postoperatively. She had not experienced increased pain or arthritic changes at 15 months postoperatively. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. AD Hoc Study on Human Robot Interface Issues

    DTIC Science & Technology

    2002-09-01

    of joint range of motion limits on strength. When the angle of a fully deflected aircraft rudder/ brake pedal is beyond the limit of ankle...mobility, the pedal will seem to have excessive resistance. In addition, this will prevent the pilot from fully utilizing the brakes of the aircraft...importance and value added of HE efforts. 34 Center High-Mounted Brake Lights. In 1985, after extensive HE studies showing positive

  20. Evaluation of the relationship between the static measurement of transverse arch flexibility of the forefoot and gait parameters in healthy subjects.

    PubMed

    Kondo, Takashi; Muneta, Takeshi; Fukui, Tsutomu

    2017-03-01

    [Purpose] To investigate the relationship between the static measurement of the transverse arch of the forefoot, using a 3-dimensional (3D) foot scanner, and kinetics and kinematics of gait parameters in the sagittal plane. [Subjects and Methods] Twenty healthy subjects participated in this study. The transverse arch of the forefoot was measured under three conditions as follows: condition 1, sitting; condition 2, standing; and condition 3, foot forward and lower leg tilting anteriorly to the maximum position with heel contact. Gait parameters were recorded using a 3D motion analysis system and force plate. Correlation coefficients between TAF for each comparison of conditions and gait parameters were calculated using the Spearman correlation analysis. [Results] Rates of the transverse arch of the forefoot width and height between condition 2 and condition 3 were significantly correlated with the anterior and posterior component of ground reaction forces, the hip joint extension angle, and the ankle plantar flexion moment. [Conclusion] Our study's findings indicated that increased stiffness of the transverse arch of the forefoot was related to the increase in ankle plantar moment, and decreased stiffness of the transverse arch of the forefoot was related to the increase in hip joint extension angle during gait.

  1. Evaluation of the relationship between the static measurement of transverse arch flexibility of the forefoot and gait parameters in healthy subjects

    PubMed Central

    Kondo, Takashi; Muneta, Takeshi; Fukui, Tsutomu

    2017-01-01

    [Purpose] To investigate the relationship between the static measurement of the transverse arch of the forefoot, using a 3-dimensional (3D) foot scanner, and kinetics and kinematics of gait parameters in the sagittal plane. [Subjects and Methods] Twenty healthy subjects participated in this study. The transverse arch of the forefoot was measured under three conditions as follows: condition 1, sitting; condition 2, standing; and condition 3, foot forward and lower leg tilting anteriorly to the maximum position with heel contact. Gait parameters were recorded using a 3D motion analysis system and force plate. Correlation coefficients between TAF for each comparison of conditions and gait parameters were calculated using the Spearman correlation analysis. [Results] Rates of the transverse arch of the forefoot width and height between condition 2 and condition 3 were significantly correlated with the anterior and posterior component of ground reaction forces, the hip joint extension angle, and the ankle plantar flexion moment. [Conclusion] Our study’s findings indicated that increased stiffness of the transverse arch of the forefoot was related to the increase in ankle plantar moment, and decreased stiffness of the transverse arch of the forefoot was related to the increase in hip joint extension angle during gait. PMID:28356622

  2. [Arthrodesis (with/without correction) of the ankle and subtalar joint: A3 nail fixation with triple bending and mechanical navigation].

    PubMed

    Richter, M

    2014-08-01

    Restoration of a stable and plantigrade foot in deformities of the ankle and/or hindfoot and concomitant degenerative changes at the ankle and subtalar joints. Deformities at the ankle and/or hindfoot and concomitant degenerative changes at the ankle and subtalar joint. Failed (corrective) arthrodesis of the ankle and subtalar joints. Fused ankle and degeneration of the subtalar joint. Failed total ankle replacement with insufficient substance of talar body and/or degeneration of subtalar joint. Massive hindfoot instability. Active local infection or relevant vascular insufficiency, possible preservation of the ankle or subtalar joint (relative contraindication). Prone position and posterolateral approach to ankle and subtalar joints (alternative supine position/anterior approach; lateral position/lateral approach). Exposition of ankle and subtalar joints and removal of remaining cartilage. Optional corrective osteotomies and/or bone grafting. Correction and optional fixation of the corrected position with 2.0 mm K-wires. Mechanically navigated insertion of a retrograde guide wire in projection of the tibial axis and insertion of a second guide wire through the entry point of the nail lateral and dorsal to the tibial axis. Reaming and insertion of the A3 nail with a distal double bend; one posterior and one lateral, and a proximal bend corresponding to a slight recurvatum. Insertion of locking screws into the calcaneus, talus and tibia (twice with optional static or dynamic locking). Optional compression between calcaneus and talus, and between tibia and talus. Insertion of a drainage and layer-wise closure. For the first 6 weeks 15 kg partial weight bearing in an orthosis, followed by full weight bearing in a stable standard shoe. In October 2010 (n = 2) and from 15 October 2011 to 13 April 2012 (n = 26) 28 arthrodeses (with/without correction) with A3 fixation were performed. In all cases, exact nail placement was achieved. Thirteen cases completed follow-up (3-11 months) and showed timely fusion and full mobilization.

  3. Changes in biomechanics and muscle activation in injured ballet dancers during a jump-land task with turnout (Sissonne Fermée).

    PubMed

    Lee, Hsing-Hsan; Lin, Chia-Wei; Wu, Hong-Wen; Wu, Tzu-Chuan; Lin, Cheng-Feng

    2012-01-01

    Large impact loading with abnormal muscle activity and motion patterns may contribute to lower extremity injuries in ballet dancers. Yet, few studies investigated the influence of injury on the ballet movement. The purpose of this study was to find the neuromuscular and biomechanical characteristics in dancers with and without ankle injury during a jump-landing Sissonne Fermée task. Twenty-two ballet dancers were recruited and divided into the injured group (n = 11) and the uninjured group (n = 11). They performed a ballet movement called "Sissonne Fermée" with reflective markers and electrodes attached to their lower extremities. Ground reaction force, joint kinematics, and muscle activity were measured. The injured dancers had greater peak ankle eversion but smaller hindfoot-to-tibial eversion angles. Also, the injured dancers had greater activity of the hamstring of the dominant leg and tibialis anterior of the non-dominant leg during the pre-landing phase. The injured dancers had greater tibialis anterior activity of the dominant leg but less muscle activity in the medial gastrocnemius of the non-dominant leg during the post-landing phase. The injured dancers had a greater co-contraction index in the non-dominant ankle and a lower loading rate. The higher co-contraction indices showed that the injured dancers required more muscle effort to control ankle stability. Furthermore, the injured dancers used a "load avoidance strategy" to protect themselves from re-injury. Neuromuscular control training of the ankle joint for ballet dancers to prevent injury is necessary.

  4. Sagittal Distal Tibial Articular Angle and the Relationship to Talar Subluxation in Total Ankle Arthroplasty.

    PubMed

    Veljkovic, Andrea; Norton, Adam; Salat, Peter; Abbas, Kaniza Zahra; Saltzman, Charles; Femino, John E; Phisitkul, Phinit; Amendola, Annunziato

    2016-09-01

    Longevity of total ankle replacement (TAR) depends heavily on anatomic alignment. The lateral talar station (LTS) classifies the sagittal position of the talus relative to the tibia. We hypothesized that correcting the sagittal distal tibial articular angle (sDTAA) during TAR would anatomically realign the tibiotalar joint and potentially reduce the risk of prosthesis subluxation. The LTS (millimeters) and sDTAA (degrees) were measured twice by 2 blinded observers using weight-bearing lateral ankle radiographs obtained before (n = 96) and after (n = 94) TAR, with excellent interobserver and intraobserver reliability (correlation coefficient >0.9). Preoperative LTS was as follows: anterior (60.4%), posterior (27.1%), and neutral (12.5%). A strong preoperative correlation was found between LTS and sDTAA (r = 0.81; P < .0001). In ankles that were initially anterior and became less anterior postoperatively (n = 41), LTS decreased from an average 8.1 mm to 6.5 mm and the LTS changed 1.1 mm per degree of sDTAA change. In ankles that were initially posterior (n = 25), LTS increased from an average of -5.1 mm to -2.8 mm and the LTS changed 0.6 mm per degree of sDTAA change. The correlation between LTS and sDTAA was reduced postoperatively (r = 0.62; P < .0001). Our results suggest that rather than following generic recommendations, the surgeon should customize the sagittal distal tibial cut to the individual patient based on the preoperative LTS in order to achieve neutral TAR alignment. Level III, retrospective comparative series. © The Author(s) 2016.

  5. The Relative Contribution of Ankle Moment and Trailing Limb Angle to Propulsive Force during Gait

    PubMed Central

    Hsiao, HaoYuan; Knarr, Brian A.; Higginson, Jill S.; Binder-Macleod, Stuart A.

    2014-01-01

    A major factor for increasing walking speed is the ability to increase propulsive force. Although propulsive force has been shown to be related to ankle moment and trailing limb angle, the relative contribution of each factor to propulsive force has never been determined. The primary purpose of this study was to quantify the relative contribution of ankle moment and trailing limb angle to propulsive force for able-bodied individuals walking at different speeds. Twenty able-bodied individuals walked at their self-selected and 120% of self-selected walking speed on the treadmill. Kinematic data were collected using an 8-camera motion-capture system. A model describing the relationship between ankle moment, trailing limb angle and propulsive force was obtained through quasi-static analysis. Our main findings were that ankle moment and trailing limb angle each contributes linearly to propulsive force, and that the change in trailing limb angle contributes almost as twice as much as the change in ankle moment to the increase in propulsive force during speed modulation for able-bodied individuals. Able-bodied individuals preferentially modulate trailing limb angle more than ankle moment to increase propulsive force. Future work will determine if this control strategy can be applied to individuals poststroke. PMID:25498289

  6. Gradual Reduction of Chronic Fracture Dislocation of the Ankle Using Ilizarov/Taylor Spatial Frame

    PubMed Central

    Deland, Jonathan T.; Rozbruch, S. Robert

    2010-01-01

    With the advances in trauma care, chronic fracture dislocation of the ankle is not a condition commonly seen in modern clinical practice. When encountered, it can be difficult to preserve the ankle joint. We present a case of a 65-year-old female, with a chronic fracture dislocation of the ankle. The ankle joint was subluxated with posterior translation of the talus, displacement of the posterior malleolus fragment, and a distal fibula fracture. A minimally traumatic approach was devised to treat this complex fracture dislocation which included gradual reduction of the ankle with a Taylor spatial frame, followed by stabilization with internal fixation and removal of the frame. Bony union and restoration of the ankle joint congruency was achieved. PMID:22294963

  7. Does a not-so-recent ankle sprain influence interjoint coordination during walking?

    PubMed

    Dedieu, Philippe; Chamoun, Rima; Lacaud, Guilhaume; Moulinat, Thibault; Queron, Maxime; Zanone, Pier-Giorgio

    2017-12-01

    Ankle sprains are common joint injuries in daily and sports activities, whose underlying mechanisms have been amply studied. If joint structures are directly damaged, neuromuscular activity can be affected, particularly in the time domain. This study aims to establish whether previous ankle injury correlates with changes in the inter-joint synergy of the entire lower limb and in the muscle activity pattern during walking. Three-dimensional walking-gait analysis was conducted on twenty-four adults. Ten of them had never suffered from ankle sprain; fourteen had suffered from ankle sprain at least once during the three preceding years. Continuous Relative Phase (CRP) between the moving limbs assessed inter-joint coordination, and muscular activity was recorded by EMG. CRP between ankle and knee and between ankle and hip indicates that both joints moved in tight synchronization in the same direction on the injured side, whereas there was a time lag between joints on the healthy side for each sprained participants or on both side for the control group. Start-time and/or duration of muscular activity of tibialis anterior, soleus and peroneus longus occurred earlier and were longer on the injured side, respectively. Our findings suggest that ankle sprain modifies inter-joint coordination and muscular activity of the injured limb, inducing not an entirely new pattern of coordination but an alteration of the existing pattern. CRP revealed slight modifications in the extant inter-joint coordination which may not be captured by other kinematic variables, which opens perspectives on therapy and relapse prevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Measurement of gastrocnemius muscle elasticity by shear wave elastography: association with passive ankle joint stiffness and sex differences.

    PubMed

    Chino, Kentaro; Takahashi, Hideyuki

    2016-04-01

    Passive joint stiffness is an important quantitative measure of flexibility, but is affected by muscle volume and all of the anatomical structures located within and over the joint. Shear wave elastography can assess muscle elasticity independent of the influences of muscle volume and the other nearby anatomical structures. We determined how muscle elasticity, as measured using shear wave elastography, is associated with passive joint stiffness and patient sex. Twenty-six healthy men (24.4 ± 5.9 years) and 26 healthy women (25.2 ± 4.8 years) participated in this study. The passive ankle joint stiffness and tissue elasticity of the medial gastrocnemius (MG) were quantified with the ankle in 30° plantar flexion (PF), a neutral anatomical position (NE), and 20° dorsiflexion (DF). No significant difference in passive joint stiffness by sex was observed with the ankle in PF, but significantly greater passive ankle joint stiffness in men than in women was observed in NE and DF. The MG elasticity was not significantly associated with joint stiffness in PF or NE, but it was significantly associated with joint stiffness in DF. There were no significant differences in MG elasticity by sex at any ankle position. Muscle elasticity, measured independent of the confounding effects of muscle volume and the other nearby anatomical structures, is associated with passive joint stiffness in the joint position where the muscle is sufficiently lengthened, but does not vary by sex in any joint position tested.

  9. The spring ligament recess of the talocalcaneonavicular joint: depiction on MR images with cadaveric and histologic correlation.

    PubMed

    Desai, Kapil R; Beltran, Luis S; Bencardino, Jenny T; Rosenberg, Zehava S; Petchprapa, Catherine; Steiner, German

    2011-05-01

    The objective of this study was to describe the anatomy and MR appearance of the spring ligament recess of the talocalcaneonavicular joint. Forty-nine MR examinations of the ankle with a spring ligament recess were prospectively collected. The size of the recess was measured. The presence of the following variables was recorded: talocalcaneonavicular joint effusion, ankle joint effusion, talar head impaction, acute lateral ankle sprain, chronic lateral ankle sprain, spring ligament tear, sinus tarsi ligament tear, talar dome osteochondral injury, and talonavicular osteoarthrosis. The Fisher exact test was performed to quantify the association of the talocalcaneonavicular effusion with the other variables. MR arthrography and dissection with histologic analysis were performed in two cadaveric ankles. Twenty-four men and 25 women (average age, 39 years; range, 21-77 years) were included in the study. The average size of the fluid collection was 0.4 × 0.8 cm (range, 0.2-0.9 × 0.4-1.5 cm). The prevalence of the measured variables was talocalcaneonavicular joint effusion, 67.3%; ankle joint effusion, 61.2%; talar head impaction, 32.7%; acute lateral ankle sprain, 28.6%; chronic lateral ankle sprain, 59.2%; spring ligament tear, 14.3%; sinus tarsi ligament tear, 12.2%; talar dome osteochondral lesion, 20.4%; and talonavicular osteoarthrosis, 18.4%. There was a higher prevalence of talar head impaction among individuals with talocalcaneonavicular joint effusion (p = 0.0522). Cadaveric study revealed communication between the talocalcaneonavicular joint and the spring ligament recess. The spring ligament recess is a synovium-lined, fluid-filled space that communicates with the talocalcaneonavicular joint. The recess should be distinguished from a tear of the plantar components of the spring ligament.

  10. Isokinetic strength and endurance after percutaneous and open surgical repair of Achilles tendon ruptures.

    PubMed

    Goren, David; Ayalon, Moshe; Nyska, Meir

    2005-04-01

    Reports on complete spontaneous Achilles tendon ruptures and associated treatment have become more frequent in the literature in the past two decades, as has the request for treatments that enable the finest possible functional recovery. The best available treatment is a matter of considerable controversy in the literature. The purpose of this study was to compare the isokinetic strength and endurance of the plantarflexor muscle-tendon unit in subjects who sustained rupture of the Achilles tendon and underwent either open surgery or closed percutaneous repair of the Achilles tendon. Twenty patients (18 males, 2 females) with spontaneous ruptures of the Achilles tendon were included in this study. Ten patients were treated by open surgery, and 10 patients were treated percutaneously. All patients had ruptured their Achilles tendon more than 6 months before the study, and all of the ruptures occurred 3.5 years or less before the day of the testing. All patients underwent an oriented physical examination. An isokinetic Biodex dynamometer (Biodex Medical System, Shirley, NY) was used to measure ankle joint angle, and in plantarflexion to calculate the torque at the ankle joint (Newton/meter), and the average work (jouls) for both maximal power and endurance. Each measurement was compared to the normal ankle. Biodex dynamometer evaluations at 90 deg/sec demonstrated a significant difference of maximal voluntary plantarflexor torque, endurance performance and range of motion at the ankle joint between the involved and uninvolved sides in patients treated by either mode of treatment. Yet, no statistically significant differences were revealed for the parameters mentioned above between the subjects that were treated either percutaneously or by an open surgery. In functional terms, the biomechanical outcomes of open surgery and percutaneous repair for acute ruptures of the Achilles tendon are both effective.

  11. Immediate combined effect of gastrocnemius stretching and sustained talocrural joint mobilization in individuals with limited ankle dorsiflexion: A randomized controlled trial.

    PubMed

    Kang, Min-Hyeok; Oh, Jae-Seop; Kwon, Oh-Yun; Weon, Jong-Hyuk; An, Duk-Hyun; Yoo, Won-Gyu

    2015-12-01

    Although gastrocnemius stretching and talocrural joint mobilization have been suggested as effective interventions to address limited ankle dorsiflexion passive range of motion (DF PROM), the effects of a combination of the two interventions have not been identified. The aim of the present study was to compare the effects of gastrocnemius stretching combined with joint mobilization and gastrocnemius stretching alone. A randomized controlled trial. In total, 24 individuals with limited ankle DF PROM were randomized to undergo gastrocnemius stretching combined with joint mobilization (12 feet in 12 individuals) or gastrocnemius stretching alone (12 feet in 12 individuals) for 5 min. Ankle kinematics during gait (time to heel-off and ankle DF before heel-off), ankle DF PROM, posterior talar glide, and displacement of the myotendinous junction (MTJ) of the gastrocnemius were assessed before and after the interventions. The groups were compared using two-way repeated measures analysis of variance. Greater increases in the time to heel-off and ankle DF before heel-off during gait and posterior talar glide were observed in the stretching combined with joint mobilization group versus the stretching alone group. Ankle DF PROM and displacement of the MTJ of the gastrocnemius were increased significantly after the interventions in both groups, with no significant difference between them. These findings suggest that gastrocnemius stretching with joint mobilization needs to be considered to improve ankle kinematics during gait. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. A novel ultrasound technique for detection of osteochondral defects in the ankle joint: a parametric and feasibility study.

    PubMed

    Sarkalkan, Nazli; Loeve, Arjo J; van Dongen, Koen W A; Tuijthof, Gabrielle J M; Zadpoor, Amir A

    2014-12-24

    (Osteo)chondral defects (OCDs) in the ankle are currently diagnosed with modalities that are not convenient to use in long-term follow-ups. Ultrasound (US) imaging, which is a cost-effective and non-invasive alternative, has limited ability to discriminate OCDs. We aim to develop a new diagnostic technique based on US wave propagation through the ankle joint. The presence of OCDs is identified when a US signal deviates from a reference signal associated with the healthy joint. The feasibility of the proposed technique is studied using experimentally-validated 2D finite-difference time-domain models of the ankle joint. The normalized maximum cross correlation of experiments and simulation was 0.97. Effects of variables relevant to the ankle joint, US transducers and OCDs were evaluated. Variations in joint space width and transducer orientation made noticeable alterations to the reference signal: normalized root mean square error ranged from 6.29% to 65.25% and from 19.59% to 8064.2%, respectively. The results suggest that the new technique could be used for detection of OCDs, if the effects of other parameters (i.e., parameters related to the ankle joint and US transducers) can be reduced.

  13. Design and Characterization of a Quasi-Passive Pneumatic Foot-Ankle Prosthesis.

    PubMed

    Lee, Jeffrey D; Mooney, Luke M; Rouse, Elliott J

    2017-07-01

    The majority of commercially available passive prosthetic feet are not capable of providing joint mechanics that match that of the intact human ankle. Due to their cantilever design, their stiffness characteristics contrast with what has been observed in the biological ankle, namely, an increase in stiffness during the stance phase of walking. In this paper, we introduce the design and control of a pneumatic foot-ankle prosthesis that attempts to provide biomimetic mechanics. The prosthesis is comprised of a pneumatic cylinder in series with a fiberglass leaf spring, and a solenoid valve to control the flow of air between the two sides of the cylinder. The solenoid valve acts as a mechanical clutch, enabling resetting of the ankle's equilibrium position. By adjusting the pressure inside the cylinder, the prosthesis can be customized to provide a range of ankle mechanics. A mechanical testing machine is used to compare the torque-angle curve of the pneumatic prosthesis with a low-profile passive prosthetic foot. Finally, data are presented of one transtibial amputee walking with the prosthesis at 1.2 m/s. The testing shows that the pneumatic prosthesis is capable of providing an appropriate range of motion as well a maximum torque of 94 Nm, while returning approximately 11.5 J of energy.

  14. Test-retest reliability of sudden ankle inversion measurements in subjects with healthy ankle joints.

    PubMed

    Eechaute, Christophe; Vaes, Peter; Duquet, William; Van Gheluwe, Bart

    2007-01-01

    Sudden ankle inversion tests have been used to investigate whether the onset of peroneal muscle activity is delayed in patients with chronically unstable ankle joints. Before interpreting test results of latency times in patients with chronic ankle instability and healthy subjects, the reliability of these measures must be first demonstrated. To investigate the test-retest reliability of variables measured during a sudden ankle inversion movement in standing subjects with healthy ankle joints. Validation study. Research laboratory. 15 subjects with healthy ankle joints (30 ankles). Subjects stood on an ankle inversion platform with both feet tightly fixed to independently moveable trapdoors. An unexpected sudden ankle inversion of 50 degrees was imposed. We measured latency and motor response times and electromechanical delay of the peroneus longus muscle, along with the time and angular position of the first and second decelerating moments, the mean and maximum inversion speed, and the total inversion time. Correlation coefficients and standard error of measurements were calculated. Intraclass correlation coefficients ranged from 0.17 for the electromechanical delay of the peroneus longus muscle (standard error of measurement = 2.7 milliseconds) to 0.89 for the maximum inversion speed (standard error of measurement = 34.8 milliseconds). The reliability of the latency and motor response times of the peroneus longus muscle, the time of the first and second decelerating moments, and the mean and maximum inversion speed was acceptable in subjects with healthy ankle joints and supports the investigation of the reliability of these measures in subjects with chronic ankle instability. The lower reliability of the electromechanical delay of the peroneus longus muscle and the angular positions of both decelerating moments calls the use of these variables into question.

  15. Lower-extremity dynamics of walking in neuropathic diabetic patients who wear a forefoot-offloading shoe.

    PubMed

    Bus, Sicco A; Maas, Josina C; Otterman, Nicoline M

    2017-12-01

    A forefoot-offloading shoes has a negative-heel rocker outsole and is used to treat diabetic plantar forefoot ulcers, but its mechanisms of action and their association with offloading and gait stability are not sufficiently clear. Ten neuropathic diabetic patients were tested in a forefoot-offloading shoe and subsequently in a control shoe with no specific offloading construction, both worn on the right foot (control shoe on left), while walking at 1.2m/s. 3D-instrumented gait analysis and simultaneous in-shoe plantar pressure measurements were used to explain the shoe's offloading efficacy and to define centre-of-pressure profiles and left-to-right symmetry in ankle joint dynamics (0-1, 1:maximum symmetry), as indicators for gait stability. Compared to the control shoe, peak forefoot pressures, vertical ground reaction force, plantar flexion angle, and ankle joint moment, all in terminal stance, and the proximal-to-distal centre-of-pressure trajectory were significantly reduced in the forefoot-offloading shoe (P<0.01). Peak ankle joint power was 51% lower in the forefoot-offloading shoe compared to the control shoe: 1.61 (0.35) versus 3.30 (0.84) W/kg (mean (SD), P<0.001), and was significantly associated with forefoot peak pressure (R 2 =0.72, P<0.001). Left-to-right symmetry in the forefoot-offloading shoe was 0.39 for peak ankle joint power. By virtue to their negative-heel rocker-outsole design, forefoot-offloading shoes significantly alter a neuropathic diabetic patient's gait towards a reduced push-off power that explains the shoe's offloading efficacy. However, gait symmetry and stability are compromised, and may be factors in the low perceived walking discomfort and limited use of these shoes in clinical practice. Shoe modifications (e.g. less negative heel, a more cushioning insole) may resolve this trade-off between efficacy and usability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Arthroscopic therapy of ankle joint impingement syndrome after operation of ankle joint fracture dislocation].

    PubMed

    Feng, Zhibin; Mi, Kun; Wei, Renzhi; Liu, Wu; Wang, Bin

    2011-07-01

    To study the operative procedure and the effectiveness of arthroscopic therapy for ankle joint impingement syndrome after operation of ankle joint fracture dislocation. Between March 2008 and April 2010, 38 patients with ankle joint impingement syndrome after operation of ankle joint fracture dislocation were treated. Among them, there were 28 males and 10 females with an average age of 28 years (range, 18 to 42 years). The time from internal fixation to admission was 12-16 months (mean, 13.8 months). There were pressing pain in anterolateral and anterior ankle. The dorsal extension ranged from -20 to -5 degrees (mean, -10.6 degrees), and the palmar flexion was 30-40 degrees (mean, 35.5 degrees). The total score was 48.32 +/- 9.24 and the pain score was 7.26 +/- 1.22 before operation according to American Orthopaedic Foot and Ankle Society (AOFAS) ankle and hindfoot score system. The X-ray films showed osteophyte formation in anterior tibia and talus; MRI showed cartilage injury in 22 cases. Arthroscopic intervention included removing osteophytes, debriding fabric scars and synovial membrane tissues, and removing osteochondral fragments. Arthroscopic microfracture technique was used in 22 patients with cartilage injury. All incisions healed primarily. Thirty-eight cases were followed up 10-26 months (mean, 16 months). At last follow-up, 26 patients had normal range of motion (ROM); the dorsal extension was 15-25 degrees (mean, 19.6 degrees) and the palmar flexion was 35-45 degrees (mean, 40.7 degrees). Eight patients had mild limited ROM; the dorsal extension was 5-15 degrees (mean, 7.2 degrees) and the palmar flexion was 35-45 degrees (mean, 39.5 degrees). Four patients had mild limited ROM and pain in posterior portion of the ankle after a long walking (3-4 hours); the dorsal extension was 0-5 degrees (mean, 2.6 degrees) and the palmar flexion was 35-40 degrees (mean, 37.5 degrees). The total score was 89.45 +/- 9.55 and the pain score was 1.42 +/- 1.26 after operation according to AOFAS ankle and hindfoot score system, showing significant differences when compared with preoperative ones (t=21.962, P=0.000; t=16.762, P=0.000). Arthroscopic treatment of ankle joint impingement syndrome after operation of ankle joint fracture dislocation is an effective, simple, and safe method.

  17. Development of the transtibial prosthesis controlled pneumatically and electrically by microcomputer system.

    PubMed

    Shimada, Youichi; Terayama, Yukio

    2006-01-01

    This report represents the development of the prototype transtibial prosthesis to assist a smooth and comfortable walking for an unilateral amputee. This prosthesis is composed of two air cylinders, solenoid valves, portable and small air tank for compressed air storage, a multiple sensor system and a microprocessor. Two air cylinders are located around the rods to act as antagonistic and agonistic muscles. The system causes flexion and extension of the foot plate jointed at the ankle with compressed air, injected -or discharged via a solenoid or electromagnetic valves. The valves or solenoids are controlled with a microprocessor (Microchip Technology Inc., PIC16F876), the microprocessor generates control signals to the interface circuits for valve opening and closing consistent with the foot position during the walking phase. The control patterns generated in the microprocessor are modified with feedback from the touch sensor, ankle joint angle sensor and the two dimensional acceleration sensor. The primary walking pattern for an individual amputee should be developed through the gait analysis with video.

  18. Effect of exoskeletal joint constraint and passive resistance on metabolic energy expenditure: Implications for walking in paraplegia.

    PubMed

    Chang, Sarah R; Kobetic, Rudi; Triolo, Ronald J

    2017-01-01

    An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm) and knee (6 Nm) joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7°) were within normal range, while average peak knee joint angles (40 ± 8°) were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia.

  19. Onset Time of Nerve Block: A Comparison of Two Injection Locations in Patients Having Lower Leg/ Foot Surgery

    ClinicalTrials.gov

    2014-03-20

    Strain of Muscle and/or Tendon of Lower Leg; Fracture of Lower Leg; Crushing Injury of Lower Leg; Fracture Malunion - Ankle and/or Foot; Disorder of Joint of Ankle and/or Foot; Complete Tear, Ankle and/or Foot Ligament; Pathological Fracture - Ankle and/or Foot; Loose Body in Joint of Ankle and/or Foot

  20. Ankle taping can reduce external ankle joint moments during drop landings on a tilted surface.

    PubMed

    Sato, Nahoko; Nunome, Hiroyuki; Hopper, Luke S; Ikegami, Yasuo

    2017-09-20

    Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse.

  1. Revision anatomical reconstruction of the lateral ligaments of the ankle augmented with suture tape for patients with a failed Broström procedure.

    PubMed

    Cho, B K; Kim, Y M; Choi, S M; Park, H W; SooHoo, N F

    2017-09-01

    The aim of this prospective study was to evaluate the intermediate-term outcomes after revision anatomical ankle ligament reconstruction augmented with suture tape for a failed modified Broström procedure. A total of 30 patients with persistent instability of the ankle after a Broström procedure underwent revision augmented with suture tape. Of these, 24 patients who were followed up for more than two years were included in the study. There were 13 men and 11 women. Their mean age was 31.8 years (23 to 44). The mean follow-up was 38.5 months (24 to 56) The clinical outcome was assessed using the Foot and Ankle Outcome Score (FAOS) and the Foot and Ankle Ability Measure (FAAM) score. The stability of the ankle was assessed using stress radiographs. The mean FAOS and FAAM scores improved significantly to 87.5 (73 to 94) and 85.1 (70 to 95) points at final follow-up, respectively (p < 0.001). The mean angle of talar tilt and anterior talar translation improved significantly to 2.8° (0° to 6°) and 4.1 mm (2 to 7) at final follow-up, respectively (p < 0.001). Side to side comparison in stress radiographs at final follow-up showed no significant difference. The revision failed in one patient who underwent a further revision using allograft tendon. The revision modified Broström procedure augmented with suture tape is an effective form of treatment for recurrent instability of the ankle following a failed Broström procedure. This technique provides reliable stability and satisfactory clinical outcomes at intermediate-term follow-up. Cite this article: Bone Joint J 2017;99-B:1183-9. ©2017 The British Editorial Society of Bone & Joint Surgery.

  2. Orthopaedic management of haemophilia arthropathy of the ankle.

    PubMed

    Pasta, G; Forsyth, A; Merchan, C R; Mortazavi, S M J; Silva, M; Mulder, K; Mancuso, E; Perfetto, O; Heim, M; Caviglia, H; Solimeno, L

    2008-07-01

    Joint bleeding, or haemarthrosis, is the most common type of bleeding episode experienced by individuals with haemophilia A and B. This leads to changes within the joints, including synovial proliferation, which results in further bleeding and chronic synovitis. Blood in the joint can also directly damage the cartilage, and with repeated bleeding, there is progressive destruction of both cartilage and bone. The end result is known as haemophilic arthropathy. The joints most commonly affected are the knees, elbows and ankles, although any synovial joint may be involved. In the ankle, both the tibiotalar and subtalar joints may be affected and joint bleeding and arthropathy can lead to a number of deformities. Haemophilic arthropathy can be prevented through regular factor replacement prophylaxis and implementing physiotherapy. However, when necessary, there are multiple surgical and non-surgical options available. In early ankle arthropathy with absent or minimal joint changes, both radioisotopic and chemical synoviorthesis can be used to reduce the hypertrophied synovium. These procedures can decrease the frequency of bleeding episodes, minimizing the risk of articular cartilage damage. Achilles tendon lengthening can be performed, in isolation or in combination with other surgical measures, to correct Achilles tendon contractures. Both arthroscopic and open synovectomies are available as a means to remove the friable villous layer of the synovium and are often indicated when bleeding episodes cannot be properly controlled by factor replacement therapy or synoviorthesis. In the later stages of ankle arthropathy, other surgical options may be considered. Debridement may be indicated when there are loose pieces of cartilage or anterior osteophytes, and can help to improve the joint function, even in the presence of articular cartilage damage. Supramalleolar tibial osteotomy may be indicated in patients with a valgus deformity of the hindfoot without degenerative radiographic findings. Joint fusion, or arthrodesis, is the treatment of choice in the advanced stages of ankle arthropathy although total ankle replacement is currently available. Early ankle replacement components were associated with a poor outcome, but as implant designs have improved, there have been successful outcomes achieved. As the ankle is a commonly affected joint in many individuals with haemophilia, it is important to add to the knowledge base to validate indications and timing of surgical and non-surgical interventions in ankle arthropathy.

  3. Relevance of adjacent joint imaging in the evaluation of ankle fractures.

    PubMed

    Antoci, Valentin; Patel, Shaun P; Weaver, Michael J; Kwon, John Y

    2016-10-01

    Routinely obtaining adjacent joint radiographs when evaluating patients with ankle fractures may be of limited clinical utility and an unnecessary burden, particularly in the absence of clinical suspicion for concomitant injuries. One thousand, three hundred and seventy patients who sustained ankle fractures over a 5-year period presenting to two level 1 trauma centers were identified. Medical records were retrospectively reviewed for demographics, physical examination findings, and radiographic information. Analyses included descriptive statistics along with sensitivity and predictive value calculations for the presence of adjacent joint fracture. Adjacent joint imaging (n=1045 radiographs) of either the knee or foot was obtained in 873 patients (63.7%). Of those, 75/761 patients (9.9%) demonstrated additional fractures proximal to the ankle joint, most commonly of the proximal fibula. Twenty-two of 284 (7.7%) demonstrated additional fractures distal to the ankle joint, most commonly of the metatarsals. Tenderness to palpation demonstrated sensitivities of 0.92 and 0.77 and positive predictive values of 0.94 and 0.89 for the presence of proximal and distal fractures, respectively. Additionally, 19/22 (86.4%) of patients sustaining foot fractures had their injury detectable on initial ankle X-rays. Overall, only 5.5% (75/1370) of patients sustained fractures proximal to the ankle and only 0.2% (3/1370) of patients had additional foot fractures not evident on initial ankle X-rays. The addition of adjacent joint imaging for the evaluation of patients sustaining ankle fractures is low yield. As such, patient history, physical examination, and clinical suspicion should direct the need for additional X-rays. Level IV. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Correlation of clinical and radiologic results of complete subtalar release in congenital clubfoot].

    PubMed

    Kalenderer, Onder; Ağuş, Haluk; Ak, Mümtaz; Ozlük, Serkan

    2003-01-01

    We evaluated the mid-term results in patients who underwent complete subtalar release with the use of the Cincinnati incision for congenital clubfoot. Complete subtalar release was performed in 30 feet of 23 patients (16 boys, 7 girls; 7 bilateral cases). The mean age at surgery was 17.5 months (range 2 to 84 months). Clinically, cosmetic appearance, adduction of the forefoot, the range of motion of the ankle joint, and muscle strength were evaluated. Radiologic evaluations included talocalcaneal angles on antero-posterior and lateral views, talocalcaneal index, talar-first metatarsal angles, calcaneal-fifth metatarsal angles, and Bohler angles. Talar and navicular bone lengths were compared with the other side in unilateral patients. The results were evaluated according to the Simons' criteria. The mean follow-up was 9 years and 8 months (range 7 years to 14 years). The mean range of motion of the ankle joint was measured as 47 degrees (range 10 degrees to 60 degrees ). The parents of three patients were not satisfied with the clinical results. Clinically, six patients had metatarsus adductus. Radiologically, flattening of the talar head (7 patients) and the talar dome (2 patients) were detected in unilateral patients. Navicular dorsal subluxation was found in seven feet. Compared to the normal side, the mean navicular shortening was 2.6 mm (range 0 to 4 mm), the mean talar shortening was 4.8 mm (range 2 to 11 mm). According to the Simons' criteria, the results were satisfactory in 27 feet (90%) and unsatisfactory in three feet (10%). Our results suggest that complete subtalar release for the treatment of clubfoot enables correction of all components of the deformity at a single session, and that its clinical results are more favorable than radiologic results, without requiring a close cooperation of the parents.

  5. The Effect of Modified Brostrom-Gould Repair for Lateral Ankle Instability on In Vivo Tibiotalar Kinematics

    PubMed Central

    Wainright, William B; Spritzer, Charles E.; Lee, Jun Young; Easley, Mark E.; DeOrio, James K.; Nunley, James A.; DeFrate, Louis E.

    2012-01-01

    Background Lateral ankle instability leads to an increased risk of tibiotalar joint osteoarthritis. Previous studies have found abnormal tibiotalar joint motions with lateral ankle instability that may contribute to this increased incidence of osteoarthritis, including increased anterior translation and internal rotation of the talus under weight-bearing loading. Surgical repairs for lateral ankle instability have shown good clinical results, but the effects of repair on in vivo ankle motion are not well understood. Hypothesis The modified Broström-Gould lateral ligament reconstruction decreases anterior translation and internal rotation of the talus under in vivo weight-bearing loading conditions. Study Design Controlled laboratory study. Methods Seven patients underwent modified Brostöm-Gould repair for unilateral lateral ankle instability. Ankle joint kinematics as a function of increasing body weight were studied with magnetic resonance imaging and biplanar fluoroscopy. Tibiotalar kinematics were measured in unstable ankles preoperatively and postoperatively at a mean follow-up of 12 months, as well as in the uninjured contralateral ankles of the same individuals. Results Surgical repair resulted in statistically significant decreases in anterior translation of the talus (0.9±0.3mm, p=0.018) at 100% bodyweight and internal rotation of the talus at 75% (2.6±0.8°, p=0.019) and 100% (2.7±0.8°, p=0.013) bodyweight compared to ankle kinematics measured before repair. No statistically significant differences were detected between repaired ankles and contralateral normal ankles. Conclusion The modified Broström-Gould repair improved the abnormal joint motion observed in patients with lateral ankle instability, decreasing anterior translation and internal rotation of the talus. Clinical Relevance Altered kinematics may contribute to the tibiotalar joint degeneration that occurs with chronic lateral ankle instability. The findings of the current study support the efficacy of this repair in improving the abnormal ankle motion observed in these patients. PMID:22886690

  6. Effect of ankle braces on lower extremity joint energetics in single-leg landings.

    PubMed

    Gardner, Jacob K; McCaw, Steven T; Laudner, Kevin G; Smith, Peter J; Stafford, Lindsay N

    2012-06-01

    Ankle sprains are one of the most common injuries in competitive and recreational athletics. Studies have shown that the use of prophylactic ankle braces effectively reduces the frequency of ankle sprains in athletes. However, although it is generally accepted that the ankle braces are effective at reducing frontal plane motion, some researchers report that the design of the brace may also reduce ankle sagittal plane motion. The purpose of this study was to quantify lower extremity joint contributions to energy absorption during single-legged drop landings in three ankle brace conditions (no brace, boot brace, and hinged brace). Eleven physically active females experienced in landing and free of lower extremity injury (age = 22.3 ± 1.7 yr, height = 1.66 ± 0.04 m, mass = 58.43 ± 5.83 kg) performed 10 single-leg drop landings in three conditions (one unbraced, two braced) from a 0.33-m height. Measurements taken were hip, knee, and ankle joint impulse; hip, knee, ankle, and total work; and hip, knee, and ankle joint relative work. Total energy absorption remained consistent across the braced conditions (P = 0.057). Wearing the boot brace reduced relative ankle work (P = 0.04, Cohen d = 0.43) but did not change relative knee (P = 0.08, Cohen d = 0.32) or hip (P = 0.14, Cohen d = 0.20) work compared with the no-brace condition. In an ankle-braced condition, ankle, knee, and hip energetics may be altered depending on the design of the brace.

  7. Does Talocrural Joint-Thrust Manipulation Improve Outcomes After Inversion Ankle Sprain?

    PubMed

    Krueger, Brett; Becker, Laura; Leemkuil, Greta; Durall, Christopher

    2015-08-01

    Clinical Scenario: Ankle sprains account for roughly 10% of sport-related injuries in the active population. The majority of these injuries occur from excessive ankle inversion, leading to lateral ligamentous injury. In addition to pain and swelling, limitations in ankle range of motion (ROM) and self-reported function are common findings. These limitations are thought to be due in part to loss of mobility in the talocrural joint. Accordingly, some investigators have reported using high-velocity, low-amplitude thrust-manipulation techniques directed at the talocrural joint to address deficits in dorsiflexion (DF) ROM and function. This review was conducted to ascertain the impact of talocrural joint-thrust manipulation (TJM) on DF ROM, self-reported function, and pain in patients with a history of ankle sprain. Focused Clinical Question: In patients with a history of inversion ankle sprain, does TJM improve outcomes in DF ROM, self-reported function, and/or pain?

  8. Relationship between mechanical ankle joint laxity and subjective function.

    PubMed

    Hubbard-Turner, Tricia

    2012-10-01

    An increase in ankle joint laxity has been reported in patients with chronic ankle instability (CAI). However, it is not known if this increase in joint laxity is responsible for the subjective level of functional deficits also reported in these patients. One hundred twenty subjects with unilateral CAI (55 males, 65 females; age, 20.6 ± 1.5 years; mass, 74.5 ± 13.6 kg; height, 174.2 ± 9.7 cm) participated in the study. Mechanical joint stability was measured with an instrumented ankle arthrometer. The arthrometer measured ankle joint motion for anterior/posterior translation and inversion/eversion angular displacement. Subjective level of function was assessed with the foot and ankle disability index (FADI) and foot and ankle disability index sport (FADIS). Bivariate correlations using Pearson Product Moments were made between all dependent variables taken on the unstable ankles. The strongest relationship was between anterior laxity and the FADIS (r = -0.88, p < 0.0001). As scores on the FADIS decreased, anterior laxity increased. Similar significant results were reported for anterior laxity and the FADI (r = -0.65, p = 0.013), as well as inversion laxity and the FADI (r = -0.53, p = 0.017) and FADIS (r = -0.45, p = 0.013). These data demonstrate that there appears to be a relationship between anterior and inversion ankle laxity and subjective function in those with CAI. Although numerous insufficiencies develop after an ankle sprain, increased laxity may cause some of the subjective functional deficits reported in those with CAI. Strategies to prevent increased laxity following ankle sprain may improve the patient's subjective level of function.

  9. [Endoprosthesis failure in the ankle joint : Histopathological diagnostics and classification].

    PubMed

    Müller, S; Walther, M; Röser, A; Krenn, V

    2017-03-01

    Endoprostheses of the ankle joint show higher revision rates of 3.29 revisions per 100 component years. The aims of this study were the application and modification of the consensus classification of the synovia-like interface membrane (SLIM) for periprosthetic failure of the ankle joint, the etiological clarification of periprosthetic pseudocysts and a detailed measurement of proliferative activity (Ki67) in the region of osteolysis. Tissue samples from 159 patients were examined according to the criteria of the standardized consensus classification. Of these, 117 cases were derived from periprosthetic membranes of the ankle. The control group included 42 tissue specimens from the hip and knee joints. Particle identification and characterization were carried out using the particle algorithm. An immunohistochemical examination with Ki67 proliferation was performed in all cases of ankle pseudocysts and 19 control cases. The consensus classification of SLIM is transferrable to endoprosthetic failure of the ankle joint. Periprosthetic pseudocysts with the histopathological characteristics of the appropriate SLIM subtype were detectable in 39 cases of ankle joint endoprostheses (33.3%). The mean value of the Ki67 index was 14% and showed an increased proliferation rate in periprosthetic pseudocysts of the ankle (p-value 0.02037). In periprosthetic pseudocysts an above average higher detection rate of type 1 SLIM induced by abrasion (51.3%) with an increased Ki67 proliferation fraction (p-value 0.02037) was found, which can be interpreted as local destructive intraosseus synovialitis. This can be the reason for formation of pseudocystic osteolysis caused by high mechanical stress in ankle endoprostheses. A simplified diagnostic classification scoring system of dysfunctional endoprostheses of the ankle is proposed for collation of periprosthetic pseudocysts, ossifications and the Ki67 proliferation fraction.

  10. Repair of acute injuries of the lateral ligament complex of the ankle by suture anchors

    PubMed Central

    Liu, Xiang-Fei; Fang, Yang; Cao, Zhong-Hua; Li, Guang-Feng; Yang, Guo-Qing

    2015-01-01

    Objective: The objective of this study was to investigate the clinical curative effect of stage I repair of acute injuries of the lateral ligament complex of the ankle by the application of suture anchors. Methods: We retrospectively analyzed 18 cases of III degree acute injuries of the lateral ligament complex of the ankle. Results: There were statistically significant differences in preoperative and last follow-up VAS pain scores and AOFAS ankle hind-foot function scores. The X-ray talus displacement values in the anterior drawer test and pressure anteroposterior X-ray talar tilt in the ankle talar tilt test also showed statistically significant differences. Complications occurred in 2 patients, incision surface infection in one, and postoperative lateral dorsal skin numbness in one. All these cases were cured after symptomatic treatment. At the last follow-up all patients’ ankle joint activity recovered to their preinjury function levels. Conclusion: The application of suture anchors for small incision stage I repair of the lateral collateral ligament of ankle joint degree III injury, can effectively restored the stability of ankle joint, and prevent the occurrence of chronic ankle instability complications. It is effective and feasible for the treatment of ankle joint lateral collateral ligament injuries. PMID:26885144

  11. Video game-based neuromuscular electrical stimulation system for calf muscle training: a case study.

    PubMed

    Sayenko, D G; Masani, K; Milosevic, M; Robinson, M F; Vette, A H; McConville, K M V; Popovic, M R

    2011-03-01

    A video game-based training system was designed to integrate neuromuscular electrical stimulation (NMES) and visual feedback as a means to improve strength and endurance of the lower leg muscles, and to increase the range of motion (ROM) of the ankle joints. The system allowed the participants to perform isotonic concentric and isometric contractions in both the plantarflexors and dorsiflexors using NMES. In the proposed system, the contractions were performed against exterior resistance, and the angle of the ankle joints was used as the control input to the video game. To test the practicality of the proposed system, an individual with chronic complete spinal cord injury (SCI) participated in the study. The system provided a progressive overload for the trained muscles, which is a prerequisite for successful muscle training. The participant indicated that he enjoyed the video game-based training and that he would like to continue the treatment. The results show that the training resulted in a significant improvement of the strength and endurance of the paralyzed lower leg muscles, and in an increased ROM of the ankle joints. Video game-based training programs might be effective in motivating participants to train more frequently and adhere to otherwise tedious training protocols. It is expected that such training will not only improve the properties of their muscles but also decrease the severity and frequency of secondary complications that result from SCI. Copyright © 2010 IPEM. All rights reserved.

  12. Anterior cruciate ligament injury about 20 years post-treatment: A kinematic analysis of one-leg hop.

    PubMed

    Tengman, E; Grip, H; Stensdotter, Ak; Häger, C K

    2015-12-01

    Reduced dynamic knee stability, often evaluated with one-leg hops (OLHs), is reported after anterior cruciate ligament (ACL) injury. This may lead to long-standing altered movement patterns, which are less investigated. 3D kinematics during OLH were explored in 70 persons 23 ± 2 years after ACL injury; 33 were treated with physiotherapy in combination with ACL reconstruction (ACL(R)) and 37 with physiotherapy alone (ACL(PT)). Comparisons were made to 33 matched controls. We analyzed (a) maximal knee joint angles and range of motion (flexion, abduction, rotation); (b) medio-lateral position of the center of mass (COM) in relation to knee and ankle joint centers, during take-off and landing phases. Unlike controls, ACL-injured displayed leg asymmetries: less knee flexion and less internal rotation at take-off and landing and more lateral COM related to knee and ankle joint of the injured leg at landing. Compared to controls, ACL(R) had larger external rotation of the injured leg at landing. ACL(PT) showed less knee flexion and larger external rotation at take-off and landing, and larger knee abduction at Landing. COM was more medial in relation to the knee at take-off and less laterally placed relative to the ankle at landing. ACL injury results in long-term kinematic alterations during OLH, which are less evident for ACL(R). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Hip Biomechanics Are Altered in Male Runners with Achilles Tendinopathy.

    PubMed

    Creaby, Mark W; Honeywill, Conor; Franettovich Smith, Melinda M; Schache, Anthony G; Crossley, Kay M

    2017-03-01

    Achilles tendinopathy (AT) is a prevalent injury in running sports. Understanding the biomechanical factors associated with AT will assist in its management and prevention. The purpose of this study was to compare hip and ankle kinematics and kinetics in runners with and without AT. Fourteen male runners with AT and 11 healthy male runners (CTRL) ran over ground while lower-limb joint motion and ground reaction force data were synchronously captured. Hip and ankle joint angles, moments, and impulses in all three planes (sagittal, transverse, and frontal) were extracted for analysis. Independent t-tests were used to compare the differences between the AT and the CTRL groups for the biomechanical variables of interest. After Bonferroni adjustment, an alpha level of 0.0026 was set for all analyses. The AT group exhibited an increased peak hip external rotation moment (P = 0.001), hip external rotation impulse (P < 0.001), and hip adduction impulse (P < 0.001) compared with the CTRL group. No significant differences in ankle biomechanics were observed. This study presents preliminary evidence indicating that male runners with AT display altered hip biomechanics with respect to their healthy counterparts. Because of the retrospective design of the study, it is unknown whether these alterations are a predisposing factor for the disorder, a result of the condition, or a combination of both. The results of this study suggest that optimizing hip joint function should be considered in the rehabilitation of runners with AT.

  14. Neuromuscular electrical stimulation of the hindlimb muscles for movement therapy in a rodent model.

    PubMed

    Ichihara, Kazuhiko; Venkatasubramanian, Ganapriya; Abbas, James J; Jung, Ranu

    2009-01-30

    Neuromuscular electrical stimulation (NMES) can provide functional movements in people after central nervous system injury. The neuroplastic effects of long-term NMES-induced repetitive limb movement are not well understood. A rodent model of neurotrauma in which NMES can be implemented may be effective for such investigations. We present a rodent model for NMES of the flexor and extensor muscles of the hip, knee, and ankle hindlimb muscles. Custom fabricated intramuscular stimulating electrodes for rodents were implanted near identified motor points of targeted muscles in ten adult, female Long Evans rats. The effects of altering NMES pulse stimulation parameters were characterized using strength duration curves, isometric joint torque recruitment curves and joint angle measures. The data indicate that short pulse widths have the advantage of producing graded torque recruitment curves when current is used as the control parameter. A stimulus frequency of 75 Hz or more produces fused contractions. The data demonstrate ability to accurately implant the electrodes and obtain selective, graded, repeatable, strong muscle contractions. Knee and ankle angular excursions comparable to those obtained in normal treadmill walking in the same rodent species can be obtained by stimulating the target muscles. Joint torques (normalized to body weight) obtained were larger than those reported in the literature for small tailed therian mammals and for peak isometric ankle plantarflexion in a different rodent species. This model system could be used for investigations of NMES assisted hindlimb movement therapy.

  15. Intra-articular post-traumatic ankle joint mass imitating localized pigmented villonodular synovitis (LPVS), the aid of ankle arthroscopy for diagnosis and treatment-a case report.

    PubMed

    Zampeli, Franceska; Giotis, Dimitrios; Mantellos, Georgios; Kosta, Paraskevi; Georgoulis, Anastasios D

    2015-03-01

    Intra-articular post-traumatic ankle joint mass is a rare entity that may mimic other pathologies, mainly localized form of pigmented villonodular synovitis (LPVS) regarding the clinical and imaging characteristics. We report the case of a 16-year-old female patient that presented an intra-articular ankle joint mass 8 months after an ankle joint sprain for which magnetic resonance imaging (MRI) suggested LPVS as possible diagnosis due to the presence of hemosiderin deposits. Diagnosis of a post-traumatic hematoma of her ankle joint was made via fine needle aspiration (FNA) biopsy and anterior ankle arthroscopy. At one-year-follow-up after the arthroscopic excision of the hematoma, the patient remained asymptomatic and pain free while MRI revealed no pathologic findings. This case demonstrates that LPVS is not always the diagnosis when hemosiderin deposits are depicted on the MRI of a solitary intra-articular mass. The FNA biopsy under direct arthroscopic view assists the diagnosis and guides the treatment plan in cases that no definite diagnosis has been reached preoperatively by MRI. Level of evidence IV, case report. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Is midsole thickness a key parameter for the running pattern?

    PubMed

    Chambon, Nicolas; Delattre, Nicolas; Guéguen, Nils; Berton, Eric; Rao, Guillaume

    2014-01-01

    Many studies have highlighted differences in foot strike pattern comparing habitually shod runners who ran barefoot and with running shoes. Barefoot running results in a flatter foot landing and in a decreased vertical ground reaction force compared to shod running. The aim of this study was to investigate one possible parameter influencing running pattern: the midsole thickness. Fifteen participants ran overground at 3.3 ms(-1) barefoot and with five shoes of different midsole thickness (0 mm, 2 mm, 4 mm, 8 mm, 16 mm) with no difference of height between rearfoot and forefoot. Impact magnitude was evaluated using transient peak of vertical ground reaction force, loading rate, tibial acceleration peak and rate. Hip, knee and ankle flexion angles were computed at touch-down and during stance phase (range of motion and maximum values). External net joint moments and stiffness for hip, knee and ankle joints were also observed as well as global leg stiffness. No significant effect of midsole thickness was observed on ground reaction force and tibial acceleration. However, the contact time increased with midsole thickness. Barefoot running compared to shod running induced ankle in plantar flexion at touch-down, higher ankle dorsiflexion and lower knee flexion during stance phase. These adjustments are suspected to explain the absence of difference on ground reaction force and tibial acceleration. This study showed that the presence of very thin footwear upper and sole was sufficient to significantly influence the running pattern. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Correlation between knee and hindfoot alignment in patients with rheumatoid arthritis: The effects of subtalar joint destruction.

    PubMed

    Nakada, Izumi; Nakamura, Ichiro; Juji, Takuo; Ito, Katsumi; Matsumoto, Takumi

    2015-09-01

    Compensatory hindfoot alignment for deformities at the knee level has been demonstrated in patients with knee osteoarthritis. However, this phenomenon has not been elucidated in patients with rheumatoid arthritis (RA). The aim of this study is to investigate the relationship between knee deformity and hindfoot alignment and the effect of subtalar joint destruction in patients with RA. We retrospectively investigated RA patients (110 patients, 205 limbs) using radiographs in the standing anteroposterior knee, standing lateral foot, and hindfoot alignment views. The grade of destruction at the knee and subtalar joints was assigned using Larsen's grading system. The correlation between the femorotibial and tibiocalcaneal angles and the effect of joint destruction on this correlation were analyzed using Pearson's correlation coefficients. There was moderate correlation between the femorotibial and tibiocalcaneal angles in a group of knees with a Larsen grade of ≥ 4 (r = 0.544, p = 0.0239). This correlation was stronger in a group with less damaged subtalar joints with a Larsen grade of ≤ 3 (r = 0.705, p = 0.0049). These findings emphasized the importance of examining foot and ankles in patients with RA who undergo total knee arthroplasty.

  18. Design and development of a novel viscoelastic ankle-foot prosthesis based on the human ankle biomechanics.

    PubMed

    Safaeepour, Zahra; Esteki, Ali; Tabatabai Ghomshe, Farhad; Mousavai, Mohammad E

    2014-10-01

    In the present study, a new approach was applied to design and develop a viscoelastic ankle-foot prosthesis. The aim was to replicate the intact ankle moment-angle loop in the normal walking speed. The moment-angle loop of intact ankle was divided into four parts, and the appropriate models including two viscoelastic units of spring-damper mechanism were considered to replicate the passive ankle dynamics. The developed prototype was then tested on a healthy subject with the amputee gait simulator. The result showed that prosthetic ankle moment-angle loop was similar to that of intact ankle with the distinct four periods. The findings suggest that the prototype successfully provided the human ankle passive dynamics. Therefore, the viscoelastic units could imitate the four periods of a normal gait. The novel viscoelastic foot prosthesis could provide natural ankle dynamics in a gait cycle. Applying simple but biomechanical approach is suggested in conception of new designs for prosthetic ankle-foot mechanisms. © The International Society for Prosthetics and Orthotics 2014.

  19. Three-dimensional gait analysis of obese adults.

    PubMed

    Lai, Peggy P K; Leung, Aaron K L; Li, Agnes N M; Zhang, M

    2008-01-01

    Obesity has been clinically associated with musculoskeletal disorders. However, the findings were mainly focused on the analysis in the sagittal plane. The objectives of this study were to investigate the three-dimensional gait characteristics of Chinese obese adults and to compare the results with normal subjects. Fourteen obese subjects, mean age 35.4 (8.8)years, eight females and six males, with body mass index 33.06 (4.2)kg/m(2) and 14 non-obese subjects, mean age 27.6 (8.6)years, eight females and six males, with body mass index 21.33 (1.5)kg/m(2) participated in this study. All subjects did not have current or past neurological or cardiovascular illness, orthopaedic abnormality, or pain which might affect gait. The kinematics and kinetics data of all subjects were recorded during their self-selected walking speed with a three-dimensional motion analysis system. The obese group walked slower and had a shorter stride length. They also spent more time on stance phase and double support in walking. Greater hip adduction was shown in the obese group during terminal stance and pre-swing. The maximum knee adduction angles of the obese group in both stance and swing phases were significantly higher. The ankle eversion angle of the obese group was significantly higher from mid stance to pre-swing. There were reduction of peak ankle plantar flexor moment, and increase of ankle inversion moment. There were some significant differences in temporal-spatial, joint motion and joint moment data between the obese and the non-obese participants. The obese individuals might adjust their gait characteristics in response to their heavy bodies to reduce the moment about the knee and the energy expenditure per unit time.

  20. Center of mass trajectory and orientation to ankle and knee in sagittal plane is maintained with forward lean when backpack load changes during treadmill walking.

    PubMed

    Caron, Robert R; Wagenaar, Robert C; Lewis, Cara L; Saltzman, Elliot; Holt, Kenneth G

    2013-01-04

    Maintaining the normal shape and amplitude of the vertical trajectory of the center of mass (COM) during stance has been shown to maximize the efficiency of unloaded gait. Kinematic adaptations to load carriage, such as forward lean have yet to be understood in relation to COM movement. The purpose of this study is to better understand how load impacts the vertical COM(TSYS) trajectory and to clarify the impact of forward lean as it relates to the dynamics of sagittal plane COM(TSYS) movement during stance with changing load. 17 subjects walked on treadmill at a constant preferred walking velocity while nine different loads ranging from 12.5% to 40% bodyweight were systematically added and removed from a backpack. Kinematic data were collected using an Optotrak, three-dimensional motion analysis system and used to estimate position of the COM as well as segment and COM-to-joint vector orientation angles. The shape and amplitude of the COM vertical trajectory was maintained across all loaded conditions. The orientations of COM-to-ankle and -knee vectors were maintained in all loaded conditions except the heaviest load (40% BW). Results suggest that forward lean changed linearly with changes in load to maintain the COM-to-ankle and -knee vector orientations. COM vertical trajectory was maintained by a combination of invariants including lower-limb segment angles and a constant direction of toe-off impulse vector. The kinematic invariants found suggest a simplified control mechanism by which the system limits degrees of freedom and potentially minimizes torque about lower-extremity joints with added load. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Proximal Opening Wedge Osteotomy Provides Satisfactory Midterm Results With a Low Complication Rate.

    PubMed

    Oravakangas, Rami; Leppilahti, Juhana; Laine, Vesa; Niinimäki, Tuukka

    2016-01-01

    Hallux valgus is one of the most common foot deformities. Proximal opening wedge osteotomy is used for the treatment of moderate and severe hallux valgus with metatarsus primus varus. However, hypermobility of the first tarsometatarsal joint can compromise the results of the operation, and a paucity of midterm results are available regarding proximal open wedge osteotomy surgery. The aim of the present study was to assess the midterm results of proximal open wedge osteotomy in a consecutive series of patients with severe hallux valgus. Thirty-one consecutive adult patients (35 feet) with severe hallux valgus underwent proximal open wedge osteotomy. Twenty patients (35.5%) and 23 feet (34.3%) were available for the final follow-up examination. The mean follow-up duration was 5.8 (range 4.6 to 7.0) years. The radiologic measurements and American Orthopaedic Foot and Ankle Society hallux-metatarsophalangeal-interphalangeal scores were recorded pre- and postoperatively, and subjective questionnaires were completed and foot scan analyses performed at the end of the follow-up period. The mean hallux valgus angle decreased from 38° to 23°, and the mean intermetatarsal angle correction decreased from 17° to 10°. The mean improvement in the American Orthopaedic Foot and Ankle Society hallux metatarsophalangeal-interphalangeal score increased from 52 to 84. Two feet (5.7%) required repeat surgery because of recurrent hallux valgus. No nonunions were identified. Proximal open wedge osteotomy provided satisfactory midterm results in the treatment of severe hallux valgus, with a low complication rate. The potential instability of the first tarsometatarsal joint does not seem to jeopardize the midterm results of the operation. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  2. [Strategies for simultaneous control of the equilibrium and of the head position during the raising movement of a leg].

    PubMed

    Mouchnino, L; Aurenty, R; Massion, J; Pedotti, A

    1991-01-01

    The coordination between equilibrium control and the ability to maintain the position of given segments (head, trunk) was studied in standing subjects, instructed to raise one leg laterally at an angle of 45 degrees in response to a light. Two sources of light placed at eye level indicated the side on which the movement was to be performed. Two populations were compared: naive subjects and dancers. Two control strategies were identified. An "inclination" strategy was used by the naive subjects. This consisted of an external rotation of the body around the antero-posterior ankle joint axis; a counter-rotation of the head with respect to the trunk was observed, which ensured some stabilization in the horizontal plane of the interorbital line. A "translation" strategy was used by the dancers. Here the external rotation of the leg around the ankle joint was associated with a feed-forward counter-rotation of the trunk around the coxofemoral joint so that the horizontality of the interorbital line and the verticality of the trunk axis were maintained. This new coordination results from a long-term training and indicates that a new motor program has been elaborated.

  3. Effects of balance training by knee joint motions on muscle activity in adult men with functional ankle instability.

    PubMed

    Nam, Seung-Min; Kim, Won-Bok; Yun, Chang-Kyo

    2016-05-01

    [Purpose] This study examined the effects of balance training by applying knee joint movements on muscle activity in male adults with functional ankle instability. [Subjects and Methods] 28 adults with functional ankle instability, divided randomly into an experimental group, which performed balance training by applying knee joint movements for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Electromyographic values of the tibialis anterior, peroneus longus, peroneus brevis, and the lateral gastrocnemius muscles were obtained to compare and analyze muscle activity before and after the experiments in each group. [Results] The experimental group had significant increases in muscle activity in the tibialis anterior, peroneus longus, and lateral gastrocnemius muscles, while muscle activity in the peroneus brevis increased without significance. The control group had significant increases in muscle activity in the tibialis anterior and peroneus longus, while muscle activity in the peroneus brevis and lateral gastrocnemius muscles increased without significance. [Conclusion] In conclusion, balance training by applying knee joint movements can be recommended as a treatment method for patients with functional ankle instability.

  4. Some biomechanical aspects of the foot and ankle in athletes with and without shin splints.

    PubMed

    Viitasalo, J T; Kvist, M

    1983-01-01

    Thirteen adult male athletes (long-distance runners and orienteerers without foot problems) and 35 male athletes with shin splints were compared with respect to: 1) the position of the lower leg and the heel while standing, 2) the passive range of mobility in the subtalar joint, and 3) the angular displacement between the calcaneus and the midline of the lower leg (Achilles tendon angle) while running with bare feet on a treadmill. In standing, the two groups differed statistically significantly in the Achilles tendon angle, which values were greater in the shin splint group. With respect to passive mobility, the athletes with shin splints had significantly greater (P less than 0.05-0.01) angular displacement values in inversion, eversion, and in their sum than the control group. While running, the Achilles tendon angle of the shin splint group was significantly greater (P less than 0.01) at the heel strike. Further, the shin splints group had a significantly greater (P less than 0.01) angular displacement between the heel strike and the maximal everted position. The results suggest structural and functional differences in the feet and ankles between healthy athletes and those with shin splints.

  5. Immediate-term effects of use of an ankle-foot orthosis with an oil damper on the gait of stroke patients when walking without the device.

    PubMed

    Yamamoto, Sumiko; Ibayashi, Setsuro; Fuchi, Masako; Yasui, Tadashi

    2015-04-01

    An ankle-foot orthosis using an oil damper is designed to enable natural movement of the ankle joint. Wearing an ankle-foot orthosis using an oil damper has been demonstrated to assist the first rocker in stroke patients, but its effect on their gait when not wearing it is unclear. To determine the effect of use of ankle-foot orthosis using an oil damper on the gait of stroke patients with hemiparesis when not wearing the ankle-foot orthosis. Crossover study. The gait of eight stroke patients in the chronic phase when not wearing an ankle-foot orthosis was measured, using a three-dimensional motion analysis system, before using the ankle-foot orthosis using an oil damper and then without and with using the ankle-foot orthosis using an oil damper after 3 weeks of use. Differences in gait were compared between the three measurement conditions. Use of ankle-foot orthosis using an oil damper significantly decreased preswing time and significantly increased the positive ankle joint power in stance when not wearing the ankle-foot orthosis using an oil damper. These changes indicate the promising therapeutic effects of ankle-foot orthosis using an oil damper use and suggest the ankle-foot orthosis using an oil damper's potential as a therapeutic device. After 3 weeks of use of an ankle-foot orthosis using an oil damper, which assists the first rocker, the gait of stroke patients in the chronic phase when not wearing the ankle-foot orthosis using an oil damper was improved. Preswing time was significantly decreased and positive ankle joint power was significantly increased. The ankle-foot orthosis using an oil damper, which assists the first rocker function with natural movement of the ankle joint during gait, has the potential to improve the gait of stroke patients after immediate-term use. © The International Society for Prosthetics and Orthotics 2014.

  6. Assessment of ankle and hindfoot stability and joint pressures using a human cadaveric model of a large lateral talar process excision: a biomechanical study.

    PubMed

    Sands, Andrew; White, Charles; Blankstein, Michael; Zderic, Ivan; Wahl, Dieter; Ernst, Manuela; Windolf, Markus; Hagen, Jennifer E; Richards, R Geoff; Stoffel, Karl; Gueorguiev, Boyko

    2015-03-01

    Lateral talar process fragment excision may be followed by hindfoot instability and altered biomechanics. There is controversy regarding the ideal fragment size for internal fixation versus excision and a concern that excision of a large fragment may lead to significant instability. The aim of this study was to assess the effect of a simulated large lateral talar process excision on ankle and subtalar joint stability.A custom-made seesaw rig was designed to apply inversion/eversion stress loading on 7 fresh-frozen human cadaveric lower legs and investigate them in pre-excision, 5 cm and 10 cm lateral talar process fragment excision states. Anteroposterior radiographs were taken to assess ankle and subtalar joint tilt and calculate angular change from neutral hindfoot alignment to 10-kg forced inversion/eversion. Ankle joint pressures and contact areas were measured under 30-kg axial load in neutral hindfoot alignment.In comparison to the pre-excision state, no significantly different mediolateral angular change was observed in the subtalar joint after 5 and 10 cm lateral talar process fragment excision in inversion and eversion. With respect to the ankle joint, 10-cm fragment excision produced significantly bigger inversion tibiotalar tilt compared with the pre-excision state, P = .04. No significant change of the ankle joint pressure and contact area was detected after 5 and 10-cm excision in comparison with the pre-excison state.An excision of up to 10 cm of the lateral talar process does not cause a significant instability at the level of the subtalar joint but might be a destabilizing factor at the ankle joint under inversion stress. The latter could be related to extensive soft tissue dissection required for resection.

  7. Movement Strategies among Groups of Chronic Ankle Instability, Coper, and Control.

    PubMed

    Son, S Jun; Kim, Hyunsoo; Seeley, Matthew K; Hopkins, J Ty

    2017-08-01

    Comprehensive evaluation of movement strategies during functional movement is a difficult undertaking. Because of this challenge, studied movements have been oversimplified. Furthermore, evaluating movement strategies at only a discrete time point(s) provide limited insight into how movement strategies may change or adapt in chronic ankle instability (CAI) patients. This study aimed to identify abnormal movement strategies in individuals with a history of ankle sprain injury during a sports maneuver compared with healthy controls. Sixty-six participants, consisting of 22 CAI patients, 22 ankle sprain copers, and 22 healthy controls, participated in this study. Functional profiles of lower extremity kinematics, kinetics, and EMG activation from initial contact (0% of stance) to toe-off (100% of stance) were collected and analyzed during a jump landing/cutting task using a functional data analysis approach. Compared with copers, CAI patients displayed landing positions of less plantarflexion, less inversion, more knee flexion, more hip flexion, and less hip abduction during the first 25% of stance. However, restricted dorsiflexion angle was observed in both CAI patients and copers relative to controls during the midlanding to mid-side-cutting phase when the ankle and knee reached its peak range of motion (e.g., dorsiflexion and knee flexion). Reduced EMG activation of tibialis anterior, peroneus longus, medial gastrocnemius, and gluteus medius may be due to altered kinematics that reduce muscular demands on the involved muscles. CAI patients displayed altered movement strategies, perhaps in an attempt to avoid perceived positions of risk. Although sagittal joint positions seemed to increase the external torque on the knee and hip extensors, frontal joint positions appeared to reduce the muscular demands on evertor and hip abductor muscles.

  8. Role of Surgery in Management of Osteo-Articular Tuberculosis of the Foot and Ankle

    PubMed Central

    Dhillon, Mandeep Singh; Agashe, Vikas; Patil, Sampat Dumbre

    2017-01-01

    Background: Tuberculosis of the foot and ankle still remains to be a significant problem, especially in the developing countries, and with an increase in incidence in immunosuppressed patients. Treatment is mainly medical using multidrug chemotherapy; surgical interventions range from biopsy, synovectomy and debridement, to joint preserving procedures like distraction in early cases, and arthrodesis of hindfoot joints and the ankle in advanced disease with joint destruction. Surgical Options: All procedures should be done after initiating appropriate medical management. The ankle is the commonest joint needing intervention, followed by the subtalar and talo-navicular joint. Forefoot TB limited to the bone rarely needs surgical intervention except when the infective focus is threatening to invade a joint. Articular disease can spread rapidly, so early diagnosis and treatment can influence the outcome. Surgical interventions may need to be modified in the presence of sinuses and active disease; fusions need compression, and implants have to be chosen wisely. External fixators are the commonest devices used for compression in active disease, but intramedullary nails better stabilize pantalar arthrodesis. Arthroscopy has become a valuable tool for visualizing the ankle and hindfoot joints, and is an excellent adjunct for arthrodesis by minimally invasive methods. Conclusion: Although Osteoarticular Tb involving the foot and ankle is largely managed with chemotherapy, specific indications for surgical intervention exist. Timely done procedures could limit joint destruction, or prevent spread to adjacent joints. Fusions are the commonest procedure for sequelae of disease or for correcting residual deformity. PMID:29081861

  9. Atlas of Radiographic Features of Osteoarthritis of the Ankle and Hindfoot

    PubMed Central

    Kraus, Virginia Byers; Kilfoil, Terrence M; Hash, Thomas W.; McDaniel, Gary; Renner, Jordan B; Carrino, John A.; Adams, Samuel

    2015-01-01

    Objective To develop a radiographic atlas of osteoarthritis (OA) for use as a template and guide for standardized scoring of radiographic features of OA of the ankle and hindfoot joints. Method Under Institutional Review Board approval, ankle and hindfoot images were selected from a cohort study and from among cases that underwent ankle radiography during a 6-month period at Duke University Medical Center. Missing OA pathology was obtained through supplementation of cases with the assistance of a foot and ankle specialist in Orthopaedic surgery and a musculoskeletal radiologist. Images were obtained and reviewed without patient identifying information. Images went through multiple rounds of review and final images were selected by consensus of the study team. For intra-rater and inter-rater reliability, the kappa statistic was calculated for two readings by 3 musculoskeletal radiologists, a minimum of two weeks apart, of ankle and hindfoot radiographs from 30 anonymized subjects. Results The atlas demonstrates individual radiographic features (osteophyte and joint space narrowing) and Kellgren Lawrence grade for all aspects of the talocrural (ankle joint proper) and talocalcaneal (subtalar) joints. Reliability of scoring based on the atlas was quite good to excellent for most features indicated. Additional examples of ankle joint findings are illustrated including sclerosis, os trigonum, subchondral cysts and talar tilt. Conclusions It is anticipated that this atlas will assist with standardization of scoring of ankle and hindfoot OA by basic and clinical OA researchers. PMID:26318654

  10. Surgical procedures in patients with haemophilic arthropathy of the ankle.

    PubMed

    Barg, A; Morris, S C; Schneider, S W; Phisitkul, P; Saltzman, C L

    2016-05-01

    In haemophilia, the ankle joint is one of the most common and earliest joints affected by recurrent bleeding, commonly resulting in end-stage ankle osteoarthritis during early adulthood. The surgical treatment of haemophilic ankle arthropathy is challenging. This review aims to highlight the literature addressing clinical outcomes following the most common approaches for different stages of haemophilia-induced ankle osteoarthritis: arthroscopic debridement, joint distraction arthroplasty, supramalleolar osteotomies, total ankle replacement, and ankle arthrodesis. A systematic literature review was performed using established medical literature databases. The following information was retrieved from the literature: patients' demographics, surgical technique, duration of follow-up, clinical outcome including pain relief and complication rate. A total of 42 clinical studies published between 1978 and 2015 were included in the systematic literature review. Eight and 34 studies had prospective and retrospective design, respectively. The most common studies were level IV studies (64.3%). The orthopaedic treatment of patients with haemophilic ankle osteoarthritis is often challenging and requires complete and careful preoperative assessment. In general, both joint-preserving and joint non-preserving procedure types can be performed. All specific relative and absolute contraindications should be considered to achieve appropriate postoperative outcomes. The current literature demonstrated that orthopaedic surgeries, with appropriate indication, in patients with haemophilic ankle arthropathy result in good postoperative results comparable to those observed in non-haemophiliacs. The surgical treatment should be performed in a setting with the ability to have multidisciplinary management, including expertise in haematology. © 2016 John Wiley & Sons Ltd.

  11. Atlas of radiographic features of osteoarthritis of the ankle and hindfoot.

    PubMed

    Kraus, V B; Kilfoil, T M; Hash, T W; McDaniel, G; Renner, J B; Carrino, J A; Adams, S

    2015-12-01

    To develop a radiographic atlas of osteoarthritis (OA) for use as a template and guide for standardized scoring of radiographic features of OA of the ankle and hindfoot joints. Under Institutional Review Board approval, ankle and hindfoot images were selected from a cohort study and from among cases that underwent ankle radiography during a 6-month period at Duke University Medical Center. Missing OA pathology was obtained through supplementation of cases with the assistance of a foot and ankle specialist in Orthopaedic surgery and a musculoskeletal radiologist. Images were obtained and reviewed without patient identifying information. Images went through multiple rounds of review and final images were selected by consensus of the study team. For intra-rater and inter-rater reliability, the kappa statistic was calculated for two readings by three musculoskeletal radiologists, a minimum of two weeks apart, of ankle and hindfoot radiographs from 30 anonymized subjects. The atlas demonstrates individual radiographic features (osteophyte and joint space narrowing (JSN)) and Kellgren-Lawrence grade for all aspects of the talocrural (ankle joint proper) and talocalcaneal (subtalar) joints. Reliability of scoring based on the atlas was quite good to excellent for most features indicated. Additional examples of ankle joint findings are illustrated including sclerosis, os trigonum, subchondral cysts and talar tilt. It is anticipated that this atlas will assist with standardization of scoring of ankle and hindfoot OA by basic and clinical OA researchers. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Lower limb joint kinetics and ankle joint stiffness in the sprint start push-off.

    PubMed

    Charalambous, Laura; Irwin, Gareth; Bezodis, Ian N; Kerwin, David

    2012-01-01

    Sprint push-off technique is fundamental to sprint performance and joint stiffness has been identified as a performance-related variable during dynamic movements. However, joint stiffness for the push-off and its relationship with performance (times and velocities) has not been reported. The aim of this study was to quantify and explain lower limb net joint moments and mechanical powers, and ankle stiffness during the first stance phase of the push-off. One elite sprinter performed 10 maximal sprint starts. An automatic motion analysis system (CODA, 200 Hz) with synchronized force plates (Kistler, 1000 Hz) collected kinematic profiles at the hip, knee, and ankle and ground reaction forces, providing input for inverse dynamics analyses. The lower-limb joints predominately extended and revealed a proximal-to-distal sequential pattern of maximal extensor angular velocity and positive power production. Pearson correlations revealed relationships (P < 0.05) between ankle stiffness (5.93 ± 0.75 N x m x deg(-1)) and selected performance variables. Relationships between negative power phase ankle stiffness and horizontal (r = -0.79) and vertical (r = 0.74) centre of mass velocities were opposite in direction to the positive power phase ankle stiffness (horizontal: r = 0.85; vertical: r = -0.54). Thus ankle stiffness may affect the goals of the sprint push-off in different ways, depending on the phase of stance considered.

  13. Lower Extremity Movement Differences Persist After Anterior Cruciate Ligament Reconstruction and When Returning to Sports.

    PubMed

    Butler, Robert J; Dai, Boyi; Huffman, Nikki; Garrett, William E; Queen, Robin M

    2016-09-01

    To examine how landing mechanics change in patients after anterior cruciate ligament reconstruction (ACL-R) between 6 months and 12 months after surgery. Case-series. Laboratory. Fifteen adolescent patients after ACL-R participated. Lower extremity three-dimensional motion analysis was conducted during a bilateral stop jump task in patients at 6 and 12 months after ACL-R. Joint kinematic and kinetic data, in addition to ground reaction forces, were collected at each time point. During the stop jump landing, the peak joint moments and the initial and peak joint motion at the ankle, knee, and hip were examined. The peak vertical ground reaction force was also examined. Interactions were observed for both the peak knee (P = 0.03) and hip extension moment (P = 0.07). However, only the hip extension moment was symmetrical level at 12 months. Statistically significant (P < 0.05) side-to-side differences existed for the ankle angle at initial contact, peak plantarflexion moment, peak hip flexion angle, and peak impact vertical ground reaction force independent of time. The findings of this study suggest that sagittal plane moments at the knee and hip demonstrate an increase in symmetry between 6 months and 1 year after ACL-R surgery, however, symmetry of the knee extension moment is not established by 12 months after surgery. The lack of change in the variables across time was unexpected. As a result, it is inappropriate to expect a change in landing mechanics solely as a result of time alone after discharge from rehabilitation.

  14. Giant Cells Osseous Tumor in the Tarsal Canal after Lateral Ankle Sprain

    PubMed Central

    Lughi, Marcello

    2018-01-01

    Ankle sprain can cause injuries to the anatomic structures surrounding the tibiotarsal joint. A possible extra-articular pathology is to be hypothesized and diagnosed as early as possible. The subtalar joint, for anatomical and functional reasons, is one of the most damaged joints following an ankle sprain. In spite of this, its involvement is often underestimated. The clinical case presented in the present article is referred to a giant cells osseous tumor in the tarsal canal that was diagnosed 2 months after an inversion ankle sprain. PMID:29675509

  15. Ankle Joint Intrinsic Dynamics is More Complex than a Mass-Spring-Damper Model.

    PubMed

    Sobhani Tehrani, Ehsan; Jalaleddini, Kian; Kearney, Robert E

    2017-09-01

    This paper describes a new small signal parametric model of ankle joint intrinsic mechanics in normal subjects. We found that intrinsic ankle mechanics is a third-order system and the second-order mass-spring-damper model, referred to as IBK, used by many researchers in the literature cannot adequately represent ankle dynamics at all frequencies in a number of important tasks. This was demonstrated using experimental data from five healthy subjects with no voluntary muscle contraction and at seven ankle positions covering the range of motion. We showed that the difference between the new third-order model and the conventional IBK model increased from dorsi to plantarflexed position. The new model was obtained using a multi-step identification procedure applied to experimental input/output data of the ankle joint. The procedure first identifies a non-parametric model of intrinsic joint stiffness where ankle position is the input and torque is the output. Then, in several steps, the model is converted into a continuous-time transfer function of ankle compliance, which is the inverse of stiffness. Finally, we showed that the third-order model is indeed structurally consistent with agonist-antagonist musculoskeletal structure of human ankle, which is not the case for the IBK model.

  16. The physical demands of Olympic yacht racing.

    PubMed

    Mackie, H; Sanders, R; Legg, S

    1999-12-01

    The primary purpose of this study was to quantify the up wards forces of the feet on the hiking strap and the forces in the mainsheet of four Olympic classes of racing dinghies (Europe, Laser. Finn and 470) during realistic on-water sailing in varying wind conditions. The secondary aim of the study was to measure the joint angles adopted by the sailors and boat heel angles. The tertiary aim was to identify events and sailing conditions associated with large or patterned force production. Forces in the hiking strap and mainsheet of four classes of Olympic sailing dinghies were measured on eleven New Zealand sailors during simulated on-water racing in a range of wind conditions. Up-wind hiking strap forces reached an average of 73-87% of predicted maximal voluntary contraction (pred MVC), with peak forces exceeding 100% pred MVC. Mainsheet forces reached 25-35% pred MVC, with peak forces reaching 40-50% pred MVC. Off-wind hiking strap and mainsheet forces were considerably lower than up-wind forces. Ankle and hip joint angles increased and knee joint angles decreased with increasing wind speed during up-wind sailing. Large forces occurred in the hiking strap and mainsheet when boats reached the tops of wave during up-wind sailing in high wind speeds and when a gust of wind hit the boat. During off-wind sailing large forces were observed in the mainsheet when surfing down waves. It is recommended that the intensities and joint angles found in this study be used as a basis for the development of class specific off-water physical conditioning programmes.

  17. Influence of ankle joint plantarflexion and dorsiflexion on lateral ankle sprain: A computational study.

    PubMed

    Purevsuren, Tserenchimed; Kim, Kyungsoo; Batbaatar, Myagmarbayar; Lee, SuKyoung; Kim, Yoon Hyuk

    2018-05-01

    Understanding the mechanism of injury involved in lateral ankle sprain is essential to prevent injury, to establish surgical repair and reconstruction, and to plan reliable rehabilitation protocols. Most studies for lateral ankle sprain posit that ankle inversion, internal rotation, and plantarflexion are involved in the mechanism of injury. However, recent studies indicated that ankle dorsiflexion also plays an important role in the lateral ankle sprain mechanism. In this study, the contributions of ankle plantarflexion and dorsiflexion on the ankle joint were evaluated under complex combinations of internal and inversion moments. A multibody ankle joint model including 24 ligaments was developed and validated against two experimental cadaveric studies. The effects of ankle plantarflexion (up to 60°) and dorsiflexion (up to 30°) on the lateral ankle sprain mechanism under ankle inversion moment coupled with internal rotational moment were investigated using the validated model. Lateral ankle sprain injuries can occur during ankle dorsiflexion, in which the calcaneofibular ligament and anterior talofibular ligament tears may occur associated with excessive inversion and internal rotational moment, respectively. Various combinations of inversion and internal moment may lead to anterior talofibular ligament injuries at early ankle plantarflexion, while the inversion moment acts as a primary factor to tear the anterior talofibular ligament in early plantarflexion. It is better to consider inversion and internal rotation as primary factors of the lateral ankle sprain mechanism, while plantarflexion or dorsiflexion can be secondary factor. This information will help to clarify the lateral ankle sprain mechanism of injury.

  18. Long-term stress distribution patterns of the ankle joint in varus knee alignment assessed by computed tomography osteoabsorptiometry.

    PubMed

    Onodera, Tomohiro; Majima, Tokifumi; Iwasaki, Norimasa; Kamishima, Tamotsu; Kasahara, Yasuhiko; Minami, Akio

    2012-09-01

    The stress distribution of an ankle under various physiological conditions is important for long-term survival of total ankle arthroplasty. The aim of this study was to measure subchondral bone density across the distal tibial joint surface in patients with malalignment/instability of the lower limb. We evaluated subchondral bone density across the distal tibial joint in patients with malalignment/instability of the knee by computed tomography (CT) osteoabsorptiometry from ten ankles as controls and from 27 ankles with varus deformity/instability of the knee. The quantitative analysis focused on the location of the high-density area at the articular surface, to determine the resultant long-term stress on the ankle joint. The area of maximum density of subchondral bone was located in the medial part in all subjects. The pattern of maximum density in the anterolateral area showed stepwise increases with the development of varus deformity/instability of the knee. Our results should prove helpful for designing new prostheses and determining clinical indications for total ankle arthroplasty.

  19. Prolonged stretching of the ankle plantarflexors elicits muscle-tendon adaptations relevant to ankle gait kinetics in children with spastic cerebral palsy.

    PubMed

    Martín Lorenzo, Teresa; Rocon, Eduardo; Martínez Caballero, Ignacio; Ramírez Barragán, Ana; Lerma Lara, Sergio

    2017-11-01

    Tissue related ankle hyper-resistance has been reported to contribute to equinus gait in children with spastic cerebral palsy. Hence, ankle plantarflexor stretching programs have been developed in order to restore passive ankle dorsiflexion. Despite high quality evidence on the limited effects of stretching on passive joint mobility, further muscle-tendon adaptations have been reported which may impact gait performance. As such, children with spastic cerebral palsy subject to long-term manual static stretching achieved dorsiflexion gains through the reduction of muscle and fascicle strain whilst preserving tendon strain, and prolonged use of ankle-foot orthoses achieved similar dorsiflexion gains through increased tendon strain whilst preserving muscle and fascicle strain. The latter concurred with normalization of early stance plantarflexor moment yet reductions in push-off plantarflexor moment given the increase in tendon compliance. Therefore, similar limited gains in passive ankle joint mobility in response to stretching may be achieved either by preserving/restoring optimal muscle-tendon function, or at the expense of muscle-tendon function and thus contributing gait impairments. The largest increase in ankle passive joint mobility in children with SCP has been obtained through prolonged plantarflexor stretching through ankle casting combined with botulinum neurotoxin type A. However, to our knowledge, there are no published studies on muscle-tendinous adaptations to ankle casting combined with botulinum toxin type A and its effect on ankle joint gait kinetics. Therefore, we hypothesized that ankle casting elicits muscle-tendon adaptations which concur with altered ankle joint kinetics during the stance phase of gait in children with SCP. More information is needed about the relationships between muscle structure and function, and the effect of specific interventions designed to alter muscle properties and associated functional outcomes in children with spastic cerebral palsy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Manual therapy in joint and nerve structures combined with exercises in the treatment of recurrent ankle sprains: A randomized, controlled trial.

    PubMed

    Plaza-Manzano, Gustavo; Vergara-Vila, Marta; Val-Otero, Sandra; Rivera-Prieto, Cristina; Pecos-Martin, Daniel; Gallego-Izquierdo, Tomás; Ferragut-Garcías, Alejandro; Romero-Franco, Natalia

    2016-12-01

    Recurrent ankle sprains often involve residual symptoms for which subjects often perform proprioceptive or/and strengthening exercises. However, the effectiveness of mobilization to influence important nerve structures due to its anatomical distribution like tibial and peroneal nerves is unclear. To analyze the effects of proprioceptive/strengthening exercises versus the same exercises and manual therapy including mobilizations to influence joint and nerve structures in the management of recurrent ankle sprains. A randomized single-blind controlled clinical trial. Fifty-six patients with recurrent ankle sprains and regular sports practice were randomly assigned to experimental or control group. The control group performed 4 weeks of proprioceptive/strengthening exercises; the experimental group performed 4 weeks of the same exercises combined with manual therapy (mobilizations to influence joint and nerve structures). Pain, self-reported functional ankle instability, pressure pain threshold (PPT), ankle muscle strength, and active range of motion (ROM) were evaluated in the ankle joint before, just after and one month after the interventions. The within-group differences revealed improvements in all of the variables in both groups throughout the time. Between-group differences revealed that the experimental group exhibited lower pain levels and self-reported functional ankle instability and higher PPT, ankle muscle strength and ROM values compared to the control group immediately after the interventions and one month later. A protocol involving proprioceptive and strengthening exercises and manual therapy (mobilizations to influence joint and nerve structures) resulted in greater improvements in pain, self-reported functional joint stability, strength and ROM compared to exercises alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. It pays to have a spring in your step

    PubMed Central

    Sawicki, Gregory S.; Lewis, Cara L.; Ferris, Daniel P.

    2010-01-01

    A large portion of the mechanical work required for walking comes from muscles and tendons crossing the ankle joint. By storing and releasing elastic energy in the Achilles tendon during each step, humans greatly enhance the efficiency of ankle joint work far beyond what is possible for work performed at the knee and hip joints. Summary Humans produce mechanical work at the ankle joint during walking with an efficiency two to six times greater than isolated muscle efficiency. PMID:19550204

  2. Ankle joint pressure changes in high tibial and distal femoral osteotomies: a cadaver study.

    PubMed

    Krause, F; Barandun, A; Klammer, G; Zderic, I; Gueorguiev, B; Schmid, T

    2017-01-01

    To assess the effect of high tibial and distal femoral osteotomies (HTO and DFO) on the pressure characteristics of the ankle joint. Varus and valgus malalignment of the knee was simulated in human cadaver full-length legs. Testing included four measurements: baseline malalignment, 5° and 10° re-aligning osteotomy, and control baseline malalignment. For HTO, testing was rerun with the subtalar joint fixed. In order to represent half body weight, a 300 N force was applied onto the femoral head. Intra-articular sensors captured ankle pressure. In the absence of restriction of subtalar movement, insignificant migration of the centre of force and changes of maximal pressure were seen at the ankle joint. With restricted subtalar motion, more significant lateralisation of the centre of force were seen with the subtalar joint in varus than in valgus position. Changes in maximum pressure were again not significant. The re-alignment of coronal plane knee deformities by HTO and DFO altered ankle pressure characteristics. When the subtalar joint was fixed in the varus position, migration of centre of force after HTO was more significant than when the subtalar joint was fixed in valgus. Cite this article: Bone Joint J 2017;99-B:59-65. ©2017 The British Editorial Society of Bone & Joint Surgery.

  3. Reliability of metatarsophalangeal and ankle joint torque measurements by an innovative device.

    PubMed

    Man, Hok-Sum; Leung, Aaron Kam-Lun; Cheung, Jason Tak-Man; Sterzing, Thorsten

    2016-07-01

    The toe flexor muscles maintain body balance during standing and provide push-off force during walking, running, and jumping. Additionally, they are important contributing structures to maintain normal foot function. Thus, weakness of these muscles may cause poor balance, inefficient locomotion and foot deformities. The quantification of metatarsophalangeal joint (MPJ) stiffness is valuable as it is considered as a confounding factor in toe flexor muscles function. MPJ and ankle joint stiffness measurement is still largely depended on manual skills as current devices do not have good control on alignment, angular joint speed and displacement during measurement. Therefore, this study introduces an innovative dynamometer and protocol procedures for MPJ and ankle Joint torque measurement with precise and reliable foot alignment, angular joint speed and displacement control. Within-day and between-day test-retest experiments on MPJ and ankle joint torque measurement were conducted on ten and nine healthy male subjects respectively. The mean peak torques of MPJ and ankle joint of between-day and within-day measurement were 1.50±0.38Nm/deg and 1.19±0.34Nm/deg. The corresponding torques of the ankle joint were 8.24±2.20Nm/deg and 7.90±3.18Nm/deg respectively. Intraclass-correlation coefficients (ICC) of averaged peak torque of both joints of between-day and within-day test-retest experiments were ranging from 0.91 to 0.96, indicating the innovative device is systematic and reliable for the measurements and can be used for multiple scientific and clinical purposes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Design and simulation of a cable-pulley-based transmission for artificial ankle joints

    NASA Astrophysics Data System (ADS)

    Liu, Huaxin; Ceccarelli, Marco; Huang, Qiang

    2016-06-01

    In this paper, a mechanical transmission based on cable pulley is proposed for human-like actuation in the artificial ankle joints of human-scale. The anatomy articular characteristics of the human ankle is discussed for proper biomimetic inspiration in designing an accurate, efficient, and robust motion control of artificial ankle joint devices. The design procedure is presented through the inclusion of conceptual considerations and design details for an interactive solution of the transmission system. A mechanical design is elaborated for the ankle joint angular with pitch motion. A multi-body dynamic simulation model is elaborated accordingly and evaluated numerically in the ADAMS environment. Results of the numerical simulations are discussed to evaluate the dynamic performance of the proposed design solution and to investigate the feasibility of the proposed design in future applications for humanoid robots.

  5. Parametric analysis of occupant ankle and tibia injuries in frontal impact

    PubMed Central

    Mo, Fuhao; Jiang, Xiaoqing; Duan, Shuyong; Xiao, Zhi; Shi, Wei

    2017-01-01

    Objective Non-fatal tibia and ankle injuries without proper protection from the restraint system has gotten wide attention from researchers. This study aimed to investigate occupant tibia and ankle injuries under realistic frontal impact environment that is rarely considered in previous experimental and simulant studies. Methods An integrated occupant-vehicle model was established by coupling an isolated car cab model and a hybrid occupant model with a biofidelic pelvis-lower limb model, while its loading conditions were extracted from the realistic full-frontal impact test. A parametric study was implemented concerning instrument panel (IP) design and pedal intrusion/rotation parameters. Results The significant influences of the IP angle, pedal intrusion and pedal rotation on tibia axial force, tibia bending moment and ankle dorsiflexion angle are noted. By coupling their effects, a new evaluation index named CAIEI (Combined Ankle Injury Evaluation Index) is established to evaluate ankle injury (including tibia fractures in ankle region) risk and severity in robustness. Conclusions Overall results and analysis indicate that ankle dorsiflexion angle should be considered when judging the injury in lower limb under frontal impact. Meanwhile, the current index with coupling effects of tibia axial force, bending moment and ankle dorsiflexion angle is in a good correlation with the simulation injury outcomes. PMID:28910377

  6. Osteochondral lesions of the ankle joint in professional soccer players: treatment with autologous matrix-induced chondrogenesis.

    PubMed

    Valderrabano, Victor; Barg, Alexej; Alattar, Abdulhameed; Wiewiorski, Martin

    2014-12-01

    Acute and recurrent ankle sprains and other trauma to the ankle joint are common injuries in soccer and can be accompanied by or result in osteochondral lesions of the ankle joint, majorly of the talus. Conservative treatment frequently fails. Several operative treatment techniques exist; however, the choice of the right procedure is difficult due to lack of literature with a high level of evidence. We present our treatment method for acute and chronic ankle osteochondral lesions with cystic formation approached by a new surgical technique combining bone plasty and a collagen matrix (autologous matrix-induced chondrogenesis). Therapeutic, Level IV: Case series. © 2014 The Author(s).

  7. The effect of talocrural joint manipulation on range of motion at the ankle.

    PubMed

    Fryer, Gary A; Mudge, Jacob M; McLaughlin, Patrick A

    2002-01-01

    To determine whether a single high-velocity, low-amplitude thrust manipulation to the talocrural joint altered ankle range of motion. A randomized, controlled and blinded study. Asymptomatic male and female volunteers (N = 41). Subjects were randomly assigned into either an experimental group (n = 20) or a control group (n = 21). Both ankles of subjects in the experimental group were manipulated by using a single high-velocity, low-amplitude thrust to the talocrural joint. Pretest and posttest measurements of passive dorsiflexion range of motion were taken. No significant changes in dorsiflexion range of motion were detected between manipulated ankles and those of control subjects. A significantly greater pretest dorsiflexion range of motion existed in those ankles in which manipulation produced an audible cavitation. Manipulation of the ankle does not increase dorsiflexion range of motion in asymptomatic subjects. Ankles that displayed a greater pretest range of dorsiflexion were more likely to cavitate, raising the possibility that ligament laxity may be associated with the tendency for ankles to cavitate.

  8. Simultaneous bilateral total knee and ankle arthroplasty as a single surgical procedure.

    PubMed

    Pagenstert, Geert; Hintermann, Beat

    2011-10-13

    Simultaneous osteoarthritis (OA) of the ankle joint complicates primary total knee arthroplasty (TKA). In such cases, rehabilitation of TKA is limited by debilitating ankle pain, but varus or valgus ankle arthritis may even compromise placement of knee prosthetic components. We present a patient with simultaneous bilateral valgus and patellofemoral OA of the knees and bilateral varus OA of the ankle joints that equally contributed to overall disability. This 63 years old, motivated and otherwise healthy patient was treated by simultaneous bilateral total knee and ankle arthroplasty (quadruple total joint arthroplasty, TJA) during the same anesthesia. Two years outcome showed excellent alignment and function of all four replaced joints. Postoperative time for rehabilitation, back to work (6th week) and hospital stay (12 days) of this special patient was markedly reduced compared to the usual course of separate TJA. Simultaneous quadruple TJA in equally disabling OA of bilateral deformed knees and ankles resulted in a better functional outcome and faster recovery compared to the average reported results after TKA and TAA in literature. However, careful preoperative planning, extensive patient education, and two complete surgical teams were considered essential for successful performance. To the best of our knowledge this is the first case report in literature about quadruple major total joint arthroplasty implanted during the same anesthesia in the same patient.

  9. Myoelectric stimulation on peroneal muscles resists simulated ankle sprain motion.

    PubMed

    Fong, Daniel Tik-Pui; Chu, Vikki Wing-Shan; Chan, Kai-Ming

    2012-07-26

    The inadequate reaction time of the peroneal muscles in response to an incorrect foot contact event has been proposed as one of the etiological factors contributing to ankle joint inversion injury. Thus, the current study aimed to investigate the efficacy of a myoelectric stimulation applied to the peroneal muscles in the prevention of a simulated ankle inversion trauma. Ten healthy male subjects performed simulated inversion and supination tests on a pair of mechanical sprain simulators. An electrical signal was delivered to the peroneal muscles of the subjects through a pair of electrode pads. The start of the stimulus was synchronized with the drop of the sprain simulator's platform. In order to determine the maximum delay time which the stimulus could still resist the simulated ankle sprain motion, different delay time were test (0, 5, 10, and 15ms). Together with the control trial (no stimulus), there were 5 testing conditions for both simulated inversion and supination test. The effect was quantified by the drop in maximum ankle tilting angle and angular velocity, as determined by a motion analysis system with a standard laboratory procedure. Results showed that the myoelectric stimulation was effective in all conditions except the one with myoelectric stimulus delayed for 15ms in simulated supination test. It is concluded that myoelectric stimulation on peroneal muscles could resist an ankle spraining motion. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Pre-impact lower extremity posture and brake pedal force predict foot and ankle forces during an automobile collision.

    PubMed

    Hardin, E C; Su, A; van den Bogert, A J

    2004-12-01

    The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.

  11. The Preferred Movement Path Paradigm: Influence of Running Shoes on Joint Movement.

    PubMed

    Nigg, Benno M; Vienneau, Jordyn; Smith, Aimée C; Trudeau, Matthieu B; Mohr, Maurice; Nigg, Sandro R

    2017-08-01

    (A) To quantify differences in lower extremity joint kinematics for groups of runners subjected to different running footwear conditions, and (B) to quantify differences in lower extremity joint kinematics on an individual basis for runners subjected to different running footwear conditions. Three-dimensional ankle and knee joint kinematics were collected for 35 heel-toe runners when wearing three different running shoes and when running barefoot. Absolute mean differences in ankle and knee joint kinematics were computed between running shoe conditions. The percentage of individual runners who displayed differences below a 2°, 3°, and 5° threshold were also calculated. The results indicate that the mean kinematics of the ankle and knee joints were similar between running shoe conditions. Aside from ankle dorsiflexion and knee flexion, the percentage of runners maintaining their movement path between running shoes (i.e., less than 3°) was in the order of magnitude of about 80% to 100%. Many runners showed ankle and knee joint kinematics that differed between a conventional running shoe and barefoot by more than 3°, especially for ankle dorsiflexion and knee flexion. Many runners stay in the same movement path (the preferred movement path) when running in various different footwear conditions. The percentage of runners maintaining their preferred movement path depends on the magnitude of the change introduced by the footwear condition.

  12. [Dislocation of the ankle without simoustaneously fracture of the bones].

    PubMed

    Qayyum, Faiza; Qayyum, Abbas Ali; Sahlstrüm, Sven Arne

    2014-09-01

    The ankle is a unique modified saddle joint that, together with the subtalar joint, provides range of motion in several physical planes while maintaining stability. The ankle complex functions as a pivoting structure positioned to bear the entire weight of the body which leaves it vulnerable to injuries. Pure dislocation without associated fracture is rare; however, cases of isolated ankle dislocation without fracture have been reported. We report a case of a closed ankle dislocation without an associated fracture in a 17-year-old boy.

  13. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises

    PubMed Central

    Comfort, Paul; Jones, Paul Anthony; Smith, Laura Constance; Herrington, Lee

    2015-01-01

    Context  Unilateral body-weight exercises are commonly used to strengthen the lower limbs during rehabilitation after injury, but data comparing the loading of the limbs during these tasks are limited. Objective  To compare joint kinetics and kinematics during 3 commonly used rehabilitation exercises. Design  Descriptive laboratory study. Setting  Laboratory. Patients or Other Participants  A total of 9 men (age = 22.1 ± 1.3 years, height = 1.76 ± 0.08 m, mass = 80.1 ± 12.2 kg) participated. Intervention(s)  Participants performed the single-legged squat, forward lunge, and reverse lunge with kinetic data captured via 2 force plates and 3-dimensional kinematic data collected using a motion-capture system. Main Outcome Measure(s)  Peak ground reaction forces, maximum joint angles, and peak sagittal-joint moments. Results  We observed greater eccentric and concentric peak vertical ground reaction forces during the single-legged squat than during both lunge variations (P ≤ .001). Both lunge variations demonstrated greater knee and hip angles than did the single-legged squat (P < .001), but we observed no differences between lunges (P > .05). Greater dorsiflexion occurred during the single-legged squat than during both lunge variations (P < .05), but we noted no differences between lunge variations (P = .70). Hip-joint moments were greater during the forward lunge than during the reverse lunge (P = .003) and the single-legged squat (P = .011). Knee-joint moments were greater in the single-legged squat than in the reverse lunge (P < .001) but not greater in the single-legged squat than in the forward lunge (P = .41). Ankle-joint moments were greater during the single-legged squat than during the forward lunge (P = .002) and reverse lunge (P < .001). Conclusions  Appropriate loading progressions for the hip should begin with the single-legged squat and progress to the reverse lunge and then the forward lunge. In contrast, loading progressions for the knee and ankle should begin with the reverse lunge and progress to the forward lunge and then the single-legged squat. PMID:26418958

  14. Unusual exostosis formation of the subtalar joint following an inversion ankle injury.

    PubMed

    Cisco, R W; Shaffer, M; Kuchler, L

    1993-01-01

    Exostosis formation following trauma isnot uncommon to the joints of the foot and ankle. The etiology and treatment of these boney lesions is well-documented in the literature. The following is a report of an unusual exostosis of the subtalar joint following inversion ankle injury. This case is unusual in respect to the formation of an adventitious articulation, the size of the lesion, and the pathology.

  15. Post-Traumatic Osteoarthritis of the Ankle: A Distinct Clinical Entity Requiring New Research Approaches

    PubMed Central

    Delco, Michelle L.; Kennedy, John G.; Bonassar, Lawrence J.; Fortier, Lisa A.

    2017-01-01

    The diagnosis of ankle osteoarthritis (OA) is increasing as a result of advancements in non-invasive imaging modalities such as magnetic resonance imaging, improved arthroscopic surgical technology and heightened awareness among clinicians. Unlike OA of the knee, primary or age-related ankle OA is rare, with the majority of ankle OA classified as post-traumatic (PTOA). Ankle trauma, more specifically ankle sprain, is the single most common athletic injury, and no effective therapies are available to prevent or slow progression of PTOA. Despite the high incidence of ankle trauma and OA, ankle-related OA research is sparse, with the majority of clinical and basic studies pertaining to the knee joint. Fundamental differences exist between joints including their structure and molecular composition, response to trauma, susceptibility to OA, clinical manifestations of disease, and response to treatment. Considerable evidence suggests that research findings from knee should not be extrapolated to the ankle, however few ankle-specific preclinical models of PTOA are currently available. The objective of this article is to review the current state of ankle OA investigation, highlighting important differences between the ankle and knee that may limit the extent to which research findings from knee models are applicable to the ankle joint. Considerations for the development of new ankle-specific, clinically relevant animal models are discussed. PMID:27764893

  16. Behavioral effect of knee joint motion on body's center of mass during human quiet standing.

    PubMed

    Yamamoto, Akio; Sasagawa, Shun; Oba, Naoko; Nakazawa, Kimitaka

    2015-01-01

    The balance control mechanism during upright standing has often been investigated using single- or double-link inverted pendulum models, involving the ankle joint only or both the ankle and hip joints, respectively. Several studies, however, have reported that knee joint motion during quiet standing cannot be ignored. This study aimed to investigate the degree to which knee joint motion contributes to the center of mass (COM) kinematics during quiet standing. Eight healthy adults were asked to stand quietly for 30s on a force platform. Angular displacements and accelerations of the ankle, knee, and hip joints were calculated from kinematic data obtained by a motion capture system. We found that the amplitude of the angular acceleration was smallest in the ankle joint and largest in the hip joint (ankle < knee < hip). These angular accelerations were then substituted into three biomechanical models with or without the knee joint to estimate COM acceleration in the anterior-posterior direction. Although the "without-knee" models greatly overestimated the COM acceleration, the COM acceleration estimated by the "with-knee" model was similar to the actual acceleration obtained from force platform measurement. These results indicate substantial effects of knee joint motion on the COM kinematics during quiet standing. We suggest that investigations based on the multi-joint model, including the knee joint, are required to reveal the physiologically plausible balance control mechanism implemented by the central nervous system. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of Complete Syndesmotic Disruption and Deltoid Injuries and Different Reduction Methods on Ankle Joint Contact Mechanics.

    PubMed

    LaMothe, Jeremy; Baxter, Josh R; Gilbert, Susannah; Murphy, Conor I; Karnovsky, Sydney C; Drakos, Mark C

    2017-06-01

    Syndesmotic injuries can be associated with poor patient outcomes and posttraumatic ankle arthritis, particularly in the case of malreduction. However, ankle joint contact mechanics following a syndesmotic injury and reduction remains poorly understood. The purpose of this study was to characterize the effects of a syndesmotic injury and reduction techniques on ankle joint contact mechanics in a biomechanical model. Ten cadaveric whole lower leg specimens with undisturbed proximal tibiofibular joints were prepared and tested in this study. Contact area, contact force, and peak contact pressure were measured in the ankle joint during simulated standing in the intact, injured, and 3 reduction conditions: screw fixation with a clamp, screw fixation without a clamp (thumb technique), and a suture-button construct. Differences in these ankle contact parameters were detected between conditions using repeated-measures analysis of variance. Syndesmotic disruption decreased tibial plafond contact area and force. Syndesmotic reduction did not restore ankle loading mechanics to values measured in the intact condition. Reduction with the thumb technique was able to restore significantly more joint contact area and force than the reduction clamp or suture-button construct. Syndesmotic disruption decreased joint contact area and force. Although the thumb technique performed significantly better than the reduction clamp and suture-button construct, syndesmotic reduction did not restore contact mechanics to intact levels. Decreased contact area and force with disruption imply that other structures are likely receiving more loads (eg, medial and lateral gutters), which may have clinical implications such as the development of posttraumatic arthritis.

  18. CAIPIRINHA accelerated SPACE enables 10-min isotropic 3D TSE MRI of the ankle for optimized visualization of curved and oblique ligaments and tendons.

    PubMed

    Kalia, Vivek; Fritz, Benjamin; Johnson, Rory; Gilson, Wesley D; Raithel, Esther; Fritz, Jan

    2017-09-01

    To test the hypothesis that a fourfold CAIPIRINHA accelerated, 10-min, high-resolution, isotropic 3D TSE MRI prototype protocol of the ankle derives equal or better quality than a 20-min 2D TSE standard protocol. Following internal review board approval and informed consent, 3-Tesla MRI of the ankle was obtained in 24 asymptomatic subjects including 10-min 3D CAIPIRINHA SPACE TSE prototype and 20-min 2D TSE standard protocols. Outcome variables included image quality and visibility of anatomical structures using 5-point Likert scales. Non-parametric statistical testing was used. P values ≤0.001 were considered significant. Edge sharpness, contrast resolution, uniformity, noise, fat suppression and magic angle effects were without statistical difference on 2D and 3D TSE images (p > 0.035). Fluid was mildly brighter on intermediate-weighted 2D images (p < 0.001), whereas 3D images had substantially less partial volume, chemical shift and no pulsatile-flow artifacts (p < 0.001). Oblique and curved planar 3D images resulted in mildly-to-substantially improved visualization of joints, spring, bifurcate, syndesmotic, collateral and sinus tarsi ligaments, and tendons (p < 0.001, respectively). 3D TSE MRI with CAIPIRINHA acceleration enables high-spatial resolution oblique and curved planar MRI of the ankle and visualization of ligaments, tendons and joints equally well or better than a more time-consuming anisotropic 2D TSE MRI. • High-resolution 3D TSE MRI improves visualization of ankle structures. • Limitations of current 3D TSE MRI include long scan times. • 3D CAIPIRINHA SPACE allows now a fourfold-accelerated data acquisition. • 3D CAIPIRINHA SPACE enables high-spatial-resolution ankle MRI within 10 min. • 10-min 3D CAIPIRINHA SPACE produces equal-or-better quality than 20-min 2D TSE.

  19. Intermediate-term follow-up after ankle distraction for treatment of end-stage osteoarthritis.

    PubMed

    Nguyen, Mai P; Pedersen, Douglas R; Gao, Yubo; Saltzman, Charles L; Amendola, Annunziato

    2015-04-01

    Treatment of end-stage ankle osteoarthritis remains challenging, especially in young patients. Initial reports have shown early benefits of joint distraction for the treatment of ankle osteoarthritis. We report the five to ten-year results of a previously described patient cohort following ankle distraction surgery. All thirty-six patients who had undergone ankle distraction surgery between December 2002 and October 2006 were contacted. Patients were evaluated by a clinical investigator and completed the Ankle Osteoarthritis Scale (AOS) and Short Form-36 (SF-36) surveys. Radiographs as well as computed tomography and magnetic resonance imaging scans of the ankles were obtained at the follow-up visits. Twenty-nine patients (81%) were followed for a minimum of five years (mean and standard deviation, 8.3 ± 2.2 years). Sixteen (55%) of the twenty-nine patients still had the native ankle joint whereas thirteen patients (45%) had undergone either ankle arthrodesis or total ankle arthroplasty. Positive predictors of ankle survival included a better AOS score at two years (hazard ratio [HR] = 0.048, 95% confidence interval [CI] = 0.0028 to 0.84, p = 0.04), older age at surgery (HR = 0.91, 95% CI = 0.83 to 0.99, p = 0.04), and fixed distraction (HR = 0.094, 95% CI = 0.017 to 0.525, p < 0.01). Radiographs and advanced imaging revealed progression of ankle osteoarthritis at the time of final follow-up. Ankle function following joint distraction declines over time. Patients should be well informed of the commitment that they must make during the treatment period as well as the long-term results after surgery. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.

  20. One- and multi-segment foot models lead to opposite results on ankle joint kinematics during gait: Implications for clinical assessment.

    PubMed

    Pothrat, Claude; Authier, Guillaume; Viehweger, Elke; Berton, Eric; Rao, Guillaume

    2015-06-01

    Biomechanical models representing the foot as a single rigid segment are commonly used in clinical or sport evaluations. However, neglecting internal foot movements could lead to significant inaccuracies on ankle joint kinematics. The present study proposed an assessment of 3D ankle kinematic outputs using two distinct biomechanical models and their application in the clinical flat foot case. Results of the Plug in Gait (one segment foot model) and the Oxford Foot Model (multisegment foot model) were compared for normal children (9 participants) and flat feet children (9 participants). Repeated measures of Analysis of Variance have been performed to assess the Foot model and Group effects on ankle joint kinematics. Significant differences were observed between the two models for each group all along the gait cycle. In particular for the flat feet group, opposite results between the Oxford Foot Model and the Plug in Gait were revealed at heelstrike, with the Plug in Gait showing a 4.7° ankle dorsal flexion and 2.7° varus where the Oxford Foot Model showed a 4.8° ankle plantar flexion and 1.6° valgus. Ankle joint kinematics of the flat feet group was more affected by foot modeling than normal group. Foot modeling appeared to have a strong influence on resulting ankle kinematics. Moreover, our findings showed that this influence could vary depending on the population. Studies involving ankle joint kinematic assessment should take foot modeling with caution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Joint Coordination and Muscle Activities of Ballet Dancers During Tiptoe Standing.

    PubMed

    Tanabe, Hiroko; Fujii, Keisuke; Kouzaki, Motoki

    2017-01-01

    We aimed to investigate joint coordination of lower limbs in dancers during tiptoe standing and the relationship between joint coordination and muscle coactivation. Seven female ballet dancers performed tiptoe standing with six leg positions (fi e classical dance positions and one modern dance position) for 10 s. The kinematic data of the metatarsophalangeal (MP), ankle, knee, and hip joints was collected, and surface electromyography (EMG) of over 13 lower limb muscles was conducted. Principal component analysis was performed to determine joint coordination. MP-ankle and ankle-knee had in-phase coordination, whereas knee-hip showed anti-phase coordination in the sagittal plane. In addition, most EMG-EMG coherence around the MP and ankle joints was significant up to 50 Hz when these two joints swayed with in-phase. This suggests that different joint coordination patterns are associated with neural processing related to different muscle coactivation patterns. In conclusion, ballet dancers showed in-phase coordination from the MP to knee joints, which was associated with muscle coactivation to a higher frequency domain (up to 50 Hz) in comparison with anti-phase coordination.

  2. Measurement of the passive stiffness of ankle joint in 3 DOF using stewart platform type ankle foot device.

    PubMed

    Nomura, Kenta; Yonezawa, Teru; Mizoguchi, Hiroshi; Takemura, Hiroshi

    2016-08-01

    This paper presents a method to measure the passive stiffness of an ankle joint in three degrees of freedom (DOF) under two motion speeds (1 Hz and 5 degree/s) using a developed Stewart platform-type device. The developed device can reproduce input motions of the foot in 6 DOF by controlling six pneumatic linear motion actuators. We used the device to measure the passive stiffness of an ankle joint undergoing three kinds of motion, namely dorsi-plantar flexion, inversion-eversion, and adduction-abduction. The measured values of the passive stiffness of the ankle joint in dorsiflexion that we obtained agreed well with that obtained in a previous study, indicating that the developed device is useful for measuring the passive stiffness of ankle joint. In addition, the developed device can be used to measure the stiffness in inversion-eversion and adduction-abduction motions as well, parameters that have never been measured. The results we obtained demonstrated certain interesting features as we varied both the direction and pace of motion (e.g., there were significant differences in the stiffness not only between adduction and abduction during the faster pace, but also between these and the other motions).

  3. Distal chevron osteotomy with lateral soft tissue release for moderate to severe hallux valgus decided using intraoperative varus stress radiographs.

    PubMed

    Kim, Hyong-Nyun; Park, Yoo-Jung; Kim, Gab-Lae; Park, Yong-Wook

    2013-01-01

    The purpose of the present study was to investigate the outcomes of distal chevron osteotomy with lateral soft tissue release for moderate to severe hallux valgus. The patients were selected using criteria that included the degree of lateral soft tissue contracture and metatarsocuneiform joint flexibility. The contracture and flexibility were determined from intraoperative varus stress radiographs. From April 2007 to May 2009, 56 feet in 51 consecutive patients with moderate to severe hallux valgus had undergone distal chevron osteotomy with lateral soft tissue release. This was done when the lateral soft tissue contracture was not so severe that passive correction of the hallux valgus deformity was not possible and when the metatarsocuneiform joint was flexible enough to permit additional correction of the first intermetatarsal angle after lateral soft tissue release. The mean patient age was 45.2 (range 23 to 54) years, and the duration of follow-up was 27.5 (range 24 to 46) months. The mean hallux abductus angle decreased from 33.5° ± 3.1° to 11.6° ± 3.3°, and the first intermetatarsal angle decreased from 16.4° ± 2.7° to 9.7° ± 2.1°. The mean American Orthopaedic Foot and Ankle Society hallux-interphalangeal scores increased from 66.6° ± 10.7° to 92.6° ± 9.4° points, and 46 of the 51 patients (90%) were either very satisfied or satisfied with the outcome. No recurrence of deformity or osteonecrosis of the metatarsal head occurred. When lateral soft tissue contracture is not severe and when the metatarsocuneiform joint is flexible enough, distal chevron osteotomy with lateral soft tissue release can be a useful and effective choice for moderate to severe hallux valgus deformity. Copyright © 2013 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Reciprocal activation of gastrocnemius and soleus motor units is associated with fascicle length change during knee flexion.

    PubMed

    Lauber, Benedikt; Lichtwark, Glen A; Cresswell, Andrew G

    2014-06-01

    While medial gastrocnemius (MG) and soleus (SOL) are considered synergists, they are anatomically exclusive in that SOL crosses only the ankle, while MG crosses both the knee and ankle. Due to the force-length properties of both active and passive structures, activation of SOL and MG must be constantly regulated to provide the required joint torques for any planned movement. As such, the aim of this study was to investigate the neural regulation of MG and SOL when independently changing their length by changing only the knee joint angle, thus exclusively altering the length of MG fibers. MG and SOL motor units (MU) were recorded intramuscularly along with ultrasound imaging of MG and SOL fascicle lengths, while moving the knee through 60° of rotation and maintaining a low level of voluntary plantar flexor torque. The results showed a reciprocal activation of MG and SOL as the knee was moved into flexion and extension. A clear reduction in MG MU firing rates occurred as the knee was flexed (MG fascicles shortening), with de-recruitment of most MG MU occurring at close to full knee flexion. A concomitant increase in SOL MU activity was observed while no change in the length of its fascicles was found. The opposite effects were found when the knee was moved into extension. A strong correlation (ICC = 0.78) was found between the fascicle length at which MG MUs were de-recruited and subsequently re-recruited. This was stronger than the relationship of de-recruitment and re-recruitment with knee angle (ICC = 0.52), indicating that in this instance, muscle fascicle length rather than joint angle is more influential in regulating MG recruitment. Such a reciprocal arrangement like the one presented here for SOL and MG is essential for human voluntary movements such as walking or cycling. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  5. [Concomitant injuries after upper ankle joint dislocations].

    PubMed

    Dann, K; Wahler, G; Neubauer, N; Steiner, R; Titze, W; Wagner, M

    1996-09-01

    Functional treatment with the Air Stirrup Ankle Brace recommended by C. N. Stover in 1979 can reduce pathological inversion of the ankle joint. In our retrospective study of 109 patients treated by this kind of ankle brace we found 96 patients (88%) with excellent results. Only 13 patients (12%) reported moderate to good results. To detect and characterize their painful conditions of ankles we did a clinical, radiological and MRI-Investigation. In only 2 cases we found a moderate instability after clinical investigation, anterior stress roentgenogram and talar tilt. By using the MRI-investigation 1.0 Tesla with a 512 x 360 Matrix we could find 10 cases with osteochondral lesions of the ankle. In 7 cases there was separated ossicle in the fibulotalar joint, in 1 case we detected a fracture of the processus anterior tali, in another case we could see a posttraumatic lesion of the talus and calcaneus with bone bruise and at least one osteochondral fracture of the distal tibia. The capability of the MRI to detect particularly osteo-chondral lesions of the talus and the tibiofibular joint was shown in 10 of 13 cases. Therefore we recommend to do an MRI-investigation on all patients after ankle sprain if there are painful conditions within the ankle after conservative treatment.

  6. Effect of Direct Ligament Repair and Tenodesis Reconstruction on Simulated Subtalar Joint Instability.

    PubMed

    Choisne, Julie; Hoch, Matthew C; Alexander, Ian; Ringleb, Stacie I

    2017-03-01

    Subtalar instability is associated with up to 80% of patients presenting with chronic ankle instability but is often not considered in the diagnosis or treatment. Operative procedures to repair ankle instability have shown good clinical results, but the effects of these reconstruction procedures on isolated subtalar instability are not well understood. The goal of this study was to investigate the effect of the Gould modification of the Broström procedure and a new tenodesis reconstruction procedure on ankle and subtalar joint kinematics after simulating a subtalar injury. Kinematic data were collected on 7 cadaveric ankles during inversion through the range of ankle flexion and during internal rotation. Testing was performed on the intact foot; after sectioning the calcaneofibular ligament, cervical ligament, and interosseous talocalcaneal ligament; after the Gould modification of the Broström procedure was performed; and after tenodesis was performed and sutures from the Gould modification removed. The Gould modification of the Broström procedure significantly decreased subtalar and ankle inversion motion and subtalar internal rotation compared to the unstable condition. The tenodesis method restricted internal rotation at the subtalar joint and ankle inversion compared to the intact state. Both operative procedures improved stability of the ankle complex, but tenodesis was unable to restore subtalar inversion and restricted ankle inversion in maximum plantarflexion. The Gould modification of Broström ligament repair may be a favorable operative procedure for the restoration of subtalar and ankle joint kinematics.

  7. Peri-talar re-alignment osteotomy for joint preservation in asymmetrical ankle osteoarthritis

    PubMed Central

    Yi, Young; Lee, Woochun

    2017-01-01

    Various types of re-alignment surgery are used to preserve the ankle joint in cases of intermediate ankle arthritis with partial joint space narrowing. The short-term and mid-term results after re-alignment surgery are promising, with substantial post-operative pain relief and functional improvement that is reflected by high rates of patient satisfaction. In this context, re-alignment surgery can preserve the joint and reduce the pathological load that acts on the affected area. Good clinical and radiological outcomes can be achieved in asymmetrical ankle osteoarthritis by understanding the specific deformities and appropriate indications for different surgical techniques. Cite this article: EFORT Open Rev 2017;2:324-331. DOI: 10.1302/2058-5241.2.160021 PMID:28828181

  8. Bone shape difference between control and osteochondral defect groups of the ankle joint.

    PubMed

    Tümer, N; Blankevoort, L; van de Giessen, M; Terra, M P; de Jong, P A; Weinans, H; Tuijthof, G J M; Zadpoor, A A

    2016-12-01

    The etiology of osteochondral defects (OCDs), for which the ankle (talocrural) joint is one of the common sites, is not yet fully understood. In this study, we hypothesized that bone shape plays a role in development of OCDs. Therefore, we quantitatively compared the morphology of the talus and the distal tibia between an OCD group and a control group. The shape variations of the talus and distal tibia were described separately by constructing two statistical shape models (SSMs) based on the segmentation of the bones from ankle computed tomography (CT) scans obtained from control (i.e., 35 CT scans) and OCD (i.e., 37 CT scans) groups. The first five modes of shape variation for the SSM corresponding to each bone were statistically compared between control and OCD groups using an analysis of variance (ANOVA) corrected with the Bonferroni for multiple comparisons. The first five modes of variation in the SSMs respectively represented 49% and 40% of the total variance of talus and tibia. Less than 5% of the variance per mode was described by the higher modes. Mode 5 of the talus (P = 0.004) primarily describing changes in the vertical neck angle and Mode 1 of the tibia (P < 0.0001) representing variations at the medial malleolus, showed statistically significant difference between the control and OCD groups. Shape differences exist between control and OCD groups. This indicates that a geometry modulated biomechanical behavior of the talocrural joint may be a risk factor for OCD. Copyright © 2016. Published by Elsevier Ltd.

  9. Ankle rehabilitation device with two degrees of freedom and compliant joint

    NASA Astrophysics Data System (ADS)

    Racu (Cazacu, C.-M.; Doroftei, I.

    2015-11-01

    We propose a rehabilitation device that we intend to be low cost and easy to manufacture. The system will ensure functionality but also have a small dimensions and low mass, considering the physiological dimensions of the foot and lower leg. To avoid injure of the ankle joint, this device is equipped with a compliant joint between the motor and mechanical transmission. The torque of this joint is intended to be adjustable, according to the degree of ankle joint damage. To choose the material and the dimensions of this compliant joint, in this paper we perform the first stress simulation. The minimum torque is calculated, while the maximum torque is given by the preliminary chosen actuator.

  10. Reproducibility of the kinematics and kinetics of the lower extremity during normal stair-climbing.

    PubMed

    Yu, B; Kienbacher, T; Growney, E S; Johnson, M E; An, K N

    1997-05-01

    The purpose of this study was to examine the intrasubject reproducibility of the kinematic and kinetic measures of the lower extremity during normal stair-climbing. Three-dimensional video and force-plate data were collected for three trials per subject during each of three conditions: ascending, descending, and level walking. Three-dimensional angles and moments of the ankle, knee, and hip joints were calculated. The coefficient of multiple correlation was used to determine the intrasubject reproducibility of joint angles and resultant moments. Analysis of variance with repeated measures was conducted to compare the magnitudes of the coefficients between different steps, different joints, and different joint functions. The results showed that (a) generally, the kinematic and kinetic measures of normal subjects climbing stairs were reproducible; (b) the kinetic measures during the transition steps from level walking to ascending and from descending to level walking were significantly less reproducible than those during the other steps; (c) the data from the sagittal plane were more reproducible than those from the other two planes; and (d) the kinetic measures were more reproducible than the kinematic measures, especially for abduction-adduction and internal-external rotation.

  11. The Effect of Fatigue-Induced Changes in Eggbeater-Kick Kinematics on Performance and Risk of Injury.

    PubMed

    Oliveira, Nuno; Saunders, David H; Sanders, Ross H

    2016-01-01

    To investigate the effects of fatigue on the vertical force and kinematics of the lower limbs during maximal water polo eggbeater kicking. Twelve male water polo players maintained as high a position as possible while performing the eggbeater kick with the upper limbs raised out of the water until they were unable to keep the top of the sternum (manubrium) above water. Data comprising 27 complete eggbeater-kick cycles were extracted corresponding to 9 cycles of the initial nonfatigued (0%), 50% time point (50%), and final fatigued (100%) periods of the trial. Vertical force, foot speed, and hip-, knee-, and ankle-joint angles were calculated. Mean vertical force (0%, 212.2 N; 50%, 184.5 N; 100%, 164.3 N) progressively decreased with time. Speed of the feet (0.4 m/s), hip abduction (2.9°), and flexion (3.6°) decreased with fatigue, while hip internal rotation (3.6°) and ankle inversion (4°) increased with fatigue. Average angular velocity decreased for all joint motions. Eggbeater-kick performance decreases with fatigue. Inability to maintain foot speeds and hip and ankle actions with progressing fatigue diminishes the ability of the player to produce vertical force during the cycle. Increased internal rotation of the hip when fatigued and the large eversion/abduction of the ankle during the cycle may be predisposing factors for the prevalence of patellofemoral pain syndrome observed among eggbeater-kick performers. Appropriate training interventions that can limit the effects of fatigue on performance and injury risk should be considered.

  12. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.

    PubMed

    Nakajima, Hiroshi; Yamamoto, Sumiko; Katsuhira, Junji

    2018-07-01

    Patients with diabetes often develop diabetic peripheral neuropathy, which is a distal symmetric polyneuropathy, so foot function on the non-amputated side is expected to affect gait in vascular trans-tibial amputees. However, there is little information on the kinematics and kinetics of gait or the effects of diabetic peripheral neuropathy in vascular trans-tibial amputees. This study aimed to clarify these effects, including the biomechanics of the ankle on the non-amputated side. Participants were 10 vascular trans-tibial amputees with diabetic peripheral neuropathy (group V) and 8 traumatic trans-tibial amputees (group T). Each subject's gait was analyzed at a self-selected speed using a three-dimensional motion analyzer and force plates. Ankle plantarflexion angle, heel elevation angle, and peak and impulse of anterior ground reaction force were smaller on the non-amputated side during pre-swing in group V than in group T. Center of gravity during pre-swing on the non-amputated side was lower in group V than in group T. Hip extension torque during loading response on the prosthetic side was greater in group V than in group T. These findings suggest that the biomechanical function of the ankle on the non-amputated side during pre-swing is poorer in vascular trans-tibial amputees with DPN than in traumatic trans-tibial amputees; the height of the center of gravity could not be maintained during this phase in vascular trans-tibial amputees with diabetic peripheral neuropathy. The hip joint on the prosthetic side compensated for this diminished function at the ankle during loading response. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Task-specific ankle robotics gait training after stroke: a randomized pilot study.

    PubMed

    Forrester, Larry W; Roy, Anindo; Hafer-Macko, Charlene; Krebs, Hermano I; Macko, Richard F

    2016-06-02

    An unsettled question in the use of robotics for post-stroke gait rehabilitation is whether task-specific locomotor training is more effective than targeting individual joint impairments to improve walking function. The paretic ankle is implicated in gait instability and fall risk, but is difficult to therapeutically isolate and refractory to recovery. We hypothesize that in chronic stroke, treadmill-integrated ankle robotics training is more effective to improve gait function than robotics focused on paretic ankle impairments. Participants with chronic hemiparetic gait were randomized to either six weeks of treadmill-integrated ankle robotics (n = 14) or dose-matched seated ankle robotics (n = 12) videogame training. Selected gait measures were collected at baseline, post-training, and six-week retention. Friedman, and Wilcoxon Sign Rank and Fisher's exact tests evaluated within and between group differences across time, respectively. Six weeks post-training, treadmill robotics proved more effective than seated robotics to increase walking velocity, paretic single support, paretic push-off impulse, and active dorsiflexion range of motion. Treadmill robotics durably improved gait dorsiflexion swing angle leading 6/7 initially requiring ankle braces to self-discarded them, while their unassisted paretic heel-first contacts increased from 44 % to 99.6 %, versus no change in assistive device usage (0/9) following seated robotics. Treadmill-integrated, but not seated ankle robotics training, durably improves gait biomechanics, reversing foot drop, restoring walking propulsion, and establishing safer foot landing in chronic stroke that may reduce reliance on assistive devices. These findings support a task-specific approach integrating adaptive ankle robotics with locomotor training to optimize mobility recovery. NCT01337960. https://clinicaltrials.gov/ct2/show/NCT01337960?term=NCT01337960&rank=1.

  14. Evaluation of Different Surgical Techniques Used for Correction of Post-Burn Contracture of Foot And Ankle

    PubMed Central

    Shakirov, B.M.

    2010-01-01

    Summary Post-burn contracture and deformities of the foot and ankle joint with respect to other localizations account for 3.5-5% of cases. Functional disturbances of the foot and ankle joint affect the functioning of the entire lower joint, its statics, and the patient’s gait and bearing, and can even lead to distorted pelvis, curvature of the spine, and other disturbances. Between 1990 and 2002 we treated 69 cases for a total number of 76 foot and ankle joint deformities enrolled in the study. The choice of plastic operation was made on the basis of the severity and localization of the injury - we used local uninjured tissues and soft scars to make trapezoid, Z-plasty or other shaped flaps and free grafts placed on the area of the excised scars. We observed the follow-up during a period of one to eight years in 57 patients with burn deformities of the ankle (82.6% of the overall number of patients observed in the clinic). In 41 cases (71.9%) the deformities were completely eliminated and in 13 cases (22.8%) the results were satisfactory; three patients (5.3%) had poor results. The victims of burns in the ankle joint must be kept under constant examination if scarring is present, with the danger of retarded growth of the burned foot joint and the development of secondary bone-joint changes. Early surgery is advised depending on severity of the contracture. PMID:21991213

  15. Effects of ankle joint position and submaximal muscle contraction intensity on soleus H-reflex modulation in young and older adults.

    PubMed

    Chen, Yung-Sheng; Zhou, Shi; Cartwright, Colleen

    2014-04-01

    This study investigated the effects of ankle joint position and submaximal contraction intensity on soleus (SOL) H-reflex modulation. Twenty young (25.1 ± 4.8 years) and 20 older adults (74.2 ± 5.1 years) performed plantar flexions during 10%, 30% and 50% maximal voluntary contractions (MVC) and at ankle positions of neutral (0°), plantar flexion (20°) and dorsiflexion (-20°) in a sitting position. The SOL H-reflex gain in older adults was relatively lower than that in young adults during 10%, 30% and 50% MVC. The SOL H-reflex gain was significantly affected by the intensity of plantar flexion in the respective ankle joint position in both age groups. The latency of H-reflex was prolonged in older adults and was ankle joint dependent in young adults. Young adults demonstrated a shorter duration of the H-reflex response than that of older adults. The results indicated that there were age-related changes in the SOL H-reflex during the ankle plantar flexors activities.

  16. Can Chronic Ankle Instability be Prevented? Rethinking Management of Lateral Ankle Sprains.

    ERIC Educational Resources Information Center

    Denegar, Craig R.; Miller, Sayers J., III

    2002-01-01

    Investigates whether chronic ankle instability can be prevented, discussing: the relationship between mechanical and functional instability; normal ankle mechanics, sequelae to lateral ankle sprains, and abnormal ankle mechanics; and tissue healing, joint dysfunction, and acute lateral ankle sprain management. The paper describes a treatment model…

  17. Dynamic Postural-Stability Deficits After Cryotherapy to the Ankle Joint.

    PubMed

    Fullam, Karl; Caulfield, Brian; Coughlan, Garrett F; McGroarty, Mark; Delahunt, Eamonn

    2015-09-01

    Decreased postural stability is a primary risk factor for lower limb musculoskeletal injuries. During athletic competitions, cryotherapy may be applied during short breaks in play or during half-time; however, its effects on postural stability remain unclear. To investigate the acute effects of a 15-minute ankle-joint cryotherapy application on dynamic postural stability. Controlled laboratory study. University biomechanics laboratory. A total of 29 elite-level collegiate male field-sport athletes (age = 20.8 ± 1.12 years, height = 1.80 ± 0.06 m, mass = 81.89 ± 8.59 kg) participated. Participants were tested on the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the Star Excursion Balance Test before and after a 15-minute ankle-joint cryotherapy application. Normalized reach distances; sagittal-plane kinematics of the hip, knee, and ankle joints; and associated mean velocity of the center-of-pressure path during performance of the ANT, PL, and PM reach directions of the Star Excursion Balance Test. We observed a decrease in reach-distance scores for the ANT, PL, and PM reach directions from precryotherapy to postcryotherapy (P < .05). No differences were observed in hip-, knee-, or ankle-joint sagittal-plane kinematics (P > .05). We noted a decrease in mean velocity of the center-of-pressure path from precryotherapy to postcryotherapy (P < .05) in all reach directions. Dynamic postural stability was adversely affected immediately after cryotherapy to the ankle joint.

  18. Tibiotalar joint arthrodesis for the treatment of severe ankle joint degeneration secondary to rheumatoid arthritis.

    PubMed

    Caron, M; Kron, E; Saltrick, K R

    1999-04-01

    The technical aspects of fusion of the rheumatoid ankle do not deviate from those in the post-traumatic or osteoarthritic ankle. Screw fixation can usually be achieved, and rarely is fixation failure a problem in rheumatoid ankle arthrodesis. If fixation is difficult because of deformity or bone quality, external fixation or locking intramedullary nails should be used. The placement of cannulated screws and adequacy of screw fixation has not been a problem (Fig. 13). Screw fixation provides compression and prevents rotation. The surgeon, however, needs to be assured that no screws invade the subtalar joint and that all threads are beyond the arthrodesis site. A washer may be necessary for further stability if this screw is not inserted at too great an angle. The authors have found that troughing out of the cortical surface of the tibia with a power bur aids in screw insertion. Not only does the trough act as a countersink, but it also provides a path for screw insertion and prevents palpable screw irritation. Malalignment is unforgiving. The foot must be placed neutral to dorsiflexion and plantarflexion. Equinus positioning places added stress on the tibia and a back-knee gait occurs. Approximately 5 degrees of valgus is recommended, and varus positioning is unforgiving. Internal and external rotation is determined by the position of the contralateral extremity. Nonunion does not seem to be a problem with rigid internal fixation to any greater degree in patients with RA. Despite this, patients may continue to have pain despite solid fusion, which can be caused by incomplete correction of deformity, painful internal fixation, or adjacent joint pathology. Additionally, patients may experience supramalleolar pain above the fusion site consistent with tibial stress fracture, which is more common if the subtalar or midtarsal joint is rigid or if the patient is obese. A rocker sole shoe with impact-absorbing soles used after brief periods of guarded mobilization in a removable walking cast alleviates this stress on the tibia. Neurovascular insult can be avoided with careful dissection direct to bone, incisions placed in nerve-free zones, and avoidance of plunging deep posteriorly-medially and anteriorly when dissecting and resecting surfaces. Arthrodesis of the tibiotalar joint in the patient with RA should be performed to relieve severe pain caused by advanced arthrosis. Achieving a solid arthrodesis does not seem to be a problem and provides the patient with pain relief; however, marked improvement in patient function and level of activity remains limited by the nature of RA and adjacent joint involvement.

  19. Knock knee and the gait of six-year-old children.

    PubMed

    Pretkiewicz-Abacjew, E

    2003-06-01

    Knock knee (genu valgum) interferes with the locomotive and supporting function of the lower limb. In static conditions the load-bearing axis of the valgus limb is displaced laterally in relation to the middle of the joint, causing the knee joint, the ankle joint, and the foot as a whole to be weighted in the wrong way. The purpose of this work is to examine the influence of knock knee on gait kinematics. The gait of twenty-two 6-year-old children of both sexes in whom knock knee had been medically diagnosed was compared with the gait of 33 children of the same age whose knee joints conformed to the norm in formation and position. Gait was recorded separately for the sagittal and the frontal planes, using a video-computer system. The results of the examination indicated statistically significant differences in the gait of the two groups of children. These differences related mainly to the time features of gait and to data on the angles in the knee and ankle joints. Although the results obtained for other features of gait did not reveal statistical differences, these did indicate that the children with knock knee walked more slowly and with a lower cadence. The results indicate that knock knee in 6-year-old children has an adverse impact on the mechanics of the lower limb joints in gait and causes a deterioration in gait quality. Thus knock knee in children should not be treated merely as a superficial defect but should be subject to therapy and, more importantly, taken into account when introducing children to early sports training.

  20. Biomechanical differences of arm swing countermovement jumps on sand and rigid surface performed by elite beach volleyball players.

    PubMed

    Giatsis, George; Panoutsakopoulos, Vassilios; Kollias, Iraklis A

    2018-05-01

    The purpose of this study was to investigate the possible arm swing effect on the biomechanical parameters of vertical counter movement jump due to differences of the compliance of the take-off surface. Fifteen elite male beach-volleyball players (26.2 ± 5.9 years; 1.87 ± 0.05 m; 83.4 ± 6.0 kg; mean ± standard deviation, respectively) performed counter movement jumps on sand and on a rigid surface with and without an arm swing. Results showed significant (p < .05) surface effects on the jump height, the ankle joint angle at the lowest height of the body center of mass and the ankle angular velocity. Also, significant arm swing effects were found on jump height, maximum power output, temporal parameters, range of motion and angular velocity of the hip. These findings could be attributed to the instability of the sand, which resulted in reduced peak power output due to the differences of body configuration at the lowest body position and lower limb joints' range of motion. The combined effect of the backward arm swing and the recoil of the sand that resulted in decreased resistance at ankle plantar flexion should be controlled at the preparation of selected jumping tasks in beach-volleyball.

  1. Lower extremity thrust and non-thrust joint mobilization for patellofemoral pain syndrome: a case report.

    PubMed

    Simpson, Brad G; Simon, Corey B

    2014-05-01

    A 40-year old female presented to physical therapy with a one-year history of insidious right anteromedial and anterolateral knee pain. Additionally, the patient had a history of multiple lateral ankle sprains bilaterally, the last sprain occurring on the right ankle 1 year prior to the onset of knee pain. The patient was evaluated and given a physical therapy diagnosis of patellofemoral pain syndrome (PFPS), with associated talocrural and tibiofemoral joint hypomobility limiting ankle dorsiflexion and knee extension, respectively. Treatment included a high-velocity low amplitude thrust manipulation to the talocrural joint, which helped restore normal ankle dorsiflexion range of motion. The patient also received tibiofemoral joint non-thrust manual therapy to regain normal knee extension mobility prior to implementing further functional progression exercises to her home program (HEP). This case report highlights the importance of a detailed evaluation of knee and ankle joint mobility in patients presenting with anterior knee pain. Further, manual physical therapy to the lower extremity was found to be successful in restoring normal movement patterns and pain-free function in a patient with chronic anterior knee pain.

  2. Propulsion System with Pneumatic Artificial Muscles for Powering Ankle-Foot Orthosis

    NASA Astrophysics Data System (ADS)

    Veneva, Ivanka; Vanderborght, Bram; Lefeber, Dirk; Cherelle, Pierre

    2013-12-01

    The aim of this paper is to present the design of device for control of new propulsion system with pneumatic artificial muscles. The propulsion system can be used for ankle joint articulation, for assisting and rehabilitation in cases of injured ankle-foot complex, stroke patients or elderly with functional weakness. Proposed device for control is composed by microcontroller, generator for muscles contractions and sensor system. The microcontroller receives the control signals from sensors and modulates ankle joint flex- ion and extension during human motion. The local joint control with a PID (Proportional-Integral Derivative) position feedback directly calculates desired pressure levels and dictates the necessary contractions. The main goal is to achieve an adaptation of the system and provide the necessary joint torque using position control with feedback.

  3. [Observation on therapeutic effect of acupuncture at Yanglingquan (GB 34) on sprain of external ankle joint].

    PubMed

    He, Xin-fang; Xu, Hai-bin

    2006-08-01

    To observe the increasing effect of Yanglingquan (GB 34) on sprain of external ankle joint. Seventy-nine cases of sprain of external ankle joint were semi-randomly divided into a treatment group (n = 46) and a control group (n = 33). The treatment group were treated with acupuncture at Yanglingquan (GB 34) and electro-magnetic therapy at local acupoints, and the control group with electro-magnetic therapy. The cured rate and the total effective rate were 67.4% and 91.3% in the treatment group, and 36.4% and 69.7% in the control group, respectively, with a significant difference between the two groups (P<0.01, P<0.05). Acupuncture at Yanglingquan (GB 34) has a better therapeutic effect on sprain of the external ankle joint.

  4. Effect of exoskeletal joint constraint and passive resistance on metabolic energy expenditure: Implications for walking in paraplegia

    PubMed Central

    Kobetic, Rudi; Triolo, Ronald J.

    2017-01-01

    An important consideration in the design of a practical system to restore walking in individuals with spinal cord injury is to minimize metabolic energy demand on the user. In this study, the effects of exoskeletal constraints on metabolic energy expenditure were evaluated in able-bodied volunteers to gain insight into the demands of walking with a hybrid neuroprosthesis after paralysis. The exoskeleton had a hydraulic mechanism to reciprocally couple hip flexion and extension, unlocked hydraulic stance controlled knee mechanisms, and ankles fixed at neutral by ankle-foot orthoses. These mechanisms added passive resistance to the hip (15 Nm) and knee (6 Nm) joints while the exoskeleton constrained joint motion to the sagittal plane. The average oxygen consumption when walking with the exoskeleton was 22.5 ± 3.4 ml O2/min/kg as compared to 11.7 ± 2.0 ml O2/min/kg when walking without the exoskeleton at a comparable speed. The heart rate and physiological cost index with the exoskeleton were at least 30% and 4.3 times higher, respectively, than walking without it. The maximum average speed achieved with the exoskeleton was 1.2 ± 0.2 m/s, at a cadence of 104 ± 11 steps/min, and step length of 70 ± 7 cm. Average peak hip joint angles (25 ± 7°) were within normal range, while average peak knee joint angles (40 ± 8°) were less than normal. Both hip and knee angular velocities were reduced with the exoskeleton as compared to normal. While the walking speed achieved with the exoskeleton could be sufficient for community ambulation, metabolic energy expenditure was significantly increased and unsustainable for such activities. This suggests that passive resistance, constraining leg motion to the sagittal plane, reciprocally coupling the hip joints, and weight of exoskeleton place considerable limitations on the utility of the device and need to be minimized in future designs of practical hybrid neuroprostheses for walking after paraplegia. PMID:28817701

  5. The effect of minimalist footwear and instruction on running: an observational study.

    PubMed

    Barcellona, Massimo Giuseppe; Buckley, Linda; Palmer, Lisa J M; Ormond, Roisin M; Owen, Gwawr; Watson, Daniel J; Woledge, Roger; Newham, Di

    2017-01-01

    It is not known whether the effects on altered running style which are attributed to minimalist footwear can be achieved by verbal instructions in standard running shoes (SRS). To explore the effect of Vibram FiveFingers (VFF) versus SRS plus running instruction on lower extremity spatiotemporal parameters and lower limb joint kinematics. 35 healthy subjects (mean=30 years, 18 females) were assessed on two occasions with 3D motion analysis. At each session subjects ran on a treadmill (3.58 m/s) for 2 min in either VFF or SRS (randomised order); with and without running instruction. Differences between spatiotemporal parameters and lower limb joint kinematics between conditions were assessed using a 2x2 repeated-measures ANOVA. Wearing VFF significantly increased cadence (p<0.001) and reduced stride length (p<0.01). Prior to initial contact, both instruction and VFF significantly increased foot (p<0.001 and p=0.02, respectively) and ankle (p<0.001 and p=0.02, respectively) plantarflexion, while wearing VFF significantly increased knee extension (p=0.04). At initial contact, instruction significantly increased knee flexion (p=0.04), and foot (p=0.001) and ankle (p=0.03) plantarflexion. At mid-stance and toe-off, instruction significantly increased knee flexion (p=0.048 and p<0.001, respectively) and foot plantarflexion (p<0.001 and p=0.01, respectively). Instruction had a greater effect on increasing knee flexion (p=0.007) and plantarflexion angle (p<0.001) when subjects wore SRS and VFF, respectively. Alterations in spatiotemporal parameters observed when running in VFF are likely to be attributable to the minimalist footwear. However, the kinematic adaptations observed following instruction suggests that changes in joint angles previously attributed to minimalist footwear alone may be similarly achieved with instruction.

  6. [Stable ankle joint fractures. Indication for surgical or conservative management?].

    PubMed

    Richter, J; Schulze, W; Muhr, G

    1999-06-01

    In German literature, ankle joint fractures are mostly classified in three groups according to Weber. In cases of the type A, the fracture line runs below, in cases of type B at height of the syndesmotic ligaments. C-type fractures are typically seen above this region. However, this practical and simple classification allows no inferences at accompanying injuries which in turn influence the functional outcome. We observed isolated fractures of the lateral malleolus in more than 60% of all type B-fractures, as soon as in the majority the type A-fractures. Since isolated medial ankle fractures occur very rarely, careful exclusion of further injuries is advisable here. In order to differentiate stable ones from unstable type B ankle injuries, we carry out a manual stress test, if there is less than 2 mm fracture dislocation and a congruent ankle mortise. In this manner we could find that stable lateral ankle fractures are characterized with a combination of an intact dorsal syndesmotic and medial ligament. Stable type B and undisplaced type A fractures were treated conservatively with an ankle brace (Aircast?). Unstable ankle injuries were treated by ORIF. Conservative treatment for undisplaced medial malleolar fractures is recommended, if x-rays showed less than 2 mm dislocation which allows a tibio-talare impingement. Biomechanical investigations could prove a significant increase in ankle joint stability, when an axial load of 300 N was applied to various horizontal loads. The talus does not follow automatically a displaced fibular fracture. The dorsal syndesmotic and the medial deltoid ligaments control ankle joint stability.

  7. Reliability of a functional test battery evaluating functionality, proprioception, and strength in recreational athletes with functional ankle instability.

    PubMed

    Sekir, U; Yildiz, Y; Hazneci, B; Ors, F; Saka, T; Aydin, T

    2008-12-01

    In contrast to the single evaluation methods used in the past, the combination of multiple tests allows one to obtain a global assessment of the ankle joint. The aim of this study was to determine the reliability of the different tests in a functional test battery. Twenty-four male recreational athletes with unilateral functional ankle instability (FAI) were recruited for this study. One component of the test battery included five different functional ability tests. These tests included a single limb hopping course, single-legged and triple-legged hop for distance, and six and cross six meter hop for time. The ankle joint position sense and one leg standing test were used for evaluation of proprioception and sensorimotor control. The isokinetic strengths of the ankle invertor and evertor muscles were evaluated at a velocity of 120 degrees /s. The reliability of the test battery was assessed by calculating the intraclass correlation coefficient (ICC). Each subject was tested two times, with an interval of 3-5 days between the test sessions. The ICCs for ankle functional and proprioceptive ability showed high reliability (ICCs ranging from 0.94 to 0.98). Additionally, isokinetic ankle joint inversion and eversion strength measurements represented good to high reliability (ICCs between 0.82 and 0.98). The functional test battery investigated in this study proved to be a reliable tool for the assessment of athletes with functional ankle instability. Therefore, clinicians may obtain reliable information from the functional test battery during the assessment of ankle joint performance in patients with functional ankle instability.

  8. The feasibility of measuring joint angular velocity with a gyro-sensor.

    PubMed

    Arai, Takeshi; Obuchi, Shuichi; Shiba, Yoshitaka; Omuro, Kazuya; Nakano, Chika; Higashi, Takuya

    2008-01-01

    To determine the reliability of an assessment of joint angular velocity using a gyro-sensor and to examine the relationship between ankle angular velocity and physical functions. Cross-sectional. Kinesiology laboratory. Twenty healthy young adults (mean age, 22.5 y) and 113 community-dwelling older adults (mean age, 75.1 y). Not applicable. Maximal ankle joint velocity was measured using a gyro-sensor during heel-rising and jumping with knee extended. The intraclass correlation coefficient (ICC) was used to determine the intertester and intratester reliability. The Pearson correlation coefficient was used to examine the relationships between maximal ankle joint velocity and isometric muscle strength and isokinetic muscle power in young adults and also to examine the relationships between maximal ankle joint velocity and functional performance measurements such as walking time in older adults. High reliability was found for intertester (ICC=.96) and intratester reliability (ICC=.96). The data from the gyro-sensor highly correlated with muscle strength (r range, .62-.68; P<.01) and muscle power (r range, .45-.79; P range, .01-.05). In older subjects, mobility functions significantly correlated with the angular velocity of ankle plantarflexion. Measurement of ankle angular velocity using a gyro-sensor is both reliable and feasible, with the results representing a significant correlation to muscle power and performance measurements.

  9. The effect of external ankle support on knee and ankle joint movement and loading in netball players.

    PubMed

    Vanwanseele, Benedicte; Stuelcken, Max; Greene, Andrew; Smith, Richard

    2014-09-01

    External ankle support has been successfully used to prevent ankle sprains. However, some recent studies have indicated that reducing ankle range of motion can place larger loads on the knee. The aim of this study was to investigate the effect of external ankle support (braces and high-top shoes) on the ankle and knee joint loading during a netball specific landing task. A repeated measure design. High performance netball players with no previously diagnosed severe ankle or knee injury (n=11) were recruited from NSW Institute of Sport netball programme. The kinematic and kinetic data were collected simultaneously using a 3-D Motion Analysis System and one Kistler force plate to measure ground reaction forces. Players performed a single leg landing whilst receiving a pass while wearing a standard netball shoe, the same shoe with a lace-up brace and a high-top shoe. Only the brace condition significantly reduced the ankle range of motion in the frontal plane (in/eversion) by 3.95 ± 3.74 degrees compared to the standard condition. No changes were found for the knee joint loading in the brace condition. The high-top shoes acted to increase the peak knee internal rotation moment by 15%. Both the brace and high-top conditions brought about increases in the peak ankle plantar flexion moment during the landing phase. Lace-up braces can be used by netball players to restrict ankle range of motion during a single leg landing while receiving a pass without increasing the load on the knee joint. Copyright © 2013 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. The Consequence of a Medial Ankle Sprain on Physical and Self-reported Functional Limitations: A Case Study Over a 5-Month Period.

    PubMed

    Terada, Masafumi; Thomas, Abbey C; Pietrosimone, Brian; Hiller, Claire E; Bowker, Samantha; Gribble, Phillip A

    2015-10-01

    Case report. Little evidence exists about impairments and perceived disability following eversion injury to the deltoid ligament. This case study prospectively examined the neuromuscular, biomechanical, and psychological consequences of a case of a medial ankle sprain. A recreationally active man with a history of a lateral ankle sprain (grade I) was participating in a university Institutional Review Board-approved research study examining the neuromuscular and mechanical characteristics associated with chronic ankle instability. Twenty-two days after the testing session, the participant sustained an eversion injury to his left ankle while playing basketball. Outcomes The outcomes of this case are presented using the International Classification of Functioning, Disability and Health model. Outcome variables were assessed at preinjury (medial ankle sprain), 3 months postinjury, and 5 months postinjury. Measurements included neural excitability of the soleus, balance assessment, joint stability, and psychological assessments. Data from this case study revealed that a medial ankle sprain reduces joint mobility and alters neural excitability of the soleus, with concurrent deficits in balance and self-reported function. These impairments forced the participant to downgrade his physical activity lifestyle up to 5 months postinjury. These data suggest the need for the development of intervention strategies to address impairments in neural excitability and joint mobility at the ankle to help patients meet the goal of maintaining long-term joint health. Prognosis, level 4.

  11. Neuromuscular control and rehabilitation of the unstable ankle

    PubMed Central

    Hung, You-jou

    2015-01-01

    Lateral ankle sprain is a common orthopedic injury with a very high recurrence rate in athletes. After decades of research, it is still unclear what contributes to the high recurrence rate of ankle sprain, and what is the most effective intervention to reduce the incident of initial and recurrent injuries. In addition, clinicians often implement balance training as part of the rehabilitation protocol in hopes of enhancing the neuromuscular control and proprioception of the ankle joint. However, there is no consensus on whether the neuromuscular control and proprioception are compromised in unstable ankles. To reduce the prevalence of ankle sprains, the effectiveness of engaging balance training to enhance the neuromuscular control and proprioception of the ankle joint is also questionable. PMID:26085985

  12. Determination of consistent patterns of range of motion in the ankle joint with a computed tomography stress-test.

    PubMed

    Tuijthof, Gabriëlle Josephine Maria; Zengerink, Maartje; Beimers, Lijkele; Jonges, Remmet; Maas, Mario; van Dijk, Cornelis Niek; Blankevoort, Leendert

    2009-07-01

    Measuring the range of motion of the ankle joint can assist in accurate diagnosis of ankle laxity. A computed tomography-based stress-test (3D CT stress-test) was used that determines the three-dimensional position and orientation of tibial, calcaneal and talar bones. The goal was to establish a quantitative database of the normal ranges of motion of the talocrural and subtalar joints. A clinical case on suspected subtalar instability demonstrated the relevance the proposed method. The range of motion was measured for the ankle joints in vivo for 20 subjects using the 3D CT stress-test. Motion of the tibia and calcaneus relative to the talus for eight extreme foot positions were described by helical parameters. High consistency for finite helical axis orientation (n) and rotation (theta) was shown for: talocrural extreme dorsiflexion to extreme plantarflexion (root mean square direction deviation (eta) 5.3 degrees and theta: SD 11.0 degrees), talorucral and subtalar extreme combined eversion-dorsiflexion to combined inversion-plantarflexion (eta: 6.7 degrees , theta: SD 9.0 degrees and eta:6.3 degrees , theta: SD 5.1 degrees), and subtalar extreme inversion to extreme eversion (eta: 6.4 degrees, theta: SD 5.9 degrees). Nearly all dorsi--and plantarflexion occurs in the talocrural joint (theta: mean 63.3 degrees (SD 11 degrees)). The inversion and internal rotation components for extreme eversion to inversion were approximately three times larger for the subtalar joint (theta: mean 22.9 degrees and 29.1 degrees) than for the talocrural joint (theta: mean 8.8 degrees and 10.7 degrees). Comparison of the ranges of motion of the pathologic ankle joint with the healthy subjects showed an increased inversion and axial rotation in the talocrural joint instead of in the suspected subtalar joint. The proposed diagnostic technique and the acquired database of helical parameters of ankle joint ranges of motion are suitable to apply in clinical cases.

  13. Motion control of the rabbit ankle joint with a flat interface nerve electrode.

    PubMed

    Park, Hyun-Joo; Durand, Dominique M

    2015-12-01

    A flat interface nerve electrode (FINE) has been shown to improve fascicular and subfascicular selectivity. A recently developed novel control algorithm for FINE was applied to motion control of the rabbit ankle. A 14-contact FINE was placed on the rabbit sciatic nerve (n = 8), and ankle joint motion was controlled for sinusoidal trajectories and filtered random trajectories. To this end, a real-time controller was implemented with a multiple-channel current stimulus isolator. The performance test results showed good tracking performance of rabbit ankle joint motion for filtered random trajectories and sinusoidal trajectories (0.5 Hz and 1.0 Hz) with <10% average root-mean-square (RMS) tracking error, whereas the average range of ankle joint motion was between -20.0 ± 9.3° and 18.1 ± 8.8°. The proposed control algorithm enables the use of a multiple-contact nerve electrode for motion trajectory tracking control of musculoskeletal systems. © 2015 Wiley Periodicals, Inc.

  14. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: five cases from televised tennis competitions.

    PubMed

    Fong, Daniel Tik-Pui; Ha, Sophia Chui-Wai; Mok, Kam-Ming; Chan, Christie Wing-Long; Chan, Kai-Ming

    2012-11-01

    Ankle ligamentous sprain is common in sports. The most direct way to study the mechanism quantitatively is to study real injury cases; however, it is unethical and impractical to produce an injury in the laboratory. A recently developed, model-based image-matching motion analysis technique allows quantitative analysis of real injury incidents captured in televised events and gives important knowledge for the development of injury prevention protocols and equipment. To date, there have been only 4 reported cases, and there is a need to conduct more studies for a better understanding of the mechanism of ankle ligamentous sprain injury. This study presents 5 cases in tennis and a comparison with 4 previous cases for a better understanding of the mechanism of ankle ligamentous sprain injury. Case series; level of evidence, 4. Five sets of videos showing ankle sprain injuries in televised tennis competition with 2 camera views were collected. The videos were transformed, synchronized, and rendered to a 3-dimensional animation software. The dimensions of the tennis court in each case were obtained to build a virtual environment, and a skeleton model scaled to the injured athlete's height was used for the skeleton matching. Foot strike was determined visually, and the profiles of the ankle joint kinematics were individually presented. There was a pattern of sudden inversion and internal rotation at the ankle joint, with the peak values ranging from 48°-126° and 35°-99°, respectively. In the sagittal plane, the ankle joint fluctuated between plantar flexion and dorsiflexion within the first 0.50 seconds after foot strike. The peak inversion velocity ranged from 509 to 1488 deg/sec. Internal rotation at the ankle joint could be one of the causes of ankle inversion sprain injury, with a slightly inverted ankle joint orientation at landing as the inciting event. To prevent the foot from rolling over the edge to cause a sprain injury, tennis players who do lots of sideward cutting motions should try to land with a neutral ankle orientation and keep the center of pressure from shifting laterally.

  15. Reliability of the Phi angle to assess rotational alignment of the talar component in total ankle replacement.

    PubMed

    Manzi, Luigi; Villafañe, Jorge Hugo; Indino, Cristian; Tamini, Jacopo; Berjano, Pedro; Usuelli, Federico Giuseppe

    2017-11-08

    The purpose of this study was to investigate the test-retest reliability of the Phi angle in patients undergoing total ankle replacement (TAR) for end stage ankle osteoarthritis (OA) to assess the rotational alignment of the talar component. Retrospective observational cross-sectional study of prospectively collected data. Post-operative anteroposterior radiographs of the foot of 170 patients who underwent TAR for the ankle OA were evaluated. Three physicians measured Phi on the 170 randomly sorted and anonymized radiographs on two occasions, one week apart (test and retest conditions), inter and intra-observer agreement were evaluated. Test-retest reliability of Phi angle measurement was excellent for patients with Hintegra TAR (ICC=0.995; p<0.001) and Zimmer TAR (ICC=0.995; p<0.001) on radiographs of subjects with ankle OA. There were no significant differences in the reliability of the Phi angle measurement between patients with Hintegra vs. Zimmer implants (p>0.05). Measurement of Phi angle on weight-bearing dorsoplantar radiograph showed an excellent reliability among orthopaedic surgeons in determining the position of the talar component in the axial plane. Level II, cross sectional study. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  16. Altered neuromuscular control and ankle joint kinematics during walking in subjects with functional instability of the ankle joint.

    PubMed

    Delahunt, Eamonn; Monaghan, Kenneth; Caulfield, Brian

    2006-12-01

    The ankle joint requires very precise neuromuscular control during the transition from terminal swing to the early stance phase of the gait cycle. Altered ankle joint arthrokinematics and muscular activity have been cited as potential factors that may lead to an inversion sprain during the aforementioned time periods. However, to date, no study has investigated patterns of muscle activity and 3D joint kinematics simultaneously in a group of subjects with functional instability compared with a noninjured control group during these phases of the gait cycle. To compare the patterns of lower limb 3D joint kinematics and electromyographic activity during treadmill walking in a group of subjects with functional instability with those observed in a control group. Controlled laboratory study. Three-dimensional angular velocities and displacements of the hip, knee, and ankle joints, as well as surface electromyography of the rectus femoris, peroneus longus, tibialis anterior, and soleus muscles, were recorded simultaneously while subjects walked on a treadmill at a velocity of 4 km/h. Before heel strike, subjects with functional instability exhibited a decrease in vertical foot-floor clearance (12.62 vs 22.84 mm; P < .05), as well as exhibiting a more inverted position of the ankle joint before, at, and immediately after heel strike (1.69 degrees , 2.10 degrees , and -0.09 degrees vs -1.43 degrees , -1.43 degrees , and -2.78 degrees , respectively [minus value = eversion]; P < .05) compared with controls. Subjects with functional instability were also observed to have an increase in peroneus longus integral electromyography during the post-heel strike time period (107.91%.millisecond vs 64.53%.millisecond; P < .01). The altered kinematics observed in this study could explain the reason subjects with functional instability experience repeated episodes of ankle inversion injury in situations with only slight or no external provocation. It is hypothesized that the observed increase in peroneus longus activity may be the result of a change in preprogrammed feed-forward motor control.

  17. Gait kinematics and kinetics of 7-year-old children: a comparison to adults using age-specific anthropometric data.

    PubMed

    Ganley, Kathleen J; Powers, Christopher M

    2005-02-01

    The purpose of this study was to determine if sagittal plane gait kinematics and kinetics of 7-year-old children differed from those of adults when age-specific anthropometrics were used in the calculations. Joint angles, moments, and power obtained during level walking in 7-year-old children (n=15) were compared to data from adults (n=15). Calculations were performed using age-specific anthropometric data obtained from dual energy X-ray absorptiometry. For most of the variables examined, 7-year-olds were similar to adults, however children demonstrated a diminished peak plantar flexor moment and less peak power absorption and generation at the ankle during late stance. These results provide support for the hypothesis that children lack the neuromuscular maturity, especially at the ankle, to produce an adult-like gait pattern.

  18. Joint contact loading in forefoot and rearfoot strike patterns during running.

    PubMed

    Rooney, Brandon D; Derrick, Timothy R

    2013-09-03

    Research concerning forefoot strike pattern (FFS) versus rearfoot strike pattern (RFS) running has focused on the ground reaction force even though internal joint contact forces are a more direct measure of the loads responsible for injury. The main purpose of this study was to determine the internal loading of the joints for each strike pattern. A secondary purpose was to determine if converted FFS and RFS runners can adequately represent habitual runners with regards to the internal joint loading. Using inverse dynamics to calculate the net joint moments and reaction forces and optimization techniques to estimate muscle forces, we determined the axial compressive loading at the ankle, knee, and hip. Subjects consisted of 15 habitual FFS and 15 habitual RFS competitive runners. Each subject ran at a preferred running velocity with their habitual strike pattern and then converted to the opposite strike pattern. Plantar flexor muscle forces and net ankle joint moments were greater in the FFS running compared to the RFS running during the first half of the stance phase. The average contact forces during this period increased by 41.7% at the ankle and 14.4% at the knee joint during FFS running. Peak ankle joint contact force was 1.5 body weights greater during FFS running (p<0.05). There was no evidence to support a difference between habitual and converted running for joint contact forces. The increased loading at the ankle joint for FFS is an area of concern for individuals considering altering their foot strike pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Redistribution of knee stress using laterally wedged insole intervention: Finite element analysis of knee-ankle-foot complex.

    PubMed

    Liu, Xuan; Zhang, Ming

    2013-01-01

    Laterally wedged insoles are widely applied in the conservative treatment for medial knee osteoarthritis. Experimental studies have been conducted to understand the effectiveness of such an orthotic intervention. However, the information was limited to the joint external loading such as knee adduction moment. The internal stress distribution is difficult to be obtained from in vivo experiment alone. Thus, a three-dimensional finite element model of the human knee-ankle-foot complex, together with orthosis, was developed in this study and used to investigate the redistribution of knee stress using laterally wedged insole intervention. Laterally wedged insoles with wedge angles of 0, 5, and 10° were fabricated for intervention. The subject-specific geometry of the lower extremity with details was characterized in the reconstruction of MR images. Motion analysis data and muscle forces were input to drive the model. The established finite element model was employed to investigate the loading responses of tibiofemoral articulation in three wedge angle conditions during simulated walking stance phase. With either of the 5° or 10° laterally wedged insole, significant decreases in von Mises stress and contact force at the medial femur cartilage region and the medial meniscus were predicted comparing with the 0° insole. The diminished stress and contact force at the medial compartment of the knee joint demonstrate the immediate effect of the laterally wedged insoles. The intervention may contribute to medial knee osteoarthritis rehabilitation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Proprioception and ankle injuries in soccer.

    PubMed

    Ergen, Emin; Ulkar, Bülent

    2008-01-01

    Because soccer attracts many participants and leads to a substantial number of injuries, especially of the lower extremities, it is important to study possibilities for injury prevention and proper rehabilitation to return safely to activities. Ankle sprains can be prevented by external ankle supports and proprioceptive-coordination training, especially in athletes with previous ankle sprains. Proprioception is a broad concept that includes balance and postural control with visual and vestibular contributions, joint kinesthesia, position sense, and muscle reaction time. Proprioceptive feedback is crucial in the conscious and unconscious awareness of a joint or limb in motion. Enhancement of functional joint stability by proprioceptive (or neuromuscular) training is important both in prevention and rehabilitation of athletic injuries.

  1. Cryotherapy does not affect peroneal reaction following sudden inversion.

    PubMed

    Berg, Christine L; Hart, Joseph M; Palmieri-Smith, Riann; Cross, Kevin M; Ingersoll, Christopher D

    2007-11-01

    If ankle joint cryotherapy impairs the ability of the ankle musculature to counteract potentially injurious forces, the ankle is left vulnerable to injury. To compare peroneal reaction to sudden inversion following ankle joint cryotherapy. Repeated measures design with independent variables, treatment (cryotherapy and control), and time (baseline, immediately post treatment, 15 minutes post treatment, and 30 minutes post treatment). University research laboratory. Twenty-seven healthy volunteers. An ice bag was secured to the lateral ankle joint for 20 minutes. The onset and average root mean square amplitude of EMG activity in the peroneal muscles was calculated following the release of a trap door mechanism causing inversion. There was no statistically significant change from baseline for peroneal reaction time or average peroneal muscle activity at any post treatment time. Cryotherapy does not affect peroneal muscle reaction following sudden inversion perturbation.

  2. Comparison of Joint Loading in Badminton Lunging between Professional and Amateur Badminton Players

    PubMed Central

    Fu, Lin

    2017-01-01

    The knee and ankle are the two most injured joints associated with the sport of badminton. This study evaluates biomechanical factors between professional and amateur badminton players using an injury mechanism model. The aim of this study was to investigate the kinematic motion and kinetic loading differences of the right knee and ankle while performing a maximal right lunge. Amateur players exhibited greater ankle range of motion (p < 0.05, r = 0.89) and inversion joint moment (p < 0.05, r = 0.54) in the frontal plane as well as greater internal joint rotation moment (p < 0.05, r = 0.28) in the horizontal plane. In contrast, professional badminton players presented a greater knee joint moment in the sagittal (p < 0.05, r = 0.59) and frontal (p < 0.05, r = 0.37) planes, which may be associated with increased knee ligamentous injury risk. To avoid injury, the players need to forcefully extend the knee with internal rotation, strengthen the muscles around the ankle ligament, and maximise joint coordination during training. The injuries recorded and the forces responsible for the injuries seem to have developed during training activity. Training programmes and injury prevention strategies for badminton players should account for these findings to reduce potential injury to the ankle and knee. PMID:28694684

  3. The Effect of Backpack Load Carriage on the Kinetics and Kinematics of Ankle and Knee Joints During Uphill Walking.

    PubMed

    Lee, Jinkyu; Yoon, Yong-Jin; Shin, Choongsoo S

    2017-12-01

    The purpose of this study was to investigate the effect of load carriage on the kinematics and kinetics of the ankle and knee joints during uphill walking, including joint work, range of motion (ROM), and stance time. Fourteen males walked at a self-selected speed on an uphill (15°) slope wearing military boots and carrying a rifle in hand without a backpack (control condition) and with a backpack. The results showed that the stance time significantly decreased with backpack carriage (p < .05). The mediolateral impulse significantly increased with backpack carriage (p < .05). In the ankle joints, the inversion-eversion, and dorsi-plantar flexion ROM in the ankle joints increased with backpack carriage (p < .05). The greater dorsi-plantar flexion ROM with backpack carriage suggested 1 strategy for obtaining high plantar flexor power during uphill walking. The result of the increased mediolateral impulse and inversion-eversion ROM in the ankle joints indicated an increase in body instability caused by an elevated center of mass with backpack carriage during uphill walking. The decreased stance time indicated that an increase in walking speed could be a compensatory mechanism for reducing the instability of the body during uphill walking while carrying a heavy backpack.

  4. Ankle joint distraction arthroplasty for severe ankle arthritis.

    PubMed

    Xu, Yang; Zhu, Yuan; Xu, Xiang-Yang

    2017-02-28

    Ankle distraction arthroplasty is one option for the treatment of severe ankle arthritis in young patients. The outcomes and factors predicting success in distraction arthroplasty are poorly understood. From January 2011 to May 2015, 16 patients who had undergone ankle distraction arthroplasty for ankle arthritis were operated, including six males and ten females. All patients were available for analysis. The main outcome measurements included joint space on weight bearing radiographs, AOFAS-AH scores (American Orthopaedic Foot & Ankle Society ankle-hindfoot score), VAS scores and SF-36 scores. All 16 patients were followed for a mean follow-up of 40.9 ± 14.7 months (range, 17-67 months). Fourteen of the 16 patients still had their native ankle joints. One patient had undergone ankle arthrodesis 1 year after the operation and one patient had converted to spontaneous ankle fusion at the 3 years follow-up postoperative. The VAS score improved from 5.9 ± 0.8 to 3.7 ± 2.2 (p = 0.0028). The mean AOFAS-AH score improved from 41.9 ± 7.2 preoperatively to 68.1 ± 20.0 postoperatively (p = 0.001). The mean SF-36 score improved from 43.1 ± 7.6 preoperatively to 62.7 ± 18.8 postoperatively (p = 0.002). A weight-bearing ankle space larger than 3 mm at 1 year following distraction is a positive predictive factor. In this study, the treatment of ankle motion distraction for end stage ankle arthritis showed benefit in 9/16 (56.25%) patients at 41 months. It is a promising method for young patients with severe ankle arthritis.

  5. Peripheral DXA measurement around ankle joint to diagnose osteoporosis as assessed by central DXA measurement.

    PubMed

    Sung, Ki Hyuk; Choi, Young; Cho, Gyeong Hee; Chung, Chin Youb; Park, Moon Seok; Lee, Kyoung Min

    2018-02-05

    This study evaluated the correlation between central and peripheral bone mineral density (BMD) of the ankle joint, using dual-energy X-ray absorptiometry (DXA). We also investigated whether peripheral ankle BMD could be used to identify individuals who were diagnosed with osteoporosis, using central DXA. We recruited 134 volunteers aged 20-90 years who agreed to participate in this study. Central BMD of the lumbar spine and left femur, and peripheral BMD of the medial malleolus, distal tibia, lateral malleolus, and talus were measured with DXA. Among the peripheral sites of the ankle, the highest and lowest BMD were observed in the talus and lateral malleolus, respectively. All peripheral DXA measurements of the ankle joint were significantly correlated with central DXA measurements. There was a good correlation (r: 0.656-0.725) between peripheral and central BMD for the older age group (> 50 years), but fair-to-good correlation (r: 0.263-0.654) for the younger age group (< 50 years). The cut-off values for peripheral BMD of the ankle joint between osteoporosis and non-osteoporosis were 0.548 g/cm 2 (sensitivity, 89.0%; specificity, 69.0%) for the medial malleolus, 0.626 g/cm 2 (sensitivity, 83.3%; specificity, 82.8%) for the distal tibia, 0.47 g/cm 2 (sensitivity, 100.0%; specificity, 65.5%) for the lateral malleolus, and 0.973 g/cm 2 (sensitivity, 72.2%; specificity, 83.6%) for the talus (p < 0.001). This study showed good correlation between peripheral BMD around ankle joint and central BMD for older age group. Further study is required to use the ankle DXA as a valid clinical tool for the diagnosis of osteoporosis and fracture risk assessment.

  6. Effects of focal ankle joint cooling on unipedal static balance in individuals with and without chronic ankle instability.

    PubMed

    Kim, Kyung-Min; Hart, Joseph M; Saliba, Susan A; Hertel, Jay

    2015-01-01

    Application of cryotherapy over an injured joint has been shown to improve muscle function, yet it is unknown how ankle cryotherapy affects postural control. Our purpose was to determine the effects of a 20-min focal ankle joint cooling on unipedal static stance in individuals with and without chronic ankle instability (CAI). Fifteen young subjects with CAI (9 males, 6 females) and 15 healthy gender-matched controls participated. All subjects underwent two intervention sessions on different days in which they had a 1.5L plastic bag filled with either crushed ice (active treatment) or candy corn (sham) applied to the ankle. Unipedal stance with eyes closed for 10s were assessed with a forceplate before and after each intervention. Center of pressure (COP) data were used to compute 10 specific dependent measures including velocity, area, standard deviation (SD), and percent range of COP excursions, and mean and SD of time-to-boundary (TTB) minima in the anterior-posterior (AP) and mediolateral directions. For each measure a three-way (Group-Intervention-Time) repeated ANOVAs found no significant interactions and main effects involving intervention (all Ps > 0.05). There were group main effects found for mean velocity (F(1,28) = 6.46, P = .017), area (F(1,28) = 12.83, P = .001), and mean of TTB minima in the AP direction (F(1,28) = 5.19, P = .031) indicating that the CAI group demonstrated greater postural instability compared to the healthy group. Postural control of unipedal stance was not significantly altered following focal ankle joint cooling in groups both with and without CAI. Ankle joint cryotherapy was neither beneficial nor harmful to single leg balance. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Minimum distraction gap: how much ankle joint space is enough in ankle distraction arthroplasty?

    PubMed

    Fragomen, Austin T; McCoy, Thomas H; Meyers, Kathleen N; Rozbruch, S Robert

    2014-02-01

    The success of ankle distraction arthroplasty relies on the separation of the tibiotalar articular surfaces. The purpose of this study was to find the minimum distraction gap needed to ensure that the tibiotalar joint surfaces would not contact each other with full weight-bearing while under distraction. Circular external fixators were mounted to nine cadaver ankle specimens. Each specimen was then placed into a custom-designed load chamber. Loads of 0, 350, and 700N were applied to the specimen. Radiographic joint space was measured and joint contact pressure was monitored under each load. The external fixator was then sequentially distracted, and the radiographic joint space was measured under the three different loads. The experiment was stopped when there was no joint contact under 700N of load. The radiographic joint space was measured and the initial (undistracted) radiographic joint space was subtracted from it yielding the distraction gap. The minimum distraction gap (mDG) that would provide total unloading was calculated. The average mDG was 2.4 mm (range, 1.6 to 4.0 mm) at 700N of load, 4.4 mm (range, 3.7 to 5.8 mm) at 350N of load, and 4.9 mm (range, 3.7 to 7.0 mm) at 0N of load. These results suggest that if the radiographic joint space of on a standing X-ray of an ankle undergoing distraction arthroplasty shows a minimum of 5.8 mm of DG, then there will be no contact between joint surfaces during full weight-bearing. Therefore, 5 mm of radiographic joint space, as recommended historically, may not be adequate to prevent contact of the articular surfaces during weight-bearing.

  8. Medial joint line bone bruising at MRI complicating acute ankle inversion injury: what is its clinical significance?

    PubMed

    Chan, V O; Moran, D E; Shine, S; Eustace, S J

    2013-10-01

    To assess the incidence and clinical significance of medial joint line bone bruising following acute ankle inversion injury. Forty-five patients who underwent ankle magnetic resonance imaging (MRI) within 2 weeks of acute ankle inversion injury were included in this prospective study. Integrity of the lateral collateral ligament complex, presence of medial joint line bone bruising, tibio-talar joint effusion, and soft-tissue swelling were documented. Clinical follow-up at 6 months was carried out to determine the impact of injury on length of time out of work, delay in return to normal walking, delay in return to sports activity, and persistence of medial joint line pain. Thirty-seven patients had tears of the anterior talofibular ligament (ATFL). Twenty-six patients had medial joint line bone bruising with altered marrow signal at the medial aspect of the talus and congruent surface of the medial malleolus. A complete ATFL tear was seen in 92% of the patients with medial joint line bone bruising (p = 0.05). Patients with an ATFL tear and medial joint line bone bruising had a longer delay in return to normal walking (p = 0.0002), longer delay in return to sports activity (p = 0.0001), and persistent medial joint line pain (p = 0.0003). There was no statistically significant difference in outcome for the eight patients without ATFL tears. Medial joint line bone bruising following an acute ankle inversion injury was significantly associated with a complete ATFL tear, longer delay in the return to normal walking and sports activity, as well as persistent medial joint line pain. Its presence should prompt detailed assessment of the lateral collateral ligament complex, particularly the ATFL. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  9. Impulsive ankle push-off powers leg swing in human walking.

    PubMed

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Seyfarth, Andre

    2014-04-15

    Rapid unloading and a peak in power output of the ankle joint have been widely observed during push-off in human walking. Model-based studies hypothesize that this push-off causes redirection of the body center of mass just before touch-down of the leading leg. Other research suggests that work done by the ankle extensors provides kinetic energy for the initiation of swing. Also, muscle work is suggested to power a catapult-like action in late stance of human walking. However, there is a lack of knowledge about the biomechanical process leading to this widely observed high power output of the ankle extensors. In our study, we use kinematic and dynamic data of human walking collected at speeds between 0.5 and 2.5 m s(-1) for a comprehensive analysis of push-off mechanics. We identify two distinct phases, which divide the push-off: first, starting with positive ankle power output, an alleviation phase, where the trailing leg is alleviated from supporting the body mass, and second, a launching phase, where stored energy in the ankle joint is released. Our results show a release of just a small part of the energy stored in the ankle joint during the alleviation phase. A larger impulse for the trailing leg than for the remaining body is observed during the launching phase. Here, the buckling knee joint inhibits transfer of power from the ankle to the remaining body. It appears that swing initiation profits from an impulsive ankle push-off resulting from a catapult without escapement.

  10. Lower extremity thrust and non-thrust joint mobilization for patellofemoral pain syndrome: a case report

    PubMed Central

    Simpson, Brad G; Simon, Corey B

    2014-01-01

    A 40-year old female presented to physical therapy with a one-year history of insidious right anteromedial and anterolateral knee pain. Additionally, the patient had a history of multiple lateral ankle sprains bilaterally, the last sprain occurring on the right ankle 1 year prior to the onset of knee pain. The patient was evaluated and given a physical therapy diagnosis of patellofemoral pain syndrome (PFPS), with associated talocrural and tibiofemoral joint hypomobility limiting ankle dorsiflexion and knee extension, respectively. Treatment included a high-velocity low amplitude thrust manipulation to the talocrural joint, which helped restore normal ankle dorsiflexion range of motion. The patient also received tibiofemoral joint non-thrust manual therapy to regain normal knee extension mobility prior to implementing further functional progression exercises to her home program (HEP). This case report highlights the importance of a detailed evaluation of knee and ankle joint mobility in patients presenting with anterior knee pain. Further, manual physical therapy to the lower extremity was found to be successful in restoring normal movement patterns and pain-free function in a patient with chronic anterior knee pain. PMID:24976753

  11. [Missed diagnosis of hiding posterior marginal fracture of ankle with pronation-external rotation type and its treatment].

    PubMed

    Wang, Jia; Zhang, Yun-Tong; Zhang, Chun-Cai; Tang, Yang

    2014-01-01

    To analyze causes of missed diagnosis of hiding post-malleolar fractures in treating ankle joint fractures of pronation-external rotation type according to Lauge-Hansen classification and assess its medium-term outcomes. Among 103 patients with ankle joint fracture of pronation-external rotation type treated from March 2002 to June 2010,9 patients were missed diagnosis,including 6 males and 3 females,with a mean age of 35.2 years old (ranged, 18 to 55 years old) . Four patients were diagnosed during operation, 2 patients were diagnosed 2 or 3 days after first surgery and 3 patients came from other hospital. All the patients were treated remedially with lag screws and lock plates internal fixation. After operation,ankle joint function was evaluated according to American Orthopaedic Foot and Ankle Society (AOFAS). All the 9 patients were followed up, and the duration ranged from 14 to 30 months (averaged, 17 months). No incision infection was found, and all incision healed at the first stage. At the latest follow-up, AOFAS was 83.0 +/- 4.4, the score of 4 patients diagnosed during operation was 85.0 +/- 2.9, and the score of 5 patients treated by secondary operation was 81.0 +/- 5.3. All the patients got fracture union observed by X-ray at a mean time of 2.2 months after operation. There were no complications such as internal fixation loosing, broken and vascular or nerve injuries. Ankle joint fracture of pronation-external rotation type may be combined with hiding post-malleolar fractures. So to patients with ankle joint fracture of pronation-external rotation type, lateral X-ray should be read carefully, and if necessary, CT or MRI examination should be performed. If adding lateral X-ray examination after reduction of exterior and interior ankle joint fixation, the missed diagnosis may be avoided.

  12. The effects of floor incline on lower extremity biomechanics during unilateral landing from a jump in dancers.

    PubMed

    Pappas, Evangelos; Orishimo, Karl F; Kremenic, Ian; Liederbach, Marijeanne; Hagins, Marshall

    2012-05-01

    Retrospective studies have suggested that dancers performing on inclined ("raked") stages have increased injury risk. One study suggests that biomechanical differences exist between flat and inclined surfaces during bilateral landings; however, no studies have examined whether such differences exist during unilateral landings. In addition, little is known regarding potential gender differences in landing mechanics of dancers. Professional dancers (N = 41; 14 male, 27 female) performed unilateral drop jumps from a 30 cm platform onto flat and inclined surfaces while extremity joint angles and moments were identified and analyzed. There were significant joint angle and moment effects due to the inclined flooring. Women had significantly decreased peak ankle dorsiflexion and hip adduction moment compared with men. Findings of the current study suggest that unilateral landings on inclined stages create measurable changes in lower extremity biomechanical variables. These findings provide a preliminary biomechanical rationale for differences in injury rates found in observational studies of raked stages.

  13. Dorsiflexion capacity affects achilles tendon loading during drop landings.

    PubMed

    Whitting, John W; Steele, Julie R; McGhee, Deirdre E; Munro, Bridget J

    2011-04-01

    Evidence suggests a link between decreased dorsiflexion range of motion (DROM) and injury risk during landings. The purpose of this study was to determine the effect of weight-bearing DROM on ankle mechanics during drop landings. Forty-eight men (mean ± SD = 22.5 ± 4.7 yr) were measured for DROM. Participants performed drop landings onto a force platform at two vertical descent velocities (2.25 ± 0.15 and 3.21 ± 0.17 m·s(-1)), while EMG activity of four shank muscles and three-dimensional ankle joint kinematics were recorded. Participants were classified into low (37.7° ± 2.5°) and high (48.4° ± 2.5°) DROM groups. Ground reaction force, EMG, dorsiflexion angle, plantarflexion moment, and Achilles tendon force outcome variables were all equivalent for the two DROM groups during each landing condition. However, the low DROM group performed each landing condition at a significantly greater percentage of their DROM and displayed significantly more ankle eversion throughout most of the movement. The low and high DROM groups displayed DROM percentages of 27 ± 11 and 10 ± 11 (P = 0.013), 32 ± 9 and 23 ± 9 (P = 0.056), 60 ± 13 and 46 ± 13 (P = 0.004), and 66 ± 16 and 54 ± 9 (P = 0.003) when they encountered the peak plantarflexion moments, Achilles tendon force, eversion angles, and dorsiflexion angles, respectively. Participants with a low DROM absorbed the landing impact forces with their plantarflexor muscle-tendon units in a more lengthened and everted position. Athletes with a low DROM may be more likely to regularly overload their plantarflexor muscle-tendon units, thereby potentially exposing themselves to a higher likelihood of incurring injuries such as Achilles tendinopathy.

  14. First in vivo assessment of "Outwalk": a novel protocol for clinical gait analysis based on inertial and magnetic sensors.

    PubMed

    Ferrari, Alberto; Cutti, Andrea Giovanni; Garofalo, Pietro; Raggi, Michele; Heijboer, Monique; Cappello, Angelo; Davalli, Angelo

    2010-01-01

    A protocol named "Outwalk" was recently proposed to measure the thorax-pelvis and lower-limb kinematics during gait in free-living conditions, by means of an inertial and magnetic measurement system (IMMS). The aim of this study was to validate Outwalk on four healthy subjects when it is used in combination with a specific IMMS (Xsens Technologies, NL), against a reference protocol (CAST) and measurement system (optoelectronic system; Vicon, Oxford Metrics Group, UK). For this purpose, we developed an original approach based on three tests, which allowed to separately investigate: (1) the consequences on joint kinematics of the differences between protocols (Outwalk vs. CAST), (2) the accuracy of the hardware (Xsens vs. Vicon), and (3) the summation of protocols' differences and hardware accuracy (Outwalk + Xsens vs. CAST + Vicon). In order to assess joint-angles similarity, the coefficient of multiple correlation (CMC) was used. For test 3, the CMC showed that Outwalk + Xsens and CAST + Vicon kinematics can be interchanged, offset included, for hip, knee and ankle flexion-extension, and hip ab-adduction (CMC > 0.88). The other joint-angles can be interchanged offset excluded (CMC > 0.85). Tests 1 and 2 also showed that differences in offset between joint-angles were predominantly induced by differences in the protocols; differences in correlation by both hardware and protocols; differences in range of motion by the Xsens accuracy. Results thus support the commencement of a clinical trial of Outwalk on transtibial amputees.

  15. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.

    PubMed

    Ao, Di; Song, Rong; Gao, JinWu

    2017-08-01

    Although the merits of electromyography (EMG)-based control of powered assistive systems have been certified, the factors that affect the performance of EMG-based human-robot cooperation, which are very important, have received little attention. This study investigates whether a more physiologically appropriate model could improve the performance of human-robot cooperation control for an ankle power-assist exoskeleton robot. To achieve the goal, an EMG-driven Hill-type neuromusculoskeletal model (HNM) and a linear proportional model (LPM) were developed and calibrated through maximum isometric voluntary dorsiflexion (MIVD). The two control models could estimate the real-time ankle joint torque, and HNM is more accurate and can account for the change of the joint angle and muscle dynamics. Then, eight healthy volunteers were recruited to wear the ankle exoskeleton robot and complete a series of sinusoidal tracking tasks in the vertical plane. With the various levels of assist based on the two calibrated models, the subjects were instructed to track the target displayed on the screen as accurately as possible by performing ankle dorsiflexion and plantarflexion. Two measurements, the root mean square error (RMSE) and root mean square jerk (RMSJ), were derived from the assistant torque and kinematic signals to characterize the movement performances, whereas the amplitudes of the recorded EMG signals from the tibialis anterior (TA) and the gastrocnemius (GAS) were obtained to reflect the muscular efforts. The results demonstrated that the muscular effort and smoothness of tracking movements decreased with an increase in the assistant ratio. Compared with LPM, subjects made lower physical efforts and generated smoother movements when using HNM, which implied that a more physiologically appropriate model could enable more natural and human-like human-robot cooperation and has potential value for improvement of human-exoskeleton interaction in future applications.

  16. Feedforward neural control of toe walking in humans.

    PubMed

    Lorentzen, Jakob; Willerslev-Olsen, Maria; Hüche Larsen, Helle; Svane, Christian; Forman, Christian; Frisk, Rasmus; Farmer, Simon Francis; Kersting, Uwe; Nielsen, Jens Bo

    2018-03-23

    Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h -1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of human gait during voluntary toe walking. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  17. Peak Lower Extremity Landing Kinematics in Dancers and Nondancers.

    PubMed

    Hansberger, Bethany L; Acocello, Shellie; Slater, Lindsay V; Hart, Joseph M; Ambegaonkar, Jatin P

    2018-04-01

      Anterior cruciate ligament (ACL) injuries often occur during jump landings and can have detrimental short-term and long-term functional effects on quality of life. Despite frequently performing jump landings, dancers have lower incidence rates of ACL injury than other jump-landing athletes. Planned versus unplanned activities and footwear may explain differing ACL-injury rates among dancers and nondancers. Still, few researchers have compared landing biomechanics between dancers and nondancers.   To compare the landing biomechanics of dancers and nondancers during single-legged (SL) drop-vertical jumps.   Cross-sectional study.   Laboratory.   A total of 39 healthy participants, 12 female dancers (age = 20.9 ± 1.8 years, height = 166.4 ± 6.7 cm, mass = 63.2 ± 16.4 kg), 14 female nondancers (age = 20.2 ± 0.9 years, height = 168.9 ± 5.0 cm, mass = 61.6 ± 7.7 kg), and 13 male nondancers (age = 22.2 ± 2.7 years, height = 180.6 ± 9.7 cm, mass = 80.8 ± 13.2 kg).   Participants performed SL-drop-vertical jumps from a 30-cm-high box in a randomized order in 2 activity (planned, unplanned) and 2 footwear (shod, barefoot) conditions while a 3-dimensional system recorded landing biomechanics.   Overall peak sagittal-plane and frontal-plane ankle-, knee-, and hip-joint kinematics (joint angles) were compared across groups using separate multivariate analyses of variance followed by main-effects testing and pairwise-adjusted Bonferroni comparisons as appropriate ( P < .05).   No 3-way interactions existed for sagittal-plane or frontal-plane ankle (Wilks λ = 0.85, P = .11 and Wilks λ = 0.96, P = .55, respectively), knee (Wilks λ = 1.00, P = .93 and Wilks λ = 0.94, P = .36, respectively), or hip (Wilks λ = 0.99, P = .88 and Wilks λ = 0.97, P = .62, respectively) kinematics. We observed no group × footwear interactions for sagittal-plane or frontal-plane ankle (Wilks λ = 0.94, P = .43 and Wilks λ = 0.96, P = .55, respectively), knee (Wilks λ = 0.97, P = .60 and Wilks λ = 0.97, P = .66, respectively), or hip (Wilks λ = 0.99, P = .91 and Wilks λ = 1.00, P = .93, respectively) kinematics, and no group × activity interactions were noted for ankle frontal-plane (Wilks λ = 0.92, P = .29) and sagittal- and frontal-plane knee (Wilks λ = 0.99, P = .81 and Wilks λ = 0.98, P = .77, respectively) and hip (Wilks λ = 0.88, P = .13 and Wilks λ = 0.85, P = .08, respectively) kinematics. A group × activity interaction (Wilks λ = 0.76, P = .02) was present for ankle sagittal-plane kinematics. Main-effects testing revealed different ankle frontal-plane angles across groups ( F 2,28 = 3.78, P = .04), with male nondancers having greater ankle inversion than female nondancers ( P = .05).   Irrespective of activity type or footwear, female nondancers landed with similar hip and knee kinematics but greater peak ankle eversion and less peak ankle dorsiflexion (ie, positions associated with greater ACL injury risk). Ankle kinematics may differ between groups due to different landing strategies and training used by dancers. Dancers' training should be examined to determine if it results in a reduced occurrence of biomechanics related to ACL injury during SL landing.

  18. Hypoalgesic effect of a passive accessory mobilisation technique in patients with lateral ankle pain.

    PubMed

    Yeo, Hwee Koon; Wright, Anthony

    2011-08-01

    A randomised, double blind, repeated measures study was conducted to investigate the initial effects of an accessory mobilisation technique applied to the ankle joint in 13 patients with a unilateral sub-acute ankle supination injury. Ankle dorsiflexion range of motion, pressure pain threshold, visual analogue scale rating of pain during functional activity and ankle functional scores were assessed before and after application of treatment, manual contact control and no contact control conditions. There were significant improvements in ankle dorsiflexion range of motion (p = 0.000) and pressure pain threshold (p = 0.000) during the treatment condition. However no significant effects were observed for the other measures. These findings demonstrate that mobilisation of the ankle joint can produce an initial hypoalgesic effect and an improvement in ankle dorsiflexion range of motion. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  19. Anterior ankle impingement after tendo-Achilles lengthening for long-standing equinus deformity in residual poliomyelitis.

    PubMed

    Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Park, Moon Seok

    2013-09-01

    This study was performed to investigate anterior ankle impingement after tendo-Achilles lengthening for long-standing equinus deformity in patients with residual poliomyelitis and to investigate whether the severity of preoperative equinus deformity affected the occurrence of symptomatic anterior impingement. Twenty-seven consecutive patients (mean age, 43.8 ± 9.4 years) with residual poliomyelitis who underwent tendo-Achilles lengthening for equinus foot deformity were included. On lateral foot-ankle weight-bearing radiographs, the tibiocalcaneal angle, plantigrade angle, and McDermott grade were measured and the presence of anterior blocking spur was evaluated. Eleven patients (40.7%) had anterior ankle impingement on radiographic findings preoperatively and 24 patients (88.9%) at latest follow-up. There was a significant difference in McDermott grade between preoperative and latest follow-up (P < .001). There were significant differences in tibiocalcaneal angle and plantigrade angle between the patients with anterior ankle pain and without anterior ankle pain (P = .006 and .011, respectively) and between the patients with anterior blocking spur and without anterior blocking spur (P = .005 and .010, respectively). Most patients with residual poliomyelitis had anterior ankle impingement after tendo-Achilles lengthening for long-standing equinus deformity, and the presence of symptomatic anterior ankle impingement was significantly associated with the severity of the equinus deformity. Therefore, for residual poliomyelitis patients with severe long-standing equinus deformity, surgeons should consider the possibility of a subsequent anterior procedure for anterior impingement after tendo-Achilles lengthening. Level IV, retrospective case series.

  20. Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps.

    PubMed

    Cheng, Kuangyou B; Hubbard, Mont

    2005-09-01

    A multi-segment model is used to investigate optimal compliant-surface jumping strategies and is applied to springboard standing jumps. The human model has four segments representing the feet, shanks, thighs, and trunk-head-arms. A rigid bar with a rotational spring on one end and a point mass on the other end (the tip) models the springboard. Board tip mass, length, and stiffness are functions of the fulcrum setting. Body segments and board tip are connected by frictionless hinge joints and are driven by joint torque actuators at the ankle, knee, and hip. One constant (maximum isometric torque) and three variable functions (of instantaneous joint angle, angular velocity, and activation level) determine each joint torque. Movement from a nearly straight motionless initial posture to jump takeoff is simulated. The objective is to find joint torque activation patterns during board contact so that jump height can be maximized. Minimum and maximum joint angles, rates of change of normalized activation levels, and contact duration are constrained. Optimal springboard jumping simulations can reasonably predict jumper vertical velocity and jump height. Qualitatively similar joint torque activation patterns are found over different fulcrum settings. Different from rigid-surface jumping where maximal activation is maintained until takeoff, joint activation decreases near takeoff in compliant-surface jumping. The fulcrum-height relations in experimental data were predicted by the models. However, lack of practice at non-preferred fulcrum settings might have caused less jump height than the models' prediction. Larger fulcrum numbers are beneficial for taller/heavier jumpers because they need more time to extend joints.

  1. [Lateral instability of the upper ankle joint].

    PubMed

    Harrasser, N; Eichelberg, K; Pohlig, F; Waizy, H; Toepfer, A; von Eisenhart-Rothe, R

    2016-11-01

    Because of their frequency, ankle sprains are of major clinical and economic importance. The simple sprain with uneventful healing has to be distinguished from the potentially complicated sprain which is at risk of transition to chronic ankle instability. Conservative treatment is indicated for the acute, simple ankle sprain without accompanying injuries and also in cases of chronic instability. If conservative treatment fails, good results can be achieved by anatomic ligament reconstruction of the lateral ankle ligaments. Arthroscopic techniques offer the advantage of joint inspection and addressing intra-articular pathologies in combination with ligament repair. Accompanying pathologies must be adequately addressed during ligament repair to avoid persistent ankle discomfort. If syndesmotic insufficiency and tibiofibular instability are suspected, the objective should be early diagnosis with MRI and surgical repair.

  2. Dance floor force reduction influences ankle loads in dancers during drop landings.

    PubMed

    Hopper, Luke S; Alderson, Jacqueline A; Elliott, Bruce C; Ackland, Timothy R

    2015-07-01

    Dance floor mechanical properties have the potential to influence the high frequency of ankle injuries in dancers. However, biomechanical risk factors for injury during human movement on hard, low force reduction floors have not been established. The aim of this study was to examine the ankle joint mechanics of dancers performing drop landings on dance floors with varied levels of force reduction. Repeated measures cross sectional study. Fourteen dancers performed drop landings on five custom built dance floors. Ankle joint mechanics were calculated using a three dimensional kinematic model and inverse dynamics approach. Ankle joint kinematic (dorsiflexion; range of motion, peak angular velocity and acceleration) and kinetic (plantar flexion; peak joint moments and power) variables significantly increased with a decrease in floor force reduction. Many of the observed changes occurred within a latency of <0.1s post-contact with the floor and were associated with increased vertical ground reaction forces and decreased floor vertical deformation. The observed mechanical changes are interpreted as an increase in the load experienced by the energy absorbing structures that cross the ankle. The short latency of the changes represents a high intensity movement at the ankle during a period of limited cognitive neuromuscular control. It is suggested that these observations may have injury risk implications for dancers that are related to joint stabilization. These findings may be of benefit for further investigation of dance injury prevention and support the notion that bespoke force reduction standards for dance floors are necessary. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  3. [On practicability of implementing the speciality "podiatry" in traumatology and orthopedics].

    PubMed

    2011-01-01

    The absence of single opinion concerning the classification of foot and ankle joint pathology does not permit to formulate universal and practical approach to the identification of pathological syndromes in case of patient foot lesion. The situation is aggravated by the unsolved issues related to the terminological definition of podiatry as a direction in orthopedics to solve the issues of foot and ankle joint pathology. In actual conditions the implementation of new technologies into the structure of traumatological orthopedics care is needed. This approach permits to combine the qualities of models of effective and optimized care to patients with foot and ankle joint pathology. The study of issue related to the systematization of podiatric pathology revealed that actually no single universal classification easy-to-use in practice exists. Hence the development of original applied working scheme of foot and ankle joint pathology is proposed.

  4. Mechanical behaviour of hamstring muscles in low-back pain patients and control subjects.

    PubMed

    Tafazzoli, F; Lamontagne, M

    1996-01-01

    The purpose of this study was to measure and compare the passive elastic moment, the stiffness and the damping coefficient of the hip joint, as functions of the hip and knee joint angles in men with and without low-back pain. Two conventional tests, the straight-leg-raising test and the trunk forward flexion, were also performed and compared between these subjects. The passive elastic moment was measured using an isokinetic device in the passive mode. This device raised the lower limb from the horizontal position to the straight-leg-raising angle at a slow and constant angular velocity. A custom-made splint connected with the lever arm of the isokinetic device maintained the knee in extension and the ankle in the neutral position. The damping coefficient of the hip joint was measured for 0, 15, 45, 60, 75 and 90% of straight leg raising angle of each subject, using the suspension method based on small oscillation theory. To ensure that muscles were inactive during the passive hip moment tests, muscle activity was monitored with surface EMG. The stiffness was computed as the ratio of the change in passive elastic moment to the change in the hip angle. The passive elastic moment, the stiffness and the normalized trunk flexion were significantly different between the two groups respectively. There was, however, no difference between the two groups in the results of straight-leg-raise and damping coefficient of the hip. The passive elastic moment was a nonlinear function of the hip flexion angle and showed large intersubject differences, especially as the joint limit was approached. The damping coefficient was a polynomial function of the hip flexion angle. The measured variables were analysed using a discriminant function and it was shown that the two groups were clearly discriminable in a meaningful manner.

  5. Short-Term Motor Compensations to Denervation of Feline Soleus and Lateral Gastrocnemius Result in Preservation of Ankle Mechanical Output during Locomotion

    PubMed Central

    Prilutsky, Boris I.; Maas, Huub; Bulgakova, Margarita; Hodson-Tole, Emma F.; Gregor, Robert J.

    2011-01-01

    Denervation of selected ankle extensors in animals results in locomotor changes. These changes have been suggested to permit preservation of global kinematic characteristics of the hindlimb during stance. The peak ankle joint moment is also preserved immediately after denervation of several ankle extensors in the cat, suggesting that the animal's response to peripheral nerve injury may also be aimed at preserving ankle mechanical output. We tested this hypothesis by comparing joint moments and power patterns during walking before and after denervation of soleus and lateral gastrocnemius muscles. Hindlimb kinematics, ground reaction forces and electromyographic activity of selected muscles were recorded during level, downslope (−50%) and upslope (50%) walking before and 1–3 weeks after nerve denervation. Denervation resulted in increased activity of the intact medial gastrocnemius and plantaris muscles, greater ankle dorsiflexion, smaller knee flexion, and the preservation of the peak ankle moment during stance. Surprisingly, ankle positive power generated in the propulsion phase of stance was increased (up to 50%) after denervation in all walking conditions (p < 0.05). The obtained results suggest that the short-term motor compensation to denervation of lateral gastrocnemius and soleus muscles may allow for preservation of mechanical output at the ankle. The additional mechanical energy generated at the ankle during propulsion can result, in part, from increased activity of intact synergists, the use of passive tissues around the ankle and by the tendon action of ankle two-joint muscles and crural fascia. PMID:21411965

  6. Relationship between viscosity of the ankle joint complex and functional ankle instability for inversion ankle sprain patients.

    PubMed

    Lin, Che-Yu; Kang, Jiunn-Horng; Wang, Chung-Li; Shau, Yio-Wha

    2015-03-01

    Measurement of viscosity of the ankle joint complex is a novel method to assess mechanical ankle instability. In order to further investigate the clinical significance of the method, this study intended to investigate the relationship between ankle viscosity and severity of functional ankle instability. Cross-sectional study. 15 participants with unilateral inversion ankle sprain and 15 controls were recruited. Their ankles were further classified into stable and unstable ankles. Ankle viscosity was measured by an instrumental anterior drawer test. Severity of functional ankle instability was measured by the Cumberland Ankle Instability Tool. Unstable ankles were compared with stable ankles. Injured ankles were compared with uninjured ankles of both groups. The spearman's rank correlation coefficient was applied to determine the relationship between ankle viscosity and severity of functional ankle instability in unstable ankles. There was a moderate relationship between ankle viscosity and severity of functional ankle instability (r=-0.64, p<0.0001). Unstable ankles exhibited significantly lower viscosity (p<0.005) and more severe functional ankle instability (p<0.0001) than stable ankles. Injured ankles exhibited significantly lower viscosity and more severe functional ankle instability than uninjured ankles (p<0.0001). There was a moderate relationship between ankle viscosity and severity of functional ankle instability. This finding suggested that, severity of functional ankle instability may be partially attributed to mechanical insufficiencies such as the degenerative changes in ankle viscosity following the inversion ankle sprain. In clinical application, measurement of ankle viscosity could be a useful tool to evaluate severity of chronic ankle instability. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Design and Evaluation of a Prosthetic Knee Joint Using the Geared Five-Bar Mechanism.

    PubMed

    Sun, Yuanxi; Ge, Wenjie; Zheng, Jia; Dong, Dianbiao

    2015-11-01

    This paper presents the mechanical design, dynamics analysis and ankle trajectory analysis of a prosthetic knee joint using the geared five-bar mechanism. Compared with traditional four-bar or six-bar mechanisms, the geared five-bar mechanism is better at performing diverse movements and is easy to control. This prosthetic knee joint with the geared five-bar mechanism is capable of fine-tuning its relative instantaneous center of rotation and ankle trajectory. The centrode of this prosthetic knee joint, which is mechanically optimized according to the centrode of human knee joint, is better in the bionic performance than that of a prosthetic knee joint using the four-bar mechanism. Additionally, the stability control of this prosthetic knee joint during the swing and stance phase is achieved by a motor. By adjusting the gear ratio of this prosthetic knee joint, the ankle trajectories of both unilateral and bilateral amputees show less deviations from expected than that of the four-bar knee joint.

  8. Angioplasty balloon catheters used for distraction of the ankle joint.

    PubMed

    Sartoretti, C; Sartoretti-Schefer, S; Duff, C; Buchmann, P

    1996-02-01

    Arthroscopy of the ankle joint is now routinely performed in diagnostic and therapeutic interventions but is still a demanding and difficult operative procedure in this very small and tight joint. Arthroscopy can be facilitated by a sufficient distraction that gives a better overview of the joint space. However, it is still a matter of debate how to obtain the adequate distraction. Distention by manual strength as well as by the help of a technical device have been proposed. We report our experience with distraction of the ankle joint by the help of one or two intraarticularily located and secondarily insufflated angioplasty balloon catheters that are routinely used in interventional radiology. These special catheters allow a careful and controlled distention of the joint with a fixed space of distraction and, according to our limited experience, without any morbidity.

  9. Intensity-level assessment of lower body plyometric exercises based on mechanical output of lower limb joints.

    PubMed

    Sugisaki, Norihide; Okada, Junichi; Kanehisa, Hiroaki

    2013-01-01

    The present study aimed to quantify the intensity of lower extremity plyometric exercises by determining joint mechanical output. Ten men (age, 27.3 ± 4.1 years; height, 173.6 ± 5.4 cm; weight, 69.4 ± 6.0 kg; 1-repetition maximum [1RM] load in back squat 118.5 ± 12.0 kg) performed the following seven plyometric exercises: two-foot ankle hop, repeated squat jump, double-leg hop, depth jumps from 30 and 60 cm, and single-leg and double-leg tuck jumps. Mechanical output variables (torque, angular impulse, power, and work) at the lower limb joints were determined using inverse-dynamics analysis. For all measured variables, ANOVA revealed significant main effects of exercise type for all joints (P < 0.05) along with significant interactions between joint and exercise (P < 0.01), indicating that the influence of exercise type on mechanical output varied among joints. Paired comparisons revealed that there were marked differences in mechanical output at the ankle and hip joints; most of the variables at the ankle joint were greatest for two-foot ankle hop and tuck jumps, while most hip joint variables were greatest for repeated squat jump or double-leg hop. The present results indicate the necessity for determining mechanical output for each joint when evaluating the intensity of plyometric exercises.

  10. Interventions for increasing ankle joint dorsiflexion: a systematic review and meta-analysis.

    PubMed

    Young, Rebekah; Nix, Sheree; Wholohan, Aaron; Bradhurst, Rachael; Reed, Lloyd

    2013-11-14

    Ankle joint equinus, or restricted dorsiflexion range of motion (ROM), has been linked to a range of pathologies of relevance to clinical practitioners. This systematic review and meta-analysis investigated the effects of conservative interventions on ankle joint ROM in healthy individuals and athletic populations. Keyword searches of Embase, Medline, Cochrane and CINAHL databases were performed with the final search being run in August 2013. Studies were eligible for inclusion if they assessed the effect of a non-surgical intervention on ankle joint dorsiflexion in healthy populations. Studies were quality rated using a standard quality assessment scale. Standardised mean differences (SMDs) and 95% confidence intervals (CIs) were calculated and results were pooled where study methods were homogenous. Twenty-three studies met eligibility criteria, with a total of 734 study participants. Results suggest that there is some evidence to support the efficacy of static stretching alone (SMDs: range 0.70 to 1.69) and static stretching in combination with ultrasound (SMDs: range 0.91 to 0.95), diathermy (SMD 1.12), diathermy and ice (SMD 1.16), heel raise exercises (SMDs: range 0.70 to 0.77), superficial moist heat (SMDs: range 0.65 to 0.84) and warm up (SMD 0.87) in improving ankle joint dorsiflexion ROM. Some evidence exists to support the efficacy of stretching alone and stretching in combination with other therapies in increasing ankle joint ROM in healthy individuals. There is a paucity of quality evidence to support the efficacy of other non-surgical interventions, thus further research in this area is warranted.

  11. Interventions for increasing ankle joint dorsiflexion: a systematic review and meta-analysis

    PubMed Central

    2013-01-01

    Background Ankle joint equinus, or restricted dorsiflexion range of motion (ROM), has been linked to a range of pathologies of relevance to clinical practitioners. This systematic review and meta-analysis investigated the effects of conservative interventions on ankle joint ROM in healthy individuals and athletic populations. Methods Keyword searches of Embase, Medline, Cochrane and CINAHL databases were performed with the final search being run in August 2013. Studies were eligible for inclusion if they assessed the effect of a non-surgical intervention on ankle joint dorsiflexion in healthy populations. Studies were quality rated using a standard quality assessment scale. Standardised mean differences (SMDs) and 95% confidence intervals (CIs) were calculated and results were pooled where study methods were homogenous. Results Twenty-three studies met eligibility criteria, with a total of 734 study participants. Results suggest that there is some evidence to support the efficacy of static stretching alone (SMDs: range 0.70 to 1.69) and static stretching in combination with ultrasound (SMDs: range 0.91 to 0.95), diathermy (SMD 1.12), diathermy and ice (SMD 1.16), heel raise exercises (SMDs: range 0.70 to 0.77), superficial moist heat (SMDs: range 0.65 to 0.84) and warm up (SMD 0.87) in improving ankle joint dorsiflexion ROM. Conclusions Some evidence exists to support the efficacy of stretching alone and stretching in combination with other therapies in increasing ankle joint ROM in healthy individuals. There is a paucity of quality evidence to support the efficacy of other non-surgical interventions, thus further research in this area is warranted. PMID:24225348

  12. Dynamic Postural-Stability Deficits After Cryotherapy to the Ankle Joint

    PubMed Central

    Fullam, Karl; Caulfield, Brian; Coughlan, Garrett F.; McGroarty, Mark; Delahunt, Eamonn

    2015-01-01

    Context  Decreased postural stability is a primary risk factor for lower limb musculoskeletal injuries. During athletic competitions, cryotherapy may be applied during short breaks in play or during half-time; however, its effects on postural stability remain unclear. Objective  To investigate the acute effects of a 15-minute ankle-joint cryotherapy application on dynamic postural stability. Design  Controlled laboratory study. Setting  University biomechanics laboratory. Patients or Other Participants  A total of 29 elite-level collegiate male field-sport athletes (age = 20.8 ± 1.12 years, height = 1.80 ± 0.06 m, mass = 81.89 ± 8.59 kg) participated. Intervention(s)  Participants were tested on the anterior (ANT), posterolateral (PL), and posteromedial (PM) reach directions of the Star Excursion Balance Test before and after a 15-minute ankle-joint cryotherapy application. Main Outcome Measure(s)  Normalized reach distances; sagittal-plane kinematics of the hip, knee, and ankle joints; and associated mean velocity of the center-of-pressure path during performance of the ANT, PL, and PM reach directions of the Star Excursion Balance Test. Results  We observed a decrease in reach-distance scores for the ANT, PL, and PM reach directions from precryotherapy to postcryotherapy (P < .05). No differences were observed in hip-, knee-, or ankle-joint sagittal-plane kinematics (P > .05). We noted a decrease in mean velocity of the center-of-pressure path from precryotherapy to postcryotherapy (P < .05) in all reach directions. Conclusions  Dynamic postural stability was adversely affected immediately after cryotherapy to the ankle joint. PMID:26285088

  13. Test-retest reliability of biodex system 4 pro for isometric ankle-eversion and -inversion measurement.

    PubMed

    Tankevicius, Gediminas; Lankaite, Doanata; Krisciunas, Aleksandras

    2013-08-01

    The lack of knowledge about isometric ankle testing indicates the need for research in this area. to assess test-retest reliability and to determine the optimal position for isometric ankle-eversion and -inversion testing. Test-retest reliability study. Isometric ankle eversion and inversion were assessed in 3 different dynamometer foot-plate positions: 0°, 7°, and 14° of inversion. Two maximal repetitions were performed at each angle. Both limbs were tested (40 ankles in total). The test was performed 2 times with a period of 7 d between the tests. University hospital. The study was carried out on 20 healthy athletes with no history of ankle sprains. Reliability was assessed using intraclass correlation coefficient (ICC2,1); minimal detectable change (MDC) was calculated using a 95% confidence interval. Paired t test was used to measure statistically significant changes, and P <.05 was considered statistically significant. Eversion and inversion peak torques showed high ICCs in all 3 angles (ICC values .87-.96, MDC values 3.09-6.81 Nm). Eversion peak torque was the smallest when testing at the 0° angle and gradually increased, reaching maximum values at 14° angle. The increase of eversion peak torque was statistically significant at 7 ° and 14° of inversion. Inversion peak torque showed an opposite pattern-it was the smallest when measured at the 14° angle and increased at the other 2 angles; statistically significant changes were seen only between measures taken at 0° and 14°. Isometric eversion and inversion testing using the Biodex 4 Pro system is a reliable method. The authors suggest that the angle of 7° of inversion is the best for isometric eversion and inversion testing.

  14. Human-Centered Technology for Maintainability: Workshop Proceedings

    DTIC Science & Technology

    1991-06-01

    INT E RNAL) POPLITEAL STATION-ANKLE JOINT-- -* A (LOCATOR) AFTANKLE .... -. REANKLE ANKLE JOINT HT., STANDING---... - , FOREFOOT AFTFOOT...to strike down missile containers in the weapons elevator nwd stack them within the confines of the magazine. 259 Mechanized support equipment models

  15. Anatomy of the distal tibiofibular syndesmosis in adults: a pictorial essay with a multimodality approach

    PubMed Central

    Hermans, John J; Beumer, Annechien; de Jong, Ton A W; Kleinrensink, Gert-Jan

    2010-01-01

    A syndesmosis is defined as a fibrous joint in which two adjacent bones are linked by a strong membrane or ligaments. This definition also applies for the distal tibiofibular syndesmosis, which is a syndesmotic joint formed by two bones and four ligaments. The distal tibia and fibula form the osseous part of the syndesmosis and are linked by the distal anterior tibiofibular ligament, the distal posterior tibiofibular ligament, the transverse ligament and the interosseous ligament. Although the syndesmosis is a joint, in the literature the term syndesmotic injury is used to describe injury of the syndesmotic ligaments. In an estimated 1–11% of all ankle sprains, injury of the distal tibiofibular syndesmosis occurs. Forty percent of patients still have complaints of ankle instability 6 months after an ankle sprain. This could be due to widening of the ankle mortise as a result of increased length of the syndesmotic ligaments after acute ankle sprain. As widening of the ankle mortise by 1 mm decreases the contact area of the tibiotalar joint by 42%, this could lead to instability and hence early osteoarthritis of the tibiotalar joint. In fractures of the ankle, syndesmotic injury occurs in about 50% of type Weber B and in all of type Weber C fractures. However, in discussing syndesmotic injury, it seems the exact proximal and distal boundaries of the distal tibiofibular syndesmosis are not well defined. There is no clear statement in the Ashhurst and Bromer etiological, the Lauge-Hansen genetic or the Danis-Weber topographical fracture classification about the exact extent of the syndesmosis. This joint is also not clearly defined in anatomical textbooks, such as Lanz and Wachsmuth. Kelikian and Kelikian postulate that the distal tibiofibular joint begins at the level of origin of the tibiofibular ligaments from the tibia and ends where these ligaments insert into the fibular malleolus. As the syndesmosis of the ankle plays an important role in the stability of the talocrural joint, understanding of the exact anatomy of both the osseous and ligamentous structures is essential in interpreting plain radiographs, CT and MR images, in ankle arthroscopy and in therapeutic management. With this pictorial essay we try to fill the hiatus in anatomic knowledge and provide a detailed anatomic description of the syndesmotic bones with the incisura fibularis, the syndesmotic recess, synovial fold and tibiofibular contact zone and the four syndesmotic ligaments. Each section describes a separate syndesmotic structure, followed by its clinical relevance and discussion of remaining questions. PMID:21108526

  16. The effects of load on system and lower-body joint kinetics during jump squats.

    PubMed

    Moir, Gavin L; Gollie, Jared M; Davis, Shala E; Guers, John J; Witmer, Chad A

    2012-11-01

    To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.

  17. Intermediate-Term Follow-up After Ankle Distraction for Treatment of End-Stage Osteoarthritis

    PubMed Central

    Nguyen, Mai P.; Pedersen, Douglas R.; Gao, Yubo; Saltzman, Charles L.; Amendola, Annunziato

    2015-01-01

    Background: Treatment of end-stage ankle osteoarthritis remains challenging, especially in young patients. Initial reports have shown early benefits of joint distraction for the treatment of ankle osteoarthritis. We report the five to ten-year results of a previously described patient cohort following ankle distraction surgery. Methods: All thirty-six patients who had undergone ankle distraction surgery between December 2002 and October 2006 were contacted. Patients were evaluated by a clinical investigator and completed the Ankle Osteoarthritis Scale (AOS) and Short Form-36 (SF-36) surveys. Radiographs as well as computed tomography and magnetic resonance imaging scans of the ankles were obtained at the follow-up visits. Results: Twenty-nine patients (81%) were followed for a minimum of five years (mean and standard deviation, 8.3 ± 2.2 years). Sixteen (55%) of the twenty-nine patients still had the native ankle joint whereas thirteen patients (45%) had undergone either ankle arthrodesis or total ankle arthroplasty. Positive predictors of ankle survival included a better AOS score at two years (hazard ratio [HR] = 0.048, 95% confidence interval [CI] = 0.0028 to 0.84, p = 0.04), older age at surgery (HR = 0.91, 95% CI = 0.83 to 0.99, p = 0.04), and fixed distraction (HR = 0.094, 95% CI = 0.017 to 0.525, p < 0.01). Radiographs and advanced imaging revealed progression of ankle osteoarthritis at the time of final follow-up. Conclusions: Ankle function following joint distraction declines over time. Patients should be well informed of the commitment that they must make during the treatment period as well as the long-term results after surgery. Level of Evidence: Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence. PMID:25834084

  18. Single-leg drop landing movement strategies in participants with chronic ankle instability compared with lateral ankle sprain 'copers'.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2016-04-01

    To compare the movement patterns and underlying energetics of individuals with chronic ankle instability (CAI) to ankle sprain 'copers' during a landing task. Twenty-eight (age 23.2 ± 4.9 years; body mass 75.5 ± 13.9 kg; height 1.7 ± 0.1 m) participants with CAI and 42 (age 22.7 ± 1.7 years; body mass 73.4 ± 11.3 kg; height 1.7 ± 0.1 m) ankle sprain 'copers' were evaluated 1 year after incurring a first-time lateral ankle sprain injury. Kinematics and kinetics of the hip, knee and ankle joints from 200 ms pre-initial contact (IC) to 200 ms post-IC, in addition to the vertical component of the landing ground reaction force, were acquired during performance of a drop land task. The CAI group adopted a position of increased hip flexion during the landing descent on their involved limb. This coincided with a reduced post-IC flexor pattern at the hip and increased overall hip joint stiffness compared to copers (-0.01 ± 0.05 vs. 0.02 ± 0.05°/Nm kg(-1), p = 0.03). Individuals with CAI display alterations in hip joint kinematics and energetics during a unipodal landing task compared to LAS 'copers'. These alterations may be responsible for the increased risk of injury experienced by individuals with CAI during landing manoeuvres. Thus, clinicians must recognise the potential for joints proximal to the affected ankle to contribute to impaired function following an acute lateral ankle sprain injury and to develop rehabilitation protocols accordingly. Level III.

  19. Feedback-controlled and programmed stretching of the ankle plantarflexors and dorsiflexors in stroke: effects of a 4-week intervention program.

    PubMed

    Selles, Ruud W; Li, Xiaoyan; Lin, Fang; Chung, Sun G; Roth, Elliot J; Zhang, Li-Qun

    2005-12-01

    To investigate the effect of repeated feedback-controlled and programmed "intelligent" stretching of the ankle plantar- and dorsiflexors to treat subjects with ankle spasticity and/or contracture in stroke. Noncontrolled trial. Institutional research center. Subjects with spasticity and/or contracture after stroke. Stretching of the plantar- and dorsiflexors of the ankle 3 times a week for 45 minutes during a 4-week period by using a feedback-controlled and programmed stretching device. Passive and active range of motion (ROM), muscle strength, joint stiffness, joint viscous damping, reflex excitability, comfortable walking speed, and subjective experiences of the subjects. Significant improvements were found in the passive ROM, maximum voluntary contraction, ankle stiffness, and comfortable walking speed. The visual analog scales indicated very positive subjective evaluation in terms of the comfort of stretching and the effect on their involved ankle. Repeated feedback-controlled or intelligent stretching had a positive influence on the joint properties of the ankle with spasticity and/or contracture after stroke. The stretching device may be an effective and safe alternative to manual passive motion treatment by a therapist and has potential to be used to repeatedly and regularly stretch the ankle of subjects with spasticity and/or contracture without daily involvement of clinicians or physical therapists.

  20. A Multiple Degree of Freedom Lower Extremity Isometric Device to Simultaneously Quantify Hip, Knee and Ankle Torques

    PubMed Central

    Sánchez, Natalia; Acosta, Ana Maria; Stienen, Arno H.A.

    2015-01-01

    Characterization of the joint torque coupling strategies used in the lower extremity to generate maximal and submaximal levels of torque at either the hip, knee or ankle is lacking. Currently, there are no available isometric devices that quantify all concurrent joint torques in the hip, knee and ankle of a single leg during maximum voluntary torque generation. Thus, joint-torque coupling strategies in the hip, knee and concurrent torques at ankle and/or coupling patterns at the hip and knee driven by the ankle have yet to be quantified. This manuscript describes the design, implementation and validation of a multiple degree of freedom, lower extremity isometric device (the MultiLEIT) that accurately quantifies simultaneous torques at the hip, knee and ankle. The system was mechanically validated and then implemented with two healthy control individuals and two post-stroke individuals to test usability and patient acceptance. Data indicated different joint torque coupling strategies used by both healthy individuals. In contrast, data showed the same torque coupling patterns in both post-stroke individuals, comparable to those described in the clinic. Successful implementation of the MultiLEIT can contribute to the understanding of the underlying mechanisms responsible for abnormal movement patterns and aid in the design of therapeutic interventions. PMID:25163064

  1. Surgical Reconstruction with the Remnant Ligament Improves Joint Position Sense as well as Functional Ankle Instability: A 1-Year Follow-Up Study

    PubMed Central

    Iwao, Kamizato; Masataka, Deie; Kohei, Fukuhara

    2014-01-01

    Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament. Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire. Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability. PMID:25401146

  2. Understanding and treating lateral ankle sprains and their consequences: a constraints-based approach.

    PubMed

    Wikstrom, Erik A; Hubbard-Turner, Tricia; McKeon, Patrick O

    2013-06-01

    Lateral ankle sprains are a common consequence of physical activity. If not managed appropriately, a cascade of negative alterations to both the joint structure and a person's movement patterns continue to stress the injured ligaments. These alterations result in an individual entering a continuum of disability as evidenced by the ~30 % of ankle sprains that develop into chronic ankle instability (CAI) and up to 78 % of CAI cases that develop into post-traumatic ankle osteoarthritis (OA). Despite this knowledge, no significant improvements in treatment efficacy have been made using traditional treatment paradigms. Therefore, the purpose of this review is to (1) provide an overview of the consequences associated with acute lateral ankle sprains, CAI and post-traumatic ankle OA; (2) introduce the patient-, clinician-, laboratory (PCL)-oriented) model that addresses the lateral ankle sprains and their consequences from a constraints perspective; and (3) introduce the dynamic systems theory as the framework to illustrate how multiple post-injury adaptations create a singular pathology that predisposes individuals with lateral ankle sprains to fall into a continuum of disability. The consequences associated with lateral ankle sprains, CAI and ankle OA are similar and encompass alterations to the structure of the ankle joint (e.g. ligament laxity, positional faults, etc.) and the sensorimotor function responsible for proper ankle joint function (e.g. postural control, gait, etc.). Further, the impairments have been quantified across a range of patient-oriented (e.g. self-report questionnaires), clinician-oriented (e.g. bedside measures of range of motion and postural control), and laboratory-oriented (e.g. arthrometry, gait analysis) outcome measures. The interaction of PCL-oriented outcomes is critically important for understanding the phenomenon of CAI across the continuum of disability. Through the integration of all three sources of evidence, we can clearly see that an ankle sprain is more than just a peripheral musculoskeletal pathology with only local consequences. The dynamic systems theory illustrates that the organization of human movement/function is shaped by the interaction of (1) organismic constraints (health of the person); (2) task constraints; and (3) environmental constraints. However, ankle sprains increase the organismic constraints (i.e. changes in joint structure and sensorimotor function) that significantly hinder an individual's function and may be the underlying cause for the continuum of disability associated with CAI. To treat and/or prevent an individual from entering the continuum of disability, greater protection of the ankle ligaments is needed immediately after injury. Subsequent rehabilitation should then focus on goal-oriented rehabilitation (i.e. quality of the movement pattern) rather that task-oriented rehabilitation (i.e. do these exercises). When evaluating patients with ankle inversion trauma and/or instability, it is imperative to remember that an ankle sprain is not simply a local joint injury; it can result in a constrained sensorimotor system that leads to a continuum of disability and life-long consequences such as high injury recurrence and decreased quality of life if not managed properly.

  3. Tibiotalocalcaneal arthrodesis using a dynamically locked retrograde intramedullary nail.

    PubMed

    Pelton, Kevin; Hofer, Jason K; Thordarson, David B

    2006-10-01

    Tibiotalocalcaneal arthrodesis is an important salvage method for patients with complex hindfoot problems, including Charcot arthropathy, osteonecrosis of the talus, combined arthritis of the ankle and subtalar joint, and failed total ankle arthroplasty. This study evaluated the results of a dynamic retrograde intramedullary nail for fixation with posterior to anterior distal interlocking screws placed through the calcaneus for tibiotalocalcaneal fusion. Thirty-three consecutive tibiotalocalcaneal fusions were done by a single surgeon (DBT) and were stabilized with a dynamic retrograde intramedullary nail. Time to fusion, impaction of the nail relative to the intramedullary canal, nail-tibial angle, and complications were noted. Average followup was 14 months. Twenty-nine of 33 feet (88%) fused at an average of 3.7 months after surgery. Average impaction of the nail was 2.3 (0.5 to 5.0) mm. Cortical hypertrophy at the tip of the rod or at the proximal interlocking screw was noted in 13 of 27 patients. A trend toward a higher nonunion rate was noted in patients with an increased nail-tibial angle. Dynamic retrograde intramedullary nailing for fixation of the tibiotalocalcaneal fusions is a good method of stabilizing this complex fusion construct.

  4. Kinematic and kinetic synergies of the lower extremities during the pull in olympic weightlifting.

    PubMed

    Kipp, Kristof; Redden, Josh; Sabick, Michelle; Harris, Chad

    2012-07-01

    The purpose of this study was to identify multijoint lower extremity kinematic and kinetic synergies in weightlifting and compare these synergies between joints and across different external loads. Subjects completed sets of the clean exercise at loads equal to 65, 75, and 85% of their estimated 1-RM. Functional data analysis was used to extract principal component functions (PCF's) for hip, knee, and ankle joint angles and moments of force during the pull phase of the clean at all loads. The PCF scores were then compared between joints and across loads to determine how much of each PCF was present at each joint and how it differed across loads. The analyses extracted two kinematic and four kinetic PCF's. The statistical comparisons indicated that all kinematic and two of the four kinetic PCF's did not differ across load, but scaled according to joint function. The PCF's captured a set of joint- and load-specific synergies that quantified biomechanical function of the lower extremity during Olympic weightlifting and revealed important technical characteristics that should be considered in sports training and future research.

  5. A Sit-to-Stand Training Robot and Its Performance Evaluation: Dynamic Analysis in Lower Limb Rehabilitation Activities

    NASA Astrophysics Data System (ADS)

    Cao, Enguo; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko

    In many countries in which the phenomenon of population aging is being experienced, motor function recovery activities have aroused much interest. In this paper, a sit-to-stand rehabilitation robot utilizing a double-rope system was developed, and the performance of the robot was evaluated by analyzing the dynamic parameters of human lower limbs. For the robot control program, an impedance control method with a training game was developed to increase the effectiveness and frequency of rehabilitation activities, and a calculation method was developed for evaluating the joint moments of hip, knee, and ankle. Test experiments were designed, and four subjects were requested to stand up from a chair with assistance from the rehabilitation robot. In the experiments, body segment rotational angles, trunk movement trajectories, rope tensile forces, ground reaction forces (GRF) and centers of pressure (COP) were measured by sensors, and the moments of ankle, knee and hip joint were real-time calculated using the sensor-measured data. The experiment results showed that the sit-to-stand rehabilitation robot with impedance control method could maintain the comfortable training postures of users, decrease the moments of limb joints, and enhance training effectiveness. Furthermore, the game control method could encourage collaboration between the brain and limbs, and allow for an increase in the frequency and intensity of rehabilitation activities.

  6. Effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability.

    PubMed

    Nam, Seung-Min; Kim, Kyoung; Lee, Do Youn

    2018-01-01

    [Purpose] This study examined the effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability. [Subjects and Methods] Twenty eight adults with functional ankle instability, divided randomly into an experimental group, which performed visual feedback balance training for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Bio rescue was used for balance ability. It measured limit of stability at one minute. For ankle instability was measured using Cumberland ankle instability tool (CAIT). This measure was performed before and after the experiments in each group. [Results] The experimental group had significant increase in the Limit of Stability and CAIT score. The control group had significant increase in CAIT score. While the Limit of Stability increased without significance. [Conclusion] In conclusion, visual feedback balance training can be recommended as a treatment method for patients with functional ankle instability.

  7. The gearing function of running shoe longitudinal bending stiffness.

    PubMed

    Willwacher, Steffen; König, Manuel; Braunstein, Björn; Goldmann, Jan-Peter; Brüggemann, Gert-Peter

    2014-07-01

    The purpose of the present study was to investigate whether altered longitudinal bending stiffness (LBS) levels of the midsole of a running shoe lead to a systematic change in lower extremity joint lever arms of the ground reaction force (GRF). Joint moments and GRF lever arms in the sagittal plane were determined from 19 male subjects running at 3.5 m/s using inverse dynamics procedures. LBS was manipulated using carbon fiber insoles of 1.9 mm and 3.2 mm thickness. Increasing LBS led to a significant shift of joint lever arms to a more anterior position. Effects were more pronounced at distal joints. Ankle joint moments were not significantly increased in the presence of higher GRF lever arms when averaged over all subjects. Still, two individual strategies (1: increase ankle joint moments while keeping push-off times almost constant, 2: decrease ankle joint moments and increase push-off times) could be identified in response to increased ankle joint lever arms that might reflect individual differences between subjects with respect to strength capacities or anthropometric characteristics. The results of the present study indicate that LBS systematically influences GRF lever arms of lower extremity joints during the push-off phase in running. Further, individual responses to altered LBS levels could be identified that could aid in finding optimum LBS values for a given individual. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Changes in the Width of the Tibiofibular Syndesmosis Related to Lower Extremity Joint Dynamics and Neuromuscular Coordination on Drop Landing During the Menstrual Cycle.

    PubMed

    Okazaki, Michie; Kaneko, Masaaki; Ishida, Yukisato; Murase, Norio; Katsumura, Toshihito

    2017-09-01

    Many injuries of the lower extremities, especially the knee and ankle, occur during sports activity, and the incidence rate is higher in women than in men. The hypothesis was that phases of the menstrual cycle affect the width of the tibiofibular syndesmosis during drop landing in healthy young women and that such changes at the tibiofibular joint also affect the dynamics and neuromuscular coordination of the lower extremities. Descriptive laboratory study. Participants included 28 healthy young women (mean age, 21.0 ± 0.8 years). Blood samples were collected to determine plasma levels of estradiol and progesterone immediately before the performance of the task: drop landing on a single leg from a 30-cm platform. Using ultrasonography, the distance between the tibia and the distal end of the fibula, regarded as the width of the tibiofibular syndesmosis, was measured in an upright position without flexion of the ankle. The peak ground-reaction force (GRF) on landing was measured using a force platform. The time to peak GRF (Tp-GRF) was measured as the time from initial ground contact to the peak GRF. Hip, knee, and ankle joint angles during the single-leg landing were calculated using a 3-dimensional motion analysis system. Muscle activities of the lower extremities were measured using surface electromyography. The width of the tibiofibular syndesmosis was significantly greater in the luteal phase when compared with the menstrual, follicular, and ovulation phases (by 5%-8% of control). Also, during the luteal phase, the Tp-GRF was significantly shorter than in the follicular phase (by 6%); hip internal rotation and knee valgus were significantly greater than in the menstrual phase (by 43% and 34%, respectively); knee flexion was significantly less than in the menstrual and follicular phases (by 7%-9%); ankle dorsiflection was significantly less than in the follicular phase (by 11%); ankle adduction and eversion were significantly greater than in the menstrual and follicular phases (by 26%-46%, and 27%-33%, respectively); and activation of the gluteus maximus before landing was significantly lower than in the menstrual and follicular phases (by 20%-22%). The luteal phase appears to be associated with decreased strength and laxity of the ankle as well as lower extremity muscle activity in women. The changes presumably represent a greater risk for sports injuries. The results of this study suggest that the luteal phase may be related to the greater incidence of lower extremity injuries in women.

  9. Viscosupplementation for grade II osteoarthritis of the ankle: a prospective study at 18 months' follow-up.

    PubMed

    Luciani, Deianira; Cadossi, Matteo; Tesei, Federico; Chiarello, Eugenio; Giannini, Sandro

    2008-12-01

    Viscosupplementation, with hyaluronan derivates injected into the intra-space of osteoarthritic joints, is now widely used for the treatment of knee osteoarthritis. This study evaluates the results in terms of pain and disability of intra-articular injections of hyaluronan derivates into the ankle joint in patients suffering from grade II primary or secondary osteoarthritis of the ankle. Twenty-one patients with a painful ankle and radiographic evidence of grade II osteoarthritis had three weekly intra-articular injections of 2 ml of hylan G-F 20 (10 mg/ml) into the ankle joint. The primary clinical outcome measurement was the ankle osteoarthritis score (AOS) at the baseline, and at 6, 12 and 18 months. Significant improvement of the AOS from baseline was seen after 6 months (p=0.0001). This improvement was maintained over time with no further changes at 12- and 18-month follow-ups. Regarding pain, the AOS improved over time from the baseline to the 18-month follow up and became statistically significant at the 12- and 18-month follow-ups (p<0.05).

  10. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running.

    PubMed

    Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

    2017-07-01

    In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Descriptive laboratory study. In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries.

  11. Three-Dimensional Biomechanical Analysis of Rearfoot and Forefoot Running

    PubMed Central

    Knorz, Sebastian; Kluge, Felix; Gelse, Kolja; Schulz-Drost, Stefan; Hotfiel, Thilo; Lochmann, Matthias; Eskofier, Björn; Krinner, Sebastian

    2017-01-01

    Background: In the running community, a forefoot strike (FFS) pattern is increasingly preferred compared with a rearfoot strike (RFS) pattern. However, it has not been fully understood which strike pattern may better reduce adverse joint forces within the different joints of the lower extremity. Purpose: To analyze the 3-dimensional (3D) stress pattern in the ankle, knee, and hip joint in runners with either a FFS or RFS pattern. Study Design: Descriptive laboratory study. Methods: In 22 runners (11 habitual rearfoot strikers, 11 habitual forefoot strikers), RFS and FFS patterns were compared at 3.0 m/s (6.7 mph) on a treadmill with integrated force plates and a 3D motion capture analysis system. This combined analysis allowed characterization of the 3D biomechanical forces differentiated for the ankle, knee, and hip joint. The maximum peak force (MPF) and maximum loading rate (LR) were determined in their 3 ordinal components: vertical, anterior-posterior (AP), and medial-lateral (ML). Results: For both strike patterns, the vertical components of the MPF and LR were significantly greater than their AP or ML components. In the vertical axis, FFS was generally associated with a greater MPF but significantly lower LR in all 3 joints. The AP components of MPF and LR were significantly lower for FFS in the knee joint but significantly greater in the ankle and hip joints. The ML components of MPF and LR tended to be greater for FFS but mostly did not reach a level of significance. Conclusion: FFS and RFS were associated with different 3D stress patterns in the ankle, knee, and hip joint, although there was no global advantage of one strike pattern over the other. The multimodal individual assessment for the different anatomic regions demonstrated that FFS seems favorable for patients with unstable knee joints in the AP axis and RFS may be recommended for runners with unstable ankle joints. Clinical Relevance: Different strike patterns show different 3D stress in joints of the lower extremity. Due to either rehabilitation after injuries or training in running sports, rearfoot or forefoot running should be preferred to prevent further damage or injuries caused by inadequate biomechanical load. Runners with a history of knee joint injuries may benefit from FFS whereas RFS may be favorable for runners with a history of ankle joint injuries. PMID:28812039

  12. Effects of joint mobilization on chronic ankle instability: a randomized controlled trial.

    PubMed

    Cruz-Díaz, David; Lomas Vega, Rafael; Osuna-Pérez, Maria Catalina; Hita-Contreras, Fidel; Martínez-Amat, Antonio

    2015-01-01

    To evaluate the effects of joint mobilization, in which movement is applied to the ankle's dorsiflexion range of motion, on dynamic postural control and on the self-reported instability of patients with chronic ankle instability (CAI). A double-blind, placebo-controlled, randomized trial with repeated measures and a follow-up period. Ninety patients with a history of recurrent ankle sprain, self-reported instability, and a limited dorsiflexion range of motion, were randomly assigned to either the intervention group (Joint Mobilizations, 3 weeks, two sessions per week) the placebo group (Sham Mobilizations, same duration as joint mobilization) or the control group, with a 6 months follow-up. Dorsiflexion Range of Motion (DFROM), Star Excursion Balance Test (SEBT) and CAI Tool (CAIT) were outcome measures. A separate 3 × 4 mixed model analysis of variance was performed to examine the effect of treatment conditions and time, and intention-to-treat (ITT) analysis was applied to evaluate the effect of the independent variable. The application of joint mobilization resulted in better scores of DFROM, CAIT, and SEBTs in the intervention group when compared with the placebo or the control groups (p < 0.001). The effect sizes of group-by-time interaction, measured with eta-squared, oscillated between 0.954 for DFROM and 0.288 for SEBT posteromedial distance. In within-group analysis, the manipulation group showed an improvement at 6 months follow-up in CAIT [mean = 5.23, CI 95% (4.63-5.84)], DFROM [mean = 6.77, CI 95% (6.45-7.08)], anterior SEBT [mean = 7.35, CI 95% (6.59-8.12)], posteromedial SEBT [mean = 3.32, CI 95% (0.95-5.69)], and posterolateral SEBT [mean = 2.55, CI 95% (2.20-2.89)]. Joint mobilization techniques applied to subjects suffering from CAI were able to improve ankle DFROM, postural control, and self-reported instability. These results suggest that joint mobilization could be applied to patients with recurrent ankle sprain to help restore their functional stability. Implications for Rehabilitation Functional instability is a very common sequela in patients with CAI, resulting in reduced quality of living due to the limitations it imposes on daily life activities. The mobilization with movement technique presented by Mulligan, and based on the joint mobilization accompanied by active movement, appears as a valuable tool to be employed by physical therapists to restore ankle function after a recurrent ankle sprain history. ROM restriction, subjective feeling of instability and dynamic postural control are benefiting from the joint mobilization application.

  13. Influence of joint angular velocity on electrically evoked concentric force potentiation induced by stretch-shortening cycle in young adults.

    PubMed

    Fukutani, Atsuki; Kurihara, Toshiyuki; Isaka, Tadao

    2015-01-01

    During a stretch- shortening cycle (SSC), muscle force attained during concentric contractions (shortening phase) is potentiated by the preceding eccentric contractions (lengthening phase). The purpose of this study was to examine the influence of joint angular velocity on force potentiation induced by SSC (SSC effect). Twelve healthy men (age, 24.2 ± 3.2 years; height, 1.73 ± 0.05 m; body mass, 68.1 ± 11.0 kg) participated in this study. Ankle joint angle was passively moved by a dynamometer, with range of motion from dorsiflexion (DF) 15° to plantarflexion (PF) 15°. Muscle contractions were evoked by tetanic electrical stimulation. Joint angular velocity of concentric contraction was set at 30°/s and 150°/s. Magnitude of SSC effect was calculated as the ratio of joint torque obtained by concentric contraction with preliminary eccentric contraction trial relative to that obtained by concentric contraction without preliminary eccentric contraction trial. As a result, magnitude of SSC effect calculated at three joint angles was significantly larger in the 150°/s condition than in the 30°/s condition (p < 0.05). These results indicate that the magnitude of SSC effect is affected by joint angular velocity, which is larger when joint angular velocity is larger. This phenomenon would be caused by insufficient duration to increase activation level in the large joint angular velocity condition. When the duration to increase activation level is insufficient due to short contraction duration, preactivation (one of the factors of SSC effect) leads to a significant increase in joint torque.

  14. Mechanical energy profiles of the combined ankle-foot system in normal gait: insights for prosthetic designs.

    PubMed

    Takahashi, Kota Z; Stanhope, Steven J

    2013-09-01

    Over the last half-century, the field of prosthetic engineering has continuously evolved with much attention being dedicated to restoring the mechanical energy properties of ankle joint musculatures during gait. However, the contributions of 'distal foot structures' (e.g., foot muscles, plantar soft tissue) have been overlooked. Therefore, the purpose of this study was to quantify the total mechanical energy profiles (e.g., power, work, and work-ratio) of the natural ankle-foot system (NAFS) by combining the contributions of the ankle joint and all distal foot structures during stance in level-ground steady state walking across various speeds (0.4, 0.6, 0.8 and 1.0 statures/s). The results from eleven healthy subjects walking barefoot indicated ankle joint and distal foot structures generally performed opposing roles: the ankle joint performed net positive work that systematically increased its energy generation with faster walking speeds, while the distal foot performed net negative work that systematically increased its energy absorption with faster walking speeds. Accounting for these simultaneous effects, the combined ankle-foot system exhibited increased work-ratios with faster walking. Most notably, the work-ratio was not significantly greater than 1.0 during the normal walking speed of 0.8 statures/s. Therefore, a prosthetic design that strategically exploits passive-dynamic properties (e.g., elastic energy storage and return) has the potential to replicate the mechanical energy profiles of the NAFS during level-ground steady-state walking. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Sole vibration improves locomotion through the recovery of joint movements in a mouse cast model

    PubMed Central

    Sakasaki, Juntaro; Kasae, Syota; Nishimura, Keisuke; Shin, Min-Chul; Yoshimura, Megumu

    2017-01-01

    We investigated the effects of a vibratory stimulus on the plantar surface of the hind limb for motor, sensory, and locomotive function using a mouse cast model. The right knee joint of C57BL/6 male mice (7 weeks, 20 g, n = 31) was flexed with aluminum splint and tape for 6 weeks. These mice were randomly divided into 2 groups (control group, n = 11 and vibration group, n = 12). The mice in the vibration group received vibration on the sole of the ankle for 15 minutes per day, 5 days per week. After the knee joint cast was removed, we measured the range of motion (ROM) of both knee and ankle joints and the sensory threshold of the sole. Further, both walking and swimming movements were analyzed with a digital video. The sole vibration did not affect the passive ROM of the knee joint and sensory threshold after cast removal. However, it increased the ankle dorsiflexion range and improved free walking, swimming, and active movement of the knee joint. In conclusion, we show that the vibration recovered both walking and swimming movements, which resulted from improvements in both the passive ankle dorsiflexion and active knee movement. PMID:29040289

  16. Charcot Neuroarthropathy of the Foot and Ankle.

    PubMed

    Burson, Lisa K; Schank, Christopher H

    2016-03-01

    Charcot neuropathy is a painless, progressive, degeneration most notably of the ankle or midfoot joints, seen in patients with diabetes and neuropathy. This article will describe the etiology, diagnosis, and treatment of this potentially debilitating joint disease and provide implications for home care clinicians.

  17. Sprains and Strains

    MedlinePlus

    ... your joints. The most common location for a sprain is in your ankle. A strain is a stretching or tearing of ... tear a ligament while severely stressing a joint. Sprains often occur in the following circumstances: Ankle — Walking or exercising on an uneven surface Knee — ...

  18. A Study of H-Reflexes in Subjects with Acute Ankle Inversion Injuries

    DTIC Science & Technology

    1996-12-09

    stress to the injured ankle at heel- strike .(57) Any increased inversion stress by way of joint loading in the presence of compromised joint...the present study, may play a role in decreasing the degree of calcaneal inversion just prior to heel- strike and minimize the stress on the lateral...Presentation: * Significant edema/ecchymosis on lateral and medial aspects of ankle. * Possible pitting edema on forefoot (several days post- injury

  19. Clinical application of the modified medially-mounted motor-driven hip gear joint for paraplegics.

    PubMed

    Sonoda, S; Imahori, R; Saitoh, E; Tomita, Y; Domen, K; Chino, N

    2000-04-15

    This paper describes a motor-driven orthosis for paraplegics which has been developed. This orthosis is composed of a medially-mounted motor-driven hip joint and bilateral knee-ankle-foot orthosis. With the gear mechanism, the virtual axis of the hip joint of this orthosis is almost as high as the anatomical hip joint. A paraplegic patient with an injury level of T10/11 walked using bilateral lofstrand crutches and this new orthosis with or without the motor system. The motor is initiated by pushing a button attached at the edge of the grab of the crutches. Faster cadence and speed and smaller rotation angle of the trunk was obtained in motor walking compared with non-motor walking. The patient did not feel fearful of falling. The benefit of motor orthosis is that it can be used even in patients with lower motor lesions and that it provides stable regulation of hip flexion movement in spastic patients. In conclusion, this motor orthosis will enhance paraplegic walking.

  20. [EFFECTIVENESS OF ARTHROSCOPY FOR ANKLE IMPINGEMENT SYNDROME].

    PubMed

    Han, Guansheng; Xu, Bin; Geng, Chunhui; Cheng, Xinde

    2014-06-01

    To explore the effectiveness of arthroscopy for ankle impingement syndrome. Between March 2009 and April 2013, 30 patients with ankle impingement syndrome were treated. Among them, there were 22 males and 8 females with an average age of 28.6 years (range, 16-55 years). Twenty-six patients had a history of obvious ankle sprains. The disease duration was 6-62 months (mean, 21.5 months). All cases had ankle pain, limitation of activity, and positive results of ankle impact test. According to Meislin scoring criteria, 5 cases were rated as good, 8 cases as medium, and 17 cases as poor; the excellent and good rate was 16.7%. American Orthopedic Foot and Ankle Society (AOFAS) score was 43.3 ± 5.1. Visual analogue scale (VAS) score was 6.7 ± 2.3. Preoperative X-ray film showed ankle loose bodies and hyperplasia osteophyte in 6 cases, and lateral malleolus old avulsion fracture in 4 cases. MRI showed soft tissue in the ankle joint in the 17 cases, and articular cartilage injury of tibiotalar joint and bone marrow edema in 7 cases. The location, degree, and organization of the impact were observed under arthroscopy. The joint debridement, removal of loose body and osteophyte, plasty of articular cartilage, and plasma radiofrequency ablation of lateral and medial ligaments were performed. All incisions healed primarily. No infection of skin and joint, or neurological and vascular injury was found. All patients were followed up 6-32 months (mean, 19.5 months). According to Meislin scoring criteria at last follow-up, 16 cases were rated as excellent, 11 cases as good, and 3 cases as medium; the excellent and good rate was 90.0%, showing significant difference when compared with preoperative value (Z = 6.045, P = 0.000). AOFAS score was 89.8 ± 4.3, showing significant difference when compared with preoperative score (t = 38.180, P = 0.000). VAS score was 2.8 ± 1.6, showing significant difference when compared with preoperative score (t = 7.624, P = 0.000). A clear understanding of impingement characteristics, pertinent joint debridement, and complication treatment are important to treat ankle impingement syndrome by simulating ankle impingement under arthroscopy, which have the advantages of strong pertinence, less injury, and fast recovery.

  1. A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis.

    PubMed

    Prinold, Joe A I; Mazzà, Claudia; Di Marco, Roberto; Hannah, Iain; Malattia, Clara; Magni-Manzoni, Silvia; Petrarca, Maurizio; Ronchetti, Anna B; Tanturri de Horatio, Laura; van Dijkhuizen, E H Pieter; Wesarg, Stefan; Viceconti, Marco

    2016-01-01

    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important.

  2. Balance rehabilitation: promoting the role of virtual reality in patients with diabetic peripheral neuropathy.

    PubMed

    Grewal, Gurtej S; Sayeed, Rashad; Schwenk, Michael; Bharara, Manish; Menzies, Robert; Talal, Talal K; Armstrong, David G; Najafi, Bijan

    2013-01-01

    Individuals with diabetic peripheral neuropathy frequently experience concomitant impaired proprioception and postural instability. Conventional exercise training has been demonstrated to be effective in improving balance but does not incorporate visual feedback targeting joint perception, which is an integral mechanism that helps compensate for impaired proprioception in diabetic peripheral neuropathy. This prospective cohort study recruited 29 participants (mean ± SD: age, 57 ± 10 years; body mass index [calculated as weight in kilograms divided by height in meters squared], 26.9 ± 3.1). Participants satisfying the inclusion criteria performed predefined ankle exercises through reaching tasks, with visual feedback from the ankle joint projected on a screen. Ankle motion in the mediolateral and anteroposterior directions was captured using wearable sensors attached to the participant's shank. Improvements in postural stability were quantified by measuring center of mass sway area and the reciprocal compensatory index before and after training using validated body-worn sensor technology. Findings revealed a significant reduction in center of mass sway after training (mean, 22%; P = .02). A higher postural stability deficit (high body sway) at baseline was associated with higher training gains in postural balance (reduction in center of mass sway) (r = -0.52, P < .05). In addition, significant improvement was observed in postural coordination between the ankle and hip joints (mean, 10.4%; P = .04). The present research implemented a novel balance rehabilitation strategy based on virtual reality technology. The method included wearable sensors and an interactive user interface for real-time visual feedback based on ankle joint motion, similar to a video gaming environment, for compensating impaired joint proprioception. These findings support that visual feedback generated from the ankle joint coupled with motor learning may be effective in improving postural stability in patients with diabetic peripheral neuropathy.

  3. Brain regulation of muscle tone in healthy and functionally unstable ankles.

    PubMed

    Needle, Alan R; Palmer, Jacqueline A; Kesar, Trisha M; Binder-Macleod, Stuart A; Swanik, C Buz

    2013-08-01

    Current research into the etiology of joint instability has yielded inconsistent results, limiting our understanding of how to prevent and treat ligamentous injury effectively. Recently, cortical reorganization was demonstrated in patients with ligamentous injury; however, these neural changes have not been assessed relative to joint laxity. The purpose of the current study was to determine if changes in cortical excitability and inhibition occur in subjects with functional ankle instability, as well as to investigate the relationship between these measures and joint laxity. Posttest only with control group. University laboratory. 12 subjects with no history of ankle sprain (CON) and 12 subjects with a history of unilateral functional ankle instability (UNS). Subjects were tested for joint laxity using an instrumented ankle arthrometer. Cortical excitability and inhibition were assessed using transcranial magnetic stimulation (TMS) to obtain motor-evoked potentials and the cortical silent period from the lower leg muscles. Joint laxity was quantified as peak anterior displacement and inversion rotation. Active motor threshold, slope, and intensity at 50% of peak slope of TMS-derived recruitment curves were used to quantify cortical excitability from lower leg muscles, while the cortical silent period from the peroneus longus was used to represent intracortical inhibition. No significant differences were observed between groups for laxity or cortical measures. CON demonstrated a significant relationship between laxity and tibialis anterior excitability, as well as laxity and silent period, while UNS ankles demonstrated significant relationships between peroneal and soleus excitability and laxity measures. Our results support relationships between laxity and measures of excitability and inhibition that differ between healthy and unstable subjects. Future research should further investigate the mechanisms behind these findings and consider cortical influences when investigating altered joint laxity.

  4. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.

    PubMed

    Liacouras, Peter C; Wayne, Jennifer S

    2007-12-01

    Computational models of musculoskeletal joints and limbs can provide useful information about joint mechanics. Validated models can be used as predictive devices for understanding joint function and serve as clinical tools for predicting the outcome of surgical procedures. A new computational modeling approach was developed for simulating joint kinematics that are dictated by bone/joint anatomy, ligamentous constraints, and applied loading. Three-dimensional computational models of the lower leg were created to illustrate the application of this new approach. Model development began with generating three-dimensional surfaces of each bone from CT images and then importing into the three-dimensional solid modeling software SOLIDWORKS and motion simulation package COSMOSMOTION. Through SOLIDWORKS and COSMOSMOTION, each bone surface file was filled to create a solid object and positioned necessary components added, and simulations executed. Three-dimensional contacts were added to inhibit intersection of the bones during motion. Ligaments were represented as linear springs. Model predictions were then validated by comparison to two different cadaver studies, syndesmotic injury and repair and ankle inversion following ligament transection. The syndesmotic injury model was able to predict tibial rotation, fibular rotation, and anterior/posterior displacement. In the inversion simulation, calcaneofibular ligament extension and angles of inversion compared well. Some experimental data proved harder to simulate accurately, due to certain software limitations and lack of complete experimental data. Other parameters that could not be easily obtained experimentally can be predicted and analyzed by the computational simulations. In the syndesmotic injury study, the force generated in the tibionavicular and calcaneofibular ligaments reduced with the insertion of the staple, indicating how this repair technique changes joint function. After transection of the calcaneofibular ligament in the inversion stability study, a major increase in force was seen in several of the ligaments on the lateral aspect of the foot and ankle, indicating the recruitment of other structures to permit function after injury. Overall, the computational models were able to predict joint kinematics of the lower leg with particular focus on the ankle complex. This same approach can be taken to create models of other limb segments such as the elbow and wrist. Additional parameters can be calculated in the models that are not easily obtained experimentally such as ligament forces, force transmission across joints, and three-dimensional movement of all bones. Muscle activation can be incorporated in the model through the action of applied forces within the software for future studies.

  5. Limb Salvage After Failed Initial Operative Management of Bimalleolar Ankle Fractures in Diabetic Neuropathy.

    PubMed

    Vaudreuil, Nicholas J; Fourman, Mitchell S; Wukich, Dane K

    2017-03-01

    Ankle fractures in patients with diabetes mellitus (DM) can be difficult to manage, especially in the presence of peripheral neuropathy. In patients who fail initial operative management, attempts at limb salvage can be challenging, and no clear treatment algorithm exists. This study examined outcomes of different procedures performed for limb salvage in this population. This study retrospectively reviewed 17 patients with DM complicated by peripheral neuropathy who sustained a bimalleolar ankle fracture and failed initial operative management. Patients were treated with revision open reduction internal fixation (ORIF) (3/17), closed reduction external fixation (CREF) (8/17), or primary ankle joint fusion (3/17 tibiotalocalcaneal fusion with hindfoot nail [TTCN] and 3/17 with tibiotalar arthrodesis using plates and screws [TTA]). Median follow-up was 20 months. The overall rate of limb salvage was 82.3% (14/17). All patients who went on to amputation presented with infection and were treated initially with CREF (3/3). All patients who achieved successful limb salvage ended up with a clinically fused ankle joint (14/14); 9 underwent a primary or delayed formal fusion and 5 had a clinically fused ankle joint at study conclusion after undergoing revision ORIF or CREF with adjunctive procedures. This small study suggests that in this complicated group of patients it is difficult to achieve limb salvage with an end result of a functional ankle joint. CREF can be a viable option in cases where underlying infection or poor bone quality is present. Treatment with revision ORIF frequently requires supplementary external fixator or tibiotalar Steinman pin placement for additional stability. All patients who underwent revision ORIF ended up with clinically fused ankle joints at the end of the study period. Primary fusion procedures (TTA, TTCN) were associated with a high rate of limb salvage and a decreased number of operations. Level III, retrospective case series.

  6. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model

    PubMed Central

    2016-01-01

    Introduction Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)–multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. Methods We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. Results The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2–7%. Conclusions During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving forward, the EMG-driven modeling approach presented could be applied to understand other tasks or larger multiarticular MTUs. PMID:27764110

  7. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model.

    PubMed

    Honert, Eric C; Zelik, Karl E

    2016-01-01

    Inverse dynamics joint kinetics are often used to infer contributions from underlying groups of muscle-tendon units (MTUs). However, such interpretations are confounded by multiarticular (multi-joint) musculature, which can cause inverse dynamics to over- or under-estimate net MTU power. Misestimation of MTU power could lead to incorrect scientific conclusions, or to empirical estimates that misguide musculoskeletal simulations, assistive device designs, or clinical interventions. The objective of this study was to investigate the degree to which ankle joint power overestimates net plantarflexor MTU power during the Push-off phase of walking, due to the behavior of the flexor digitorum and hallucis longus (FDHL)-multiarticular MTUs crossing the ankle and metatarsophalangeal (toe) joints. We performed a gait analysis study on six healthy participants, recording ground reaction forces, kinematics, and electromyography (EMG). Empirical data were input into an EMG-driven musculoskeletal model to estimate ankle power. This model enabled us to parse contributions from mono- and multi-articular MTUs, and required only one scaling and one time delay factor for each subject and speed, which were solved for based on empirical data. Net plantarflexing MTU power was computed by the model and quantitatively compared to inverse dynamics ankle power. The EMG-driven model was able to reproduce inverse dynamics ankle power across a range of gait speeds (R2 ≥ 0.97), while also providing MTU-specific power estimates. We found that FDHL dynamics caused ankle power to slightly overestimate net plantarflexor MTU power, but only by ~2-7%. During Push-off, FDHL MTU dynamics do not substantially confound the inference of net plantarflexor MTU power from inverse dynamics ankle power. However, other methodological limitations may cause inverse dynamics to overestimate net MTU power; for instance, due to rigid-body foot assumptions. Moving forward, the EMG-driven modeling approach presented could be applied to understand other tasks or larger multiarticular MTUs.

  8. Side-to-side differences in lower extremity biomechanics during multi-directional jump landing in volleyball athletes.

    PubMed

    Sinsurin, Komsak; Srisangboriboon, Sarun; Vachalathiti, Roongtiwa

    2017-07-01

    Side-to-side differences of lower extremities may influence the likelihood of injury. Moreover, adding the complexity of jump-landing direction would help to explain lower extremity control during sport activities. The aim was to determine the effects of limb dominance and jump-landing direction on lower extremity biomechanics. Nineteen female volleyball athletes participated. Both dominant limbs (DLs) and non-dominant limbs (NLs) were examined in single-leg jump-landing tests in four directions, including forward (0°), diagonal (30° and 60°), and lateral (90°) directions. Kinematic marker trajectories and ground reaction forces were collected using a 10 camera Vicon system and an AMTI force plate. Repeated measures ANOVA (2 × 4, limb × direction) was used to analyse. The finding showed that, at peak vertical GRF, a significant interaction of limb dominance and direction effects was found in the hip flexion angle and lower extremity joint kinetics (p < .05). NLs and DLs exhibited significantly different strategies while landing in various directions. Significantly higher increase of ankle dorsiflexion angle was observed in lateral direction compared to other directions for both DLs and NLs (p < .05). Increasingly using ankle dorsiflexion was observed from the forward to the lateral direction for both DLs and NLs. However, NLs and DLs preferentially used different strategies of joint moment organization to respond to similar VGRFs in various directions. The response pattern of DLs might not be effective and may expose DLs to a higher injury risk, especially with regard to landing with awkward posture compared with NLs.

  9. The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness.

    PubMed

    Shepherd, Max K; Rouse, Elliott J

    2017-12-01

    Most commercially available prosthetic feet do not exhibit a biomimetic torque-angle relationship, and are unable to modulate their mechanics to assist with other mobility tasks, such as stairs and ramps. In this paper, we present a quasi-passive ankle-foot prosthesis with a customizable torque-angle curve and an ability to quickly modulate ankle stiffness between tasks. The customizable torque-angle curve is obtained with a cam-based transmission and a fiberglass leaf spring. To achieve variable stiffness, the leaf spring's support conditions can be actively modulated by a small motor, shifting the torque-angle curve to be more or less stiff. We introduce the design, characterize the available torque-angle curves, and present kinematics from a transtibial amputee subject performing level-ground walking, stair ascent/descent, and ramp ascent/descent. The subject exhibited a more normative range of motion on stairs and ramps at lower stiffness levels, and preferred different stiffness levels for each task. Paired with an appropriate intent recognition system, our novel ankle prosthesis could improve gait biomechanics during walking and many other mobility tasks.

  10. Management of chronic ankle pain using joint mobilization and ASTYM® treatment: a case report.

    PubMed

    Slaven, Emily J; Mathers, Jessie

    2011-05-01

    Treatment of ankle sprains predominately focuses on the acute management of this condition; less emphasis is placed on the treatment of ankle sprains in the chronic phase of recovery. Manual therapy, in the form of joint mobilization and manipulation, has been shown to be effective in the management of this condition, but the combination of joint mobilization and manipulation in tandem with ASTYM® treatment has not been explored. The purpose of this case report is to chronicle the management of a patient with chronic ankle pain who was treated with manual therapy including manipulation and ASTYM treatment. As a result of a fall down stairs 6 months previously, the patient sustained a severe ankle sprain. The soft tissue damage was accompanied by bony disruptions which warranted the patient spending 3 weeks in a walking boot. At the initial evaluation, the patient reported difficulty with descending stairs reciprocally and not being able to run more than 4 minutes on the treadmill before the pain escalated to the level that she had to stop running. After five sessions of therapy consisting of joint mobilization, manipulation and ASTYM, the patient was able to descend stairs and run 40 minutes without pain.

  11. Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking

    PubMed Central

    Bai, Xuefei; Ewins, David; Crocombe, Andrew D.

    2017-01-01

    Improved walking comfort has been linked with better bio-mimicking of the prosthetic ankle. This study investigated if a hydraulic ankle/foot can provide enough motion in both the sagittal and frontal planes during level and camber walking and if the hydraulic ankle/foot better mimics the biological ankle moment pattern compared with a fixed ankle/foot device. Five active male unilateral trans-femoral amputees performed level ground walking at normal and fast speeds and 2.5° camber walking in both directions using their own prostheses fitted with an “Echelon” hydraulic ankle/foot and an “Esprit” fixed ankle/foot. Ankle angles and the Trend Symmetry Index of the ankle moments were compared between prostheses and walking conditions. Significant differences between prostheses were found in the stance plantarflexion and dorsiflexion peaks with a greater range of motion being reached with the Echelon foot. The Echelon foot also showed significantly improved bio-mimicry of the ankle resistance moment in all walking conditions, either compared with the intact side of the same subject or with the “normal” mean curve from non-amputees. During camber walking, both types of ankle/foot devices showed similar changes in the frontal plane ankle angles. Results from a questionnaire showed the subjects were more satisfied with Echelon foot. PMID:28704428

  12. Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking.

    PubMed

    Bai, Xuefei; Ewins, David; Crocombe, Andrew D; Xu, Wei

    2017-01-01

    Improved walking comfort has been linked with better bio-mimicking of the prosthetic ankle. This study investigated if a hydraulic ankle/foot can provide enough motion in both the sagittal and frontal planes during level and camber walking and if the hydraulic ankle/foot better mimics the biological ankle moment pattern compared with a fixed ankle/foot device. Five active male unilateral trans-femoral amputees performed level ground walking at normal and fast speeds and 2.5° camber walking in both directions using their own prostheses fitted with an "Echelon" hydraulic ankle/foot and an "Esprit" fixed ankle/foot. Ankle angles and the Trend Symmetry Index of the ankle moments were compared between prostheses and walking conditions. Significant differences between prostheses were found in the stance plantarflexion and dorsiflexion peaks with a greater range of motion being reached with the Echelon foot. The Echelon foot also showed significantly improved bio-mimicry of the ankle resistance moment in all walking conditions, either compared with the intact side of the same subject or with the "normal" mean curve from non-amputees. During camber walking, both types of ankle/foot devices showed similar changes in the frontal plane ankle angles. Results from a questionnaire showed the subjects were more satisfied with Echelon foot.

  13. Joint health and functional ability in children with haemophilia who receive intensive replacement therapy.

    PubMed

    Groen, W; van der Net, J; Bos, K; Abad, A; Bergstrom, B-M; Blanchette, V S; Feldman, B M; Funk, S; Helders, P; Hilliard, P; Manco-Johnson, M; Petrini, P; Zourikian, N; Fischer, K

    2011-09-01

    Joint physical examination is an important outcome in haemophilia; however its relationship with functional ability is not well established in children with intensive replacement therapy. Boys aged 4-16 years were recruited from two European and three North American treatment centres. Joint physical structure and function was measured with the Haemophilia Joint Health Score (HJHS) while functional ability was measured with the revised Childhood Health Assessment Questionnaire (CHAQ₃₈. Two haemophilia-specific domains were created by selecting items of the CHAQ₃₈ that cover haemophilia-specific problems. Associations between CHAQ, HJHS, cumulative number of haemarthroses and age were assessed. A total of 226 subjects - mean 10.8 years old (SD 3.8) - participated; the majority (68%) had severe haemophilia. Most severe patients (91%) were on prophylactic treatment. Lifetime number of haemarthroses [median=5; interquartile range (IQR)=1-12] and total HJHS (median = 5; IQR=1-12) correlated strongly (ρ = 0.51). Total HJHS did not correlate with age and only weakly (ρ=-0.19) with functional ability scores (median=0; IQR=-0.06-0). Overall, haemarthroses were reported most frequently in the ankles. Detailed analysis of ankle joint health scores revealed moderate associations (ρ=0.3-0.5) of strength, gait and atrophy with lower extremity tasks (e.g. stair climbing). In this population, HJHS summating six joints did not perform as well as individual joint scores, however, certain elements of ankle impairment, specifically muscle strength, atrophy and gait associated significantly with functional loss in lower extremity activities. Mild abnormalities in ankle assessment by HJHS may lead to functional loss. Therefore, ankle joints may warrant special attention in the follow up of these children. © 2011 Blackwell Publishing Ltd.

  14. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.

    PubMed

    Zhang, Mingming; Meng, Wei; Davies, T Claire; Zhang, Yanxin; Xie, Sheng Q

    2016-04-01

    Robot-assisted ankle assessment could potentially be conducted using sensor-based and model-based methods. Existing ankle rehabilitation robots usually use torquemeters and multiaxis load cells for measuring joint dynamics. These measurements are accurate, but the contribution as a result of muscles and ligaments is not taken into account. Some computational ankle models have been developed to evaluate ligament strain and joint torque. These models do not include muscles and, thus, are not suitable for an overall ankle assessment in robot-assisted therapy. This study proposed a computational ankle model for use in robot-assisted therapy with three rotational degrees of freedom, 12 muscles, and seven ligaments. This model is driven by robotics, uses three independent position variables as inputs, and outputs an overall ankle assessment. Subject-specific adaptations by geometric and strength scaling were also made to allow for a universal model. This model was evaluated using published results and experimental data from 11 participants. Results show a high accuracy in the evaluation of ligament neutral length and passive joint torque. The subject-specific adaptation performance is high, with each normalized root-mean-square deviation value less than 10%. This model could be used for ankle assessment, especially in evaluating passive ankle torque, for a specific individual. The characteristic that is unique to this model is the use of three independent position variables that can be measured in real time as inputs, which makes it advantageous over other models when combined with robot-assisted therapy.

  15. Correlations between ankle-foot impairments and dropped foot gait deviations among stroke survivors.

    PubMed

    Chisholm, Amanda E; Perry, Stephen D; McIlroy, William E

    2013-01-01

    The purpose of this paper is to 1) evaluate the relationship between ankle kinematics during gait and standardized measures of ankle impairments among sub-acute stroke survivors, and 2) compare the degree of stroke-related ankle impairment between individuals with and without dropped foot gait deviations. Fifty-five independently ambulating stroke survivors participated in this study. Dropped foot was defined as decreased peak dorsiflexion during the swing phase and reduced ankle joint motion in stance. Standardized outcome measures included the Chedoke-McMaster Stroke Assessment (motor impairment), Modified Ashworth Scale (spasticity), Medical Research Council (muscle strength), passive and active range of motion, and isometric muscle force. Foot impairment was not related to peak dorsiflexion during swing (r=-0.17, P=0.247) and joint motion during stance (r=0.05, P=0.735). Active (r=0.45, P<0.001) and passive (r=0.48, P<0.001) range of motion was associated with stance phase joint motion. Peak dorsiflexion during swing was related to isometric dorsiflexor muscle force (r=-0.32, P=0.039). Individuals with dropped foot demonstrated greater motor impairment, plantarflexor spasticity and ankle muscle weakness compared to those without dropped foot. Our investigation suggests that ankle-foot impairments are related to ankle deviations during gait, as indicated by greater impairment among individuals with dropped foot. These findings contribute to a better understanding of gait-specific ankle deviations, and may lead to the development of a more effective clinical assessment of dropped foot impairment. © 2013.

  16. Gait Kinematic Analysis in Water Using Wearable Inertial Magnetic Sensors.

    PubMed

    Fantozzi, Silvia; Giovanardi, Andrea; Borra, Davide; Gatta, Giorgio

    2015-01-01

    Walking is one of the fundamental motor tasks executed during aquatic therapy. Previous kinematics analyses conducted using waterproofed video cameras were limited to the sagittal plane and to only one or two consecutive steps. Furthermore, the set-up and post-processing are time-consuming and thus do not allow a prompt assessment of the correct execution of the movements during the aquatic session therapy. The aim of the present study was to estimate the 3D joint kinematics of the lower limbs and thorax-pelvis joints in sagittal and frontal planes during underwater walking using wearable inertial and magnetic sensors. Eleven healthy adults were measured during walking both in shallow water and in dry-land conditions. Eight wearable inertial and magnetic sensors were inserted in waterproofed boxes and fixed to the body segments by means of elastic modular bands. A validated protocol (Outwalk) was used. Gait cycles were automatically segmented and selected if relevant intraclass correlation coefficients values were higher than 0.75. A total of 704 gait cycles for the lower limb joints were normalized in time and averaged to obtain the mean cycle of each joint, among participants. The mean speed in water was 40% lower than that of the dry-land condition. Longer stride duration and shorter stride distance were found in the underwater walking. In the sagittal plane, the knee was more flexed (≈ 23°) and the ankle more dorsiflexed (≈ 9°) at heel strike, and the hip was more flexed at toe-off (≈ 13°) in water than on land. On the frontal plane in the underwater walking, smoother joint angle patterns were observed for thorax-pelvis and hip, and ankle was more inversed at toe-off (≈ 7°) and showed a more inversed mean value (≈ 7°). The results were mainly explained by the effect of the speed in the water as supported by the linear mixed models analysis performed. Thus, it seemed that the combination of speed and environment triggered modifications in the joint angles in underwater gait more than these two factors considered separately. The inertial and magnetic sensors, by means of fast set-up and data analysis, can supply an immediate gait analysis report to the therapist during the aquatic therapy session.

  17. The effects of isolated ankle strengthening and functional balance training on strength, running mechanics, postural control and injury prevention in novice runners: design of a randomized controlled trial.

    PubMed

    Baltich, Jennifer; Emery, Carolyn A; Stefanyshyn, Darren; Nigg, Benno M

    2014-12-04

    Risk factors have been proposed for running injuries including (a) reduced muscular strength, (b) excessive joint movements and (c) excessive joint moments in the frontal and transverse planes. To date, many running injury prevention programs have focused on a "top down" approach to strengthen the hip musculature in the attempt to reduce movements and moments at the hip, knee, and/or ankle joints. However, running mechanics did not change when hip muscle strength increased. It could be speculated that emphasis should be placed on increasing the strength of the ankle joint for a "ground up" approach. Strengthening of the large and small muscles crossing the ankle joint is assumed to change the force distribution for these muscles and to increase the use of smaller muscles. This would be associated with a reduction of joint and insertion forces, which could have a beneficial effect on injury prevention. However, training of the ankle joint as an injury prevention strategy has not been studied. Ankle strengthening techniques include isolated strengthening or movement-related strengthening such as functional balance training. There is little knowledge about the efficacy of such training programs on strength alteration, gait or injury reduction. Novice runners will be randomly assigned to one of three groups: an isolated ankle strengthening group (strength, n = 40), a functional balance training group (balance, n = 40) or an activity-matched control group (control, n = 40). Isokinetic strength will be measured using a Biodex System 3 dynamometer. Running kinematics and kinetics will be assessed using 3D motion analysis and a force platform. Postural control will be assessed by quantifying the magnitude and temporal structure of the center of pressure trace during single leg stance on a force platform. The change pre- and post-training in isokinetic strength, running mechanics, and postural control variables will be compared following the interventions. Injuries rates will be compared between groups over 6 months. Avoiding injury will allow individuals to enjoy the benefits of participating in aerobic activities and reduce the healthcare costs associated with running injuries. Current Controlled Trial NCT01900262.

  18. Do Ergogenic Aids Alter Lower Extremity Joint Alignment During a Functional Movement Lunge Prior to and Following an Exercise Bout?

    PubMed Central

    Mills, Chris; Knight, James; Milligan, Gemma

    2015-01-01

    Ergogenic aids have been used to alter joint kinematics in an attempt to minimise injury risk, yet the effectiveness of these aids may be compromised following a bout of exercise. This preliminary study aimed to measure the effect of compression garments and Kinesio Tape® on lower extremity joint alignment prior to and following an exercise bout. Eight male athletes (age = 24.1 ± 3.0 years, body height = 177.4 ± 5.2 cm, body mass = 72.3 ± 7.2 kg) volunteered to participant in this study. Joint kinematics were recorded whilst all participants performed three rotational lunges, in three conditions (control, compression garment, Kinesio Tape®), prior to and following a 10 minute exercise bout. Frontal plane kinematics (lateral pelvic tilt, knee valgus, ankle inversion/eversion) were used to assess ergogenic aid effectiveness during the lunge. Participants exhibited no significant differences in joint kinematics between ergogenic aid conditions prior to the exercise bout. Following exercise the only significant difference occurred within the Kinesio Tape® condition where maximum knee valgus angle significantly increased from 6.5° prior to exercise, to 7.7° following the exercise bout. The results of this study suggest joint kinematics are not affected by the ergogenic aids in this study prior to an exercise bout. However, there is evidence to suggest that the application of Kinesio Tape® may allow an increase in knee valgus angle following a bout of exercise, yet, compression garments are effective at maintaining joint alignment following a bout of exercise. PMID:25964805

  19. A surgical protocol of ankle arthrodesis with combined Ilizarov's distraction-compression osteogenesis and locked nailing for osteomyelitis around the ankle joint.

    PubMed

    Chen, Chuan-Mu; Su, Alvin W; Chiu, Fang-Yao; Chen, Tain-Hsiung

    2010-09-01

    Managing refractory osteomyelitis around the ankle joint has been challenging. Destruction of both the ankle and the subtalar joints was common in cases of open fracture. For those who already had multiple surgeries, it would be tough to salvage the limb. Our goal was to set up a staged surgical protocol aiming in treating the aforementioned clinical issue. Twelve male patients underwent our protocol since year 2000. All patients presented refractory osteomyelitis, ankle and subtalar joint destruction, and poor soft tissue condition. All cases had internal fixation for open fractures followed by multiple debridement surgery before. The mean age was 50.8 years (range, 37-71 years), and the median follow-up time was 61 months (range, 48-96 months). The surgical protocol consisted of radical debridement, distraction osteogenesis for segmental bone transport, and tibia lengthening to avoid leg length discrepancy followed by intramedullary nailing for tibio-talo-calcaneal arthrodesis. The external fixation period averaged 24.7 weeks (range, 12-36 weeks). The mean duration to solid union of the arthrodesis and the bridging callus was 18.3 weeks (range, 16-20 weeks). Mild surgical site infection occurred in four cases but all subsided after removal of the nail and oral antibiotics use. At latest follow-up, all patients were infection free and could walk with plantigrade feet. The mean American Orthopaedic Foot and Ankle Society hindfoot score rising from 21.5 points (range 20-24 points) preoperatively to 65.5 points (range, 60-72). This study has shown our staged surgical protocol may be effective in solving complicated osteomyelitis around the ankle, although salvaging the limb with successful ankle arthrodesis and minimized limb length inequality, yet improving the patients' ambulation level.

  20. Peculiarities in Ankle Cartilage.

    PubMed

    Kraeutler, Matthew J; Kaenkumchorn, Tanyaporn; Pascual-Garrido, Cecilia; Wimmer, Markus A; Chubinskaya, Susanna

    2017-01-01

    Posttraumatic osteoarthritis (PTOA) is the most common form of osteoarthritis (OA) of the ankle joint. PTOA occurs as a result of several factors, including the poor regenerative capacity of hyaline articular cartilage as well as increased contact stresses following trauma. The purpose of this article is to review the epidemiology, pathogenesis, and potential targets for treatment of PTOA in the ankle joint. Previous reviews primarily addressed clinical approaches to ankle PTOA, while the focus of the current article will be specifically on the newly acquired knowledge of the cellular mechanisms that drive PTOA in the ankle joint and means for potential targeted therapeutics that might halt the progression of cartilage degeneration and/or improve the outcome of surgical interventions. Three experimental treatment strategies are discussed in this review: (1) increasing the anabolic potential of chondrocytes through treatment with growth factors such as bone morphogenetic protein-7; (2) limiting chondrocyte cell death either through the protection of cell membrane with poloxamer 188 or inhibiting activity of intracellular proteases, caspases, which are responsible for cell death by apoptosis; and (3) inhibiting catabolic/inflammatory responses of chondrocytes by treating them with anti-inflammatory agents such as tumor necrosis factor-α antagonists. Future studies should focus on identifying the appropriate timing for treatment and an appropriate combination of anti-inflammatory, chondro- and matrix-protective biologics to limit the progression of trauma-induced cartilage degeneration and prevent the development of PTOA in the ankle joint.

Top